WO2018139492A1 - Processing medium, processing composition, and processing method - Google Patents

Processing medium, processing composition, and processing method Download PDF

Info

Publication number
WO2018139492A1
WO2018139492A1 PCT/JP2018/002150 JP2018002150W WO2018139492A1 WO 2018139492 A1 WO2018139492 A1 WO 2018139492A1 JP 2018002150 W JP2018002150 W JP 2018002150W WO 2018139492 A1 WO2018139492 A1 WO 2018139492A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
processing
processing medium
less
carboxylic acid
Prior art date
Application number
PCT/JP2018/002150
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 ▲高▼梨
圭佑 ▲会▼田
桂 ▲高▼橋
Original Assignee
パレス化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パレス化学株式会社 filed Critical パレス化学株式会社
Priority to KR1020197023178A priority Critical patent/KR20190112278A/en
Priority to CN201880008771.1A priority patent/CN110382655B/en
Priority to JP2018564602A priority patent/JP6661175B2/en
Publication of WO2018139492A1 publication Critical patent/WO2018139492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/32Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/52Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M133/08Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups

Definitions

  • the present invention relates to a processing medium, a processing composition, and a processing method.
  • a working medium working fluid, cutting fluid, coolant
  • the processing medium is used after being diluted with a solvent such as water, or further blended with abrasive grains and used as a processing composition (grinding liquid, polishing liquid, slurry).
  • the processing medium includes a cooling action that cools the heat generated between the tool and the workpiece, a lubrication action that lubricates the tool and the work piece, and particles (chips, grinding debris, polishing generated during machining) There is a welding protection action that protects the welding between the scrap) and the tool or workpiece.
  • Particle-derived metal oxide particulate sludge generated by processing is likely to adhere (adhere, reattach) to the surface of the workpiece.
  • the sludge adheres to the surface of the workpiece it leads to metal contamination of the workpiece.
  • metal ions eluted into the processing medium due to contact with metal such as tools and pipes are likely to be adsorbed (or penetrated or diffused) on the surface of the workpiece.
  • Metal ions are easy to move on the surface of the workpiece. Due to the movement of metal ions, problems such as malfunction of elements such as transistors formed on the workpiece (for example, wafer), leakage current (leakage current), etc. May occur. Therefore, various processing media and processing compositions have been proposed in order to suppress the adverse effects of sludge and metal ions on the workpiece.
  • Patent Document 1 discloses a water-soluble cutting oil material containing a primary alkanolamine, a carboxylic acid, and a diamine as a component that suppresses a decrease in rust prevention properties.
  • Patent Document 2 discloses a water-soluble metal anticorrosive agent comprising a tetrazole compound and a water-soluble salt thereof as having excellent rust prevention ability for various metals.
  • Patent Document 3 discloses a polishing composition containing a chelating agent, an alkali compound, silicon dioxide and water as an effective suppression of contamination of the wafer by metal impurities.
  • Patent Document 4 discloses a polishing composition containing silica, a basic substance, aminopolyphosphonic acid, and water as an element that effectively prevents metal contamination such as nickel, chromium, iron, and copper.
  • Patent Document 5 discloses a polishing composition containing silica, a basic substance, an amino acid derivative, a salt thereof, and water as one that can prevent metal contamination, particularly copper contamination.
  • Patent Document 6 discloses a polishing composition containing silica, a basic substance, a polyaminopolycarboxylic acid compound having a hydroxyl group, and water as those capable of preventing metal contamination, particularly copper contamination.
  • Patent Document 7 discloses a polishing composition containing silicon dioxide, an alkali compound, and a chelating agent having a phosphonic acid group as one that effectively suppresses contamination of the wafer by metal impurities.
  • Patent Document 8 discloses a polishing slurry containing monoclinic zirconium, a carboxylic acid, and a quaternary alkylammonium hydroxide as one that can effectively prevent copper contamination.
  • the main object of the present invention is to provide a processing medium, a processing composition, and a processing method having both rust prevention performance and metal contamination prevention performance.
  • the processing medium according to the present invention contains a polyvalent carboxylic acid having 2 to 7 carbon atoms, an aromatic monocarboxylic acid, and a basic substance in a neutralized state.
  • the processing composition according to the present invention includes the processing medium and abrasive grains.
  • the processing method according to the present invention processes the workpiece by supplying the processing medium or the processing composition to a contact portion between a tool and the workpiece.
  • the processing medium includes processing for cutting a workpiece such as silicon, silicon carbide, sapphire, and gallium nitride ingots, processing for polishing a cutting surface of a workpiece such as a wafer, and polishing the cutting surface to a mirror surface.
  • processing such as machining, tools (for example, wire saws, band saws, inner peripheral blades, lapping surface plates (for example, single-side surface plates, double-side surface plates, cast iron surface plates, copper surface plates, etc.))
  • Medium working fluid, cutting fluid, coolant, etc.
  • the processing medium can be used after being diluted with water.
  • the processing medium may further contain abrasive grains (for example, diamond, zirconia, alumina, silicon carbide, cubic boron nitride, etc.) and a processing composition (for example, grinding liquid, grinding composition, polishing liquid, polishing composition) , Slurry, suspension, etc.).
  • abrasive grains for example, diamond, zirconia, alumina, silicon carbide, cubic boron nitride, etc.
  • a processing composition for example, grinding liquid, grinding composition, polishing liquid, polishing composition
  • Slurry, suspension etc.
  • the processing medium is used in processing apparatuses such as a cutting apparatus (slicing apparatus, cutter machine), a grinding apparatus (lapping apparatus), and a polishing apparatus (polishing apparatus).
  • copper is often used for piping from the tank of the processing medium to the supply unit.
  • the processing medium preferably has a copper ion concentration in the processing medium of 70 ppm or less, more preferably 60 ppm or less, and particularly preferably 50 ppm or less when copper is immersed in the processing medium. If it exceeds 70 ppm, malfunctions of elements such as transistors formed on the workpiece, leakage current, etc. are likely to occur.
  • the processing medium contains a polyvalent carboxylic acid, an aromatic monocarboxylic acid, a basic substance, and water in a neutralized or neutralized state.
  • the contained or neutralized state means that the acid and base are not neutralized, the acid and base are in an ionic state, or the acid and base are neutralized or in any state.
  • the polyvalent carboxylic acid is a polyvalent carboxylic acid having 2 to 7 carbon atoms.
  • the polyvalent carboxylic acid mainly acts to suppress metal contamination of the workpiece.
  • Examples of the polyvalent carboxylic acid include dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, and pimelic acid; tricarboxylic acids such as annicotic acid; hydroxy acids such as malic acid and citric acid; Oxaloacetic acid or the like can be used.
  • the carbon number of the polyvalent carboxylic acid is preferably 2 or more and 6 or less. If the carbon number is greater than 7, it becomes impossible to suppress metal contamination of the workpiece.
  • oxalic acid is excellent in the effect of preventing elution of iron generally used for tools.
  • citric acid is excellent in the effect which prevents elution of copper.
  • An aromatic monocarboxylic acid is a compound having at least one aromatic ring and one carboxyl group.
  • the aromatic monocarboxylic acid for example, p-tert-butylbenzoic acid, 4.000-tert-butylbenzoic acid, m-tert-butylbenzoic acid, nitrobenzoic acid, phenylacetic acid, naphthalenecarboxylic acid and the like can be used.
  • p-tert-butylbenzoic acid is preferable because it has an action of suppressing oxidation of a metal material mainly used in tools (ensuring rust prevention).
  • the total blending amount of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is preferably 0.05 wt% or more and 15 wt% or less, more preferably 0.1 wt% or more and 4 wt% or less in the processing medium, More preferably, it is 0.2 wt% or more and 2 wt% or less. If the concentration is lower than 0.05 wt%, it is difficult to suppress metal contamination of the workpiece. On the other hand, if the concentration is higher than 15 wt%, more base is required to neutralize this. Is easier to elute.
  • the blending ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is preferably 1: 4 or more and less than 2: 1, more preferably 1: 1.8 or more and 1.8: 1 or less, further preferably Is 1: 1.5 or more and 1.5: 1 or less.
  • the ratio is less than 1: 4, the copper ion elution amount increases.
  • the ratio is 2: 1 or more, the copper ion elution amount increases.
  • the basic substance is at least one of a sodium compound, a potassium compound, an ammonium compound, and an amine compound.
  • the basic substance preferably contains a sodium compound or potassium compound and an amine compound, and more preferably contains a plurality of types of amine compounds.
  • a compound whose aqueous solution is basic can be used, for example, sodium compounds such as sodium hydroxide and sodium carbonate; potassium compounds such as potassium hydroxide and potassium carbonate; Ammonium compounds such as tetramethylammonium hydroxide and ammonium hydroxide; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, monoethanolamine, N-ethanolamine, diethanolamine, triethylamine, triethanolamine, monoisopropanolamine, diisopropylethylamine, Diisopropanolamine, diethylenetriamine, triethylenetetramine, poly (propylene glycol) diamine, trimethylolpropane poly (oxy) (Propylene) triamine, ethylenediamine, tetramethylethylenediamine, 2-amino-2-methylpropanol, laurylaminopropylamine, ethylaminoethy
  • the processing medium according to the present invention contains a basic substance, the aromatic monocarboxylic acid becomes soluble in water, so that a uniform and stable solution can be obtained.
  • the blending amount of the basic substance in the processing medium is preferably 0.1 wt% or more and 20 wt% or less, more preferably 0.2 wt% or more and 10 wt% or less, and further preferably 0.5 wt% or more and 5 wt% or less. If the concentration is lower than 0.1 wt%, the metal contamination of the workpiece will be adversely affected. If the basic substance is insufficient and the pH is 7 or less, the rust prevention property is lost. On the other hand, when the concentration is higher than 20 wt%, copper ions are likely to be eluted.
  • the basic substance is preferably added in an amount that can neutralize both the polyvalent carboxylic acid and the aromatic monocarboxylic acid, and is preferably blended so that the pH of the processing medium is higher than 7, more preferably 8 and 12. .5 or less, more preferably 8.5 or more and 10 or less. Considering the handling and cost of the processing medium, the pH is preferably 12.5 or less.
  • Water is a dilute medium of polyvalent carboxylic acid, aromatic monocarboxylic acid and basic substance that are the concentrate components.
  • the amount of water is not particularly limited as long as the stock solution can be diluted to an arbitrary concentration with water. However, in consideration of handling and cost, it is preferably 50 wt% or more and 99.7 wt% or less, more preferably 80 wt%. The amount is 99.5 wt% or less, more preferably 90 wt% or more and 98 wt% or less.
  • surfactants such as surfactants, antifoaming agents, preservatives, fragrances, dyes, and the like can be added to the processing medium as necessary.
  • the surfactant can be blended in consideration of the dispersibility of the abrasive grains and the permeability of the liquid.
  • the surfactant nonionic surfactants, cationic surfactants, anionic surfactants, amphoteric surfactants and the like can be used.
  • ester type nonionic surfactants such as glyceryl laurate and glyceryl monostearate Surfactants
  • ether type nonionic surfactants such as polyalkylene glycol monobutyl ether and polyoxyethylene alkyl ether
  • ester ether type nonionic surfactants such as polyoxyethylene sorbitan fatty acid ester and polyoxyethylene hexitan fatty acid ester
  • Alkanolamide type nonionic surfactants such as lauric acid diethanolamide and oleic acid diethanolamide
  • alkyl glucoside type nonionic surfactants such as octylglucoside and decylglucoside
  • cetanol, stearylamide Higher alcohol type nonionic surfactants such as coal
  • quaternary ammonium salt type cationic surfactants such as tetramethylammonium chloride and tetramethylammonium hydroxide
  • alkylamine salts such as monomethylamine hydroch
  • the blending amount of the surfactant can be 0.01 wt% or more and 5 wt% or less with respect to 100 wt% of the processing medium, preferably 0.02 wt% or more and 3 wt% or less, more preferably 0.05 wt%. Above and below 1 wt%.
