WO2018139347A1 - Illumination device, display device, and television receiving device - Google Patents

Illumination device, display device, and television receiving device Download PDF

Info

Publication number
WO2018139347A1
WO2018139347A1 PCT/JP2018/001506 JP2018001506W WO2018139347A1 WO 2018139347 A1 WO2018139347 A1 WO 2018139347A1 JP 2018001506 W JP2018001506 W JP 2018001506W WO 2018139347 A1 WO2018139347 A1 WO 2018139347A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
laser light
incident
guide plate
Prior art date
Application number
PCT/JP2018/001506
Other languages
French (fr)
Japanese (ja)
Inventor
敬治 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017012246A external-priority patent/JP2018120793A/en
Priority claimed from JP2017012244A external-priority patent/JP2018120792A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018139347A1 publication Critical patent/WO2018139347A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • the backlight device described in Patent Document 1 includes a backlight housing having a light emitting surface, a diffusion plate, a prism sheet, and a reflective polarizing plate that are sequentially arranged to face the light emitting surface of the backlight housing.
  • a laser light guide rod extended in a long shape so as to diffuse and emit laser light into the body, and a long shape so as to propagate LED light from the LED light source and diffuse and emit LED light into the backlight housing A stretched LED light guide bar.
  • the laser light guide bar and the LED light guide bar are individually installed for each laser light source and LED light source, and thus the number of components is large.
  • the present invention has been completed based on the above situation, and aims to reduce the number of parts.
  • a laser light source that emits laser light
  • a portion of the outer peripheral end face that directly faces the laser light source is a light incident portion on which the laser light is incident
  • the outer peripheral end face A light guide plate in which a portion located on the opposite side of the light incident portion is a light incident opposite portion, and one of the pair of plate surfaces is a light exit plate surface that emits light
  • the front of the light guide plate A diffuse reflection member that is attached in contact with the opposite portion of the writing light and diffusely reflects the laser light.
  • the laser light emitted from the laser light source enters the light incident portion of the light guide plate and travels straight in the light guide plate toward the light incident opposite portion.
  • the laser light that has reached the opposite light incident part is diffusely reflected by the diffuse reflection member attached so as to be in contact with the opposite light incident part, after traveling toward the light incident part side while diffusing in the light guide plate
  • the light is emitted from the light exit plate surface.
  • the luminance uniformity of the emitted light is made high in the plane of the light emitting plate surface.
  • the light guide plate is used, which is preferable in reducing the number of components.
  • the diffuse reflection member is attached in contact with the light incident opposite portion of the light guide plate, it is difficult for light to leak from between the light incident opposite portion and the diffuse reflection member. Thereby, the utilization efficiency of light becomes excellent.
  • the laser light source includes a red laser light source that emits red laser light, a green laser light source that emits green laser light, and a blue laser light source that emits blue laser light.
  • the laser light source and the blue laser light source are arranged in a row, and the diffuse reflection member is arranged over the entire end face having the light incident opposite portion of the outer peripheral end face of the light guide plate.
  • the laser beams of the respective colors emitted from the red laser light source, the green laser light source, and the blue laser light source arranged in a row form enter the light incident portion of the light guide plate,
  • the light travels straight toward the light incident opposite portion, and is diffusely reflected by the diffuse reflection member arranged in contact with the light incident opposite portion.
  • the light of each color is mixed well within the light guide plate and emitted from the light output plate surface as white light. Since the diffuse reflection member is disposed over the entire area of the end face having the light incident opposite portion of the outer peripheral end face of the light guide plate, it is possible to diffusely reflect the laser light of each color regardless of the positional relationship with respect to the laser light source of each color. . Thereby, the certainty that the laser light of each color is diffusely reflected by the diffuse reflection member is high.
  • An LED light source and an LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion are provided, and the light guide plate is a portion facing at least the LED light source in the outer peripheral end surface However, it is set as the LED incident part into which the light of the said LED light source injects, and the said diffuse reflection member is distribute
  • the diffuse reflection member is arranged adjacent to the LED light incident part, so that the light incident from the LED light source to the LED light incident part is not obstructed, and from the light incident part side to the light incident opposite part in the light guide plate. It is possible to diffusely reflect the laser beam traveling toward the surface well.
  • the laser light source includes a red laser light source that emits red laser light and a blue laser light source that emits blue laser light
  • the LED light source includes a green LED light source that emits green light.
  • the diffuse reflection member is a pseudo red diffused light source and blue diffused light source that emits diffused light by diffusely reflecting the red laser light and blue laser light emitted from the red laser light source and the blue laser light source. Therefore, the red light and the blue light diffusely reflected by the diffusive reflecting member are well mixed in the light guide plate together with the green light emitted from the green LED light source and incident on the LED light incident portion, so as white light. The light is emitted from the light exit plate surface.
  • the red laser light emitted from the red laser light source and the blue laser light emitted from the blue laser light source hardly interfere with each other in the wavelength range, and the wavelength range also for the green light emitted from the green LED light source. It is assumed that there is almost no interference. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source has better luminous efficiency than the green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
  • the red laser light source and the blue laser light source are arranged adjacent to each other, and the diffuse reflection member has a formation range straddling the red laser light source and the blue laser light source. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member having a formation range extending between the red laser light source and the blue laser light source adjacent to each other.
  • the light distribution range of the laser light incident on the light incident portion is expanded at least at the light incident portion on the outer peripheral end face of the light guide plate as it goes from the light incident portion side toward the light incident opposite portion.
  • a light refracting portion for providing a refractive action to the laser light is provided. In this way, the laser light emitted from the laser light source is given a refracting action by the light refracting unit when entering the light incident unit.
  • the light distribution range of the laser light to which the refracting action is imparted is expanded in the process of traveling from the light incident part side toward the light incident opposite part in the light guide plate.
  • the laser light that has reached the opposite part of the incident light is diffusely reflected while being applied to the diffuse reflection member in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member becomes wider.
  • the luminance uniformity of the emitted light is made higher in the plane of the light emitting plate surface.
  • a laser light source that emits laser light
  • a portion of the outer peripheral end face that faces the laser light source is a light incident portion on which the laser light is incident
  • the outer peripheral end face A light guide plate in which a portion located on the opposite side of the light incident portion is a light incident opposite portion, and one of the pair of plate surfaces is a light exit plate surface that emits light
  • the front of the light guide plate A diffusive reflecting member that is arranged in a shape facing the opposite side of the writing light and is physically separated from the light guide plate and diffusely reflects the laser light.
  • the laser light emitted from the laser light source enters the light incident portion of the light guide plate and travels straight in the light guide plate toward the light incident opposite portion.
  • the laser light that has reached the opposite light incident part is diffusely reflected by the diffuse reflection member arranged in a form facing the opposite light incident part, and is diffused in the light guide plate toward the light incident part side.
  • the light is emitted from the light-emitting plate surface.
  • the luminance uniformity of the emitted light is made high in the plane of the light emitting plate surface.
  • a light guide plate is used, which is preferable in reducing the number of parts.
  • the diffuse reflection member Since the diffuse reflection member is physically separated from the light guide plate, the positional relationship with respect to the laser light source is determined regardless of the positional relationship of the light guide plate with respect to the laser light source. Accordingly, even if the light guide plate is displaced with respect to the laser light source, the positional relationship of the diffuse reflection member with respect to the laser light source is stably maintained, and thus the certainty that the laser light is diffusely reflected by the diffuse reflection member. Is considered high.
  • the following structure is preferable as the embodiment.
  • An LED light source and an LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion are provided, and the light guide plate is a portion facing at least the LED light source on the outer peripheral end surface
  • the said diffuse reflection member is provided in the said LED light source board
  • the diffusive reflection member can be arranged in a form facing the light incident opposite portion of the light guide plate.
  • the laser light source substrate and the LED light source substrate provided with the diffuse reflection member are attached to a common housing, so that the positional accuracy related to the positional relationship between the laser light source and the diffuse reflection member is kept high. Preferred above.
  • the LED light source substrate is disposed on the lower side in the vertical direction with respect to the light guide plate, and the diffuse reflection member is disposed in contact with the light incident opposite portion of the light guide plate. . If it does in this way, the light incident opposite part and a diffuse reflection member can be maintained in contact
  • the laser light source includes a red laser light source that emits red laser light and a blue laser light source that emits blue laser light
  • the LED light source includes a green LED light source that emits green light.
  • the diffuse reflection member is a pseudo red diffused light source and blue diffused light source that emits diffused light by diffusely reflecting the red laser light and blue laser light emitted from the red laser light source and the blue laser light source. Therefore, the red light and the blue light diffusely reflected by the diffusive reflecting member are well mixed in the light guide plate together with the green light emitted from the green LED light source and incident on the LED light incident portion, so as white light. The light is emitted from the light exit plate surface.
  • the red laser light emitted from the red laser light source and the blue laser light emitted from the blue laser light source hardly interfere with each other in the wavelength range, and the wavelength range also for the green light emitted from the green LED light source. It is assumed that there is almost no interference. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source has better luminous efficiency than the green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
  • the red laser light source and the blue laser light source are arranged adjacent to each other, and the diffuse reflection member has a formation range straddling the red laser light source and the blue laser light source. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member having a formation range extending between the red laser light source and the blue laser light source adjacent to each other.
  • a light guide plate support member that supports the light guide plate from the side opposite to the light output plate surface side is provided, and the diffuse reflection member is provided on the light guide plate support member.
  • the light guide plate is supported from the side opposite to the light output plate surface side by the light guide plate support member, so that the positional relationship between the laser light source and the light incident portion is stably maintained.
  • the diffuse reflection member can be arranged in a form facing the light incident opposite portion of the light guide plate.
  • the light distribution range of the laser light incident on the light incident portion is expanded at least at the light incident portion on the outer peripheral end surface of the light guide plate as it goes from the light incident portion side toward the light incident opposite portion.
  • a light refracting portion for providing a refractive action to the laser light is provided. In this way, the laser light emitted from the laser light source is given a refracting action by the light refracting unit when entering the light incident unit.
  • the light distribution range of the laser light to which the refracting action is imparted is expanded in the process of traveling from the light incident part side toward the light incident opposite part in the light guide plate.
  • the laser light that has reached the opposite part of the incident light is diffusely reflected while being applied to the diffuse reflection member in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member becomes wider.
  • the luminance uniformity of the emitted light is made higher in the plane of the light emitting plate surface.
  • a display device of the present invention includes the above-described illumination device and a display panel that displays an image using light emitted from the illumination device. According to the display device having such a configuration, the number of parts of the lighting device is reduced, and light use efficiency is excellent in the lighting device, so that the manufacturing cost can be reduced and the power consumption can be reduced. This is suitable for increasing the brightness.
  • a television receiver of the present invention includes the display device described above. According to such a television receiver, since the manufacturing cost of the display device is reduced and the display quality is excellent, it is excellent in price competitiveness and the display of the television image with excellent display quality. Can be realized.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Plan view of a backlight device constituting a liquid crystal display device AA line sectional view of FIG.
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 2 of this invention.
  • AA line sectional view of FIG. BB sectional view of FIG. A graph showing the emission spectrum of each light source and the transmission spectrum of each colored portion of the color filter
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 3 of this invention.
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 4 of this invention.
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 5 of this invention.
  • AA line sectional view of FIG. BB sectional view of FIG. The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 6 of this invention.
  • AA line sectional view of FIG. The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 7 of this invention.
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 8 of this invention.
  • the top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 9 of this invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • a liquid crystal display device 10 and a television receiver 10TV using the same are illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG. 3 is the front side, and the lower side is the back side.
  • a television receiver 10TV includes a liquid crystal display device 10 having a substantially horizontally long overall shape, and both front and back cabinets 10Ca and 10Cb that are accommodated so as to sandwich the liquid crystal display device 10.
  • a power source 10P a tuner (reception unit) 10T that receives a television signal
  • a stand 10S a stand 10S.
  • the liquid crystal display device 10 includes a liquid crystal panel (display panel) 11 that displays an image, and a backlight device (illumination device) 12 that supplies light for display to the liquid crystal panel 11. These are integrally held by a frame-like bezel 13 or the like.
  • the liquid crystal panel 11 is a liquid crystal molecule that is a substance in which a pair of glass substrates are bonded together with a predetermined gap therebetween, and optical properties change between the glass substrates with the application of an electric field.
  • the liquid crystal layer (not shown) containing is enclosed.
  • One glass substrate array substrate, active matrix substrate
  • switching elements for example, TFTs
  • an alignment film or the like is provided.
  • the other glass substrate On the inner surface side of the other glass substrate (counter substrate, CF substrate), there is a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a matrix in a predetermined arrangement.
  • a light-shielding layer black matrix arranged in a lattice shape and disposed between the colored portions, a solid counter electrode facing the pixel electrode, an alignment film, and the like are provided.
  • the polarizing plate is distribute
  • the backlight device 12 includes a substantially box-shaped chassis (housing) 14 having a light emitting portion 14b that opens toward the front side (the liquid crystal panel 11 side), and the chassis 14.
  • the optical member (optical sheet) 15 arranged so as to cover the light emitting portion (opening portion) 14b and the frame 16 that supports the optical member 15 from the back side are provided.
  • a red laser light source (laser light source) 17, a blue laser light source (laser light source) 18, and a green laser light source (laser light source) 19 that are light sources, a red laser light source 17, a blue laser light source 18 and green are provided.
  • the reflection sheet 23 to be disposed, and the light guide plate support member 24 interposed between the reflection sheet 23 and the chassis 14 to support the light guide plate 22 from the back side are provided.
  • the red laser light source 17 is provided with a vertical stripe pattern
  • the blue laser light source 18 is provided with a horizontal stripe pattern
  • the green laser light source 19 is provided with an oblique stripe pattern.
  • the backlight device 12 is provided with a laser light source substrate 20 at one end in the short side direction (Y-axis direction), and light from each of the laser light sources 17 to 19 is directed to the light guide plate 22.
  • a laser light source substrate 20 at one end in the short side direction (Y-axis direction)
  • light from each of the laser light sources 17 to 19 is directed to the light guide plate 22.
  • an edge light type (side light type) of a one side incident type in which light enters from one side is used.
  • the chassis 14 is made of metal, and as shown in FIG. 2 and FIG. 3, a bottom 14 a that is substantially horizontally long like the liquid crystal panel 11, and a side 14 c that rises from the outer end of each side of the bottom 14 a. As a whole, it has a shallow, generally box shape that opens toward the front side.
  • the long side direction of the chassis 14 (bottom part 14a) coincides with the X-axis direction (horizontal direction), and the short side direction thereof coincides with the Y-axis direction (vertical direction).
  • the frame 16 and the bezel 13 can be fixed to the side portion 14c.
  • the optical member 15 covers the light emitting portion 14 b of the chassis 14 and is disposed between the liquid crystal panel 11 and the light guide plate 22. That is, it can be said that the optical member 15 is arranged on the exit side of the light emission path with respect to the laser light sources 17 to 19.
  • the optical member 15 has a sheet shape, and a total of three optical members 15 are provided.
  • the optical member 15 includes a microlens sheet 15a that imparts an isotropic condensing function to light, a prism sheet 15b that imparts an anisotropic condensing function to light, and a reflective type that reflects and reflects light. And a polarizing sheet 15c.
  • the optical member 15 is laminated from the back side in the order of the microlens sheet 15 a, the prism sheet 15 b, and the reflective polarizing sheet 15 c, and their outer edge portions are placed on the front side of the frame 16.
  • the optical member 15 is opposed to the light guide plate 22 on the front side, that is, on the light emitting side, with an interval corresponding to the frame 16 (a frame-like portion 16a described later in detail).
  • the frame 16 has a horizontally long frame-shaped portion 16 a extending along the outer peripheral edge portion of the light guide plate 22 and the optical member 15.
  • the frame-shaped portion 16a receives and supports the outer peripheral edge of the optical member 15 from the back side over substantially the entire circumference, and supports the outer peripheral edge of the light guide plate 22 from the front side over the entire circumference.
  • a frame-side reflection sheet 25 that reflects light is attached to a surface facing the back surface (the light guide plate 22 and each of the laser light sources 17 to 19) of one long side of the frame-shaped portion 16a.
  • the frame 16 has a liquid crystal panel support portion 16b that protrudes from the frame-shaped portion 16a toward the front side and supports the outer peripheral edge portion of the liquid crystal panel 11 from the back side.
  • the red laser light source 17 has a red semiconductor laser element that emits red laser light.
  • the blue laser light source 18 includes a blue semiconductor laser element that emits blue laser light.
  • the green laser light source 19 includes a green semiconductor laser element that emits green laser light.
  • the laser beams of the respective colors emitted from the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are coherent lights having the same phase and wavelength, and have a divergence angle as compared to light emitted from a general LED light source. Is small, has a high straightness, and has excellent color purity.
  • the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are each mounted on a laser light source substrate 20 described below on the opposite side of the light emitting surface of the red laser light source 17, and are of a so-called top surface emission type.
  • the laser light source substrate 20 has a plate shape extending along the long side direction of the chassis 14, and one side of the long side (the lower side shown in FIG. 2). It is attached to the part 14c.
  • the laser light source substrate 20 is preferably attached to the lower side portion 14c in the vertical direction of the chassis 14, thereby causing the liquid crystal display device 10 and the television receiver 10TV to originate from the laser light source substrate 20. Even if the frame width increases only by one side, the design is unlikely to be impaired.
  • a mounting surface 20 a on which the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are mounted is opposed to one end surface on the long side of the light guide plate 22.
  • a wiring pattern (not shown) for supplying power to the red laser light source 17, the blue laser light source 18, and the green laser light source 19 is patterned on the mounting surface 20a of the laser light source substrate 20, and a plurality of red lasers are provided.
  • the light source 17, the blue laser light source 18, and the green laser light source 19 are mounted in a form repeatedly arranged at intervals along the X-axis direction.
  • the light guide plate 22 is made of a substantially transparent synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate). As shown in FIGS. 2 and 3, the light guide plate 22 has a plate shape that is thicker than the optical member 15 and is housed in the chassis 14 so as to be positioned directly below the liquid crystal panel 11 and the optical member 15. .
  • the light guide plate 22 has a horizontally long substantially square shape when viewed in a plane, like the optical member 15 and the like. Of the outer peripheral end faces of the light guide plate 22, one end face on the long side (the lower side shown in FIG. 2) faces the light emitting faces of the red laser light source 17, the blue laser light source 18, and the green laser light source 19.
  • the other end surface (the upper side shown in FIG. 2) on the long side of the outer peripheral end surfaces of the light guide plate 22 is a portion positioned on the side opposite to the laser incident portion 22a. 22e.
  • a plurality of laser incident light opposite portions 22e are arranged on the other end face of the light guide plate 22 so as to be arranged at intervals along the X-axis direction. The number and arrangement intervals of the red light source 17 and the blue laser are the same.
  • the number of the light sources 18 and the green laser light source 19 (laser light incident part 22a) is the same as the number and arrangement interval.
  • the light guide plate 22 has a light-emitting plate surface 22c that emits light toward the liquid crystal panel 11 and the optical member 15 and a plate surface facing the back side.
  • the light output opposite plate surface 22d is opposite to the light plate surface 22c.
  • the light guide plate 22 introduces the light emitted from the laser light sources 17 to 19 along the Y-axis direction from the respective light incident portions 22a, and after propagating the light internally, extends along the Z-axis direction. And has a function of emitting light from the light exit plate surface 22c toward the optical member 15 side (front side, light emission side).
  • the reflection sheet 23 is disposed so as to cover the light output opposite plate surface 22 d of the light guide plate 22.
  • the reflection sheet 23 is excellent in light reflectivity, and can efficiently start up light leaking from the light output opposite plate surface 22d of the light guide plate 22 toward the front side (light output plate surface 22c).
  • the reflection sheet 23 has an outer shape that is slightly larger than the light guide plate 22, and is arranged in such a manner that both end portions on the long side protrude from the laser light input portions 22 a of the light guide plate 22 toward the laser light sources 17 to 19. Has been.
  • the light guide plate support member 24 is made of synthetic resin, and as shown in FIG. 3, a pair of light guide plate support members 24 are provided so as to support both ends on the long side of the light guide plate 22 from the back side.
  • the light guide plate support member 24 is disposed so as to be interposed between the bottom portion 14a of the chassis 14 and the reflection sheet 23, and the light guide plate 22 is lifted from the bottom portion 14a so as not to be in direct contact with the bottom portion 14a. I support it.
  • the positional relationship in the Z-axis direction between the laser light sources 17 to 19 and the light guide plate 22 can be stably maintained, and in addition, the heat generated by the light emission from the laser light sources 17 to 19 can be maintained.
  • the light guide plate support member 24 extends along the long side direction of the light guide plate 22 and the reflection sheet 23 and directly contacts the reflection sheet 23, and from the both ends of the main body portion 24a in the Y-axis direction to the back side. And a pair of leg portions 24b that project toward the bottom portion 14a of the chassis 14.
  • the backlight device 12 has a diffuse reflection member 26 for diffusing and reflecting the laser beams of each color propagating through the light guide plate 22 as shown in FIGS.
  • the diffuse reflection member 26 is made of a synthetic resin (for example, made of PCT resin) having a white surface with excellent light reflectivity, and the other of the outer peripheral end surfaces of the light guide plate 22 on the long side (see FIG. 2). It is attached so as to face and be in contact with at least the laser incident light opposite portion 22e on the upper end surface shown.
  • the diffuse reflection member 26 is attached to the other end surface (including the laser incident light opposite portion 22e) of the light guide plate 22 by using a substantially transparent adhesive, double-sided tape, or the like.
  • the red laser light, the blue laser light, and the green laser light emitted from the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are incident on the laser incident portion 22 a of the light guide plate 22. Then, it goes straight in the light guide plate 22 and reaches the laser incident light opposite portion 22e located on the opposite side to the laser incident portion 22a.
  • the red laser light, the blue laser light, and the green laser light that have reached the laser incident light opposite portion 22e are diffusely reflected by the diffusive reflecting member 26, and are diffused in the light guide plate 22 toward the laser incident portion 22a. Then, the light is emitted from the light exit plate surface 22c.
  • the diffuse reflection member 26 disposed on the opposite side of the red laser light source 17, the blue laser light source 18, and the green laser light source 19 in the Y-axis direction has a divergence angle equal to or greater than that of a general LED light source. It functions as a pseudo red diffused light source that emits diffused red, blue, and green light, a blue diffused light source, and a green diffused light source. Thereby, the red light, the blue light and the green light diffusely reflected by the diffuse reflection member 26 are well mixed in the light guide plate 22 and emitted from the light output plate surface 22c as white light having no color unevenness. Both uniformity and chromaticity uniformity are high.
  • the diffuse reflection member 26 is attached in contact with the laser incident light opposite portion 22e of the light guide plate 22, light hardly leaks between the laser incident light opposite portion 22e and the diffuse reflection member 26. Yes. Thereby, the utilization efficiency of light becomes excellent. Further, as compared with a conventional configuration in which a light guide bar is individually used for each light source, the light guide plate 22 is used, which is preferable in reducing the number of components.
  • the white balance relating to the image displayed on the liquid crystal panel 11 can be controlled by adjusting the outputs of the red laser light source 17, the blue laser light source 18 and the green laser light source 19. , B does not need to be adjusted for each pixel.
  • the diffuse reflection member 26 is arranged over the entire length and the entire area of the other end face having the laser incident opposite portion 22 e among the outer peripheral end faces of the light guide plate 22.
  • the diffuse reflection member 26 in addition to the plurality of laser incident light opposite portions 22e that are intermittently arranged in the X-axis direction on the other end face of the light guide plate 22, the diffuse reflection member 26 is also positive with the portion adjacent to the laser incident light opposite portion 22e. It is attached so as to face and touch. In this way, the laser light of each color can be diffusely reflected regardless of the positional relationship in the X-axis direction of the diffuse reflection member 26 with respect to the laser light sources 17 to 19 of each color of red, blue, and green.
  • the certainty that the laser light is diffusely reflected by the diffuse reflection member 26 is high. Further, when assembling, it is not necessary to align the diffuse reflection member 26 with respect to the laser light sources 17 to 19 of the respective colors in the X-axis direction, so that the manufacture becomes easy.
  • the backlight device (illumination device) 12 of this embodiment is a laser light source among the red laser light source 17, the blue laser light source 18, and the green laser light source 19 that are laser light sources that emit laser light, and the outer peripheral end surface.
  • a portion facing a certain red laser light source 17, blue laser light source 18, and green laser light source 19 is a laser incident portion (light incident portion) 22a on which laser light is incident, and a laser incident portion 22a on the outer peripheral end surface.
  • the light guide plate 22 has a portion positioned on the opposite side as a laser incident light opposite portion (light incident opposite portion) 22e, and one of the pair of plate surfaces serves as a light output plate surface 22c for emitting light, and a light guide plate And a diffuse reflection member 26 that is attached in contact with the laser incident light opposite portion 22e of 22 and diffusely reflects the laser light.
  • the laser light reaching the laser incident light opposite portion 22e is diffusely reflected by the diffuse reflection member 26 attached in contact with the laser incident light opposite portion 22e, so that the laser incident portion is diffused while being diffused in the light guide plate 22.
  • the light After traveling toward the 22a side, the light is emitted from the light exit plate surface 22c.
  • the luminance uniformity of the emitted light is high within the surface of the light output plate surface 22c.
  • the light guide plate 22 is used. This is suitable for reduction.
  • the diffuse reflection member 26 is attached in contact with the laser incident light opposite portion 22e of the light guide plate 22, light hardly leaks from between the laser incident light opposite portion 22e and the diffuse reflection member 26. It has become. Thereby, the utilization efficiency of light becomes excellent.
  • the laser light sources include a red laser light source 17 that emits red laser light, a green laser light source 19 that emits green laser light, and a blue laser light source 18 that emits blue laser light.
  • the laser light source 19 and the blue laser light source 18 are arranged in a line, and the diffuse reflection member 26 is arranged over the entire end surface of the light guide plate 22 having the laser incident light opposite portion 22e. In this way, the laser light of each color emitted from the red laser light source 17, the green laser light source 19, and the blue laser light source 18 arranged in a row is incident on the laser incident part 22 a of the light guide plate 22.
  • the light guide plate 22 goes straight toward the laser incident light opposite portion 22e, and is diffusely reflected by the diffuse reflection member 26 arranged in contact with the laser incident light opposite portion 22e. Then, the light of each color is well mixed in the light guide plate 22 and emitted from the light output plate surface 22c as white light. Since the diffuse reflection member 26 is arranged over the entire end face having the laser incident light opposite portion 22e in the outer peripheral end face of the light guide plate 22, the laser light of each color regardless of the positional relationship with respect to the laser light sources 17 to 19 of each color. Can be diffusely reflected. Thereby, the certainty that the laser light of each color is diffusely reflected by the diffuse reflection member 26 is high.
  • the liquid crystal display device (display device) 10 includes the backlight device 12 described above and a liquid crystal panel (display panel) 11 that displays an image using light emitted from the backlight device 12. And comprising. According to the liquid crystal display device 10 having such a configuration, the number of parts of the backlight device 12 is reduced, and the use efficiency of light in the backlight device 12 is excellent, so that the manufacturing cost can be reduced. This is suitable for reducing power consumption and increasing brightness.
  • the television receiver 10TV includes the liquid crystal display device 10 described above. According to such a television receiver 10TV, the manufacturing cost of the liquid crystal display device 10 is reduced and the display quality is excellent. Therefore, the television image is excellent in price competitiveness and excellent in display quality. Can be realized.
  • ⁇ Embodiment 2> A second embodiment of the present invention will be described with reference to FIGS.
  • a green LED light source 27 is used instead of the green laser light source 19 from the first embodiment described above.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • a red laser light source 117 and a blue laser light source 118 are used as a light source, and a green LED light source 27 is used.
  • the green LED light source 27 is given an oblique stripe pattern for distinction.
  • the green LED light source 27 is mounted on an LED light source substrate 28 different from the laser light source substrate 120 on which the red laser light source 117 and the blue laser light source 118 are mounted.
  • the LED light source substrate 28 on which the green LED light source 27 is mounted is arranged so as to sandwich the light guide plate 122 in the Y-axis direction with the laser light source substrate 120.
  • the backlight device 112 is provided with the LED light source substrate 28 at one end in the short side direction and the laser light source substrate 120 at the other end, and the light sources 27, 117, 118 are arranged.
  • the laser light source substrate 120 is attached to the other side 114c on the other long side of the chassis 114 (upper side shown in FIG. 4).
  • a plurality of red laser light sources 117 and a plurality of blue laser light sources 118 are mounted on the mounting surface 120a of the laser light source substrate 120 so as to be alternately arranged at intervals along the X-axis direction.
  • the plurality of red laser light sources 117 and blue laser light sources 118 there are two intervals between adjacent ones, and those arranged at relatively small intervals constitute one set. . Accordingly, the distance between the red laser light source 117 and the blue laser light source 118 that form different sets is relatively wide.
  • the green LED light source 27 has a green semiconductor element (green LED element) that emits green light, as shown in FIGS.
  • Green light emitted from the green LED light source 27 is incoherent light, and has a larger divergence angle and weaker straightness than the laser beams of the respective colors emitted from the red laser light source 117 and the blue laser light source 118.
  • the green LED light source 27 has a luminous efficiency that is approximately twice as high as that of a general green laser light source, and high luminance can be obtained with low power consumption.
  • the green LED light source 27 is mounted on an LED light source substrate 28, which will be described below, on the side opposite to the light emitting surface of the green LED light source 27, and is a so-called top surface emitting type.
  • the LED light source substrate 28 has a plate shape extending along the long side direction of the chassis 114, and one side of the long side (the lower side shown in FIG. 4). It is attached to the portion 114c.
  • the mounting surface 28 a on which the green LED light source 27 is mounted is opposed to one end surface on the long side of the light guide plate 122.
  • a wiring pattern (not shown) for supplying power to the green LED light source 27 is patterned on the mounting surface 28a of the LED light source substrate 28, and a plurality of green LED light sources 27 are spaced along the X-axis direction. It is implemented in a line-up form.
  • the interval between adjacent ones is made wider than the arrangement range in the X-axis direction in the red laser light source 117 and the blue laser light source 118 that form the same set. Then, the plurality of green LED light sources 27 are arranged (displaced) so as to be offset from the red laser light source 117 and the blue laser light source 118 in the X-axis direction.
  • the light guide plate 122 has the other end face on the long side (upper side shown in FIG. 4) of its outer peripheral face faces the light emitting faces of the red laser light source 117 and the blue laser light source 118.
  • the laser light incident portions 122a into which the laser beams of the respective colors are incident are provided, and the number of installations and the arrangement interval thereof are the same as the number of installation sets of the red laser light source 117 and the blue laser light source 118 and the arrangement interval between the sets. is there.
  • the formation range in the X-axis direction substantially coincides with the arrangement range of the red laser light source 117 and the blue laser light source 118 forming one set.
  • the light guide plate 122 has an end surface on one of the long sides (the lower side shown in FIG. 4) facing the light emitting surface of the green LED light source 27 and facing green light.
  • the light incident section 22b is provided, and the number of installation and the arrangement interval thereof are the same as the number of installation and the arrangement interval of the green LED light sources 27.
  • the LED light incident portion 22b has a formation range in the X-axis direction that is further left and right than the portion facing the green LED light source 27 in the one end surface and the portion facing the green LED light source 27 (arrangement range of the green LED light source 27). It has become wide.
  • One end surface on the long side of the light guide plate 122 having the LED light incident portion 22b described above has a laser light incident opposite portion 122e which is a portion located on the opposite side to the laser light incident portion 122a.
  • a plurality of laser incident light opposite portions 122e are arranged on the one end face of the light guide plate 122 so as to be alternately arranged along with the LED incident light portions 22b along the X-axis direction.
  • 117 and the number of installed sets of the blue laser light sources 118 and the arrangement interval between the sets are the same.
  • FIG. 7 shows emission spectra of the light sources 27, 117, and 118.
  • the horizontal axis of the figure is the wavelength (unit is “nm”), and the left vertical axis of the figure is the emission intensity ( The unit is “W / nm”).
  • the emission spectrum of the red laser light source 117 is indicated by a thin broken line
  • the emission spectrum of the blue laser light source 118 is indicated by a thin two-dot chain line
  • the emission spectrum of the green LED light source 27 is indicated by a thin one-dot chain line.
  • the red laser light source 117 emits red laser light having an emission spectrum having a main emission wavelength of 630 nm and a half width (full width at half maximum) of 2 nm.
  • the blue laser light source 118 emits blue laser light having an emission spectrum having a main emission wavelength of 441 nm and a half width of 2 nm.
  • the blue laser light source 118 has a light emission intensity (0.055 W / nm) at the main light emission wavelength larger than the light emission intensity (0.037 W / nm) of the red laser light source 117.
  • the green LED light source 27 emits green light having an emission spectrum having a main emission wavelength of about 534 nm and a half width of about 18 nm.
  • the green LED light source 27 has a light emission intensity (0.0018 W / nm) at the main light emission wavelength that is much smaller than the same light emission intensity of each of the red laser light source 117 and the blue laser light source 118, and has a half-value width of the emission spectrum. It is much wider than the half width of each of the red laser light source 117 and the blue laser light source 118.
  • the red laser light emitted from the red laser light source 117 and the blue laser light emitted from the blue laser light source 118 have little wavelength range interference with each other and are emitted from the green LED light source 27.
  • the wavelength range hardly interferes with green light. Thereby, the color purity of each color related to the illumination light of the backlight device 112 becomes sufficiently high.
  • the green LED light source 27 has better light emission efficiency than a general green laser light source that emits green laser light, high luminance can be obtained with low power consumption. Note that the emission spectra of the red laser light source 117 and the blue laser light source 118 described above are the same as those described in the first embodiment.
  • FIG. 7 shows a transmission spectrum relating to each colored portion.
  • the horizontal axis of FIG. 7 indicates the wavelength (unit: “nm”), and the vertical axis on the right side of FIG. 7 indicates the spectral transmittance (unit: “nm”). % ").
  • the transmission spectrum of the red colored portion is indicated by a thick broken line
  • the transmission spectrum of the blue colored portion is indicated by a thick two-dot chain line
  • the transmission spectrum of the green colored portion is indicated by a thick one-dot chain line.
  • the red colored portion exhibiting red color selectively transmits light in the red wavelength region (about 600 nm to about 780 nm), that is, red light, and has a wavelength that is half the peak of the transmission spectrum. It is comprised so that it may become 595 nm or more.
  • the “wavelength at half peak value” is a wavelength at half the spectral transmittance value (maximum value) at the peak wavelength (634 nm) of the transmission spectrum.
  • the blue colored portion exhibiting a blue color selectively transmits light in the blue wavelength region (about 420 nm to about 500 nm), that is, blue light, and the peak wavelength included in the transmission spectrum is 468 nm. At the same time, the half width of the peak is about 90 nm.
  • the green colored portion exhibiting a green color selectively transmits light in the green wavelength region (about 500 nm to about 570 nm), that is, green light, and the peak wavelength included in the transmission spectrum is set to 522 nm. At the same time, the half width of the peak is about 96 nm.
  • the green colored portion partially overlaps the transmission spectrum with respect to both the red colored portion and the blue colored portion, but the amount of overlap with the blue colored portion is larger than the amount of overlap with the red colored portion. That is, the transmitted light of the green colored portion tends to include more blue light than red light.
  • the transmission spectra of the colored portions of the color filter described above are the same as those described in the first embodiment.
  • the diffuse reflection member 126 is adjacent to the LED light incident portion 22 b in the X-axis direction on one end surface (the lower side shown in FIG. 4) on the long side of the light guide plate 122. It is arranged in a form. Specifically, a plurality of diffuse reflection members 126 are arranged on the one end surface of the light guide plate 122 in an alternating manner along the LED light incident portion 22b along the X-axis direction. It is the same as the number and arrangement interval of the light opposite portions 122e (the number of installation groups of the red laser light source 117 and the blue laser light source 118 and the arrangement interval between the groups).
