WO2012169439A1 - Illumination device, display device, and television reception device - Google Patents

Illumination device, display device, and television reception device Download PDF

Info

Publication number
WO2012169439A1
WO2012169439A1 PCT/JP2012/064261 JP2012064261W WO2012169439A1 WO 2012169439 A1 WO2012169439 A1 WO 2012169439A1 JP 2012064261 W JP2012064261 W JP 2012064261W WO 2012169439 A1 WO2012169439 A1 WO 2012169439A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
led
opening
extended
Prior art date
Application number
PCT/JP2012/064261
Other languages
French (fr)
Japanese (ja)
Inventor
寺川 大輔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012169439A1 publication Critical patent/WO2012169439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices.
  • a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism.
  • an edge light type backlight device it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
  • the edge light type backlight device may adopt a configuration in which a plurality of light sources are intermittently arranged in parallel along the light incident surface provided at the end of the light guide plate.
  • the following problem may occur. There is sex. That is, the light quantity emitted from the plurality of light sources and incident on the light incident surface may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources intermittently arranged in parallel.
  • the present invention has been completed based on the above situation, and an object thereof is to suppress luminance unevenness.
  • the illumination device includes a plurality of light sources intermittently arranged side by side, a light incident surface that is arranged to face the light sources and receives light from the light sources, and emits the incident light.
  • a light guide plate having a light exit surface, a reflective member disposed opposite to the light incident surface and following the non-arrangement pattern of the light source, and extended from the reflective member toward the light incident surface side. And an extended reflecting portion.
  • the light emitted from the plurality of light sources is incident on the light incident surface of the light guide plate arranged opposite to the light sources, then propagates through the light guide plate, and then is emitted from the light exit surface.
  • the light from the light source is disposed so as to be opposed to the light incident surface and is imitated according to the non-arrangement pattern of the light source before entering the light incident surface, and the light from the reflective member.
  • the light is efficiently reflected by the extended reflecting portion that extends toward the incident surface side. Accordingly, the amount of light incident on the light incident surface of the light guide plate is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently side by side, and unevenness hardly occurs. As a result, luminance unevenness is less likely to occur in the light emitted from the light exit surface of the light guide plate.
  • the extended reflection part is extended from the reflection member, workability related to assembly can be improved.
  • a low-light-reflectance member is provided that is disposed so as to overlap the extended-reflecting portion on the side opposite to the light source side and that has a relatively low light reflectance than the extended-reflecting portion.
  • the extended reflection portion has an opening that follows the arrangement pattern of the light sources. In this way, the light reflection is suppressed by the low-light reflectance member exposed through the opening that follows the light source arrangement pattern, so that the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven. Become.
  • the opening is disposed at a position overlapping at least the light source in a plan view in the extended reflection portion. In this way, since the opening is formed at a position where much of the light emitted from the light source is irradiated in the extended reflection portion, the light that tends to be excessive due to the low light reflectance member exposed through the opening. Reflection can be effectively suppressed.
  • a light source opening through which the light source passes is formed in the reflecting member following the arrangement pattern of the light source, and the opening communicates with the light source opening.
  • the opening and the light source opening have substantially the same opening front at the communication part. By doing so, it is possible to avoid the formation of a step at the communication portion between the opening and the light source opening, and thus the shapes of the reflecting member and the extended reflecting portion can be made simpler.
  • the opening is configured to have a smaller area in a direction away from the light source.
  • the exposed area of the low light reflectance member exposed through the opening decreases in the direction away from the light source, while the area of the extended reflection portion decreases in the direction away from the light source. growing.
  • the light emitted from the light source spreads away from the light source, and unevenness tends to be alleviated. Therefore, light reflection is mainly suppressed by a low light reflectance member at a position relatively close to the light source. While suppressing unevenness, the luminance can be improved by increasing the efficiency of light reflection mainly by the extended reflection portion at a position relatively far from the light source.
  • the opening has an inclined edge so that the opening front becomes narrower in a direction away from the light source.
  • the edge of the opening inclined by making the edge of the opening inclined, the exposed area of the low light reflectance member continuously decreases gradually in the direction away from the light source, whereas the area of the extended reflecting portion is Then, since it gradually increases gradually toward the direction away from the light source, it is possible to improve the luminance while suppressing the unevenness more effectively.
  • An extended portion that extends across the opening along the direction in which the light sources are arranged is provided at an end of the extended reflecting portion on the light incident surface side.
  • the extension portion makes the shape of the end portion on the light incident surface side of the extended reflection portion simple, and hence the handleability of the extended reflection portion is excellent.
  • the extended reflection part is arranged in a range that follows the arrangement pattern of the light source in addition to the non-arrangement pattern of the light source, and the extended reflection part has a low light reflection with a relatively low light reflectance.
  • a low-light-reflectance printing unit that follows the arrangement pattern of the light sources is provided by printing the rate material.
  • the non-formation part in which the low light reflectance printing part that follows the light source arrangement pattern in the extended reflection part is formed according to the light source non-arrangement pattern. Accordingly, light reflection is suppressed by the low light reflectance printing portion that follows the arrangement pattern of the light source, whereas light reflection is highly efficient due to the non-formation portion of the low light reflectance printing portion in the extended reflection portion. As a result, the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven.
  • a chassis that accommodates the light source and the light guide plate is provided, and the extended reflection portion is disposed so as to overlap a surface of the chassis on the light source side. In this way, the shape of the extended reflecting portion can be maintained by the chassis that houses the light source and the light guide plate.
  • the extended reflection portion is formed so as to extend so as to overlap with the light guide plate in a plan view, and the overlap portion is sandwiched between the light guide plate and the chassis. If it does in this way, an extended reflection part can be stably hold
  • a light source substrate on which a plurality of the light sources are mounted is provided, and the reflecting member is attached to the light source substrate.
  • the reflecting member is attached to the light source substrate on which a plurality of light sources are mounted, it is difficult for the reflecting member to be displaced with respect to the non-arranged pattern of the light sources. As a result, the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven.
  • a light scattering portion that scatters light and a light guide reflection member that covers the light scattering portion and reflects light are provided on a surface opposite to the light emitting surface of the light guide plate.
  • the light scattering portion has a distribution in which the degree of light scattering is substantially constant with respect to the arrangement direction of the light sources. In this way, the light incident on the light incident surface of the light guide plate is reflected by the light guide reflecting member while being scattered by the light scattering portion provided on the surface opposite to the light emitting surface. The light is emitted from the emission surface.
  • the light exit surface uniformly emits light from each light source regardless of the positional relationship with respect to the arrangement direction of the light sources with respect to a plurality of light sources. Can be emitted.
  • the light from the light source is uniformed regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources by the reflection member and the extended reflection portion at the stage of entering the light incident surface of the light guide plate, thereby causing unevenness. It has become difficult.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • the illumination device that supplies light to the display panel is less likely to cause uneven brightness, it is possible to realize display with excellent display quality.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Exploded perspective view showing schematic configuration of liquid crystal display device The top view which shows arrangement
  • FIG. 1 The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 1 of Embodiment 1.
  • FIG. 2 The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 2 of Embodiment 1.
  • FIG. 2 The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on Embodiment 2 of this invention. Sectional view taken along line xii-xii in FIG.
  • the enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 1 of Embodiment 2.
  • FIG. 1 The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 2 of Embodiment 2.
  • FIG. The graph showing the change of the light reflectance in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part.
  • the graph showing the change of the light reflectivity in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part which concerns on the modification 3 of Embodiment 2.
  • FIG. The graph showing the change of the light reflectivity in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part which concerns on the modification 4 of Embodiment 2.
  • FIG. 1 The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 5 of Embodiment 2.
  • FIG. The enlarged plan view which shows the arrangement configuration of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 6 of Embodiment 2.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG. 4 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape, longitudinal shape) as a whole, and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the liquid crystal panel 11 has a horizontally long rectangular shape (rectangular shape, longitudinal shape) in a plan view, and a pair of glass substrates having excellent translucency are separated by a predetermined gap.
  • the liquid crystal is sealed between both substrates.
  • One substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, a counter electrode, and an alignment film.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 includes a chassis 14 having a substantially box shape having a light emitting portion 14 c that opens toward the front side (light emitting side, liquid crystal panel 11 side), and light emitting from the chassis 14.
  • a light transmissive member 15 disposed so as to cover the portion 14c.
  • an LED (Light Emitting Diode) 17 that is a light source
  • an LED substrate 18 on which the LED 17 is mounted and a light transmissive member 15 (liquid crystal panel) that guides light from the LED 17.
  • a frame (pressing member) 16 for pressing the light guide plate 19 and the light transmissive member 15 from the front side.
  • the backlight device 12 includes LED substrates 18 having LEDs 17 at both ends on the long side, and a light guide plate 19 disposed at the center between the LED substrates 18 on both sides.
  • the so-called edge light type (side light type) is used. Below, each component of the backlight apparatus 12 is demonstrated in detail.
  • the chassis 14 is made of, for example, a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC), and as shown in FIGS. It consists of a side plate 14b that rises one by one from each outer end on the long side and the short side in 14a.
  • the long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction).
  • the frame 16 and the bezel 13 can be screwed to the side plate 14b.
  • the light transmissive member 15 has a horizontally long rectangular shape as seen in a plan view like the liquid crystal panel 11 and the chassis 14, and the long side direction on the main surface is short with the X axis direction.
  • the side direction coincides with the Y-axis direction, and the thickness direction perpendicular to the main surface coincides with the Z-axis direction.
  • the light transmissive member 15 is placed on the front side (light emitting side) of the light guide plate 19 and is disposed between the liquid crystal panel 11 and the light guide plate 19.
  • the light transmissive member 15 is disposed so as to cover the light emitting surface 19a of the light guide plate 19 from the front side over almost the entire area, thereby transmitting the emitted light from the light emitting surface 19a and providing a predetermined optical action.
  • the light can be emitted toward the liquid crystal panel 11 side.
  • the light transmissive member 15 has a sheet shape that is thinner than the light guide plate 19, and a plurality of, specifically, four, are laminated and arranged. Yes.
  • Specific examples of the light transmissive member 15 include a diffusion sheet 15a, a prism sheet (lens sheet) 15b, a reflective polarizing sheet 15c, and the like, which can be appropriately selected and used. is there.
  • a configuration in which the light transmissive member 15 is laminated in the order of one diffusion sheet 15a, two prism sheets 15b, and one reflective polarizing sheet 15c from the back side is illustrated.
  • the diffusion sheet 15a has a function of diffusing light from the light guide plate 19 by bonding a diffusion layer in which light diffusion particles are dispersed and blended to the surface of a transparent base made of synthetic resin.
  • the prism sheet 15b has a prism for adjusting the traveling direction of light from the diffusion sheet 15a.
  • the reflective polarizing sheet 15c has, for example, a multilayer structure in which layers having different refractive indexes are alternately stacked. The reflective polarizing sheet 15c transmits p-waves of light from the prism sheet 15b and reflects s-waves toward the light guide plate 19 side. This makes it possible to increase the light utilization efficiency (and hence the luminance).
  • the frame 16 is made of a synthetic resin and is formed in a frame shape (frame shape) extending along the outer peripheral edge portions of the light transmissive member 15 and the light guide plate 19.
  • the light transmitting member 15 and the outer peripheral edge of the light guide plate 19 are opposed to each other and can be pressed from the front side over almost the entire circumference.
  • the frame 16 protrudes from the outer peripheral end of the holding base 16a toward the back side and surrounds the side plate 14b of the chassis 14 from the outside (externally fitted).
  • a peripheral wall portion 16b having a short cylindrical shape.
  • the holding base portion 16a has a pair of short side portions and long side portions, and the pair of long side portions thereof includes a pair of first light source sandwiching portions 16c that sandwich the LED 17 with the bottom plate 14a of the chassis 14; Is done.
  • the first light source sandwiching portion 16 c is disposed on the front side of the LED 17, that is, on the light emitting surface 19 a side of the light guide plate 19 so as to face the LED 17.
  • a pair of first reflecting sheets (light emitting surface side reflecting members) 20 for reflecting light are provided on the front side surfaces of the pair of first light source sandwiching portions 16c, that is, the surfaces facing the LEDs 17, respectively. It is attached.
  • the first reflection sheet 20 is made of synthetic resin, and the surface thereof is white with excellent light reflectivity, and the light reflectance on the surface is determined by the frame 16 (first light source sandwiching portion 16c). It is assumed that it is relatively higher than the light reflectance on the surface of the film.
  • the holding base portion 16a has a slight gap between it and the main surface on the front side of the light transmitting member 15 (reflective polarizing sheet 15c) arranged on the most front side (the side opposite to the light guide plate 19 side). However, they are arranged opposite to each other so that the light transmitting member 15 can be prevented from being wrinkled due to being restrained by the frame 16 during thermal expansion or contraction. Further, the pressing base 16a can receive the outer peripheral edge of the liquid crystal panel 11 from the back side.
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said.
  • the phosphor for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface.
  • the LED substrate 18 has an elongated plate shape that extends along the long side direction of the chassis 14 (X-axis direction, the longitudinal direction of the light incident surface 19 b of the light guide plate 19).
  • the main surface is accommodated in the chassis 14 in a posture parallel to the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surfaces of the liquid crystal panel 11 and the light guide plate 19 (light transmissive member 15).
  • the LED boards 18 are arranged in pairs corresponding to both ends on the long side in the chassis 14 and are attached to the inner surfaces of the side plates 14b on the long side.
  • the LED 17 having the above-described configuration is surface-mounted on the inner surface, that is, the surface facing the light guide plate 19 side (the surface facing the light guide plate 19) of the LED substrate 18, and this is the mounting surface 18a. Is done.
  • a plurality of LEDs 17 are arranged in a line (linearly) in parallel on the mounting surface 18a of the LED substrate 18 along the length direction (X-axis direction) with a predetermined interval. That is, it can be said that a plurality of LEDs 17 are intermittently arranged in parallel along the long side direction at both ends on the long side of the backlight device 12.
  • the interval between the LEDs 17 adjacent to each other in the X-axis direction, that is, the arrangement pitch of the LEDs 17 is substantially equal.
  • the arrangement direction of the LEDs 17 coincides with the length direction (X-axis direction) of the LED substrate 18.
  • a wiring pattern (not shown) made of a metal film (such as a copper foil) that extends along the X-axis direction and connects the adjacent LEDs 17 across the LED 17 group in series.
  • the terminal portions formed at both ends of the wiring pattern are connected to an external LED drive circuit, so that drive power can be supplied to each LED 17.
  • each LED 17 substantially coincides with the Y-axis direction.
  • the LEDs 17 mounted on the pair of LED substrates 18 are respectively arranged in opposition to both ends in the Y-axis direction (both ends on the long side) of the light guide plate 19.
  • the base material of the LED substrate 18 is made of metal like the chassis 14, and the wiring pattern (not shown) described above is formed on the surface thereof via an insulating layer.
  • insulating materials such as a ceramic, can also be used as a ceramic.
  • the light guide plate 19 is made of a synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate) having a refractive index sufficiently higher than air and substantially transparent (excellent translucency).
  • the light guide plate 19 has a horizontally long rectangular shape in a plan view as in the case of the liquid crystal panel 11 and the chassis 14, and has a plate shape that is thicker than the light transmissive member 15.
  • the long side direction on the main surface coincides with the X-axis direction
  • the short side direction coincides with the Y-axis direction
  • the plate thickness direction orthogonal to the main surface coincides with the Z-axis direction.
  • the light guide plate 19 is disposed in the chassis 14 at a position directly below the liquid crystal panel 11 and the light transmissive member 15, and forms a pair disposed at both ends of the long side of the chassis 14.
  • the LED boards 18 are arranged so as to be sandwiched in the Y-axis direction. Therefore, the alignment direction of the LED 17 (LED substrate 18) and the light guide plate 19 coincides with the Y-axis direction, whereas the alignment direction of the light transmissive member 15 (liquid crystal panel 11) and the light guide plate 19 is the Z-axis direction. And the arrangement directions of the two are orthogonal to each other.
  • the light guide plate 19 introduces light emitted from the LED 17 in the Y-axis direction, and rises and emits the light toward the light transmissive member 15 side (front side) while propagating the light inside.
  • the light guide plate 19 has a substantially flat plate shape extending along each main surface of the bottom plate 14a of the chassis 14 and the light transmissive member 15, and the main surface is parallel to the X-axis direction and the Y-axis direction. Is done.
  • the surface facing the front side is a light emitting surface 19 a that emits internal light toward the light transmissive member 15 and the liquid crystal panel 11.
  • both end surfaces on the long side that are long along the X-axis direction are opposed to the LED 17 (LED substrate 18) with a predetermined space therebetween. These constitute a pair of light incident surfaces 19b on which the light emitted from the LEDs 17 is incident.
  • Each light incident surface 19b is a surface parallel to the X-axis direction (the LED 17 arrangement direction) and the Z-axis direction, that is, along the main plate surface of the LED substrate 18, and is a surface substantially orthogonal to the light emitting surface 19a.
  • the alignment direction of the LED 17 and the light incident surface 19b coincides with the Y-axis direction and is parallel to the light emitting surface 19a.
  • a predetermined space is held between the light incident surface 19 b of the light guide plate 19 and the LED 17, and a portion of the bottom plate 14 a of the chassis 14 facing the space, that is, on the frame 16 side.
  • the portion that sandwiches the LED 17 with the first light source sandwiching portion 16c is the second light source sandwiching portion 14d.
  • the second light source sandwiching portion 14d is disposed opposite to the LED 17 on the back side, that is, on the side opposite to the light emitting surface 19a side of the light guide plate 19.
  • a pair of second light source sandwiching portions 14d is arranged according to the arrangement of the pair of first light source sandwiching portions 16c and the pair of LEDs 17 (LED substrate 18).
  • a light scattering portion 21 that scatters light and a light scattering portion 21 that covers the light scattering portion 21 and reflects light are provided on a surface 19c of the light guide plate 19 opposite to the light emitting surface 19a.
  • a light reflection sheet (light guide reflection member) 22 is provided.
  • the light scattering portion 21 is provided by printing, for example, white ink on a surface 19c of the light guide plate 19 opposite to the light emission surface 19a.
  • the light scattering portion 21 scatters and reflects light from the light emission surface 19a. It is possible to prompt the emission.
  • printing means such as screen printing and ink jet printing can be employed.
  • the light scattering portion 21 is configured by dispersively arranging a large number of dots 21a made of white ink in a predetermined distribution in the surface 19c of the light guide plate 19 opposite to the light emitting surface 19a.
  • the area of each dot 21a changes according to the distance with respect to LED17 about the Y-axis direction (direction along the optical axis of LED17). Specifically, the area of each dot 21a forming the light scattering portion 21 is set so as to increase in the direction away from the LED 17 (light incident surface 19b) in the Y-axis direction and conversely decrease in the direction approaching the LED 17. It has become.
  • the degree of light scattering tends to increase as the area of each dot 21a increases, according to the configuration described above, in the portion of the light guide plate 19 close to the LED 17 having a relatively large amount of light, the light scattering portion. While light scattering by the light source 21 is suppressed, light scattering by the light scattering portion 21 is promoted at a portion far from the LED 17 where the amount of light inside is relatively large. Thereby, the emitted light from the light emitting surface 19a is uniformly distributed in the surface.
  • the area of each dot 21a forming the light scattering portion 21 and the degree of light scattering are substantially constant in the X-axis direction (the LED 17 arrangement direction) and hardly change.
  • the light guide reflection sheet 22 is made of a synthetic resin, and the surface of the light guide reflection sheet 22 exhibits a white color with excellent light reflectivity, similar to the first reflection sheet 20 described above.
  • the light guide reflection sheet 22 is disposed between the bottom plate 14a of the chassis 14 and the light guide plate 19, and directs the light scattered by the light scattering portion 21 toward the front side, that is, the light emitting surface 19a side. It is possible to start up efficiently.
  • the backlight device 12 having the above-described configuration includes a second reflecting sheet (reflecting member) 23 that faces the light incident surface 19 b of the light guide plate 19. Further, the second reflecting sheet 23 is provided with an extended reflecting portion 24 that extends toward the light incident surface 19 b side of the light guide plate 19. As shown in FIG. 6, the second reflection sheet 23 and the extended reflection portion 24 have an L-shaped cross section as a whole, and the second reflection sheet 23 has a predetermined Y axis direction between the light incident surface 19 b and the second reflection sheet 23. While extending in parallel to the light incident surface 19b while maintaining a distance, the extended reflecting portion 24 is first with a predetermined distance in the Z-axis direction between the first reflecting sheet 20 and the first reflecting sheet 20. The reflection sheet 20 extends in parallel.
  • the second reflection sheet 23 is made of a synthetic resin, and the surface of the second reflection sheet 23 exhibits a white color with excellent light reflectivity, similar to the first reflection sheet 20 and the light guide reflection sheet 22 described above. As shown in FIGS. 4 and 6, the second reflection sheet 23 is attached so as to overlap the mounting surface 18 a of the LED 17 on the LED substrate 18, and is integrated with the LED substrate 18 by an adhesive or a double-sided tape. . The light reflectance on the surface of the second reflective sheet 23 is relatively higher than the light reflectance on the mounting surface 18 a of the LED 17 of the LED substrate 18.
  • part (remaining part) of the light source opening part 23a in the 2nd reflection sheet 23 is set as the form which follows the non-arrangement pattern (light source non-arrangement area
  • the “LED 17 arrangement pattern” referred to here is a light source arrangement area that is an arrangement range of the LEDs 17 in the X-axis direction, that is, the arrangement direction of the LEDs 17 (overlapping with the LEDs 17 in the arrangement direction of the LEDs 17 (the positional relationship is matched). ) Light source overlapping area) LA.
  • the “non-arrangement pattern of LEDs 17” is a light source non-arrangement region that is a range in which the LEDs 17 are not arranged in the arrangement direction of the LEDs 17 (light sources that do not overlap with the LEDs 17 in the arrangement direction of the LEDs 17).
  • the light source openings 23a are intermittently arranged in parallel along the X-axis direction (the number of LEDs 17 in parallel), so that the light source openings in the second reflection sheet 23 are arranged.
  • a plurality of non-formed portions of the portion 23a are also intermittently arranged in parallel along the X-axis direction (the number obtained by adding 1 to the number of LEDs 17 in parallel).
  • part of the light source opening part 23a in the 2nd reflective sheet 23 and the light source opening part 23a are alternately arranged along with the X-axis direction.
  • part of the light source opening part 23a in the 2nd reflection sheet 23 is carrying out the stripe form extended along a Z-axis direction, and the structure which does not exist at all in the position (light source arrangement area LA) which overlaps LED17 about an X-axis direction It has become. That is, the 2nd reflective sheet 23 is not distribute
  • part of the mounting surface 18 a of the LED substrate 18 is exposed through the light source opening 23 a, but the light reflectance is relative to that of the second reflective sheet 23. Therefore, the first low light reflectance portion 25 is used (see FIG. 8).
  • part of the light source opening part 23a in the 2nd reflection sheet 23 is made into the 1st high light reflectance part 26 whose light reflectance is relatively higher than the 1st low light reflectance part 25 (refer FIG. 8). ).
  • the first low light reflectance portion 25 exposed through the light source opening 23a to the light source arrangement area LA where the LEDs 17 are arranged in the X-axis direction is provided.
  • the first high light reflectance part 26 that is the second reflection sheet 23 is arranged in the light source non-arrangement region LN that is not arranged.
  • the light reflected from the surface of the LED substrate 18 facing the light incident surface 19b and traveling toward the light incident surface 19b is not disposed in the light source arrangement area LA and the LED 17 in the X-axis direction.
  • the difference in the amount of light hardly occurs regardless of the light source non-arrangement region LN.
  • the extended reflector 24 Since the extended reflection portion 24 is integrally formed with the second reflection sheet 23, the material and the light reflectance of the surface thereof are the same as those of the second reflection sheet 23. As shown in FIG. 6, the extended reflecting portion 24 is, on the light incident surface 19 b side of the light guide plate 19 along the Y-axis direction from the back-side end portion of the second reflecting sheet 23 extending along the Z-axis direction. It is formed by extending toward The extended reflecting portion 24 extends along the bottom plate 14a of the chassis 14 and overlaps the surface on the LED 17 side of the second light source sandwiching portion 14d that sandwiches the LED 17 between the bottom plate 14a and the first light source sandwiching portion 16c.
  • the shape is maintained by being supported by the second light source sandwiching portion 14d.
  • the second light source sandwiching portion 14d in the chassis 14 is disposed so as to overlap the LED 17 with respect to the extended reflection portion 24 in the Z-axis direction.
  • the extended reflecting portion 24 is opposed to the first reflecting sheet 20 attached to the first light source sandwiching portion 16c at a predetermined interval, and repeats the light from the LED 17 with the first reflecting sheet 20.
  • the light can be incident on the light incident surface 19b while being efficiently reflected.
  • the extended reflecting portion 24 reaches a position where the extended tip portion exceeds the light incident surface 19 b of the light guide plate 19, that is, a position overlapping the light guide plate 19 in a plan view. Yes.
  • the extended distal end portion of the extended reflecting portion 24 is held in a state of being sandwiched between the light guide plate 19 and the bottom plate 14 a of the chassis 14.
  • the extended reflection portion 24 has a light reflectance relatively higher than that of the surface of the chassis 14 having the second light source sandwiching portion 14d.
  • the chassis 14 having the second light source sandwiching portion 14d is a low light reflectance member whose surface light reflectance is relatively lower than that of the extended reflection portion 24.
  • the extended reflecting portion 24 is extended from the second reflecting sheet 23, so that the LED 17 is not arranged in the X-axis direction in the same manner as the second reflecting sheet 23. It is arranged following a certain light source non-arrangement region LN.