  • the antifoaming agent can be blended in consideration of overflow from the processing medium tank and handling during recycling.
  • antifoaming agents include silicone oils, modified silicones, nonionic surfactants having an HLB (Hydrophilic-Lipophilic Balance) of 7 or more; organic polar compounds such as 2-ethylhexanol and diisooctyl ether; sorbitan esters, pluronics
  • HLB Hydrophilic-Lipophilic Balance
  • a low hydrophilic surfactant such as L-61
  • mineral oil to which a fatty acid metal salt is added can be used.
  • the blending amount of the antifoaming agent can be 0.001 wt% or more and 1 wt% or less with respect to 100 wt% of the processing medium, preferably 0.002 wt% or more and 0.5 wt% or less. It is 005 wt% or more and 0.1 wt% or less.
  • preservatives for example, 2-methyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, p-hydroxybenzoates, phenoxyethanol and the like can be used.
  • fragrance for example, natural fragrance such as mastic oil, parsley oil, anise oil, synthetic fragrance such as carvone, anethole, methyl salicylate, blended fragrance, and the like can be used.
  • the dye examples include direct dyes such as Atlas Red R, Azo Blue, and Azo Mauve AM, basic dyes such as Auramin G, Auramin II, and Bismarck Brown; basic Janus dyes such as Janus Blue G, Janus Green B, and Janus Blue R; Mordant dyes such as logwood, fstic, mudder and alizarin; vat dyes such as anthraquinone and indigoid can be used.
  • direct dyes such as Atlas Red R, Azo Blue, and Azo Mauve AM
  • basic dyes such as Auramin G, Auramin II, and Bismarck Brown
  • basic Janus dyes such as Janus Blue G, Janus Green B, and Janus Blue R
  • Mordant dyes such as logwood, fstic, mudder and alizarin
  • vat dyes such as anthraquinone and indigoid can be used.
  • the salt of the state in which the polyhydric carboxylic acid, aromatic monocarboxylic acid, and basic substance were neutralized instead of those mixtures is a raw material Can be used as
  • a processing medium that becomes a neutralized salt aqueous solution can be obtained by dissolving a basic substance in water, adding a polyvalent carboxylic acid and an aromatic monocarboxylic acid, and stirring the mixture. . If necessary, surfactants, preservatives, antifoaming agents, fragrances, dyes and the like can be added to the processing medium, and water can be added to adjust the concentration.
  • abrasive grains can optionally be blended in the processing medium and stirred.
  • the manufacturing method of a processing medium and a processing composition is not restricted above. The processing medium or processing composition thus obtained is poured into a tank of the processing apparatus, and the processing medium or processing composition is supplied to the contact portion between the tool of the processing apparatus and the workpiece, and the processing target is processed. Things will be processed.
  • adsorption (or penetration, diffusion) of metal ions dissolved in the processing medium by the polyvalent carboxylic acid can be prevented (suppressed), so that metal contamination of the workpiece can be prevented. It can be prevented (suppressed).
  • the aromatic monocarboxylic acid can prevent (suppress) oxidation of the metal material used in the tool, and thus prevent (suppress) adhesion of sludge to the workpiece. be able to.
  • the combination of polyvalent carboxylic acid, aromatic monocarboxylic acid, and basic substance can prevent (suppress) the ionization of copper used for tools, tools for processing devices, and the like. Therefore, copper contamination of the workpiece can be prevented (suppressed).
  • processing media (samples) according to Example 1-24 and Comparative Example 1-11 were prepared with the compositional composition shown in Table 1 to Table 7.
  • a basic substance is dissolved in water, and a polyvalent carboxylic acid and p-tert-butylbenzoic acid as an aromatic monocarboxylic acid are added and stirred.
  • a surfactant A processing medium was obtained by adding 3-benzotriazole and adjusting the concentration by adding water.
  • preservatives, antifoaming agents, fragrances, dyes and the like are not included.
  • P-tert-Butylbenzoic acid 4-tert-Butylbenzoic acid (PTBBA), Fuso Chemical Industry Co., Ltd. -Sodium hydroxide: Caustic soda (solid type), Tsurumi Soda Co., Ltd. Monoisopropanolamine: Monoisopropanolamine (MIPA), NANJING HBL ALKYLOL AMINES CO. , LTD. ⁇ Diisopropanolamine: Diisopropanolamine 85% GT grade, Dow Chemical Japan Co., Ltd. Triethanolamine: TEA (triethanolamine) 99, Japan Chemtech Co., Ltd.
  • Trimethylolpropane poly (oxypropylene) triamine JEFFAMINE (registered trademark) T-403, Huntsman Japan K.K.
  • Polyalkylene glycol monobutyl ether Unilube (registered trademark) 50MB-5, NOF Corporation • 1,2,3-benzotriazole: Sunlite 123.
  • a processing composition (slurry) was obtained by adding 30 wt% of abrasive grains (alumina base wrapping material: FO # 1000, Fujimi Incorporated) to 100 wt% of the processing media according to the examples and comparative examples.
  • abrasive grains alumina base wrapping material: FO # 1000, Fujimi Incorporated
  • polishing method The processing composition according to the example and the comparative example was supplied to the contact portion between the cast iron surface plate (tool) and the silicon wafer (workpiece) to polish the silicon wafer.
  • the polishing process conditions are as follows.
  • Polishing machine Lab Tester GP1 (Malto Corporation)
  • Surface plate Cast iron diameter 250mm
  • Surface plate groove shape Lattice (grid 1 side 25mm x 25mm)
  • Surface plate rotation speed 100 rpm
  • Surface pressure on the test piece 0.6 g / mm 2
  • Test piece Single crystal silicon wafer diameter 125mm Processing composition supply: 1 L / min
  • PH measurement The pH was measured using a pH measuring device (manufactured by HORIBA, Ltd., “Glass electrode type hydrogen ion concentration meter pH METER F-11”, “pH electrode LAQUA (registered trademark) 6377”).
  • 1,2,3-benzotriazole Due to the action of 1,2,3-benzotriazole as an inhibitor, the cast iron surface plate has rust prevention and the amount of copper ion elution can be suppressed, but the metal contamination of the silicon wafer can be suppressed. could not. From this, it was found that 1,2,3-benzotriazole has the antirust property of the cast iron surface plate, but does not have the effect of suppressing the metal contamination of the silicon wafer.
  • Comparative Example 2 containing citric acid (carbon number 6) as the polyvalent carboxylic acid and not containing p-tert-butylbenzoic acid, the action of both the polyvalent carboxylic acid and p-tert-butylbenzoic acid was confirmed. Since it does not exist, the cast iron surface plate has no rust prevention property, and the metal contamination of the silicon wafer and the elution amount of copper ions cannot be suppressed.
  • Comparative Example 4 which does not contain a polyvalent carboxylic acid and contains p-tert-butylbenzoic acid, the cast iron surface plate had rust prevention due to the action of other monocarboxylic acid (caprylic acid). Further, since the presence of the actions of both polyvalent carboxylic acid and p-tert-butylbenzoic acid is lacking, the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed.
  • Comparative Example 5 containing sebacic acid (10 carbon atoms) as the polyvalent carboxylic acid and containing p-tert-butylbenzoic acid, the polyvalent carboxylic acid has too many carbon atoms and has 7 or less carbon atoms.
  • the action based on the presence of both polyvalent carboxylic acid and p-tert-butylbenzoic acid is lost, the cast iron surface plate has no rust prevention, and the silicon wafer metal contamination and copper ion elution amount could not be suppressed. .
  • Comparative Example 7 containing citric acid (6 carbon atoms) as the polyvalent carboxylic acid and not containing p-tert-butylbenzoic acid, rust prevention of the cast iron surface plate was effected by the action of monocarboxylic acid (caprylic acid). However, since it lacks the action of both polyvalent carboxylic acid and p-tert-butylbenzoic acid, the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed.
  • Comparative Example 8 containing isophthalic acid (carbon number 8) as a polyvalent carboxylic acid and containing p-tert-butylbenzoic acid, the cast iron surface plate has rust prevention and suppresses metal contamination of silicon wafers.
  • isophthalic acid carbon number 8
  • the cast iron surface plate has rust prevention and suppresses metal contamination of silicon wafers.
  • Example 1-9 the cast iron surface plate has the rust prevention property by the action of p-tert-butylbenzoic acid, and the metal contamination of the silicon wafer is suppressed by the action of the polyvalent carboxylic acid having 2 to 7 carbon atoms.
  • the elution amount of copper ions could also be suppressed by the presence of both polyvalent carboxylic acid and p-tert-butylbenzoic acid (see Table 1).
  • Example 6 when the total blending amount of the polyvalent carboxylic acid and p-tert-butylbenzoic acid was reduced, the rust resistance of the cast iron surface plate was reduced.
  • Example 19-21 which is less than 2: 1, the resistance of cast iron surface plate is reduced. It was rusting and could suppress the metal contamination of the silicon wafer and the elution amount of copper ions.
  • Example 13 is in the range of 0.05 wt% or more and 15 wt% or less.
  • the cast iron surface plate had rust prevention, and the metal contamination of the silicon wafer and the elution amount of copper ions could be suppressed.
  • the rust prevention property of the cast iron surface plate decreased, and the metal contamination of the silicon wafer tended to increase.
  • the total amount of polycarboxylic acid (oxalic acid: 2 carbon atoms) and p-tert-butylbenzoic acid is in the range of 0.05 wt% or more and 15 wt% or less.
  • the cast iron surface plate had rust prevention properties, and metal contamination of the silicon wafer could be suppressed.
  • the polyvalent carboxylic acid preferably has 2 or more and 6 or less, 3 or more and 7 or less, more preferably 3 or more and 6 or less carbon atoms.
  • the basic substance is one or more of a sodium compound, a potassium compound, an ammonium compound, and an amine compound.
  • the basic substance includes a sodium compound and an amine compound.
  • the basic substance includes a plurality of types of amine compounds.
  • the processing medium further includes water.
  • the total of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 0.05 wt% or more and 15 wt% or less, the basic substance is 0.1 wt% or more and 20 wt% or less, and the water is 50 wt%. Above and 99.7 wt% or less.
  • the total blending amount of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is more preferably 0.1 wt% or more and 4 wt% or less, and further preferably 0.2 wt% or more and 2 wt% or less.
  • the blending amount of the basic substance is more preferably 0.2 wt% or more and 10 wt% or less, and further preferably 0.5 wt% or more and 5 wt% or less.
  • the blending amount of water is more preferably 80 wt% or more and 99.5 wt% or less, and further preferably 90 wt% or more and 98 wt% or less.
  • the mixing ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 1: 4 or more and less than 2: 1.
  • the blending ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is more preferably 1: 1.8 or more and 1.8: 1 or less, and further preferably 1: 1.5 or more and 1.5: 1. It is as follows.
  • the pH of the processing medium is greater than 7.
  • the pH is more preferably 8 or more and 12.5 or less, and still more preferably 8 or more and 10 or less.
  • the processing medium contains at least one of a surfactant, an antifoaming agent, a preservative, a fragrance, and a dye.
  • a surfactant is blended in an amount of 0.01 wt% to 5 wt% with respect to 100 wt% of the processing medium according to any one of claims 5 to 7.
  • the blending amount of the surfactant is preferably 0.02 wt% or more and 3 wt% or less, more preferably 0.05 wt% or more and 1 wt% or less.
  • an antifoaming agent is blended in an amount of 0.001 wt% or more and 1 wt% or less with respect to 100 wt% of the processing medium according to claim 5.
  • the blending amount of the antifoaming agent is preferably 0.002 wt% or more and 0.5 wt% or less, more preferably 0.005 wt% or more and 0.1 wt% or less.
  • the processing medium does not contain benzotriazole.
  • the copper ion in the processing medium is 70 ppm or less when copper is immersed in the processing medium.
  • the copper ion in the processing medium is preferably 60 ppm or less, more preferably 50 ppm or less.
  • the form of the processing composition is possible.
  • the silicon wafer when the silicon wafer is polished by supplying the processing composition to a contact portion between a cast iron surface plate and a silicon wafer, there is no metal contamination on the silicon wafer surface, or the silicon Metal contaminants on the wafer surface can be wiped off before drying.
  • the cast iron platen obtained by polishing a silicon wafer using the processing composition is immersed in the processing composition for 10 minutes at 30 ° C., the cast iron platen There is no generation of rust on the surface, or the generation of rust is 10 or less in an area of 70 mm ⁇ 50 mm.

Abstract

Provided are a processing medium which combines rust-preventive performance with metal-contamination-preventing performance, a processing composition, and a processing method. The processing medium according to the present invention contains a C2-7 polycarboxylic acid, an aromatic monocarboxylic acid, and a basic substance or contains these ingredients in a neutralized state.