  • the light advances from the laser light incident part 122a side toward the laser light incident opposite part 122e in the light guide plate 122 without interfering with the light incident on the LED light incident part 22b from the green LED light source 27.
  • Each color laser beam can be diffusely reflected by the diffuse reflection member 126 well.
  • the diffuse reflection member 126 and the laser incident light opposite portion 122e are arranged in the X-axis direction in the red laser light source 117 and the blue laser light source 118 in which the formation range in the X-axis direction forms one set. And are almost equal.
  • the diffuse reflection member 126 has a formation range that straddles the red laser light source 117 and the blue laser light source 118 that form one set. According to such a configuration, if the diffuse reflection member 126 is individually associated with the red laser light source 117 and the blue laser light source 118 that form a pair, the diffuse reflection member 126 causes the red color. Laser light and blue laser light can be efficiently scattered and reflected, and the diffuse reflection member 126 can be easily installed.
  • the light guide plate 122 at least a portion of the outer peripheral end face that faces the green LED light source 27 that is an LED light source is an LED light incident portion 22b into which light of the green LED light source 27 that is an LED light source is incident.
  • the diffuse reflection member 126 is arranged adjacent to the LED light incident portion 22b.
  • the diffuse reflection member 126 is arranged adjacent to the LED light incident part 22b, so that the light incident on the LED light incident part 22b from the green LED light source 27, which is an LED light source, is not disturbed in the light guide plate 122.
  • Laser light traveling from the laser incident part 122a side toward the laser incident opposite part 122e can be diffusely reflected favorably.
  • the laser light source includes a red laser light source 117 that emits red laser light and a blue laser light source 118 that emits blue laser light
  • the LED light source includes a green LED light source 27 that emits green light.
  • the diffuse reflection member 126 diffuses and reflects the red laser light and the blue laser light emitted from the red laser light source 117 and the blue laser light source 118, thereby generating a pseudo red diffused light source that emits diffused light. Since it functions as a blue diffused light source, the red light and the blue light diffusely reflected by the diffuse reflection member 126 are good in the light guide plate 122 together with the green light emitted from the green LED light source 27 and incident on the LED incident portion 22b.
  • the red laser light emitted from the red laser light source 117 and the blue laser light emitted from the blue laser light source 118 hardly interfere with each other in the wavelength range, and are compared with the green light emitted from the green LED light source 27.
  • the wavelength range hardly interferes. Thereby, the color purity of each color becomes sufficiently high.
  • the green LED light source 27 has better luminous efficiency than a green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
  • the red laser light source 117 and the blue laser light source 118 are arranged adjacent to each other, and the diffuse reflection member 126 has a formation range straddling the red laser light source 117 and the blue laser light source 118. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member 126 having a formation range extending between the red laser light source 117 and the blue laser light source 118 adjacent to each other.
  • the light guide plate 222 is provided with a light refracting portion 29 on each of the laser incident portion 222a and the LED incident portion 222b on the outer peripheral end face.
  • the light refracting portion 29 is formed by subjecting the surfaces of the laser light incident portion 222a and the LED light incident portion 222b to unevenness so that the cross-sectional shape becomes a prism shape.
  • the light refracting unit 29 has a refracting action that expands the divergence angle to each laser light incident from the laser light sources 217 and 218 to the laser incident unit 222a and green light incident from the green LED light source 227 to the LED incident unit 222b. Is given.
  • Each light to which the refractive action is imparted by the light refracting unit 29 travels in the light guide plate 222 in the Y-axis direction so as to be separated from the respective light incident units 222a and 222b (for example, opposite to the laser incident light from the laser incident unit 222a side). Diverges in the X-axis direction in the process of proceeding toward the portion 222e), and the light distribution range is gradually expanded. Particularly, each laser beam is diffused and reflected while being irradiated to the diffuse reflection member 226 in a wider range when the light distribution range is expanded by the light refracting unit 29 and reaches the laser incident light opposite portion 222e. Thus, the diffusion range of the diffuse reflection light by the diffuse reflection member 226 becomes wider.
  • the luminance uniformity of the emitted light is made higher in the plane of the light output plate surface 222c of the light guide plate 222.
  • the light refracting portion 29 is not disposed in the entire region of each LED light incident portion 222b, that is, each laser light incident opposite portion 222e. Since each of the diffuse reflection members 226 is attached to the light guide plate 222, each diffusion is applied to the non-formation portion of each light refracting portion 29 on the one end face.
  • the reflection member 226 may be attached. That is, since each light refraction part 29 functions as a mark when attaching each diffuse reflection member 226, the assembly workability is good.
  • At least the laser incident portion 222a on the outer peripheral end surface of the light guide plate 222 has a light distribution range of the laser light incident on the laser incident portion 222a from the laser incident portion 222a side.
  • a light refracting portion 29 that imparts a refracting action to the laser light is provided so as to spread toward the laser incident light opposite portion 222e.
  • the laser light emitted from the red laser light source 217 and the blue laser light source 218, which are laser light sources, is refracted by the light refracting unit 29 when entering the laser incident unit 222a.
  • the light distribution range of the laser light imparted with the refraction action is expanded in the process of traveling through the light guide plate 222 from the laser light incident part 222a side toward the laser light incident opposite part 222e. Accordingly, the laser light reaching the laser incident light opposite portion 222e is diffusely reflected while being applied to the diffuse reflection member 226 in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member 226 is wider. Become. As a result, the luminance uniformity of the emitted light is higher in the plane of the light exit plate surface 222c.
  • the red laser light source 317 and the blue laser light source 318 are arranged in such a manner that one set is close to each other. That is, the arrangement is such that there is almost no gap between the red laser light source 317 and the blue laser light source 318 forming one set in the X-axis direction. Therefore, the laser incident part 322a into which the light from the red laser light source 317 and the blue laser light source 318 forming one set is incident is continuous. Thereby, the arrangement range in the X-axis direction in the red laser light source 317 and the blue laser light source 318 is narrowed, and accordingly, the formation range of the diffuse reflection member 326 can be narrowed.
  • the red laser light and the blue laser light emitted from the red laser light source 317 and the blue laser light source 318 and diffusely reflected by the diffuse reflection member 326 in the light guide plate 322 are compared with the first embodiment described above.
  • the green light from each other or the green LED light source 327 is hardly mixed.
  • the end portions on the green LED light source 327 and the diffuse reflection member 326 side are mixed color regions for mixing red laser light, blue laser light, and green light (from the one-dot chain line shown in FIG. 9). (Lower area) MA is set.
  • FIGS. A fifth embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 410 displays a liquid crystal panel (display panel) that displays an image. ) 411 and a backlight device (illumination device) 412 that supplies light for display to the liquid crystal panel 411, and these are integrally held by a frame-like bezel 413 or the like.
  • the liquid crystal panel 411 has the same configuration as that of the first embodiment.
  • the backlight device 412 includes a substantially box-shaped chassis (housing) 414 having a light emitting portion 414b that opens toward the front side (the liquid crystal panel 411 side); An optical member (optical sheet) 415 arranged to cover the light emitting portion (opening) 414b of the chassis 414, and a frame 416 that supports the optical member 415 from the back side. Further, a red laser light source (laser light source) 417, a blue laser light source (laser light source) 418, and a green LED light source (LED light source) 419, which are light sources, and a red laser light source 417 and a blue laser light source 418 are mounted in the chassis 414.
  • a red laser light source (laser light source) 417, a blue laser light source (laser light source) 418, and a green LED light source (LED light source) 419 which are light sources, and a red laser light source 417 and a blue laser light source 418 are mounted in the chassis 414
  • the red laser light source 417 has a vertical stripe pattern
  • the blue laser light source 418 has a horizontal stripe pattern
  • the green LED light source 419 has a diagonal stripe pattern for distinction.
  • a laser light source substrate 420 and an LED light source substrate 421 are disposed at both ends in the short side direction (Y-axis direction), and light from each of the light sources 417 to 419 is transmitted through the light guide plate. Both sides light incident type edge light type (side light type) that is incident on both sides of 422 is used.
  • both sides light incident type edge light type (side light type) that is incident on both sides of 422 is used.
  • the red laser light source 417 has a red semiconductor laser element that emits red laser light.
  • the blue laser light source 418 includes a blue semiconductor laser element that emits blue laser light.
  • the laser light of each color emitted from the red laser light source 417 and the blue laser light source 418 is coherent light having the same phase and wavelength, and has a smaller divergence angle than green light emitted from a green LED light source 419 described later. Strong straightness.
  • the color laser light emitted from the red laser light source 417 and the blue laser light source 418 is superior in color purity as compared to the light of each color emitted from a general red LED light source or blue LED light source.
  • the red laser light source 417 and the blue laser light source 418 are each mounted on a laser light source substrate 420 described below on the side opposite to the light emitting surface of the red laser light source 417 and are of a so-called top surface emission type.
  • the laser light source substrate 420 has a plate shape extending along the long side direction of the chassis 414, and one side of the long side (the upper side shown in FIG. 10). It is attached to 414c.
  • a mounting surface 420 a on which the red laser light source 417 and the blue laser light source 418 are mounted is opposed to one end surface on the long side of the light guide plate 422.
  • a wiring pattern (not shown) for supplying power to the red laser light source 417 and the blue laser light source 418 is patterned on the mounting surface 420a of the laser light source substrate 420, and a plurality of red laser light sources 417 and blue lasers are provided.
  • the light sources 418 are mounted so as to be arranged alternately at intervals along the X-axis direction. Specifically, in the plurality of red laser light sources 417 and blue laser light sources 418, there are two intervals between adjacent ones, and those arranged at relatively narrow intervals constitute one set. . Therefore, the distance between the red laser light source 417 and the blue laser light source 418 that form different sets is relatively wide.
  • the green LED light source 419 includes a green semiconductor element (green LED element) that emits green light, as shown in FIGS. 10 and 12.
  • Green light emitted from the green LED light source 419 is incoherent light, and has a larger divergence angle and weaker straightness than the laser light of each color emitted from the red laser light source 417 and the blue laser light source 418 described above.
  • the green LED light source 419 has a luminous efficiency that is approximately twice as high as that of a general green laser light source, and high luminance can be obtained with low power consumption.
  • the green LED light source 419 is mounted on the LED light source substrate 421 described below on the surface opposite to the light emitting surface of the green LED light source 419, and is a so-called top surface light emitting type.
  • the LED light source substrate 421 has a plate shape extending along the long side direction of the chassis 414, and the other long side (the lower side shown in FIG. 10) side. It is attached to the part 414c.
  • the mounting surface 421 a on which the green LED light source 419 is mounted is opposed to the other end surface on the long side of the light guide plate 422.
  • a wiring pattern (not shown) for supplying power to the green LED light source 419 is patterned on the mounting surface 421a of the LED light source substrate 421, and a plurality of green LED light sources 419 are spaced along the X-axis direction. It is implemented in a line-up form.
  • the interval between adjacent ones is made wider than the arrangement range in the X-axis direction in the red laser light source 417 and the blue laser light source 418 forming the same set. Then, the plurality of green LED light sources 419 are arranged (displaced) so as to be offset from the red laser light source 417 and the blue laser light source 418 in the X-axis direction.
  • the light guide plate 422 has a horizontally long substantially rectangular shape when viewed in a plane, like the optical member 415 and the like.
  • one of the long side end surfaces faces the light emitting surfaces of the red laser light source 417 and the blue laser light source 418 and the laser beams of the respective colors are incident thereon.
  • a laser incident portion (incident portion) 422a is provided, and the number and arrangement interval of the laser incident portions 422a are the same as the number of arrangement groups of the red laser light source 417 and the blue laser light source 418 and the arrangement interval between the respective groups.
  • the formation range in the X-axis direction substantially coincides with the arrangement range of the red laser light source 417 and the blue laser light source 418 forming one set.
  • the other end face on the long side faces the light emitting face of the green LED light source 419 (facing directly), and the LED incident light on which green light is incident.
  • Part 422b, and the installation number and arrangement interval thereof are the same as the installation number and arrangement interval of the green LED light sources 419.
  • the LED light incident portion 422b has a formation range in the X-axis direction that is further left and right than the portion facing the green LED light source 419 in the other end face, and the right-hand facing portion (the arrangement range of the green LED light source 419). It has become wide. The reason is that the divergence angle of the green light emitted from the green LED light source 419 is larger than the divergence angles of the laser light sources 417 and 418. Further, of the outer peripheral end surfaces of the light guide plate 422, the other end surface on the long side having the LED light incident portion 422b is a portion positioned on the side opposite to the laser light incident portion 422a (light incident opposite portion (light incident). Light opposite portion) 422e.
  • a plurality of laser incident light opposite portions 422e are arranged on the other end surface of the light guide plate 422 in a form alternately arranged along with the LED incident light portions 422b along the X-axis direction, and the number and arrangement intervals of the laser incident light portions 422e are red laser light sources.
  • the number of installation groups 417 and the blue laser light source 418 and the arrangement interval between the groups are the same.
  • the light guide plate 422 has a light-emitting plate surface 422 c that emits light toward the liquid crystal panel 411 and the optical member 415, of the pair of front and back plate surfaces.
  • the plate surface facing the back side is the light output opposite plate surface 422d opposite to the light output plate surface 422c.
  • the light guide plate 422 introduces light emitted from the light sources 417 to 419 along the Y-axis direction from the light incident portions 422a and 422b, and after propagating the light internally, extends in the Z-axis direction. And has a function of emitting light from the light exit plate surface 422c toward the optical member 415 side (front side, light emission side).
  • the reflection sheet 423 is disposed so as to cover the light output opposite plate surface 422 d of the light guide plate 422.
  • the reflection sheet 423 is excellent in light reflectivity, and can efficiently start the light leaked from the light output opposite plate surface 422d of the light guide plate 422 toward the front side (light output plate surface 422c).
  • the reflection sheet 423 has an outer shape that is slightly larger than the light guide plate 422, and both ends on the long side protrude from the light incident portions 422a and 422b of the light guide plate 422 toward the light sources 417 to 419, respectively. It is arranged with.
  • the light guide plate support members 424 are made of synthetic resin, and as shown in FIGS. 11 and 12, a pair of light guide plate support members 424 are provided so as to support both ends of the long side of the light guide plate 422 from the back side.
  • the light guide plate support member 424 is disposed so as to be interposed between the bottom portion 414a of the chassis 414 and the reflection sheet 423.
  • the light guide plate 422 is lifted from the bottom portion 414a so as not to be in direct contact with the bottom portion 414a. I support it.
  • the light guide plate support member 424 extends along the long side direction of the light guide plate 422 and the reflection sheet 423 and directly contacts the reflection sheet 423, and from both ends of the main body portion 424a in the Y-axis direction to the back side. And a pair of leg portions 424b that contact the bottom portion 414a of the chassis 414.
  • the main emission wavelength and emission spectrum of each of the light sources 417 to 419 provided in the backlight device 412 are shown in FIG. 7 as in the second embodiment. Further, the transmission spectrum in each colored portion of the color filter provided in the liquid crystal panel 411 is also shown in FIG. 7 as in the second embodiment.
  • the backlight device 412 includes a diffuse reflection member 426 for diffusing and reflecting the laser beams of each color propagating through the light guide plate 422.
  • the diffuse reflection member 426 is made of a synthetic resin (for example, made of PCT resin) having a white surface with excellent light reflectivity, and is opposed to the LED light source substrate 421 on the outer peripheral end surface of the light guide plate 422. It is arranged so as to face the laser incident light opposite portion 422e on the other end face on the other long side (lower side shown in FIG. 10).
  • a plurality of the diffuse reflection members 426 are arranged on the other end face of the light guide plate 422 in a form alternately arranged along the X-axis direction with the LED light incident portions 422b. It is the same as the installation number and arrangement interval of 422e (the number of installation sets of red laser light source 417 and blue laser light source 418 and the arrangement interval between each set).
  • the diffuse reflection member 426 is provided integrally with the LED light source substrate 421 and is physically separated from the light guide plate 422.
  • the diffuse reflection member 426 is disposed so as to be sandwiched between the light guide plate 422 and the LED light source substrate 421 in the Y-axis direction, and is disposed adjacent to the green LED light source 419 in the X-axis direction. .
  • the red laser light and the blue laser light emitted from the red laser light source 417 and the blue laser light source 418 are incident on the laser incident portion 422 a of the light guide plate 422, they travel straight in the light guide plate 422. Thus, it reaches the laser incident light opposite portion 422e located on the opposite side to the laser incident portion 422a.
  • the red laser beam and the blue laser beam that have reached the laser incident light opposite portion 422e are diffused and reflected by the diffuse reflection member 426, and then proceed toward the laser incident portion 422a while diffusing in the light guide plate 422.
  • the diffuse reflection member 426 disposed on the same side as the green LED light source 419 in the Y-axis direction emits pseudo red and blue diffused light having a divergence angle equal to or greater than that of the green LED light source 419. It functions as a red diffuse light source and a blue diffuse light source.
  • the red light and blue light diffusely reflected by the diffuse reflection member 426 are mixed well in the light guide plate 422 together with the green light emitted from the green LED light source 419 and incident on the LED light incident part 422b.
  • the white light without unevenness is emitted from the light output plate surface 422c, and the luminance uniformity and chromaticity uniformity are both high.
  • the light guide plate 422 is used, which is preferable in reducing the number of components.
  • the diffuse reflection member 426 is physically separated from the light guide plate 422, the positional relationship with respect to the laser light sources 417 and 418 is independent of the positional relationship of the light guide plate 422 with respect to the laser light sources 417 and 418. Determined.
  • the diffuse reflection member 426 is arranged in a form facing the laser incident light opposite portion 422e of the light guide plate 422 using the LED light source substrate 421 on which the green LED light source 419 is mounted. Note that white balance relating to an image displayed on the liquid crystal panel 411 can be controlled by adjusting the outputs of the red laser light source 417, the blue laser light source 418, and the green LED light source 419. , B does not need to be adjusted for each pixel.
  • the LED light source substrate 421 on which the diffuse reflection member 426 is integrally provided is common to the laser light source substrate 420 on which the red laser light source 417 and the blue laser light source 418 are mounted, as shown in FIGS. It is attached to the chassis 414. Therefore, compared with the case where the diffuse reflection member is provided integrally with the light guide plate 422, the red laser light source 417, the blue laser light source 418, and the diffuse reflection member 426 are positioned higher in the X-axis direction and the Z-axis direction. It is possible to align with accuracy. Thereby, the certainty of appropriately exerting the light diffuse reflection function by the diffuse reflection member 426 becomes high.
  • the LED light source substrate 421 and the diffuse reflection member 426 are preferably disposed on the lower side in the vertical direction with respect to the light guide plate 422 as shown in FIGS. Note that the top and bottom in FIG. 10 coincide with the top and bottom in the vertical direction, the left side in FIG. 11 coincides with the lower side in the vertical direction, and the right side in FIG.
  • the diffuse reflection member 426 is arranged in contact with the laser incident light opposite portion 422e of the light guide plate 422. In this way, the diffuse reflection member 426 can be continuously held in close contact with the laser incident light opposite portion 422e using gravity (self-weight) acting on the light guide plate 422, and the laser incident light is opposite. It is difficult for a gap to be formed between the portion 422e and the diffuse reflection member 426. As a result, the red laser beam and the blue laser beam are less likely to leak from the laser incident light opposite portion 422e, and the certainty of being diffused and reflected by the diffuse reflection member 426 and being effectively used is high.
  • the diffuse reflection member 426 and the laser incident light opposite portion 422e are arranged in the X axis direction in the red laser light source 417 and the blue laser light source 418 in which the formation range in the X axis direction forms one set. And are almost equal.
  • the diffuse reflection member 426 has a formation range straddling the red laser light source 417 and the blue laser light source 418 forming one set. According to such a configuration, the diffuse reflection member 426 causes the red color to be red compared to the case where the diffuse reflection member is provided individually corresponding to the red laser light source 417 and the blue laser light source 418 that form a pair. Laser light and blue laser light can be efficiently scattered and reflected, and the diffuse reflection member 426 can be easily installed.
  • the backlight device (illumination device) 412 of this embodiment includes the red laser light source 417 and the blue laser light source 418 that are laser light sources that emit laser light, and the red laser light source 417 that is the laser light source among the outer peripheral end surfaces.
  • the portion directly facing the blue laser light source 418 is a laser incident portion (incident portion) 422a on which laser light is incident, and the portion located on the opposite side of the laser incident portion 422a on the outer peripheral end surface is the laser incident portion.
  • a light guide plate 422 that is a light opposite portion (light incident opposite portion) 422e and one of a pair of plate surfaces is a light exit plate surface 422c that emits light, and a laser light incident opposite portion 422e of the light guide plate 422 And a diffuse reflection member 426 that is arranged in a face-to-face relationship and is physically separated from the light guide plate 422 and diffuses and reflects the laser light.
  • the laser light emitted from the red laser light source 417 and the blue laser light source 418 that are laser light sources is incident on the laser incident portion 422a of the light guide plate 422 and travels straight in the light guide plate 422.
  • the laser light that has reached the laser incident light opposite portion 422e is diffusely reflected by the diffuse reflection member 426 arranged in a form facing the laser incident light opposite portion 422e, so that the laser beam is diffused in the light guide plate 422.
  • the luminance uniformity of the emitted light is high within the surface of the light output plate surface 422c.
  • the light guide plate 422 is used, which is preferable in reducing the number of components.
  • the diffuse reflection member 426 Since the diffuse reflection member 426 is physically separated from the light guide plate 422, the red laser light source that is a laser light source regardless of the positional relationship of the light guide plate 422 with respect to the red laser light source 417 and the blue laser light source 418 that are laser light sources. The positional relationship with respect to 417 and the blue laser light source 418 is determined. Therefore, even if the light guide plate 422 is displaced with respect to the red laser light source 417 and the blue laser light source 418 that are laser light sources, the diffuse reflection member 426 for the red laser light source 417 and the blue laser light source 418 that are laser light sources. Therefore, the laser beam is diffused and reflected by the diffuse reflection member 426 with high certainty.
  • the light source plate 422 includes a green LED light source 419 that is an LED light source and an LED light source substrate 421 that is mounted with the green LED light source 419 that is an LED light source and faces the laser incident light opposite portion 422e. At least a portion of the end face that directly faces the green LED light source 419 that is an LED light source is an LED light incident part 422b into which the light of the green LED light source 419 that is an LED light source is incident, and the diffuse reflection member 426 is an LED light source.
  • a substrate 421 is provided.
  • the diffuse reflection member 426 can be arranged in a form facing the laser incident light opposite portion 422e of the light guide plate 422 using an LED light source substrate 421 on which a green LED light source 419 as an LED light source is mounted.
  • the laser light source substrate 420 and the LED light source substrate 421 provided with the diffuse reflection member 426 are attached to the common chassis 414. Therefore, the red laser light source 417 and the blue laser light source 418, which are laser light sources, are provided. This is suitable for maintaining high positional accuracy related to the positional relationship with the diffuse reflection member 426.
  • the LED light source substrate 421 is disposed on the lower side in the vertical direction with respect to the light guide plate 422, and the diffuse reflection member 426 is disposed in contact with the laser incident light opposite portion 422e of the light guide plate 422. .
  • the laser incident light opposite portion 422e and the diffuse reflection member 426 can be kept in close contact with each other by utilizing the gravity acting on the light guide plate 422.
  • light leakage hardly occurs between the laser incident light opposite portion 422e and the diffuse reflection member 426, and the light use efficiency is excellent.
  • the laser light source includes a red laser light source 417 that emits red laser light and a blue laser light source 418 that emits blue laser light
  • the LED light source includes a green LED light source 419 that emits green light.
  • the diffuse reflection member 426 is a pseudo red diffused light source that emits diffused light by diffusing and reflecting the red laser light and the blue laser light emitted from the red laser light source 417 and the blue laser light source 418. Since it functions as a blue diffused light source, the red light and blue light diffusely reflected by the diffuse reflection member 426 are good in the light guide plate 422 together with the green light emitted from the green LED light source 419 and incident on the LED light incident part 422b.
  • the red laser light emitted from the red laser light source 417 and the blue laser light emitted from the blue laser light source 418 hardly interfere with each other in the wavelength range, and also with respect to the green light emitted from the green LED light source 419. It is assumed that the wavelength range hardly interferes. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source 419 has better luminous efficiency than a green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
  • the red laser light source 417 and the blue laser light source 418 are arranged adjacent to each other, and the diffuse reflection member 426 has a formation range straddling the red laser light source 417 and the blue laser light source 418. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member 426 having a formation range extending between the red laser light source 417 and the blue laser light source 418 adjacent to each other.
  • the liquid crystal display device (display device) 410 includes the backlight device 412 described above and a liquid crystal panel (display panel) 411 that displays an image using light emitted from the backlight device 412. And comprising.
  • the liquid crystal display device 410 having such a configuration the number of components of the backlight device 412 is reduced, and it is highly reliable that the laser light is diffusely reflected by the diffuse reflection member 426 in the backlight device 412. The cost can be reduced and a display with excellent display quality can be realized.
  • the television receiver 410TV includes the liquid crystal display device 410 described above. According to such a television receiver 410TV, the manufacturing cost of the liquid crystal display device 410 is reduced and the display quality is excellent. Therefore, the television image is excellent in price competitiveness and excellent in display quality. Display can be realized.
  • the diffuse reflection member 5126 is provided on the light guide plate support member 5124 as shown in FIGS. Specifically, of the pair of light guide plate support members 5124 that respectively support both ends of the light guide plate 5122 in the Y axis direction, the Y light source plate 5122 is disposed on the opposite side of the laser light source substrate 5120 side, that is, on the LED light source substrate 5121 side.
  • the light guide plate support member 5124 is provided with a diffuse reflection member 5126.
  • the diffuse reflection member 5126 is provided so as to rise from the main body portion 5124a constituting the light guide plate support member 5124 toward the front side (the side opposite to the protruding side of the leg portion 5124b), and is opposite to the light incident on the light guide plate 5122.
  • a plurality of diffuse reflection members 5126 are arranged in the main body portion 5124a at intervals in the X-axis direction, and the arrangement thereof matches the arrangement of the plurality of laser light incident opposite portions 5122e in the light guide plate 5122.
  • the diffuse reflection member 5126 is in direct contact with the laser incident light opposite portion 5122e of the light guide plate 5122, but is separated from the LED light source substrate 5121 (disposed with an interval). In this way, the diffuse reflection member 5126 can be disposed in a form facing the laser incident light opposite portion 5122e of the light guide plate 5122 by using the light guide plate support member 5124 for supporting the light guide plate 5122.
  • the light guide plate support member 5124 that supports the light guide plate 5122 from the side opposite to the light output plate surface 5122 c is provided, and the diffuse reflection member 5126 is provided on the light guide plate support member 5124.
  • the light guide plate 5122 is supported by the light guide plate support member 5124 from the side opposite to the light output plate surface 5122c side, so that the red laser light source 5117 and the blue laser light source 5118, which are laser light sources, and the laser incident light.
  • the positional relationship with the portion 5122a is stably maintained.
  • the diffuse reflection member 5126 can be arranged in a form facing the laser incident light opposite portion 5122 e of the light guide plate 5122.
  • a seventh embodiment of the present invention will be described with reference to FIG.
  • the configuration of the laser light incident section and the LED light incident section is changed from the above-described fifth embodiment.
  • a light refracting portion 627 is provided on each of the laser incident portion 6222a and the LED incident portion 6222b on the outer peripheral end face.
  • the light refracting unit 627 is formed by processing the surfaces of the laser incident unit 6222a and the LED incident unit 6222b so that the cross-sectional shape is prismatic.
  • the light refracting unit 627 has a refracting action that expands the divergence angle to each laser beam incident on the laser incident unit 6222a from each laser light source 6217, 6218 or green light incident on the LED incident unit 6222b from the green LED light source 6219. Is given.
  • Each light to which the refractive action is imparted by the light refracting unit 627 travels in the light guide plate 6222 away from the respective light incident units 6222a and 6222b in the Y-axis direction (for example, opposite to the laser incident light from the laser light incident unit 6222a side). Diverges in the X-axis direction in the process of proceeding toward the portion 6222e, and the light distribution range is gradually expanded.
  • each laser beam is diffused and reflected while being irradiated to the diffuse reflection member 6226 in a wider range when reaching the laser incident light opposite portion 6222e by expanding the light distribution range by the light refracting portion 627. Further, the diffusion range of the diffuse reflection light by the diffuse reflection member 6226 becomes wider. Thereby, the luminance uniformity of the emitted light is made higher in the plane of the light output plate surface 6222c of the light guide plate 6222.
  • At least the laser incident portion 6222a on the outer peripheral end surface of the light guide plate 6222 has a light distribution range of laser light incident on the laser incident portion 6222a from the laser incident portion 6222a side.
  • a light refracting portion 627 that imparts a refracting action to the laser light is provided so as to spread toward the laser incident light opposite portion 6222e.
  • the laser light emitted from the red laser light source 6217 and the blue laser light source 6218, which are laser light sources is refracted by the light refracting unit 627 when entering the laser incident unit 6222a.
  • the light distribution range of the laser light imparted with the refraction action is expanded in the process of traveling through the light guide plate 6222 from the laser light incident part 6222a toward the laser incident light opposite part 6222e. Accordingly, the laser light reaching the laser incident light opposite portion 6222e is diffused and reflected while being irradiated on the diffuse reflection member 6226 in a wider range, and therefore the diffusion range of the diffuse reflection light by the diffuse reflection member 6226 is wider. Become. Thereby, the brightness uniformity of the emitted light is made higher in the plane of the light exit plate surface 6222c.
  • the red laser light source 7317 and the blue laser light source 7318 according to the present embodiment are arranged in such a manner that one set is close to each other. That is, the arrangement is such that there is almost no gap between the red laser light source 7317 and the blue laser light source 7318 forming one set in the X-axis direction. As a result, the arrangement range of the red laser light source 7317 and the blue laser light source 7318 in the X-axis direction is narrowed, and accordingly, the formation range of the diffuse reflection member 7326 can be narrowed.
  • the red laser light and the blue laser light emitted from the red laser light source 7317 and the blue laser light source 7318 and diffusely reflected by the diffuse reflection member 7326 in the light guide plate 7322 are compared to the fifth embodiment described above.
  • the green light from each other or the green LED light source 7319 is hardly mixed.
  • the end portions on the green LED light source 7319 and the diffuse reflection member 7326 side are mixed color regions for mixing red laser light, blue laser light, and green light (from the one-dot chain line shown in FIG. 16). (Lower area) MA is set.
  • a ninth embodiment of the present invention will be described with reference to FIG. 17 or FIG.
  • a green laser light source is used instead of the green LED light source from the fifth embodiment.
  • action, and effect as above-mentioned Embodiment 5 is abbreviate
  • the backlight device 8412 does not include an LED light source as a light source, but includes a red laser light source 8417, a blue laser light source 8418, and a green laser light source 828.
  • the green laser light source 828 is provided with an oblique stripe pattern for distinction.
  • the red laser light source 8417, the blue laser light source 8418, and the green laser light source 828 are mounted on a common laser light source substrate 8420, and are arranged repeatedly in a row along the X-axis direction.
  • the backlight device 8412 is provided with the laser light source substrate 8420 at one end in the short side direction, and the light from each of the laser light sources 828, 8417, 8418 is transmitted from one side to the light guide plate 8422. It is an edge light type of one side incident type that is incident.
  • One end surface (the upper side shown in FIG. 17) of the long side of the outer peripheral end surface of the light guide plate 8422 has a laser incident portion 8422a that faces the red laser light source 8417 and a laser incident portion 8422a that faces the blue laser light source 8418. , And a laser beam incident portion 8422a that directly faces the green laser light source 828.
  • the other end surface (the lower side shown in FIG. 17) on the long side of the outer peripheral end surface of the light guide plate 8422 has a portion located on the side opposite to the above-described laser incident portions 8422a, respectively. It is said.
  • the diffuse reflection member 8426 is arranged so as to face the other end surface (the end surface having the laser incident light opposite portion 8422e) of the outer peripheral end surface of the light guide plate 8422 over almost the entire region. That is, the diffuse reflection member 8426 directly faces a portion adjacent to the laser incident light opposite portion 8422e in addition to the plurality of laser incident light opposite portions 8422e that are intermittently arranged in the X-axis direction on the other end surface. In this way, the laser light of each color can be diffusely reflected regardless of the positional relationship in the X-axis direction of the diffuse reflection member 8426 with respect to the laser light sources 828, 8417, and 8418. Therefore, the laser light of each color is diffusely reflected.
  • the certainty of diffuse reflection by the member 8426 is high.
  • the diffuse reflection member 8426 is a light guide plate disposed on the side opposite to the laser light source substrate 8420 side in the Y-axis direction among the pair of light guide plate support members 8424 that respectively support both ends of the light guide plate 8422 in the Y-axis direction.
  • the support member 8424 is provided. Since the diffuse reflection member 8426 provided on the light guide plate support member 8424 has the same configuration as that of the above-described sixth embodiment, a duplicate description is omitted.
  • a diffuse reflection member a multilayer film reflection sheet or metal material having a dielectric multilayer film structure in which a foamed resin material made of PET or the like and a large number of dielectric layers having different refractive indexes are laminated It is also possible to use a metal reflective film made of or the like.
  • the diffuse reflection member is attached to the light guide plate with an adhesive or a double-sided tape, and the diffused reflection member is provided by post-processing the manufactured light guide plate.
  • the diffuse reflection member may be attached to the light guide plate in the process of manufacturing the light guide plate.
  • the diffuse reflection member is a metal reflection film in the above (1)
  • the metal reflection film can be directly deposited on the light guide plate.
  • the arrangement of the laser light source substrate and the LED light source substrate with respect to the light guide plate in the Y-axis direction can be changed as appropriate.
  • the configuration in which only one green LED light source is interposed between adjacent diffuse reflection members is shown, but a plurality of green LED light sources are interposed between adjacent diffuse reflection members. It is also possible to adopt a configuration.
  • a plurality of green LED light sources may be arranged so that a plurality of green LED light sources form one set.
  • the specific formation range and arrangement of the diffuse reflection member can be appropriately changed.
  • a light refracting portion may be provided over the entire area of one end surface facing the laser light source substrate. Moreover, it is also possible to omit the light refracting part for the LED light incident part.
  • the configuration described in the third embodiment (light refraction unit) can be combined with the configuration described in the first embodiment or the configuration described in the fourth embodiment.
  • specific emission spectra (numerical values such as the main emission wavelength and the half-value width) relating to the red laser light source, the blue laser light source, and the green LED light source can be changed as appropriate.
  • the counter electrode on the CF substrate side is removed, and a common electrode for forming an electric field with the pixel electrode is provided on the array substrate side.
  • the planar shape of the liquid crystal display device (liquid crystal panel or backlight device) is a horizontally long square is shown, but the planar shape of the liquid crystal display device is a vertically long square, square, An oval shape, an elliptical shape, a circular shape, a trapezoidal shape, a shape having a partially curved surface, or the like may be used.
  • the diffuse reflection member is integrally provided on the LED light source substrate and the light guide plate support member has been described.
  • the diffuse reflection member is provided integrally on the bottom or side of the chassis. It doesn't matter.
  • the diffuse reflection member may be attached to any one of the LED light source substrate, the light guide plate support member, the chassis and the like while being separated.
  • each laser light source and laser light source substrate are arranged on the upper side in the vertical direction with respect to the light guide plate, and the diffuse reflection member is arranged on the lower side in the vertical direction with respect to the light guide plate. Although cases have been shown, it is possible to reverse these arrangements.
  • Embodiments 6 to 9 described above the configuration in which only one green LED light source is interposed between adjacent diffuse reflection members has been described.
  • a plurality of green LED light sources are interposed between adjacent diffuse reflection members. It is also possible to adopt a configuration. That is, a plurality of green LED light sources may be arranged so that a plurality of green LED light sources form one set. (17) In Embodiments 5 to 8 described above, the configuration in which only green is used as the LED light source has been described. However, any one of red or blue may be used as the LED light source, and the green laser light source may be included. . Two of red, green, and blue may be LED light sources, and the remaining one may be a laser light source. In that case, for example, red can be used as a laser light source, and a blue-green (cyan) LED light source can be used.
  • SYMBOLS 10 Liquid crystal display device (display device) 11, 111 ... Liquid crystal panel (display panel), 12, 112, 412, 8412 ... Backlight device (illumination device), 17, 117, 217, 317, 417, 8417 ... Red Laser light source (laser light source), 18, 118, 218, 318, 418, 8418 ... blue laser light source (laser light source), 19,828 ... green laser light source (laser light source), 20, 120, 420, 8420 ... laser light source substrate 22, 122, 222, 322, 422, 5122, 6222, 7322, 8422...
  • Light guide plate 22 a, 122 a, 222 a, 322 a, 422 a, 5122 a, 6222 a, 8422 a. 222b, 422b, 6222b ... LED light incident part, 22c, 222c, 422c, 512 c, 6222c... light exit plate surface, 22e, 122e, 222e, 422e, 5122e, 6222e, 8422e... laser incident light opposite portion (light incident opposite portion), 26, 126, 226, 326, 426, 5126, 6226, 7326, 8426: Diffuse reflection member, 27, 227, 419, 6219, 7319 ... Green LED light source (LED light source), 28, 421, 5121 ... LED light source substrate, 29, 627 ... Light refracting section