  • the extended reflector 24 is formed with an opening 24a that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 17 in the X-axis direction. Since a plurality of openings 24a (the number of LEDs 17 arranged in parallel) are intermittently arranged in parallel along the X-axis direction, the non-formation site of the opening 24a in the extended reflection section 24 is similarly arranged in the X-axis direction.
  • a plurality (a number obtained by adding 1 to the parallel number of the LEDs 17) are intermittently arranged in parallel.
  • part of the opening part 24a in the extended reflection part 24 and the opening part 24a are alternately arranged along the X-axis direction.
  • the opening 24 a is arranged at a position that overlaps at least the LED 17 in the extended reflection portion 24 in a plan view.
  • the opening 24a is formed in a range over the entire region excluding the extended tip portion on the light incident surface 19b side in the extended reflecting portion 24 in the Y-axis direction.
  • the extended reflecting portions 24 in which a plurality are intermittently arranged in parallel along the X-axis direction have a stripe shape extending along the Y-axis direction, and the extended tip portion extends along the X-axis direction.
  • the extension portions 27 are connected to each other.
  • the opening 24a communicates with the light source opening 23a formed in the second reflection sheet 23, and the opening fronts of the communicating portions are substantially equal to each other.
  • the opening 24a has a laterally long shape when seen in a plan view, and its long side dimension is slightly larger than the dimension in the X-axis direction of the LED 17, whereas the short side dimension is the LED substrate 18.
  • the distance between the mounting surface 18a and the light incident surface 19b is approximately equal.
  • the second low light reflectance portion 28 exposed through the opening 24a in the light source arrangement area LA where the LEDs 17 are arranged in the X-axis direction is not arranged on the surface of the second light source sandwiching portion 14d on the LED 17 side.
  • the second high light reflectance part 29 that is the extended reflection part 24 is arranged in the light source non-arrangement region LN.
  • the light that is reflected by the surface on the LED 17 side in the second light source sandwiching portion 14d and travels toward the light incident surface 19b is a non-arrangement pattern of the light source arrangement area LA and the LED 17 that is the arrangement pattern of the LED 17 in the X-axis direction.
  • a difference in the amount of light hardly occurs regardless of a certain light source non-arrangement region LN.
  • This embodiment has the structure as described above, and its operation will be described next.
  • the driving of the liquid crystal panel 11 is controlled by a control circuit (not shown) and the driving power from the LED driving circuit (not shown) is supplied to each LED 17 on the LED substrate 18.
  • the light from each LED 17 is guided by the light guide plate 19, so that the liquid crystal panel 11 is irradiated through the light transmissive member 15, and a predetermined image is displayed on the liquid crystal panel 11.
  • the operation of the backlight device 12 will be described in detail.
  • each LED 17 When each LED 17 is turned on, the light emitted from each LED 17 is incident on the light incident surface 19b of the light guide plate 19 facing the LED 17, as shown in FIG.
  • the light incident on the light incident surface 19b is reflected by the light guide reflection sheet 22 while being scattered by the scattering portion 21 in the process of propagating through the light guide plate 19, so that it does not exceed the critical angle with respect to the light exit surface 19a.
  • the light By entering at an incident angle, the light is emitted from the light exit surface 19a to the outside on the front side.
  • the light emitted from the light emitting surface 19 a passes through the light transmissive member 15, is given a predetermined optical action, and then is emitted toward the liquid crystal panel 11.
  • the second reflection sheet 23 that follows the light source non-arrangement region LN that is the non-arrangement pattern of the LED 17 is used. Is attached to the surface of the LED 17 side of the second light source sandwiching portion 14d that sandwiches the LED 17 with the first light source sandwiching portion 16c, and is extended from the second reflective sheet 23 to the light incident surface 19b side. An extended reflection portion 24 that follows the light source non-arrangement region LN is disposed.
  • the light existing in the light source non-arrangement region LN which is the non-arrangement pattern of the LED 17 whose light amount tends to be relatively small, is incident on the light incident surface 19b.
  • the second reflection sheet 23 (first high light reflectance portion 26) and the extended reflection portion 24 (second high light reflectance portion 29) are arranged so as to follow the light source non-arrangement region LN. Is reflected.
  • the second reflection sheet 23 is formed with a light source opening 23a that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 17, so that the LED substrate has a relatively lower light reflectance than the second reflection sheet 23.
  • the extended reflection portion 24 is formed with an opening 24a that follows the light source arrangement region LA.
  • the light existing in the light source non-arrangement area LA which is the arrangement pattern of the LEDs 17 that tends to have a relatively large amount of light, is both in the light source arrangement area LA. Reflection is suppressed by the first low light reflectance part 25 and the second low light reflectance part 28 to be copied. Therefore, the difference between the light source arrangement area LA and the light source non-arrangement area LN is less likely to occur in the amount of light incident on the light incident surface 19b of the light guide plate 19, and thus the light output from the light emission surface 19a of the light guide plate 19 is reduced. Luminance unevenness is less likely to occur in the incident light. Moreover, since the extended reflecting portion 24 is formed extending from the second reflecting sheet 23, the workability related to assembly can be improved.
  • the backlight device (illumination device) 12 is arranged in a state of being opposed to the plurality of LEDs (light sources) 17 arranged intermittently and the LEDs 17 and receives light from the LEDs 17.
  • a light guide plate 19 having an incident light incident surface 19b and a light emitting surface 19a for emitting incident light, and a non-arranged pattern of the LEDs 17 (light source non-arranged region LN) arranged to face the light incident surface 19b.
  • a second reflecting sheet (reflecting member) 23 that is arranged along with the extended reflecting portion 24 that extends from the second reflecting sheet 23 toward the light incident surface 19b side is provided.
  • the light emitted from the plurality of LEDs 17 enters the light incident surface 19b of the light guide plate 19 arranged to face the LEDs 17, and then propagates through the light guide plate 19 before being emitted from the light exit surface 19a.
  • the second reflective sheet 23 is disposed so as to face the light incident surface 19b and follows the non-arrangement pattern of the LED 17, and The light is efficiently reflected by the extended reflecting portion 24 that extends from the second reflecting sheet 23 toward the light incident surface 19b.
  • the amount of light incident on the light incident surface 19b of the light guide plate 19 depends on the arrangement pattern (light source arrangement area LA) and the non-arrangement pattern (light source non-arrangement area LN) in the plurality of LEDs 17 arranged intermittently. It becomes uniform and unevenness is less likely to occur. Thereby, luminance unevenness is less likely to occur in the light emitted from the light exit surface 19 a of the light guide plate 19. Moreover, since the extended reflection part 24 is formed extending from the second reflection sheet 23, workability related to assembly can be improved. According to this embodiment, luminance unevenness can be suppressed.
  • the second light source sandwiching portion (low light reflectance member) is disposed so as to overlap the side opposite to the LED 17 side with respect to the extended reflecting portion 24 and has a relatively lower light reflectance than the extended reflecting portion 24.
  • 14 d is provided, and the extended reflection portion 24 is formed with an opening 24 a that follows the arrangement pattern of the LEDs 17. In this way, light reflection is suppressed by the second light source sandwiching portion 14d exposed through the opening 24a that follows the arrangement pattern of the LEDs 17, thereby further increasing the amount of light incident on the light incident surface 19b of the light guide plate 19. Unevenness is less likely to occur.
  • the opening 24a is disposed at a position where the extended reflection portion 24 overlaps at least the LED 17 in a plan view. In this way, since the opening 24a is formed at a position where much of the light emitted from the LED 17 is irradiated in the extended reflecting portion 24, the second light source sandwiching portion 14d exposed through the opening 24a becomes excessive. It is possible to effectively suppress the reflection of light that tends to occur.
  • a light source opening 23a through which the LED 17 is passed is formed in the second reflection sheet 23 following the arrangement pattern of the LED 17, and the opening 24a communicates with the light source opening 23a.
  • the shapes of the second reflection sheet 23 and the extended reflection part 24 can be simplified compared to a case where the light source opening 23a and the opening 24a are configured not to communicate with each other. Can be. *
  • the opening 24a and the light source opening 23a have substantially the same opening fronts at the communicating portions. By doing so, it is possible to avoid the formation of a step in the communication portion between the opening 24a and the light source opening 23a, and thus the shapes of the second reflection sheet 23 and the extended reflection portion 24 are simplified. be able to.
  • an extended portion 27 extending across the opening 24 a along the arrangement direction of the LEDs 17 is provided at the end of the extended reflecting portion 24 on the light incident surface 19 b side.
  • the extended portion 27 makes the shape of the end of the extended reflecting portion 24 on the light incident surface 19b side simple, and therefore the handleability of the extended reflecting portion 24 is excellent.
  • a chassis 14 that houses the LEDs 17 and the light guide plate 19 is provided, and the extended reflection portion 24 is arranged so as to overlap the surface of the chassis 14 on the LED 17 side. In this way, the shape of the extended reflecting portion 24 can be maintained by the chassis 14 that houses the LEDs 17 and the light guide plate 19.
  • the extended reflecting portion 24 is formed so as to extend to a range overlapping with the light guide plate 19 in a plan view, and the overlapping portion is sandwiched between the light guide plate 19 and the chassis 14. In this way, the extended reflection part 24 can be stably held by sandwiching the extended reflection part 24 between the chassis 14 and the light guide plate 19.
  • an LED substrate (light source substrate) 18 on which a plurality of LEDs 17 are mounted is provided, and the second reflection sheet 23 is attached to the LED substrate 18.
  • the second reflection sheet 23 is difficult to be displaced with respect to the non-arrangement pattern of the LEDs 17. Yes.
  • the amount of light incident on the light incident surface 19b of the light guide plate 19 is less likely to be uneven.
  • a light scattering portion 21 that scatters light, and a light guide reflection sheet (light guide reflection member) that covers the light scattering portion 21 and reflects light. 22 is provided, and the light scattering portion 21 has a distribution in which the degree of light scattering is substantially constant in the arrangement direction of the LEDs 17. If it does in this way, the light which injected into the light-incidence surface 19b of the light-guide plate 19 will be reflected by the light-guide reflective sheet 22, being scattered by the light-scattering part 21 provided in the surface on the opposite side to the light-projection surface 19a. As a result, the light exits from the light exit surface 19a.
  • the light scattering unit 21 emits light from each LED 17 evenly regardless of the positional relationship of the LEDs 17 with respect to the arrangement direction of the LEDs 17 because the degree of light scattering is substantially constant with respect to the arrangement direction of the LEDs 17.
  • the light can be emitted from the surface 19a.
  • the light from LED17 is uniform irrespective of the arrangement pattern and non-arrangement pattern in LED17 by the above-mentioned 2nd reflective sheet 23 and the extended reflection part 24 in the step which injects into the light-incidence surface 19b of the light-guide plate 19. FIG. It has become difficult to produce unevenness.
  • Embodiment 1 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • the opening 24 a-1 has a horizontally long rectangular shape when viewed in a plane, while the LED 17 is viewed in a plane.
  • the non-overlapping portion has a substantially triangular shape when viewed in plan.
  • the portion of the opening 24a-1 that does not overlap with the LED 17 in a plan view has a base that extends along the X-axis direction and a pair of oblique sides that are inclined with respect to the X-axis direction and the Y-axis direction. It has an equilateral triangular shape, and the bottom side exists on the LED 17 side, whereas the intersection of a pair of oblique sides exists on the light incident surface 19b side.
  • the portion of the opening 24 a-1 that does not overlap with the LED 17 in a plan view is smaller in the area toward the direction away from the LED 17 in the Y-axis direction, and the opening front becomes narrower. As the area increases toward the surface, the opening front is widened. Therefore, the area of the second low-light-reflecting part 28-1 configured by the second light source sandwiching part 14d of the chassis 14 exposed through the opening 24a-1 is small in the direction away from the LED 17 in the Y-axis direction. On the other hand, the area of the second high light reflectivity portion 29-1 constituted by the extended reflection portion 24-1 increases in the direction away from the LED 17.
  • the light emitted from the LED 17 tends to spread as the distance from the LED 17 increases, and unevenness tends to be alleviated. Therefore, in the surface facing the LED 17 in the second light source sandwiching portion 14d, light is emitted by the second low light reflectance portion 28-1 having a larger area than the second high light reflectance portion 29-1 at a position relatively close to the LED 17. By effectively suppressing the reflection of the light, a high unevenness suppressing effect can be obtained. On the other hand, on the surface facing the LED 17 in the second light source sandwiching portion 14d, light is emitted by the second high light reflectance portion 29-1 having a larger area than the second low light reflectance portion 28-1 at a position relatively far from the LED 17. The luminance is improved by increasing the efficiency of reflection.
  • the opening 24 a-1 is configured such that the area thereof decreases in the direction away from the LED 17.
  • the exposed area of the second light source sandwiching portion 14d exposed through the opening 24a-1 decreases in the direction away from the LED 17, while the extended reflecting portion 24-1 moves away from the LED 17.
  • the area increases in the direction.
  • the light emitted from the LED 17 tends to spread as the distance from the LED 17 increases and the unevenness is alleviated. Therefore, reflection of light is mainly suppressed by the second light source sandwiching portion 14d at a position relatively close to the LED 17.
  • the luminance can be improved by improving the efficiency of light reflection mainly by the extended reflection portion 24-1 at a position relatively far from the LED 17 while effectively suppressing unevenness.
  • the opening 24a-1 has an inclined edge so that the opening front becomes narrower in the direction away from the LED 17.
  • the edge of the opening 24a-1 in an inclined shape, the exposed area of the second light source sandwiching portion 14d continuously decreases gradually in the direction away from the LED 17, whereas the extended reflection. Since the area of the portion 24-1 increases gradually and gradually in the direction away from the LED 17, it is possible to improve luminance while suppressing unevenness more effectively.
  • the opening 24 a-2 has a horizontally long rectangular shape when viewed in a plane, while the LED 17 is viewed in a plane.
  • the non-overlapping portion has a substantially semicircular shape when viewed in plan. Accordingly, the portion of the opening 24a-2 that does not overlap with the LED 17 in a plan view has a straight base and an arcuate side that forms an arc, and the base is on the LED 17 side.
  • the arc-shaped side exists on the light incident surface 19b side, and the light incident surface 19b is arranged at a position tangent to the arc-shaped side.
  • the portion of the opening 24a-2 that does not overlap with the LED 17 in a plan view is smaller in the area away from the LED 17 in the Y-axis direction, and the opening front is narrower. As the area increases toward the surface, the opening front is widened. Since other operations and effects are the same as those of the first modification of the first embodiment described above, a duplicate description is omitted.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. 11 or FIG. In this Embodiment 2, what changed the form of the extended reflection part 124 and the opening part 124a is shown. In addition, the overlapping description about the same structure, an effect
  • the extended reflecting portion 124 is a non-arranged pattern of the LEDs 17 in the X-axis direction (the direction in which the LEDs 17 are arranged) on the surface of the second light source sandwiching portion 14d on the LED 17 side.
  • the light source arrangement area LA that is the arrangement pattern of the LEDs 17.
  • the opening 124a disposed in the light source arrangement area LA in the X-axis direction is formed at a position overlapping with the LED 17 when viewed in a plane, but does not overlap with the LED 17 when viewed in a plane.
  • the third low light reflectance part (low light reflectance printing part) 30 is provided by printing a low light reflectance material having a relatively low value.
  • the third low light reflectance portion 30 is a material exhibiting black as a low light reflectance material, and is provided on the surface of the extended reflection portion 124 by printing means such as screen printing or ink jet printing. .
  • the third low light reflectance portion 30 is configured by three circular printing portions 30a that are circular in a plan view. Specifically, the third low light reflectance portion 30 is disposed at a position on the LED 17 side in the Y-axis direction and aligned with the X-axis direction, and a position on the light incident surface 19b side in the Y-axis direction. And a single circular printing unit 30a arranged at an intermediate position between a pair of circular printing units 30a arranged in the X-axis direction in the X-axis direction.
  • the second high light reflectivity portion 129 is configured by a non-formation portion in which the third low light reflectivity portion 30 is not formed in the extended reflection portion 124.
  • the light reflectance related to the surface on the LED 17 side in the second light source sandwiching portion 14d is relatively high by the second high light reflectance portion 129 in the light source non-arranged region LN that is the non-arranged pattern of the LED 17.
  • the third low light printed on the surface of the extended reflection section 124 in addition to the second low light reflectance section 128 exposed through the opening 124a is relatively low due to the reflectance part 30.
  • the light existing in the light source non-arrangement region LN in which the light amount tends to be relatively small, is incident on the light incident surface 19b.
  • the light is efficiently reflected by the second high light reflectance portion 129 of the extended reflection portion 124 that is arranged following the light source non-arrangement region LN.
  • the light existing in the light source arrangement region LN which tends to have a relatively large amount of light, is distributed following the light source arrangement region LA before entering the light incident surface 19b.
  • the reflection is suppressed by the second low light reflectance unit 128 and the third low light reflectance unit 30.
  • the extended reflection part 124 is arranged in a range that follows the arrangement pattern of the LED 17 in addition to the non-arrangement pattern of the LED 17, and the extended reflection part 124 has a light reflectance.
  • a third low light reflectance part (low light reflectance printing part) 30 that follows the arrangement pattern of the LEDs 17 is provided by printing a relatively low low light reflectance material. In this way, the non-formed part where the third low light reflectance part 30 that follows the arrangement pattern of the LED 17 in the extended reflection part 124 is not formed is assumed to follow the non-placement pattern of the LED 17.
  • the reflection of light is suppressed by the third low light reflectance portion 30 that follows the arrangement pattern of the LEDs 17, whereas the reflection of light is not performed by the portion where the third low light reflectance portion 30 is not formed in the extended reflection portion 124.
  • the amount of light incident on the light incident surface 19b of the light guide plate 19 is further less likely to be uneven.
  • Embodiment 2 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • the third low light reflectance portion 30-1 is configured by a large number of dots 30 b made of a low light reflectance material, and the dot 30 b group as a whole is a semicircle. It is arranged in the shape area.
  • the third low light reflectance portion 30-1 has a linear base on the light incident surface 19b side, whereas an arc-shaped side on the LED 17 side. . Therefore, the area of the third low light reflectance portion 30-1 increases as it approaches the center position of the LED 17 in the X-axis direction, while the area decreases as it moves away from the center position of the LED 17. Is done.
  • the third low light reflectance portion 30-1 has a center position substantially coincident with the center position of the LED 17 in the X-axis direction.
  • the third low light reflectance portion 30-1 has a formation range in the X-axis direction substantially the same as that of the LED 17 (light source arrangement area LA), and the entire area in the X-axis direction is the LED 17 (light source arrangement area LA). And the positional relationship overlapping.
  • the area of the third low light reflectance portion 30-1 decreases as it approaches the LED 17 in the Y-axis direction, and increases as it moves away from the LED 17. That is, the third low light reflectance portion 30-1 is configured such that the dimension in the X-axis direction gradually increases toward the direction away from the LED 17 in the Y-axis direction.
  • the area and arrangement interval of the dots 30b constituting the third low light reflectance portion 30-1 are substantially constant. That is, since the distribution density of the dots 30b constituting the third low third low light reflectance portion 30-1 is substantially constant, the light reflectance in the third low light reflectance portion 30-1 is It is almost constant over the entire area. Even with such a configuration, a difference between the light source arrangement area LA and the light source non-arrangement area LN hardly occurs in the amount of light incident on the light incident surface 19b of the light guide plate 19.
  • the third low light reflectance unit 30-2 is configured so that the light reflectance changes in a gradation with respect to the alignment direction (X-axis direction) of the LEDs 17. ing. Specifically, in the third low light reflectance unit 30-2, the light reflectance continuously increases gradually in the direction away from the central position of the LED 17 in the X-axis direction, and conversely approaches the central position of the LED 17. The light reflectance is continuously decreased gradually toward the direction. Therefore, as shown in FIG. 14, the large number of dots 30b-2 constituting the third low light reflectance portion 30-2 are arranged at the central position of the LED 17 in the X-axis direction and have the largest area.
  • the pattern is formed such that the area continuously and gradually decreases as the distance from the X-axis direction increases.
  • the light reflectance in the third low light reflectance portion 30-2 changes in a slope shape in the X-axis direction as shown in FIG. Note that the light reflectance in the third low light reflectance portion 30-2 is substantially constant in the Y-axis direction.
  • the third low light reflectance portion 30-3 according to the present modification is configured such that the light reflectance changes in a curved shape in the arrangement direction (X-axis direction) of the LEDs 17.
  • the third low light reflectance portion 30-4 is configured such that the light reflectance changes in a stripe shape in the arrangement direction (X-axis direction) of the LEDs 17. That is, in the third low light reflectance unit 30-4, the light reflectance gradually increases in the X-axis direction toward the direction away from the central position of the LED 17, and conversely toward the direction approaching the central position of the LED 17. Thus, the light reflectance is gradually decreased step by step.
  • Modification 5 of Embodiment 2 will be described with reference to FIG. Here, what changed the aspect of the 3rd low light reflectance part 30-5 is shown.
  • the third low light reflectance portion 30-5 is formed by printing a low light reflectance material in a solid shape on the surface of the extended reflection portion 124-5. ing. In this way, the light reflectance of the third low light reflectance portion 30-5 is even lower than those described in the second embodiment and the first to fourth modifications thereof.
  • the third low light reflectance portion 30-6 has a trapezoidal shape when seen in a plane as shown in FIG.
  • the pair of opposite sides are parallel to the LED 17 arrangement direction (X-axis direction), of which the upper base is on the LED 17 side and the lower base is the light incident surface. It is arranged on the 19b side. That is, the third low light reflectance portion 30-6 is configured such that the dimension in the X-axis direction gradually increases toward the direction away from the LED 17 in the Y-axis direction.
  • the extended reflection portion is disposed so as to overlap the surface on the LED side in the second light source sandwiching portion (chassis) disposed on the side opposite to the light emitting surface side.
  • the present invention includes a configuration in which the extended reflection portion is arranged so as to overlap the surface on the LED side in the first light source sandwiching portion (frame) arranged on the light emitting surface side. In that case, what is necessary is just to make it attach to a 2nd light source clamping part about a 1st reflective sheet.
  • the second reflection sheet has a configuration in which the second reflection sheet is not arranged at all in the light source arrangement region (LED arrangement pattern) in the X-axis direction. If secured, a part of the second reflection sheet may be arranged on the light source arrangement region side. For example, it is possible to take the structure which connects each 1st high light reflectance part which makes a 2nd reflective sheet by a bridge
  • the extension tip portion of the extension reflection portion is configured to overlap with the light guide plate in plan view.
  • the extension tip portion of the extension reflection portion is viewed in plan view with the light guide plate.
  • the present invention includes a configuration that does not overlap (a configuration in which the extended reflection portion is not sandwiched between the chassis and the light guide plate). In that case, it is possible to make the extended tip of the extended reflector part flush with the light incident surface of the light guide plate, or to make the extended tip of the extended reflector not reach the light incident surface of the light guide plate. It is.
  • the light source opening portion of the second reflection sheet and the opening portion of the extended reflection portion have the same opening front in the communication portion. It is also possible to vary the opening front at the communication part.
  • the specific planar shape of the opening and the light source opening can be changed as appropriate.
  • the planar shape of the opening and the light source opening can be changed to a polygon other than a square or a rectangle.
  • the shape triangular shape, pentagonal shape), trapezoidal shape, elliptical shape, oval shape, or the like can be used.
  • the second reflection sheet and the extended reflection portion exhibiting white are used is shown.
  • the second reflection sheet and the extension reflection exhibiting a color other than white for example, silver or gray. It is also possible to use parts.
  • the extension reflection portion is provided with the opening and the third low light reflectance portion is provided.
  • the extension reflection portion is provided with only the third low light reflectance portion. It may be provided, and the opening may not be provided.
  • the planar shape of the third low light reflectance portion can be changed as appropriate.
  • the planar shape of the third low light reflectance portion can be a divergent shape such as a triangular shape, a semi-elliptical shape, and a semi-ellipse shape, and other polygonal shapes (square, pentagon, etc.) Alternatively, a circular shape, an elliptical shape, or the like can be used.
  • the third low light reflectance part can be asymmetrical.
  • the low light reflectance part is formed by printing the low light reflectance material on the surface of the extended reflection part. It is also possible to form the third low light reflectance part by applying a material.
  • the present invention includes other means using other forming means such as metal vapor deposition.
  • a pair of LED substrates is arranged at the ends of both long sides of the light guide plate.
  • the LED substrates are both short sides of the light guide plate. What is arranged in a pair at the end portion on the side is also included in the present invention.
  • LED substrates In addition to the above (15), a pair of LED substrates (LEDs) arranged on both ends of the long side and both short sides of the light guide plate, and conversely, LED substrates (LEDs).
  • the present invention includes one in which only one long side or one short side of the light guide plate is disposed at the end.
  • the color filters of the color filter included in the liquid crystal panel are exemplified by three colors of R, G, and B.
  • the color sections can be four or more colors.
  • an LED is used as a light source.
  • other light sources such as an organic EL can be used.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
  • a switching element other than TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
  • the present invention can also be applied to display devices using other types of display panels.
  • the television receiver provided with the tuner is exemplified, but the present invention is also applicable to a display device that does not include the tuner.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 14 ... Chassis, 14d ... 2nd light source clamping part (Low light reflectance member), 17 ... LED (light source), 18 ... LED substrate (light source substrate), 19 ... light guide plate, 19a ... light emitting surface, 19b ... light incident surface , 19c ... surface, 21 ... light scattering portion, 22 ... light guide reflection sheet (light guide reflection member), 23 ... second reflection sheet (reflection member), 23a ... light source opening 24 ... extended reflection part, 24a ... opening part, 27 ... extension part, 30 ... third low light reflectance part (low light reflectance printing part), LA ... light source arrangement Area (light source arrangement pattern), LN ... light source non-arrangement area (light source non-arrangement pattern), TV ... TV receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This backlight device (illumination device) (12) comprises: a plurality of LEDs (light sources) (17) arranged intermittently side by side; a light guide plate (19) having light incidence surfaces (19b) facing the LEDs (17) and receiving light from the LEDs (17), and a light emission surface (19a) that allows the incident light to exit; second reflective sheets (reflective members) (23) facing the light incidence surfaces (19b) and provided so as to correspond to the pattern of the regions in which the LEDs (17) are not arranged (light source non-arrangement regions (LN)); and extended reflection parts (24) that extend from the second reflective sheets (23) toward the light incidence surfaces (19b).