Description

加工媒体、加工組成物及び加工方法Processing medium, processing composition and processing method
 本発明は、加工媒体、加工組成物及び加工方法に関する。 The present invention relates to a processing medium, a processing composition, and a processing method.
 インゴッド(鋳塊)等の被加工物をウェハ状に切断する加工や、被加工物の切断面を研磨(研削)する加工や、さらに被加工物の切断面を鏡面に研磨する加工を行うときには、工具(例えば、ワイヤソー、バンドソー、内周刃ブレード、ラップ定盤等)と被加工物との接触部分に加工媒体(加工液、切削液、クーラント)が供給される。加工媒体は、水などの溶媒で希釈して用いたり、さらに砥粒を配合して加工組成物(研削液、研磨液、スラリー)として用いられる。加工媒体には、工具と被加工物との間で発生する熱を冷却する冷却作用、工具と被加工物との間を潤滑にする潤滑作用、加工時に発生したパーティクル(切屑、研削屑、研磨屑)と工具や被加工物との溶着を防護する溶着防護作用等がある。 When performing processing to cut a workpiece such as an ingot (ingot) into a wafer, processing to grind (grind) the cut surface of the workpiece, or further polish the cut surface of the workpiece to a mirror surface A working medium (working fluid, cutting fluid, coolant) is supplied to a contact portion between a tool (for example, a wire saw, a band saw, an inner peripheral blade, a lap surface plate, etc.) and a workpiece. The processing medium is used after being diluted with a solvent such as water, or further blended with abrasive grains and used as a processing composition (grinding liquid, polishing liquid, slurry). The processing medium includes a cooling action that cools the heat generated between the tool and the workpiece, a lubrication action that lubricates the tool and the work piece, and particles (chips, grinding debris, polishing generated during machining) There is a welding protection action that protects the welding between the scrap) and the tool or workpiece.
 加工によって発生したパーティクル由来の金属酸化物の微粒子状のスラッジは、被加工物の表面に付着(固着、再付着)しやすい。スラッジが被加工物の表面に付着すると、被加工物の金属汚染につながる。また、加工時に、工具、配管等の金属との接触によって加工媒体に溶出した金属イオンが被加工物の表面に吸着(又は浸透、拡散)しやすい。金属イオンは被加工物の表面で動きやすく、金属イオンの動きが原因で、被加工物(例えば、ウェハ)に形成されたトランジスタ等の素子の誤作動、リーク電流(漏れ電流)等の問題が発生することがある。そこで、被加工物に対するスラッジや金属イオンの悪影響を抑制するために、様々な加工媒体、加工組成物が提案されている。 Particle-derived metal oxide particulate sludge generated by processing is likely to adhere (adhere, reattach) to the surface of the workpiece. When the sludge adheres to the surface of the workpiece, it leads to metal contamination of the workpiece. In addition, during processing, metal ions eluted into the processing medium due to contact with metal such as tools and pipes are likely to be adsorbed (or penetrated or diffused) on the surface of the workpiece. Metal ions are easy to move on the surface of the workpiece. Due to the movement of metal ions, problems such as malfunction of elements such as transistors formed on the workpiece (for example, wafer), leakage current (leakage current), etc. May occur. Therefore, various processing media and processing compositions have been proposed in order to suppress the adverse effects of sludge and metal ions on the workpiece.
 例えば、特許文献1には、防錆性の低下を抑えるものとして、第1級アルカノールアミン、カルボン酸、ジアミンとを含有する水溶性切削油材が開示されている。また、特許文献2には、各種金属に対して優れた防錆能を有するものとして、テトラゾール化合物及びその水溶性塩からなる水溶性金属防食剤が開示されている。 For example, Patent Document 1 discloses a water-soluble cutting oil material containing a primary alkanolamine, a carboxylic acid, and a diamine as a component that suppresses a decrease in rust prevention properties. Further, Patent Document 2 discloses a water-soluble metal anticorrosive agent comprising a tetrazole compound and a water-soluble salt thereof as having excellent rust prevention ability for various metals.
 また、特許文献3には、金属不純物によるウェハの汚染を効果的に抑制するものとして、キレート剤、アルカリ化合物、二酸化ケイ素及び水を含有する研磨用組成物が開示されている。また、特許文献4には、ニッケル、クロム、鉄、銅等の金属汚染を効果的に防止するものとして、シリカ、塩基性物質、アミノポリホスホン酸及び水を含む研磨組成物が開示されている。また、特許文献5には、金属汚染、特に銅汚染を防止することができるものとして、シリカ、塩基性物質、アミノ酸誘導体、その塩、水を含む研磨組成物が開示されている。また、特許文献6には、金属汚染、特に銅汚染を防止することができるものとして、シリカ、塩基性物質、水酸基を有するポリアミノポリカルボン酸化合物、水を含む研磨組成物が開示されている。また、特許文献7には、金属不純物によるウェハの汚染を効果的に抑制するものとして、二酸化ケイ素、アルカリ化合物、ホスホン酸基を有するキレート剤を含有する研磨用組成物が開示されている。さらに、特許文献8には、銅汚染を効果的に防止できるものとして、単斜晶ジルコニウムと、カルボン酸と、水酸化第4級アルキルアンモニウムと、を含有する研磨スラリーが開示されている。 Further, Patent Document 3 discloses a polishing composition containing a chelating agent, an alkali compound, silicon dioxide and water as an effective suppression of contamination of the wafer by metal impurities. Further, Patent Document 4 discloses a polishing composition containing silica, a basic substance, aminopolyphosphonic acid, and water as an element that effectively prevents metal contamination such as nickel, chromium, iron, and copper. . Further, Patent Document 5 discloses a polishing composition containing silica, a basic substance, an amino acid derivative, a salt thereof, and water as one that can prevent metal contamination, particularly copper contamination. Further, Patent Document 6 discloses a polishing composition containing silica, a basic substance, a polyaminopolycarboxylic acid compound having a hydroxyl group, and water as those capable of preventing metal contamination, particularly copper contamination. Further, Patent Document 7 discloses a polishing composition containing silicon dioxide, an alkali compound, and a chelating agent having a phosphonic acid group as one that effectively suppresses contamination of the wafer by metal impurities. Further, Patent Document 8 discloses a polishing slurry containing monoclinic zirconium, a carboxylic acid, and a quaternary alkylammonium hydroxide as one that can effectively prevent copper contamination.
特開昭64-43598号公報Japanese Unexamined Patent Publication No. 64-43598 特開平7-145491号公報JP 7-145491 A 国際公開第2004/042812号パンフレットInternational Publication No. 2004/042812 Pamphlet 特開2005-347737号公報JP 2005-347737 A 国際公開第2006/046641号パンフレットInternational Publication No. 2006/046641 Pamphlet 国際公開第2006/126432号パンフレットInternational Publication No. 2006/126432 Pamphlet 特開2014-82509号公報JP 2014-82509 A 特許第5002175号公報Japanese Patent No. 5002175
 しかしながら、従来の加工組成物等において防錆性及び金属汚染防止を兼ね備えるものが見当たらなかった。 However, there has been no conventional processing composition that has both rust prevention and metal contamination prevention.
 本発明の主な課題は、防錆性能及び金属汚染防止性能を兼ね備えた加工媒体、加工組成物及び加工方法を提供することである。 The main object of the present invention is to provide a processing medium, a processing composition, and a processing method having both rust prevention performance and metal contamination prevention performance.
 本発明に係る加工媒体は、炭素数が2以上かつ7以下の多価カルボン酸と、芳香族モノカルボン酸と、塩基性物質と、を含有ないし中和した状態で含有する。 The processing medium according to the present invention contains a polyvalent carboxylic acid having 2 to 7 carbon atoms, an aromatic monocarboxylic acid, and a basic substance in a neutralized state.
 本発明に係る加工組成物は、前記加工媒体と、砥粒と、を含む。 The processing composition according to the present invention includes the processing medium and abrasive grains.
 本発明に係る加工方法は、前記加工媒体、又は、前記加工組成物を、工具と被加工物との接触部分に供給して前記被加工物を加工する。 The processing method according to the present invention processes the workpiece by supplying the processing medium or the processing composition to a contact portion between a tool and the workpiece.
 本発明によれば、防錆性能及び金属汚染防止性能を兼ね備えた加工媒体、加工組成物及び加工方法を提供することができる。 According to the present invention, it is possible to provide a processing medium, a processing composition, and a processing method that have both rust prevention performance and metal contamination prevention performance.
シリコンウェハの金属汚染評価の判定方法を示す写真である。It is a photograph which shows the determination method of metal contamination evaluation of a silicon wafer.
 以下、実施形態について説明する。なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。また、下記の実施形態は、あくまで例示であり、本発明を限定するものではない。 Hereinafter, embodiments will be described. Note that, in the present application, where reference numerals are attached to the drawings, these are only for the purpose of helping understanding, and are not intended to be limited to the illustrated embodiments. The following embodiments are merely examples and do not limit the present invention.
 実施形態に係る加工媒体は、シリコン、炭化ケイ素、サファイア、窒化ガリウムのインゴット等の被加工物を切断する加工、ウェハ等の被加工物の切断表面を研磨する加工、さらに切断表面を鏡面に研磨する加工等の加工を行うときに、工具(例えば、ワイヤソー、バンドソー、内周刃ブレード、ラップ定盤(例えば、片面定盤、両面定盤、鋳鉄定盤、銅定盤等)等)と被加工物との接触部に供給される媒体(加工液、切削液、クーラント等)である。加工媒体は、水で希釈して用いることができる。加工媒体は、さらに砥粒(例えば、ダイヤモンド、ジルコニア、アルミナ、炭化ケイ素、立方晶窒化ホウ素等)を任意で配合して加工組成物(例えば、研削液、研削組成物、研磨液、研磨組成物、スラリー、懸濁液等)として用いることができる。加工媒体は、例えば、切断装置(スライシング装置、カッター機)、研削装置(ラッピング装置)、研磨装置(ポリッシング装置)等の加工装置において用いられる。なお、加工装置においては、加工媒体のタンクから供給部までの配管に銅が用いられていることが多い。 The processing medium according to the embodiment includes processing for cutting a workpiece such as silicon, silicon carbide, sapphire, and gallium nitride ingots, processing for polishing a cutting surface of a workpiece such as a wafer, and polishing the cutting surface to a mirror surface. When performing processing such as machining, tools (for example, wire saws, band saws, inner peripheral blades, lapping surface plates (for example, single-side surface plates, double-side surface plates, cast iron surface plates, copper surface plates, etc.)) Medium (working fluid, cutting fluid, coolant, etc.) supplied to the contact portion with the workpiece. The processing medium can be used after being diluted with water. The processing medium may further contain abrasive grains (for example, diamond, zirconia, alumina, silicon carbide, cubic boron nitride, etc.) and a processing composition (for example, grinding liquid, grinding composition, polishing liquid, polishing composition) , Slurry, suspension, etc.). The processing medium is used in processing apparatuses such as a cutting apparatus (slicing apparatus, cutter machine), a grinding apparatus (lapping apparatus), and a polishing apparatus (polishing apparatus). In the processing apparatus, copper is often used for piping from the tank of the processing medium to the supply unit.
 加工媒体は、加工媒体中に銅を浸したときに加工媒体中の銅イオン濃度が好ましくは70ppm以下であり、より好ましくは60ppm以下であり、特に好ましくは50ppm以下である。70ppmより大きくなると、被加工物に形成されたトランジスタ等の素子の誤作動、リーク電流等が発生しやすくなる。 The processing medium preferably has a copper ion concentration in the processing medium of 70 ppm or less, more preferably 60 ppm or less, and particularly preferably 50 ppm or less when copper is immersed in the processing medium. If it exceeds 70 ppm, malfunctions of elements such as transistors formed on the workpiece, leakage current, etc. are likely to occur.
 加工媒体は、多価カルボン酸と、芳香族モノカルボン酸と、塩基性物質と、水と、を含有ないし中和した状態において含有される。ここで、含有ないし中和した状態とは、酸及び塩基が中和していない状態、酸及び塩基がイオンの状態、酸及び塩基が中和した状態のいずれか又はすべての状態にあることをいう。 The processing medium contains a polyvalent carboxylic acid, an aromatic monocarboxylic acid, a basic substance, and water in a neutralized or neutralized state. Here, the contained or neutralized state means that the acid and base are not neutralized, the acid and base are in an ionic state, or the acid and base are neutralized or in any state. Say.