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A backlight device (12) is provided with: a red laser light source (17), a blue laser light source (18), and a green laser light source (19) that are laser light sources for producing laser light; a light guide plate (22) in which a section of outer-peripheral edge surfaces thereof that faces the red laser light source (17), the blue laser light source (18), and the green laser light source (19), which are laser light sources, is a laser-light incident section (22a) at which laser light is incident, a section of the outer-peripheral edge surfaces thereof that is located at the opposite side from the laser-light incident section (22a) is a laser-light-incident opposite section (22e), and one of a pair of plate surfaces is a light-emission plate surface (22c) from which light is emitted; and a diffuse reflection member (26) that is attached to the laser-light-incident opposite section (22e) of the light guide plate (22) in a contact manner and that diffusely reflects laser light.

Description

照明装置、表示装置及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 従来の液晶表示装置に用いられるバックライト装置の一例として下記特許文献1に記載されたものが知られている。この特許文献1に記載されたバックライト装置は、光出射面を有するバックライト筐体と、このバックライト筐体の光出射面に順次対向配置された拡散板、プリズムシートとおよび反射偏光板と、バックライト筐体の一つの端面に沿って配置されたレーザー光源と、バックライト筐体の他の端面に沿って配置されたLED光源と、レーザー光源からのレーザー光を伝播させると共にバックライト筐体内にレーザー光を拡散放出するように長尺状に延伸されたレーザー導光棒と、LED光源からのLED光を伝播させると共にバックライト筐体内にLED光を拡散放出するように長尺状に延伸されたLED導光棒と、を備える。 As an example of a backlight device used in a conventional liquid crystal display device, one described in Patent Document 1 below is known. The backlight device described in Patent Document 1 includes a backlight housing having a light emitting surface, a diffusion plate, a prism sheet, and a reflective polarizing plate that are sequentially arranged to face the light emitting surface of the backlight housing. A laser light source disposed along one end surface of the backlight housing, an LED light source disposed along the other end surface of the backlight housing, a laser light from the laser light source and a backlight housing A laser light guide rod extended in a long shape so as to diffuse and emit laser light into the body, and a long shape so as to propagate LED light from the LED light source and diffuse and emit LED light into the backlight housing A stretched LED light guide bar.
特開2014-26132号公報JP 2014-26132 A
(発明が解決しようとする課題)
 上記した特許文献1に記載された液晶表示装置では、レーザー導光棒及びLED導光棒をレーザー光源及びLED光源毎に個別に設置していたため、部品点数が多くなっていた。
(Problems to be solved by the invention)
In the liquid crystal display device described in Patent Document 1 described above, the laser light guide bar and the LED light guide bar are individually installed for each laser light source and LED light source, and thus the number of components is large.
 本発明は上記のような事情に基づいて完成されたものであって、部品点数を削減することを目的とする。 The present invention has been completed based on the above situation, and aims to reduce the number of parts.
(課題を解決するための手段)
 本発明の照明装置は、その第1態様として、レーザ光を発するレーザ光源と、外周端面のうち前記レーザ光源と正対する部分が、前記レーザ光が入射される入光部とされ、前記外周端面のうち前記入光部とは反対側に位置する部分が入光反対部とされ、一対の板面のいずれか一方が光を出射させる出光板面とされる導光板と、前記導光板の前記入光反対部に接する形で取り付けられて前記レーザ光を拡散反射する拡散反射部材と、を備える。
(Means for solving the problem)
In the illumination device of the present invention, as a first aspect thereof, a laser light source that emits laser light, and a portion of the outer peripheral end face that directly faces the laser light source is a light incident portion on which the laser light is incident, and the outer peripheral end face A light guide plate in which a portion located on the opposite side of the light incident portion is a light incident opposite portion, and one of the pair of plate surfaces is a light exit plate surface that emits light, and the front of the light guide plate A diffuse reflection member that is attached in contact with the opposite portion of the writing light and diffusely reflects the laser light.
 このような構成によれば、レーザ光源から発せられたレーザ光は、導光板の入光部に入射し、導光板内を直進する形で入光反対部へと向かう。入光反対部に達したレーザ光は、入光反対部に接する形で取り付けられた拡散反射部材によって拡散反射されることで、導光板内を拡散しつつ入光部側へ向けて進行した後に出光板面から出射される。これにより、出光板面の面内において出射光の輝度均一性が高いものとされる。また、従来のようにレーザ光源毎に棒状の導光部を用いる構成に比べると、導光板を用いているので、部品点数を削減する上で好適となる。その上で、拡散反射部材は、導光板の入光反対部に接する形で取り付けられているので、入光反対部と拡散反射部材との間から光が漏れ出し難くなっている。これにより、光の利用効率が優れたものとなる。 According to such a configuration, the laser light emitted from the laser light source enters the light incident portion of the light guide plate and travels straight in the light guide plate toward the light incident opposite portion. After the laser light that has reached the opposite light incident part is diffusely reflected by the diffuse reflection member attached so as to be in contact with the opposite light incident part, after traveling toward the light incident part side while diffusing in the light guide plate The light is emitted from the light exit plate surface. Thereby, the luminance uniformity of the emitted light is made high in the plane of the light emitting plate surface. In addition, as compared with the conventional configuration using a bar-shaped light guide for each laser light source, the light guide plate is used, which is preferable in reducing the number of components. In addition, since the diffuse reflection member is attached in contact with the light incident opposite portion of the light guide plate, it is difficult for light to leak from between the light incident opposite portion and the diffuse reflection member. Thereby, the utilization efficiency of light becomes excellent.
 上記第1態様の照明装置について、その実施態様として、次の構成が好ましい。
(1)前記レーザ光源には、赤色レーザ光を発する赤色レーザ光源と、緑色レーザ光を発する緑色レーザ光源と、青色レーザ光を発する青色レーザ光源と、が含まれ、前記赤色レーザ光源、前記緑色レーザ光源及び前記青色レーザ光源は、列状に配されており、前記拡散反射部材は、前記導光板の前記外周端面のうち、前記入光反対部を有する端面の全域にわたって配される。このようにすれば、列状をなす形で配された赤色レーザ光源、緑色レーザ光源及び青色レーザ光源から発せられた各色のレーザ光は、導光板の入光部に入射すると、導光板内を入光反対部へ向けて直進し、入光反対部に接する形で配された拡散反射部材によって拡散反射される。すると、各色の光は、導光板内にて良好にミキシングされて白色光として出光板面から出射される。拡散反射部材は、導光板の外周端面のうち、入光反対部を有する端面の全域にわたって配されているので、各色のレーザ光源に対する位置関係を問わず各色のレーザ光を拡散反射することができる。これにより、各色のレーザ光が拡散反射部材により拡散反射される確実性が高いものとされる。
About the illuminating device of the said 1st aspect, the following structure is preferable as the embodiment.
(1) The laser light source includes a red laser light source that emits red laser light, a green laser light source that emits green laser light, and a blue laser light source that emits blue laser light. The laser light source and the blue laser light source are arranged in a row, and the diffuse reflection member is arranged over the entire end face having the light incident opposite portion of the outer peripheral end face of the light guide plate. In this way, when the laser beams of the respective colors emitted from the red laser light source, the green laser light source, and the blue laser light source arranged in a row form enter the light incident portion of the light guide plate, The light travels straight toward the light incident opposite portion, and is diffusely reflected by the diffuse reflection member arranged in contact with the light incident opposite portion. Then, the light of each color is mixed well within the light guide plate and emitted from the light output plate surface as white light. Since the diffuse reflection member is disposed over the entire area of the end face having the light incident opposite portion of the outer peripheral end face of the light guide plate, it is possible to diffusely reflect the laser light of each color regardless of the positional relationship with respect to the laser light source of each color. . Thereby, the certainty that the laser light of each color is diffusely reflected by the diffuse reflection member is high.
(2)LED光源と、前記LED光源が実装されて前記入光反対部と対向状をなすLED光源基板と、を備え、前記導光板は、前記外周端面のうち少なくとも前記LED光源と正対する部分が、前記LED光源の光が入射されるLED入光部とされており、前記拡散反射部材は、前記LED入光部と隣り合う形で配されている。このようにすれば、LED光源から発せられた光は、導光板のLED入光部に入射し、導光板内を伝播された後に出光板面から出射される。拡散反射部材は、LED入光部と隣り合う形で配されることで、LED光源からLED入光部に入射する光を妨げることなく、導光板内において入光部側から入光反対部へ向けて進行するレーザ光を良好に拡散反射することができる。 (2) An LED light source and an LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion are provided, and the light guide plate is a portion facing at least the LED light source in the outer peripheral end surface However, it is set as the LED incident part into which the light of the said LED light source injects, and the said diffuse reflection member is distribute | arranged in the form adjacent to the said LED incident part. If it does in this way, the light emitted from the LED light source will inject into the LED light-incidence part of a light-guide plate, and will be radiate | emitted from the light-emitting plate surface after propagating through the inside of a light-guide plate. The diffuse reflection member is arranged adjacent to the LED light incident part, so that the light incident from the LED light source to the LED light incident part is not obstructed, and from the light incident part side to the light incident opposite part in the light guide plate. It is possible to diffusely reflect the laser beam traveling toward the surface well.
(3)前記レーザ光源には、赤色レーザ光を発する赤色レーザ光源と、青色レーザ光を発する青色レーザ光源と、が含まれるのに対し、前記LED光源には、緑色光を発する緑色LED光源が含まれている。このようにすれば、拡散反射部材は、赤色レーザ光源及び青色レーザ光源から発せられた赤色レーザ光及び青色レーザ光を拡散反射することで、拡散光を発する擬似的な赤色拡散光源及び青色拡散光源として機能するので、拡散反射部材により拡散反射された赤色光及び青色光は、緑色LED光源から発せられてLED入光部に入射した緑色光と共に導光板内にて良好にミキシングされて白色光として出光板面から出射される。赤色レーザ光源から発せられる赤色レーザ光と、青色レーザ光源から発せられる青色レーザ光と、は、互いに波長範囲が干渉することが殆ど無く、且つ緑色LED光源から発せられる緑色光に対しても波長範囲が干渉することが殆ど無いものとされる。これにより、各色の色純度が十分に高いものとなる。しかも、緑色LED光源は、緑色レーザ光を発する緑色レーザ光源に比べると、発光効率が良好なので、低消費電力で高輝度が得られる。 (3) The laser light source includes a red laser light source that emits red laser light and a blue laser light source that emits blue laser light, whereas the LED light source includes a green LED light source that emits green light. include. In this case, the diffuse reflection member is a pseudo red diffused light source and blue diffused light source that emits diffused light by diffusely reflecting the red laser light and blue laser light emitted from the red laser light source and the blue laser light source. Therefore, the red light and the blue light diffusely reflected by the diffusive reflecting member are well mixed in the light guide plate together with the green light emitted from the green LED light source and incident on the LED light incident portion, so as white light. The light is emitted from the light exit plate surface. The red laser light emitted from the red laser light source and the blue laser light emitted from the blue laser light source hardly interfere with each other in the wavelength range, and the wavelength range also for the green light emitted from the green LED light source. It is assumed that there is almost no interference. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source has better luminous efficiency than the green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
(4)前記赤色レーザ光源及び前記青色レーザ光源は、互いに隣り合う形で配されており、前記拡散反射部材は、前記赤色レーザ光源と前記青色レーザ光源とに跨る形成範囲を有する。このようにすれば、互いに隣り合う赤色レーザ光源と前記青色レーザ光源とに跨る形成範囲を有する拡散反射部材により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができる。 (4) The red laser light source and the blue laser light source are arranged adjacent to each other, and the diffuse reflection member has a formation range straddling the red laser light source and the blue laser light source. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member having a formation range extending between the red laser light source and the blue laser light source adjacent to each other.
(5)前記導光板の前記外周端面における少なくとも前記入光部には、前記入光部に入射した前記レーザ光の配光範囲が前記入光部側から前記入光反対部へ向かうほど広がるよう前記レーザ光に屈折作用を付与する光屈折部が設けられている。このようにすれば、レーザ光源から発せられたレーザ光は、入光部に入射する際に光屈折部によって屈折作用が付与される。屈折作用を付与されたレーザ光は、導光板内を入光部側から入光反対部へ向けて進行する過程で配光範囲が広げられる。従って、入光反対部に達したレーザ光は、拡散反射部材に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材による拡散反射光の拡散範囲がより広いものとなる。これにより、出光板面の面内において出射光の輝度均一性がより高いものとされる。 (5) The light distribution range of the laser light incident on the light incident portion is expanded at least at the light incident portion on the outer peripheral end face of the light guide plate as it goes from the light incident portion side toward the light incident opposite portion. A light refracting portion for providing a refractive action to the laser light is provided. In this way, the laser light emitted from the laser light source is given a refracting action by the light refracting unit when entering the light incident unit. The light distribution range of the laser light to which the refracting action is imparted is expanded in the process of traveling from the light incident part side toward the light incident opposite part in the light guide plate. Therefore, the laser light that has reached the opposite part of the incident light is diffusely reflected while being applied to the diffuse reflection member in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member becomes wider. Thereby, the luminance uniformity of the emitted light is made higher in the plane of the light emitting plate surface.
 本発明の照明装置は、その第2態様として、レーザ光を発するレーザ光源と、外周端面のうち前記レーザ光源と正対する部分が、前記レーザ光が入射される入光部とされ、前記外周端面のうち前記入光部とは反対側に位置する部分が入光反対部とされ、一対の板面のいずれか一方が光を出射させる出光板面とされる導光板と、前記導光板の前記入光反対部に対して正対する形で配されて前記導光板から物理的に切り離されていて前記レーザ光を拡散反射する拡散反射部材と、を備える。 In the illumination device of the present invention, as a second aspect thereof, a laser light source that emits laser light, and a portion of the outer peripheral end face that faces the laser light source is a light incident portion on which the laser light is incident, and the outer peripheral end face A light guide plate in which a portion located on the opposite side of the light incident portion is a light incident opposite portion, and one of the pair of plate surfaces is a light exit plate surface that emits light, and the front of the light guide plate A diffusive reflecting member that is arranged in a shape facing the opposite side of the writing light and is physically separated from the light guide plate and diffusely reflects the laser light.
 このような構成によれば、レーザ光源から発せられたレーザ光は、導光板の入光部に入射し、導光板内を直進する形で入光反対部へと向かう。入光反対部に達したレーザ光は、入光反対部に対して正対する形で配された拡散反射部材によって拡散反射されることで、導光板内を拡散しつつ入光部側へ向けて進行した後に出光板面から出射される。これにより、出光板面の面内において出射光の輝度均一性が高いものとされる。また、従来のように各光源毎に個別に導光棒を用いる構成に比べると、導光板を用いているので、部品点数を削減する上で好適となる。 According to such a configuration, the laser light emitted from the laser light source enters the light incident portion of the light guide plate and travels straight in the light guide plate toward the light incident opposite portion. The laser light that has reached the opposite light incident part is diffusely reflected by the diffuse reflection member arranged in a form facing the opposite light incident part, and is diffused in the light guide plate toward the light incident part side. After traveling, the light is emitted from the light-emitting plate surface. Thereby, the luminance uniformity of the emitted light is made high in the plane of the light emitting plate surface. In addition, as compared with a conventional configuration in which a light guide bar is used for each light source, a light guide plate is used, which is preferable in reducing the number of parts.
 拡散反射部材は、導光板から物理的に切り離されているので、レーザ光源に対する導光板の位置関係を問わず、レーザ光源に対する位置関係が定まる。従って、仮にレーザ光源に対して導光板が位置ずれした場合であっても、レーザ光源に対する拡散反射部材の位置関係が安定的に保持され、もってレーザ光が拡散反射部材により拡散反射される確実性が高いものとされる。 Since the diffuse reflection member is physically separated from the light guide plate, the positional relationship with respect to the laser light source is determined regardless of the positional relationship of the light guide plate with respect to the laser light source. Accordingly, even if the light guide plate is displaced with respect to the laser light source, the positional relationship of the diffuse reflection member with respect to the laser light source is stably maintained, and thus the certainty that the laser light is diffusely reflected by the diffuse reflection member. Is considered high.
 上記第2態様の照明装置について、その実施態様として、次の構成が好ましい。
(1)LED光源と、前記LED光源が実装されて前記入光反対部と対向状をなすLED光源基板と、を備え、前記導光板は、前記外周端面のうち少なくとも前記LED光源と正対する部分が、前記LED光源の光が入射されるLED入光部とされており、前記拡散反射部材は、前記LED光源基板に設けられている。このようにすれば、LED光源から発せられた光は、導光板のLED入光部に入射し、導光板内を伝播された後に出光板面から出射される。LED光源が実装されたLED光源基板を利用して拡散反射部材を導光板の入光反対部に対して正対する形で配することができる。
About the illuminating device of the said 2nd aspect, the following structure is preferable as the embodiment.
(1) An LED light source and an LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion are provided, and the light guide plate is a portion facing at least the LED light source on the outer peripheral end surface However, it is set as the LED incident part into which the light of the said LED light source injects, and the said diffuse reflection member is provided in the said LED light source board | substrate. If it does in this way, the light emitted from the LED light source will inject into the LED light-incidence part of a light-guide plate, and will be radiate | emitted from the light-emitting plate surface after propagating through the inside of a light-guide plate. Using the LED light source substrate on which the LED light source is mounted, the diffusive reflection member can be arranged in a form facing the light incident opposite portion of the light guide plate.
(2)前記レーザ光源が実装されて前記入光部と対向状をなすレーザ光源基板と、前記レーザ光源基板及び前記LED光源基板が取り付けられるとともに前記導光板を収容する筐体と、を備える。このようにすれば、レーザ光源基板と、拡散反射部材が設けられたLED光源基板と、が共通の筐体に取り付けられるので、レーザ光源と拡散反射部材との位置関係に係る位置精度を高く保つ上で好適となる。 (2) A laser light source substrate on which the laser light source is mounted and facing the light incident part, and a housing for mounting the laser light source substrate and the LED light source substrate and accommodating the light guide plate. In this way, the laser light source substrate and the LED light source substrate provided with the diffuse reflection member are attached to a common housing, so that the positional accuracy related to the positional relationship between the laser light source and the diffuse reflection member is kept high. Preferred above.
(3)前記LED光源基板は、前記導光板に対して鉛直方向についての下側に配されており、前記拡散反射部材は、前記導光板の前記入光反対部に接する形で配されている。このようにすれば、導光板に作用する重力を利用して入光反対部と拡散反射部材とを密着状態に保つことができる。これにより、入光反対部と拡散反射部材との間から光漏れが生じ難くなり、光の利用効率に優れる。 (3) The LED light source substrate is disposed on the lower side in the vertical direction with respect to the light guide plate, and the diffuse reflection member is disposed in contact with the light incident opposite portion of the light guide plate. . If it does in this way, the light incident opposite part and a diffuse reflection member can be maintained in contact | adherence state using the gravity which acts on a light-guide plate. Thereby, it is difficult for light leakage to occur between the light incident opposite portion and the diffuse reflection member, and the light utilization efficiency is excellent.
(4)前記レーザ光源には、赤色レーザ光を発する赤色レーザ光源と、青色レーザ光を発する青色レーザ光源と、が含まれるのに対し、前記LED光源には、緑色光を発する緑色LED光源が含まれている。このようにすれば、拡散反射部材は、赤色レーザ光源及び青色レーザ光源から発せられた赤色レーザ光及び青色レーザ光を拡散反射することで、拡散光を発する擬似的な赤色拡散光源及び青色拡散光源として機能するので、拡散反射部材により拡散反射された赤色光及び青色光は、緑色LED光源から発せられてLED入光部に入射した緑色光と共に導光板内にて良好にミキシングされて白色光として出光板面から出射される。赤色レーザ光源から発せられる赤色レーザ光と、青色レーザ光源から発せられる青色レーザ光と、は、互いに波長範囲が干渉することが殆ど無く、且つ緑色LED光源から発せられる緑色光に対しても波長範囲が干渉することが殆ど無いものとされる。これにより、各色の色純度が十分に高いものとなる。しかも、緑色LED光源は、緑色レーザ光を発する緑色レーザ光源に比べると、発光効率が良好なので、低消費電力で高輝度が得られる。 (4) The laser light source includes a red laser light source that emits red laser light and a blue laser light source that emits blue laser light, whereas the LED light source includes a green LED light source that emits green light. include. In this case, the diffuse reflection member is a pseudo red diffused light source and blue diffused light source that emits diffused light by diffusely reflecting the red laser light and blue laser light emitted from the red laser light source and the blue laser light source. Therefore, the red light and the blue light diffusely reflected by the diffusive reflecting member are well mixed in the light guide plate together with the green light emitted from the green LED light source and incident on the LED light incident portion, so as white light. The light is emitted from the light exit plate surface. The red laser light emitted from the red laser light source and the blue laser light emitted from the blue laser light source hardly interfere with each other in the wavelength range, and the wavelength range also for the green light emitted from the green LED light source. It is assumed that there is almost no interference. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source has better luminous efficiency than the green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
(5)前記赤色レーザ光源及び前記青色レーザ光源は、互いに隣り合う形で配されており、前記拡散反射部材は、前記赤色レーザ光源と前記青色レーザ光源とに跨る形成範囲を有する。このようにすれば、互いに隣り合う赤色レーザ光源と前記青色レーザ光源とに跨る形成範囲を有する拡散反射部材により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができる。 (5) The red laser light source and the blue laser light source are arranged adjacent to each other, and the diffuse reflection member has a formation range straddling the red laser light source and the blue laser light source. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member having a formation range extending between the red laser light source and the blue laser light source adjacent to each other.
(6)前記導光板を前記出光板面側とは反対側から支持する導光板支持部材を備えており、前記拡散反射部材は、前記導光板支持部材に設けられる。このようにすれば、導光板は、導光板支持部材によって出光板面側とは反対側から支持されることで、レーザ光源と入光部との位置関係が安定的に保持される。この導光板支持部材を利用して拡散反射部材を導光板の入光反対部に対して正対する形で配することができる。 (6) A light guide plate support member that supports the light guide plate from the side opposite to the light output plate surface side is provided, and the diffuse reflection member is provided on the light guide plate support member. In this way, the light guide plate is supported from the side opposite to the light output plate surface side by the light guide plate support member, so that the positional relationship between the laser light source and the light incident portion is stably maintained. Using this light guide plate support member, the diffuse reflection member can be arranged in a form facing the light incident opposite portion of the light guide plate.
(7)前記導光板の前記外周端面における少なくとも前記入光部には、前記入光部に入射した前記レーザ光の配光範囲が前記入光部側から前記入光反対部へ向かうほど広がるよう前記レーザ光に屈折作用を付与する光屈折部が設けられている。このようにすれば、レーザ光源から発せられたレーザ光は、入光部に入射する際に光屈折部によって屈折作用が付与される。屈折作用を付与されたレーザ光は、導光板内を入光部側から入光反対部へ向けて進行する過程で配光範囲が広げられる。従って、入光反対部に達したレーザ光は、拡散反射部材に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材による拡散反射光の拡散範囲がより広いものとなる。これにより、出光板面の面内において出射光の輝度均一性がより高いものとされる。 (7) The light distribution range of the laser light incident on the light incident portion is expanded at least at the light incident portion on the outer peripheral end surface of the light guide plate as it goes from the light incident portion side toward the light incident opposite portion. A light refracting portion for providing a refractive action to the laser light is provided. In this way, the laser light emitted from the laser light source is given a refracting action by the light refracting unit when entering the light incident unit. The light distribution range of the laser light to which the refracting action is imparted is expanded in the process of traveling from the light incident part side toward the light incident opposite part in the light guide plate. Therefore, the laser light that has reached the opposite part of the incident light is diffusely reflected while being applied to the diffuse reflection member in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member becomes wider. Thereby, the luminance uniformity of the emitted light is made higher in the plane of the light emitting plate surface.
 上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置から照射される光を利用して画像を表示する表示パネルと、を備える。このような構成の表示装置によれば、照明装置の部品点数が削減されるとともに、照明装置において光の利用効率が優れているから、製造コストを削減することができるとともに、低消費電力化や高輝度化を図る上で好適となる。 In order to solve the above problems, a display device of the present invention includes the above-described illumination device and a display panel that displays an image using light emitted from the illumination device. According to the display device having such a configuration, the number of parts of the lighting device is reduced, and light use efficiency is excellent in the lighting device, so that the manufacturing cost can be reduced and the power consumption can be reduced. This is suitable for increasing the brightness.
 上記課題を解決するために、本発明のテレビ受信装置は、上記記載の表示装置を備える。このようなテレビ受信装置によれば、表示装置の製造コストが削減されるとともに、表示品位が優れたものとされているから、価格競争力に優れるとともに、表示品位に優れたテレビ画像の表示などを実現することができる。 In order to solve the above problems, a television receiver of the present invention includes the display device described above. According to such a television receiver, since the manufacturing cost of the display device is reduced and the display quality is excellent, it is excellent in price competitiveness and the display of the television image with excellent display quality. Can be realized.
(発明の効果)
 本発明によれば、部品点数を削減することができる。
(The invention's effect)
According to the present invention, the number of parts can be reduced.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 液晶表示装置を構成するバックライト装置の平面図Plan view of a backlight device constituting a liquid crystal display device 図2のA-A線断面図AA line sectional view of FIG. 本発明の実施形態2に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 2 of this invention. 図4のA-A線断面図AA line sectional view of FIG. 図4のB-B線断面図BB sectional view of FIG. 各光源の発光スペクトルと、カラーフィルタの各着色部の透過スペクトルと、を示すグラフA graph showing the emission spectrum of each light source and the transmission spectrum of each colored portion of the color filter 本発明の実施形態3に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 5 of this invention. 図10のA-A線断面図AA line sectional view of FIG. 図10のB-B線断面図BB sectional view of FIG. 本発明の実施形態6に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 6 of this invention. 図13のA-A線断面図AA line sectional view of FIG. 本発明の実施形態7に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 7 of this invention. 本発明の実施形態8に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 8 of this invention. 本発明の実施形態9に係る液晶表示装置を構成するバックライト装置の平面図The top view of the backlight apparatus which comprises the liquid crystal display device which concerns on Embodiment 9 of this invention. 図17のA-A線断面図AA line sectional view of FIG.
 <実施形態1>
 本発明の実施形態1を図1から図3によって説明する。本実施形態では、液晶表示装置10及びそれを用いたテレビ受信装置10TVについて例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図3に示す上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a liquid crystal display device 10 and a television receiver 10TV using the same are illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Also, the upper side shown in FIG. 3 is the front side, and the lower side is the back side.
 本実施形態に係るテレビ受信装置10TVは、図1に示すように、全体として横長の略方形状をなす液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sと、を備えて構成される。液晶表示装置10は、図3に示すように、画像を表示する液晶パネル(表示パネル)11と、液晶パネル11に表示のための光を供給するバックライト装置(照明装置)12と、を備え、これらが枠状のベゼル13などにより一体的に保持される。 As shown in FIG. 1, a television receiver 10TV according to the present embodiment includes a liquid crystal display device 10 having a substantially horizontally long overall shape, and both front and back cabinets 10Ca and 10Cb that are accommodated so as to sandwich the liquid crystal display device 10. , A power source 10P, a tuner (reception unit) 10T that receives a television signal, and a stand 10S. As shown in FIG. 3, the liquid crystal display device 10 includes a liquid crystal panel (display panel) 11 that displays an image, and a backlight device (illumination device) 12 that supplies light for display to the liquid crystal panel 11. These are integrally held by a frame-like bezel 13 or the like.
 液晶パネル11は、図3に示すように、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層(図示せず)が封入された構成とされる。一方のガラス基板(アレイ基板、アクティブマトリクス基板)の内面側には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、ソース配線とゲート配線とに囲まれた方形状の領域に配されてスイッチング素子に接続される画素電極と、がマトリクス状に平面配置される他、配向膜等が設けられている。他方のガラス基板(対向基板、CF基板)の内面側には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列でマトリクス状に平面配置されたカラーフィルタが設けられる他、各着色部間に配されて格子状をなす遮光層(ブラックマトリクス)、画素電極と対向状をなすベタ状の対向電極、配向膜等が設けられている。なお、両ガラス基板の外面側には、それぞれ偏光板が配されている。また、液晶パネル11における長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致し、さらに厚さ方向がZ軸方向と一致している。 As shown in FIG. 3, the liquid crystal panel 11 is a liquid crystal molecule that is a substance in which a pair of glass substrates are bonded together with a predetermined gap therebetween, and optical properties change between the glass substrates with the application of an electric field. The liquid crystal layer (not shown) containing is enclosed. One glass substrate (array substrate, active matrix substrate) has an inner surface surrounded by switching elements (for example, TFTs) connected to the source wiring and gate wiring orthogonal to each other, and the source wiring and gate wiring. In addition to the pixel electrodes arranged in the shape region and connected to the switching element in a matrix, an alignment film or the like is provided. On the inner surface side of the other glass substrate (counter substrate, CF substrate), there is a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a matrix in a predetermined arrangement. In addition to being provided, a light-shielding layer (black matrix) arranged in a lattice shape and disposed between the colored portions, a solid counter electrode facing the pixel electrode, an alignment film, and the like are provided. In addition, the polarizing plate is distribute | arranged to the outer surface side of both glass substrates, respectively. Further, the long side direction in the liquid crystal panel 11 coincides with the X-axis direction, the short side direction coincides with the Y-axis direction, and the thickness direction coincides with the Z-axis direction.