Description

照明装置、表示装置、及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としており、バックライト装置はその機構によって直下型とエッジライト型とに大別されている。液晶表示装置の一層の薄型化を実現するには、エッジライト型のバックライト装置を用いるのが好ましく、その一例として下記特許文献1に記載されたものが知られている。 In recent years, the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices. Since the liquid crystal panel used for the liquid crystal display device does not emit light by itself, a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism. In order to further reduce the thickness of the liquid crystal display device, it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
特開2008-171719号公報JP 2008-171719 A
(発明が解決しようとする課題)
 エッジライト型のバックライト装置では、導光板の端部に設けられた光入射面に沿って間欠的に複数の光源を並列配置する構成を採る場合があるが、その場合次の問題が生じる可能性がある。すなわち、複数の光源から発せられて光入射面に入射される光量には、間欠的に並列する複数の光源における配置パターン及び非配置パターンによってムラが生じるおそれがあった。
(Problems to be solved by the invention)
The edge light type backlight device may adopt a configuration in which a plurality of light sources are intermittently arranged in parallel along the light incident surface provided at the end of the light guide plate. In this case, the following problem may occur. There is sex. That is, the light quantity emitted from the plurality of light sources and incident on the light incident surface may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources intermittently arranged in parallel.
 本発明は上記のような事情に基づいて完成されたものであって、輝度ムラを抑制することを目的とする。 The present invention has been completed based on the above situation, and an object thereof is to suppress luminance unevenness.
(課題を解決するための手段)
 本発明の照明装置は、間欠的に並んで配される複数の光源と、前記光源と対向状に配されるとともに前記光源からの光が入射される光入射面、及び入射した光を出射させる光出射面を有する導光板と、前記光入射面と対向状に配され且つ前記光源の非配置パターンに倣って配される反射部材と、前記反射部材から前記光入射面側に向けて延長される延長反射部とを備える。
(Means for solving problems)
The illumination device according to the present invention includes a plurality of light sources intermittently arranged side by side, a light incident surface that is arranged to face the light sources and receives light from the light sources, and emits the incident light. A light guide plate having a light exit surface, a reflective member disposed opposite to the light incident surface and following the non-arrangement pattern of the light source, and extended from the reflective member toward the light incident surface side. And an extended reflecting portion.
 複数の光源から発せられた光は、光源と対向状に配される導光板の光入射面に入射した後、導光板内を伝播されてから、光出射面から出射される。ここで、光源からの光は、光入射面に入射するまでの間に、光入射面と対向状に配され且つ光源の非配置パターンに倣って配される反射部材、及びその反射部材から光入射面側に向けて延長される延長反射部によって効率的に反射される。従って、導光板の光入射面に入射される光量は、間欠的に並んで配される複数の光源における配置パターン及び非配置パターンによらず均一化されてムラが生じ難くなる。これにより、導光板の光出射面からの出射光にも輝度ムラが生じ難くなる。また、反射部材から延長反射部を延長して形成しているから、組み付けに係る作業性を向上させることができる。 The light emitted from the plurality of light sources is incident on the light incident surface of the light guide plate arranged opposite to the light sources, then propagates through the light guide plate, and then is emitted from the light exit surface. Here, the light from the light source is disposed so as to be opposed to the light incident surface and is imitated according to the non-arrangement pattern of the light source before entering the light incident surface, and the light from the reflective member. The light is efficiently reflected by the extended reflecting portion that extends toward the incident surface side. Accordingly, the amount of light incident on the light incident surface of the light guide plate is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently side by side, and unevenness hardly occurs. As a result, luminance unevenness is less likely to occur in the light emitted from the light exit surface of the light guide plate. Moreover, since the extended reflection part is extended from the reflection member, workability related to assembly can be improved.
 本発明の実施態様として、次の構成が好ましい。
(1)前記延長反射部に対して前記光源側とは反対側に重なる形で配されるとともに、前記延長反射部よりも光反射率が相対的に低い低光反射率部材が備えられており、前記延長反射部には、前記光源の配置パターンに倣う開口部が形成されている。このようにすれば、光源の配置パターンに倣う開口部を通して露出する低光反射率部材によって光の反射が抑制されることで、導光板の光入射面に入射される光量に一層ムラが生じ難くなる。
The following configuration is preferable as an embodiment of the present invention.
(1) A low-light-reflectance member is provided that is disposed so as to overlap the extended-reflecting portion on the side opposite to the light source side and that has a relatively low light reflectance than the extended-reflecting portion. The extended reflection portion has an opening that follows the arrangement pattern of the light sources. In this way, the light reflection is suppressed by the low-light reflectance member exposed through the opening that follows the light source arrangement pattern, so that the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven. Become.
(2)前記開口部は、前記延長反射部において少なくとも前記光源と平面に視て重畳する位置に配されている。このようにすれば、延長反射部において光源から発せられる光の多くが照射される位置に開口部が形成されているから、開口部を通して露出する低光反射率部材によって過剰になりがちな光の反射を効果的に抑制することができる。 (2) The opening is disposed at a position overlapping at least the light source in a plan view in the extended reflection portion. In this way, since the opening is formed at a position where much of the light emitted from the light source is irradiated in the extended reflection portion, the light that tends to be excessive due to the low light reflectance member exposed through the opening. Reflection can be effectively suppressed.
(3)前記反射部材には、前記光源を通す光源開口部が前記光源の配置パターンに倣って形成されており、前記開口部は、前記光源開口部に連通されている。このようにすれば、光源開口部及び開口部が連通されているから、仮にこれらが連通しない構成とされた場合に比べると、反射部材及び延長反射部の形状を簡単なものとすることができる。 (3) A light source opening through which the light source passes is formed in the reflecting member following the arrangement pattern of the light source, and the opening communicates with the light source opening. In this way, since the light source opening and the opening are communicated with each other, the shapes of the reflecting member and the extended reflecting portion can be simplified as compared with a case where they are configured not to communicate with each other. .
(4)前記開口部及び前記光源開口部は、互いの連通部位における開口間口がほぼ等しいものとされる。このようにすれば、開口部と光源開口部との連通部位に段差が形成されるのが回避されるから、反射部材及び延長反射部の形状をより簡単なものとすることができる。 (4) The opening and the light source opening have substantially the same opening front at the communication part. By doing so, it is possible to avoid the formation of a step at the communication portion between the opening and the light source opening, and thus the shapes of the reflecting member and the extended reflecting portion can be made simpler.
(5)前記開口部は、前記光源から遠ざかる方向に向けてその面積が小さくなる形態とされる。このようにすれば、開口部を通して露出する低光反射率部材は、光源から遠ざかる方向に向けてその露出面積が小さくなるのに対し、延長反射部は、光源から遠ざかる方向に向けてその面積が大きくなる。ここで、光源から発せられた光は、光源から遠ざかるほど広がってムラが緩和される傾向にあることから、比較的光源に近い位置では主に低光反射率部材によって光の反射を抑制してムラを効果的に抑制しつつ、比較的光源から遠い位置では主に延長反射部によって光の反射を高効率化することで輝度を向上させることができる。 (5) The opening is configured to have a smaller area in a direction away from the light source. In this way, the exposed area of the low light reflectance member exposed through the opening decreases in the direction away from the light source, while the area of the extended reflection portion decreases in the direction away from the light source. growing. Here, the light emitted from the light source spreads away from the light source, and unevenness tends to be alleviated. Therefore, light reflection is mainly suppressed by a low light reflectance member at a position relatively close to the light source. While suppressing unevenness, the luminance can be improved by increasing the efficiency of light reflection mainly by the extended reflection portion at a position relatively far from the light source.
(6)前記開口部は、前記光源から遠ざかる方向に向けてその開口間口が狭くなるよう傾斜状の縁部を有している。このように、開口部の縁部を傾斜状にすることで、低光反射率部材の露出面積は、光源から遠ざかる方向に向けて連続的に漸次減少するのに対し、延長反射部の面積は、光源から遠ざかる方向に向けて連続的に漸次増加することになるから、ムラをより効果的に抑制しつつ輝度の向上を図ることができる。 (6) The opening has an inclined edge so that the opening front becomes narrower in a direction away from the light source. In this way, by making the edge of the opening inclined, the exposed area of the low light reflectance member continuously decreases gradually in the direction away from the light source, whereas the area of the extended reflecting portion is Then, since it gradually increases gradually toward the direction away from the light source, it is possible to improve the luminance while suppressing the unevenness more effectively.
(7)前記延長反射部における前記光入射面側の端部には、前記光源の並び方向に沿って前記開口部を横切るよう延在する延在部が設けられている。このようにすれば、延在部によって延長反射部における光入射面側の端部の形状が簡単なものとなるから、延長反射部の取り扱い性に優れる。 (7) An extended portion that extends across the opening along the direction in which the light sources are arranged is provided at an end of the extended reflecting portion on the light incident surface side. In this way, the extension portion makes the shape of the end portion on the light incident surface side of the extended reflection portion simple, and hence the handleability of the extended reflection portion is excellent.
(8)前記延長反射部は、前記光源の非配置パターンに加えて前記光源の配置パターンに倣う範囲に配されており、前記延長反射部には、光反射率が相対的に低い低光反射率材料を印刷することで、前記光源の配置パターンに倣う低光反射率印刷部が設けられている。このようにすれば、延長反射部のうち光源の配置パターンに倣う低光反射率印刷部が形成されない非形成部位は、光源の非配置パターンに倣うものとされる。従って、光源の配置パターンに倣う低光反射率印刷部によって光の反射が抑制されるのに対し、延長反射部における低光反射率印刷部の非形成部位によって光の反射が高効率化されることで、導光板の光入射面に入射される光量に一層ムラが生じ難くなる。 (8) The extended reflection part is arranged in a range that follows the arrangement pattern of the light source in addition to the non-arrangement pattern of the light source, and the extended reflection part has a low light reflection with a relatively low light reflectance. A low-light-reflectance printing unit that follows the arrangement pattern of the light sources is provided by printing the rate material. In this way, the non-formation part in which the low light reflectance printing part that follows the light source arrangement pattern in the extended reflection part is formed according to the light source non-arrangement pattern. Accordingly, light reflection is suppressed by the low light reflectance printing portion that follows the arrangement pattern of the light source, whereas light reflection is highly efficient due to the non-formation portion of the low light reflectance printing portion in the extended reflection portion. As a result, the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven.
(9)前記光源及び前記導光板を収容するシャーシが備えられており、前記延長反射部は、前記シャーシにおける前記光源側の面に重なる形で配されている。このようにすれば、光源及び導光板を収容するシャーシによって延長反射部の形状保持が図られる。 (9) A chassis that accommodates the light source and the light guide plate is provided, and the extended reflection portion is disposed so as to overlap a surface of the chassis on the light source side. In this way, the shape of the extended reflecting portion can be maintained by the chassis that houses the light source and the light guide plate.
(10)前記延長反射部は、前記導光板と平面に視て重畳する範囲にまで延長して形成されるとともに、その重畳部が前記導光板と前記シャーシとの間で挟まれている。このようにすれば、シャーシと導光板との間で延長反射部を挟むことで、延長反射部を安定的に保持することができる。 (10) The extended reflection portion is formed so as to extend so as to overlap with the light guide plate in a plan view, and the overlap portion is sandwiched between the light guide plate and the chassis. If it does in this way, an extended reflection part can be stably hold | maintained by pinching an extended reflection part between a chassis and a light-guide plate.
(11)複数の前記光源が実装される光源基板が備えられており、前記反射部材は、前記光源基板に取り付けられている。このようにすれば、複数の光源が実装される光源基板に反射部材を取り付けるようにしているから、反射部材が光源の非配置パターンに対して位置ずれし難くなっている。これにより、導光板の光入射面に入射される光量に一層ムラが生じ難くなる。 (11) A light source substrate on which a plurality of the light sources are mounted is provided, and the reflecting member is attached to the light source substrate. In this way, since the reflecting member is attached to the light source substrate on which a plurality of light sources are mounted, it is difficult for the reflecting member to be displaced with respect to the non-arranged pattern of the light sources. As a result, the amount of light incident on the light incident surface of the light guide plate is less likely to be uneven.
(12)前記導光板における前記光出射面とは反対側の面には、光を散乱させる光散乱部と、前記光散乱部を覆うとともに光を反射させる導光反射部材とが設けられており、前記光散乱部は、光の散乱度合いが前記光源の並び方向についてほぼ一定になる分布を有している。このようにすれば、導光板の光入射面に入射した光は、光出射面とは反対側の面に設けられた光散乱部によって散乱されつつ導光反射部材によって反射されることで、光出射面から出射される。光散乱部は、光の散乱度合いが光源の並び方向についてほぼ一定とされているから、複数の光源に対する光源の並び方向についての位置関係によらず、各光源からの光をムラなく光出射面から出射させることができる。なお、光源からの光は、導光板の光入射面に入射する段階で、上記した反射部材及び延長反射部によって、複数の光源における配置パターン及び非配置パターンによらず均一化されてムラが生じ難くなっている。 (12) A light scattering portion that scatters light and a light guide reflection member that covers the light scattering portion and reflects light are provided on a surface opposite to the light emitting surface of the light guide plate. The light scattering portion has a distribution in which the degree of light scattering is substantially constant with respect to the arrangement direction of the light sources. In this way, the light incident on the light incident surface of the light guide plate is reflected by the light guide reflecting member while being scattered by the light scattering portion provided on the surface opposite to the light emitting surface. The light is emitted from the emission surface. Since the light scattering unit has a light scattering degree that is substantially constant with respect to the arrangement direction of the light sources, the light exit surface uniformly emits light from each light source regardless of the positional relationship with respect to the arrangement direction of the light sources with respect to a plurality of light sources. Can be emitted. In addition, the light from the light source is uniformed regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources by the reflection member and the extended reflection portion at the stage of entering the light incident surface of the light guide plate, thereby causing unevenness. It has become difficult.
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 Next, in order to solve the above problem, a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
 このような表示装置によると、表示パネルに対して光を供給する照明装置が、輝度ムラが生じ難いものであるため、表示品質の優れた表示を実現することが可能となる。 According to such a display device, since the illumination device that supplies light to the display panel is less likely to cause uneven brightness, it is possible to realize display with excellent display quality.
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。 A liquid crystal panel can be exemplified as the display panel. Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
(発明の効果)
 本発明によれば、輝度ムラを抑制することができる。
(The invention's effect)
According to the present invention, luminance unevenness can be suppressed.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 液晶表示装置の概略構成を示す分解斜視図Exploded perspective view showing schematic configuration of liquid crystal display device 液晶表示装置に備わるバックライト装置におけるシャーシと導光板とLED基板との配置構成を示す平面図The top view which shows arrangement | positioning structure of the chassis in the backlight apparatus with which a liquid crystal display device is equipped, a light-guide plate, and an LED board. 導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図An enlarged plan view showing an arrangement configuration of the light guide plate, the LED substrate, the reflection member, and the extended reflection portion 図4のv-v線断面図V-v sectional view of FIG. 図4のvi-vi線断面図Vi-vi cross-sectional view of FIG. 図4のvii-vii線断面図Sectional view taken along line vii-vii in FIG. 第2光源挟み部におけるLEDと対向する面の、LEDの並び方向における光反射率の変化を表すグラフThe graph showing the change of the light reflectance in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part. 実施形態1の変形例1に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 1 of Embodiment 1. FIG. 実施形態1の変形例2に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 2 of Embodiment 1. FIG. 本発明の実施形態2に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on Embodiment 2 of this invention. 図11のxii-xii線断面図Sectional view taken along line xii-xii in FIG. 実施形態2の変形例1に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 1 of Embodiment 2. FIG. 実施形態2の変形例2に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 2 of Embodiment 2. FIG. 第2光源挟み部におけるLEDと対向する面の、LEDの並び方向における光反射率の変化を表すグラフThe graph showing the change of the light reflectance in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part. 実施形態2の変形例3に係る第2光源挟み部におけるLEDと対向する面の、LEDの並び方向における光反射率の変化を表すグラフThe graph showing the change of the light reflectivity in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part which concerns on the modification 3 of Embodiment 2. FIG. 実施形態2の変形例4に係る第2光源挟み部におけるLEDと対向する面の、LEDの並び方向における光反射率の変化を表すグラフThe graph showing the change of the light reflectivity in the arrangement direction of LED of the surface facing LED in the 2nd light source clamping part which concerns on the modification 4 of Embodiment 2. 実施形態2の変形例5に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement structure of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 5 of Embodiment 2. FIG. 実施形態2の変形例6に係る導光板とLED基板と反射部材及び延長反射部との配置構成を示す拡大平面図The enlarged plan view which shows the arrangement configuration of the light-guide plate, LED board, reflection member, and extended reflection part which concern on the modification 6 of Embodiment 2. FIG.
 <実施形態1>
 本発明の実施形態1を図1から図8によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図4に示す上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquid crystal display device 10 is illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Moreover, let the upper side shown in FIG. 4 be a front side, and let the lower side of the figure be a back side.
 本実施形態に係るテレビ受信装置TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長の方形(矩形状、長手状)をなし、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。 As shown in FIG. 1, the television receiver TV according to the present embodiment includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S. The liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape, longitudinal shape) as a whole, and is accommodated in a vertically placed state. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
 液晶パネル11は、図2に示すように、平面に視て横長の方形(矩形状、長手状)をなしており、透光性に優れた一対のガラス製の基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両基板間に液晶が封入された構成とされる。一方の基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方の基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。なお、両基板の外側には偏光板が配されている。 As shown in FIG. 2, the liquid crystal panel 11 has a horizontally long rectangular shape (rectangular shape, longitudinal shape) in a plan view, and a pair of glass substrates having excellent translucency are separated by a predetermined gap. In addition, the liquid crystal is sealed between both substrates. One substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. Are provided with a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, a counter electrode, and an alignment film. A polarizing plate is disposed on the outside of both substrates.
 バックライト装置12は、図2に示すように、表側(光出射側、液晶パネル11側)に向けて開口する光出射部14cを有した略箱型をなすシャーシ14と、シャーシ14の光出射部14cを覆うようにして配される光透過性部材15とを備える。さらに、シャーシ14内には、光源であるLED(Light Emitting Diode:発光ダイオード)17と、LED17が実装されたLED基板18と、LED17からの光を導光して光透過性部材15(液晶パネル11)へと導く導光板19と、導光板19及び光透過性部材15を表側から押さえるフレーム(押さえ部材)16とが備えられる。そして、このバックライト装置12は、その長辺側の両端部に、LED17を有するLED基板18をそれぞれ備えるとともに、両側のLED基板18間に挟まれた中央側に導光板19を配置してなる、いわゆるエッジライト型(サイドライト型)とされている。以下では、バックライト装置12の各構成部品について詳しく説明する。 As shown in FIG. 2, the backlight device 12 includes a chassis 14 having a substantially box shape having a light emitting portion 14 c that opens toward the front side (light emitting side, liquid crystal panel 11 side), and light emitting from the chassis 14. A light transmissive member 15 disposed so as to cover the portion 14c. Furthermore, in the chassis 14, an LED (Light Emitting Diode) 17 that is a light source, an LED substrate 18 on which the LED 17 is mounted, and a light transmissive member 15 (liquid crystal panel) that guides light from the LED 17. 11) and a frame (pressing member) 16 for pressing the light guide plate 19 and the light transmissive member 15 from the front side. The backlight device 12 includes LED substrates 18 having LEDs 17 at both ends on the long side, and a light guide plate 19 disposed at the center between the LED substrates 18 on both sides. The so-called edge light type (side light type) is used. Below, each component of the backlight apparatus 12 is demonstrated in detail.
 シャーシ14は、例えばアルミニウム板や電気亜鉛めっき綱板(SECC)などの金属板からなり、図2及び図3に示すように、液晶パネル11と同様に横長の方形状をなす底板14aと、底板14aにおける長辺側及び短辺側の各外端からそれぞれ一対ずつ立ち上がる側板14bとからなる。シャーシ14(底板14a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、側板14bには、フレーム16及びベゼル13がねじ止め可能とされる。 The chassis 14 is made of, for example, a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC), and as shown in FIGS. It consists of a side plate 14b that rises one by one from each outer end on the long side and the short side in 14a. The long side direction of the chassis 14 (bottom plate 14a) coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction). Further, the frame 16 and the bezel 13 can be screwed to the side plate 14b.
 光透過性部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしており、その主面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ主面と直交する厚さ方向がZ軸方向と一致している。光透過性部材15は、導光板19の表側(光出射側)に積層する形で載せられていて液晶パネル11と導光板19との間に介在して配される。光透過性部材15は、導光板19の光出射面19aをほぼ全域にわたって表側から覆う形で配されることで、光出射面19aからの出射光を透過するとともに所定の光学作用を付与しつつ液晶パネル11側へ向けて出射させることが可能とされる。 As shown in FIG. 2, the light transmissive member 15 has a horizontally long rectangular shape as seen in a plan view like the liquid crystal panel 11 and the chassis 14, and the long side direction on the main surface is short with the X axis direction. The side direction coincides with the Y-axis direction, and the thickness direction perpendicular to the main surface coincides with the Z-axis direction. The light transmissive member 15 is placed on the front side (light emitting side) of the light guide plate 19 and is disposed between the liquid crystal panel 11 and the light guide plate 19. The light transmissive member 15 is disposed so as to cover the light emitting surface 19a of the light guide plate 19 from the front side over almost the entire area, thereby transmitting the emitted light from the light emitting surface 19a and providing a predetermined optical action. The light can be emitted toward the liquid crystal panel 11 side.
 光透過性部材15は、図2及び図5に示すように、導光板19に比べると板厚が薄いシート状をなしており、複数枚、具体的には4枚が積層して配されている。具体的な光透過性部材15の種類としては、例えば拡散シート15a、プリズムシート(レンズシート)15b、反射型偏光シート15cなどがあり、これらの中から適宜に選択して使用することが可能である。本実施形態では、光透過性部材15が、裏側から1枚の拡散シート15a、2枚のプリズムシート15b、1枚の反射型偏光シート15cの順で積層される構成を例示している。このうち、拡散シート15aは、合成樹脂製の透光性基材の表面に光拡散粒子を分散配合した拡散層を貼り合わせてなり、導光板19からの光を拡散する機能を有する。プリズムシート15bは、拡散シート15aからの光の進行方向を調整するためのプリズムを有している。反射型偏光シート15cは、例えば屈折率の互いに異なる層を交互に積層した多層構造を有しており、プリズムシート15bからの光のうちp波を透過させ、s波を導光板19側へ反射させる構成となっており、それにより光の利用効率(ひいては輝度)を高めることができる。 As shown in FIGS. 2 and 5, the light transmissive member 15 has a sheet shape that is thinner than the light guide plate 19, and a plurality of, specifically, four, are laminated and arranged. Yes. Specific examples of the light transmissive member 15 include a diffusion sheet 15a, a prism sheet (lens sheet) 15b, a reflective polarizing sheet 15c, and the like, which can be appropriately selected and used. is there. In the present embodiment, a configuration in which the light transmissive member 15 is laminated in the order of one diffusion sheet 15a, two prism sheets 15b, and one reflective polarizing sheet 15c from the back side is illustrated. Among these, the diffusion sheet 15a has a function of diffusing light from the light guide plate 19 by bonding a diffusion layer in which light diffusion particles are dispersed and blended to the surface of a transparent base made of synthetic resin. The prism sheet 15b has a prism for adjusting the traveling direction of light from the diffusion sheet 15a. The reflective polarizing sheet 15c has, for example, a multilayer structure in which layers having different refractive indexes are alternately stacked. The reflective polarizing sheet 15c transmits p-waves of light from the prism sheet 15b and reflects s-waves toward the light guide plate 19 side. This makes it possible to increase the light utilization efficiency (and hence the luminance).
 フレーム16は、図2に示すように、合成樹脂製とされるとともに、光透過性部材15及び導光板19の外周縁部に沿って延在する枠状(額縁状)に形成されており、光透過性部材15及び導光板19の外周縁部に対して対向状をなすとともにほぼ全周にわたって表側から押さえることが可能とされる。詳しくは、フレーム16は、平面に視て横長な枠状をなす押さえ基部16aと、押さえ基部16aの外周端から裏側へ向けて突出するとともにシャーシ14の側板14bを外側から取り囲む(外嵌される)短角筒状をなす周壁部16bとから構成されている。押さえ基部16aは、短辺部分及び長辺部分を一対ずつ有しており、このうち一対の長辺部分が、シャーシ14の底板14aとの間でLED17を挟む一対の第1光源挟み部16cとされる。第1光源挟み部16cは、LED17に対して表側、つまり導光板19の光出射面19a側にて対向状に配されている。一対の第1光源挟み部16cにおける表側の面、つまりLED17と対向する面には、図5に示すように、光を反射させる一対の第1反射シート(光出射面側反射部材)20がそれぞれ取り付けられている。第1反射シート20は、合成樹脂製とされており、表面が光の反射性に優れた白色を呈するものとされるとともにその表面における光反射率は、フレーム16(第1光源挟み部16c)の表面における光反射率よりも相対的に高いものとされる。また、押さえ基部16aは、最も表側(導光板19側とは反対側)に配される光透過性部材15(反射型偏光シート15c)の表側の主面との間に僅かながらも隙間を保有しつつ対向状に配されており、それにより光透過性部材15が熱膨張または熱収縮時にフレーム16により拘束されてしわなどが生じるのを回避できるようになっている。また、押さえ基部16aは、液晶パネル11における外周縁部を裏側から受けることができる。 As shown in FIG. 2, the frame 16 is made of a synthetic resin and is formed in a frame shape (frame shape) extending along the outer peripheral edge portions of the light transmissive member 15 and the light guide plate 19. The light transmitting member 15 and the outer peripheral edge of the light guide plate 19 are opposed to each other and can be pressed from the front side over almost the entire circumference. Specifically, the frame 16 protrudes from the outer peripheral end of the holding base 16a toward the back side and surrounds the side plate 14b of the chassis 14 from the outside (externally fitted). And a peripheral wall portion 16b having a short cylindrical shape. The holding base portion 16a has a pair of short side portions and long side portions, and the pair of long side portions thereof includes a pair of first light source sandwiching portions 16c that sandwich the LED 17 with the bottom plate 14a of the chassis 14; Is done. The first light source sandwiching portion 16 c is disposed on the front side of the LED 17, that is, on the light emitting surface 19 a side of the light guide plate 19 so as to face the LED 17. As shown in FIG. 5, a pair of first reflecting sheets (light emitting surface side reflecting members) 20 for reflecting light are provided on the front side surfaces of the pair of first light source sandwiching portions 16c, that is, the surfaces facing the LEDs 17, respectively. It is attached. The first reflection sheet 20 is made of synthetic resin, and the surface thereof is white with excellent light reflectivity, and the light reflectance on the surface is determined by the frame 16 (first light source sandwiching portion 16c). It is assumed that it is relatively higher than the light reflectance on the surface of the film. Further, the holding base portion 16a has a slight gap between it and the main surface on the front side of the light transmitting member 15 (reflective polarizing sheet 15c) arranged on the most front side (the side opposite to the light guide plate 19 side). However, they are arranged opposite to each other so that the light transmitting member 15 can be prevented from being wrinkled due to being restrained by the frame 16 during thermal expansion or contraction. Further, the pressing base 16a can receive the outer peripheral edge of the liquid crystal panel 11 from the back side.