 多価カルボン酸は、炭素数が2以上かつ7以下の多価カルボン酸である。多価カルボン酸は、主に被加工物の金属汚染を抑制する作用がある。多価カルボン酸として、例えば、シュウ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸等のジカルボン酸;アニコット酸等のトリカルボン酸;リンゴ酸、クエン酸等のヒドロキシ酸;オキサロ酢酸等を用いることができる。多価カルボン酸の炭素数は、好ましくは2以上かつ6以下である。炭素数が7より大きくなると被加工物の金属汚染を抑制できなくなる。上記の多価カルボン酸の中でも、シュウ酸は、工具に一般に用いられる鉄の溶出を防止する効果に優れる。また、クエン酸は、銅の溶出を防止する効果に優れる。 The polyvalent carboxylic acid is a polyvalent carboxylic acid having 2 to 7 carbon atoms. The polyvalent carboxylic acid mainly acts to suppress metal contamination of the workpiece. Examples of the polyvalent carboxylic acid include dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, and pimelic acid; tricarboxylic acids such as annicotic acid; hydroxy acids such as malic acid and citric acid; Oxaloacetic acid or the like can be used. The carbon number of the polyvalent carboxylic acid is preferably 2 or more and 6 or less. If the carbon number is greater than 7, it becomes impossible to suppress metal contamination of the workpiece. Among the above polyvalent carboxylic acids, oxalic acid is excellent in the effect of preventing elution of iron generally used for tools. Moreover, citric acid is excellent in the effect which prevents elution of copper.
 芳香族モノカルボン酸は、少なくとも1つの芳香環と、1つのカルボキシル基とを有する化合物である。芳香族モノカルボン酸として、例えばp-tert-ブチル安息香酸、о-tert-ブチル安息香酸、m-tert-ブチル安息香酸、ニトロ安息香酸、フェニル酢酸、ナフタレンカルボン酸等を用いることができる。中でも、p-tert-ブチル安息香酸は、主に工具に用いられている金属材料の酸化を抑える(防錆性を確保する)作用があるため好ましい。 An aromatic monocarboxylic acid is a compound having at least one aromatic ring and one carboxyl group. As the aromatic monocarboxylic acid, for example, p-tert-butylbenzoic acid, о-tert-butylbenzoic acid, m-tert-butylbenzoic acid, nitrobenzoic acid, phenylacetic acid, naphthalenecarboxylic acid and the like can be used. Among them, p-tert-butylbenzoic acid is preferable because it has an action of suppressing oxidation of a metal material mainly used in tools (ensuring rust prevention).
 ここで、金属の腐食を防止するためにp-tert-ブチル安息香酸及び塩基を用いることは知られているが(例えば、特許文献2の[0002]参照)、炭素数が2~7の分子量の小さい多価カルボン酸とp-tert-ブチル安息香酸とを組み合わせて用いたものは開示及び示唆されていない。 Here, it is known to use p-tert-butylbenzoic acid and a base to prevent metal corrosion (see, for example, [0002] of Patent Document 2), but a molecular weight of 2 to 7 carbon atoms. The use of a combination of a low-valent polycarboxylic acid and p-tert-butylbenzoic acid is not disclosed or suggested.
 なお、被加工物の加工で留意すべき点は、工具や、加工装置の配管等に用いられる銅がイオン化し被加工物に吸着(又は浸透、拡散)して汚染することである。銅の腐食や溶出を防止するためにベンゾトリアゾール類を用いることはよく知られているが(例えば、特許文献2の[0002]参照)、ベンゾトリアゾールを用いる場合、配合量が多すぎると銅以外の金属に対する被加工物の金属汚染を抑制することができないことがあるので、ベンゾトリアゾールは、配合量を微量にとどめておくことが好ましく、使用しないことがより好ましい。 It should be noted that the point to be noted in the processing of a workpiece is that copper used for tools, piping of a processing apparatus, etc. is ionized and adsorbed (or penetrated or diffused) to the workpiece to be contaminated. It is well known that benzotriazoles are used to prevent copper corrosion and elution (see, for example, [0002] of Patent Document 2). Since it is sometimes impossible to suppress metal contamination of the workpiece with respect to other metals, it is preferable to keep the blending amount of benzotriazole in a very small amount, and it is more preferable not to use it.
 多価カルボン酸及び芳香族モノカルボン酸の合計の配合量は、加工媒体において、好ましくは0.05wt%以上かつ15wt%以下であり、より好ましくは0.1wt%以上かつ4wt%以下であり、さらに好ましくは0.2wt%以上かつ2wt%以下である。0.05wt%より濃度が低いと被加工物の金属汚染を抑制しにくく、一方、15wt%より濃度が高いとこれを中和するための塩基が多く必要となり、塩基性物質が不足すると銅イオンが溶出しやすくなる。 The total blending amount of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is preferably 0.05 wt% or more and 15 wt% or less, more preferably 0.1 wt% or more and 4 wt% or less in the processing medium, More preferably, it is 0.2 wt% or more and 2 wt% or less. If the concentration is lower than 0.05 wt%, it is difficult to suppress metal contamination of the workpiece. On the other hand, if the concentration is higher than 15 wt%, more base is required to neutralize this. Is easier to elute.
 多価カルボン酸及び芳香族モノカルボン酸の配合比は、好ましくは1:4以上かつ2:1未満であり、より好ましくは1:1.8以上かつ1.8:1以下であり、さらに好ましくは1:1.5以上かつ1.5:1以下である。1:4未満になると銅イオンの溶出量が多くなり、一方、2:1以上でも銅イオンの溶出量が多くなる。 The blending ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is preferably 1: 4 or more and less than 2: 1, more preferably 1: 1.8 or more and 1.8: 1 or less, further preferably Is 1: 1.5 or more and 1.5: 1 or less. When the ratio is less than 1: 4, the copper ion elution amount increases. On the other hand, when the ratio is 2: 1 or more, the copper ion elution amount increases.
 塩基性物質は、ナトリウム化合物、カリウム化合物、アンモニウム化合物、アミン化合物のいずれか1以上である。塩基性物質は、ナトリウム化合物又はカリウム化合物と、アミン化合物とを含むことが好ましく、複数種のアミン化合物を含むことがさらに好ましい。塩基性物質として、その水溶液が塩基性(アルカリ性;pH7より大きい)を示す化合物を用いることができ、例えば、水酸化ナトリウム、炭酸ナトリウム等のナトリウム化合物;水酸化カリウム、炭酸カリウム等のカリウム化合物;水酸化テトラメチルアンモニウム、水酸化アンモニウム等のアンモニウム化合物;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、モノエタノールアミン、N-エタノールアミン、ジエタノールアミン、トリエチルアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロピルエチルアミン、ジイソプロパノールアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリ(プロピレングリコール)ジアミン、トリメチロールプロパンポリ(オキシプロピレン)トリアミン、エチレンジアミン、テトラメチルエチレンジアミン、2-アミノ-2-メチルプロパノール、ラウリルアミノプロピルアミン、エチルアミノエチルアミン、オレイルアミノプロピルアミン、ジエチルアミノブチルアミン、エチルアミノヘキシルアミン、シクロヘキシルアミノプロピルアミン、ヘキサメチレンジアミン、スペルミジン、アニリン、フェネチルアミン、トルイジン、ピロリジン、ピペリジン、ピリダジン、ピリミジン、ピラジン、オキサゾール、チアゾール、N,N-ジメチル-4-アミノピリジン、エーテルアミン、無水ピペラジン、ピペラジン六水和物、1-ピペラジン、N-メチルピペラジン等のアミン化合物を用いることができる。 The basic substance is at least one of a sodium compound, a potassium compound, an ammonium compound, and an amine compound. The basic substance preferably contains a sodium compound or potassium compound and an amine compound, and more preferably contains a plurality of types of amine compounds. As the basic substance, a compound whose aqueous solution is basic (alkaline; greater than pH 7) can be used, for example, sodium compounds such as sodium hydroxide and sodium carbonate; potassium compounds such as potassium hydroxide and potassium carbonate; Ammonium compounds such as tetramethylammonium hydroxide and ammonium hydroxide; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, monoethanolamine, N-ethanolamine, diethanolamine, triethylamine, triethanolamine, monoisopropanolamine, diisopropylethylamine, Diisopropanolamine, diethylenetriamine, triethylenetetramine, poly (propylene glycol) diamine, trimethylolpropane poly (oxy) (Propylene) triamine, ethylenediamine, tetramethylethylenediamine, 2-amino-2-methylpropanol, laurylaminopropylamine, ethylaminoethylamine, oleylaminopropylamine, diethylaminobutylamine, ethylaminohexylamine, cyclohexylaminopropylamine, hexamethylenediamine, Spermidine, aniline, phenethylamine, toluidine, pyrrolidine, piperidine, pyridazine, pyrimidine, pyrazine, oxazole, thiazole, N, N-dimethyl-4-aminopyridine, etheramine, anhydrous piperazine, piperazine hexahydrate, 1-piperazine, N -Amine compounds such as methylpiperazine can be used.
 本発明に係る加工媒体は、塩基性物質を含有することにより、芳香族モノカルボン酸が水に可溶となるため、均一で安定した溶液を得ることができる。塩基性物質の配合量は、加工媒体において、好ましくは0.1wt%以上かつ20wt%以下であり、より好ましくは0.2wt%以上かつ10wt%以下であり、さらに好ましくは0.5wt%以上かつ5wt%以下である。0.1wt%より濃度が低いと、被加工物の金属汚染に悪影響を与え、塩基性物質が不足しpHが7以下となると防錆性が失われる。一方、20wt%よりも濃度が高い場合は、銅イオンが溶出しやすくなる。塩基性物質は、多価カルボン酸及び芳香族モノカルボン酸の両方を中和する分量以上とし、加工媒体のpHが7より大きくなることように配合することが好ましく、より好ましくは8以上かつ12.5以下、さらに好ましくは8.5以上かつ10以下となるように配合することができる。加工媒体のハンドリング及びコストを考慮すると、pHが12.5以下とすることが好ましい。 Since the processing medium according to the present invention contains a basic substance, the aromatic monocarboxylic acid becomes soluble in water, so that a uniform and stable solution can be obtained. The blending amount of the basic substance in the processing medium is preferably 0.1 wt% or more and 20 wt% or less, more preferably 0.2 wt% or more and 10 wt% or less, and further preferably 0.5 wt% or more and 5 wt% or less. If the concentration is lower than 0.1 wt%, the metal contamination of the workpiece will be adversely affected. If the basic substance is insufficient and the pH is 7 or less, the rust prevention property is lost. On the other hand, when the concentration is higher than 20 wt%, copper ions are likely to be eluted. The basic substance is preferably added in an amount that can neutralize both the polyvalent carboxylic acid and the aromatic monocarboxylic acid, and is preferably blended so that the pH of the processing medium is higher than 7, more preferably 8 and 12. .5 or less, more preferably 8.5 or more and 10 or less. Considering the handling and cost of the processing medium, the pH is preferably 12.5 or less.
 水は、原液成分となる多価カルボン酸、芳香族モノカルボン酸及び塩基性物質の希釈媒体である。水の配合量は、水で原液を任意の濃度に希釈することができれば特に限定されないが、ハンドリング及びコストを考慮すると、好ましくは50wt%以上かつ99.7wt%以下であり、より好ましくは80wt%以上かつ99.5wt%以下であり、さらに好ましくは90wt%以上かつ98wt%以下である。 Water is a dilute medium of polyvalent carboxylic acid, aromatic monocarboxylic acid and basic substance that are the concentrate components. The amount of water is not particularly limited as long as the stock solution can be diluted to an arbitrary concentration with water. However, in consideration of handling and cost, it is preferably 50 wt% or more and 99.7 wt% or less, more preferably 80 wt%. The amount is 99.5 wt% or less, more preferably 90 wt% or more and 98 wt% or less.
 また、加工媒体には、必要に応じて、界面活性剤、消泡剤、防腐剤、香料、染料等を添加することができる。 In addition, surfactants, antifoaming agents, preservatives, fragrances, dyes, and the like can be added to the processing medium as necessary.