 バックライト装置12は、図2及び図3に示すように、表側(液晶パネル11側)に向けて開口する光出射部14bを有した略箱型をなすシャーシ(筐体)14と、シャーシ14の光出射部(開口部)14bを覆う形で配される光学部材(光学シート)15と、光学部材15を裏側から支持するフレーム16と、を備える。さらに、シャーシ14内には、光源である赤色レーザ光源(レーザ光源)17、青色レーザ光源(レーザ光源)18及び緑色レーザ光源(レーザ光源)19と、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19が実装されたレーザ光源基板20と、各レーザ光源17~19からの光を導光して光学部材15(液晶パネル11)へと導く導光板22と、導光板22の裏側に積層配置される反射シート23と、反射シート23とシャーシ14との間に介在して導光板22を裏側から支持する導光板支持部材24と、が備えられる。なお、図2では、区別のために赤色レーザ光源17には縦縞の模様を、青色レーザ光源18には横縞の模様を、緑色レーザ光源19には斜め縞の模様を、それぞれ付している。そして、このバックライト装置12は、その短辺方向(Y軸方向)についての片方の端部にレーザ光源基板20が配されており、各レーザ光源17~19からの光が導光板22に対して片側から入光される片側入光タイプのエッジライト型(サイドライト型)とされる。続いて、バックライト装置12の各構成部品について詳しく説明する。 As shown in FIGS. 2 and 3, the backlight device 12 includes a substantially box-shaped chassis (housing) 14 having a light emitting portion 14b that opens toward the front side (the liquid crystal panel 11 side), and the chassis 14. The optical member (optical sheet) 15 arranged so as to cover the light emitting portion (opening portion) 14b and the frame 16 that supports the optical member 15 from the back side are provided. Further, in the chassis 14, a red laser light source (laser light source) 17, a blue laser light source (laser light source) 18, and a green laser light source (laser light source) 19 that are light sources, a red laser light source 17, a blue laser light source 18 and green are provided. A laser light source substrate 20 on which a laser light source 19 is mounted, a light guide plate 22 that guides light from each of the laser light sources 17 to 19 and guides it to the optical member 15 (liquid crystal panel 11), and is laminated on the back side of the light guide plate 22 The reflection sheet 23 to be disposed, and the light guide plate support member 24 interposed between the reflection sheet 23 and the chassis 14 to support the light guide plate 22 from the back side are provided. In FIG. 2, for the purpose of distinction, the red laser light source 17 is provided with a vertical stripe pattern, the blue laser light source 18 is provided with a horizontal stripe pattern, and the green laser light source 19 is provided with an oblique stripe pattern. The backlight device 12 is provided with a laser light source substrate 20 at one end in the short side direction (Y-axis direction), and light from each of the laser light sources 17 to 19 is directed to the light guide plate 22. Thus, an edge light type (side light type) of a one side incident type in which light enters from one side is used. Next, each component of the backlight device 12 will be described in detail.
 シャーシ14は、金属製とされ、図2及び図3に示すように、液晶パネル11と同様に横長の略方形状をなす底部14aと、底部14aの各辺の外端からそれぞれ立ち上がる側部14cと、からなり、全体としては表側に向けて開口した浅い略箱型をなしている。シャーシ14(底部14a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、側部14cには、フレーム16及びベゼル13が固定可能とされる。 The chassis 14 is made of metal, and as shown in FIG. 2 and FIG. 3, a bottom 14 a that is substantially horizontally long like the liquid crystal panel 11, and a side 14 c that rises from the outer end of each side of the bottom 14 a. As a whole, it has a shallow, generally box shape that opens toward the front side. The long side direction of the chassis 14 (bottom part 14a) coincides with the X-axis direction (horizontal direction), and the short side direction thereof coincides with the Y-axis direction (vertical direction). Further, the frame 16 and the bezel 13 can be fixed to the side portion 14c.
 光学部材15は、図3に示すように、シャーシ14の光出射部14bを覆うとともに、液晶パネル11と導光板22との間に介在する形で配されている。つまり、光学部材15は、各レーザ光源17~19に対して出光経路の出口側に配されている、と言える。光学部材15は、シート状をなしていて合計で3枚が備えられている。具体的には、光学部材15は、光に等方性集光作用を付与するマイクロレンズシート15aと、光に異方性集光作用を付与するプリズムシート15bと、光を偏光反射する反射型偏光シート15cと、から構成される。光学部材15は、裏側からマイクロレンズシート15a、プリズムシート15b、及び反射型偏光シート15cの順で相互に積層されてそれらの外縁部がフレーム16に対してその表側に載せられている。つまり、光学部材15は、導光板22に対して表側、つまり光出射側にフレーム16(詳しくは後述する枠状部16a)分の間隔を空けて対向状をなしている。 As shown in FIG. 3, the optical member 15 covers the light emitting portion 14 b of the chassis 14 and is disposed between the liquid crystal panel 11 and the light guide plate 22. That is, it can be said that the optical member 15 is arranged on the exit side of the light emission path with respect to the laser light sources 17 to 19. The optical member 15 has a sheet shape, and a total of three optical members 15 are provided. Specifically, the optical member 15 includes a microlens sheet 15a that imparts an isotropic condensing function to light, a prism sheet 15b that imparts an anisotropic condensing function to light, and a reflective type that reflects and reflects light. And a polarizing sheet 15c. The optical member 15 is laminated from the back side in the order of the microlens sheet 15 a, the prism sheet 15 b, and the reflective polarizing sheet 15 c, and their outer edge portions are placed on the front side of the frame 16. In other words, the optical member 15 is opposed to the light guide plate 22 on the front side, that is, on the light emitting side, with an interval corresponding to the frame 16 (a frame-like portion 16a described later in detail).
 フレーム16は、図3に示すように、導光板22及び光学部材15の外周縁部に沿って延在する横長の枠状部16aを有している。この枠状部16aは、光学部材15の外周縁部をほぼ全周にわたって裏側から受けて支持するとともに、導光板22の外周縁部をほぼ全周にわたって表側から押さえて支持する。枠状部16aにおける一方の長辺部における裏側の面(導光板22及び各レーザ光源17~19)との対向面には、光を反射するフレーム側反射シート25が取り付けられている。また、フレーム16は、枠状部16aから表側に向けて突出するとともに、液晶パネル11における外周縁部を裏側から支持する液晶パネル支持部16bを有している。 As shown in FIG. 3, the frame 16 has a horizontally long frame-shaped portion 16 a extending along the outer peripheral edge portion of the light guide plate 22 and the optical member 15. The frame-shaped portion 16a receives and supports the outer peripheral edge of the optical member 15 from the back side over substantially the entire circumference, and supports the outer peripheral edge of the light guide plate 22 from the front side over the entire circumference. A frame-side reflection sheet 25 that reflects light is attached to a surface facing the back surface (the light guide plate 22 and each of the laser light sources 17 to 19) of one long side of the frame-shaped portion 16a. The frame 16 has a liquid crystal panel support portion 16b that protrudes from the frame-shaped portion 16a toward the front side and supports the outer peripheral edge portion of the liquid crystal panel 11 from the back side.
 赤色レーザ光源17は、図2及び図3に示すように、赤色レーザ光を発する赤色半導体レーザ素子を有する。青色レーザ光源18は、青色レーザ光を発する青色半導体レーザ素子を有する。緑色レーザ光源19は、緑色レーザ光を発する緑色半導体レーザ素子を有する。これら赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19が発する各色のレーザ光は、それぞれ位相及び波長が揃ったコヒーレント光であり、一般的なLED光源から発せられる光に比べると、発散角が小さくて直進性が強く、さらには色純度が優れている。また、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19は、自身の発光面とは反対側の面が次述するレーザ光源基板20にそれぞれ実装されており、いわゆる頂面発光型とされる。 As shown in FIGS. 2 and 3, the red laser light source 17 has a red semiconductor laser element that emits red laser light. The blue laser light source 18 includes a blue semiconductor laser element that emits blue laser light. The green laser light source 19 includes a green semiconductor laser element that emits green laser light. The laser beams of the respective colors emitted from the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are coherent lights having the same phase and wavelength, and have a divergence angle as compared to light emitted from a general LED light source. Is small, has a high straightness, and has excellent color purity. The red laser light source 17, the blue laser light source 18, and the green laser light source 19 are each mounted on a laser light source substrate 20 described below on the opposite side of the light emitting surface of the red laser light source 17, and are of a so-called top surface emission type. The
 レーザ光源基板20は、図2及び図3に示すように、シャーシ14の長辺方向に沿って延在する板状をなしており、長辺側の一方(図2に示す下側)の側部14cに対して取り付けられている。レーザ光源基板20は、好ましくは、シャーシ14における鉛直方向についての下側の側部14cに対して取り付けられており、それによりレーザ光源基板20に起因して液晶表示装置10及びテレビ受信装置10TVの額縁幅が1辺のみ大きくなってもデザイン性が損なわれ難いものとされる。レーザ光源基板20は、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19が実装された実装面20aが導光板22の長辺側の一方の端面と対向状をなしている。レーザ光源基板20の実装面20aには、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19に対して給電するための配線パターン(図示せず)がパターニングされるとともに、複数ずつの赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19がX軸方向に沿って間隔を空けて繰り返し並ぶ形で実装されている。 As shown in FIGS. 2 and 3, the laser light source substrate 20 has a plate shape extending along the long side direction of the chassis 14, and one side of the long side (the lower side shown in FIG. 2). It is attached to the part 14c. The laser light source substrate 20 is preferably attached to the lower side portion 14c in the vertical direction of the chassis 14, thereby causing the liquid crystal display device 10 and the television receiver 10TV to originate from the laser light source substrate 20. Even if the frame width increases only by one side, the design is unlikely to be impaired. In the laser light source substrate 20, a mounting surface 20 a on which the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are mounted is opposed to one end surface on the long side of the light guide plate 22. A wiring pattern (not shown) for supplying power to the red laser light source 17, the blue laser light source 18, and the green laser light source 19 is patterned on the mounting surface 20a of the laser light source substrate 20, and a plurality of red lasers are provided. The light source 17, the blue laser light source 18, and the green laser light source 19 are mounted in a form repeatedly arranged at intervals along the X-axis direction.
 導光板22は、ほぼ透明な合成樹脂材料(例えばPMMAなどのアクリル樹脂やポリカーボネートなど)からなる。導光板22は、図2及び図3に示すように、光学部材15よりも厚みが大きな板状をなすとともに液晶パネル11及び光学部材15の直下に位置する形でシャーシ14内に収容されている。導光板22は、光学部材15などと同様に平面に視て横長の略方形状をなしている。導光板22の外周端面のうち長辺側の一方(図2に示す下側)の端面は、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19の各発光面と正対していて各色のレーザ光が入射されるレーザ入光部(入光部)22aを有しており、その設置数及び配置間隔は赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19の設置数及び配置間隔と同一である。導光板22の外周端面のうち長辺側の他方(図2に示す上側)の端面は、レーザ入光部22aとは反対側に位置する部分であるレーザ入光反対部(入光反対部)22eを有している。レーザ入光反対部22eは、導光板22の上記他方の端面においてX軸方向に沿って間隔を空けて並ぶ形で複数配されており、その設置数及び配置間隔は赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19(レーザ入光部22a)の設置数及び配置間隔と同一である。導光板22は、表裏一対の板面のうち、表側を向いた板面が、光を液晶パネル11及び光学部材15に向けて出射させる出光板面22cとされ、裏側を向いた板面が出光板面22cとは反対側の出光反対板面22dとされる。以上により、導光板22は、各レーザ光源17~19からY軸方向に沿って発せられた光を各入光部22aから導入するとともに、その光を内部で伝播させた後にZ軸方向に沿って立ち上げて出光板面22cから光学部材15側(表側、光出射側)へ向けて出射させる機能を有している。 The light guide plate 22 is made of a substantially transparent synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate). As shown in FIGS. 2 and 3, the light guide plate 22 has a plate shape that is thicker than the optical member 15 and is housed in the chassis 14 so as to be positioned directly below the liquid crystal panel 11 and the optical member 15. . The light guide plate 22 has a horizontally long substantially square shape when viewed in a plane, like the optical member 15 and the like. Of the outer peripheral end faces of the light guide plate 22, one end face on the long side (the lower side shown in FIG. 2) faces the light emitting faces of the red laser light source 17, the blue laser light source 18, and the green laser light source 19. It has a laser incident part (light incident part) 22a into which laser light is incident, and the number and arrangement interval thereof are the number and arrangement interval of the red laser light source 17, the blue laser light source 18, and the green laser light source 19. Are the same. The other end surface (the upper side shown in FIG. 2) on the long side of the outer peripheral end surfaces of the light guide plate 22 is a portion positioned on the side opposite to the laser incident portion 22a. 22e. A plurality of laser incident light opposite portions 22e are arranged on the other end face of the light guide plate 22 so as to be arranged at intervals along the X-axis direction. The number and arrangement intervals of the red light source 17 and the blue laser are the same. The number of the light sources 18 and the green laser light source 19 (laser light incident part 22a) is the same as the number and arrangement interval. Of the pair of front and back plate surfaces, the light guide plate 22 has a light-emitting plate surface 22c that emits light toward the liquid crystal panel 11 and the optical member 15 and a plate surface facing the back side. The light output opposite plate surface 22d is opposite to the light plate surface 22c. As described above, the light guide plate 22 introduces the light emitted from the laser light sources 17 to 19 along the Y-axis direction from the respective light incident portions 22a, and after propagating the light internally, extends along the Z-axis direction. And has a function of emitting light from the light exit plate surface 22c toward the optical member 15 side (front side, light emission side).
 反射シート23は、図3に示すように、導光板22の出光反対板面22dを覆う形で配される。反射シート23は、光反射性に優れており、導光板22の出光反対板面22dから漏れた光を表側(出光板面22c)に向けて効率的に立ち上げることができる。反射シート23は、導光板22よりも一回り大きな外形を有しており、長辺側の両端部が導光板22のレーザ入光部22aよりも各レーザ光源17~19側に突き出す形で配されている。 As shown in FIG. 3, the reflection sheet 23 is disposed so as to cover the light output opposite plate surface 22 d of the light guide plate 22. The reflection sheet 23 is excellent in light reflectivity, and can efficiently start up light leaking from the light output opposite plate surface 22d of the light guide plate 22 toward the front side (light output plate surface 22c). The reflection sheet 23 has an outer shape that is slightly larger than the light guide plate 22, and is arranged in such a manner that both end portions on the long side protrude from the laser light input portions 22 a of the light guide plate 22 toward the laser light sources 17 to 19. Has been.
 導光板支持部材24は、合成樹脂製とされ、図3に示すように、導光板22における長辺側の両端部を裏側からそれぞれ支持する形で一対備えられる。導光板支持部材24は、シャーシ14の底部14aと反射シート23との間に介在する形で配されており、導光板22を底部14aとは直接接することがないよう底部14aから持ち上げた形で支持している。これにより、各レーザ光源17~19と導光板22とのZ軸方向についての位置関係を安定的に保持することができるのに加えて、各レーザ光源17~19から発光に伴って生じた熱がレーザ光源基板20を介してシャーシ14に伝達されても、シャーシ14から導光板22へ伝達され難くなっている。導光板支持部材24は、導光板22及び反射シート23の長辺方向に沿って延在して反射シート23に直接接する本体部24aと、本体部24aにおけるY軸方向についての両端部から裏側に向けて突出してシャーシ14の底部14aに接する一対の脚部24bと、からなる。 The light guide plate support member 24 is made of synthetic resin, and as shown in FIG. 3, a pair of light guide plate support members 24 are provided so as to support both ends on the long side of the light guide plate 22 from the back side. The light guide plate support member 24 is disposed so as to be interposed between the bottom portion 14a of the chassis 14 and the reflection sheet 23, and the light guide plate 22 is lifted from the bottom portion 14a so as not to be in direct contact with the bottom portion 14a. I support it. As a result, the positional relationship in the Z-axis direction between the laser light sources 17 to 19 and the light guide plate 22 can be stably maintained, and in addition, the heat generated by the light emission from the laser light sources 17 to 19 can be maintained. Is transmitted to the light guide plate 22 from the chassis 14 even if transmitted to the chassis 14 via the laser light source substrate 20. The light guide plate support member 24 extends along the long side direction of the light guide plate 22 and the reflection sheet 23 and directly contacts the reflection sheet 23, and from the both ends of the main body portion 24a in the Y-axis direction to the back side. And a pair of leg portions 24b that project toward the bottom portion 14a of the chassis 14.
 さて、本実施形態に係るバックライト装置12は、図2及び図3に示すように、導光板22内を伝播する各色のレーザ光を拡散反射するための拡散反射部材26を有している。拡散反射部材26は、表面が光の反射性に優れた白色を呈する合成樹脂製(例えばPCT樹脂製)とされており、導光板22の外周端面のうちの長辺側の他方(図2に示す上側)の端面において少なくともレーザ入光反対部22eと正対し且つ接する形で取り付けられている。拡散反射部材26は、導光板22における上記他方の端面(レーザ入光反対部22eを含む)に対してほぼ透明な接着剤や両面テープなどを用いて一体となるよう取り付けられている。 Now, the backlight device 12 according to this embodiment has a diffuse reflection member 26 for diffusing and reflecting the laser beams of each color propagating through the light guide plate 22 as shown in FIGS. The diffuse reflection member 26 is made of a synthetic resin (for example, made of PCT resin) having a white surface with excellent light reflectivity, and the other of the outer peripheral end surfaces of the light guide plate 22 on the long side (see FIG. 2). It is attached so as to face and be in contact with at least the laser incident light opposite portion 22e on the upper end surface shown. The diffuse reflection member 26 is attached to the other end surface (including the laser incident light opposite portion 22e) of the light guide plate 22 by using a substantially transparent adhesive, double-sided tape, or the like.
 このような構成によれば、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19から発せられた赤色レーザ光、青色レーザ光及び緑色レーザ光は、導光板22のレーザ入光部22aに入射すると、導光板22内を直進してレーザ入光部22aとは反対側に位置するレーザ入光反対部22eに達する。レーザ入光反対部22eに達した赤色レーザ光、青色レーザ光及び緑色レーザ光は、拡散反射部材26によって拡散反射されることで、導光板22内を拡散しつつレーザ入光部22a側へ向けて進行した後に出光板面22cから出射される。このように、Y軸方向について赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19とは反対側に配される拡散反射部材26が、一般的なLED光源と同等またはそれ以上の発散角となる赤色、青色及び緑色の拡散光を発する擬似的な赤色拡散光源、青色拡散光源及び緑色拡散光源として機能する。これにより、拡散反射部材26によって拡散反射された赤色光、青色光及び緑色光は、導光板22内にて良好にミキシングされて色ムラの無い白色光として出光板面22cから出射され、その輝度均一性及び色度均一性がいずれも高いものとなる。特に、拡散反射部材26は、導光板22のレーザ入光反対部22eに接する形で取り付けられているので、レーザ入光反対部22eと拡散反射部材26との間から光が漏れ出し難くなっている。これにより、光の利用効率が優れたものとなる。また、従来のように各光源毎に個別に導光棒を用いる構成に比べると、導光板22を用いているので、部品点数を削減する上で好適となる。なお、液晶パネル11に表示される画像に係るホワイトバランスは、赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19の出力を調整することで制御することができ、液晶パネル11におけるR,G,Bの各画素のγ値を調整する必要がないものとされる。 According to such a configuration, the red laser light, the blue laser light, and the green laser light emitted from the red laser light source 17, the blue laser light source 18, and the green laser light source 19 are incident on the laser incident portion 22 a of the light guide plate 22. Then, it goes straight in the light guide plate 22 and reaches the laser incident light opposite portion 22e located on the opposite side to the laser incident portion 22a. The red laser light, the blue laser light, and the green laser light that have reached the laser incident light opposite portion 22e are diffusely reflected by the diffusive reflecting member 26, and are diffused in the light guide plate 22 toward the laser incident portion 22a. Then, the light is emitted from the light exit plate surface 22c. Thus, the diffuse reflection member 26 disposed on the opposite side of the red laser light source 17, the blue laser light source 18, and the green laser light source 19 in the Y-axis direction has a divergence angle equal to or greater than that of a general LED light source. It functions as a pseudo red diffused light source that emits diffused red, blue, and green light, a blue diffused light source, and a green diffused light source. Thereby, the red light, the blue light and the green light diffusely reflected by the diffuse reflection member 26 are well mixed in the light guide plate 22 and emitted from the light output plate surface 22c as white light having no color unevenness. Both uniformity and chromaticity uniformity are high. In particular, since the diffuse reflection member 26 is attached in contact with the laser incident light opposite portion 22e of the light guide plate 22, light hardly leaks between the laser incident light opposite portion 22e and the diffuse reflection member 26. Yes. Thereby, the utilization efficiency of light becomes excellent. Further, as compared with a conventional configuration in which a light guide bar is individually used for each light source, the light guide plate 22 is used, which is preferable in reducing the number of components. The white balance relating to the image displayed on the liquid crystal panel 11 can be controlled by adjusting the outputs of the red laser light source 17, the blue laser light source 18 and the green laser light source 19. , B does not need to be adjusted for each pixel.
 しかも、拡散反射部材26は、図2に示すように、導光板22の外周端面のうち、レーザ入光反対部22eを有する他方の端面の全長・全域にわたって配される。つまり、拡散反射部材26は、導光板22における上記した他方の端面においてX軸方向について間欠的に並ぶ複数のレーザ入光反対部22eに加えて、レーザ入光反対部22eに隣り合う部分とも正対し且つ接する形で取り付けられている。このようにすれば、赤色、青色及び緑色の各色のレーザ光源17~19に対する拡散反射部材26のX軸方向についての位置関係を問わず各色のレーザ光を拡散反射することができるので、各色のレーザ光が拡散反射部材26により拡散反射される確実性が高いものとされる。また、組み付けに際しては、拡散反射部材26を各色のレーザ光源17~19に対してX軸方向について位置合わせする必要がないものとされるので、製造が容易なものとなる。 Moreover, as shown in FIG. 2, the diffuse reflection member 26 is arranged over the entire length and the entire area of the other end face having the laser incident opposite portion 22 e among the outer peripheral end faces of the light guide plate 22. In other words, in addition to the plurality of laser incident light opposite portions 22e that are intermittently arranged in the X-axis direction on the other end face of the light guide plate 22, the diffuse reflection member 26 is also positive with the portion adjacent to the laser incident light opposite portion 22e. It is attached so as to face and touch. In this way, the laser light of each color can be diffusely reflected regardless of the positional relationship in the X-axis direction of the diffuse reflection member 26 with respect to the laser light sources 17 to 19 of each color of red, blue, and green. The certainty that the laser light is diffusely reflected by the diffuse reflection member 26 is high. Further, when assembling, it is not necessary to align the diffuse reflection member 26 with respect to the laser light sources 17 to 19 of the respective colors in the X-axis direction, so that the manufacture becomes easy.
 以上説明したように本実施形態のバックライト装置(照明装置)12は、レーザ光を発するレーザ光源である赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19と、外周端面のうちレーザ光源である赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19と正対する部分が、レーザ光が入射されるレーザ入光部(入光部)22aとされ、外周端面のうちレーザ入光部22aとは反対側に位置する部分がレーザ入光反対部(入光反対部)22eとされ、一対の板面のいずれか一方が光を出射させる出光板面22cとされる導光板22と、導光板22のレーザ入光反対部22eに接する形で取り付けられてレーザ光を拡散反射する拡散反射部材26と、を備える。 As described above, the backlight device (illumination device) 12 of this embodiment is a laser light source among the red laser light source 17, the blue laser light source 18, and the green laser light source 19 that are laser light sources that emit laser light, and the outer peripheral end surface. A portion facing a certain red laser light source 17, blue laser light source 18, and green laser light source 19 is a laser incident portion (light incident portion) 22a on which laser light is incident, and a laser incident portion 22a on the outer peripheral end surface. The light guide plate 22 has a portion positioned on the opposite side as a laser incident light opposite portion (light incident opposite portion) 22e, and one of the pair of plate surfaces serves as a light output plate surface 22c for emitting light, and a light guide plate And a diffuse reflection member 26 that is attached in contact with the laser incident light opposite portion 22e of 22 and diffusely reflects the laser light.
 このような構成によれば、レーザ光源である赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19から発せられたレーザ光は、導光板22のレーザ入光部22aに入射し、導光板22内を直進する形でレーザ入光反対部22eへと向かう。レーザ入光反対部22eに達したレーザ光は、レーザ入光反対部22eに接する形で取り付けられた拡散反射部材26によって拡散反射されることで、導光板22内を拡散しつつレーザ入光部22a側へ向けて進行した後に出光板面22cから出射される。これにより、出光板面22cの面内において出射光の輝度均一性が高いものとされる。また、従来のようにレーザ光源である赤色レーザ光源17、青色レーザ光源18及び緑色レーザ光源19毎に棒状の導光部を用いる構成に比べると、導光板22を用いているので、部品点数を削減する上で好適となる。その上で、拡散反射部材26は、導光板22のレーザ入光反対部22eに接する形で取り付けられているので、レーザ入光反対部22eと拡散反射部材26との間から光が漏れ出し難くなっている。これにより、光の利用効率が優れたものとなる。 According to such a configuration, the laser light emitted from the red laser light source 17, the blue laser light source 18, and the green laser light source 19, which are laser light sources, enters the laser incident portion 22 a of the light guide plate 22, and the light guide plate 22. It goes to the laser incident light opposite portion 22e in a form that goes straight inside. The laser light reaching the laser incident light opposite portion 22e is diffusely reflected by the diffuse reflection member 26 attached in contact with the laser incident light opposite portion 22e, so that the laser incident portion is diffused while being diffused in the light guide plate 22. After traveling toward the 22a side, the light is emitted from the light exit plate surface 22c. As a result, the luminance uniformity of the emitted light is high within the surface of the light output plate surface 22c. Further, compared to the conventional configuration in which a rod-shaped light guide unit is used for each of the red laser light source 17, the blue laser light source 18, and the green laser light source 19, which are laser light sources, the light guide plate 22 is used. This is suitable for reduction. In addition, since the diffuse reflection member 26 is attached in contact with the laser incident light opposite portion 22e of the light guide plate 22, light hardly leaks from between the laser incident light opposite portion 22e and the diffuse reflection member 26. It has become. Thereby, the utilization efficiency of light becomes excellent.
 また、レーザ光源には、赤色レーザ光を発する赤色レーザ光源17と、緑色レーザ光を発する緑色レーザ光源19と、青色レーザ光を発する青色レーザ光源18と、が含まれ、赤色レーザ光源17、緑色レーザ光源19及び青色レーザ光源18は、列状に配されており、拡散反射部材26は、導光板22の外周端面のうち、レーザ入光反対部22eを有する端面の全域にわたって配される。このようにすれば、列状をなす形で配された赤色レーザ光源17、緑色レーザ光源19及び青色レーザ光源18から発せられた各色のレーザ光は、導光板22のレーザ入光部22aに入射すると、導光板22内をレーザ入光反対部22eへ向けて直進し、レーザ入光反対部22eに接する形で配された拡散反射部材26によって拡散反射される。すると、各色の光は、導光板22内にて良好にミキシングされて白色光として出光板面22cから出射される。拡散反射部材26は、導光板22の外周端面のうち、レーザ入光反対部22eを有する端面の全域にわたって配されているので、各色のレーザ光源17~19に対する位置関係を問わず各色のレーザ光を拡散反射することができる。これにより、各色のレーザ光が拡散反射部材26により拡散反射される確実性が高いものとされる。 The laser light sources include a red laser light source 17 that emits red laser light, a green laser light source 19 that emits green laser light, and a blue laser light source 18 that emits blue laser light. The laser light source 19 and the blue laser light source 18 are arranged in a line, and the diffuse reflection member 26 is arranged over the entire end surface of the light guide plate 22 having the laser incident light opposite portion 22e. In this way, the laser light of each color emitted from the red laser light source 17, the green laser light source 19, and the blue laser light source 18 arranged in a row is incident on the laser incident part 22 a of the light guide plate 22. Then, the light guide plate 22 goes straight toward the laser incident light opposite portion 22e, and is diffusely reflected by the diffuse reflection member 26 arranged in contact with the laser incident light opposite portion 22e. Then, the light of each color is well mixed in the light guide plate 22 and emitted from the light output plate surface 22c as white light. Since the diffuse reflection member 26 is arranged over the entire end face having the laser incident light opposite portion 22e in the outer peripheral end face of the light guide plate 22, the laser light of each color regardless of the positional relationship with respect to the laser light sources 17 to 19 of each color. Can be diffusely reflected. Thereby, the certainty that the laser light of each color is diffusely reflected by the diffuse reflection member 26 is high.
 また、本実施形態に係る液晶表示装置(表示装置)10は、上記記載のバックライト装置12と、バックライト装置12から照射される光を利用して画像を表示する液晶パネル(表示パネル)11と、を備える。このような構成の液晶表示装置10によれば、バックライト装置12の部品点数が削減されるとともに、バックライト装置12において光の利用効率が優れているから、製造コストを削減することができるとともに、低消費電力化や高輝度化を図る上で好適となる。 The liquid crystal display device (display device) 10 according to the present embodiment includes the backlight device 12 described above and a liquid crystal panel (display panel) 11 that displays an image using light emitted from the backlight device 12. And comprising. According to the liquid crystal display device 10 having such a configuration, the number of parts of the backlight device 12 is reduced, and the use efficiency of light in the backlight device 12 is excellent, so that the manufacturing cost can be reduced. This is suitable for reducing power consumption and increasing brightness.
 また、本実施形態に係るテレビ受信装置10TVは、上記記載の液晶表示装置10を備える。このようなテレビ受信装置10TVによれば、液晶表示装置10の製造コストが削減されるとともに、表示品位が優れたものとされているから、価格競争力に優れるとともに、表示品位に優れたテレビ画像の表示などを実現することができる。 Further, the television receiver 10TV according to the present embodiment includes the liquid crystal display device 10 described above. According to such a television receiver 10TV, the manufacturing cost of the liquid crystal display device 10 is reduced and the display quality is excellent. Therefore, the television image is excellent in price competitiveness and excellent in display quality. Can be realized.
 <実施形態2>
 本発明の実施形態2を図4から図7によって説明する。この実施形態2では、上記した実施形態1にから緑色レーザ光源19に代えて緑色LED光源27を用いたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, a green LED light source 27 is used instead of the green laser light source 19 from the first embodiment described above. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係るバックライト装置112では、図4に示すように、光源として赤色レーザ光源117及び青色レーザ光源118が用いられるとともに、緑色LED光源27が用いられている。なお、図4では、区別のために緑色LED光源27に斜め縞の模様を付している。緑色LED光源27は、赤色レーザ光源117及び青色レーザ光源118が実装されたレーザ光源基板120とは別の、LED光源基板28に実装されている。緑色LED光源27が実装されたLED光源基板28は、レーザ光源基板120との間でY軸方向について導光板122を挟み込む形で配されている。従って、このバックライト装置112は、その短辺方向についての一方の端部にLED光源基板28が、他方の端部にレーザ光源基板120が、それぞれ配されており、各光源27,117,118からの光が導光板122に対して両側から入光される両側入光タイプのエッジライト型(サイドライト型)とされる。 In the backlight device 112 according to the present embodiment, as shown in FIG. 4, a red laser light source 117 and a blue laser light source 118 are used as a light source, and a green LED light source 27 is used. In FIG. 4, the green LED light source 27 is given an oblique stripe pattern for distinction. The green LED light source 27 is mounted on an LED light source substrate 28 different from the laser light source substrate 120 on which the red laser light source 117 and the blue laser light source 118 are mounted. The LED light source substrate 28 on which the green LED light source 27 is mounted is arranged so as to sandwich the light guide plate 122 in the Y-axis direction with the laser light source substrate 120. Therefore, the backlight device 112 is provided with the LED light source substrate 28 at one end in the short side direction and the laser light source substrate 120 at the other end, and the light sources 27, 117, 118 are arranged. Is a double-side incident type edge light type (side light type) in which light from the light enters the light guide plate 122 from both sides.
 レーザ光源基板120は、図4及び図5に示すように、シャーシ114の長辺側の他方(図4に示す上側)の側部114cに対して取り付けられている。レーザ光源基板120の実装面120aには、複数ずつの赤色レーザ光源117及び青色レーザ光源118がX軸方向に沿って間隔を空けて交互に並ぶ形で実装されている。詳しくは、複数ずつの赤色レーザ光源117及び青色レーザ光源118は、隣り合うものの間の間隔が2通りとされており、相対的に狭い間隔で配置されるものが1つの組を構成している。従って、異なる組をなす赤色レーザ光源117及び青色レーザ光源118の間の間隔は、相対的に広くなっている。 As shown in FIGS. 4 and 5, the laser light source substrate 120 is attached to the other side 114c on the other long side of the chassis 114 (upper side shown in FIG. 4). A plurality of red laser light sources 117 and a plurality of blue laser light sources 118 are mounted on the mounting surface 120a of the laser light source substrate 120 so as to be alternately arranged at intervals along the X-axis direction. Specifically, in the plurality of red laser light sources 117 and blue laser light sources 118, there are two intervals between adjacent ones, and those arranged at relatively small intervals constitute one set. . Accordingly, the distance between the red laser light source 117 and the blue laser light source 118 that form different sets is relatively wide.