 LED17は、図2及び図5に示すように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光により励起されて所定の色を発光する蛍光体が分散配合されており、全体として概ね白色光を発するものとされる。なお、蛍光体としては、例えば黄色光を発光する黄色蛍光体、緑色光を発光する緑色蛍光体、及び赤色光を発光する赤色蛍光体の中から適宜組み合わせて用いたり、またはいずれか1つを単独で用いることができる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面となる、いわゆるトップ型とされている。 2 and 5, the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18. The LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used. On the other hand, the resin material that seals the LED chip is dispersed and blended with a phosphor that emits a predetermined color when excited by the blue light emitted from the LED chip, and generally emits white light as a whole. It is said. In addition, as the phosphor, for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone. The LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface.
 LED基板18は、図2及び図3に示すように、シャーシ14の長辺方向(X軸方向、導光板19における光入射面19bの長手方向)に沿って延在する細長い板状をなすとともに、その主面をX軸方向及びZ軸方向に並行した姿勢、つまり液晶パネル11及び導光板19(光透過性部材15)の板面と直交させた姿勢でシャーシ14内に収容されている。LED基板18は、シャーシ14内における長辺側の両端部に対応して一対配されるとともに、長辺側の両側板14bにおける内面にそれぞれ取り付けられている。LED基板18の主面であって内側、つまり導光板19側を向いた面(導光板19との対向面)には、上記した構成のLED17が表面実装されており、ここが実装面18aとされる。LED17は、LED基板18の実装面18aにおいて、その長さ方向(X軸方向)に沿って複数が所定の間隔を空けつつ一列に(直線的に)並列配置されている。つまり、LED17は、バックライト装置12における長辺側の両端部においてそれぞれ長辺方向に沿って複数ずつ間欠的に並列配置されていると言える。X軸方向について隣り合うLED17間の間隔、つまりLED17の配列ピッチは、ほぼ等しいものとされる。なお、LED17の並び方向は、LED基板18の長さ方向(X軸方向)と一致していることになる。LED基板18の実装面18aには、X軸方向に沿って延在するとともにLED17群を横切って隣り合うLED17同士を直列接続する、金属膜(銅箔など)からなる配線パターン(図示せず)が形成されており、この配線パターンの両端部に形成された端子部が外部のLED駆動回路に接続されることで、駆動電力を各LED17に供給することが可能とされる。一対のLED基板18は、LED17の実装面18aが互いに対向状をなす姿勢でシャーシ14内に収容されるので、両LED基板18にそれぞれ実装された各LED17の発光面が対向状をなすとともに、各LED17における光軸がY軸方向とほぼ一致する。言い換えると、一対のLED基板18に実装された各LED17は、それぞれ導光板19におけるY軸方向の両端部(長辺側の両端部)に対してそれぞれ対向状に配されている。また、LED基板18の基材は、シャーシ14と同様に金属製とされ、その表面に絶縁層を介して既述した配線パターン(図示せず)が形成されている。なお、LED基板18の基材に用いる材料としては、セラミックなどの絶縁材料を用いることも可能である。 As shown in FIGS. 2 and 3, the LED substrate 18 has an elongated plate shape that extends along the long side direction of the chassis 14 (X-axis direction, the longitudinal direction of the light incident surface 19 b of the light guide plate 19). The main surface is accommodated in the chassis 14 in a posture parallel to the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surfaces of the liquid crystal panel 11 and the light guide plate 19 (light transmissive member 15). The LED boards 18 are arranged in pairs corresponding to both ends on the long side in the chassis 14 and are attached to the inner surfaces of the side plates 14b on the long side. The LED 17 having the above-described configuration is surface-mounted on the inner surface, that is, the surface facing the light guide plate 19 side (the surface facing the light guide plate 19) of the LED substrate 18, and this is the mounting surface 18a. Is done. A plurality of LEDs 17 are arranged in a line (linearly) in parallel on the mounting surface 18a of the LED substrate 18 along the length direction (X-axis direction) with a predetermined interval. That is, it can be said that a plurality of LEDs 17 are intermittently arranged in parallel along the long side direction at both ends on the long side of the backlight device 12. The interval between the LEDs 17 adjacent to each other in the X-axis direction, that is, the arrangement pitch of the LEDs 17 is substantially equal. Note that the arrangement direction of the LEDs 17 coincides with the length direction (X-axis direction) of the LED substrate 18. On the mounting surface 18a of the LED substrate 18, a wiring pattern (not shown) made of a metal film (such as a copper foil) that extends along the X-axis direction and connects the adjacent LEDs 17 across the LED 17 group in series. The terminal portions formed at both ends of the wiring pattern are connected to an external LED drive circuit, so that drive power can be supplied to each LED 17. Since the pair of LED substrates 18 are housed in the chassis 14 in such a manner that the mounting surfaces 18a of the LEDs 17 are opposed to each other, the light emitting surfaces of the LEDs 17 respectively mounted on the LED substrates 18 are opposed to each other, The optical axis of each LED 17 substantially coincides with the Y-axis direction. In other words, the LEDs 17 mounted on the pair of LED substrates 18 are respectively arranged in opposition to both ends in the Y-axis direction (both ends on the long side) of the light guide plate 19. Further, the base material of the LED substrate 18 is made of metal like the chassis 14, and the wiring pattern (not shown) described above is formed on the surface thereof via an insulating layer. In addition, as a material used for the base material of LED board 18, insulating materials, such as a ceramic, can also be used.
 導光板19は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPMMAなどのアクリル樹脂やポリカーボネートなど)からなる。導光板19は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなすとともに光透過性部材15よりも厚みが大きな板状をなしており、その主面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ主面と直交する板厚方向がZ軸方向と一致している。導光板19は、図3に示すように、シャーシ14内において液晶パネル11及び光透過性部材15の直下位置に配されており、シャーシ14における長辺側の両端部に配された対をなすLED基板18間にY軸方向について挟み込まれる形で配されている。従って、LED17(LED基板18)と導光板19との並び方向がY軸方向と一致するのに対して、光透過性部材15(液晶パネル11)と導光板19との並び方向がZ軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光板19は、LED17からY軸方向に向けて発せられた光を導入するとともに、その光を内部で伝播させつつ光透過性部材15側(表側)へ向くよう立ち上げて出射させる機能を有する。 The light guide plate 19 is made of a synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate) having a refractive index sufficiently higher than air and substantially transparent (excellent translucency). As shown in FIG. 2, the light guide plate 19 has a horizontally long rectangular shape in a plan view as in the case of the liquid crystal panel 11 and the chassis 14, and has a plate shape that is thicker than the light transmissive member 15. The long side direction on the main surface coincides with the X-axis direction, the short side direction coincides with the Y-axis direction, and the plate thickness direction orthogonal to the main surface coincides with the Z-axis direction. As shown in FIG. 3, the light guide plate 19 is disposed in the chassis 14 at a position directly below the liquid crystal panel 11 and the light transmissive member 15, and forms a pair disposed at both ends of the long side of the chassis 14. The LED boards 18 are arranged so as to be sandwiched in the Y-axis direction. Therefore, the alignment direction of the LED 17 (LED substrate 18) and the light guide plate 19 coincides with the Y-axis direction, whereas the alignment direction of the light transmissive member 15 (liquid crystal panel 11) and the light guide plate 19 is the Z-axis direction. And the arrangement directions of the two are orthogonal to each other. The light guide plate 19 introduces light emitted from the LED 17 in the Y-axis direction, and rises and emits the light toward the light transmissive member 15 side (front side) while propagating the light inside. Have
 導光板19は、シャーシ14の底板14a及び光透過性部材15の各主面に沿って延在する略平板状をなしており、その主面がX軸方向及びY軸方向に並行するものとされる。導光板19の主面のうち、表側を向いた面が内部の光を光透過性部材15及び液晶パネル11に向けて出射させる光出射面19aとなっている。導光板19における主面に対して隣り合う外周端面のうち、X軸方向に沿って長手状をなす長辺側の両端面は、それぞれLED17(LED基板18)と所定の空間を空けて対向状をなしており、これらがLED17から発せられた光が入射される一対の光入射面19bとなっている。各光入射面19bは、X軸方向(LED17の並び方向)及びZ軸方向、つまりLED基板18の主板面に沿って並行する面とされ、光出射面19aに対して略直交する面とされる。また、LED17と光入射面19bとの並び方向は、Y軸方向と一致しており、光出射面19aに並行している。導光板19の光入射面19bとLED17との間には、図5に示すように、所定の空間が保有されており、シャーシ14の底板14aのうち上記空間に臨む部分、つまりフレーム16側の第1光源挟み部16cとの間でLED17を挟む部分が、第2光源挟み部14dとされる。第2光源挟み部14dは、LED17に対して裏側、つまり導光板19の光出射面19a側とは反対側にて対向状に配されている。第2光源挟み部14dは、一対の第1光源挟み部16c及び一対のLED17群(LED基板18)の配置に応じて一対配されている。 The light guide plate 19 has a substantially flat plate shape extending along each main surface of the bottom plate 14a of the chassis 14 and the light transmissive member 15, and the main surface is parallel to the X-axis direction and the Y-axis direction. Is done. Of the main surface of the light guide plate 19, the surface facing the front side is a light emitting surface 19 a that emits internal light toward the light transmissive member 15 and the liquid crystal panel 11. Of the outer peripheral end surfaces adjacent to the main surface of the light guide plate 19, both end surfaces on the long side that are long along the X-axis direction are opposed to the LED 17 (LED substrate 18) with a predetermined space therebetween. These constitute a pair of light incident surfaces 19b on which the light emitted from the LEDs 17 is incident. Each light incident surface 19b is a surface parallel to the X-axis direction (the LED 17 arrangement direction) and the Z-axis direction, that is, along the main plate surface of the LED substrate 18, and is a surface substantially orthogonal to the light emitting surface 19a. The Further, the alignment direction of the LED 17 and the light incident surface 19b coincides with the Y-axis direction and is parallel to the light emitting surface 19a. As shown in FIG. 5, a predetermined space is held between the light incident surface 19 b of the light guide plate 19 and the LED 17, and a portion of the bottom plate 14 a of the chassis 14 facing the space, that is, on the frame 16 side. The portion that sandwiches the LED 17 with the first light source sandwiching portion 16c is the second light source sandwiching portion 14d. The second light source sandwiching portion 14d is disposed opposite to the LED 17 on the back side, that is, on the side opposite to the light emitting surface 19a side of the light guide plate 19. A pair of second light source sandwiching portions 14d is arranged according to the arrangement of the pair of first light source sandwiching portions 16c and the pair of LEDs 17 (LED substrate 18).
 導光板19における光出射面19aとは反対側の面19cには、図4及び図5に示すように、光を散乱させる光散乱部21と、光散乱部21を覆うとともに光を反射する導光反射シート(導光反射部材)22とが設けられている。光散乱部21は、導光板19における光出射面19aとは反対側の面19cに例えば白色を呈するインクを印刷することで設けられており、光を散乱反射することで光出射面19aからの出射を促すことが可能とされている。なお、光散乱部21を設けるに際しては、例えばスクリーン印刷、インクジェット印刷などの印刷手段を採用することができる。光散乱部21は、白色を呈するインクからなる多数のドット21aを、導光板19における光出射面19aとは反対側の面19c内に所定の分布でもって分散配置することで構成されており、各ドット21aの面積がLED17に対するY軸方向(LED17の光軸に沿う方向)についての距離に応じて変化するものとされる。具体的には、光散乱部21をなす各ドット21aの面積は、Y軸方向についてLED17(光入射面19b)から遠ざかる方向に向けて大きくなり、逆にLED17に近づく方向に向けて小さくなる設定となっている。各ドット21aの面積が大きくなるほど、光の散乱度合いが増す傾向にあることから、上記した構成によれば、導光板19のうち、内部の光量が相対的に多いLED17に近い部位では光散乱部21による光の散乱が抑制されるのに対し、内部の光量が相対的に多いLED17から遠い部位では光散乱部21による光の散乱が促進されることになる。これにより、光出射面19aからの出射光が面内において均一な分布とされる。一方、光散乱部21をなす各ドット21aの面積、及び光の散乱度合いは、X軸方向(LED17の並び方向)についてはほぼ一定で殆ど変化することがないものとされる。つまり、X軸方向に沿って並列する複数のLED17に対する導光板19のX軸方向についての位置関係がどのようなものであっても、光散乱部21による光散乱機能にムラが生じることが殆どないものとされる。導光反射シート22は、合成樹脂製とされ、上記した第1反射シート20と同様に、表面が光の反射性に優れた白色を呈するものとされる。導光反射シート22は、シャーシ14の底板14aと導光板19との間に挟まれた形で配されており、光散乱部21によって散乱された光を表側、つまり光出射面19a側へ向けて効率的に立ち上げることが可能とされている。 As shown in FIGS. 4 and 5, a light scattering portion 21 that scatters light and a light scattering portion 21 that covers the light scattering portion 21 and reflects light are provided on a surface 19c of the light guide plate 19 opposite to the light emitting surface 19a. A light reflection sheet (light guide reflection member) 22 is provided. The light scattering portion 21 is provided by printing, for example, white ink on a surface 19c of the light guide plate 19 opposite to the light emission surface 19a. The light scattering portion 21 scatters and reflects light from the light emission surface 19a. It is possible to prompt the emission. In providing the light scattering portion 21, for example, printing means such as screen printing and ink jet printing can be employed. The light scattering portion 21 is configured by dispersively arranging a large number of dots 21a made of white ink in a predetermined distribution in the surface 19c of the light guide plate 19 opposite to the light emitting surface 19a. The area of each dot 21a changes according to the distance with respect to LED17 about the Y-axis direction (direction along the optical axis of LED17). Specifically, the area of each dot 21a forming the light scattering portion 21 is set so as to increase in the direction away from the LED 17 (light incident surface 19b) in the Y-axis direction and conversely decrease in the direction approaching the LED 17. It has become. Since the degree of light scattering tends to increase as the area of each dot 21a increases, according to the configuration described above, in the portion of the light guide plate 19 close to the LED 17 having a relatively large amount of light, the light scattering portion. While light scattering by the light source 21 is suppressed, light scattering by the light scattering portion 21 is promoted at a portion far from the LED 17 where the amount of light inside is relatively large. Thereby, the emitted light from the light emitting surface 19a is uniformly distributed in the surface. On the other hand, the area of each dot 21a forming the light scattering portion 21 and the degree of light scattering are substantially constant in the X-axis direction (the LED 17 arrangement direction) and hardly change. In other words, the light scattering function of the light scattering unit 21 is likely to be uneven regardless of the positional relationship in the X axis direction of the light guide plate 19 with respect to the plurality of LEDs 17 arranged in parallel along the X axis direction. Not supposed to be. The light guide reflection sheet 22 is made of a synthetic resin, and the surface of the light guide reflection sheet 22 exhibits a white color with excellent light reflectivity, similar to the first reflection sheet 20 described above. The light guide reflection sheet 22 is disposed between the bottom plate 14a of the chassis 14 and the light guide plate 19, and directs the light scattered by the light scattering portion 21 toward the front side, that is, the light emitting surface 19a side. It is possible to start up efficiently.
 さて、上記した構成のバックライト装置12には、図2,図4及び図6に示すように、導光板19の光入射面19bと対向状をなす第2反射シート(反射部材)23が備えられ、さらにこの第2反射シート23には、導光板19の光入射面19b側に向けて延長される延長反射部24が設けられている。第2反射シート23及び延長反射部24は、図6に示すように、全体として断面L字型をなしており、第2反射シート23が光入射面19bとの間にY軸方向について所定の間隔を保有しつつ光入射面19bに並行して延在しているのに対し、延長反射部24は、第1反射シート20との間にZ軸方向について所定の間隔を保有しつつ第1反射シート20に並行して延在するものとされる。 As shown in FIGS. 2, 4, and 6, the backlight device 12 having the above-described configuration includes a second reflecting sheet (reflecting member) 23 that faces the light incident surface 19 b of the light guide plate 19. Further, the second reflecting sheet 23 is provided with an extended reflecting portion 24 that extends toward the light incident surface 19 b side of the light guide plate 19. As shown in FIG. 6, the second reflection sheet 23 and the extended reflection portion 24 have an L-shaped cross section as a whole, and the second reflection sheet 23 has a predetermined Y axis direction between the light incident surface 19 b and the second reflection sheet 23. While extending in parallel to the light incident surface 19b while maintaining a distance, the extended reflecting portion 24 is first with a predetermined distance in the Z-axis direction between the first reflecting sheet 20 and the first reflecting sheet 20. The reflection sheet 20 extends in parallel.
 詳しくは、第2反射シート23は、合成樹脂製とされ、上記した第1反射シート20及び導光反射シート22と同様に、表面が光の反射性に優れた白色を呈するものとされる。第2反射シート23は、図4及び図6に示すように、LED基板18におけるLED17の実装面18aに重なるよう取り付けられていて、接着材や両面テープなどによってLED基板18に一体化されている。第2反射シート23の表面における光反射率は、LED基板18のLED17の実装面18aにおける光反射率よりも相対的に高いものとされる。そして、この第2反射シート23には、LED17を個別に通す光源開口部23aがX軸方向(LED17の並び方向)についてLED17の配置パターン(後述する光源配置領域LA)に倣って形成されているので、第2反射シート23における光源開口部23aの非形成部位(残存部分)がLED17の非配置パターン(後述する光源非配置領域LN)に倣う形態とされている。 Specifically, the second reflection sheet 23 is made of a synthetic resin, and the surface of the second reflection sheet 23 exhibits a white color with excellent light reflectivity, similar to the first reflection sheet 20 and the light guide reflection sheet 22 described above. As shown in FIGS. 4 and 6, the second reflection sheet 23 is attached so as to overlap the mounting surface 18 a of the LED 17 on the LED substrate 18, and is integrated with the LED substrate 18 by an adhesive or a double-sided tape. . The light reflectance on the surface of the second reflective sheet 23 is relatively higher than the light reflectance on the mounting surface 18 a of the LED 17 of the LED substrate 18. In the second reflection sheet 23, light source openings 23a through which the LEDs 17 are individually passed are formed following the arrangement pattern of the LEDs 17 (light source arrangement area LA described later) in the X-axis direction (LED 17 arrangement direction). Therefore, the non-formation site | part (remaining part) of the light source opening part 23a in the 2nd reflection sheet 23 is set as the form which follows the non-arrangement pattern (light source non-arrangement area | region LN mentioned later) of LED17.
 なお、ここで言う「LED17の配置パターン」とは、X軸方向、つまりLED17の並び方向に関する各LED17の配置範囲である光源配置領域(LED17の並び方向について各LED17と重なり合う(位置関係が一致する)光源重畳領域)LAのことである。一方、「LED17の非配置パターン」とは、LED17の並び方向に関して各LED17が配置されない範囲である光源非配置領域(LED17の並び方向について各LED17とは重なり合わない(位置関係が一致しない)光源非重畳領域)LNのことである。また、上記した光源非配置領域LNには、LED17の並び方向について隣り合うLED17間に位置する領域と、LED17の並び方向について両端に配された一対のLED17に対して端寄り(中央寄りに隣り合うLED17側とは反対側)にずれた領域とが含まれる。 The “LED 17 arrangement pattern” referred to here is a light source arrangement area that is an arrangement range of the LEDs 17 in the X-axis direction, that is, the arrangement direction of the LEDs 17 (overlapping with the LEDs 17 in the arrangement direction of the LEDs 17 (the positional relationship is matched). ) Light source overlapping area) LA. On the other hand, the “non-arrangement pattern of LEDs 17” is a light source non-arrangement region that is a range in which the LEDs 17 are not arranged in the arrangement direction of the LEDs 17 (light sources that do not overlap with the LEDs 17 in the arrangement direction of the LEDs 17). Non-overlapping area) LN. Further, in the light source non-arrangement region LN described above, a region located between adjacent LEDs 17 in the arrangement direction of the LEDs 17 and a pair of LEDs 17 arranged at both ends in the arrangement direction of the LEDs 17 (adjacent to the center). A region shifted to the opposite side of the matching LED 17 side).
 詳しくは、光源開口部23aは、図7に示すように、X軸方向に沿って複数(LED17の並列数)が間欠的に並列して配されているから、第2反射シート23における光源開口部23aの非形成部位も同様にX軸方向に沿って複数(LED17の並列数に1を足した数)が間欠的に並列して配されている。言い換えると、第2反射シート23における光源開口部23aの非形成部位と光源開口部23aとがX軸方向に沿って交互に並んで配されている。第2反射シート23における光源開口部23aの非形成部位は、Z軸方向に沿って延びるストライプ状をなしていて、X軸方向についてLED17と重なり合う位置(光源配置領域LA)には全く存在しない構成となっている。つまり、LED基板18におけるLED17の実装面18aのうち、LED17に対してZ軸方向について表側に隣り合う部位と裏側に隣り合う部位とには、第2反射シート23が配されることがない。 Specifically, as shown in FIG. 7, the light source openings 23a are intermittently arranged in parallel along the X-axis direction (the number of LEDs 17 in parallel), so that the light source openings in the second reflection sheet 23 are arranged. Similarly, a plurality of non-formed portions of the portion 23a are also intermittently arranged in parallel along the X-axis direction (the number obtained by adding 1 to the number of LEDs 17 in parallel). In other words, the non-formation site | part of the light source opening part 23a in the 2nd reflective sheet 23 and the light source opening part 23a are alternately arranged along with the X-axis direction. The non-formation site | part of the light source opening part 23a in the 2nd reflection sheet 23 is carrying out the stripe form extended along a Z-axis direction, and the structure which does not exist at all in the position (light source arrangement area LA) which overlaps LED17 about an X-axis direction It has become. That is, the 2nd reflective sheet 23 is not distribute | arranged to the site | part adjacent to the front side about the Z-axis direction with respect to LED17, and the site | part adjacent to a back side among the mounting surfaces 18a of LED17 in the LED board 18. FIG.
 そして、LED基板18は、図5から図8に示すように、その実装面18aの一部が光源開口部23aを通して露出することになるが、その光反射率は第2反射シート23よりも相対的に低いものとされており、ここが第1低光反射率部25とされる(図8参照)。一方、第2反射シート23における光源開口部23aの非形成部位が、第1低光反射率部25よりも光反射率が相対的に高い第1高光反射率部26とされる(図8参照)。従って、LED基板18における光入射面19bとの対向面には、X軸方向についてLED17が配置される光源配置領域LAに光源開口部23aを通して露出する第1低光反射率部25が、LED17が配置されない光源非配置領域LNに第2反射シート23である第1高光反射率部26がそれぞれ配されていることになる。これにより、LED基板18における光入射面19bとの対向面では、光源配置領域LAにおいて過剰になりがちな光の反射が第1低光反射率部25によって抑制されるのに対し、光源非配置領域LNにおいて不足しがちな光の反射が第1高光反射率部26によって高効率化される。もって、LED基板18における光入射面19bとの対向面にて反射されて光入射面19bへと向かう光には、X軸方向についてLED17の配置パターンである光源配置領域LAとLED17の非配置パターンである光源非配置領域LNとによらず光量の差が生じ難くなっている。 As shown in FIGS. 5 to 8, part of the mounting surface 18 a of the LED substrate 18 is exposed through the light source opening 23 a, but the light reflectance is relative to that of the second reflective sheet 23. Therefore, the first low light reflectance portion 25 is used (see FIG. 8). On the other hand, the non-formation site | part of the light source opening part 23a in the 2nd reflection sheet 23 is made into the 1st high light reflectance part 26 whose light reflectance is relatively higher than the 1st low light reflectance part 25 (refer FIG. 8). ). Therefore, on the surface of the LED substrate 18 facing the light incident surface 19b, the first low light reflectance portion 25 exposed through the light source opening 23a to the light source arrangement area LA where the LEDs 17 are arranged in the X-axis direction is provided. The first high light reflectance part 26 that is the second reflection sheet 23 is arranged in the light source non-arrangement region LN that is not arranged. Thereby, on the surface of the LED substrate 18 facing the light incident surface 19b, reflection of light that tends to be excessive in the light source arrangement region LA is suppressed by the first low light reflectance portion 25, whereas no light source is arranged. Reflection of light that tends to be insufficient in the region LN is made highly efficient by the first high light reflectance unit 26. Therefore, the light reflected from the surface of the LED substrate 18 facing the light incident surface 19b and traveling toward the light incident surface 19b is not disposed in the light source arrangement area LA and the LED 17 in the X-axis direction. The difference in the amount of light hardly occurs regardless of the light source non-arrangement region LN.
 続いて、延長反射部24について詳しく説明する。延長反射部24は、第2反射シート23に一体形成されているので、その材料及びその表面の光反射率が第2反射シート23と同一とされている。延長反射部24は、図6に示すように、Z軸方向に沿って延在する第2反射シート23のうち、裏側の端部からY軸方向に沿って導光板19の光入射面19b側に向けて延長されることで形成されている。延長反射部24は、シャーシ14の底板14aに沿って延在するとともに、底板14aのうち第1光源挟み部16cとの間でLED17を挟む第2光源挟み部14dにおけるLED17側の面に重なる形で配されており、第2光源挟み部14dによって支持されることで形状保持が図られている。逆に言うと、シャーシ14における第2光源挟み部14dは、Z軸方向について延長反射部24に対してLED17とは反対側に重なる形で配されている。延長反射部24は、第1光源挟み部16cに取り付けられた第1反射シート20と所定の間隔を空けて対向状をなしており、第1反射シート20との間でLED17からの光を繰り返し効率的に反射しつつ光入射面19bに入射させることが可能とされる。延長反射部24は、図4及び図6に示すように、その延長先端部が導光板19の光入射面19bを超える位置、つまり導光板19に対して平面に視て重畳する位置に達している。従って、延長反射部24における延長先端部は、導光板19とシャーシ14の底板14aとの間で挟み込まれた状態で保持されていることになる。この延長反射部24は、その表面における光反射率が第2光源挟み部14dを有するシャーシ14の表面における光反射率よりも相対的に高いものとされる。言い換えると、第2光源挟み部14dを有するシャーシ14は、延長反射部24よりも表面の光反射率が相対的に低い低光反射率部材であると言える。 Subsequently, the extended reflector 24 will be described in detail. Since the extended reflection portion 24 is integrally formed with the second reflection sheet 23, the material and the light reflectance of the surface thereof are the same as those of the second reflection sheet 23. As shown in FIG. 6, the extended reflecting portion 24 is, on the light incident surface 19 b side of the light guide plate 19 along the Y-axis direction from the back-side end portion of the second reflecting sheet 23 extending along the Z-axis direction. It is formed by extending toward The extended reflecting portion 24 extends along the bottom plate 14a of the chassis 14 and overlaps the surface on the LED 17 side of the second light source sandwiching portion 14d that sandwiches the LED 17 between the bottom plate 14a and the first light source sandwiching portion 16c. The shape is maintained by being supported by the second light source sandwiching portion 14d. In other words, the second light source sandwiching portion 14d in the chassis 14 is disposed so as to overlap the LED 17 with respect to the extended reflection portion 24 in the Z-axis direction. The extended reflecting portion 24 is opposed to the first reflecting sheet 20 attached to the first light source sandwiching portion 16c at a predetermined interval, and repeats the light from the LED 17 with the first reflecting sheet 20. The light can be incident on the light incident surface 19b while being efficiently reflected. As shown in FIGS. 4 and 6, the extended reflecting portion 24 reaches a position where the extended tip portion exceeds the light incident surface 19 b of the light guide plate 19, that is, a position overlapping the light guide plate 19 in a plan view. Yes. Therefore, the extended distal end portion of the extended reflecting portion 24 is held in a state of being sandwiched between the light guide plate 19 and the bottom plate 14 a of the chassis 14. The extended reflection portion 24 has a light reflectance relatively higher than that of the surface of the chassis 14 having the second light source sandwiching portion 14d. In other words, it can be said that the chassis 14 having the second light source sandwiching portion 14d is a low light reflectance member whose surface light reflectance is relatively lower than that of the extended reflection portion 24.
 この延長反射部24は、図4及び図7に示すように、第2反射シート23から延長されたものであるから、第2反射シート23と同様に、X軸方向についてLED17の非配置パターンである光源非配置領域LNに倣って配されている。この延長反射部24には、X軸方向についてLED17の配置パターンである光源配置領域LAに倣う開口部24aが形成されている。開口部24aは、X軸方向に沿って複数(LED17の並列数)が間欠的に並列して配されているから、延長反射部24における開口部24aの非形成部位も同様にX軸方向に沿って複数(LED17の並列数に1を足した数)が間欠的に並列して配されている。言い換えると、延長反射部24における開口部24aの非形成部位と開口部24aとがX軸方向に沿って交互に並んで配されている。開口部24aは、図4及び図7に示すように、延長反射部24において少なくともLED17と平面に視て重畳する位置に配されている。詳しくは、開口部24aは、Y軸方向について延長反射部24における光入射面19b側の延長先端部を除いた全域にわたる範囲に形成されている。言い換えると、X軸方向に沿って複数が間欠的に並列配置された延長反射部24は、Y軸方向に沿って延びるストライプ状をなしており、その延長先端部がX軸方向に沿って延在する延在部27によって相互に繋がれていることになる。開口部24aは、第2反射シート23に形成された光源開口部23aに連通されており、その連通部位の開口間口が互いにほぼ等しくなっている。開口部24aは、平面に視て横長な方形状をなしており、その長辺寸法がLED17におけるX軸方向についての寸法よりもやや大きなものとされるのに対し、短辺寸法がLED基板18の実装面18aと光入射面19bとの間の距離とほぼ等しいものとされる。 As shown in FIGS. 4 and 7, the extended reflecting portion 24 is extended from the second reflecting sheet 23, so that the LED 17 is not arranged in the X-axis direction in the same manner as the second reflecting sheet 23. It is arranged following a certain light source non-arrangement region LN. The extended reflector 24 is formed with an opening 24a that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 17 in the X-axis direction. Since a plurality of openings 24a (the number of LEDs 17 arranged in parallel) are intermittently arranged in parallel along the X-axis direction, the non-formation site of the opening 24a in the extended reflection section 24 is similarly arranged in the X-axis direction. A plurality (a number obtained by adding 1 to the parallel number of the LEDs 17) are intermittently arranged in parallel. In other words, the non-formation site | part of the opening part 24a in the extended reflection part 24 and the opening part 24a are alternately arranged along the X-axis direction. As shown in FIGS. 4 and 7, the opening 24 a is arranged at a position that overlaps at least the LED 17 in the extended reflection portion 24 in a plan view. Specifically, the opening 24a is formed in a range over the entire region excluding the extended tip portion on the light incident surface 19b side in the extended reflecting portion 24 in the Y-axis direction. In other words, the extended reflecting portions 24 in which a plurality are intermittently arranged in parallel along the X-axis direction have a stripe shape extending along the Y-axis direction, and the extended tip portion extends along the X-axis direction. The extension portions 27 are connected to each other. The opening 24a communicates with the light source opening 23a formed in the second reflection sheet 23, and the opening fronts of the communicating portions are substantially equal to each other. The opening 24a has a laterally long shape when seen in a plan view, and its long side dimension is slightly larger than the dimension in the X-axis direction of the LED 17, whereas the short side dimension is the LED substrate 18. The distance between the mounting surface 18a and the light incident surface 19b is approximately equal.