 界面活性剤は、砥粒の分散性や液の浸透性を考慮して配合することができる。界面活性剤として、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤等を用いることができ、例えば、ラウリン酸グリセリン、モノステアリン酸グリセリン等のエステル型ノニオン系界面活性剤、ポリアルキレングリコールモノブチルエーテル、ポリオキシエチレンアルキルエーテル等のエーテル型ノニオン系界面活性剤;ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヘキシタン脂肪酸エステル等のエステルエーテル型ノニオン系界面活性剤;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型ノニオン系界面活性剤;オクチルグルコシド、デシルグルコシド等のアルキルグルコシド型ノニオン系界面活性剤;セタノール、ステアリルアルコール等の高級アルコール型ノニオン系界面活性剤;塩化テトラメチルアンモニウム、水酸化テトラメチルアンモニウム等の第4級アンモニウム塩型カチオン系界面活性剤;モノメチルアミン塩酸塩、ジメチルアミン塩酸塩等のアルキルアミン塩型カチオン系界面活性剤;塩化ブチルピリジニウム、塩化ドデシルピリジニウム等のピリジン環型カチオン系界面活性剤;オクタン酸ナトリウム、デカン酸ナトリウム等のカルボン酸型アニオン系界面活性剤;1-ヘキサンスルホン酸ナトリウム、1-オクタンスルホン酸ナトリウム等のスルホン酸型アニオン系界面活性剤;ラウリル硫酸ナトリウム、ミリスチル硫酸ナトリウム等の硫酸エステル型アニオン系界面活性剤;ラウリルリン酸、ラウリルリン酸ナトリウム等のリン酸エステル型アニオン系界面活性剤;ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等のアルキルベタイン型両性界面活性剤;コカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等の脂肪酸アミドプロピルベタイン型両性界面活性剤;2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等のアルキルイミダゾール型両性界面活性剤;ラウロイルグルタミン酸ナトリウム、ラウロイルグルタミン酸カリウム等のアミノ酸型両性界面活性剤;ラウリルジメチルアミンN-オキシド、オレイルジメチルアミンN-オキシド等のアミンオキシド型両性界面活性剤等を用いることができる。界面活性剤の配合量は、加工媒体100wt%に対し0.01wt%以上かつ5wt%以下とすることができ、好ましくは0.02wt%以上かつ3wt%以下であり、より好ましくは0.05wt%以上かつ1wt%以下である。 The surfactant can be blended in consideration of the dispersibility of the abrasive grains and the permeability of the liquid. As the surfactant, nonionic surfactants, cationic surfactants, anionic surfactants, amphoteric surfactants and the like can be used. For example, ester type nonionic surfactants such as glyceryl laurate and glyceryl monostearate Surfactants, ether type nonionic surfactants such as polyalkylene glycol monobutyl ether and polyoxyethylene alkyl ether; ester ether type nonionic surfactants such as polyoxyethylene sorbitan fatty acid ester and polyoxyethylene hexitan fatty acid ester; Alkanolamide type nonionic surfactants such as lauric acid diethanolamide and oleic acid diethanolamide; alkyl glucoside type nonionic surfactants such as octylglucoside and decylglucoside; cetanol, stearylamide Higher alcohol type nonionic surfactants such as coal; quaternary ammonium salt type cationic surfactants such as tetramethylammonium chloride and tetramethylammonium hydroxide; alkylamine salts such as monomethylamine hydrochloride and dimethylamine hydrochloride Type cationic surfactants; pyridine ring type cationic surfactants such as butylpyridinium chloride and dodecylpyridinium chloride; carboxylic acid type anionic surfactants such as sodium octoate and sodium decanoate; sodium 1-hexanesulfonate; Sulfonic acid type anionic surfactants such as sodium 1-octane sulfonate; Sulfate type anionic surfactants such as sodium lauryl sulfate and sodium myristyl sulfate; Phosphate type anionic surfactants such as lauryl phosphate and sodium lauryl phosphate Surfactants; alkylbetaine-type amphoteric surfactants such as lauryldimethylaminoacetic acid betaine and stearyldimethylaminoacetic acid betaine; fatty acid amidepropylbetaine-type amphoteric surfactants such as cocamidopropyl betaine and cocamidopropylhydroxysultain; Alkylimidazole-type amphoteric surfactants such as 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine; amino acid-type amphoteric surfactants such as sodium lauroylglutamate and potassium lauroylglutamate; lauryldimethylamine N-oxide, An amine oxide type amphoteric surfactant such as oleyldimethylamine N-oxide can be used. The blending amount of the surfactant can be 0.01 wt% or more and 5 wt% or less with respect to 100 wt% of the processing medium, preferably 0.02 wt% or more and 3 wt% or less, more preferably 0.05 wt%. Above and below 1 wt%.
 消泡剤は、加工媒体のタンクからのオーバーフローやリサイクル時の取り扱いを考慮して配合することができる。消泡剤として、例えば、シリコーン油、変性シリコーン、HLB(Hydrophilic-Lipophilic Balance)が7以上のノニオン系界面活性剤;2-エチルヘキサノール、ジイソオクチルエーテル等の有機極性化合物;ソルビタンエステル類、プルロニックL-61等の低親水性界面活性剤;脂肪酸金属塩を添加した鉱物油等を用いることができる。消泡剤の配合量は、加工媒体100wt%に対し0.001wt%以上かつ1wt%以下とすることができ、好ましくは0.002wt%以上かつ0.5wt%以下であり、より好ましくは0.005wt%以上かつ0.1wt%以下である。 The antifoaming agent can be blended in consideration of overflow from the processing medium tank and handling during recycling. Examples of antifoaming agents include silicone oils, modified silicones, nonionic surfactants having an HLB (Hydrophilic-Lipophilic Balance) of 7 or more; organic polar compounds such as 2-ethylhexanol and diisooctyl ether; sorbitan esters, pluronics A low hydrophilic surfactant such as L-61; mineral oil to which a fatty acid metal salt is added can be used. The blending amount of the antifoaming agent can be 0.001 wt% or more and 1 wt% or less with respect to 100 wt% of the processing medium, preferably 0.002 wt% or more and 0.5 wt% or less. It is 005 wt% or more and 0.1 wt% or less.
 防腐剤として、例えば、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、パラオキシ安息香酸エステル類、及びフェノキシエタノール等を用いることができる。 As preservatives, for example, 2-methyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, p-hydroxybenzoates, phenoxyethanol and the like can be used.
 香料として、例えば、マスティック油、パセリ油、アニス油等の天然香料、カルボン、アネトール、サリチル酸メチル等の合成香料、調合香料等を用いることができる。 As the fragrance, for example, natural fragrance such as mastic oil, parsley oil, anise oil, synthetic fragrance such as carvone, anethole, methyl salicylate, blended fragrance, and the like can be used.
 染料として、例えば、アトラスレッドR、アゾブルー、アゾモーブAM等の直接染料、オーラミンG、オーラミンII、ビスマルクブラウン等の塩基性染料;ヤーヌスブルーG、ヤーヌスグリーンB、ヤーヌスブルーR等の塩基性ヤーヌス染料;ロッグウッド、フスチック、マダー、アリザリン等の媒染染料;アントラキノン、インジゴイド等の建染め染料等を用いることができる。 Examples of the dye include direct dyes such as Atlas Red R, Azo Blue, and Azo Mauve AM, basic dyes such as Auramin G, Auramin II, and Bismarck Brown; basic Janus dyes such as Janus Blue G, Janus Green B, and Janus Blue R; Mordant dyes such as logwood, fstic, mudder and alizarin; vat dyes such as anthraquinone and indigoid can be used.
 なお、上記多価カルボン酸、芳香族モノカルボン酸及び塩基性物質については、それら混合物の代わりに、多価カルボン酸及び芳香族モノカルボン酸と塩基性物質とが中和した状態の塩を原料として用いることができる。 In addition, about the said polyhydric carboxylic acid, aromatic monocarboxylic acid, and a basic substance, the salt of the state in which the polyhydric carboxylic acid, aromatic monocarboxylic acid, and basic substance were neutralized instead of those mixtures is a raw material Can be used as
 上記加工媒体の製造方法として、例えば、水に塩基性物質を溶解し、さらに多価カルボン酸及び芳香族モノカルボン酸を加えて攪拌することで中和塩水溶液となる加工媒体を得ることができる。必要に応じて、加工媒体に界面活性剤、防腐剤、消泡剤、香料、染料等を加えて、水を加えて濃度を調整することができる。加工組成物を得る場合には、加工媒体に砥粒を任意で配合して攪拌することができる。なお、加工媒体及び加工組成物の製造方法は上記に限るものではない。このようにして得られた加工媒体又は加工組成物は、加工装置のタンクに注入され、加工媒体又は加工組成物を当該加工装置の工具と被加工物との接触部に供給され、当該被加工物を加工することになる。 As a method for producing the processing medium, for example, a processing medium that becomes a neutralized salt aqueous solution can be obtained by dissolving a basic substance in water, adding a polyvalent carboxylic acid and an aromatic monocarboxylic acid, and stirring the mixture. . If necessary, surfactants, preservatives, antifoaming agents, fragrances, dyes and the like can be added to the processing medium, and water can be added to adjust the concentration. When obtaining a processing composition, abrasive grains can optionally be blended in the processing medium and stirred. In addition, the manufacturing method of a processing medium and a processing composition is not restricted above. The processing medium or processing composition thus obtained is poured into a tank of the processing apparatus, and the processing medium or processing composition is supplied to the contact portion between the tool of the processing apparatus and the workpiece, and the processing target is processed. Things will be processed.
 本実施形態によれば、多価カルボン酸により加工媒体に溶解した金属イオンの被加工物への吸着(又は浸透、拡散)を防止(抑制)することができるので、被加工物の金属汚染を防止(抑制)することができる。また、本実施形態によれば、芳香族モノカルボン酸により工具に用いられている金属材料の酸化を防止(抑制)することができるので、被加工物へのスラッジの付着を防止(抑制)することができる。さらに、本実施形態によれば、多価カルボン酸、芳香族モノカルボン酸及び塩基性物質の組合せにより、工具や、加工装置の工具等に用いられる銅のイオン化を防止(抑制)することができるので、被加工物の銅汚染を防止(抑制)することができる。 According to this embodiment, adsorption (or penetration, diffusion) of metal ions dissolved in the processing medium by the polyvalent carboxylic acid can be prevented (suppressed), so that metal contamination of the workpiece can be prevented. It can be prevented (suppressed). Further, according to the present embodiment, the aromatic monocarboxylic acid can prevent (suppress) oxidation of the metal material used in the tool, and thus prevent (suppress) adhesion of sludge to the workpiece. be able to. Furthermore, according to this embodiment, the combination of polyvalent carboxylic acid, aromatic monocarboxylic acid, and basic substance can prevent (suppress) the ionization of copper used for tools, tools for processing devices, and the like. Therefore, copper contamination of the workpiece can be prevented (suppressed).
 次に、加工媒体の実施例及び比較例について説明する。 Next, working medium examples and comparative examples will be described.
[試料の作製]
 まず、実施例1-24及び比較例1-11に係る加工媒体(試料)を、表1-表7に示す配合成分の組成で作製した。ここでは、水に塩基性物質を溶解し、多価カルボン酸、及び芳香族モノカルボン酸としてp-tert-ブチル安息香酸を加えて攪拌し、必要に応じて、界面活性剤、1,2,3-ベンゾトリアゾールを加えて、水を加えて濃度を調整することで加工媒体を得た。なお、ここでは、防腐剤、消泡剤、香料、染料等は含まれていない。
[Preparation of sample]
First, processing media (samples) according to Example 1-24 and Comparative Example 1-11 were prepared with the compositional composition shown in Table 1 to Table 7. Here, a basic substance is dissolved in water, and a polyvalent carboxylic acid and p-tert-butylbenzoic acid as an aromatic monocarboxylic acid are added and stirred. If necessary, a surfactant, A processing medium was obtained by adding 3-benzotriazole and adjusting the concentration by adding water. Here, preservatives, antifoaming agents, fragrances, dyes and the like are not included.
 なお、表1-表7に記載の配合成分の商品名、メーカー名は以下の通りである
配合成分:商品名、メーカー名
・シュウ酸:シュウ酸二水和物、菱江化学(株)
・リンゴ酸:DL-Malic Acid、東京化成工業(株)
・フマル酸:フマル酸、扶桑化学工業(株)
・クエン酸:クエン酸(結晶)H、扶桑化学工業(株)
・カプリル酸:ルナック(登録商標) 8-98、花王(株)
・セバシン酸:セバシン酸SR、伊藤製油(株)
・p-tert-ブチル安息香酸:4-tert-Butylbenzoic acid(PTBBA)、扶桑化学工業(株)
・水酸化ナトリウム:苛性ソーダ(固型)、鶴見曹達(株)
・モノイソプロパノールアミン:モノイソプロパノールアミン(MIPA)、NANJING HBL ALKYLOL AMINES CO., LTD.
・ジイソプロパノールアミン:ジイソプロパノールアミン85% GTグレード、ダウ・ケミカル日本(株)
・トリエタノールアミン:TEA(トリエタノールアミン)99、ジャパンケムテック(株)
・トリメチロールプロパンポリ(オキシプロピレン)トリアミン:JEFFAMINE(登録商標) T-403、ハンツマン・ジャパン(株)
・ポリアルキレングリコールモノブチルエーテル:ユニルーブ(登録商標) 50MB-5、日油(株)
・1,2,3-ベンゾトリアゾール:サンライト 123.BTA、サンワ化成(株)
・水:水道水(銅イオン溶解量が測定限界以下の水)
The trade names and manufacturer names of the ingredients listed in Table 1 to Table 7 are as follows: Ingredients: Trade name, manufacturer name / oxalic acid: oxalic acid dihydrate, Hishie Chemical Co., Ltd.
-Malic acid: DL-Malic Acid, Tokyo Chemical Industry Co., Ltd.
・ Fumaric acid: Fumaric acid, Fuso Chemical Industry Co., Ltd.
Citric acid: Citric acid (crystal) H, Fuso Chemical Industry Co., Ltd.
Caprylic acid: LUNAC (registered trademark) 8-98, Kao Corporation
-Sebacic acid: Sebacic acid SR, Ito Oil Co., Ltd.
・ P-tert-Butylbenzoic acid: 4-tert-Butylbenzoic acid (PTBBA), Fuso Chemical Industry Co., Ltd.
-Sodium hydroxide: Caustic soda (solid type), Tsurumi Soda Co., Ltd.
Monoisopropanolamine: Monoisopropanolamine (MIPA), NANJING HBL ALKYLOL AMINES CO. , LTD.
・ Diisopropanolamine: Diisopropanolamine 85% GT grade, Dow Chemical Japan Co., Ltd.
Triethanolamine: TEA (triethanolamine) 99, Japan Chemtech Co., Ltd.
Trimethylolpropane poly (oxypropylene) triamine: JEFFAMINE (registered trademark) T-403, Huntsman Japan K.K.
Polyalkylene glycol monobutyl ether: Unilube (registered trademark) 50MB-5, NOF Corporation
• 1,2,3-benzotriazole: Sunlite 123. BTA, Sanwa Kasei Co., Ltd.
・ Water: Tap water (water whose copper ion solubility is below the measurement limit)
[加工組成物の作製]