 緑色LED光源27は、図4及び図6に示すように、緑色光を発する緑色半導体素子(緑色LED素子)を有する。緑色LED光源27が発する緑色光は、インコヒーレント光であり、赤色レーザ光源117及び青色レーザ光源118が発する各色のレーザ光に比べると、発散角が大きくて直進性が弱い。そして、緑色LED光源27は、一般的な緑色レーザ光源に比べると、発光効率が2倍程度優れており、低い消費電力でもって高い輝度が得られる。また、緑色LED光源27は、自身の発光面とは反対側の面が次述するLED光源基板28に実装されており、いわゆる頂面発光型とされる。 The green LED light source 27 has a green semiconductor element (green LED element) that emits green light, as shown in FIGS. Green light emitted from the green LED light source 27 is incoherent light, and has a larger divergence angle and weaker straightness than the laser beams of the respective colors emitted from the red laser light source 117 and the blue laser light source 118. The green LED light source 27 has a luminous efficiency that is approximately twice as high as that of a general green laser light source, and high luminance can be obtained with low power consumption. In addition, the green LED light source 27 is mounted on an LED light source substrate 28, which will be described below, on the side opposite to the light emitting surface of the green LED light source 27, and is a so-called top surface emitting type.
 LED光源基板28は、図4及び図6に示すように、シャーシ114の長辺方向に沿って延在する板状をなしており、長辺側の一方(図4に示す下側)の側部114cに対して取り付けられている。LED光源基板28は、緑色LED光源27が実装された実装面28aが導光板122の長辺側の一方の端面と対向状をなしている。LED光源基板28の実装面28aには、緑色LED光源27に対して給電するための配線パターン(図示せず)がパターニングされるとともに、複数の緑色LED光源27がX軸方向に沿って間隔を空けて並ぶ形で実装されている。詳しくは、複数の緑色LED光源27は、隣り合うものの間の間隔が、同じ組をなす赤色レーザ光源117及び青色レーザ光源118におけるX軸方向についての配置範囲よりも広くされる。そして、複数の緑色LED光源27は、赤色レーザ光源117及び青色レーザ光源118とはX軸方向についてオフセットした配置(揃わない配置)とされる。 4 and 6, the LED light source substrate 28 has a plate shape extending along the long side direction of the chassis 114, and one side of the long side (the lower side shown in FIG. 4). It is attached to the portion 114c. In the LED light source substrate 28, the mounting surface 28 a on which the green LED light source 27 is mounted is opposed to one end surface on the long side of the light guide plate 122. A wiring pattern (not shown) for supplying power to the green LED light source 27 is patterned on the mounting surface 28a of the LED light source substrate 28, and a plurality of green LED light sources 27 are spaced along the X-axis direction. It is implemented in a line-up form. Specifically, in the plurality of green LED light sources 27, the interval between adjacent ones is made wider than the arrangement range in the X-axis direction in the red laser light source 117 and the blue laser light source 118 that form the same set. Then, the plurality of green LED light sources 27 are arranged (displaced) so as to be offset from the red laser light source 117 and the blue laser light source 118 in the X-axis direction.
 導光板122は、図4に示すように、その外周端面のうち長辺側の他方(図4に示す上側)の端面が、赤色レーザ光源117及び青色レーザ光源118の各発光面と正対していて各色のレーザ光が入射されるレーザ入光部122aを有しており、その設置数及び配置間隔は赤色レーザ光源117及び青色レーザ光源118の設置組数及び各組間の配置間隔と同一である。レーザ入光部122aは、X軸方向についての形成範囲が1つの組をなす赤色レーザ光源117及び青色レーザ光源118の配置範囲とほぼ一致している。導光板122は、その外周端面のうち長辺側の一方(図4に示す下側)の端面が、緑色LED光源27の発光面と対向(正対)していて緑色光が入射されるLED入光部22bを有しており、その設置数及び配置間隔は緑色LED光源27の設置数及び配置間隔と同一である。LED入光部22bは、X軸方向についての形成範囲が、上記一方の端面のうち緑色LED光源27と正対する部分に加えてその正対部分(緑色LED光源27の配置範囲)よりもさらに左右に広くなっている。その理由は、緑色LED光源27から発せられる緑色光の発散角が各レーザ光源117,118の同発散角よりも大きい為である。導光板122において上記したLED入光部22bを有する長辺側の一方の端面は、レーザ入光部122aとは反対側に位置する部分であるレーザ入光反対部122eを有している。レーザ入光反対部122eは、導光板122の上記一方の端面においてLED入光部22bとX軸方向に沿って交互に並ぶ形で複数配されており、その設置数及び配置間隔は赤色レーザ光源117及び青色レーザ光源118の設置組数及び各組間の配置間隔と同一である。 As shown in FIG. 4, the light guide plate 122 has the other end face on the long side (upper side shown in FIG. 4) of its outer peripheral face faces the light emitting faces of the red laser light source 117 and the blue laser light source 118. The laser light incident portions 122a into which the laser beams of the respective colors are incident are provided, and the number of installations and the arrangement interval thereof are the same as the number of installation sets of the red laser light source 117 and the blue laser light source 118 and the arrangement interval between the sets. is there. In the laser incident part 122a, the formation range in the X-axis direction substantially coincides with the arrangement range of the red laser light source 117 and the blue laser light source 118 forming one set. The light guide plate 122 has an end surface on one of the long sides (the lower side shown in FIG. 4) facing the light emitting surface of the green LED light source 27 and facing green light. The light incident section 22b is provided, and the number of installation and the arrangement interval thereof are the same as the number of installation and the arrangement interval of the green LED light sources 27. The LED light incident portion 22b has a formation range in the X-axis direction that is further left and right than the portion facing the green LED light source 27 in the one end surface and the portion facing the green LED light source 27 (arrangement range of the green LED light source 27). It has become wide. This is because the divergence angle of the green light emitted from the green LED light source 27 is larger than the divergence angles of the laser light sources 117 and 118. One end surface on the long side of the light guide plate 122 having the LED light incident portion 22b described above has a laser light incident opposite portion 122e which is a portion located on the opposite side to the laser light incident portion 122a. A plurality of laser incident light opposite portions 122e are arranged on the one end face of the light guide plate 122 so as to be alternately arranged along with the LED incident light portions 22b along the X-axis direction. 117 and the number of installed sets of the blue laser light sources 118 and the arrangement interval between the sets are the same.
 ここで、バックライト装置12に備わる各光源27,117,118における主発光波長及び発光スペクトルについて図7を用いて詳しく説明する。図7には、各光源27,117,118に係る発光スペクトルが示されており、同図の横軸が波長(単位は「nm」)とされ、同図の左側の縦軸が発光強度(単位は「W/nm」)とされている。また、図7では、細い破線により赤色レーザ光源117の発光スペクトルを、細い二点鎖線により青色レーザ光源118の発光スペクトルを、細い一点鎖線により緑色LED光源27の発光スペクトルを、それぞれ示している。赤色レーザ光源117は、主発光波長が630nmとされ、半値幅(半値全幅)が2nmとされる発光スペクトルの赤色レーザ光を発する。青色レーザ光源118は、主発光波長が441nmとされ、半値幅が2nmとされる発光スペクトルの青色レーザ光を発する。青色レーザ光源118は、主発光波長における発光強度(0.055W/nm)が、赤色レーザ光源117の同発光強度(0.037W/nm)よりも大きい。緑色LED光源27は、主発光波長が約534nmとされ、半値幅が約18nmとされる発光スペクトルの緑色光を発する。緑色LED光源27は、主発光波長における発光強度(0.0018W/nm)が、赤色レーザ光源117及び青色レーザ光源118のそれぞれの同発光強度よりも遙かに小さく、また発光スペクトルの半値幅が赤色レーザ光源117及び青色レーザ光源118のそれぞれの同半値幅よりも遙かに広い。以上のように、赤色レーザ光源117から発せられる赤色レーザ光と、青色レーザ光源118から発せられる青色レーザ光と、は、互いに波長範囲が干渉することが殆ど無く、且つ緑色LED光源27から発せられる緑色光に対しても波長範囲が干渉することが殆ど無いものとされる。これにより、バックライト装置112の照明光に係る各色の色純度が十分に高いものとなる。しかも、緑色LED光源27は、緑色レーザ光を発する一般的な緑色レーザ光源に比べると、発光効率が良好なので、低消費電力で高輝度が得られる。なお、上記した赤色レーザ光源117及び青色レーザ光源118の各発光スペクトルは、上記した実施形態1に記載したものにおいても同様である。 Here, the main emission wavelength and emission spectrum in each of the light sources 27, 117, and 118 provided in the backlight device 12 will be described in detail with reference to FIG. FIG. 7 shows emission spectra of the light sources 27, 117, and 118. The horizontal axis of the figure is the wavelength (unit is “nm”), and the left vertical axis of the figure is the emission intensity ( The unit is “W / nm”). In FIG. 7, the emission spectrum of the red laser light source 117 is indicated by a thin broken line, the emission spectrum of the blue laser light source 118 is indicated by a thin two-dot chain line, and the emission spectrum of the green LED light source 27 is indicated by a thin one-dot chain line. The red laser light source 117 emits red laser light having an emission spectrum having a main emission wavelength of 630 nm and a half width (full width at half maximum) of 2 nm. The blue laser light source 118 emits blue laser light having an emission spectrum having a main emission wavelength of 441 nm and a half width of 2 nm. The blue laser light source 118 has a light emission intensity (0.055 W / nm) at the main light emission wavelength larger than the light emission intensity (0.037 W / nm) of the red laser light source 117. The green LED light source 27 emits green light having an emission spectrum having a main emission wavelength of about 534 nm and a half width of about 18 nm. The green LED light source 27 has a light emission intensity (0.0018 W / nm) at the main light emission wavelength that is much smaller than the same light emission intensity of each of the red laser light source 117 and the blue laser light source 118, and has a half-value width of the emission spectrum. It is much wider than the half width of each of the red laser light source 117 and the blue laser light source 118. As described above, the red laser light emitted from the red laser light source 117 and the blue laser light emitted from the blue laser light source 118 have little wavelength range interference with each other and are emitted from the green LED light source 27. The wavelength range hardly interferes with green light. Thereby, the color purity of each color related to the illumination light of the backlight device 112 becomes sufficiently high. Moreover, since the green LED light source 27 has better light emission efficiency than a general green laser light source that emits green laser light, high luminance can be obtained with low power consumption. Note that the emission spectra of the red laser light source 117 and the blue laser light source 118 described above are the same as those described in the first embodiment.
 次に、液晶パネル111に備わるカラーフィルタの各着色部における透過スペクトルについて図7を用いて詳しく説明する。図7には、各着色部に係る透過スペクトルが示されており、同図の横軸が波長(単位は「nm」)とされ、同図の右側の縦軸が分光透過率(単位は「%」)とされている。また、図7では、太い破線により赤色着色部の透過スペクトルを、太い二点鎖線により青色着色部の透過スペクトルを、太い一点鎖線により緑色着色部の透過スペクトルを、それぞれ示している。赤色を呈する赤色着色部は、赤色の波長領域(約600nm~約780nm)の光、つまり赤色光を選択的に透過するものとされており、その透過スペクトルに含まれるピークの半値となる波長が595nm以上となるよう構成されている。この「ピークの半値となる波長」は、透過スペクトルのピーク波長(634nm)における分光透過率の値(最大値)の半値となる波長のことである。青色を呈する青色着色部は、青色の波長領域(約420nm~約500nm)の光、つまり青色光を選択的に透過するものとされており、その透過スペクトルに含まれるピーク波長が468nmとされるとともに、ピークの半値幅が約90nmとされる。緑色を呈する緑色着色部は、緑色の波長領域(約500nm~約570nm)の光、つまり緑色光を選択的に透過するものとされており、その透過スペクトルに含まれるピーク波長が522nmとされるとともに、ピークの半値幅が約96nmとされる。緑色着色部は、赤色着色部及び青色着色部の双方に対して透過スペクトルが部分的に重なっているが、青色着色部との重なり量が赤色着色部との重なり量よりも大きくなっている。つまり、緑色着色部の透過光には、赤色光よりも青色光の方が多く含まれ易い傾向にある。なお、上記したカラーフィルタの各着色部の各透過スペクトルは、上記した実施形態1に記載したものにおいても同様である。 Next, the transmission spectrum in each colored portion of the color filter provided in the liquid crystal panel 111 will be described in detail with reference to FIG. FIG. 7 shows a transmission spectrum relating to each colored portion. The horizontal axis of FIG. 7 indicates the wavelength (unit: “nm”), and the vertical axis on the right side of FIG. 7 indicates the spectral transmittance (unit: “nm”). % "). In FIG. 7, the transmission spectrum of the red colored portion is indicated by a thick broken line, the transmission spectrum of the blue colored portion is indicated by a thick two-dot chain line, and the transmission spectrum of the green colored portion is indicated by a thick one-dot chain line. The red colored portion exhibiting red color selectively transmits light in the red wavelength region (about 600 nm to about 780 nm), that is, red light, and has a wavelength that is half the peak of the transmission spectrum. It is comprised so that it may become 595 nm or more. The “wavelength at half peak value” is a wavelength at half the spectral transmittance value (maximum value) at the peak wavelength (634 nm) of the transmission spectrum. The blue colored portion exhibiting a blue color selectively transmits light in the blue wavelength region (about 420 nm to about 500 nm), that is, blue light, and the peak wavelength included in the transmission spectrum is 468 nm. At the same time, the half width of the peak is about 90 nm. The green colored portion exhibiting a green color selectively transmits light in the green wavelength region (about 500 nm to about 570 nm), that is, green light, and the peak wavelength included in the transmission spectrum is set to 522 nm. At the same time, the half width of the peak is about 96 nm. The green colored portion partially overlaps the transmission spectrum with respect to both the red colored portion and the blue colored portion, but the amount of overlap with the blue colored portion is larger than the amount of overlap with the red colored portion. That is, the transmitted light of the green colored portion tends to include more blue light than red light. The transmission spectra of the colored portions of the color filter described above are the same as those described in the first embodiment.
 本実施形態に係る拡散反射部材126は、図4に示すように、導光板122における長辺側の一方(図4に示す下側)の端面においてX軸方向についてLED入光部22bと隣り合う形で配されている。詳しくは、拡散反射部材126は、導光板122の上記一方の端面においてLED入光部22bとX軸方向に沿って交互に並ぶ形で複数配されており、その設置数及び配置間隔はレーザ入光反対部122eの設置数及び配置間隔(赤色レーザ光源117及び青色レーザ光源118の設置組数及び各組間の配置間隔)と同一である。このような構成によれば、緑色LED光源27からLED入光部22bに入射する光を妨げることなく、導光板122内においてレーザ入光部122a側からレーザ入光反対部122eへ向けて進行する各色のレーザ光を拡散反射部材126によって良好に拡散反射することができる。 As shown in FIG. 4, the diffuse reflection member 126 according to the present embodiment is adjacent to the LED light incident portion 22 b in the X-axis direction on one end surface (the lower side shown in FIG. 4) on the long side of the light guide plate 122. It is arranged in a form. Specifically, a plurality of diffuse reflection members 126 are arranged on the one end surface of the light guide plate 122 in an alternating manner along the LED light incident portion 22b along the X-axis direction. It is the same as the number and arrangement interval of the light opposite portions 122e (the number of installation groups of the red laser light source 117 and the blue laser light source 118 and the arrangement interval between the groups). According to such a configuration, the light advances from the laser light incident part 122a side toward the laser light incident opposite part 122e in the light guide plate 122 without interfering with the light incident on the LED light incident part 22b from the green LED light source 27. Each color laser beam can be diffusely reflected by the diffuse reflection member 126 well.
 拡散反射部材126及びレーザ入光反対部122eは、図4に示すように、X軸方向についての形成範囲が1つの組をなす赤色レーザ光源117及び青色レーザ光源118におけるX軸方向についての配置範囲とほぼ等しくされている。つまり、拡散反射部材126は、1つの組をなす赤色レーザ光源117と青色レーザ光源118とに跨る形成範囲を有している。このような構成によれば、仮に拡散反射部材が1つの組をなす赤色レーザ光源117と青色レーザ光源118とに対して個別に対応付けて設けられた場合に比べると、拡散反射部材126により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができるとともに、拡散反射部材126の設置が容易なものとなる。 As shown in FIG. 4, the diffuse reflection member 126 and the laser incident light opposite portion 122e are arranged in the X-axis direction in the red laser light source 117 and the blue laser light source 118 in which the formation range in the X-axis direction forms one set. And are almost equal. In other words, the diffuse reflection member 126 has a formation range that straddles the red laser light source 117 and the blue laser light source 118 that form one set. According to such a configuration, if the diffuse reflection member 126 is individually associated with the red laser light source 117 and the blue laser light source 118 that form a pair, the diffuse reflection member 126 causes the red color. Laser light and blue laser light can be efficiently scattered and reflected, and the diffuse reflection member 126 can be easily installed.
 以上説明したように本実施形態によれば、LED光源である緑色LED光源27と、LED光源である緑色LED光源27が実装されてレーザ入光反対部122eと対向状をなすLED光源基板28と、を備え、導光板122は、外周端面のうち少なくともLED光源である緑色LED光源27と正対する部分が、LED光源である緑色LED光源27の光が入射されるLED入光部22bとされており、拡散反射部材126は、LED入光部22bと隣り合う形で配されている。このようにすれば、LED光源である緑色LED光源27から発せられた光は、導光板122のLED入光部22bに入射し、導光板122内を伝播された後に出光板面122cから出射される。拡散反射部材126は、LED入光部22bと隣り合う形で配されることで、LED光源である緑色LED光源27からLED入光部22bに入射する光を妨げることなく、導光板122内においてレーザ入光部122a側からレーザ入光反対部122eへ向けて進行するレーザ光を良好に拡散反射することができる。 As described above, according to the present embodiment, the green LED light source 27 that is the LED light source, and the LED light source substrate 28 that is mounted with the green LED light source 27 that is the LED light source and faces the laser incident light opposite portion 122e. In the light guide plate 122, at least a portion of the outer peripheral end face that faces the green LED light source 27 that is an LED light source is an LED light incident portion 22b into which light of the green LED light source 27 that is an LED light source is incident. The diffuse reflection member 126 is arranged adjacent to the LED light incident portion 22b. In this way, the light emitted from the green LED light source 27, which is an LED light source, enters the LED light incident portion 22b of the light guide plate 122, is propagated through the light guide plate 122, and then is emitted from the light exit plate surface 122c. The The diffuse reflection member 126 is arranged adjacent to the LED light incident part 22b, so that the light incident on the LED light incident part 22b from the green LED light source 27, which is an LED light source, is not disturbed in the light guide plate 122. Laser light traveling from the laser incident part 122a side toward the laser incident opposite part 122e can be diffusely reflected favorably.
 また、レーザ光源には、赤色レーザ光を発する赤色レーザ光源117と、青色レーザ光を発する青色レーザ光源118と、が含まれるのに対し、LED光源には、緑色光を発する緑色LED光源27が含まれている。このようにすれば、拡散反射部材126は、赤色レーザ光源117及び青色レーザ光源118から発せられた赤色レーザ光及び青色レーザ光を拡散反射することで、拡散光を発する擬似的な赤色拡散光源及び青色拡散光源として機能するので、拡散反射部材126により拡散反射された赤色光及び青色光は、緑色LED光源27から発せられてLED入光部22bに入射した緑色光と共に導光板122内にて良好にミキシングされて白色光として出光板面122cから出射される。赤色レーザ光源117から発せられる赤色レーザ光と、青色レーザ光源118から発せられる青色レーザ光と、は、互いに波長範囲が干渉することが殆ど無く、且つ緑色LED光源27から発せられる緑色光に対しても波長範囲が干渉することが殆ど無いものとされる。これにより、各色の色純度が十分に高いものとなる。しかも、緑色LED光源27は、緑色レーザ光を発する緑色レーザ光源に比べると、発光効率が良好なので、低消費電力で高輝度が得られる。 The laser light source includes a red laser light source 117 that emits red laser light and a blue laser light source 118 that emits blue laser light, whereas the LED light source includes a green LED light source 27 that emits green light. include. In this way, the diffuse reflection member 126 diffuses and reflects the red laser light and the blue laser light emitted from the red laser light source 117 and the blue laser light source 118, thereby generating a pseudo red diffused light source that emits diffused light. Since it functions as a blue diffused light source, the red light and the blue light diffusely reflected by the diffuse reflection member 126 are good in the light guide plate 122 together with the green light emitted from the green LED light source 27 and incident on the LED incident portion 22b. Are emitted as white light from the light output plate surface 122c. The red laser light emitted from the red laser light source 117 and the blue laser light emitted from the blue laser light source 118 hardly interfere with each other in the wavelength range, and are compared with the green light emitted from the green LED light source 27. However, it is assumed that the wavelength range hardly interferes. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source 27 has better luminous efficiency than a green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
 また、赤色レーザ光源117及び青色レーザ光源118は、互いに隣り合う形で配されており、拡散反射部材126は、赤色レーザ光源117と青色レーザ光源118とに跨る形成範囲を有する。このようにすれば、互いに隣り合う赤色レーザ光源117と青色レーザ光源118とに跨る形成範囲を有する拡散反射部材126により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができる。 Further, the red laser light source 117 and the blue laser light source 118 are arranged adjacent to each other, and the diffuse reflection member 126 has a formation range straddling the red laser light source 117 and the blue laser light source 118. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member 126 having a formation range extending between the red laser light source 117 and the blue laser light source 118 adjacent to each other.
 <実施形態3>
 本発明の実施形態3を図8によって説明する。この実施形態3では、上記した実施形態2からレーザ入光部222a及びLED入光部222bの構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
A third embodiment of the present invention will be described with reference to FIG. In the third embodiment, the configuration of the laser light incident part 222a and the LED light incident part 222b is changed from the above-described second embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 2 is abbreviate | omitted.
 本実施形態に係る導光板222には、図8に示すように、その外周端面におけるレーザ入光部222a及びLED入光部222bにそれぞれ光屈折部29が設けられている。光屈折部29は、レーザ入光部222a及びLED入光部222bの各表面を、それぞれ断面形状がプリズム状となるよう凹凸加工してなる。光屈折部29は、各レーザ光源217,218からレーザ入光部222aへ入射する各レーザ光や緑色LED光源227からLED入光部222bへ入射する緑色光に発散角が拡張するような屈折作用を付与するものである。光屈折部29によって屈折作用が付与された各光は、Y軸方向について各入光部222a,222bから離れる形で導光板222内を進行する(例えばレーザ入光部222a側からレーザ入光反対部222eへ向けて進行する)過程でX軸方向について発散し、配光範囲が次第に広げられる。特に、各レーザ光は、光屈折部29によって配光範囲が広げられることで、レーザ入光反対部222eに達したときに拡散反射部材226に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材226による拡散反射光の拡散範囲がより広いものとなる。これにより、導光板222の出光板面222cの面内において出射光の輝度均一性がより高いものとされる。しかも、導光板222における長辺側の一方(図8に示す下側)の端面においては、光屈折部29は、各LED入光部222bの全域、つまり各レーザ入光反対部222eの非配置範囲の全域に設けられているので、導光板222に対して複数の拡散反射部材226を取り付ける際には、上記した一方の端面のうちの各光屈折部29の非形成部位に対して各拡散反射部材226を取り付けるようにすればよい。すなわち、各光屈折部29が各拡散反射部材226を取り付ける際の目印として機能するので、組付作業性が良好なものとなる。 As shown in FIG. 8, the light guide plate 222 according to the present embodiment is provided with a light refracting portion 29 on each of the laser incident portion 222a and the LED incident portion 222b on the outer peripheral end face. The light refracting portion 29 is formed by subjecting the surfaces of the laser light incident portion 222a and the LED light incident portion 222b to unevenness so that the cross-sectional shape becomes a prism shape. The light refracting unit 29 has a refracting action that expands the divergence angle to each laser light incident from the laser light sources 217 and 218 to the laser incident unit 222a and green light incident from the green LED light source 227 to the LED incident unit 222b. Is given. Each light to which the refractive action is imparted by the light refracting unit 29 travels in the light guide plate 222 in the Y-axis direction so as to be separated from the respective light incident units 222a and 222b (for example, opposite to the laser incident light from the laser incident unit 222a side). Diverges in the X-axis direction in the process of proceeding toward the portion 222e), and the light distribution range is gradually expanded. Particularly, each laser beam is diffused and reflected while being irradiated to the diffuse reflection member 226 in a wider range when the light distribution range is expanded by the light refracting unit 29 and reaches the laser incident light opposite portion 222e. Thus, the diffusion range of the diffuse reflection light by the diffuse reflection member 226 becomes wider. Thereby, the luminance uniformity of the emitted light is made higher in the plane of the light output plate surface 222c of the light guide plate 222. In addition, on one end surface (the lower side shown in FIG. 8) of the long side of the light guide plate 222, the light refracting portion 29 is not disposed in the entire region of each LED light incident portion 222b, that is, each laser light incident opposite portion 222e. Since each of the diffuse reflection members 226 is attached to the light guide plate 222, each diffusion is applied to the non-formation portion of each light refracting portion 29 on the one end face. The reflection member 226 may be attached. That is, since each light refraction part 29 functions as a mark when attaching each diffuse reflection member 226, the assembly workability is good.
 以上説明したように本実施形態によれば、導光板222の外周端面における少なくともレーザ入光部222aには、レーザ入光部222aに入射したレーザ光の配光範囲がレーザ入光部222a側からレーザ入光反対部222eへ向かうほど広がるようレーザ光に屈折作用を付与する光屈折部29が設けられている。このようにすれば、レーザ光源である赤色レーザ光源217及び青色レーザ光源218から発せられたレーザ光は、レーザ入光部222aに入射する際に光屈折部29によって屈折作用が付与される。屈折作用を付与されたレーザ光は、導光板222内をレーザ入光部222a側からレーザ入光反対部222eへ向けて進行する過程で配光範囲が広げられる。従って、レーザ入光反対部222eに達したレーザ光は、拡散反射部材226に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材226による拡散反射光の拡散範囲がより広いものとなる。これにより、出光板面222cの面内において出射光の輝度均一性がより高いものとされる。 As described above, according to the present embodiment, at least the laser incident portion 222a on the outer peripheral end surface of the light guide plate 222 has a light distribution range of the laser light incident on the laser incident portion 222a from the laser incident portion 222a side. A light refracting portion 29 that imparts a refracting action to the laser light is provided so as to spread toward the laser incident light opposite portion 222e. In this way, the laser light emitted from the red laser light source 217 and the blue laser light source 218, which are laser light sources, is refracted by the light refracting unit 29 when entering the laser incident unit 222a. The light distribution range of the laser light imparted with the refraction action is expanded in the process of traveling through the light guide plate 222 from the laser light incident part 222a side toward the laser light incident opposite part 222e. Accordingly, the laser light reaching the laser incident light opposite portion 222e is diffusely reflected while being applied to the diffuse reflection member 226 in a wider range, so that the diffusion range of the diffuse reflection light by the diffuse reflection member 226 is wider. Become. As a result, the luminance uniformity of the emitted light is higher in the plane of the light exit plate surface 222c.
 <実施形態4>
 本発明の実施形態4を図9によって説明する。この実施形態4では、上記した実施形態2から赤色レーザ光源317及び青色レーザ光源318の配置を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, the arrangement of the red laser light source 317 and the blue laser light source 318 is changed from the second embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 2 is abbreviate | omitted.
 本実施形態に係る赤色レーザ光源317及び青色レーザ光源318は、図9に示すように、1つの組をなすもの同士が近接する形で配されている。つまり、1つの組をなす赤色レーザ光源317と青色レーザ光源318との間にX軸方向について殆ど隙間が無い配置とされている。従って、1つの組をなす赤色レーザ光源317及び青色レーザ光源318からの光が入射されるレーザ入光部322aが連続したものとなる。これにより、赤色レーザ光源317及び青色レーザ光源318におけるX軸方向についての配置範囲が狭められるので、それに伴って拡散反射部材326の形成範囲も狭くすることができる。このような構成では、赤色レーザ光源317及び青色レーザ光源318から発せられて導光板322内において拡散反射部材326によって拡散反射された赤色レーザ光及び青色レーザ光は、上記した実施形態1に比べると、互いにまたは緑色LED光源327からの緑色光と混じり合い難くなっている。このため、導光板322のうち、緑色LED光源327及び拡散反射部材326側の端部には、赤色レーザ光、青色レーザ光及び緑色光を混色するための混色領域(図9に示す一点鎖線よりも下側の領域)MAが設定されている。 As shown in FIG. 9, the red laser light source 317 and the blue laser light source 318 according to the present embodiment are arranged in such a manner that one set is close to each other. That is, the arrangement is such that there is almost no gap between the red laser light source 317 and the blue laser light source 318 forming one set in the X-axis direction. Therefore, the laser incident part 322a into which the light from the red laser light source 317 and the blue laser light source 318 forming one set is incident is continuous. Thereby, the arrangement range in the X-axis direction in the red laser light source 317 and the blue laser light source 318 is narrowed, and accordingly, the formation range of the diffuse reflection member 326 can be narrowed. In such a configuration, the red laser light and the blue laser light emitted from the red laser light source 317 and the blue laser light source 318 and diffusely reflected by the diffuse reflection member 326 in the light guide plate 322 are compared with the first embodiment described above. The green light from each other or the green LED light source 327 is hardly mixed. For this reason, in the light guide plate 322, the end portions on the green LED light source 327 and the diffuse reflection member 326 side are mixed color regions for mixing red laser light, blue laser light, and green light (from the one-dot chain line shown in FIG. 9). (Lower area) MA is set.
 <実施形態5>
 本発明の実施形態5を図10から図12によって説明する。実施形態1と同様、本実施形態5では、テレビ受信装置に用いられる液晶表示装置410について説明するものとし、液晶表示装置410は、図11に示すように、画像を表示する液晶パネル(表示パネル)411と、液晶パネル411に表示のための光を供給するバックライト装置(照明装置)412と、を備え、これらが枠状のベゼル413などにより一体的に保持される。なお、液晶パネル411は、実施形態1と同様の構成を備えている。
<Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIGS. As in the first embodiment, in the fifth embodiment, a liquid crystal display device 410 used in a television receiver will be described. As shown in FIG. 11, the liquid crystal display device 410 displays a liquid crystal panel (display panel) that displays an image. ) 411 and a backlight device (illumination device) 412 that supplies light for display to the liquid crystal panel 411, and these are integrally held by a frame-like bezel 413 or the like. The liquid crystal panel 411 has the same configuration as that of the first embodiment.
 一方、バックライト装置412は、図10及び図11に示すように、表側(液晶パネル411側)に向けて開口する光出射部414bを有した略箱型をなすシャーシ(筐体)414と、シャーシ414の光出射部(開口部)414bを覆う形で配される光学部材(光学シート)415と、光学部材415を裏側から支持するフレーム416と、を備える。さらに、シャーシ414内には、光源である赤色レーザ光源(レーザ光源)417、青色レーザ光源(レーザ光源)418及び緑色LED光源(LED光源)419と、赤色レーザ光源417及び青色レーザ光源418が実装されたレーザ光源基板420と、緑色LED光源419が実装されたLED光源基板421と、各光源417~419からの光を導光して光学部材415(液晶パネル411)へと導く導光板422と、導光板422の裏側に積層配置される反射シート423と、反射シート423とシャーシ414との間に介在して導光板422を裏側から支持する導光板支持部材424と、が備えられる。なお、図10では、区別のために赤色レーザ光源417には縦縞の模様を、青色レーザ光源418には横縞の模様を、緑色LED光源419には斜め縞の模様を、それぞれ付している。そして、このバックライト装置412は、その短辺方向(Y軸方向)についての両端部にレーザ光源基板420とLED光源基板421とが配されており、各光源417~419からの光が導光板422に対して両側から入光される両側入光タイプのエッジライト型(サイドライト型)とされる。続いて、バックライト装置412の各構成部品について詳しく説明する。 On the other hand, as shown in FIGS. 10 and 11, the backlight device 412 includes a substantially box-shaped chassis (housing) 414 having a light emitting portion 414b that opens toward the front side (the liquid crystal panel 411 side); An optical member (optical sheet) 415 arranged to cover the light emitting portion (opening) 414b of the chassis 414, and a frame 416 that supports the optical member 415 from the back side. Further, a red laser light source (laser light source) 417, a blue laser light source (laser light source) 418, and a green LED light source (LED light source) 419, which are light sources, and a red laser light source 417 and a blue laser light source 418 are mounted in the chassis 414. A laser light source substrate 420, an LED light source substrate 421 on which a green LED light source 419 is mounted, and a light guide plate 422 that guides light from each of the light sources 417 to 419 to the optical member 415 (liquid crystal panel 411). A reflection sheet 423 that is stacked on the back side of the light guide plate 422, and a light guide plate support member 424 that is interposed between the reflection sheet 423 and the chassis 414 and supports the light guide plate 422 from the back side. In FIG. 10, the red laser light source 417 has a vertical stripe pattern, the blue laser light source 418 has a horizontal stripe pattern, and the green LED light source 419 has a diagonal stripe pattern for distinction. In the backlight device 412, a laser light source substrate 420 and an LED light source substrate 421 are disposed at both ends in the short side direction (Y-axis direction), and light from each of the light sources 417 to 419 is transmitted through the light guide plate. Both sides light incident type edge light type (side light type) that is incident on both sides of 422 is used. Next, each component of the backlight device 412 will be described in detail.