 そして、シャーシ14における第2光源挟み部14dは、図5から図8に示すように、その一部が開口部24aを通して露出することになるが、その光反射率は延長反射部24よりも相対的に低いものとされており、ここが第2低光反射率部28とされる(図8参照)。一方、延長反射部24における開口部24aの非形成部位が、第2低光反射率部28よりも光反射率が相対的に高い第2高光反射率部29とされる(図8参照)。従って、第2光源挟み部14dにおけるLED17側の面には、X軸方向についてLED17が配置される光源配置領域LAに開口部24aを通して露出する第2低光反射率部28が、LED17が配置されない光源非配置領域LNに延長反射部24である第2高光反射率部29がそれぞれ配されていることになる。これにより、第2光源挟み部14dにおけるLED17側の面では、光源配置領域LAにおいて過剰になりがちな光の反射が第2低光反射率部28によって抑制されるのに対し、光源非配置領域LNにおいて不足しがちな光の反射が第2高光反射率部29によって高効率化される。もって、第2光源挟み部14dにおけるLED17側の面にて反射されて光入射面19bへと向かう光には、X軸方向についてLED17の配置パターンである光源配置領域LAとLED17の非配置パターンである光源非配置領域LNとによらず光量の差が生じ難くなっている。 As shown in FIGS. 5 to 8, a part of the second light source sandwiching portion 14 d in the chassis 14 is exposed through the opening 24 a, but the light reflectance is relatively higher than that of the extended reflecting portion 24. Therefore, this is the second low light reflectance portion 28 (see FIG. 8). On the other hand, the non-formation site | part of the opening part 24a in the extended reflection part 24 is made into the 2nd high light reflectivity part 29 whose light reflectivity is relatively higher than the 2nd low light reflectivity part 28 (refer FIG. 8). Therefore, the second low light reflectance portion 28 exposed through the opening 24a in the light source arrangement area LA where the LEDs 17 are arranged in the X-axis direction is not arranged on the surface of the second light source sandwiching portion 14d on the LED 17 side. The second high light reflectance part 29 that is the extended reflection part 24 is arranged in the light source non-arrangement region LN. Thereby, on the surface of the second light source sandwiching portion 14d on the LED 17 side, reflection of light that tends to be excessive in the light source arrangement region LA is suppressed by the second low light reflectance portion 28, whereas the light source non-arrangement region Reflection of light that tends to be insufficient in the LN is made highly efficient by the second high light reflectance portion 29. Therefore, the light that is reflected by the surface on the LED 17 side in the second light source sandwiching portion 14d and travels toward the light incident surface 19b is a non-arrangement pattern of the light source arrangement area LA and the LED 17 that is the arrangement pattern of the LED 17 in the X-axis direction. A difference in the amount of light hardly occurs regardless of a certain light source non-arrangement region LN.
 本実施形態は以上のような構造であり、続いてその作用を説明する。上記した構成の液晶表示装置10の電源をONすると、図示しない制御回路により液晶パネル11の駆動が制御されるとともに、図示しないLED駆動回路からの駆動電力がLED基板18の各LED17に供給されることでその駆動が制御される。各LED17からの光は、導光板19により導光されることで、光透過性部材15を介して液晶パネル11に照射され、もって液晶パネル11に所定の画像が表示される。以下、バックライト装置12に係る作用について詳しく説明する。 This embodiment has the structure as described above, and its operation will be described next. When the power supply of the liquid crystal display device 10 having the above-described configuration is turned on, the driving of the liquid crystal panel 11 is controlled by a control circuit (not shown) and the driving power from the LED driving circuit (not shown) is supplied to each LED 17 on the LED substrate 18. This controls the drive. The light from each LED 17 is guided by the light guide plate 19, so that the liquid crystal panel 11 is irradiated through the light transmissive member 15, and a predetermined image is displayed on the liquid crystal panel 11. Hereinafter, the operation of the backlight device 12 will be described in detail.
 各LED17を点灯させると、各LED17から発せられた光は、図5に示すように、LED17と対向状をなす導光板19の光入射面19bに入射する。光入射面19bに入射した光は、導光板19内を伝播する過程で散乱部21によって散乱されつつ導光反射シート22によって反射されることで、光出射面19aに対して臨界角を超えない入射角をもって入射することで、光出射面19aから表側外部へと出射される。光出射面19aから出射された光は、光透過性部材15を透過することで、所定の光学作用が付与された後、液晶パネル11へ向けて出射される。 When each LED 17 is turned on, the light emitted from each LED 17 is incident on the light incident surface 19b of the light guide plate 19 facing the LED 17, as shown in FIG. The light incident on the light incident surface 19b is reflected by the light guide reflection sheet 22 while being scattered by the scattering portion 21 in the process of propagating through the light guide plate 19, so that it does not exceed the critical angle with respect to the light exit surface 19a. By entering at an incident angle, the light is emitted from the light exit surface 19a to the outside on the front side. The light emitted from the light emitting surface 19 a passes through the light transmissive member 15, is given a predetermined optical action, and then is emitted toward the liquid crystal panel 11.
 ところで、光入射面19bと対向するLED基板18におけるLED17の実装面18aには、図4から図7に示すように、LED17の非配置パターンである光源非配置領域LNに倣う第2反射シート23が取り付けられていて、さらには第1光源挟み部16cとの間でLED17を挟む第2光源挟み部14dにおけるLED17側の面には、第2反射シート23から光入射面19b側に延長され且つ光源非配置領域LNに倣う延長反射部24が配されている。従って、X軸方向に並列した複数のLED17から発せられた光のうち、相対的に光量が少なくなりがちなLED17の非配置パターンである光源非配置領域LNに存する光は、光入射面19bに入射するまでの間に、共に光源非配置領域LNに倣って配される第2反射シート23(第1高光反射率部26)及び延長反射部24(第2高光反射率部29)によって効率的に反射される。一方、第2反射シート23には、LED17の配置パターンである光源配置領域LAに倣う光源開口部23aが形成されることで、第2反射シート23よりも光反射率が相対的に低いLED基板18の実装面18aの一部が露出していてそこが第1低光反射率部25とされるのに加え、延長反射部24には、光源配置領域LAに倣う開口部24aが形成されることで、延長反射部24よりも光反射率が相対的に低いシャーシ14の第2光源挟み部14dの一部が露出していてそこが第2低光反射率部28とされている。従って、X軸方向に並列した複数のLED17から発せられた光のうち、相対的に光量が多くなりがちなLED17の配置パターンである光源非配置領域LAに存する光は、共に光源配置領域LAに倣う第1低光反射率部25及び第2低光反射率部28によって反射が抑制される。従って、導光板19の光入射面19bに入射される光量には、光源配置領域LAと光源非配置領域LNとによる差が生じ難くなっており、もって導光板19の光出射面19aからの出射光にも輝度ムラが生じ難くなる。しかも、延長反射部24は、第2反射シート23から延長して形成されているから、組み付けに係る作業性を向上させることができる。 By the way, on the mounting surface 18a of the LED 17 on the LED substrate 18 facing the light incident surface 19b, as shown in FIGS. 4 to 7, the second reflection sheet 23 that follows the light source non-arrangement region LN that is the non-arrangement pattern of the LED 17 is used. Is attached to the surface of the LED 17 side of the second light source sandwiching portion 14d that sandwiches the LED 17 with the first light source sandwiching portion 16c, and is extended from the second reflective sheet 23 to the light incident surface 19b side. An extended reflection portion 24 that follows the light source non-arrangement region LN is disposed. Therefore, among the light emitted from the plurality of LEDs 17 arranged in parallel in the X-axis direction, the light existing in the light source non-arrangement region LN, which is the non-arrangement pattern of the LED 17 whose light amount tends to be relatively small, is incident on the light incident surface 19b. Before entering, the second reflection sheet 23 (first high light reflectance portion 26) and the extended reflection portion 24 (second high light reflectance portion 29) are arranged so as to follow the light source non-arrangement region LN. Is reflected. On the other hand, the second reflection sheet 23 is formed with a light source opening 23a that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 17, so that the LED substrate has a relatively lower light reflectance than the second reflection sheet 23. In addition to a portion of the mounting surface 18a being exposed and serving as the first low light reflectance portion 25, the extended reflection portion 24 is formed with an opening 24a that follows the light source arrangement region LA. Thus, a part of the second light source sandwiching portion 14d of the chassis 14 having a light reflectance that is relatively lower than that of the extended reflecting portion 24 is exposed, and the second low light reflectance portion 28 is formed. Accordingly, among the light emitted from the plurality of LEDs 17 arranged in parallel in the X-axis direction, the light existing in the light source non-arrangement area LA, which is the arrangement pattern of the LEDs 17 that tends to have a relatively large amount of light, is both in the light source arrangement area LA. Reflection is suppressed by the first low light reflectance part 25 and the second low light reflectance part 28 to be copied. Therefore, the difference between the light source arrangement area LA and the light source non-arrangement area LN is less likely to occur in the amount of light incident on the light incident surface 19b of the light guide plate 19, and thus the light output from the light emission surface 19a of the light guide plate 19 is reduced. Luminance unevenness is less likely to occur in the incident light. Moreover, since the extended reflecting portion 24 is formed extending from the second reflecting sheet 23, the workability related to assembly can be improved.
 以上説明したように本実施形態のバックライト装置(照明装置)12は、間欠的に並んで配される複数のLED(光源)17と、LED17と対向状に配されるとともにLED17からの光が入射される光入射面19b、及び入射した光を出射させる光出射面19aを有する導光板19と、光入射面19bと対向状に配され且つLED17の非配置パターン(光源非配置領域LN)に倣って配される第2反射シート(反射部材)23と、第2反射シート23から光入射面19b側に向けて延長される延長反射部24とを備える。 As described above, the backlight device (illumination device) 12 according to the present embodiment is arranged in a state of being opposed to the plurality of LEDs (light sources) 17 arranged intermittently and the LEDs 17 and receives light from the LEDs 17. A light guide plate 19 having an incident light incident surface 19b and a light emitting surface 19a for emitting incident light, and a non-arranged pattern of the LEDs 17 (light source non-arranged region LN) arranged to face the light incident surface 19b. A second reflecting sheet (reflecting member) 23 that is arranged along with the extended reflecting portion 24 that extends from the second reflecting sheet 23 toward the light incident surface 19b side is provided.
 複数のLED17から発せられた光は、LED17と対向状に配される導光板19の光入射面19bに入射した後、導光板19内を伝播されてから、光出射面19aから出射される。ここで、LED17からの光は、光入射面19bに入射するまでの間に、光入射面19bと対向状に配され且つLED17の非配置パターンに倣って配される第2反射シート23、及びその第2反射シート23から光入射面19b側に向けて延長される延長反射部24によって効率的に反射される。従って、導光板19の光入射面19bに入射される光量は、間欠的に並んで配される複数のLED17における配置パターン(光源配置領域LA)及び非配置パターン(光源非配置領域LN)によらず均一化されてムラが生じ難くなる。これにより、導光板19の光出射面19aからの出射光にも輝度ムラが生じ難くなる。また、第2反射シート23から延長反射部24を延長して形成しているから、組み付けに係る作業性を向上させることができる。本実施形態によれば、輝度ムラを抑制することができる。 The light emitted from the plurality of LEDs 17 enters the light incident surface 19b of the light guide plate 19 arranged to face the LEDs 17, and then propagates through the light guide plate 19 before being emitted from the light exit surface 19a. Here, before the light from the LED 17 enters the light incident surface 19b, the second reflective sheet 23 is disposed so as to face the light incident surface 19b and follows the non-arrangement pattern of the LED 17, and The light is efficiently reflected by the extended reflecting portion 24 that extends from the second reflecting sheet 23 toward the light incident surface 19b. Therefore, the amount of light incident on the light incident surface 19b of the light guide plate 19 depends on the arrangement pattern (light source arrangement area LA) and the non-arrangement pattern (light source non-arrangement area LN) in the plurality of LEDs 17 arranged intermittently. It becomes uniform and unevenness is less likely to occur. Thereby, luminance unevenness is less likely to occur in the light emitted from the light exit surface 19 a of the light guide plate 19. Moreover, since the extended reflection part 24 is formed extending from the second reflection sheet 23, workability related to assembly can be improved. According to this embodiment, luminance unevenness can be suppressed.
 また、延長反射部24に対してLED17側とは反対側に重なる形で配されるとともに、延長反射部24よりも光反射率が相対的に低い第2光源挟み部(低光反射率部材)14dが備えられており、延長反射部24には、LED17の配置パターンに倣う開口部24aが形成されている。このようにすれば、LED17の配置パターンに倣う開口部24aを通して露出する第2光源挟み部14dによって光の反射が抑制されることで、導光板19の光入射面19bに入射される光量に一層ムラが生じ難くなる。 In addition, the second light source sandwiching portion (low light reflectance member) is disposed so as to overlap the side opposite to the LED 17 side with respect to the extended reflecting portion 24 and has a relatively lower light reflectance than the extended reflecting portion 24. 14 d is provided, and the extended reflection portion 24 is formed with an opening 24 a that follows the arrangement pattern of the LEDs 17. In this way, light reflection is suppressed by the second light source sandwiching portion 14d exposed through the opening 24a that follows the arrangement pattern of the LEDs 17, thereby further increasing the amount of light incident on the light incident surface 19b of the light guide plate 19. Unevenness is less likely to occur.
 また、開口部24aは、延長反射部24において少なくともLED17と平面に視て重畳する位置に配されている。このようにすれば、延長反射部24においてLED17から発せられる光の多くが照射される位置に開口部24aが形成されているから、開口部24aを通して露出する第2光源挟み部14dによって過剰になりがちな光の反射を効果的に抑制することができる。 Further, the opening 24a is disposed at a position where the extended reflection portion 24 overlaps at least the LED 17 in a plan view. In this way, since the opening 24a is formed at a position where much of the light emitted from the LED 17 is irradiated in the extended reflecting portion 24, the second light source sandwiching portion 14d exposed through the opening 24a becomes excessive. It is possible to effectively suppress the reflection of light that tends to occur.
 また、第2反射シート23には、LED17を通す光源開口部23aがLED17の配置パターンに倣って形成されており、開口部24aは、光源開口部23aに連通されている。このようにすれば、光源開口部23a及び開口部24aが連通されているから、仮にこれらが連通しない構成とされた場合に比べると、第2反射シート23及び延長反射部24の形状を簡単なものとすることができる。  Further, a light source opening 23a through which the LED 17 is passed is formed in the second reflection sheet 23 following the arrangement pattern of the LED 17, and the opening 24a communicates with the light source opening 23a. In this case, since the light source opening 23a and the opening 24a are communicated with each other, the shapes of the second reflection sheet 23 and the extended reflection part 24 can be simplified compared to a case where the light source opening 23a and the opening 24a are configured not to communicate with each other. Can be. *
 また、開口部24a及び光源開口部23aは、互いの連通部位における開口間口がほぼ等しいものとされる。このようにすれば、開口部24aと光源開口部23aとの連通部位に段差が形成されるのが回避されるから、第2反射シート23及び延長反射部24の形状をより簡単なものとすることができる。 Further, the opening 24a and the light source opening 23a have substantially the same opening fronts at the communicating portions. By doing so, it is possible to avoid the formation of a step in the communication portion between the opening 24a and the light source opening 23a, and thus the shapes of the second reflection sheet 23 and the extended reflection portion 24 are simplified. be able to.
 また、延長反射部24における光入射面19b側の端部には、LED17の並び方向に沿って開口部24aを横切るよう延在する延在部27が設けられている。このようにすれば、延在部27によって延長反射部24における光入射面19b側の端部の形状が簡単なものとなるから、延長反射部24の取り扱い性に優れる。 Further, an extended portion 27 extending across the opening 24 a along the arrangement direction of the LEDs 17 is provided at the end of the extended reflecting portion 24 on the light incident surface 19 b side. In this way, the extended portion 27 makes the shape of the end of the extended reflecting portion 24 on the light incident surface 19b side simple, and therefore the handleability of the extended reflecting portion 24 is excellent.
 また、LED17及び導光板19を収容するシャーシ14が備えられており、延長反射部24は、シャーシ14におけるLED17側の面に重なる形で配されている。このようにすれば、LED17及び導光板19を収容するシャーシ14によって延長反射部24の形状保持が図られる。 Further, a chassis 14 that houses the LEDs 17 and the light guide plate 19 is provided, and the extended reflection portion 24 is arranged so as to overlap the surface of the chassis 14 on the LED 17 side. In this way, the shape of the extended reflecting portion 24 can be maintained by the chassis 14 that houses the LEDs 17 and the light guide plate 19.
 また、延長反射部24は、導光板19と平面に視て重畳する範囲にまで延長して形成されるとともに、その重畳部が導光板19とシャーシ14との間で挟まれている。このようにすれば、シャーシ14と導光板19との間で延長反射部24を挟むことで、延長反射部24を安定的に保持することができる。 Further, the extended reflecting portion 24 is formed so as to extend to a range overlapping with the light guide plate 19 in a plan view, and the overlapping portion is sandwiched between the light guide plate 19 and the chassis 14. In this way, the extended reflection part 24 can be stably held by sandwiching the extended reflection part 24 between the chassis 14 and the light guide plate 19.
 また、複数のLED17が実装されるLED基板(光源基板)18が備えられており、第2反射シート23は、LED基板18に取り付けられている。このようにすれば、複数のLED17が実装されるLED基板18に第2反射シート23を取り付けるようにしているから、第2反射シート23がLED17の非配置パターンに対して位置ずれし難くなっている。これにより、導光板19の光入射面19bに入射される光量に一層ムラが生じ難くなる。 Further, an LED substrate (light source substrate) 18 on which a plurality of LEDs 17 are mounted is provided, and the second reflection sheet 23 is attached to the LED substrate 18. In this way, since the second reflection sheet 23 is attached to the LED substrate 18 on which the plurality of LEDs 17 are mounted, the second reflection sheet 23 is difficult to be displaced with respect to the non-arrangement pattern of the LEDs 17. Yes. As a result, the amount of light incident on the light incident surface 19b of the light guide plate 19 is less likely to be uneven.
 また、導光板19における光出射面19aとは反対側の面には、光を散乱させる光散乱部21と、光散乱部21を覆うとともに光を反射させる導光反射シート(導光反射部材)22とが設けられており、光散乱部21は、光の散乱度合いがLED17の並び方向についてほぼ一定になる分布を有している。このようにすれば、導光板19の光入射面19bに入射した光は、光出射面19aとは反対側の面に設けられた光散乱部21によって散乱されつつ導光反射シート22によって反射されることで、光出射面19aから出射される。光散乱部21は、光の散乱度合いがLED17の並び方向についてほぼ一定とされているから、複数のLED17に対するLED17の並び方向についての位置関係によらず、各LED17からの光をムラなく光出射面19aから出射させることができる。なお、LED17からの光は、導光板19の光入射面19bに入射する段階で、上記した第2反射シート23及び延長反射部24によって、複数のLED17における配置パターン及び非配置パターンによらず均一化されてムラが生じ難くなっている。 Further, on the surface opposite to the light exit surface 19a of the light guide plate 19, a light scattering portion 21 that scatters light, and a light guide reflection sheet (light guide reflection member) that covers the light scattering portion 21 and reflects light. 22 is provided, and the light scattering portion 21 has a distribution in which the degree of light scattering is substantially constant in the arrangement direction of the LEDs 17. If it does in this way, the light which injected into the light-incidence surface 19b of the light-guide plate 19 will be reflected by the light-guide reflective sheet 22, being scattered by the light-scattering part 21 provided in the surface on the opposite side to the light-projection surface 19a. As a result, the light exits from the light exit surface 19a. The light scattering unit 21 emits light from each LED 17 evenly regardless of the positional relationship of the LEDs 17 with respect to the arrangement direction of the LEDs 17 because the degree of light scattering is substantially constant with respect to the arrangement direction of the LEDs 17. The light can be emitted from the surface 19a. In addition, the light from LED17 is uniform irrespective of the arrangement pattern and non-arrangement pattern in LED17 by the above-mentioned 2nd reflective sheet 23 and the extended reflection part 24 in the step which injects into the light-incidence surface 19b of the light-guide plate 19. FIG. It has become difficult to produce unevenness.
 以上、本発明の実施形態1を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。 As mentioned above, although Embodiment 1 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included. In the following modifications, members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
[実施形態1の変形例1]
 実施形態1の変形例1について図9を用いて説明する。ここでは、延長反射部24‐1に形成される開口部24a‐1の形状を変更したものを示す。
[Modification 1 of Embodiment 1]
A first modification of the first embodiment will be described with reference to FIG. Here, the shape of the opening 24a-1 formed in the extended reflecting portion 24-1 is changed.
 本変形例に係る開口部24a‐1は、図9に示すように、LED17と平面に視て重畳する部分が平面に視て横長な方形状をなすのに対し、LED17とは平面に視て重畳しない部分が平面に視て略三角形状をなしている。詳しくは、開口部24a‐1のうちLED17とは平面に視て重畳しない部分は、X軸方向に沿う底辺と、X軸方向及びY軸方向に対して傾斜した一対の斜辺とを有する略二等辺三角形状とされており、底辺がLED17側に存するのに対し、一対の斜辺の交点が光入射面19b側に存している。そして、開口部24a‐1のうちLED17とは平面に視て重畳しない部分は、Y軸方向についてLED17から遠ざかる方向に向けてその面積が小さくなるとともに開口間口が狭くなり、逆にLED17に近づく方向に向けてその面積が大きくなるとともに開口間口が広くなる形態とされている。従って、開口部24a‐1を通して露出するシャーシ14の第2光源挟み部14dによって構成される第2低光反射率部28‐1は、Y軸方向についてLED17から遠ざかる方向に向けてその面積が小さくなるのに対し、延長反射部24‐1によって構成される第2高光反射率部29‐1は、LED17から遠ざかる方向に向けてその面積が大きくなっている。 As shown in FIG. 9, the opening 24 a-1 according to this modification has a horizontally long rectangular shape when viewed in a plane, while the LED 17 is viewed in a plane. The non-overlapping portion has a substantially triangular shape when viewed in plan. Specifically, the portion of the opening 24a-1 that does not overlap with the LED 17 in a plan view has a base that extends along the X-axis direction and a pair of oblique sides that are inclined with respect to the X-axis direction and the Y-axis direction. It has an equilateral triangular shape, and the bottom side exists on the LED 17 side, whereas the intersection of a pair of oblique sides exists on the light incident surface 19b side. The portion of the opening 24 a-1 that does not overlap with the LED 17 in a plan view is smaller in the area toward the direction away from the LED 17 in the Y-axis direction, and the opening front becomes narrower. As the area increases toward the surface, the opening front is widened. Therefore, the area of the second low-light-reflecting part 28-1 configured by the second light source sandwiching part 14d of the chassis 14 exposed through the opening 24a-1 is small in the direction away from the LED 17 in the Y-axis direction. On the other hand, the area of the second high light reflectivity portion 29-1 constituted by the extended reflection portion 24-1 increases in the direction away from the LED 17.
 ところで、LED17から発せられた光は、LED17から遠ざかるほど広がってムラが緩和される傾向にある。従って、第2光源挟み部14dにおけるLED17と対向する面において、LED17に比較的近い位置では、第2高光反射率部29‐1よりも面積が大きな第2低光反射率部28‐1によって光の反射が効果的に抑制されることで、高いムラ抑制効果を得ることができる。一方、第2光源挟み部14dにおけるLED17と対向する面において、LED17から比較的遠い位置では、第2低光反射率部28‐1よりも面積が大きな第2高光反射率部29‐1によって光の反射が高効率化されることで、輝度が向上される。 By the way, the light emitted from the LED 17 tends to spread as the distance from the LED 17 increases, and unevenness tends to be alleviated. Therefore, in the surface facing the LED 17 in the second light source sandwiching portion 14d, light is emitted by the second low light reflectance portion 28-1 having a larger area than the second high light reflectance portion 29-1 at a position relatively close to the LED 17. By effectively suppressing the reflection of the light, a high unevenness suppressing effect can be obtained. On the other hand, on the surface facing the LED 17 in the second light source sandwiching portion 14d, light is emitted by the second high light reflectance portion 29-1 having a larger area than the second low light reflectance portion 28-1 at a position relatively far from the LED 17. The luminance is improved by increasing the efficiency of reflection.
 以上説明したように本変形例によれば、開口部24a‐1は、LED17から遠ざかる方向に向けてその面積が小さくなる形態とされる。このようにすれば、開口部24a‐1を通して露出する第2光源挟み部14dは、LED17から遠ざかる方向に向けてその露出面積が小さくなるのに対し、延長反射部24‐1は、LED17から遠ざかる方向に向けてその面積が大きくなる。ここで、LED17から発せられた光は、LED17から遠ざかるほど広がってムラが緩和される傾向にあることから、比較的LED17に近い位置では主に第2光源挟み部14dによって光の反射を抑制してムラを効果的に抑制しつつ、比較的LED17から遠い位置では主に延長反射部24‐1によって光の反射を高効率化することで輝度を向上させることができる。 As described above, according to this modification, the opening 24 a-1 is configured such that the area thereof decreases in the direction away from the LED 17. In this way, the exposed area of the second light source sandwiching portion 14d exposed through the opening 24a-1 decreases in the direction away from the LED 17, while the extended reflecting portion 24-1 moves away from the LED 17. The area increases in the direction. Here, the light emitted from the LED 17 tends to spread as the distance from the LED 17 increases and the unevenness is alleviated. Therefore, reflection of light is mainly suppressed by the second light source sandwiching portion 14d at a position relatively close to the LED 17. Thus, the luminance can be improved by improving the efficiency of light reflection mainly by the extended reflection portion 24-1 at a position relatively far from the LED 17 while effectively suppressing unevenness.
 また、開口部24a‐1は、LED17から遠ざかる方向に向けてその開口間口が狭くなるよう傾斜状の縁部を有している。このように、開口部24a‐1の縁部を傾斜状にすることで、第2光源挟み部14dの露出面積は、LED17から遠ざかる方向に向けて連続的に漸次減少するのに対し、延長反射部24‐1の面積は、LED17から遠ざかる方向に向けて連続的に漸次増加することになるから、ムラをより効果的に抑制しつつ輝度の向上を図ることができる。 Further, the opening 24a-1 has an inclined edge so that the opening front becomes narrower in the direction away from the LED 17. Thus, by making the edge of the opening 24a-1 in an inclined shape, the exposed area of the second light source sandwiching portion 14d continuously decreases gradually in the direction away from the LED 17, whereas the extended reflection. Since the area of the portion 24-1 increases gradually and gradually in the direction away from the LED 17, it is possible to improve luminance while suppressing unevenness more effectively.
[実施形態1の変形例2]
 実施形態1の変形例2について図10を用いて説明する。ここでは、上記した実施形態1の変形例1から開口部24a‐2の形状をさらに変更したものを示す。
[Modification 2 of Embodiment 1]
A second modification of the first embodiment will be described with reference to FIG. Here, what changed the shape of opening part 24a-2 further from the modification 1 of above-mentioned Embodiment 1 is shown.
 本変形例に係る開口部24a‐2は、図10に示すように、LED17と平面に視て重畳する部分が平面に視て横長な方形状をなすのに対し、LED17とは平面に視て重畳しない部分が平面に視て略半円形状をなしている。従って、開口部24a‐2のうちLED17とは平面に視て重畳しない部分は、直線状をなす底辺と、円弧状をなす円弧状辺とを有しており、底辺がLED17側に存するのに対し、円弧状辺が光入射面19b側に存していて、光入射面19bが円弧状辺に対して接線となる位置に配されている。そして、開口部24a‐2のうちLED17とは平面に視て重畳しない部分は、Y軸方向についてLED17から遠ざかる方向に向けてその面積が小さくなるとともに開口間口が狭くなり、逆にLED17に近づく方向に向けてその面積が大きくなるとともに開口間口が広くなる形態とされている。なお、その他の作用及び効果は、上記した実施形態1の変形例1と同様であるから、重複する説明は割愛する。 As shown in FIG. 10, the opening 24 a-2 according to this modification has a horizontally long rectangular shape when viewed in a plane, while the LED 17 is viewed in a plane. The non-overlapping portion has a substantially semicircular shape when viewed in plan. Accordingly, the portion of the opening 24a-2 that does not overlap with the LED 17 in a plan view has a straight base and an arcuate side that forms an arc, and the base is on the LED 17 side. On the other hand, the arc-shaped side exists on the light incident surface 19b side, and the light incident surface 19b is arranged at a position tangent to the arc-shaped side. The portion of the opening 24a-2 that does not overlap with the LED 17 in a plan view is smaller in the area away from the LED 17 in the Y-axis direction, and the opening front is narrower. As the area increases toward the surface, the opening front is widened. Since other operations and effects are the same as those of the first modification of the first embodiment described above, a duplicate description is omitted.
 <実施形態2>