 実施例及び比較例に係る加工媒体100wt%に対し砥粒(アルミナベースラッピング材:FO#1000、(株)フジミインコーポレーテッド)30wt%を加えて攪拌して加工組成物(スラリー)を得た。
[Preparation of processing composition]
A processing composition (slurry) was obtained by adding 30 wt% of abrasive grains (alumina base wrapping material: FO # 1000, Fujimi Incorporated) to 100 wt% of the processing media according to the examples and comparative examples.
[研磨加工方法]
 実施例及び比較例に係る加工組成物を鋳鉄定盤(工具)とシリコンウェハ(被加工物)との接触部に供給して、シリコンウェハを研磨加工した。研磨加工条件は、以下の通りである。
[Polishing method]
The processing composition according to the example and the comparative example was supplied to the contact portion between the cast iron surface plate (tool) and the silicon wafer (workpiece) to polish the silicon wafer. The polishing process conditions are as follows.
[研磨加工条件]
 研磨加工機:ラボテスターGP1(株式会社マルトー)
 定盤:鋳鉄製 直径250mm
 定盤溝形状:格子状(格子1辺25mm×25mm)
 定盤回転速度:100rpm
 試験片への面圧:0.6g/mm
 試験片:単結晶シリコンウェハ直径125mm
 加工組成物供給量:1L/min
[Polishing conditions]
Polishing machine: Lab Tester GP1 (Malto Corporation)
Surface plate: Cast iron diameter 250mm
Surface plate groove shape: Lattice (grid 1 side 25mm x 25mm)
Surface plate rotation speed: 100 rpm
Surface pressure on the test piece: 0.6 g / mm 2
Test piece: Single crystal silicon wafer diameter 125mm
Processing composition supply: 1 L / min
[鋳鉄定盤防錆性評価]
 加工組成物と鋳鉄定盤は常に触れていることから、鋳鉄定盤の錆びの発生によってシリコンウェハを汚染されることを想定し、鋳鉄定盤の防錆性の評価を次のように行った。実施例及び比較例に係る加工組成物を用いてシリコンウェハの研磨加工を行った鋳鉄定盤(材料:FC200)の試片を加工組成物に浸漬させた状態で30℃で10分間静置し、鋳鉄定盤表面の発錆の有無を目視にて評価した。鋳鉄定盤(面積:70mm×50mm)に、錆の発生がない場合を○、10個以下の個数の錆の発生がある場合を△、10個より大きい個数の錆の発生がある場合を×と評価した。
[Rust prevention evaluation of cast iron surface plate]
Since the processing composition and the cast iron surface plate are always touched, the rust prevention of the cast iron surface plate was evaluated as follows, assuming that the silicon wafer was contaminated by the occurrence of rust on the cast iron surface plate. . A test piece of a cast iron surface plate (material: FC200) obtained by polishing a silicon wafer using the processing composition according to the example and the comparative example was left to stand at 30 ° C. for 10 minutes while being immersed in the processing composition. The presence or absence of rusting on the cast iron surface plate surface was evaluated visually. When the cast iron surface plate (area: 70 mm x 50 mm) is free of rust, ○ When 10 or fewer rust is generated, △ When 10 or more rust is generated × It was evaluated.
[シリコンウェハの金属汚染評価]
 研磨加工後のシリコンウェハを目視で観察し、鋳鉄定盤の溝に沿ったパーティクルによるシリコンウェハ表面の金属汚染(スラッジによる汚れ)が生じているか否かの試験を行った。シリコンウェハ1に金属汚染物がない場合を○(図1の判定:○の写真を参照)、金属汚染物2があるが乾燥する前にティッシュで1回拭いて金属汚染物2(変色)が除去できた場合を△、金属汚染物2があり乾燥する前にティッシュで1回拭いても金属汚染が除去できない場合を×(図1の判定:×の写真を参照)と評価した。
[Metal contamination assessment of silicon wafers]
The silicon wafer after polishing was visually observed, and a test was performed to determine whether metal contamination (dirt due to sludge) on the silicon wafer surface due to particles along the grooves of the cast iron surface plate occurred. When the silicon wafer 1 is free from metal contamination (see judgment in FIG. 1: see the photograph of ○), the metal contamination 2 is present, but the metal contamination 2 (discoloration) is wiped once with a tissue before drying. The case where it was able to be removed was evaluated as Δ, and the case where there was metal contamination 2 and the metal contamination could not be removed even if it was wiped once with a tissue before drying was evaluated as x (see the judgment of FIG. 1: x photograph).
[銅イオン溶出量評価]
 研磨加工機の配管類やシリコンウェハを切り出す前の工程で付着する銅またはその合金から銅イオンが溶出し、溶出した銅イオンによってシリコンウェハ表面が汚染されることを想定し、銅試片を用いた銅イオン溶出量を測定した。実施例及び比較例に係る加工媒体50g(砥粒を含んでいないもの)にJIS K 2513(石油製品-銅板腐食試験方法)用の銅板(材料:C1100P)を試片(長さ約75mm、幅約12.5mm、厚さ1.5-3.0mm)の半分が浸漬するようにして、25℃において18時間静置してから加工媒体を取り出し、ICP(Inductively Coupled Plasma;発光分光分析法)装置によって加工媒体中の銅イオン溶出量を測定した。ICP装置の詳細は、以下の通りである。
[Evaluation of copper ion elution amount]
Use copper specimens assuming that copper ions are eluted from the copper or its alloy adhering to the polishing machine piping and silicon wafer before cutting the silicon wafer, and that the silicon wafer surface is contaminated by the eluted copper ions. The amount of elution of copper ions was measured. A copper plate (material: C1100P) for JIS K 2513 (petroleum product-copper plate corrosion test method) was used as a test piece (length: about 75 mm, width) on 50 g of the processing medium according to Examples and Comparative Examples (without abrasive grains). Half of about 12.5 mm, thickness 1.5-3.0 mm) was immersed and allowed to stand at 25 ° C. for 18 hours, then the processing medium was taken out and ICP (Inductively Coupled Plasma) The amount of elution of copper ions in the processing medium was measured with an apparatus. The details of the ICP device are as follows.
[ICP装置]
 製造者:AMETEK(MATERIALS ANALYSIS DIVISION)
 装置名:SPECTRO ARCOS(登録商標)
 型式:FHM22
 タイプ:MV130(マルチビュー)
 測定条件:原液測定
 測定方法:SOP(Side On Plasma)側面方向(ラジアル)
[ICP equipment]
Manufacturer: AMETEK (Materials ANALYSIS DIVISION)
Device name: SPECTRO ARCOS (registered trademark)
Model: FHM22
Type: MV130 (multi-view)
Measurement conditions: Stock solution measurement Measurement method: SOP (Side On Plasma) side direction (radial)
[pH測定]
 pH測定器(堀場製作所製、「ガラス電極式水素イオン濃度計 pH METER F-11」、「pH電極 LAQUA(登録商標) 6377」)を用いてpHを測定した。
[PH measurement]
The pH was measured using a pH measuring device (manufactured by HORIBA, Ltd., “Glass electrode type hydrogen ion concentration meter pH METER F-11”, “pH electrode LAQUA (registered trademark) 6377”).
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
[多価カルボン酸とモノカルボン酸との組合せの評価]
 多価カルボン酸を含有せず、かつ、p-tert-ブチル安息香酸を含有する比較例1では、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在を欠くので、鋳鉄定盤の防錆性がなく、シリコンウェハの金属汚染、及び、銅イオンの溶出量を抑えることができなかった。ただし、多価カルボン酸を含有せず、かつ、p-tert-ブチル安息香酸を含有する比較例3では、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用がなくとも、銅溶出防止剤となる1,2,3-ベンゾトリアゾールの作用により、鋳鉄定盤の防錆性があり、かつ、銅イオンの溶出量は抑えることができたが、シリコンウェハの金属汚染を抑えることができなかった。このことから、1,2,3-ベンゾトリアゾールには、鋳鉄定盤の防錆性はあるが、シリコンウェハの金属汚染を抑える作用がないことがわかった。
[Evaluation of combination of polycarboxylic acid and monocarboxylic acid]
In Comparative Example 1 containing no polyvalent carboxylic acid and containing p-tert-butylbenzoic acid, the presence of the actions of both polyvalent carboxylic acid and p-tert-butylbenzoic acid is lacking. There was no rust prevention of the board, and the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed. However, in Comparative Example 3 which does not contain a polyvalent carboxylic acid and contains p-tert-butylbenzoic acid, the copper elution occurs even when both the polyvalent carboxylic acid and p-tert-butylbenzoic acid are not effective. Due to the action of 1,2,3-benzotriazole as an inhibitor, the cast iron surface plate has rust prevention and the amount of copper ion elution can be suppressed, but the metal contamination of the silicon wafer can be suppressed. could not. From this, it was found that 1,2,3-benzotriazole has the antirust property of the cast iron surface plate, but does not have the effect of suppressing the metal contamination of the silicon wafer.
 多価カルボン酸としてクエン酸(炭素数6)を含有し、かつ、p-tert-ブチル安息香酸を含有しない比較例2では、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在を欠くので、鋳鉄定盤の防錆性がなく、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができなかった。 In Comparative Example 2 containing citric acid (carbon number 6) as the polyvalent carboxylic acid and not containing p-tert-butylbenzoic acid, the action of both the polyvalent carboxylic acid and p-tert-butylbenzoic acid was confirmed. Since it does not exist, the cast iron surface plate has no rust prevention property, and the metal contamination of the silicon wafer and the elution amount of copper ions cannot be suppressed.
 多価カルボン酸を含有せず、かつ、p-tert-ブチル安息香酸を含有する比較例4では、他のモノカルボン酸(カプリル酸)の作用により、鋳鉄定盤の防錆性があったが、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在を欠くので、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができなかった。 In Comparative Example 4 which does not contain a polyvalent carboxylic acid and contains p-tert-butylbenzoic acid, the cast iron surface plate had rust prevention due to the action of other monocarboxylic acid (caprylic acid). Further, since the presence of the actions of both polyvalent carboxylic acid and p-tert-butylbenzoic acid is lacking, the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed.
 多価カルボン酸としてセバシン酸(炭素数10)を含有し、かつ、p-tert-ブチル安息香酸を含有する比較例5では、多価カルボン酸における炭素数が多すぎて、炭素数7以下の多価カルボン酸及びp-tert-ブチル安息香酸の両方の存在に基づく作用がなくなり、鋳鉄定盤の防錆性がなく、シリコンウェハの金属汚染、銅イオン溶出量を抑制することができなかった。 In Comparative Example 5 containing sebacic acid (10 carbon atoms) as the polyvalent carboxylic acid and containing p-tert-butylbenzoic acid, the polyvalent carboxylic acid has too many carbon atoms and has 7 or less carbon atoms. The action based on the presence of both polyvalent carboxylic acid and p-tert-butylbenzoic acid is lost, the cast iron surface plate has no rust prevention, and the silicon wafer metal contamination and copper ion elution amount could not be suppressed. .
 多価カルボン酸としてクエン酸及びセバシン酸(炭素数6及び10)を含有し、かつ、p-tert-ブチル安息香酸を含有しない比較例6では、多価カルボン酸の作用により、鋳鉄定盤の防錆性があったが、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在を欠くので、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができなかった。 In Comparative Example 6 containing citric acid and sebacic acid (carbon number 6 and 10) as the polyvalent carboxylic acid and not containing p-tert-butylbenzoic acid, the cast iron platen Although it was rustproof, it lacked the action of both polyvalent carboxylic acid and p-tert-butylbenzoic acid, so the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed. .
 多価カルボン酸としてクエン酸(炭素数6)を含有し、かつ、p-tert-ブチル安息香酸を含有しない比較例7では、モノカルボン酸(カプリル酸)の作用により、鋳鉄定盤の防錆性があったが、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在を欠くので、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができなかった。 In Comparative Example 7 containing citric acid (6 carbon atoms) as the polyvalent carboxylic acid and not containing p-tert-butylbenzoic acid, rust prevention of the cast iron surface plate was effected by the action of monocarboxylic acid (caprylic acid). However, since it lacks the action of both polyvalent carboxylic acid and p-tert-butylbenzoic acid, the metal contamination of the silicon wafer and the elution amount of copper ions could not be suppressed.