 赤色レーザ光源417は、図10及び図11に示すように、赤色レーザ光を発する赤色半導体レーザ素子を有する。青色レーザ光源418は、青色レーザ光を発する青色半導体レーザ素子を有する。これら赤色レーザ光源417及び青色レーザ光源418が発する各色のレーザ光は、それぞれ位相及び波長が揃ったコヒーレント光であり、後述する緑色LED光源419から発せられる緑色光に比べると、発散角が小さくて直進性が強い。そして、赤色レーザ光源417及び青色レーザ光源418が発する各色のレーザ光は、一般的な赤色LED光源や青色LED光源が発する各色の光に比べると、色純度が優れている。また、赤色レーザ光源417及び青色レーザ光源418は、自身の発光面とは反対側の面が次述するレーザ光源基板420にそれぞれ実装されており、いわゆる頂面発光型とされる。 As shown in FIGS. 10 and 11, the red laser light source 417 has a red semiconductor laser element that emits red laser light. The blue laser light source 418 includes a blue semiconductor laser element that emits blue laser light. The laser light of each color emitted from the red laser light source 417 and the blue laser light source 418 is coherent light having the same phase and wavelength, and has a smaller divergence angle than green light emitted from a green LED light source 419 described later. Strong straightness. The color laser light emitted from the red laser light source 417 and the blue laser light source 418 is superior in color purity as compared to the light of each color emitted from a general red LED light source or blue LED light source. Further, the red laser light source 417 and the blue laser light source 418 are each mounted on a laser light source substrate 420 described below on the side opposite to the light emitting surface of the red laser light source 417 and are of a so-called top surface emission type.
 レーザ光源基板420は、図10及び図11に示すように、シャーシ414の長辺方向に沿って延在する板状をなしており、長辺側の一方(図10に示す上側)の側部414cに対して取り付けられている。レーザ光源基板420は、赤色レーザ光源417及び青色レーザ光源418が実装された実装面420aが導光板422の長辺側の一方の端面と対向状をなしている。レーザ光源基板420の実装面420aには、赤色レーザ光源417及び青色レーザ光源418に対して給電するための配線パターン(図示せず)がパターニングされるとともに、複数ずつの赤色レーザ光源417及び青色レーザ光源418がX軸方向に沿って間隔を空けて交互に並ぶ形で実装されている。詳しくは、複数ずつの赤色レーザ光源417及び青色レーザ光源418は、隣り合うものの間の間隔が2通りとされており、相対的に狭い間隔で配置されるものが1つの組を構成している。従って、異なる組をなす赤色レーザ光源417及び青色レーザ光源418の間の間隔は、相対的に広くなっている。 As shown in FIGS. 10 and 11, the laser light source substrate 420 has a plate shape extending along the long side direction of the chassis 414, and one side of the long side (the upper side shown in FIG. 10). It is attached to 414c. In the laser light source substrate 420, a mounting surface 420 a on which the red laser light source 417 and the blue laser light source 418 are mounted is opposed to one end surface on the long side of the light guide plate 422. A wiring pattern (not shown) for supplying power to the red laser light source 417 and the blue laser light source 418 is patterned on the mounting surface 420a of the laser light source substrate 420, and a plurality of red laser light sources 417 and blue lasers are provided. The light sources 418 are mounted so as to be arranged alternately at intervals along the X-axis direction. Specifically, in the plurality of red laser light sources 417 and blue laser light sources 418, there are two intervals between adjacent ones, and those arranged at relatively narrow intervals constitute one set. . Therefore, the distance between the red laser light source 417 and the blue laser light source 418 that form different sets is relatively wide.
 緑色LED光源419は、図10及び図12に示すように、緑色光を発する緑色半導体素子(緑色LED素子)を有する。緑色LED光源419が発する緑色光は、インコヒーレント光であり、上記した赤色レーザ光源417及び青色レーザ光源418が発する各色のレーザ光に比べると、発散角が大きくて直進性が弱い。そして、緑色LED光源419は、一般的な緑色レーザ光源に比べると、発光効率が2倍程度優れており、低い消費電力でもって高い輝度が得られる。また、緑色LED光源419は、自身の発光面とは反対側の面が次述するLED光源基板421に実装されており、いわゆる頂面発光型とされる。 The green LED light source 419 includes a green semiconductor element (green LED element) that emits green light, as shown in FIGS. 10 and 12. Green light emitted from the green LED light source 419 is incoherent light, and has a larger divergence angle and weaker straightness than the laser light of each color emitted from the red laser light source 417 and the blue laser light source 418 described above. The green LED light source 419 has a luminous efficiency that is approximately twice as high as that of a general green laser light source, and high luminance can be obtained with low power consumption. Further, the green LED light source 419 is mounted on the LED light source substrate 421 described below on the surface opposite to the light emitting surface of the green LED light source 419, and is a so-called top surface light emitting type.
 LED光源基板421は、図10及び図12に示すように、シャーシ414の長辺方向に沿って延在する板状をなしており、長辺側の他方(図10に示す下側)の側部414cに対して取り付けられている。LED光源基板421は、緑色LED光源419が実装された実装面421aが導光板422の長辺側の他方の端面と対向状をなしている。LED光源基板421の実装面421aには、緑色LED光源419に対して給電するための配線パターン(図示せず)がパターニングされるとともに、複数の緑色LED光源419がX軸方向に沿って間隔を空けて並ぶ形で実装されている。詳しくは、複数の緑色LED光源419は、隣り合うものの間の間隔が、同じ組をなす赤色レーザ光源417及び青色レーザ光源418におけるX軸方向についての配置範囲よりも広くされる。そして、複数の緑色LED光源419は、赤色レーザ光源417及び青色レーザ光源418とはX軸方向についてオフセットした配置(揃わない配置)とされる。 As shown in FIGS. 10 and 12, the LED light source substrate 421 has a plate shape extending along the long side direction of the chassis 414, and the other long side (the lower side shown in FIG. 10) side. It is attached to the part 414c. In the LED light source substrate 421, the mounting surface 421 a on which the green LED light source 419 is mounted is opposed to the other end surface on the long side of the light guide plate 422. A wiring pattern (not shown) for supplying power to the green LED light source 419 is patterned on the mounting surface 421a of the LED light source substrate 421, and a plurality of green LED light sources 419 are spaced along the X-axis direction. It is implemented in a line-up form. Specifically, in the plurality of green LED light sources 419, the interval between adjacent ones is made wider than the arrangement range in the X-axis direction in the red laser light source 417 and the blue laser light source 418 forming the same set. Then, the plurality of green LED light sources 419 are arranged (displaced) so as to be offset from the red laser light source 417 and the blue laser light source 418 in the X-axis direction.
 導光板422は、図10に示すように、光学部材415などと同様に平面に視て横長の略方形状をなしている。導光板422の外周端面のうち長辺側の一方(図10に示す上側)の端面は、赤色レーザ光源417及び青色レーザ光源418の各発光面と正対していて各色のレーザ光が入射されるレーザ入光部(入光部)422aを有しており、その設置数及び配置間隔は赤色レーザ光源417及び青色レーザ光源418の設置組数及び各組間の配置間隔と同一である。レーザ入光部422aは、X軸方向についての形成範囲が1つの組をなす赤色レーザ光源417及び青色レーザ光源418の配置範囲とほぼ一致している。導光板422の外周端面のうち長辺側の他方(図10に示す下側)の端面は、緑色LED光源419の発光面と対向(正対)していて緑色光が入射されるLED入光部422bを有しており、その設置数及び配置間隔は緑色LED光源419の設置数及び配置間隔と同一である。LED入光部422bは、X軸方向についての形成範囲が、上記他方の端面のうち緑色LED光源419と正対する部分に加えてその正対部分(緑色LED光源419の配置範囲)よりもさらに左右に広くなっている。その理由は、緑色LED光源419から発せられる緑色光の発散角が各レーザ光源417,418の同発散角よりも大きい為である。さらには、導光板422の外周端面のうちのLED入光部422bを有する長辺側の他方の端面は、レーザ入光部422aとは反対側に位置する部分であるレーザ入光反対部(入光反対部)422eを有している。レーザ入光反対部422eは、導光板422の上記他方の端面においてLED入光部422bとX軸方向に沿って交互に並ぶ形で複数配されており、その設置数及び配置間隔は赤色レーザ光源417及び青色レーザ光源418の設置組数及び各組間の配置間隔と同一である。導光板422は、図11及び図12に示すように、表裏一対の板面のうち、表側を向いた板面が、光を液晶パネル411及び光学部材415に向けて出射させる出光板面422cとされ、裏側を向いた板面が出光板面422cとは反対側の出光反対板面422dとされる。以上により、導光板422は、各光源417~419からY軸方向に沿って発せられた光を各入光部422a,422bから導入するとともに、その光を内部で伝播させた後にZ軸方向に沿って立ち上げて出光板面422cから光学部材415側(表側、光出射側)へ向けて出射させる機能を有している。 As shown in FIG. 10, the light guide plate 422 has a horizontally long substantially rectangular shape when viewed in a plane, like the optical member 415 and the like. Of the outer peripheral end surfaces of the light guide plate 422, one of the long side end surfaces (the upper side shown in FIG. 10) faces the light emitting surfaces of the red laser light source 417 and the blue laser light source 418 and the laser beams of the respective colors are incident thereon. A laser incident portion (incident portion) 422a is provided, and the number and arrangement interval of the laser incident portions 422a are the same as the number of arrangement groups of the red laser light source 417 and the blue laser light source 418 and the arrangement interval between the respective groups. In the laser incident portion 422a, the formation range in the X-axis direction substantially coincides with the arrangement range of the red laser light source 417 and the blue laser light source 418 forming one set. Among the outer peripheral end faces of the light guide plate 422, the other end face on the long side (the lower side shown in FIG. 10) faces the light emitting face of the green LED light source 419 (facing directly), and the LED incident light on which green light is incident. Part 422b, and the installation number and arrangement interval thereof are the same as the installation number and arrangement interval of the green LED light sources 419. The LED light incident portion 422b has a formation range in the X-axis direction that is further left and right than the portion facing the green LED light source 419 in the other end face, and the right-hand facing portion (the arrangement range of the green LED light source 419). It has become wide. The reason is that the divergence angle of the green light emitted from the green LED light source 419 is larger than the divergence angles of the laser light sources 417 and 418. Further, of the outer peripheral end surfaces of the light guide plate 422, the other end surface on the long side having the LED light incident portion 422b is a portion positioned on the side opposite to the laser light incident portion 422a (light incident opposite portion (light incident). Light opposite portion) 422e. A plurality of laser incident light opposite portions 422e are arranged on the other end surface of the light guide plate 422 in a form alternately arranged along with the LED incident light portions 422b along the X-axis direction, and the number and arrangement intervals of the laser incident light portions 422e are red laser light sources. The number of installation groups 417 and the blue laser light source 418 and the arrangement interval between the groups are the same. As shown in FIGS. 11 and 12, the light guide plate 422 has a light-emitting plate surface 422 c that emits light toward the liquid crystal panel 411 and the optical member 415, of the pair of front and back plate surfaces. The plate surface facing the back side is the light output opposite plate surface 422d opposite to the light output plate surface 422c. As described above, the light guide plate 422 introduces light emitted from the light sources 417 to 419 along the Y-axis direction from the light incident portions 422a and 422b, and after propagating the light internally, extends in the Z-axis direction. And has a function of emitting light from the light exit plate surface 422c toward the optical member 415 side (front side, light emission side).
 反射シート423は、図11に示すように、導光板422の出光反対板面422dを覆う形で配される。反射シート423は、光反射性に優れており、導光板422の出光反対板面422dから漏れた光を表側(出光板面422c)に向けて効率的に立ち上げることができる。反射シート423は、導光板422よりも一回り大きな外形を有しており、長辺側の両端部が導光板422の各入光部422a,422bよりも各光源417~419側にそれぞれ突き出す形で配されている。 As shown in FIG. 11, the reflection sheet 423 is disposed so as to cover the light output opposite plate surface 422 d of the light guide plate 422. The reflection sheet 423 is excellent in light reflectivity, and can efficiently start the light leaked from the light output opposite plate surface 422d of the light guide plate 422 toward the front side (light output plate surface 422c). The reflection sheet 423 has an outer shape that is slightly larger than the light guide plate 422, and both ends on the long side protrude from the light incident portions 422a and 422b of the light guide plate 422 toward the light sources 417 to 419, respectively. It is arranged with.
 導光板支持部材424は、合成樹脂製とされ、図11及び図12に示すように、導光板422における長辺側の両端部を裏側からそれぞれ支持する形で一対備えられる。導光板支持部材424は、シャーシ414の底部414aと反射シート423との間に介在する形で配されており、導光板422を底部414aとは直接接することがないよう底部414aから持ち上げた形で支持している。これにより、各光源417~419と導光板422とのZ軸方向についての位置関係を安定的に保持することができるのに加えて、各光源417~419から発光に伴って生じた熱が各基板420,421を介してシャーシ414に伝達されても、シャーシ414から導光板422へ伝達され難くなっている。導光板支持部材424は、導光板422及び反射シート423の長辺方向に沿って延在して反射シート423に直接接する本体部424aと、本体部424aにおけるY軸方向についての両端部から裏側に向けて突出してシャーシ414の底部414aに接する一対の脚部424bと、からなる。 The light guide plate support members 424 are made of synthetic resin, and as shown in FIGS. 11 and 12, a pair of light guide plate support members 424 are provided so as to support both ends of the long side of the light guide plate 422 from the back side. The light guide plate support member 424 is disposed so as to be interposed between the bottom portion 414a of the chassis 414 and the reflection sheet 423. The light guide plate 422 is lifted from the bottom portion 414a so as not to be in direct contact with the bottom portion 414a. I support it. Thus, the positional relationship between the light sources 417 to 419 and the light guide plate 422 in the Z-axis direction can be stably maintained, and in addition, the heat generated by the light emission from the light sources 417 to 419 Even if it is transmitted to the chassis 414 via the substrates 420 and 421, it is difficult to transmit from the chassis 414 to the light guide plate 422. The light guide plate support member 424 extends along the long side direction of the light guide plate 422 and the reflection sheet 423 and directly contacts the reflection sheet 423, and from both ends of the main body portion 424a in the Y-axis direction to the back side. And a pair of leg portions 424b that contact the bottom portion 414a of the chassis 414.
 ここで、バックライト装置412に備わる各光源417~419における主発光波長及び発光スペクトルについては、実施形態2と同様で図7の通り示される。また、液晶パネル411に備わるカラーフィルタの各着色部における透過スペクトルについても、実施形態2と同様で図7の通り示される。 Here, the main emission wavelength and emission spectrum of each of the light sources 417 to 419 provided in the backlight device 412 are shown in FIG. 7 as in the second embodiment. Further, the transmission spectrum in each colored portion of the color filter provided in the liquid crystal panel 411 is also shown in FIG. 7 as in the second embodiment.
 さて、本実施形態に係るバックライト装置412は、図10及び図11に示すように、導光板422内を伝播する各色のレーザ光を拡散反射するための拡散反射部材426を有している。拡散反射部材426は、表面が光の反射性に優れた白色を呈する合成樹脂製(例えばPCT樹脂製)とされており、導光板422の外周端面のうちのLED光源基板421と対向状をなす長辺側の他方(図10に示す下側)の端面におけるレーザ入光反対部422eと正対する形で配されている。拡散反射部材426は、導光板422の上記他方の端面においてLED入光部422bとX軸方向に沿って交互に並ぶ形で複数配されており、その設置数及び配置間隔はレーザ入光反対部422eの設置数及び配置間隔(赤色レーザ光源417及び青色レーザ光源418の設置組数及び各組間の配置間隔)と同一である。そして、拡散反射部材426は、LED光源基板421に一体に設けられていて、導光板422から物理的に切り離されている。拡散反射部材426は、Y軸方向について導光板422とLED光源基板421との間に挟み込まれる形で配されるとともに、緑色LED光源419に対してX軸方向について隣り合う形で配されている。 Now, as shown in FIGS. 10 and 11, the backlight device 412 according to this embodiment includes a diffuse reflection member 426 for diffusing and reflecting the laser beams of each color propagating through the light guide plate 422. The diffuse reflection member 426 is made of a synthetic resin (for example, made of PCT resin) having a white surface with excellent light reflectivity, and is opposed to the LED light source substrate 421 on the outer peripheral end surface of the light guide plate 422. It is arranged so as to face the laser incident light opposite portion 422e on the other end face on the other long side (lower side shown in FIG. 10). A plurality of the diffuse reflection members 426 are arranged on the other end face of the light guide plate 422 in a form alternately arranged along the X-axis direction with the LED light incident portions 422b. It is the same as the installation number and arrangement interval of 422e (the number of installation sets of red laser light source 417 and blue laser light source 418 and the arrangement interval between each set). The diffuse reflection member 426 is provided integrally with the LED light source substrate 421 and is physically separated from the light guide plate 422. The diffuse reflection member 426 is disposed so as to be sandwiched between the light guide plate 422 and the LED light source substrate 421 in the Y-axis direction, and is disposed adjacent to the green LED light source 419 in the X-axis direction. .
 このような構成によれば、赤色レーザ光源417及び青色レーザ光源418から発せられた赤色レーザ光及び青色レーザ光は、導光板422のレーザ入光部422aに入射すると、導光板422内を直進してレーザ入光部422aとは反対側に位置するレーザ入光反対部422eに達する。レーザ入光反対部422eに達した赤色レーザ光及び青色レーザ光は、拡散反射部材426によって拡散反射されることで、導光板422内を拡散しつつレーザ入光部422a側へ向けて進行した後に出光板面422cから出射される。このように、Y軸方向について緑色LED光源419と同じ側に配される拡散反射部材426が、緑色LED光源419と同等またはそれ以上の発散角となる赤色及び青色の拡散光を発する擬似的な赤色拡散光源及び青色拡散光源として機能する。これにより、拡散反射部材426によって拡散反射された赤色光及び青色光は、緑色LED光源419から発せられてLED入光部422bに入射した緑色光と共に導光板422内にて良好にミキシングされて色ムラの無い白色光として出光板面422cから出射され、その輝度均一性及び色度均一性がいずれも高いものとなる。また、従来のように各光源毎に個別に導光棒を用いる構成に比べると、導光板422を用いているので、部品点数を削減する上で好適となる。その上で、拡散反射部材426は、導光板422から物理的に切り離されているので、各レーザ光源417,418に対する導光板422の位置関係を問わず、各レーザ光源417,418に対する位置関係が定まる。従って、仮に各レーザ光源417,418に対して導光板422が位置ずれした場合であっても、各レーザ光源417,418に対する拡散反射部材426の位置関係が安定的に保持され、もって赤色及び青色の各レーザ光が拡散反射部材426により拡散反射される確実性が高いものとされる。また、拡散反射部材426は、緑色LED光源419が実装されたLED光源基板421を利用して導光板422のレーザ入光反対部422eに対して正対する形で配されている。なお、液晶パネル411に表示される画像に係るホワイトバランスは、赤色レーザ光源417、青色レーザ光源418及び緑色LED光源419の出力を調整することで制御することができ、液晶パネル411におけるR,G,Bの各画素のγ値を調整する必要がないものとされる。 According to such a configuration, when the red laser light and the blue laser light emitted from the red laser light source 417 and the blue laser light source 418 are incident on the laser incident portion 422 a of the light guide plate 422, they travel straight in the light guide plate 422. Thus, it reaches the laser incident light opposite portion 422e located on the opposite side to the laser incident portion 422a. The red laser beam and the blue laser beam that have reached the laser incident light opposite portion 422e are diffused and reflected by the diffuse reflection member 426, and then proceed toward the laser incident portion 422a while diffusing in the light guide plate 422. The light exits from the light exit plate surface 422c. In this manner, the diffuse reflection member 426 disposed on the same side as the green LED light source 419 in the Y-axis direction emits pseudo red and blue diffused light having a divergence angle equal to or greater than that of the green LED light source 419. It functions as a red diffuse light source and a blue diffuse light source. As a result, the red light and blue light diffusely reflected by the diffuse reflection member 426 are mixed well in the light guide plate 422 together with the green light emitted from the green LED light source 419 and incident on the LED light incident part 422b. The white light without unevenness is emitted from the light output plate surface 422c, and the luminance uniformity and chromaticity uniformity are both high. Further, as compared with a conventional configuration in which a light guide bar is individually used for each light source, the light guide plate 422 is used, which is preferable in reducing the number of components. In addition, since the diffuse reflection member 426 is physically separated from the light guide plate 422, the positional relationship with respect to the laser light sources 417 and 418 is independent of the positional relationship of the light guide plate 422 with respect to the laser light sources 417 and 418. Determined. Therefore, even if the light guide plate 422 is displaced with respect to the laser light sources 417 and 418, the positional relationship of the diffuse reflection member 426 with respect to the laser light sources 417 and 418 is stably maintained, and thus red and blue It is assumed that each of the laser beams is reliably diffused and reflected by the diffuse reflection member 426. Further, the diffuse reflection member 426 is arranged in a form facing the laser incident light opposite portion 422e of the light guide plate 422 using the LED light source substrate 421 on which the green LED light source 419 is mounted. Note that white balance relating to an image displayed on the liquid crystal panel 411 can be controlled by adjusting the outputs of the red laser light source 417, the blue laser light source 418, and the green LED light source 419. , B does not need to be adjusted for each pixel.
 上記のように拡散反射部材426が一体に設けられたLED光源基板421は、図10及び図11に示すように、赤色レーザ光源417及び青色レーザ光源418が実装されたレーザ光源基板420と共通のシャーシ414に取り付けられている。従って、仮に拡散反射部材を導光板422と一体に設けるようにした場合に比べると、赤色レーザ光源417及び青色レーザ光源418と、拡散反射部材426と、をX軸方向及びZ軸方向について高い位置精度でもって位置合わせすることが可能となる。これにより、拡散反射部材426による光拡散反射機能を適切に発揮させる確実性が高いものとなる。 As described above, the LED light source substrate 421 on which the diffuse reflection member 426 is integrally provided is common to the laser light source substrate 420 on which the red laser light source 417 and the blue laser light source 418 are mounted, as shown in FIGS. It is attached to the chassis 414. Therefore, compared with the case where the diffuse reflection member is provided integrally with the light guide plate 422, the red laser light source 417, the blue laser light source 418, and the diffuse reflection member 426 are positioned higher in the X-axis direction and the Z-axis direction. It is possible to align with accuracy. Thereby, the certainty of appropriately exerting the light diffuse reflection function by the diffuse reflection member 426 becomes high.
 LED光源基板421及び拡散反射部材426は、図10及び図11に示すように、導光板422に対して鉛直方向の下側に配されるのが好ましい。なお、図10における上下は鉛直方向の上下と一致しており、図11における左側が鉛直方向の下側と、図11における右側が鉛直方向の上側と、それぞれ一致している。そして、拡散反射部材426は、導光板422のレーザ入光反対部422eに接する形で配されている。このようにすれば、導光板422に作用する重力(自重)を利用してレーザ入光反対部422eに対して拡散反射部材426を密着状態に継続的に保持することができ、レーザ入光反対部422eと拡散反射部材426との間に隙間が生じ難くなっている。これにより、赤色レーザ光及び青色レーザ光がレーザ入光反対部422eから光漏れし難くなり、拡散反射部材426によって拡散反射されて有効利用される確実性が高いものとされる。 The LED light source substrate 421 and the diffuse reflection member 426 are preferably disposed on the lower side in the vertical direction with respect to the light guide plate 422 as shown in FIGS. Note that the top and bottom in FIG. 10 coincide with the top and bottom in the vertical direction, the left side in FIG. 11 coincides with the lower side in the vertical direction, and the right side in FIG. The diffuse reflection member 426 is arranged in contact with the laser incident light opposite portion 422e of the light guide plate 422. In this way, the diffuse reflection member 426 can be continuously held in close contact with the laser incident light opposite portion 422e using gravity (self-weight) acting on the light guide plate 422, and the laser incident light is opposite. It is difficult for a gap to be formed between the portion 422e and the diffuse reflection member 426. As a result, the red laser beam and the blue laser beam are less likely to leak from the laser incident light opposite portion 422e, and the certainty of being diffused and reflected by the diffuse reflection member 426 and being effectively used is high.
 拡散反射部材426及びレーザ入光反対部422eは、図10に示すように、X軸方向についての形成範囲が1つの組をなす赤色レーザ光源417及び青色レーザ光源418におけるX軸方向についての配置範囲とほぼ等しくされている。つまり、拡散反射部材426は、1つの組をなす赤色レーザ光源417と青色レーザ光源418とに跨る形成範囲を有している。このような構成によれば、仮に拡散反射部材が1つの組をなす赤色レーザ光源417と青色レーザ光源418とに対して個別に対応付けて設けられた場合に比べると、拡散反射部材426により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができるとともに、拡散反射部材426の設置が容易なものとなる。 As shown in FIG. 10, the diffuse reflection member 426 and the laser incident light opposite portion 422e are arranged in the X axis direction in the red laser light source 417 and the blue laser light source 418 in which the formation range in the X axis direction forms one set. And are almost equal. In other words, the diffuse reflection member 426 has a formation range straddling the red laser light source 417 and the blue laser light source 418 forming one set. According to such a configuration, the diffuse reflection member 426 causes the red color to be red compared to the case where the diffuse reflection member is provided individually corresponding to the red laser light source 417 and the blue laser light source 418 that form a pair. Laser light and blue laser light can be efficiently scattered and reflected, and the diffuse reflection member 426 can be easily installed.
 以上説明したように本実施形態のバックライト装置(照明装置)412は、レーザ光を発するレーザ光源である赤色レーザ光源417及び青色レーザ光源418と、外周端面のうちレーザ光源である赤色レーザ光源417及び青色レーザ光源418と正対する部分が、レーザ光が入射されるレーザ入光部(入光部)422aとされ、外周端面のうちレーザ入光部422aとは反対側に位置する部分がレーザ入光反対部(入光反対部)422eとされ、一対の板面のいずれか一方が光を出射させる出光板面422cとされる導光板422と、導光板422のレーザ入光反対部422eに対して正対する形で配されて導光板422から物理的に切り離されていてレーザ光を拡散反射する拡散反射部材426と、を備える。 As described above, the backlight device (illumination device) 412 of this embodiment includes the red laser light source 417 and the blue laser light source 418 that are laser light sources that emit laser light, and the red laser light source 417 that is the laser light source among the outer peripheral end surfaces. The portion directly facing the blue laser light source 418 is a laser incident portion (incident portion) 422a on which laser light is incident, and the portion located on the opposite side of the laser incident portion 422a on the outer peripheral end surface is the laser incident portion. A light guide plate 422 that is a light opposite portion (light incident opposite portion) 422e and one of a pair of plate surfaces is a light exit plate surface 422c that emits light, and a laser light incident opposite portion 422e of the light guide plate 422 And a diffuse reflection member 426 that is arranged in a face-to-face relationship and is physically separated from the light guide plate 422 and diffuses and reflects the laser light.
 このような構成によれば、レーザ光源である赤色レーザ光源417及び青色レーザ光源418から発せられたレーザ光は、導光板422のレーザ入光部422aに入射し、導光板422内を直進する形でレーザ入光反対部422eへと向かう。レーザ入光反対部422eに達したレーザ光は、レーザ入光反対部422eに対して正対する形で配された拡散反射部材426によって拡散反射されることで、導光板422内を拡散しつつレーザ入光部422a側へ向けて進行した後に出光板面422cから出射される。これにより、出光板面422cの面内において出射光の輝度均一性が高いものとされる。また、従来のように各光源毎に個別に導光棒を用いる構成に比べると、導光板422を用いているので、部品点数を削減する上で好適となる。 According to such a configuration, the laser light emitted from the red laser light source 417 and the blue laser light source 418 that are laser light sources is incident on the laser incident portion 422a of the light guide plate 422 and travels straight in the light guide plate 422. To the laser incident light opposite portion 422e. The laser light that has reached the laser incident light opposite portion 422e is diffusely reflected by the diffuse reflection member 426 arranged in a form facing the laser incident light opposite portion 422e, so that the laser beam is diffused in the light guide plate 422. After traveling toward the light incident portion 422a, the light exits from the light exit plate surface 422c. As a result, the luminance uniformity of the emitted light is high within the surface of the light output plate surface 422c. Further, as compared with a conventional configuration in which a light guide bar is individually used for each light source, the light guide plate 422 is used, which is preferable in reducing the number of components.
 拡散反射部材426は、導光板422から物理的に切り離されているので、レーザ光源である赤色レーザ光源417及び青色レーザ光源418に対する導光板422の位置関係を問わず、レーザ光源である赤色レーザ光源417及び青色レーザ光源418に対する位置関係が定まる。従って、仮にレーザ光源である赤色レーザ光源417及び青色レーザ光源418に対して導光板422が位置ずれした場合であっても、レーザ光源である赤色レーザ光源417及び青色レーザ光源418に対する拡散反射部材426の位置関係が安定的に保持され、もってレーザ光が拡散反射部材426により拡散反射される確実性が高いものとされる。 Since the diffuse reflection member 426 is physically separated from the light guide plate 422, the red laser light source that is a laser light source regardless of the positional relationship of the light guide plate 422 with respect to the red laser light source 417 and the blue laser light source 418 that are laser light sources. The positional relationship with respect to 417 and the blue laser light source 418 is determined. Therefore, even if the light guide plate 422 is displaced with respect to the red laser light source 417 and the blue laser light source 418 that are laser light sources, the diffuse reflection member 426 for the red laser light source 417 and the blue laser light source 418 that are laser light sources. Therefore, the laser beam is diffused and reflected by the diffuse reflection member 426 with high certainty.
 また、LED光源である緑色LED光源419と、LED光源である緑色LED光源419が実装されてレーザ入光反対部422eと対向状をなすLED光源基板421と、を備え、導光板422は、外周端面のうち少なくともLED光源である緑色LED光源419と正対する部分が、LED光源である緑色LED光源419の光が入射されるLED入光部422bとされており、拡散反射部材426は、LED光源基板421に設けられている。このようにすれば、LED光源である緑色LED光源419から発せられた光は、導光板422のLED入光部422bに入射し、導光板422内を伝播された後に出光板面422cから出射される。LED光源である緑色LED光源419が実装されたLED光源基板421を利用して拡散反射部材426を導光板422のレーザ入光反対部422eに対して正対する形で配することができる。 The light source plate 422 includes a green LED light source 419 that is an LED light source and an LED light source substrate 421 that is mounted with the green LED light source 419 that is an LED light source and faces the laser incident light opposite portion 422e. At least a portion of the end face that directly faces the green LED light source 419 that is an LED light source is an LED light incident part 422b into which the light of the green LED light source 419 that is an LED light source is incident, and the diffuse reflection member 426 is an LED light source. A substrate 421 is provided. In this way, the light emitted from the green LED light source 419 that is the LED light source is incident on the LED light incident part 422b of the light guide plate 422, propagated through the light guide plate 422, and then emitted from the light exit plate surface 422c. The The diffuse reflection member 426 can be arranged in a form facing the laser incident light opposite portion 422e of the light guide plate 422 using an LED light source substrate 421 on which a green LED light source 419 as an LED light source is mounted.
 また、レーザ光源である赤色レーザ光源417及び青色レーザ光源418が実装されてレーザ入光部422aと対向状をなすレーザ光源基板420と、レーザ光源基板420及びLED光源基板421が取り付けられるとともに導光板422を収容するシャーシ(筐体)414と、を備える。このようにすれば、レーザ光源基板420と、拡散反射部材426が設けられたLED光源基板421と、が共通のシャーシ414に取り付けられるので、レーザ光源である赤色レーザ光源417及び青色レーザ光源418と拡散反射部材426との位置関係に係る位置精度を高く保つ上で好適となる。 Further, a laser light source substrate 420 on which a red laser light source 417 and a blue laser light source 418, which are laser light sources, are mounted and opposed to the laser incident portion 422a, a laser light source substrate 420 and an LED light source substrate 421 are attached, and a light guide plate A chassis (housing) 414 that accommodates 422. In this way, the laser light source substrate 420 and the LED light source substrate 421 provided with the diffuse reflection member 426 are attached to the common chassis 414. Therefore, the red laser light source 417 and the blue laser light source 418, which are laser light sources, are provided. This is suitable for maintaining high positional accuracy related to the positional relationship with the diffuse reflection member 426.