 本発明の実施形態2を図11または図12によって説明する。この実施形態2では、延長反射部124及び開口部124aの形態を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. 11 or FIG. In this Embodiment 2, what changed the form of the extended reflection part 124 and the opening part 124a is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る延長反射部124は、図11及び図12に示すように、第2光源挟み部14dにおけるLED17側の面において、X軸方向(LED17の並び方向)についてLED17の非配置パターンである光源非配置領域LNに加えて、LED17の配置パターンである光源配置領域LAに倣う範囲に配されている。詳しくは、延長反射部124においてX軸方向について光源配置領域LAに配された開口部124aは、平面に視てLED17と重畳する位置に形成されているものの、LED17とは平面に視て重畳しない位置(詳細には、Y軸方向についてLED17と光入射面19bとの間に存する部分)には形成されていない。そして、この延長反射部124のうち、X軸方向について光源配置領域LAに残存し且つ第2光源挟み部14dにおけるLED17側の面に配された部分には、延長反射部124よりも光反射率が相対的に低い低光反射率材料が印刷されることで、第3低光反射率部(低光反射率印刷部)30が設けられている。第3低光反射率部30は、低光反射率材料として黒色を呈するものが用いられており、延長反射部124の表面に対して例えばスクリーン印刷、インクジェット印刷などの印刷手段により設けられている。第3低光反射率部30は、平面に視て円形をなす3つの円形印刷部30aにより構成されている。詳しくは、第3低光反射率部30は、Y軸方向についてLED17側の位置に配されるとともにX軸方向に並ぶ一対の円形印刷部30aと、Y軸方向について光入射面19b側の位置に配されるとともにX軸方向についてX軸方向に並ぶ一対の円形印刷部30aの中間位置に配される1つの円形印刷部30aとからなる。第2高光反射率部129は、延長反射部124のうち第3低光反射率部30が形成されていない非形成部位によって構成されている。 As shown in FIGS. 11 and 12, the extended reflecting portion 124 according to the present embodiment is a non-arranged pattern of the LEDs 17 in the X-axis direction (the direction in which the LEDs 17 are arranged) on the surface of the second light source sandwiching portion 14d on the LED 17 side. In addition to a certain light source non-arrangement area LN, it is arranged in a range that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 17. Specifically, in the extended reflection portion 124, the opening 124a disposed in the light source arrangement area LA in the X-axis direction is formed at a position overlapping with the LED 17 when viewed in a plane, but does not overlap with the LED 17 when viewed in a plane. It is not formed at a position (specifically, a portion existing between the LED 17 and the light incident surface 19b in the Y-axis direction). Of the extended reflection portion 124, the portion remaining in the light source arrangement area LA in the X-axis direction and disposed on the surface of the second light source sandwiching portion 14d on the LED 17 side has a light reflectance higher than that of the extended reflection portion 124. The third low light reflectance part (low light reflectance printing part) 30 is provided by printing a low light reflectance material having a relatively low value. The third low light reflectance portion 30 is a material exhibiting black as a low light reflectance material, and is provided on the surface of the extended reflection portion 124 by printing means such as screen printing or ink jet printing. . The third low light reflectance portion 30 is configured by three circular printing portions 30a that are circular in a plan view. Specifically, the third low light reflectance portion 30 is disposed at a position on the LED 17 side in the Y-axis direction and aligned with the X-axis direction, and a position on the light incident surface 19b side in the Y-axis direction. And a single circular printing unit 30a arranged at an intermediate position between a pair of circular printing units 30a arranged in the X-axis direction in the X-axis direction. The second high light reflectivity portion 129 is configured by a non-formation portion in which the third low light reflectivity portion 30 is not formed in the extended reflection portion 124.
 上記した構成によれば、第2光源挟み部14dにおけるLED17側の面に係る光反射率は、LED17の非配置パターンである光源非配置領域LNでは第2高光反射率部129によって相対的に高くなっているのに対し、LED17の配置パターンである光源配置領域LAでは開口部124aを通して露出する第2低光反射率部128に加えて、延長反射部124の表面に印刷された第3低光反射率部30によって相対的に低くなっている。従って、X軸方向に並列した複数のLED17から発せられた光のうち、相対的に光量が少なくなりがちな光源非配置領域LNに存する光は、光入射面19bに入射するまでの間に、光源非配置領域LNに倣って配される延長反射部124の第2高光反射率部129によって効率的に反射される。一方、各LED17から発せられた光のうち、相対的に光量が多くなりがちな光源配置領域LNに存する光は、光入射面19bに入射するまでの間に、光源配置領域LAに倣って配される第2低光反射率部128及び第3低光反射率部30によって反射が抑制される。これにより、導光板19の光入射面19bに入射される光量には、光源配置領域LAと光源非配置領域LNとによる差が生じ難くなっている。 According to the above-described configuration, the light reflectance related to the surface on the LED 17 side in the second light source sandwiching portion 14d is relatively high by the second high light reflectance portion 129 in the light source non-arranged region LN that is the non-arranged pattern of the LED 17. On the other hand, in the light source arrangement area LA that is the arrangement pattern of the LEDs 17, the third low light printed on the surface of the extended reflection section 124 in addition to the second low light reflectance section 128 exposed through the opening 124a. It is relatively low due to the reflectance part 30. Therefore, among the light emitted from the plurality of LEDs 17 arranged in parallel in the X-axis direction, the light existing in the light source non-arrangement region LN, in which the light amount tends to be relatively small, is incident on the light incident surface 19b. The light is efficiently reflected by the second high light reflectance portion 129 of the extended reflection portion 124 that is arranged following the light source non-arrangement region LN. On the other hand, among the light emitted from each LED 17, the light existing in the light source arrangement region LN, which tends to have a relatively large amount of light, is distributed following the light source arrangement region LA before entering the light incident surface 19b. The reflection is suppressed by the second low light reflectance unit 128 and the third low light reflectance unit 30. Thereby, in the light quantity which injects into the light-incidence surface 19b of the light-guide plate 19, the difference by the light source arrangement area | region LA and the light source non-arrangement area | region LN does not arise easily.
 以上説明したように本実施形態によれば、延長反射部124は、LED17の非配置パターンに加えてLED17の配置パターンに倣う範囲に配されており、延長反射部124には、光反射率が相対的に低い低光反射率材料を印刷することで、LED17の配置パターンに倣う第3低光反射率部(低光反射率印刷部)30が設けられている。このようにすれば、延長反射部124のうちLED17の配置パターンに倣う第3低光反射率部30が形成されない非形成部位は、LED17の非配置パターンに倣うものとされる。従って、LED17の配置パターンに倣う第3低光反射率部30によって光の反射が抑制されるのに対し、延長反射部124における第3低光反射率部30の非形成部位によって光の反射が高効率化されることで、導光板19の光入射面19bに入射される光量に一層ムラが生じ難くなる。 As described above, according to the present embodiment, the extended reflection part 124 is arranged in a range that follows the arrangement pattern of the LED 17 in addition to the non-arrangement pattern of the LED 17, and the extended reflection part 124 has a light reflectance. A third low light reflectance part (low light reflectance printing part) 30 that follows the arrangement pattern of the LEDs 17 is provided by printing a relatively low low light reflectance material. In this way, the non-formed part where the third low light reflectance part 30 that follows the arrangement pattern of the LED 17 in the extended reflection part 124 is not formed is assumed to follow the non-placement pattern of the LED 17. Accordingly, the reflection of light is suppressed by the third low light reflectance portion 30 that follows the arrangement pattern of the LEDs 17, whereas the reflection of light is not performed by the portion where the third low light reflectance portion 30 is not formed in the extended reflection portion 124. By increasing the efficiency, the amount of light incident on the light incident surface 19b of the light guide plate 19 is further less likely to be uneven.
 以上、本発明の実施形態2を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。 As mentioned above, although Embodiment 2 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included. In the following modifications, members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
[実施形態2の変形例1]
 実施形態2の変形例1について図13を用いて説明する。ここでは、第3低光反射率部30‐1の態様を変更したものを示す。
[Modification 1 of Embodiment 2]
A first modification of the second embodiment will be described with reference to FIG. Here, what changed the aspect of the 3rd low light reflectance part 30-1 is shown.
 本変形例に係る第3低光反射率部30‐1は、図13に示すように、低光反射率材料からなる多数のドット30bにより構成されており、そのドット30b群を全体として半円形状の領域に配置してなる。詳しくは、第3低光反射率部30‐1は、その直線状をなす底辺が光入射面19b側に配されるのに対し、円弧状をなす円弧状辺がLED17側に配されている。従って、第3低光反射率部30‐1は、X軸方向についてLED17の中央位置に近づくに連れてその面積が増加する一方、LED17の中央位置から遠ざかるに連れてその面積が減少するものとされる。第3低光反射率部30‐1は、X軸方向について中央位置がLED17の中央位置とほぼ一致している。第3低光反射率部30‐1は、X軸方向についての形成範囲がLED17(光源配置領域LA)とほぼ同じ大きさとされるとともに、X軸方向についてその全域がLED17(光源配置領域LA)と重なり合う位置関係とされる。また、第3低光反射率部30‐1は、Y軸方向についてLED17に近づくに連れてその面積が減少する一方、LED17から遠ざかるに連れてその面積が増加するものとされる。つまり、第3低光反射率部30‐1は、Y軸方向についてLED17から遠ざかる方向に向けて、X軸方向についての寸法が次第に大きくなる形態とされている。第3低光反射率部30‐1をなす各ドット30bの面積及び配列間隔がほぼ一定とされている。つまり、第3低第3低光反射率部30‐1を構成するドット30bの分布密度は、ほぼ一定とされることになるから、第3低光反射率部30‐1における光反射率は、全域にわたってほぼ一定とされている。このような構成であっても、導光板19の光入射面19bに入射される光量には、光源配置領域LAと光源非配置領域LNとによる差が生じ難くなる。 As shown in FIG. 13, the third low light reflectance portion 30-1 according to this modification is configured by a large number of dots 30 b made of a low light reflectance material, and the dot 30 b group as a whole is a semicircle. It is arranged in the shape area. Specifically, the third low light reflectance portion 30-1 has a linear base on the light incident surface 19b side, whereas an arc-shaped side on the LED 17 side. . Therefore, the area of the third low light reflectance portion 30-1 increases as it approaches the center position of the LED 17 in the X-axis direction, while the area decreases as it moves away from the center position of the LED 17. Is done. The third low light reflectance portion 30-1 has a center position substantially coincident with the center position of the LED 17 in the X-axis direction. The third low light reflectance portion 30-1 has a formation range in the X-axis direction substantially the same as that of the LED 17 (light source arrangement area LA), and the entire area in the X-axis direction is the LED 17 (light source arrangement area LA). And the positional relationship overlapping. In addition, the area of the third low light reflectance portion 30-1 decreases as it approaches the LED 17 in the Y-axis direction, and increases as it moves away from the LED 17. That is, the third low light reflectance portion 30-1 is configured such that the dimension in the X-axis direction gradually increases toward the direction away from the LED 17 in the Y-axis direction. The area and arrangement interval of the dots 30b constituting the third low light reflectance portion 30-1 are substantially constant. That is, since the distribution density of the dots 30b constituting the third low third low light reflectance portion 30-1 is substantially constant, the light reflectance in the third low light reflectance portion 30-1 is It is almost constant over the entire area. Even with such a configuration, a difference between the light source arrangement area LA and the light source non-arrangement area LN hardly occurs in the amount of light incident on the light incident surface 19b of the light guide plate 19.
[実施形態2の変形例2]
 実施形態2の変形例2について図14または図15を用いて説明する。ここでは、第3低光反射率部30‐2の光反射率の分布を変更したものを示す。
[Modification 2 of Embodiment 2]
A second modification of the second embodiment will be described with reference to FIG. Here, the light reflectance distribution of the third low light reflectance portion 30-2 is changed.
 本変形例に係る第3低光反射率部30‐2は、図14及び図15に示すように、その光反射率がLED17の並び方向(X軸方向)についてグラデーション状に変化する構成とされている。具体的には、第3低光反射率部30‐2は、X軸方向についてLED17の中央位置から遠ざかる方向へ向けて光反射率が連続的に漸次高くなり、逆にLED17の中央位置に近づく方向へ向けて光反射率が連続的に漸次低くなる構成とされる。そのため、第3低光反射率部30‐2を構成する多数のドット30b‐2は、図14に示すように、X軸方向についてLED17の中央位置に配されたものが最大の面積を有するのに対し、そこからX軸方向について遠ざかるに従って、面積が連続的に漸次小さくなるようなパターンで形成されている。この第3低光反射率部30‐2における光反射率は、図15に示すように、X軸方向についてスロープ状に変化するものとされる。なお、第3低光反射率部30‐2における光反射率は、Y軸方向についてはほぼ一定とされる。 As shown in FIGS. 14 and 15, the third low light reflectance unit 30-2 according to this modification is configured so that the light reflectance changes in a gradation with respect to the alignment direction (X-axis direction) of the LEDs 17. ing. Specifically, in the third low light reflectance unit 30-2, the light reflectance continuously increases gradually in the direction away from the central position of the LED 17 in the X-axis direction, and conversely approaches the central position of the LED 17. The light reflectance is continuously decreased gradually toward the direction. Therefore, as shown in FIG. 14, the large number of dots 30b-2 constituting the third low light reflectance portion 30-2 are arranged at the central position of the LED 17 in the X-axis direction and have the largest area. On the other hand, the pattern is formed such that the area continuously and gradually decreases as the distance from the X-axis direction increases. The light reflectance in the third low light reflectance portion 30-2 changes in a slope shape in the X-axis direction as shown in FIG. Note that the light reflectance in the third low light reflectance portion 30-2 is substantially constant in the Y-axis direction.
[実施形態2の変形例3]
 実施形態2の変形例3について図16を用いて説明する。ここでは、上記した実施形態2の変形例2から第3低光反射率部30‐3の光反射率の分布をさらに変更したものを示す。
[Modification 3 of Embodiment 2]
A third modification of the second embodiment will be described with reference to FIG. Here, what changed further the light reflectance distribution of the 3rd low light reflectance part 30-3 from the modification 2 of Embodiment 2 mentioned above is shown.
 本変形例に係る第3低光反射率部30‐3は、図16に示すように、その光反射率がLED17の並び方向(X軸方向)について、曲線状に変化するものとされる。 As shown in FIG. 16, the third low light reflectance portion 30-3 according to the present modification is configured such that the light reflectance changes in a curved shape in the arrangement direction (X-axis direction) of the LEDs 17.
[実施形態2の変形例4]
 実施形態2の変形例4について図17を用いて説明する。ここでは、上記した実施形態2の変形例3,4から第3低光反射率部30‐4の光反射率の分布をさらに変更したものを示す。
[Modification 4 of Embodiment 2]
A fourth modification of the second embodiment will be described with reference to FIG. Here, a modification in which the light reflectance distribution of the third low light reflectance portion 30-4 is further changed from the third and fourth modifications of the second embodiment will be described.
 本変形例に係る第3低光反射率部30‐4は、図17に示すように、その光反射率がLED17の並び方向(X軸方向)について、ストライプ状に変化するものとされる。つまり、第3低光反射率部30‐4は、X軸方向についてLED17の中央位置から遠ざかる方向へ向けて光反射率が段階的に逐次高くなり、逆にLED17の中央位置に近づく方向へ向けて光反射率が段階的に逐次低くなる構成とされる。 As shown in FIG. 17, the third low light reflectance portion 30-4 according to the present modification is configured such that the light reflectance changes in a stripe shape in the arrangement direction (X-axis direction) of the LEDs 17. That is, in the third low light reflectance unit 30-4, the light reflectance gradually increases in the X-axis direction toward the direction away from the central position of the LED 17, and conversely toward the direction approaching the central position of the LED 17. Thus, the light reflectance is gradually decreased step by step.
[実施形態2の変形例5]
 実施形態2の変形例5について図18を用いて説明する。ここでは、第3低光反射率部30‐5の態様を変更したものを示す。
[Modification 5 of Embodiment 2]
Modification 5 of Embodiment 2 will be described with reference to FIG. Here, what changed the aspect of the 3rd low light reflectance part 30-5 is shown.
 本変形例に係る第3低光反射率部30‐5は、図18に示すように、延長反射部124‐5の表面に対して低光反射率材料をベタ状に印刷することで形成されている。このようにすれば、第3低光反射率部30‐5の光反射率は、上記した実施形態2及びその変形例1~4に記載したものよりもさらに低いものとなる。 As shown in FIG. 18, the third low light reflectance portion 30-5 according to this modification is formed by printing a low light reflectance material in a solid shape on the surface of the extended reflection portion 124-5. ing. In this way, the light reflectance of the third low light reflectance portion 30-5 is even lower than those described in the second embodiment and the first to fourth modifications thereof.
[実施形態2の変形例6]
 実施形態2の変形例6について図19を用いて説明する。ここでは、上記した実施形態2の変形例5から第3低光反射率部30‐6の形状を変更したものを示す。
[Modification 6 of Embodiment 2]
A sixth modification of the second embodiment will be described with reference to FIG. Here, what changed the shape of the 3rd low light reflectance part 30-6 from the modification 5 of above-mentioned Embodiment 2 is shown.
 本変形例に係る第3低光反射率部30‐6は、図19に示すように、平面に視て台形状をなしている。台形状をなす第3低光反射率部30‐6のうち、一対の対辺がLED17の並び方向(X軸方向)に並行しており、そのうち上底がLED17側に、下底が光入射面19b側に配されている。つまり、第3低光反射率部30‐6は、Y軸方向についてLED17から遠ざかる方向に向けて、X軸方向についての寸法が次第に大きくなる形態とされる。 The third low light reflectance portion 30-6 according to the present modification has a trapezoidal shape when seen in a plane as shown in FIG. Of the trapezoidal third low light reflectance portion 30-6, the pair of opposite sides are parallel to the LED 17 arrangement direction (X-axis direction), of which the upper base is on the LED 17 side and the lower base is the light incident surface. It is arranged on the 19b side. That is, the third low light reflectance portion 30-6 is configured such that the dimension in the X-axis direction gradually increases toward the direction away from the LED 17 in the Y-axis direction.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、延長反射部が光出射面側とは反対側に配される第2光源挟み部(シャーシ)におけるLED側の面に重なるよう配されるものを示したが、延長反射部が光出射面側に配される第1光源挟み部(フレーム)におけるLED側の面に重なるよう配される構成のものも本発明に含まれる。その場合、第1反射シートについては、第2光源挟み部に取り付けるようにすればよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In each of the above-described embodiments, the extended reflection portion is disposed so as to overlap the surface on the LED side in the second light source sandwiching portion (chassis) disposed on the side opposite to the light emitting surface side. Also, the present invention includes a configuration in which the extended reflection portion is arranged so as to overlap the surface on the LED side in the first light source sandwiching portion (frame) arranged on the light emitting surface side. In that case, what is necessary is just to make it attach to a 2nd light source clamping part about a 1st reflective sheet.
 (2)上記した(1)以外にも、第1光源挟み部におけるLED側の面に重なる延長反射部と、第2光源挟み部におけるLED側の面に重なる延長反射部とを双方共に設けるようにしたものも本発明に含まれる。 (2) In addition to the above (1), both the extended reflection portion that overlaps the LED side surface of the first light source sandwiching portion and the extended reflection portion that overlaps the LED side surface of the second light source sandwiching portion are provided. What was made is also included in this invention.
 (3)上記した各実施形態では、第2反射シートがX軸方向について光源配置領域(LEDの配置パターン)には全く配されない構成のものを示したが、LEDを通すための光源開口部が確保されているのであれば、第2反射シートの一部が光源配置領域側に配される構成とすることも可能である。例えば、第2反射シートをなす各第1高光反射率部同士を架橋部によって連結する構成を採ることが可能である。 (3) In each of the above-described embodiments, the second reflection sheet has a configuration in which the second reflection sheet is not arranged at all in the light source arrangement region (LED arrangement pattern) in the X-axis direction. If secured, a part of the second reflection sheet may be arranged on the light source arrangement region side. For example, it is possible to take the structure which connects each 1st high light reflectance part which makes a 2nd reflective sheet by a bridge | crosslinking part.
 (4)上記した各実施形態では、延長反射部の延長先端部が導光板と平面に視て重畳する構成のものを示したが、延長反射部の延長先端部が導光板とは平面に視て重畳しない構成(延長反射部がシャーシと導光板との間で挟み込まれない構成)としたものも本発明に含まれる。その場合、延長反射部の延長先端部が導光板の光入射面と面一状をなす位置としたり、延長反射部の延長先端部が導光板の光入射面に達しない位置とすることが可能である。 (4) In each of the above-described embodiments, the extension tip portion of the extension reflection portion is configured to overlap with the light guide plate in plan view. However, the extension tip portion of the extension reflection portion is viewed in plan view with the light guide plate. Also, the present invention includes a configuration that does not overlap (a configuration in which the extended reflection portion is not sandwiched between the chassis and the light guide plate). In that case, it is possible to make the extended tip of the extended reflector part flush with the light incident surface of the light guide plate, or to make the extended tip of the extended reflector not reach the light incident surface of the light guide plate. It is.
 (5)上記した各実施形態では、第2反射シートの光源開口部と、延長反射部の開口部とが連通する構成のものを示したが、光源開口部と開口部とが連通しない構成、つまり光源開口部と開口部との間に第1低光反射率部同士(または第1高光反射率部同士)を架橋する架橋部が介在する構成とすることも可能である。 (5) In each of the embodiments described above, the configuration in which the light source opening of the second reflection sheet and the opening of the extended reflection portion communicate with each other is shown, but the configuration in which the light source opening and the opening do not communicate with each other. That is, it is also possible to adopt a configuration in which a bridging portion for bridging the first low light reflectance portions (or the first high light reflectance portions) is interposed between the light source opening and the opening.
 (6)上記した各実施形態では、第2反射シートの光源開口部と、延長反射部の開口部とで連通部位における開口間口が等しくなる構成のものを示したが、光源開口部と開口部との連通部位における開口間口を異ならせることも可能である。 (6) In each of the above-described embodiments, the light source opening portion of the second reflection sheet and the opening portion of the extended reflection portion have the same opening front in the communication portion. It is also possible to vary the opening front at the communication part.
 (7)上記した各実施形態以外にも、開口部や光源開口部の具体的な平面形状は適宜に変更可能であり、例えば開口部や光源開口部の平面形状を、正方形、四角形以外の多角形状(三角形状、五角形)、台形状、楕円形状、長円形状などとすることができる。 (7) In addition to the above-described embodiments, the specific planar shape of the opening and the light source opening can be changed as appropriate. For example, the planar shape of the opening and the light source opening can be changed to a polygon other than a square or a rectangle. The shape (triangular shape, pentagonal shape), trapezoidal shape, elliptical shape, oval shape, or the like can be used.
 (8)上記した各実施形態では、白色を呈する第2反射シート及び延長反射部を用いた場合を示したが、白色以外の色(例えば銀色や灰色など)を呈する第2反射シート及び延長反射部を用いることも可能である。 (8) In the above-described embodiments, the case where the second reflection sheet and the extended reflection portion exhibiting white are used is shown. However, the second reflection sheet and the extension reflection exhibiting a color other than white (for example, silver or gray). It is also possible to use parts.
 (9)上記した実施形態1では、延長反射部の延長先端部が延在部によって相互に繋げられる構成のものを示したが、延在部を除去した構成のものも本発明に含まれる。 (9) In Embodiment 1 described above, the configuration in which the extended tip portions of the extended reflecting portion are connected to each other by the extended portion is shown, but the configuration in which the extended portion is removed is also included in the present invention.
 (10)上記した実施形態2では、延長反射部に開口部を設けるとともに第3低光反射率部を設けるようにしたものを示したが、延長反射部に第3低光反射率部のみを設けるようにし、開口部を設けないようにしても構わない。 (10) In the second embodiment described above, the extension reflection portion is provided with the opening and the third low light reflectance portion is provided. However, the extension reflection portion is provided with only the third low light reflectance portion. It may be provided, and the opening may not be provided.
 (11)上記した実施形態2以外にも、第3低光反射率部の平面形状は適宜に変更可能である。具体的には、第3低光反射率部の平面形状を、三角形状、半楕円形状、半長円形状などの末広がり形状とすることができ、それ以外にも多角形状(四角形、五角形など)、円形状、楕円形状などとすることもできる。また、第3低光反射率部を非対称形状とすることも可能である。 (11) In addition to the second embodiment described above, the planar shape of the third low light reflectance portion can be changed as appropriate. Specifically, the planar shape of the third low light reflectance portion can be a divergent shape such as a triangular shape, a semi-elliptical shape, and a semi-ellipse shape, and other polygonal shapes (square, pentagon, etc.) Alternatively, a circular shape, an elliptical shape, or the like can be used. In addition, the third low light reflectance part can be asymmetrical.
 (12)上記した実施形態2では、延長反射部の表面に低光反射率材料を印刷することで低光反射率部を形成した場合を示したが、延長反射部の表面に低光反射率材料を塗布することで第3低光反射率部を形成することも可能である。それ以外にも、例えばメタル蒸着等の他の形成手段を用いたものも本発明に含まれる。 (12) In Embodiment 2 described above, the case where the low light reflectance part is formed by printing the low light reflectance material on the surface of the extended reflection part has been described. It is also possible to form the third low light reflectance part by applying a material. In addition, the present invention includes other means using other forming means such as metal vapor deposition.
 (13)上記した実施形態2では、第3低光反射率部をなす低光反射率材料として黒色を呈するものを用いた場合を示したが、黒色以外の色(例えば灰色など)を呈する低光反射率材料を用いることも可能である。 (13) In Embodiment 2 described above, the case where a material exhibiting black is used as the low light reflectance material forming the third low light reflectance portion has been described. However, the low light exhibiting a color other than black (for example, gray). It is also possible to use a light reflectivity material.
 (14)上記した各実施形態では、導光板に散乱部を設けるにあたって白色のドットを印刷するようにした場合を示したが、それ以外にも、例えば導光板の表面に凹凸形状を成型したり、溝形状を成型することで、所定の分布の散乱部を形成することが可能である。 (14) In each of the above-described embodiments, the case where white dots are printed when the scattering portion is provided on the light guide plate is shown, but other than that, for example, an uneven shape is formed on the surface of the light guide plate. By forming the groove shape, it is possible to form scattering portions having a predetermined distribution.
 (15)上記した各実施形態では、LED基板(LED)が導光板における両長辺側の端部に一対配されるものを示したが、例えばLED基板(LED)が導光板における両短辺側の端部に一対配されるものも本発明に含まれる。 (15) In each of the above-described embodiments, a pair of LED substrates (LEDs) is arranged at the ends of both long sides of the light guide plate. For example, the LED substrates (LEDs) are both short sides of the light guide plate. What is arranged in a pair at the end portion on the side is also included in the present invention.
 (16)上記した(15)以外にも、LED基板(LED)を導光板における両長辺及び両短辺の各端部に対して一対ずつ配したものや、逆にLED基板(LED)を導光板における一方の長辺または一方の短辺の端部に対してのみ1つ配したものも本発明に含まれる。 (16) In addition to the above (15), a pair of LED substrates (LEDs) arranged on both ends of the long side and both short sides of the light guide plate, and conversely, LED substrates (LEDs). The present invention includes one in which only one long side or one short side of the light guide plate is disposed at the end.
 (17)上記した各実施形態では、液晶パネルが有するカラーフィルタの着色部をR,G,Bの3色としたものを例示したが、着色部を4色以上とすることも可能である。 (17) In each of the above-described embodiments, the color filters of the color filter included in the liquid crystal panel are exemplified by three colors of R, G, and B. However, the color sections can be four or more colors.
 (18)上記した各実施形態では、光源としてLEDを用いたものを示したが、有機ELなどの他の光源を用いることも可能である。 (18) In each of the above-described embodiments, an LED is used as a light source. However, other light sources such as an organic EL can be used.
 (19)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。 (19) In each of the embodiments described above, a TFT is used as a switching element of a liquid crystal display device. However, the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)). In addition to the liquid crystal display device for display, the present invention can also be applied to a liquid crystal display device for monochrome display.
 (20)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (20) In each of the above-described embodiments, the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified. However, the present invention can also be applied to display devices using other types of display panels.
 (21)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。 (21) In each of the above-described embodiments, the television receiver provided with the tuner is exemplified, but the present invention is also applicable to a display device that does not include the tuner.
 10...液晶表示装置(表示装置)、11...液晶パネル(表示パネル)、12...バックライト装置(照明装置)、14...シャーシ、14d...第2光源挟み部(低光反射率部材)、17...LED(光源)、18...LED基板(光源基板)、19...導光板、19a...光出射面、19b...光入射面、19c...面、21...光散乱部、22...導光反射シート(導光反射部材)、23...第2反射シート(反射部材)、23a...光源開口部、24...延長反射部、24a...開口部、27...延在部、30...第3低光反射率部(低光反射率印刷部)、LA...光源配置領域(光源の配置パターン)、LN...光源非配置領域(光源の非配置パターン)、TV...テレビ受信装置 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 14 ... Chassis, 14d ... 2nd light source clamping part (Low light reflectance member), 17 ... LED (light source), 18 ... LED substrate (light source substrate), 19 ... light guide plate, 19a ... light emitting surface, 19b ... light incident surface , 19c ... surface, 21 ... light scattering portion, 22 ... light guide reflection sheet (light guide reflection member), 23 ... second reflection sheet (reflection member), 23a ... light source opening 24 ... extended reflection part, 24a ... opening part, 27 ... extension part, 30 ... third low light reflectance part (low light reflectance printing part), LA ... light source arrangement Area (light source arrangement pattern), LN ... light source non-arrangement area (light source non-arrangement pattern), TV ... TV receiver