 多価カルボン酸としてイソフタル酸(炭素数8)を含有し、かつ、p-tert-ブチル安息香酸を含有する比較例8では、鋳鉄定盤の防錆性があり、シリコンウェハの金属汚染を抑制することができたので、炭素数7以下の多価カルボン酸及びp-tert-ブチル安息香酸の両方存在に基づく作用と同様な作用があったが、銅イオン溶出量については抑制する傾向は見られたものの合格基準には届かなかった。 In Comparative Example 8 containing isophthalic acid (carbon number 8) as a polyvalent carboxylic acid and containing p-tert-butylbenzoic acid, the cast iron surface plate has rust prevention and suppresses metal contamination of silicon wafers. As a result, there was an effect similar to that based on the presence of both polyvalent carboxylic acid having 7 or less carbon atoms and p-tert-butylbenzoic acid, but there was no tendency to suppress the elution amount of copper ions. However, it did not reach the acceptance criteria.
 一方、実施例1-9では、p-tert-ブチル安息香酸の作用により鋳鉄定盤の防錆性があり、炭素数2~7の多価カルボン酸の作用によりシリコンウェハの金属汚染を抑えることができ、多価カルボン酸及びp-tert-ブチル安息香酸の両方の作用の存在により銅イオンの溶出量も抑えることができた(表1参照)。なお、実施例6のように、多価カルボン酸及びp-tert-ブチル安息香酸の合計の配合量が減少すると、鋳鉄定盤の防錆性が小さくなった。 On the other hand, in Example 1-9, the cast iron surface plate has the rust prevention property by the action of p-tert-butylbenzoic acid, and the metal contamination of the silicon wafer is suppressed by the action of the polyvalent carboxylic acid having 2 to 7 carbon atoms. The elution amount of copper ions could also be suppressed by the presence of both polyvalent carboxylic acid and p-tert-butylbenzoic acid (see Table 1). As in Example 6, when the total blending amount of the polyvalent carboxylic acid and p-tert-butylbenzoic acid was reduced, the rust resistance of the cast iron surface plate was reduced.
[多価カルボン酸及びp-tert-ブチル安息香酸の配合比の評価]
 多価カルボン酸(クエン酸:炭素数6)及びp-tert-ブチル安息香酸の配合比について、表3を参照すると、1:4以上かつ2:1未満の実施例10-12では、鋳鉄定盤の防錆性があり、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができた。また、多価カルボン酸(シュウ酸:炭素数2)及びp-tert-ブチル安息香酸の配合比について、表5を参照すると、2:1未満である実施例19-21では鋳鉄定盤の防錆性があり、シリコンウェハの金属汚染、及び銅イオンの溶出量を抑えることができた。
[Evaluation of blending ratio of polyvalent carboxylic acid and p-tert-butylbenzoic acid]
Regarding the blending ratio of polyvalent carboxylic acid (citric acid: carbon number 6) and p-tert-butylbenzoic acid, referring to Table 3, in Examples 10-12 of 1: 4 or more and less than 2: 1, cast iron constant The board was rust-proof, and the metal contamination of the silicon wafer and the elution amount of copper ions could be suppressed. In addition, referring to Table 5 regarding the blending ratio of polycarboxylic acid (oxalic acid: carbon number 2) and p-tert-butylbenzoic acid, in Example 19-21, which is less than 2: 1, the resistance of cast iron surface plate is reduced. It was rusting and could suppress the metal contamination of the silicon wafer and the elution amount of copper ions.
[多価カルボン酸及びp-tert-ブチル安息香酸の合計の配合量の評価]
 多価カルボン酸(クエン酸:炭素数6)及びp-tert-ブチル安息香酸の合計の配合量について、表4を参照すると、0.05wt%以上かつ15wt%以下の範囲内にある実施例13-17では、鋳鉄定盤の防錆性があり、シリコンウェハの金属汚染、及び、銅イオンの溶出量も抑えることができた。0.05wt%や15wt%に近付くにつれて鋳鉄定盤の防錆性が小さくなり、シリコンウェハの金属汚染が大きくなる傾向があった。また、多価カルボン酸(シュウ酸:炭素数2)及びp-tert-ブチル安息香酸の合計の配合量について、表6を参照すると、0.05wt%以上かつ15wt%以下の範囲内にある実施例22-24では、鋳鉄定盤の防錆性があり、シリコンウェハの金属汚染を抑えることができた。
[Evaluation of total blending amount of polycarboxylic acid and p-tert-butylbenzoic acid]
Referring to Table 4 for the total amount of polycarboxylic acid (citric acid: 6 carbon atoms) and p-tert-butylbenzoic acid, Example 13 is in the range of 0.05 wt% or more and 15 wt% or less. At -17, the cast iron surface plate had rust prevention, and the metal contamination of the silicon wafer and the elution amount of copper ions could be suppressed. As it approached 0.05 wt% or 15 wt%, the rust prevention property of the cast iron surface plate decreased, and the metal contamination of the silicon wafer tended to increase. In addition, referring to Table 6, the total amount of polycarboxylic acid (oxalic acid: 2 carbon atoms) and p-tert-butylbenzoic acid is in the range of 0.05 wt% or more and 15 wt% or less. In Examples 22 to 24, the cast iron surface plate had rust prevention properties, and metal contamination of the silicon wafer could be suppressed.
[塩基性物質の評価]
 表7を参照すると、塩基性物質を含有しない比較例11においては、p-tert-ブチル安息香酸が水に溶解せず、安定した加工媒体を得ることができなかった。
[Evaluation of basic substances]
Referring to Table 7, in Comparative Example 11 containing no basic substance, p-tert-butylbenzoic acid was not dissolved in water, and a stable processing medium could not be obtained.
(付記)
 本発明では、前記加工媒体の形態が可能である。
(Appendix)
In the present invention, the form of the processing medium is possible.
 前記加工媒体において、前記多価カルボン酸の炭素数は、好ましくは2以上かつ6以下、3以上かつ7以下、より好ましくは3以上かつ6以下である。 In the processing medium, the polyvalent carboxylic acid preferably has 2 or more and 6 or less, 3 or more and 7 or less, more preferably 3 or more and 6 or less carbon atoms.
 前記加工媒体において、前記塩基性物質は、ナトリウム化合物、カリウム化合物、アンモニウム化合物及びアミン化合物のいずれか1以上である。 In the processing medium, the basic substance is one or more of a sodium compound, a potassium compound, an ammonium compound, and an amine compound.
 前記加工媒体において、前記塩基性物質は、ナトリウム化合物及びアミン化合物を含む。 In the processing medium, the basic substance includes a sodium compound and an amine compound.
 前記加工媒体において、前記塩基性物質は、複数種のアミン化合物を含む。 In the processing medium, the basic substance includes a plurality of types of amine compounds.
 前記加工媒体において、さらに、水を含む。 The processing medium further includes water.
 前記加工媒体において、前記多価カルボン酸及び前記芳香族モノカルボン酸の合計が0.05wt%以上かつ15wt%以下、前記塩基性物質が0.1wt%以上かつ20wt%以下、前記水が50wt%以上かつ99.7wt%以下である。多価カルボン酸及び芳香族モノカルボン酸の合計の配合量は、より好ましくは0.1wt%以上かつ4wt%以下であり、さらに好ましくは0.2wt%以上かつ2wt%以下である。前記塩基性物質の配合量は、より好ましくは0.2wt%以上かつ10wt%以下であり、さらに好ましくは0.5wt%以上かつ5wt%以下である。水の配合量は、より好ましくは80wt%以上かつ99.5wt%以下であり、さらに好ましくは90wt%以上かつ98wt%以下である。 In the processing medium, the total of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 0.05 wt% or more and 15 wt% or less, the basic substance is 0.1 wt% or more and 20 wt% or less, and the water is 50 wt%. Above and 99.7 wt% or less. The total blending amount of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is more preferably 0.1 wt% or more and 4 wt% or less, and further preferably 0.2 wt% or more and 2 wt% or less. The blending amount of the basic substance is more preferably 0.2 wt% or more and 10 wt% or less, and further preferably 0.5 wt% or more and 5 wt% or less. The blending amount of water is more preferably 80 wt% or more and 99.5 wt% or less, and further preferably 90 wt% or more and 98 wt% or less.
 前記加工媒体において、前記多価カルボン酸及び前記芳香族モノカルボン酸の配合比が1:4以上かつ2:1未満である。前記多価カルボン酸及び芳香族モノカルボン酸の配合比は、より好ましくは1:1.8以上かつ1.8:1以下であり、さらに好ましくは1:1.5以上かつ1.5:1以下である。 In the processing medium, the mixing ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 1: 4 or more and less than 2: 1. The blending ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is more preferably 1: 1.8 or more and 1.8: 1 or less, and further preferably 1: 1.5 or more and 1.5: 1. It is as follows.
 前記加工媒体において、pHが7より大きい。前記pHは、より好ましくは8以上かつ12.5以下、さらに好ましくは8以上かつ10以下である。 The pH of the processing medium is greater than 7. The pH is more preferably 8 or more and 12.5 or less, and still more preferably 8 or more and 10 or less.
 前記加工媒体において、界面活性剤、消泡剤、防腐剤、香料及び染料の少なくとも1種を含む。 The processing medium contains at least one of a surfactant, an antifoaming agent, a preservative, a fragrance, and a dye.
 前記加工媒体において、請求項5乃至7のいずれか一に記載の加工媒体100wt%に対し界面活性剤が0.01wt%以上かつ5wt%以下配合されている。前記界面活性剤の配合量は、好ましくは0.02wt%以上かつ3wt%以下であり、より好ましくは0.05wt%以上かつ1wt%以下である。 In the processing medium, a surfactant is blended in an amount of 0.01 wt% to 5 wt% with respect to 100 wt% of the processing medium according to any one of claims 5 to 7. The blending amount of the surfactant is preferably 0.02 wt% or more and 3 wt% or less, more preferably 0.05 wt% or more and 1 wt% or less.
 前記加工媒体において、請求項5乃至7のいずれか一に記載の加工媒体100wt%に対し消泡剤が0.001wt%以上かつ1wt%以下配合されている。前記消泡剤の配合量は、好ましくは0.002wt%以上かつ0.5wt%以下であり、より好ましくは0.005wt%以上かつ0.1wt%以下である。 In the processing medium, an antifoaming agent is blended in an amount of 0.001 wt% or more and 1 wt% or less with respect to 100 wt% of the processing medium according to claim 5. The blending amount of the antifoaming agent is preferably 0.002 wt% or more and 0.5 wt% or less, more preferably 0.005 wt% or more and 0.1 wt% or less.
 前記加工媒体において、ベンゾトリアゾールを含まない。 The processing medium does not contain benzotriazole.
 前記加工媒体において、前記加工媒体中に銅を浸したときに前記加工媒体中の銅イオンが70ppm以下である。前記加工媒体中に銅を浸したときに前記加工媒体中の銅イオンは、好ましくは60ppm以下であり、より好ましくは50ppm以下である。 In the processing medium, the copper ion in the processing medium is 70 ppm or less when copper is immersed in the processing medium. When copper is immersed in the processing medium, the copper ion in the processing medium is preferably 60 ppm or less, more preferably 50 ppm or less.
 本発明では、前記加工組成物の形態が可能である。 In the present invention, the form of the processing composition is possible.
 前記加工組成物において、前記加工組成物を鋳鉄定盤とシリコンウェハとの接触部に供給して前記シリコンウェハを研磨加工したときに、前記シリコンウェハ表面に金属汚染物がない、又は、前記シリコンウェハ表面にある金属汚染物が乾燥する前に拭いて取れる。 In the processing composition, when the silicon wafer is polished by supplying the processing composition to a contact portion between a cast iron surface plate and a silicon wafer, there is no metal contamination on the silicon wafer surface, or the silicon Metal contaminants on the wafer surface can be wiped off before drying.
 前記加工組成物において、前記加工組成物を用いてシリコンウェハの研磨加工を行った鋳鉄定盤を前記加工組成物に浸漬させた状態で30℃で10分間静置したときに、前記鋳鉄定盤の表面に、錆の発生がない、又は、70mm×50mmの面積において錆の発生が10個以下である。 In the processing composition, when the cast iron platen obtained by polishing a silicon wafer using the processing composition is immersed in the processing composition for 10 minutes at 30 ° C., the cast iron platen There is no generation of rust on the surface, or the generation of rust is 10 or less in an area of 70 mm × 50 mm.
 本発明では、前記加工方法の形態が可能である。 In the present invention, the form of the processing method is possible.
 なお、上記の特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(必要により不選択)が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、本願に記載の数値及び数値範囲については、明記がなくともその任意の中間値、下位数値、及び、小範囲が記載されているものとみなされる。 It should be noted that the disclosure of the above patent document is incorporated herein by reference. Within the scope of the entire disclosure (including claims and drawings) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations or selections of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the framework of the entire disclosure of the present invention (necessary) Can be selected). That is, the present invention naturally includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the drawings, and the technical idea. Further, regarding numerical values and numerical ranges described in the present application, it is considered that any intermediate value, lower numerical value, and small range are described even if not specified.
 1 シリコンウェハ
 2 金属汚染物
 