 また、LED光源基板421は、導光板422に対して鉛直方向についての下側に配されており、拡散反射部材426は、導光板422のレーザ入光反対部422eに接する形で配されている。このようにすれば、導光板422に作用する重力を利用してレーザ入光反対部422eと拡散反射部材426とを密着状態に保つことができる。これにより、レーザ入光反対部422eと拡散反射部材426との間から光漏れが生じ難くなり、光の利用効率に優れる。 Further, the LED light source substrate 421 is disposed on the lower side in the vertical direction with respect to the light guide plate 422, and the diffuse reflection member 426 is disposed in contact with the laser incident light opposite portion 422e of the light guide plate 422. . In this way, the laser incident light opposite portion 422e and the diffuse reflection member 426 can be kept in close contact with each other by utilizing the gravity acting on the light guide plate 422. As a result, light leakage hardly occurs between the laser incident light opposite portion 422e and the diffuse reflection member 426, and the light use efficiency is excellent.
 また、レーザ光源には、赤色レーザ光を発する赤色レーザ光源417と、青色レーザ光を発する青色レーザ光源418と、が含まれるのに対し、LED光源には、緑色光を発する緑色LED光源419が含まれている。このようにすれば、拡散反射部材426は、赤色レーザ光源417及び青色レーザ光源418から発せられた赤色レーザ光及び青色レーザ光を拡散反射することで、拡散光を発する擬似的な赤色拡散光源及び青色拡散光源として機能するので、拡散反射部材426により拡散反射された赤色光及び青色光は、緑色LED光源419から発せられてLED入光部422bに入射した緑色光と共に導光板422内にて良好にミキシングされて白色光として出光板面422cから出射される。赤色レーザ光源417から発せられる赤色レーザ光と、青色レーザ光源418から発せられる青色レーザ光とは、互いに波長範囲が干渉することが殆ど無く、且つ緑色LED光源419から発せられる緑色光に対しても波長範囲が干渉することが殆ど無いものとされる。これにより、各色の色純度が十分に高いものとなる。しかも、緑色LED光源419は、緑色レーザ光を発する緑色レーザ光源に比べると、発光効率が良好なので、低消費電力で高輝度が得られる。 The laser light source includes a red laser light source 417 that emits red laser light and a blue laser light source 418 that emits blue laser light, whereas the LED light source includes a green LED light source 419 that emits green light. include. In this way, the diffuse reflection member 426 is a pseudo red diffused light source that emits diffused light by diffusing and reflecting the red laser light and the blue laser light emitted from the red laser light source 417 and the blue laser light source 418. Since it functions as a blue diffused light source, the red light and blue light diffusely reflected by the diffuse reflection member 426 are good in the light guide plate 422 together with the green light emitted from the green LED light source 419 and incident on the LED light incident part 422b. And is emitted as white light from the light output plate surface 422c. The red laser light emitted from the red laser light source 417 and the blue laser light emitted from the blue laser light source 418 hardly interfere with each other in the wavelength range, and also with respect to the green light emitted from the green LED light source 419. It is assumed that the wavelength range hardly interferes. Thereby, the color purity of each color becomes sufficiently high. Moreover, since the green LED light source 419 has better luminous efficiency than a green laser light source that emits green laser light, high luminance can be obtained with low power consumption.
 また、赤色レーザ光源417及び青色レーザ光源418は、互いに隣り合う形で配されており、拡散反射部材426は、赤色レーザ光源417と青色レーザ光源418とに跨る形成範囲を有する。このようにすれば、互いに隣り合う赤色レーザ光源417と青色レーザ光源418とに跨る形成範囲を有する拡散反射部材426により赤色レーザ光及び青色レーザ光を効率的に散乱反射することができる。 Also, the red laser light source 417 and the blue laser light source 418 are arranged adjacent to each other, and the diffuse reflection member 426 has a formation range straddling the red laser light source 417 and the blue laser light source 418. In this way, the red laser light and the blue laser light can be efficiently scattered and reflected by the diffuse reflection member 426 having a formation range extending between the red laser light source 417 and the blue laser light source 418 adjacent to each other.
 また、本実施形態に係る液晶表示装置(表示装置)410は、上記記載のバックライト装置412と、バックライト装置412から照射される光を利用して画像を表示する液晶パネル(表示パネル)411と、を備える。このような構成の液晶表示装置410によれば、バックライト装置412の部品点数が削減されるとともに、バックライト装置412においてレーザ光が拡散反射部材426により拡散反射される確実性が高いから、製造コストを削減することができるとともに、表示品位に優れた表示を実現することができる。 In addition, the liquid crystal display device (display device) 410 according to the present embodiment includes the backlight device 412 described above and a liquid crystal panel (display panel) 411 that displays an image using light emitted from the backlight device 412. And comprising. According to the liquid crystal display device 410 having such a configuration, the number of components of the backlight device 412 is reduced, and it is highly reliable that the laser light is diffusely reflected by the diffuse reflection member 426 in the backlight device 412. The cost can be reduced and a display with excellent display quality can be realized.
 また、本実施形態に係るテレビ受信装置410TVは、上記記載の液晶表示装置410を備える。このようなテレビ受信装置410TVによれば、液晶表示装置410の製造コストが削減されるとともに、表示品位が優れたものとされているから、価格競争力に優れるとともに、表示品位に優れたテレビ画像の表示を実現することができる。 Further, the television receiver 410TV according to the present embodiment includes the liquid crystal display device 410 described above. According to such a television receiver 410TV, the manufacturing cost of the liquid crystal display device 410 is reduced and the display quality is excellent. Therefore, the television image is excellent in price competitiveness and excellent in display quality. Display can be realized.
 <実施形態6>
 本発明の実施形態6を図13または図14によって説明する。この実施形態6では、拡散反射部材を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 6>
A sixth embodiment of the present invention will be described with reference to FIG. 13 or FIG. In the sixth embodiment, a diffuse reflection member is changed. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 5 is abbreviate | omitted.
 本実施形態に係る拡散反射部材5126は、図13及び図14に示すように、導光板支持部材5124に設けられている。詳しくは、導光板5122におけるY軸方向についての両端部をそれぞれ支持する一対の導光板支持部材5124のうち、Y軸方向についてレーザ光源基板5120側とは反対側、つまりLED光源基板5121側に配された導光板支持部材5124には、拡散反射部材5126が設けられている。拡散反射部材5126は、上記導光板支持部材5124を構成する本体部5124aから表側(脚部5124bの突出側とは反対側)に向けて立ち上がる形で設けられるとともに、導光板5122のレーザ入光反対部5122eと正対する形で配されている。拡散反射部材5126は、本体部5124aにおいてX軸方向について間隔を空けて複数が並んで配されており、その配置が導光板5122における複数のレーザ入光反対部5122eの配置と一致している。拡散反射部材5126は、導光板5122のレーザ入光反対部5122eとは直接接するものの、LED光源基板5121に対しては離間している(間隔を空けて配されている)。このように導光板5122を支持するための導光板支持部材5124を利用して拡散反射部材5126を導光板5122のレーザ入光反対部5122eに対して正対する形で配することができる。 The diffuse reflection member 5126 according to the present embodiment is provided on the light guide plate support member 5124 as shown in FIGS. Specifically, of the pair of light guide plate support members 5124 that respectively support both ends of the light guide plate 5122 in the Y axis direction, the Y light source plate 5122 is disposed on the opposite side of the laser light source substrate 5120 side, that is, on the LED light source substrate 5121 side. The light guide plate support member 5124 is provided with a diffuse reflection member 5126. The diffuse reflection member 5126 is provided so as to rise from the main body portion 5124a constituting the light guide plate support member 5124 toward the front side (the side opposite to the protruding side of the leg portion 5124b), and is opposite to the light incident on the light guide plate 5122. It is arranged so as to face the portion 5122e. A plurality of diffuse reflection members 5126 are arranged in the main body portion 5124a at intervals in the X-axis direction, and the arrangement thereof matches the arrangement of the plurality of laser light incident opposite portions 5122e in the light guide plate 5122. The diffuse reflection member 5126 is in direct contact with the laser incident light opposite portion 5122e of the light guide plate 5122, but is separated from the LED light source substrate 5121 (disposed with an interval). In this way, the diffuse reflection member 5126 can be disposed in a form facing the laser incident light opposite portion 5122e of the light guide plate 5122 by using the light guide plate support member 5124 for supporting the light guide plate 5122.
 以上説明したように本実施形態によれば、導光板5122を出光板面5122c側とは反対側から支持する導光板支持部材5124を備えており、拡散反射部材5126は、導光板支持部材5124に設けられる。このようにすれば、導光板5122は、導光板支持部材5124によって出光板面5122c側とは反対側から支持されることで、レーザ光源である赤色レーザ光源5117及び青色レーザ光源5118とレーザ入光部5122aとの位置関係が安定的に保持される。この導光板支持部材5124を利用して拡散反射部材5126を導光板5122のレーザ入光反対部5122eに対して正対する形で配することができる。 As described above, according to the present embodiment, the light guide plate support member 5124 that supports the light guide plate 5122 from the side opposite to the light output plate surface 5122 c is provided, and the diffuse reflection member 5126 is provided on the light guide plate support member 5124. Provided. In this way, the light guide plate 5122 is supported by the light guide plate support member 5124 from the side opposite to the light output plate surface 5122c side, so that the red laser light source 5117 and the blue laser light source 5118, which are laser light sources, and the laser incident light. The positional relationship with the portion 5122a is stably maintained. Using this light guide plate support member 5124, the diffuse reflection member 5126 can be arranged in a form facing the laser incident light opposite portion 5122 e of the light guide plate 5122.
 <実施形態7>
 本発明の実施形態7を図15によって説明する。この実施形態7では、上記した実施形態5からレーザ入光部及びLED入光部の構成を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 7>
A seventh embodiment of the present invention will be described with reference to FIG. In the seventh embodiment, the configuration of the laser light incident section and the LED light incident section is changed from the above-described fifth embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 5 is abbreviate | omitted.
 本実施形態に係る導光板6222には、図15に示すように、その外周端面におけるレーザ入光部6222a及びLED入光部6222bにそれぞれ光屈折部627が設けられている。光屈折部627は、レーザ入光部6222a及びLED入光部6222bの各表面を、それぞれ断面形状がプリズム状となるよう凹凸加工してなる。光屈折部627は、各レーザ光源6217,6218からレーザ入光部6222aへ入射する各レーザ光や緑色LED光源6219からLED入光部6222bへ入射する緑色光に発散角が拡張するような屈折作用を付与するものである。光屈折部627によって屈折作用が付与された各光は、Y軸方向について各入光部6222a,6222bから離れる形で導光板6222内を進行する(例えばレーザ入光部6222a側からレーザ入光反対部6222eへ向けて進行する)過程でX軸方向について発散し、配光範囲が次第に広げられる。特に、各レーザ光は、光屈折部627によって配光範囲が広げられることで、レーザ入光反対部6222eに達したときに拡散反射部材6226に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材6226による拡散反射光の拡散範囲がより広いものとなる。これにより、導光板6222の出光板面6222cの面内において出射光の輝度均一性がより高いものとされる。 In the light guide plate 6222 according to the present embodiment, as shown in FIG. 15, a light refracting portion 627 is provided on each of the laser incident portion 6222a and the LED incident portion 6222b on the outer peripheral end face. The light refracting unit 627 is formed by processing the surfaces of the laser incident unit 6222a and the LED incident unit 6222b so that the cross-sectional shape is prismatic. The light refracting unit 627 has a refracting action that expands the divergence angle to each laser beam incident on the laser incident unit 6222a from each laser light source 6217, 6218 or green light incident on the LED incident unit 6222b from the green LED light source 6219. Is given. Each light to which the refractive action is imparted by the light refracting unit 627 travels in the light guide plate 6222 away from the respective light incident units 6222a and 6222b in the Y-axis direction (for example, opposite to the laser incident light from the laser light incident unit 6222a side). Diverges in the X-axis direction in the process of proceeding toward the portion 6222e, and the light distribution range is gradually expanded. In particular, each laser beam is diffused and reflected while being irradiated to the diffuse reflection member 6226 in a wider range when reaching the laser incident light opposite portion 6222e by expanding the light distribution range by the light refracting portion 627. Further, the diffusion range of the diffuse reflection light by the diffuse reflection member 6226 becomes wider. Thereby, the luminance uniformity of the emitted light is made higher in the plane of the light output plate surface 6222c of the light guide plate 6222.
 以上説明したように本実施形態によれば、導光板6222の外周端面における少なくともレーザ入光部6222aには、レーザ入光部6222aに入射したレーザ光の配光範囲がレーザ入光部6222a側からレーザ入光反対部6222eへ向かうほど広がるようレーザ光に屈折作用を付与する光屈折部627が設けられている。このようにすれば、レーザ光源である赤色レーザ光源6217及び青色レーザ光源6218から発せられたレーザ光は、レーザ入光部6222aに入射する際に光屈折部627によって屈折作用が付与される。屈折作用を付与されたレーザ光は、導光板6222内をレーザ入光部6222a側からレーザ入光反対部6222eへ向けて進行する過程で配光範囲が広げられる。従って、レーザ入光反対部6222eに達したレーザ光は、拡散反射部材6226に対してより広範囲に照射されつつ拡散反射されるので、拡散反射部材6226による拡散反射光の拡散範囲がより広いものとなる。これにより、出光板面6222cの面内において出射光の輝度均一性がより高いものとされる。 As described above, according to this embodiment, at least the laser incident portion 6222a on the outer peripheral end surface of the light guide plate 6222 has a light distribution range of laser light incident on the laser incident portion 6222a from the laser incident portion 6222a side. A light refracting portion 627 that imparts a refracting action to the laser light is provided so as to spread toward the laser incident light opposite portion 6222e. In this way, the laser light emitted from the red laser light source 6217 and the blue laser light source 6218, which are laser light sources, is refracted by the light refracting unit 627 when entering the laser incident unit 6222a. The light distribution range of the laser light imparted with the refraction action is expanded in the process of traveling through the light guide plate 6222 from the laser light incident part 6222a toward the laser incident light opposite part 6222e. Accordingly, the laser light reaching the laser incident light opposite portion 6222e is diffused and reflected while being irradiated on the diffuse reflection member 6226 in a wider range, and therefore the diffusion range of the diffuse reflection light by the diffuse reflection member 6226 is wider. Become. Thereby, the brightness uniformity of the emitted light is made higher in the plane of the light exit plate surface 6222c.
 <実施形態8>
 本発明の実施形態8を図16によって説明する。この実施形態8では、上記した実施形態5から赤色レーザ光源7317及び青色レーザ光源7318の配置を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 8>
An eighth embodiment of the present invention will be described with reference to FIG. In the eighth embodiment, the arrangement of the red laser light source 7317 and the blue laser light source 7318 is changed from the fifth embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 5 is abbreviate | omitted.
 本実施形態に係る赤色レーザ光源7317及び青色レーザ光源7318は、図16に示すように、1つの組をなすもの同士が近接する形で配されている。つまり、1つの組をなす赤色レーザ光源7317と青色レーザ光源7318との間にX軸方向について殆ど隙間が無い配置とされている。これにより、赤色レーザ光源7317及び青色レーザ光源7318におけるX軸方向についての配置範囲が狭められるので、それに伴って拡散反射部材7326の形成範囲も狭くすることができる。このような構成では、赤色レーザ光源7317及び青色レーザ光源7318から発せられて導光板7322内において拡散反射部材7326によって拡散反射された赤色レーザ光及び青色レーザ光は、上記した実施形態5に比べると、互いにまたは緑色LED光源7319からの緑色光と混じり合い難くなっている。このため、導光板7322のうち、緑色LED光源7319及び拡散反射部材7326側の端部には、赤色レーザ光、青色レーザ光及び緑色光を混色するための混色領域(図16に示す一点鎖線よりも下側の領域)MAが設定されている。 As shown in FIG. 16, the red laser light source 7317 and the blue laser light source 7318 according to the present embodiment are arranged in such a manner that one set is close to each other. That is, the arrangement is such that there is almost no gap between the red laser light source 7317 and the blue laser light source 7318 forming one set in the X-axis direction. As a result, the arrangement range of the red laser light source 7317 and the blue laser light source 7318 in the X-axis direction is narrowed, and accordingly, the formation range of the diffuse reflection member 7326 can be narrowed. In such a configuration, the red laser light and the blue laser light emitted from the red laser light source 7317 and the blue laser light source 7318 and diffusely reflected by the diffuse reflection member 7326 in the light guide plate 7322 are compared to the fifth embodiment described above. The green light from each other or the green LED light source 7319 is hardly mixed. For this reason, in the light guide plate 7322, the end portions on the green LED light source 7319 and the diffuse reflection member 7326 side are mixed color regions for mixing red laser light, blue laser light, and green light (from the one-dot chain line shown in FIG. 16). (Lower area) MA is set.
 <実施形態9>
 本発明の実施形態9を図17または図18によって説明する。この実施形態9では、上記した実施形態5から緑色LED光源に代えて緑色レーザ光源を用いたものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
<Ninth Embodiment>
A ninth embodiment of the present invention will be described with reference to FIG. 17 or FIG. In the ninth embodiment, a green laser light source is used instead of the green LED light source from the fifth embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 5 is abbreviate | omitted.
 本実施形態に係るバックライト装置8412は、図17及び図18に示すように、光源としてLED光源を有しておらず、赤色レーザ光源8417、青色レーザ光源8418及び緑色レーザ光源828を有している。なお、図17では、区別のために緑色レーザ光源828に斜め縞の模様を付している。赤色レーザ光源8417、青色レーザ光源8418及び緑色レーザ光源828は、共通のレーザ光源基板8420に実装されており、X軸方向に沿って間欠的に繰り返し並んで列状に配されている。従って、このバックライト装置8412は、その短辺方向についての一方の端部にレーザ光源基板8420が配されており、各レーザ光源828,8417,8418からの光が導光板8422に対して片側から入光される片側入光タイプのエッジライト型とされる。導光板8422の外周端面における長辺側の一方(図17に示す上側)の端面は、赤色レーザ光源8417と正対するレーザ入光部8422aと、青色レーザ光源8418と正対するレーザ入光部8422aと、緑色レーザ光源828と正対するレーザ入光部8422aと、を有する。一方、導光板8422の外周端面における長辺側の他方(図17に示す下側)の端面は、上記した各レーザ入光部8422aとは反対側に位置する部分がそれぞれレーザ入光反対部8422eとされる。 As shown in FIGS. 17 and 18, the backlight device 8412 according to the present embodiment does not include an LED light source as a light source, but includes a red laser light source 8417, a blue laser light source 8418, and a green laser light source 828. Yes. In FIG. 17, the green laser light source 828 is provided with an oblique stripe pattern for distinction. The red laser light source 8417, the blue laser light source 8418, and the green laser light source 828 are mounted on a common laser light source substrate 8420, and are arranged repeatedly in a row along the X-axis direction. Accordingly, the backlight device 8412 is provided with the laser light source substrate 8420 at one end in the short side direction, and the light from each of the laser light sources 828, 8417, 8418 is transmitted from one side to the light guide plate 8422. It is an edge light type of one side incident type that is incident. One end surface (the upper side shown in FIG. 17) of the long side of the outer peripheral end surface of the light guide plate 8422 has a laser incident portion 8422a that faces the red laser light source 8417 and a laser incident portion 8422a that faces the blue laser light source 8418. , And a laser beam incident portion 8422a that directly faces the green laser light source 828. On the other hand, the other end surface (the lower side shown in FIG. 17) on the long side of the outer peripheral end surface of the light guide plate 8422 has a portion located on the side opposite to the above-described laser incident portions 8422a, respectively. It is said.
 そして、拡散反射部材8426は、導光板8422の外周端面のうち上記した他方の端面(レーザ入光反対部8422eを有する端面)に対してほぼ全域にわたって正対する形で配されている。つまり、拡散反射部材8426は、上記した他方の端面においてX軸方向について間欠的に並ぶ複数のレーザ入光反対部8422eに加えて、レーザ入光反対部8422eに隣り合う部分とも正対している。このようにすれば、各レーザ光源828,8417,8418に対する拡散反射部材8426のX軸方向についての位置関係を問わず各色のレーザ光を拡散反射することができるので、各色のレーザ光が拡散反射部材8426により拡散反射される確実性が高いものとされる。また、組み付けに際しては、拡散反射部材8426を各レーザ光源828,8417,8418に対してX軸方向について位置合わせする必要がないものとされるので、製造が容易なものとなる。拡散反射部材8426は、導光板8422におけるY軸方向についての両端部をそれぞれ支持する一対の導光板支持部材8424のうち、Y軸方向についてレーザ光源基板8420側とは反対側に配された導光板支持部材8424に設けられている。導光板支持部材8424に設けられた拡散反射部材8426は、上記した実施形態6と同様の構成であることから、重複する説明は割愛する。 The diffuse reflection member 8426 is arranged so as to face the other end surface (the end surface having the laser incident light opposite portion 8422e) of the outer peripheral end surface of the light guide plate 8422 over almost the entire region. That is, the diffuse reflection member 8426 directly faces a portion adjacent to the laser incident light opposite portion 8422e in addition to the plurality of laser incident light opposite portions 8422e that are intermittently arranged in the X-axis direction on the other end surface. In this way, the laser light of each color can be diffusely reflected regardless of the positional relationship in the X-axis direction of the diffuse reflection member 8426 with respect to the laser light sources 828, 8417, and 8418. Therefore, the laser light of each color is diffusely reflected. The certainty of diffuse reflection by the member 8426 is high. In addition, since it is not necessary to align the diffuse reflection member 8426 with respect to the laser light sources 828, 8417, and 8418 in the X-axis direction during assembly, manufacturing is facilitated. The diffuse reflection member 8426 is a light guide plate disposed on the side opposite to the laser light source substrate 8420 side in the Y-axis direction among the pair of light guide plate support members 8424 that respectively support both ends of the light guide plate 8422 in the Y-axis direction. The support member 8424 is provided. Since the diffuse reflection member 8426 provided on the light guide plate support member 8424 has the same configuration as that of the above-described sixth embodiment, a duplicate description is omitted.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態以外にも、拡散反射部材として、PETなどからなる発泡樹脂材や屈折率が異なる誘電体層を多数積層した誘電体多層膜構造を有する多層膜反射シートや金属材料からなる金属反射膜などを用いることも可能である。
 (2)上記した各実施形態では、導光板に対して拡散反射部材が接着剤や両面テープによって取り付けられており、製造された導光板に対して後加工を施して拡散反射部材を設けるようにした場合を示したが、導光板を製造する過程で拡散反射部材を導光板に対して取り付けるようにしても構わない。具体的には、上記した(1)において拡散反射部材を金属反射膜とした場合には、導光板に対して金属反射膜を直接的に蒸着などして設けることが可能である。
 (3)上記した各実施形態以外にも、導光板に対するレーザ光源基板やLED光源基板のY軸方向についての配置は適宜に変更可能である。
 (4)上記した実施形態2~4では、隣り合う拡散反射部材の間に緑色LED光源が1つのみ介在する構成を示したが、隣り合う拡散反射部材の間に緑色LED光源が複数介在する構成を採ることも可能である。つまり、緑色LED光源は、複数が1つの組をなす形で複数組配されていても構わない。
 (5)上記した各実施形態以外にも、拡散反射部材の具体的な形成範囲や配置などについては適宜に変更可能である。
 (6)上記した実施形態2~4では、緑色のみをLED光源とした構成を示したが、赤色または青色のいずれか1つをLED光源とし、緑色レーザ光源を含ませるようにしても構わない。また、赤色、緑色及び青色のうちの2つをLED光源とし、残りの1つをレーザ光源としても構わない。その場合、例えば赤色をレーザ光源とし、青緑色(シアン色)のLED光源を用いることも可能であり、それ以外にも適宜に組み合わせることが可能である。
 (7)上記した実施形態3の変形例として、レーザ光源基板と対向する一方の端面の全域に光屈折部を設けるようにしても構わない。また、LED入光部については光屈折部を省略することも可能である。
 (8)上記した実施形態3に記載した構成(光屈折部)を、実施形態1に記載した構成や実施形態4に記載した構成に組み合わせることも可能である。
 (9)上記した各実施形態以外にも、赤色レーザ光源、青色レーザ光源及び緑色LED光源に係る具体的な発光スペクトル(主発光波長や半値幅などの数値)は適宜に変更可能である。
 (10)上記した各実施形態以外にも、カラーフィルタを構成するR,G,Bの各着色部に係る具体的な透過スペクトル(ピーク波長や半値幅などの数値)は適宜に変更可能である。
 (11)上記した各実施形態では、液晶パネルのカラーフィルタが赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色に、黄色または白色を加えて4色構成としたカラーフィルタを備えたものにも本発明は適用可能である。
 (12)上記した各実施形態では、液晶パネルの動作モードがVAモードとされる場合を示したが、FFS(Fringe Field Switching)モードなどであっても構わない。FFSモードでは、CF基板側の対向電極が除去されるとともに、アレイ基板側に画素電極との間で電界を形成する共通電極を設けられる。
 (13)上記した各実施形態では、液晶表示装置(液晶パネルやバックライト装置)の平面形状が横長の方形とされる場合を示したが、液晶表示装置の平面形状が縦長の方形、正方形、長円形状、楕円形状、円形、台形、部分的に曲面を持つ形状などであっても構わない。
 (14)上記した実施形態5~9では、拡散反射部材がLED光源基板や導光板支持部材に一体に設けられる場合を示したが、拡散反射部材をシャーシの底部または側部に一体に設けるようにしても構わない。また、拡散反射部材をLED光源基板、導光板支持部材及びシャーシなどとは別体としつつもこれらのいずれかに対して取り付けるようにしても構わない。
 (15)上記した実施形態5~9では、各レーザ光源及びレーザ光源基板が導光板に対して鉛直方向について上側に、拡散反射部材が導光板に対して鉛直方向について下側にそれぞれ配される場合を示したが、これらの配置を逆にすることも可能である。
 (16)上記した実施形態6~9では、隣り合う拡散反射部材の間に緑色LED光源が1つのみ介在する構成を示したが、隣り合う拡散反射部材の間に緑色LED光源が複数介在する構成を採ることも可能である。つまり、緑色LED光源は、複数が1つの組をなす形で複数組配されていても構わない。
 (17)上記した実施形態5~8では、緑色のみをLED光源とした構成を示したが、赤色または青色のいずれか1つをLED光源とし、緑色レーザ光源を含ませるようにしても構わない。また、赤色、緑色及び青色のうちの2つをLED光源とし、残りの1つをレーザ光源としても構わない。その場合、例えば赤色をレーザ光源とし、青緑色(シアン色)のLED光源を用いることも可能であり、それ以外にも適宜に組み合わせることが可能である。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In addition to the above-described embodiments, as a diffuse reflection member, a multilayer film reflection sheet or metal material having a dielectric multilayer film structure in which a foamed resin material made of PET or the like and a large number of dielectric layers having different refractive indexes are laminated It is also possible to use a metal reflective film made of or the like.
(2) In each embodiment described above, the diffuse reflection member is attached to the light guide plate with an adhesive or a double-sided tape, and the diffused reflection member is provided by post-processing the manufactured light guide plate. However, the diffuse reflection member may be attached to the light guide plate in the process of manufacturing the light guide plate. Specifically, when the diffuse reflection member is a metal reflection film in the above (1), the metal reflection film can be directly deposited on the light guide plate.
(3) Besides the above-described embodiments, the arrangement of the laser light source substrate and the LED light source substrate with respect to the light guide plate in the Y-axis direction can be changed as appropriate.
(4) In the above-described Embodiments 2 to 4, the configuration in which only one green LED light source is interposed between adjacent diffuse reflection members is shown, but a plurality of green LED light sources are interposed between adjacent diffuse reflection members. It is also possible to adopt a configuration. That is, a plurality of green LED light sources may be arranged so that a plurality of green LED light sources form one set.
(5) In addition to the above-described embodiments, the specific formation range and arrangement of the diffuse reflection member can be appropriately changed.
(6) In the above-described Embodiments 2 to 4, the configuration using only green as the LED light source has been described. However, any one of red or blue may be used as the LED light source, and the green laser light source may be included. . Two of red, green, and blue may be LED light sources, and the remaining one may be a laser light source. In that case, for example, red can be used as a laser light source, and a blue-green (cyan) LED light source can be used.
(7) As a modification of the above-described third embodiment, a light refracting portion may be provided over the entire area of one end surface facing the laser light source substrate. Moreover, it is also possible to omit the light refracting part for the LED light incident part.
(8) The configuration described in the third embodiment (light refraction unit) can be combined with the configuration described in the first embodiment or the configuration described in the fourth embodiment.
(9) In addition to the above-described embodiments, specific emission spectra (numerical values such as the main emission wavelength and the half-value width) relating to the red laser light source, the blue laser light source, and the green LED light source can be changed as appropriate.
(10) In addition to the above-described embodiments, specific transmission spectra (numerical values such as peak wavelength and half-value width) relating to the colored portions of R, G, and B constituting the color filter can be appropriately changed. .
(11) In each of the above-described embodiments, the color filter of the liquid crystal panel is exemplified by the three-color configuration of red, green, and blue. However, the four-color configuration is obtained by adding yellow or white to red, green, and blue. The present invention can also be applied to those provided with the color filter.
(12) In each of the above-described embodiments, the case where the operation mode of the liquid crystal panel is set to the VA mode has been described. However, an FFS (Fringe Field Switching) mode or the like may be used. In the FFS mode, the counter electrode on the CF substrate side is removed, and a common electrode for forming an electric field with the pixel electrode is provided on the array substrate side.
(13) In each of the above-described embodiments, the case where the planar shape of the liquid crystal display device (liquid crystal panel or backlight device) is a horizontally long square is shown, but the planar shape of the liquid crystal display device is a vertically long square, square, An oval shape, an elliptical shape, a circular shape, a trapezoidal shape, a shape having a partially curved surface, or the like may be used.
(14) In Embodiments 5 to 9 described above, the case where the diffuse reflection member is integrally provided on the LED light source substrate and the light guide plate support member has been described. However, the diffuse reflection member is provided integrally on the bottom or side of the chassis. It doesn't matter. In addition, the diffuse reflection member may be attached to any one of the LED light source substrate, the light guide plate support member, the chassis and the like while being separated.
(15) In the above fifth to ninth embodiments, each laser light source and laser light source substrate are arranged on the upper side in the vertical direction with respect to the light guide plate, and the diffuse reflection member is arranged on the lower side in the vertical direction with respect to the light guide plate. Although cases have been shown, it is possible to reverse these arrangements.
(16) In Embodiments 6 to 9 described above, the configuration in which only one green LED light source is interposed between adjacent diffuse reflection members has been described. However, a plurality of green LED light sources are interposed between adjacent diffuse reflection members. It is also possible to adopt a configuration. That is, a plurality of green LED light sources may be arranged so that a plurality of green LED light sources form one set.
(17) In Embodiments 5 to 8 described above, the configuration in which only green is used as the LED light source has been described. However, any one of red or blue may be used as the LED light source, and the green laser light source may be included. . Two of red, green, and blue may be LED light sources, and the remaining one may be a laser light source. In that case, for example, red can be used as a laser light source, and a blue-green (cyan) LED light source can be used.
 10…液晶表示装置(表示装置)、11,111…液晶パネル(表示パネル)、12,112,412,8412…バックライト装置(照明装置)、17,117,217,317,417,8417…赤色レーザ光源(レーザ光源)、18,118,218,318,418,8418…青色レーザ光源(レーザ光源)、19,828…緑色レーザ光源(レーザ光源)、20,120,420,8420…レーザ光源基板、22,122,222,322,422,5122,6222,7322,8422…導光板、22a,122a,222a,322a,422a,5122a,6222a,8422a…レーザ入光部(入光部)、22b,222b,422b,6222b…LED入光部、22c,222c,422c,5122c,6222c…出光板面、22e,122e,222e,422e,5122e,6222e,8422e…レーザ入光反対部(入光反対部)、26,126,226,326,426,5126,6226,7326,8426…拡散反射部材、27,227,419,6219,7319…緑色LED光源(LED光源)、28,421,5121…LED光源基板、29,627…光屈折部 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device) 11, 111 ... Liquid crystal panel (display panel), 12, 112, 412, 8412 ... Backlight device (illumination device), 17, 117, 217, 317, 417, 8417 ... Red Laser light source (laser light source), 18, 118, 218, 318, 418, 8418 ... blue laser light source (laser light source), 19,828 ... green laser light source (laser light source), 20, 120, 420, 8420 ... laser light source substrate 22, 122, 222, 322, 422, 5122, 6222, 7322, 8422... Light guide plate, 22 a, 122 a, 222 a, 322 a, 422 a, 5122 a, 6222 a, 8422 a. 222b, 422b, 6222b ... LED light incident part, 22c, 222c, 422c, 512 c, 6222c... light exit plate surface, 22e, 122e, 222e, 422e, 5122e, 6222e, 8422e... laser incident light opposite portion (light incident opposite portion), 26, 126, 226, 326, 426, 5126, 6226, 7326, 8426: Diffuse reflection member, 27, 227, 419, 6219, 7319 ... Green LED light source (LED light source), 28, 421, 5121 ... LED light source substrate, 29, 627 ... Light refracting section

Claims (13)

  1.  レーザ光を発するレーザ光源と、
     外周端面のうち前記レーザ光源と正対する部分が、前記レーザ光が入射される入光部とされ、前記外周端面のうち前記入光部とは反対側に位置する部分が入光反対部とされ、一対の板面のいずれか一方が光を出射させる出光板面とされる導光板と、
     前記導光板の前記入光反対部に接する形で取り付けられて前記レーザ光を拡散反射する拡散反射部材と、を備える照明装置。
    A laser light source that emits laser light;
    A portion of the outer peripheral end face that directly faces the laser light source is a light incident portion on which the laser light is incident, and a portion of the outer peripheral end surface that is located on the opposite side of the light incident portion is a light incident opposite portion. , A light guide plate that is a light output plate surface from which any one of the pair of plate surfaces emits light;
    An illuminating device comprising: a diffuse reflection member that is attached in contact with the light incident opposite portion of the light guide plate and diffusely reflects the laser light.
  2.  前記レーザ光源には、赤色レーザ光を発する赤色レーザ光源と、緑色レーザ光を発する緑色レーザ光源と、青色レーザ光を発する青色レーザ光源と、が含まれ、前記赤色レーザ光源、前記緑色レーザ光源及び前記青色レーザ光源は、列状に配されており、
     前記拡散反射部材は、前記導光板の前記外周端面のうち、前記入光反対部を有する端面の全域にわたって配される請求項1記載の照明装置。
    The laser light source includes a red laser light source that emits red laser light, a green laser light source that emits green laser light, and a blue laser light source that emits blue laser light, and the red laser light source, the green laser light source, and The blue laser light sources are arranged in a row,
    The illuminating device according to claim 1, wherein the diffuse reflection member is disposed over an entire area of the end face having the light incident opposite portion of the outer peripheral end face of the light guide plate.
  3.  LED光源と、前記LED光源が実装されて前記入光反対部と対向状をなすLED光源基板と、を備え、前記導光板は、前記外周端面のうち少なくとも前記LED光源と正対する部分が、前記LED光源の光が入射されるLED入光部とされており、
     前記拡散反射部材は、前記LED入光部と隣り合う形で配されている請求項1記載の照明装置。
    An LED light source, and an LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion, and the light guide plate has at least a portion facing the LED light source on the outer peripheral end surface. It is an LED light incident part into which the light from the LED light source is incident,
    The illumination device according to claim 1, wherein the diffuse reflection member is arranged adjacent to the LED light incident portion.
  4.  レーザ光を発するレーザ光源と、
     外周端面のうち前記レーザ光源と正対する部分が、前記レーザ光が入射される入光部とされ、前記外周端面のうち前記入光部とは反対側に位置する部分が入光反対部とされ、一対の板面のいずれか一方が光を出射させる出光板面とされる導光板と、
     前記導光板の前記入光反対部に対して正対する形で配されて前記導光板から物理的に切り離されていて前記レーザ光を拡散反射する拡散反射部材と、を備える照明装置。
    A laser light source that emits laser light;
    A portion of the outer peripheral end face that directly faces the laser light source is a light incident portion on which the laser light is incident, and a portion of the outer peripheral end surface that is located on the opposite side of the light incident portion is a light incident opposite portion. , A light guide plate that is a light output plate surface from which any one of the pair of plate surfaces emits light;
    An illuminating device comprising: a diffusive reflecting member that is arranged in a shape facing the light incident opposite portion of the light guide plate, is physically separated from the light guide plate, and diffuses and reflects the laser light.
  5.  LED光源と、
     前記LED光源が実装されて前記入光反対部と対向状をなすLED光源基板と、を備え、
     前記導光板は、前記外周端面のうち少なくとも前記LED光源と正対する部分が、前記LED光源の光が入射されるLED入光部とされており、
     前記拡散反射部材は、前記LED光源基板に設けられている請求項4記載の照明装置。
    An LED light source;
    An LED light source substrate on which the LED light source is mounted and opposed to the light incident opposite portion;
    In the light guide plate, at least a portion of the outer peripheral end face that directly faces the LED light source is an LED light incident portion on which light of the LED light source is incident,
    The illumination device according to claim 4, wherein the diffuse reflection member is provided on the LED light source substrate.
  6.  前記レーザ光源が実装されて前記入光部と対向状をなすレーザ光源基板と、
     前記レーザ光源基板及び前記LED光源基板が取り付けられるとともに前記導光板を収容する筐体と、を備える請求項5記載の照明装置。
    A laser light source substrate mounted with the laser light source and facing the light incident portion;
    The lighting device according to claim 5, further comprising: a housing for mounting the laser light source substrate and the LED light source substrate and accommodating the light guide plate.
  7.  前記LED光源基板は、前記導光板に対して鉛直方向についての下側に配されており、
     前記拡散反射部材は、前記導光板の前記入光反対部に接する形で配されている請求項5または請求項6記載の照明装置。
    The LED light source substrate is arranged on the lower side in the vertical direction with respect to the light guide plate,
    The illumination device according to claim 5, wherein the diffuse reflection member is arranged in contact with the light incident opposite portion of the light guide plate.
  8.  前記レーザ光源には、赤色レーザ光を発する赤色レーザ光源と、青色レーザ光を発する青色レーザ光源と、が含まれるのに対し、
     前記LED光源には、緑色光を発する緑色LED光源が含まれている請求項3、請求項5、請求項6、請求項7のいずれか1項に記載の照明装置。
    The laser light source includes a red laser light source that emits red laser light and a blue laser light source that emits blue laser light.
    The illumination device according to any one of claims 3, 5, 6, and 7, wherein the LED light source includes a green LED light source that emits green light.
  9.  前記赤色レーザ光源及び前記青色レーザ光源は、互いに隣り合う形で配されており、
     前記拡散反射部材は、前記赤色レーザ光源と前記青色レーザ光源とに跨る形成範囲を有する請求項8記載の照明装置。
    The red laser light source and the blue laser light source are arranged adjacent to each other,
    The illumination device according to claim 8, wherein the diffuse reflection member has a formation range straddling the red laser light source and the blue laser light source.
  10.  前記導光板を前記出光板面側とは反対側から支持する導光板支持部材を備えており、
     前記拡散反射部材は、前記導光板支持部材に設けられる請求項4記載の照明装置。
    A light guide plate support member that supports the light guide plate from the side opposite to the light exit plate surface side;
    The illumination device according to claim 4, wherein the diffuse reflection member is provided on the light guide plate support member.
  11.  前記導光板の前記外周端面における少なくとも前記入光部には、前記入光部に入射した前記レーザ光の配光範囲が前記入光部側から前記入光反対部へ向かうほど広がるよう前記レーザ光に屈折作用を付与する光屈折部が設けられている請求項1から請求項10のいずれか1項に記載の照明装置。 At least the light incident portion on the outer peripheral end surface of the light guide plate has the laser light such that a light distribution range of the laser light incident on the light incident portion is widened from the light incident portion side toward the light incident opposite portion. The illuminating device according to claim 1, further comprising a light refracting section that imparts a refractive action to the light.
  12.  請求項1から請求項11のいずれか1項に記載の照明装置と、
     前記照明装置から照射される光を利用して画像を表示する表示パネルと、を備える表示装置。
    The lighting device according to any one of claims 1 to 11,
    A display panel that displays an image using light emitted from the illumination device.
  13.  請求項12記載の表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 12.
PCT/JP2018/001506 2017-01-26 2018-01-19 Illumination device, display device, and television receiving device WO2018139347A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-012246 2017-01-26
JP2017-012244 2017-01-26
JP2017012246A JP2018120793A (en) 2017-01-26 2017-01-26 Luminaire, display device and television receiver
JP2017012244A JP2018120792A (en) 2017-01-26 2017-01-26 Luminaire, display device and television receiver

Publications (1)

Publication Number Publication Date
WO2018139347A1 true WO2018139347A1 (en) 2018-08-02

Family

ID=62978229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001506 WO2018139347A1 (en) 2017-01-26 2018-01-19 Illumination device, display device, and television receiving device

Country Status (2)

Country Link
TW (1) TW201827743A (en)
WO (1) WO2018139347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765727A (en) * 2019-03-28 2019-05-17 深圳创维-Rgb电子有限公司 Side-edge type backlight, mould group and laser television

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187285A (en) * 2010-03-08 2011-09-22 Toshiba Corp Light emitting device
JP2011228078A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Backlight device and liquid crystal display device
WO2013038633A1 (en) * 2011-09-15 2013-03-21 三菱電機株式会社 Light intensity distribution conversion element, planar light source device, and liquid crystal display device
JP2016058325A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Lighting device
JP2016070975A (en) * 2014-09-26 2016-05-09 日亜化学工業株式会社 Backlight unit for liquid crystal display device and liquid crystal display device using the same
JP2016184564A (en) * 2015-03-27 2016-10-20 三菱電機株式会社 Surface light source device and liquid crystal display unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187285A (en) * 2010-03-08 2011-09-22 Toshiba Corp Light emitting device
JP2011228078A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Backlight device and liquid crystal display device
WO2013038633A1 (en) * 2011-09-15 2013-03-21 三菱電機株式会社 Light intensity distribution conversion element, planar light source device, and liquid crystal display device
JP2016058325A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Lighting device
JP2016070975A (en) * 2014-09-26 2016-05-09 日亜化学工業株式会社 Backlight unit for liquid crystal display device and liquid crystal display device using the same
JP2016184564A (en) * 2015-03-27 2016-10-20 三菱電機株式会社 Surface light source device and liquid crystal display unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765727A (en) * 2019-03-28 2019-05-17 深圳创维-Rgb电子有限公司 Side-edge type backlight, mould group and laser television

Also Published As

Publication number Publication date
TW201827743A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5523538B2 (en) Surface light source device
CN102200659A (en) Display apparatus
WO2013051473A1 (en) Illumination device, display device, and television receiving device
JP5337882B2 (en) Lighting device, display device, and television receiver
WO2013039001A1 (en) Illumination device, display device, and television receiving device
WO2011111444A1 (en) Lighting device, display apparatus, and television receiver
WO2014021303A1 (en) Illumination device, display device, and television reception device
JP6644510B2 (en) Lighting device, display device, and television receiver
KR100834649B1 (en) Lcd with black/white lcd panel
WO2017170017A1 (en) Illumination device and display device
WO2014196235A1 (en) Illumination device, display device, and tv receiver
CN110632698A (en) Illumination device and display device
WO2018139347A1 (en) Illumination device, display device, and television receiving device
JP5368586B2 (en) Lighting device, display device, television receiver
WO2012111501A1 (en) Illumination device, display device, and television receiver device
WO2012165248A1 (en) Illuminating apparatus, display apparatus, and television receiver
US20160131821A1 (en) Illumination device, display device, and tv receiver
JP2018120793A (en) Luminaire, display device and television receiver
KR20130058478A (en) Backlight unit and lcd module inculding the same
JP2018120792A (en) Luminaire, display device and television receiver
WO2012086511A1 (en) Lighting unit, display unit and television receiver
WO2015002079A1 (en) Lighting device, display device and television receiving device
WO2012169439A1 (en) Illumination device, display device, and television reception device
JP2013120360A (en) Display device
JP6728078B2 (en) Display device and television receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744527

Country of ref document: EP

Kind code of ref document: A1