Claims (15)

  1.  間欠的に並んで配される複数の光源と、
     前記光源と対向状に配されるとともに前記光源からの光が入射される光入射面、及び入射した光を出射させる光出射面を有する導光板と、
     前記光入射面と対向状に配され且つ前記光源の非配置パターンに倣って配される反射部材と、
     前記反射部材から前記光入射面側に向けて延長される延長反射部とを備える照明装置。
    A plurality of light sources arranged intermittently side by side;
    A light guide plate disposed opposite to the light source and having a light incident surface on which light from the light source is incident, and a light emitting surface for emitting the incident light;
    A reflecting member that is arranged opposite to the light incident surface and is arranged following the non-arrangement pattern of the light source;
    An illuminating device comprising: an extended reflecting portion extending from the reflecting member toward the light incident surface side.
  2.  前記延長反射部に対して前記光源側とは反対側に重なる形で配されるとともに、前記延長反射部よりも光反射率が相対的に低い低光反射率部材が備えられており、
     前記延長反射部には、前記光源の配置パターンに倣う開口部が形成されている請求項1記載の照明装置。
    It is arranged in a form overlapping with the side opposite to the light source side with respect to the extended reflection part, and is provided with a low light reflectance member having a relatively low light reflectance than the extended reflection part,
    The illumination device according to claim 1, wherein the extended reflection portion is formed with an opening that follows the arrangement pattern of the light sources.
  3.  前記開口部は、前記延長反射部において少なくとも前記光源と平面に視て重畳する位置に配されている請求項2記載の照明装置。 The lighting device according to claim 2, wherein the opening is disposed at a position overlapping at least the light source in a plan view in the extended reflection portion.
  4.  前記反射部材には、前記光源を通す光源開口部が前記光源の配置パターンに倣って形成されており、
     前記開口部は、前記光源開口部に連通されている請求項2または請求項3記載の照明装置。
    In the reflection member, a light source opening for passing the light source is formed following the arrangement pattern of the light source,
    The lighting device according to claim 2 or 3, wherein the opening communicates with the light source opening.
  5.  前記開口部及び前記光源開口部は、互いの連通部位における開口間口がほぼ等しいものとされる請求項4記載の照明装置。 The lighting device according to claim 4, wherein the opening and the light source opening have substantially the same opening fronts at communication portions.
  6.  前記開口部は、前記光源から遠ざかる方向に向けてその面積が小さくなる形態とされる請求項2から請求項5のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 2 to 5, wherein an area of the opening is reduced in a direction away from the light source.
  7.  前記開口部は、前記光源から遠ざかる方向に向けてその開口間口が狭くなるよう傾斜状の縁部を有している請求項6記載の照明装置。 The lighting device according to claim 6, wherein the opening has an inclined edge so that the opening front becomes narrower in a direction away from the light source.
  8.  前記延長反射部における前記光入射面側の端部には、前記光源の並び方向に沿って前記開口部を横切るよう延在する延在部が設けられている請求項2から請求項7のいずれか1項に記載の照明装置。 The extension part which extends so that the said light-incidence surface side edge part in the said extended reflection part may cross the said opening part along the arrangement direction of the said light source is provided. The lighting device according to claim 1.
  9.  前記延長反射部は、前記光源の非配置パターンに加えて前記光源の配置パターンに倣う範囲に配されており、
     前記延長反射部には、光反射率が相対的に低い低光反射率材料を印刷することで、前記光源の配置パターンに倣う低光反射率印刷部が設けられている請求項1から請求項8のいずれか1項に記載の照明装置。
    The extended reflection portion is arranged in a range that follows the arrangement pattern of the light source in addition to the non-arrangement pattern of the light source,
    The low-reflectance printing part that follows the arrangement pattern of the light source is provided on the extended reflecting part by printing a low-light-reflecting material having a relatively low light reflectance. 9. The lighting device according to any one of items 8.
  10.  前記光源及び前記導光板を収容するシャーシが備えられており、
     前記延長反射部は、前記シャーシにおける前記光源側の面に重なる形で配されている請求項1から請求項9のいずれか1項に記載の照明装置。
    A chassis that houses the light source and the light guide plate;
    The lighting device according to any one of claims 1 to 9, wherein the extended reflecting portion is arranged so as to overlap a surface of the chassis on the light source side.
  11.  前記延長反射部は、前記導光板と平面に視て重畳する範囲にまで延長して形成されるとともに、その重畳部が前記導光板と前記シャーシとの間で挟まれている請求項10記載の照明装置。 The extended reflection portion is formed to extend to a range overlapping with the light guide plate in a plan view, and the overlap portion is sandwiched between the light guide plate and the chassis. Lighting device.
  12.  複数の前記光源が実装される光源基板が備えられており、
     前記反射部材は、前記光源基板に取り付けられている請求項1から請求項11のいずれか1項に記載の照明装置。
    A light source board on which a plurality of the light sources are mounted;
    The lighting device according to claim 1, wherein the reflecting member is attached to the light source substrate.
  13.  前記導光板における前記光出射面とは反対側の面には、光を散乱させる光散乱部と、前記光散乱部を覆うとともに光を反射させる導光反射部材とが設けられており、
     前記光散乱部は、光の散乱度合いが前記光源の並び方向についてほぼ一定になる分布を有している請求項1から請求項12のいずれか1項に記載の照明装置。
    On the surface of the light guide plate opposite to the light exit surface, a light scattering portion that scatters light, and a light guide reflection member that covers the light scattering portion and reflects light, are provided.
    The lighting device according to any one of claims 1 to 12, wherein the light scattering section has a distribution in which a degree of light scattering is substantially constant in an arrangement direction of the light sources.
  14.  請求項1から請求項13のいずれか1項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 13; and a display panel that performs display using light from the illumination device.
  15.  請求項14に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 14.
PCT/JP2012/064261 2011-06-09 2012-06-01 Illumination device, display device, and television reception device WO2012169439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011129361 2011-06-09
JP2011-129361 2011-06-09