1 Silicon wafer 2 Metal contamination

Claims (9)

  1.  炭素数が2以上かつ7以下の多価カルボン酸と、
     芳香族モノカルボン酸と、
     塩基性物質と、を含有ないし中和した状態において含有される加工媒体。
    A polyvalent carboxylic acid having 2 to 7 carbon atoms;
    An aromatic monocarboxylic acid;
    A processing medium containing a basic substance in a neutralized or neutralized state.
  2.  前記塩基性物質は、ナトリウム化合物、カリウム化合物、アンモニウム化合物及びアミン化合物のいずれか1以上である請求項1記載の加工媒体。 The processing medium according to claim 1, wherein the basic substance is at least one of a sodium compound, a potassium compound, an ammonium compound, and an amine compound.
  3.  前記塩基性物質は、複数のアミン化合物を含む、請求項1又は2記載の加工媒体。 The processing medium according to claim 1 or 2, wherein the basic substance includes a plurality of amine compounds.
  4.  さらに、水を含む、請求項1乃至3のいずれか一に記載の加工媒体。 The processing medium according to any one of claims 1 to 3, further comprising water.
  5.  前記多価カルボン酸及び前記芳香族モノカルボン酸の合計が0.05wt%以上かつ15wt%以下、
     前記塩基性物質が0.1wt%以上かつ20wt%以下、
     前記水が50wt%以上かつ99.7wt%以下である、請求項4記載の加工媒体。
    The total of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 0.05 wt% or more and 15 wt% or less,
    The basic substance is 0.1 wt% or more and 20 wt% or less,
    The processing medium according to claim 4, wherein the water is 50 wt% or more and 99.7 wt% or less.
  6.  前記多価カルボン酸及び前記芳香族モノカルボン酸の配合比が1:4以上かつ2:1未満である、請求項5記載の加工媒体。 The processing medium according to claim 5, wherein a mixing ratio of the polyvalent carboxylic acid and the aromatic monocarboxylic acid is 1: 4 or more and less than 2: 1.
  7.  pHが7より大きい、請求項4乃至6のいずれか一に記載の加工媒体。 The processing medium according to any one of claims 4 to 6, wherein the pH is greater than 7.
  8.  請求項1乃至7のいずれか一に記載の加工媒体と、
     砥粒と、を含む、加工組成物。
    The processing medium according to any one of claims 1 to 7,
    A processing composition comprising abrasive grains.
  9.  請求項1乃至7のいずれか一に記載の加工媒体、若しくは、請求項8に記載の加工組成物を工具と被加工物との接触部分に供給して前記被加工物を加工する、加工方法。
     
     
    A machining method for machining the workpiece by supplying the machining medium according to any one of claims 1 to 7 or the machining composition according to claim 8 to a contact portion between a tool and the workpiece. .

PCT/JP2018/002150 2017-01-27 2018-01-24 Processing medium, processing composition, and processing method WO2018139492A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197023178A KR20190112278A (en) 2017-01-27 2018-01-24 Processing Media, Processing Compositions and Processing Methods
CN201880008771.1A CN110382655B (en) 2017-01-27 2018-01-24 Processing medium, processing composition and processing method
JP2018564602A JP6661175B2 (en) 2017-01-27 2018-01-24 Processing medium, processing composition and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-013617 2017-01-27
JP2017013617 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139492A1 true WO2018139492A1 (en) 2018-08-02

Family

ID=62979354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002150 WO2018139492A1 (en) 2017-01-27 2018-01-24 Processing medium, processing composition, and processing method

Country Status (5)

Country Link
JP (1) JP6661175B2 (en)
KR (1) KR20190112278A (en)
CN (1) CN110382655B (en)
TW (1) TWI757413B (en)
WO (1) WO2018139492A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997393A (en) * 1973-01-22 1974-09-13
JPH1022241A (en) * 1996-07-08 1998-01-23 Tokyo Fine Chem Kk Lapping liquid for silicon water and lapping agent
JP2005285944A (en) * 2004-03-29 2005-10-13 Hitachi Chem Co Ltd Polishing solution for metal, and polishing method
US20140011362A1 (en) * 2012-07-06 2014-01-09 Basf Se Chemical mechanical polishing (cmp) composition comprising a non-ionic surfactant and an aromatic compound comprising at least one acid group
CN103555410A (en) * 2013-11-21 2014-02-05 李荣福 Water-based antirust grinding cooling liquid for automobile connecting rod as well as preparation method and application of water-based antirust grinding cooling liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216227B2 (en) 1973-05-15 1977-05-07
JPH0676590B2 (en) 1987-08-12 1994-09-28 ユシロ化学工業株式会社 Water-soluble cutting fluid
JP2902281B2 (en) 1993-11-24 1999-06-07 千代田ケミカル株式会社 Water-soluble metal corrosion inhibitor
CN100440445C (en) 2002-11-08 2008-12-03 福吉米株式会社 Polishing composition and rinsing composition
JP2005347737A (en) 2004-05-07 2005-12-15 Nissan Chem Ind Ltd Polishing composition for silicon wafer
TW200619368A (en) 2004-10-28 2006-06-16 Nissan Chemical Ind Ltd Polishing composition for silicon wafer
JPWO2006126432A1 (en) 2005-05-27 2008-12-25 日産化学工業株式会社 Polishing composition for silicon wafer
JP5317436B2 (en) * 2007-06-26 2013-10-16 富士フイルム株式会社 Polishing liquid for metal and polishing method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997393A (en) * 1973-01-22 1974-09-13
JPH1022241A (en) * 1996-07-08 1998-01-23 Tokyo Fine Chem Kk Lapping liquid for silicon water and lapping agent
JP2005285944A (en) * 2004-03-29 2005-10-13 Hitachi Chem Co Ltd Polishing solution for metal, and polishing method
US20140011362A1 (en) * 2012-07-06 2014-01-09 Basf Se Chemical mechanical polishing (cmp) composition comprising a non-ionic surfactant and an aromatic compound comprising at least one acid group
CN103555410A (en) * 2013-11-21 2014-02-05 李荣福 Water-based antirust grinding cooling liquid for automobile connecting rod as well as preparation method and application of water-based antirust grinding cooling liquid

Also Published As

Publication number Publication date
CN110382655A (en) 2019-10-25
CN110382655B (en) 2021-05-11
KR20190112278A (en) 2019-10-04
JPWO2018139492A1 (en) 2019-11-21
TW201833291A (en) 2018-09-16
JP6661175B2 (en) 2020-03-11
TWI757413B (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP4497767B2 (en) Water-soluble machining fluid composition for fixed abrasive wire saw
JP5613283B2 (en) Polishing slurry composition
TWI618793B (en) Water-based processing fluid
KR20060051695A (en) An aqueous cutting oil solution, a slurry containing the same and a method for cutting brittle materials
JP5679642B2 (en) Water-soluble machining fluid for fixed abrasive wire saws
KR20150133641A (en) Cleaning composition and cleaning method
JP2012172117A (en) Water-soluble working fluid for fixed abrasive grain wire saw
JP2011012249A (en) Aqueous cutting fluid and aqueous cutting agent
KR20070100122A (en) Etchant composition for polishing semiconductor wafer, method for producing polishing composition using the same and polishing processing method
JP4474495B2 (en) Water-soluble cutting liquid composition, water-soluble cutting liquid and cutting method using the water-soluble cutting liquid
WO2018139492A1 (en) Processing medium, processing composition, and processing method
JP4974150B2 (en) Water-soluble processing oil
WO2018169008A1 (en) Brittle material processing liquid
JPWO2005029563A1 (en) Silicon wafer polishing composition and polishing method
JP2007152858A (en) Method of cutting or grinding brittle material and chip-sticking preventive agent
JP4874772B2 (en) Cleaning composition for sliced silicon wafer or ingot
JP5750525B2 (en) Water-soluble machining fluid for fixed abrasive wire saws
KR20110039725A (en) Aqueous sawing fluid composition for wire saw
JP2009062426A (en) Water-soluble working fluid for loose grain wire saw, slurry, and cutting work method
JP2011063466A (en) Aqueous liquid composition for glass processing
KR20090065847A (en) Dispering agent of slurry for lapping wafer
KR20230009927A (en) Detergent compositions and compositions for chemical mechanical polishing
WO2019188690A1 (en) Brittle material processing liquid composition
JP2001068438A (en) Composition for polishing compound semiconductor wafer and polishing method for compound semiconductor using the same
JP2010030002A (en) Water-soluble machining oil for loose grain wire saw, slurry, and method for cutting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023178

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18745263

Country of ref document: EP

Kind code of ref document: A1