Publications (1)

Publication Number Publication Date
WO2012169439A1 true WO2012169439A1 (en) 2012-12-13

Family

ID=47296005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064261 WO2012169439A1 (en) 2011-06-09 2012-06-01 Illumination device, display device, and television reception device

Country Status (1)

Country Link
WO (1) WO2012169439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279549A4 (en) * 2015-04-01 2018-12-12 Sharp Kabushiki Kaisha Illumination device, display device, and television reception device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331628A (en) * 2002-03-05 2003-11-21 Seiko Epson Corp Lighting device, liquid crystal device, and electronic device
JP2008218325A (en) * 2007-03-07 2008-09-18 Nippon Leiz Co Ltd Light guide plate and surface lighting device
JP2009004198A (en) * 2007-06-20 2009-01-08 Alpine Electronics Inc Liquid crystal panel backlight device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331628A (en) * 2002-03-05 2003-11-21 Seiko Epson Corp Lighting device, liquid crystal device, and electronic device
JP2008218325A (en) * 2007-03-07 2008-09-18 Nippon Leiz Co Ltd Light guide plate and surface lighting device
JP2009004198A (en) * 2007-06-20 2009-01-08 Alpine Electronics Inc Liquid crystal panel backlight device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279549A4 (en) * 2015-04-01 2018-12-12 Sharp Kabushiki Kaisha Illumination device, display device, and television reception device

Similar Documents

Publication Publication Date Title
WO2011142170A1 (en) Illumination device, display device, television receiving device
WO2011077866A1 (en) Lighting device, display device, and television receiver device
US9016919B2 (en) Lighting device, display device and television receiver
WO2013051473A1 (en) Illumination device, display device, and television receiving device
JP5337882B2 (en) Lighting device, display device, and television receiver
KR101295146B1 (en) Liquid crystal display device
WO2013039001A1 (en) Illumination device, display device, and television receiving device
WO2014021303A1 (en) Illumination device, display device, and television reception device
KR101792104B1 (en) Light guide plate and liquid crystal display device having thereof
WO2011148694A1 (en) Illuminating device, display device, and television receiver
WO2010038529A1 (en) Illuminating device, display device and television receiver
US8400581B2 (en) Back light unit and liquid crystal display comprising the same
WO2011092953A1 (en) Lighting device, display device, and television receiver device
WO2014196235A1 (en) Illumination device, display device, and tv receiver
JP6644510B2 (en) Lighting device, display device, and television receiver
WO2011077864A1 (en) Illumination device, display device, and television receiver
WO2019021952A1 (en) Lighting device and display device
WO2012165248A1 (en) Illuminating apparatus, display apparatus, and television receiver
WO2012111501A1 (en) Illumination device, display device, and television receiver device
JP2013149559A (en) Lighting system, display device, and television receiver
WO2011158553A1 (en) Lighting apparatus, display apparatus, and television receiver apparatus
WO2014196234A1 (en) Illumination device, display device, and tv receiver
WO2013005708A1 (en) Illumination device, display device, and television reception device
WO2011114790A1 (en) Lighting device, display device, and television receiver
WO2012169439A1 (en) Illumination device, display device, and television reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP