WO2018139192A1 - 超音波装置 - Google Patents

超音波装置 Download PDF

Info

Publication number
WO2018139192A1
WO2018139192A1 PCT/JP2018/000268 JP2018000268W WO2018139192A1 WO 2018139192 A1 WO2018139192 A1 WO 2018139192A1 JP 2018000268 W JP2018000268 W JP 2018000268W WO 2018139192 A1 WO2018139192 A1 WO 2018139192A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
ultrasonic transducer
temperature
unit
detection unit
Prior art date
Application number
PCT/JP2018/000268
Other languages
English (en)
French (fr)
Inventor
恒介 渡辺
中尾 元保
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018564459A priority Critical patent/JP6702442B2/ja
Priority to CN201880008522.2A priority patent/CN110226333A/zh
Priority to EP18744293.4A priority patent/EP3576428B1/en
Publication of WO2018139192A1 publication Critical patent/WO2018139192A1/ja
Priority to US16/512,426 priority patent/US20190339370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52009Means for monitoring or calibrating of sensor obstruction, e.g. dirt- or ice-coating

Definitions

  • the present invention relates to an ultrasonic device, and more particularly to an ultrasonic device having an abnormality detection function of an ultrasonic transducer to be mounted.
  • Ultrasonic devices that measure the distance to the object to be detected by transmitting ultrasonic waves from the ultrasonic transducer and receiving the reflected wave reflected by the object to be detected have been put to practical use.
  • Patent Document 1 discloses an ultrasonic sensor capable of detecting adhesion of foreign matters such as mud. This ultrasonic sensor detects a resonance frequency of the ultrasonic vibrator, and monitors the resonance frequency and compares it with a natural frequency to detect an abnormal operation of the ultrasonic vibrator.
  • the resonance frequency changes when the temperature changes. Therefore, there may be a case where it is not possible to determine whether an abnormality or a temperature change is detected by the method of detecting an abnormality using only the measurement result of the resonance frequency.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultrasonic apparatus that can accurately detect abnormality of an ultrasonic transducer.
  • An ultrasonic apparatus includes an ultrasonic transducer, a drive circuit, a reception circuit, a frequency detection unit, a storage unit, a temperature detection unit, and a determination unit.
  • the drive circuit causes the ultrasonic transducer to emit a sound wave.
  • the receiving circuit receives the sound wave received by the ultrasonic transducer.
  • the frequency detector detects the resonance frequency of the ultrasonic transducer.
  • the storage unit stores the resonance frequency of the ultrasonic transducer at a predetermined temperature.
  • the determination unit determines abnormality of the ultrasonic transducer based on the temperature detected by the temperature detection unit, the resonance frequency stored in the storage unit, and the resonance frequency detected by the frequency detection unit.
  • An ultrasonic apparatus includes an ultrasonic transducer, a drive circuit that transmits a sound wave to the ultrasonic transducer, a reception circuit that receives a sound wave received by the ultrasonic transducer, and a Q of the ultrasonic transducer.
  • Q value detection unit for detecting value
  • storage unit for storing Q value of ultrasonic transducer at predetermined temperature
  • temperature detection unit temperature detected by temperature detection unit
  • Q value stored in storage unit And a determination unit that determines abnormality of the ultrasonic transducer based on the Q value detected by the Q value detection unit.
  • An ultrasonic apparatus includes an ultrasonic transducer, a drive circuit that transmits a sound wave to the ultrasonic transducer, a reception circuit that receives a sound wave received by the ultrasonic transducer, and resonance of the ultrasonic transducer.
  • a frequency detection unit that detects a frequency; a first storage unit that stores a resonance frequency of the ultrasonic transducer at a predetermined temperature; a Q value detection unit that detects a Q value of the ultrasonic transducer; and a predetermined temperature
  • a temperature detection unit the temperature detected by the temperature detection unit, the resonance frequency stored in the first storage unit, the resonance frequency detected by the frequency detection unit, 2 Judgment to determine abnormality of ultrasonic transducer based on Q value stored in storage unit and Q value detected by Q value detection unit Provided with a door.
  • the determination unit is based on the resonance frequency estimation unit that estimates the resonance frequency at the temperature detected by the temperature detection unit based on the resonance frequency stored in the first storage unit, and the resonance frequency estimated by the resonance frequency estimation unit.
  • a first determination processing unit that determines whether the resonance frequency detected by the frequency detection unit is normal or abnormal, and a Q value at a temperature detected by the temperature detection unit based on a Q value stored in the second storage unit A Q value estimation unit; and a second determination processing unit that determines whether the Q value detected by the Q value detection unit is normal or abnormal based on the Q value estimated by the Q value estimation unit.
  • the determination unit includes a resonance frequency estimation unit that estimates a resonance frequency at a temperature detected by the temperature detection unit based on the resonance frequency stored in the first storage unit, and a Q value stored in the second storage unit.
  • An ultrasonic transducer based on a combination of a Q value estimator for estimating a Q value at a temperature detected by the temperature detector based on a combination of a resonance frequency estimated by the resonance frequency estimator and a Q value estimated by the Q value estimator; And an abnormality determination unit for determining whether normal or abnormal.
  • the temperature detection unit includes a capacitance detection unit that detects the capacitance of the ultrasonic transducer, a capacitance storage unit that stores the capacitance of the ultrasonic transducer at a predetermined temperature, and a capacitance and a capacitance storage detected by the capacitance detection unit. And a temperature estimation unit that estimates the temperature based on the capacity stored by the unit.
  • An ultrasonic device includes an ultrasonic transducer, a drive circuit that transmits a sound wave to the ultrasonic transducer, a reception circuit that receives a sound wave received by the ultrasonic transducer, and a Q of the ultrasonic transducer.
  • a Q value detector for detecting a value a storage unit for storing the Q value of the ultrasonic transducer at a predetermined temperature, a capacitance detector for detecting the capacitance of the ultrasonic transducer, and an ultrasonic wave at a predetermined temperature
  • An abnormality of the ultrasonic transducer is determined based on a capacitance storage unit that stores the capacitance of the transducer, a capacitance detected by the capacitance detection unit, a Q value stored in the storage unit, and a Q value detected by the Q value detection unit A determination unit.
  • An ultrasonic device includes an ultrasonic transducer, a drive circuit that transmits a sound wave to the ultrasonic transducer, a reception circuit that receives a sound wave received by the ultrasonic transducer, and resonance of the ultrasonic transducer.
  • a frequency detection unit for detecting a frequency; a storage unit for storing a resonance frequency of the ultrasonic transducer at a predetermined temperature; a capacitance detection unit for detecting a capacitance of the ultrasonic transducer; and the ultrasonic at a predetermined temperature.
  • An abnormality of the ultrasonic transducer is determined based on a capacity storage unit that stores the capacitance of the ultrasonic transducer, a capacitance detected by the capacitance detection unit, a resonance frequency stored in the storage unit, and a resonance frequency detected by the frequency detection unit A determination unit.
  • FIG. 1 is a cross-sectional view showing an ultrasonic transducer 100.
  • FIG. 1 is a block diagram illustrating a configuration of an ultrasonic apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for describing a first example of frequency fc estimation processing in a frequency estimation unit 116.
  • FIG. It is a figure for demonstrating the 2nd example of the estimation process of the frequency fc in the frequency estimation part.
  • 6 is a block diagram illustrating a configuration of an ultrasonic apparatus according to Embodiment 2.
  • FIG. 6 is a diagram for describing a first example of a Q value Qc estimation process in a Q value estimation unit 216.
  • FIG. 1 is a cross-sectional view showing an ultrasonic transducer 100.
  • FIG. 1 is a block diagram illustrating a configuration of an ultrasonic apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for describing a first example of frequency fc estimation processing in a frequency estimation unit
  • FIG. 10 is a flowchart for explaining a determination process executed in the third embodiment.
  • 5 is a block diagram illustrating a configuration of an ultrasonic device according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic device according to a fifth embodiment. It is a figure for demonstrating the 1st example of the estimation process of the temperature Tc in the temperature detection part. It is a figure for demonstrating the 2nd example of the estimation process of the temperature Tc in the temperature detection part.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic apparatus according to a sixth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic apparatus according to a modification of the sixth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic device according to a seventh embodiment. It is a figure for demonstrating the estimation process of the Q value estimation part 816.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic device according to a modification of the seventh embodiment.
  • FIG. 1 is a schematic block diagram showing a configuration of an ultrasonic apparatus including an ultrasonic transducer.
  • the ultrasonic apparatus 1 includes an ultrasonic transducer 100, a microcomputer 101, a memory 102, a detection circuit 103, a drive circuit 104, a power supply 105, a reception circuit 106, and an abnormality detection unit 110.
  • the microcomputer 101 reads out data stored in the memory 102 and outputs a control signal suitable for driving the ultrasonic transducer 100 to the drive circuit 104.
  • the power source 105 outputs a DC voltage of 12 V, for example, to the drive circuit 104.
  • the drive circuit 104 generates an AC voltage from the DC voltage based on the control signal output from the microcomputer 101.
  • the AC voltage is supplied to the ultrasonic transducer 100 in a state where it is boosted by an amplifier circuit (not shown) as necessary.
  • the ultrasonic transducer 100 is driven, and ultrasonic waves are transmitted (transmitted) from the ultrasonic transducer 100 toward the air.
  • the ultrasonic transducer 100 When the ultrasonic transducer 100 receives the reflected wave from the target, the received signal generated by the ultrasonic transducer 100 is sent to the receiving circuit 106 as a voltage value and input to the microcomputer 101 through the detection circuit 103.
  • the microcomputer 101 can grasp information regarding the presence / absence of a target and movement.
  • the ultrasonic device 1 can be used as an ultrasonic sensor mounted on, for example, a car.
  • FIG. 2 is a cross-sectional view showing the ultrasonic transducer 100.
  • the configuration of the ultrasonic transducer disclosed in FIG. 2 is an exemplification, and it is possible to detect an abnormality with the ultrasonic apparatus of the present embodiment even when an ultrasonic transducer having another configuration is used.
  • the ultrasonic transducer 100 shown in FIG. 2 includes a piezoelectric element 50, a case 60, a sound absorbing material 63, and terminals 80 and 81.
  • the case 60 has a bottomed cylindrical shape.
  • the case 60 is made of, for example, aluminum having high elasticity and light weight.
  • the case 60 is produced by forging or cutting aluminum, for example.
  • the case 60 includes a disc-shaped bottom portion 62 and a cylindrical tubular portion 61 provided along the periphery of the bottom portion 62.
  • the piezoelectric element 50 is made of, for example, lead zirconate titanate ceramic.
  • the piezoelectric element 50 is disposed on the inner surface of the bottom 62 and is bonded to the inner surface using an adhesive. When the ultrasonic transducer 100 is driven, the piezoelectric element 50 bends and vibrates together with the bottom 62.
  • the resin 71 is provided so as to fill the internal space of the case 60.
  • the sound absorbing material 63 is made of a molded body such as sponge, and is provided between the resin 71 and the portion 72 that accommodates the piezoelectric element 50. The sound absorbing material 63 faces the piezoelectric element 50 with a space therebetween.
  • the piezoelectric element 50 has two electrodes 51 and 52.
  • the terminal 80 is electrically connected to the electrode 52 through the wire and the case 60.
  • the terminal 81 is electrically connected to the electrode 51 through a wire.
  • the ultrasonic transducer 100 in FIG. 1 may have three terminals of GND, transmission, and reception in addition to the two terminals shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration of the ultrasonic apparatus according to the first embodiment.
  • the ultrasonic apparatus according to the first embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 110.
  • the abnormality detection unit 110 includes a frequency detection unit 114, a frequency storage unit 118, a frequency estimation unit 116, a temperature detection unit 112, and an abnormality determination unit 119.
  • the drive circuit 104 outputs a drive signal so as to cause the ultrasonic transducer 100 to emit a sound wave.
  • the receiving circuit 106 receives the sound wave received by the ultrasonic transducer 100.
  • the frequency detector 114 detects the resonance frequency fm of the ultrasonic transducer 100.
  • the frequency storage unit 118 stores the resonance frequency fm of the ultrasonic transducer 100 at a predetermined temperature. For example, in the process of producing an ultrasonic device in a factory, the frequency fm detected by the frequency detection unit 114 when the ultrasonic transducer 100 is resonated in an atmosphere of a predetermined temperature is stored as the initial value fini. Store in the unit 118.
  • the frequency detection unit 114 can use a circuit that measures the resonance frequency from the reverberation frequency, as described in JP-A-2015-10888.
  • the temperature detection unit 112 may be a temperature sensing element such as a thermistor, or may be one that receives temperature information from an external temperature sensor provided in a vehicle or the like.
  • FIG. 4 is a diagram for explaining a first example of frequency fc estimation processing in the frequency estimation unit 116.
  • a specific temperature T1, T2, T3, T4, T5
  • Resonant frequencies (fini1, fini2, fini3, fini4, fini5) are measured.
  • the number of temperature points may be one point or a plurality of points.
  • the measured values at the measurement points P1 to P5 are stored in the frequency storage unit 118.
  • the frequency estimation unit 116 obtains a temperature-resonance frequency relationship fstd for each individual ultrasonic transducer from the stored frequency.
  • the temperature-resonance frequency relationship can be calculated, for example, by storing temperature and resonance frequency table data and linearly interpolating between the data. Note that this relationship may be expressed by a mathematical expression such as a linear expression, a quadratic expression, or a polynomial expression, and the coefficient of the expression may be determined from the measurement points P1 to P5.
  • the frequency estimation unit 116 estimates the estimated resonance frequency fc by determining a value corresponding to the temperature Tm obtained from the temperature detection unit 112 during use from fstd given by a mathematical expression or a table.
  • temperature characteristic data may be measured for each individual ultrasonic transducer and the estimated resonance frequency fc may be obtained using the data.
  • the temperature characteristic may be determined for each individual ultrasonic transducer. It takes time to measure and record the data. Accordingly, the second example below is more realistic in that the initial value fini at the standard temperature Tstd is measured and recorded for each individual transducer, and the frequency shift ⁇ f due to the temperature characteristic change is corrected using common standard data. Is.
  • the frequency estimation unit 116 stores temperature-resonance frequency characteristics (forg in FIG. 5) of ultrasonic transducers commonly used in a plurality of ultrasonic apparatuses.
  • the temperature-resonance frequency characteristic (forg) may be stored as a function (formula) of temperature, or may be stored in a data table like a map.
  • the shift ⁇ f between the resonance frequency fini and the temperature-resonance frequency characteristic (forg) at the temperature Tstd corresponding to the individual ultrasonic transducer 100 is calculated. This is a frequency shift ⁇ f due to individual differences.
  • a temperature-resonance frequency characteristic (fstd) obtained by shifting the temperature-resonance frequency characteristic (forg) by ⁇ f is obtained.
  • the frequency estimation unit 116 estimates the estimated resonance frequency fc by determining a value corresponding to the temperature Tm obtained from the temperature detection unit 112 at the time of use from fstd given by an equation or a table.
  • the difference ⁇ f1 between the resonance frequency corresponding to a predetermined temperature Tstd on the temperature-resonance frequency characteristic (forg) and the resonance frequency at the temperature Tm is calculated, and ⁇ f1 is added to fini. Fc may be obtained.
  • the frequency estimation unit 116 upon receiving the current measured temperature Tm from the temperature detection unit 112, the frequency estimation unit 116 outputs the estimated resonance frequency fc.
  • fini stored in the frequency storage unit 118 is transmitted to the frequency estimation unit 116, but fstd shown in FIGS. 4 and 5 is calculated in advance and stored in the frequency storage unit 118 to estimate the frequency.
  • the unit 116 may refer to this.
  • the abnormality determination unit 119 detects abnormality of the ultrasonic transducer 100 based on the temperature Tm detected by the temperature detection unit 112, the resonance frequency fini stored in the frequency storage unit 118, and the resonance frequency fm detected by the frequency detection unit 114.
  • the signal SR1 indicating the determination result is output.
  • the frequency estimation unit 116 estimates the frequency estimation value fc at the temperature Tm based on the temperature Tm and the initial value fini, and the abnormality determination unit 119 determines the resonance frequency fm that is the frequency estimation value fc and the measurement value. To determine whether or not the measured value is abnormal. For example, the abnormality determination unit 119 determines the positive threshold f (+) and the negative threshold f ( ⁇ ) around the frequency estimated value fc, and f ( ⁇ ) ⁇ fm ⁇ f (+) is established. If it is determined that the measured value is normal, it is determined that the measured value is abnormal.
  • the ultrasonic apparatus according to Embodiment 1 can detect an abnormality of the ultrasonic transducer with higher accuracy than in the past.
  • Patent Document 1 an abnormality is detected based on a change in frequency, but the frequency also changes depending on the temperature.
  • the temperature detection unit 112 is provided in addition to the frequency detection unit 114, and the frequency change due to the detected temperature is reflected in the determination threshold value. It is possible to determine whether it is due to an abnormality.
  • the resonance frequency is used as a parameter for determining abnormality, but in the second embodiment, the Q value is used.
  • the Q value is an index generally used as a value “Q: Quality factor” representing the sharpness, that is, the sharpness of the resonance peak of the resonance circuit.
  • Q: Quality factor representing the sharpness
  • FIG. 6 is a block diagram showing a configuration of the ultrasonic apparatus according to the second embodiment.
  • the ultrasonic device according to the second embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 210.
  • the abnormality detection unit 210 includes a Q value detection unit 214, a Q value storage unit 218, a Q value estimation unit 216, a temperature detection unit 112, and an abnormality determination unit 219.
  • the Q value detection unit 214 detects the Q value Qm of the ultrasonic transducer 100.
  • the Q value storage unit 218 stores the Q value Qm of the ultrasonic transducer 100 at a predetermined temperature. For example, in the process of producing an ultrasonic device in a factory, the Q value Qm detected by the Q value detection unit 214 when the ultrasonic transducer 100 is vibrated in an atmosphere of a predetermined temperature is set as the initial value Qini. It is stored in the Q value storage unit 218.
  • the Q value detection unit 214 measures the Q value from the decay curve of the reverberation frequency as described in JP-A-2015-10888.
  • FIG. 7 is a diagram for explaining a first example of the Q value Qc estimation process in the Q value estimation unit 216.
  • a specific temperature T1, T2, T3, T4, T5
  • the Q value Qini1, Qini2, Qini3, Qini4, Qini5
  • the number of temperature points may be one point or a plurality of points.
  • the measured values at the measurement points P11 to P15 are stored in the Q value storage unit 218.
  • the Q value estimation unit 216 obtains a temperature-Q value relationship for each individual ultrasonic transducer from the stored Q value.
  • the relationship between temperature and Q value can be calculated, for example, by storing temperature and Q value table data and linear interpolation between the data.
  • This relationship may be expressed by a mathematical expression such as a linear expression, a quadratic expression, or a polynomial expression, and the coefficient of the mathematical expression may be determined from the measurement points P11 to P15.
  • the Q value estimating unit 216 estimates the estimated Q value Qc by determining a value corresponding to the temperature Tm obtained from the temperature detecting unit 112 during use from Qstd given by an equation or a table.
  • temperature characteristic data may be measured for each individual ultrasonic transducer, and the estimated Q value Qc may be obtained using the measured data. It takes time to measure and record the data. Therefore, the following second example in which the initial value Qini at the standard temperature Tstd is measured and recorded for each individual transducer and the Q value shift ⁇ Q due to the temperature characteristic change is corrected using common data is more realistic. Is.
  • FIG. 8 is a diagram for explaining a second example of the Q value Qc estimation process in the Q value estimation unit 216.
  • the Q value estimation unit 216 stores temperature-Q value characteristics (Qorg) of ultrasonic transducers commonly used in a plurality of ultrasonic apparatuses.
  • the temperature-Q value characteristic (Qorg) may be stored as a function (formula) of temperature, or may be stored in a data table like a map.
  • the Q value shift ⁇ Q between the Q value Qini and the temperature-Q value characteristic (Qorg) at the temperature Tstd corresponding to the individual ultrasonic transducer 100 is calculated. This is a Q value shift ⁇ Q due to individual differences.
  • a temperature-Q value characteristic (Qstd) obtained by shifting the temperature-Q value characteristic (Qorg) by ⁇ Q is obtained.
  • the Q value estimating unit 216 estimates the estimated Q value Qc by determining a value corresponding to the temperature Tm obtained from the temperature detecting unit 112 during use from Qstd given by a mathematical expression or a table.
  • a difference ⁇ Q1 between a Q value corresponding to a predetermined temperature Tstd on the temperature-Q value characteristic (Qorg) and a Q value at the temperature Tm is calculated, and ⁇ Q1 is added to Qini. Qc may be obtained.
  • the Q value estimation unit 216 When receiving the current measured temperature Tm from the temperature detection unit 112, the Q value estimation unit 216 outputs an estimated Q value Qc.
  • Qini stored in the Q value storage unit 218 is transmitted to the Q value estimation unit 216, but Qstd illustrated in FIGS. 7 and 8 is calculated in advance and stored in the Q value storage unit 218.
  • the Q value estimation unit 216 may refer to this.
  • the abnormality determination unit 219 Abnormality is determined, and a signal SR2 indicating the determination result is output.
  • the Q value estimating unit 216 estimates the Q value estimated value Qc at the temperature Tm based on the temperature Tm and the initial value Qini, and the abnormality determining unit 219 determines the frequency estimated value Qc and the measured value Qm. To determine whether or not the measured value is abnormal. For example, the abnormality determination unit 219 determines the positive threshold value Q (+) and the negative threshold value Q ( ⁇ ) around the Q value estimated value Qc, and Q ( ⁇ ) ⁇ Qm ⁇ Q (+) When it is established, it is determined that the measured value is normal, and when it is not established, it is determined that the measured value is abnormal.
  • the ultrasonic apparatus can detect an abnormality of the ultrasonic transducer with high accuracy because the Q value is temperature-corrected. Conventionally, since an abnormality has not been detected only by the Q value, it can be expected to detect an abnormality that could not be determined so far.
  • the abnormality is determined by the Q value (resonance sharpness).
  • the abnormality content can be classified by simultaneously observing the change in the resonance frequency and the change in the Q value.
  • FIG. 9 is a graph showing the relationship between water droplet adhesion and resonance frequency change.
  • FIG. 10 is a graph showing the relationship between the adhesion of water droplets and the change in the Q value.
  • FIG. 11 is a graph showing the relationship between mud adhesion and change in resonance frequency.
  • FIG. 12 is a graph showing a relationship between mud adhesion and a change in Q value.
  • FIG. 13 is a flowchart for explaining the determination process executed in the third embodiment.
  • the abnormality detection unit in step S ⁇ b> 1, stores the initial resonance frequency and Q value in the storage unit. Subsequently, the temperature Tm is measured in step S2, and the resonance frequency fc and the Q value Qc at the current temperature Tm are estimated in step S3.
  • step S4 In parallel with the processing of steps S2 and S3, the current resonance frequency fm and Q value Qm are measured in step S4.
  • step S5 it is determined in step S5 whether or not the decrease amount Df of the measured resonance frequency fm with respect to the estimated resonance frequency fc is larger than the determination threshold value Dfth. If Df> Dfth (YES in S5), the process proceeds from step S5 to step S6, and it is determined whether or not the Q value decrease amount DQ is larger than the determination threshold value DQth.
  • step S6 If DQ> DQth in step S6 (YES in S6), the process proceeds to step S7, and there is a possibility that mud adheres to the entire resonance surface (bottom 62 in FIG. 2) of the ultrasonic transducer 100. It is judged that there is. On the other hand, if DC> DQth is not satisfied (NO in S6), the process proceeds to step S8, and it is determined that there is a possibility that water has adhered to the resonance surface or dry mud has adhered.
  • step S5 If Df> Dfth is not satisfied in step S5 (NO in S5), the process proceeds from step S5 to step S9, and it is determined whether or not the Q value decrease amount DQ is larger than the determination threshold value DQth. .
  • step S9 If DQ> DQth in step S9 (YES in S9), the process proceeds to step S10, and it is determined that there is a possibility that mud is attached to 1/2 or more of the resonance surface of the ultrasonic transducer 100. The on the other hand, if DQ> DQth is not satisfied (NO in S9), the process proceeds to step S11, and it is unlikely that water has adhered to the resonance surface, and mud adhesion is 1 ⁇ 2 or less of the resonance surface. It is judged.
  • FIG. 14 is a block diagram showing the configuration of the ultrasonic apparatus according to the third embodiment.
  • the ultrasonic apparatus according to the first embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 310.
  • the abnormality detection unit 310 includes a temperature detection unit 112, a frequency detection unit 114, a frequency storage unit 118, a frequency estimation unit 116, and an abnormality determination unit 119.
  • the temperature detection unit 112, the frequency detection unit 114, the frequency storage unit 118, the frequency estimation unit 116, and the abnormality determination unit 119 are the same as those described in Embodiment 1 (FIG. 3). Do not repeat.
  • the abnormality detection unit 310 further includes a Q value detection unit 214, a Q value storage unit 218, a Q value estimation unit 216, and an abnormality determination unit 219. Since Q value detection unit 214, Q value storage unit 218, Q value estimation unit 216, and abnormality determination unit 219 are the same as those described in the second embodiment (FIG. 6), description thereof will not be repeated here. .
  • the abnormality detection unit 310 further includes an abnormality determination unit 319.
  • the abnormality determination unit 319 constitutes the determination unit 320 together with the abnormality determination units 119 and 219.
  • the determination unit 320 includes a temperature Tm detected by the temperature detection unit 112, a resonance frequency fini stored in the frequency storage unit 118, a resonance frequency fm detected by the frequency detection unit 114, and a Q value stored in the Q value storage unit 218. Abnormality of the ultrasonic transducer 100 is determined based on Qini and the Q value Qm detected by the Q value detection unit 214.
  • the abnormality determination unit 319 comprehensively determines an abnormal state from the determination results of the abnormality determination units 119 and 219.
  • the abnormality determination unit 319 can determine whether the abnormal state is water adhesion, frozen or mud adhesion.
  • FIG. 15 is a diagram for explaining the operation of the abnormality determination unit 319.
  • signal SR1 indicates that resonance frequency fm is between plus side threshold value f (+) and minus side threshold value f ( ⁇ ) determined by estimated resonance frequency fc, This is expressed as “f (OK)”.
  • signal SR2 indicates that the Q value Qm is between the positive threshold value Q (+) and the negative threshold value Q ( ⁇ ) determined by the estimated Q value Qc, “Q (OK) ".
  • the abnormality determination unit 319 When the signal SR1 corresponds to “f (OK)” and the signal SR2 corresponds to “Q (OK)”, the abnormality determination unit 319 outputs “PASS” as the determination result SR3. “PASS” indicates that the ultrasonic transducer 100 is normal.
  • the abnormality determination unit 319 determines As a result SR3, “M2” is output. “M2” indicates that ice or mud may be attached to the ultrasonic transducer 100.
  • the abnormality determination unit 319 sets “M1” as the determination result SR3. Output. “M1” indicates that water may be attached to the ultrasonic transducer 100.
  • the abnormal state of the ultrasonic transducer 100 can be estimated in detail. That is, whether the abnormality is water adhesion, mud adhesion, or freezing can be classified by a combination of a change in frequency and a change in Q value, so that it can be applied to classification in the case of more accurate control and repair.
  • the fourth embodiment is similar to the third embodiment, but changes the determination of the abnormality determination unit.
  • FIG. 16 is a block diagram showing a configuration of an ultrasonic apparatus according to the fourth embodiment.
  • the ultrasonic device according to the fourth embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 410.
  • the abnormality detection unit 410 includes a temperature detection unit 112, a frequency detection unit 114, a frequency storage unit 118, a frequency estimation unit 116, a Q value detection unit 214, a Q value storage unit 218, and a Q value estimation unit 216.
  • the temperature detection unit 112 and the abnormality determination unit 419 are included.
  • the temperature detection unit 112, the frequency detection unit 114, the frequency storage unit 118, and the frequency estimation unit 116 are the same as those described in the first embodiment (FIG. 3).
  • the Q value detection unit 214, the Q value storage unit 218, and the Q value estimation unit 216 are the same as those described in the second embodiment (FIG. 6). Therefore, these descriptions are not repeated here.
  • the abnormality determination unit 419 detects the resonance frequency fc estimated by the frequency estimation unit 116, the resonance frequency fm detected by the frequency detection unit 114, the Q value Qc estimated by the Q value estimation unit 216, and the Q value detection unit 214.
  • the abnormality of the ultrasonic transducer 100 is determined based on the Q value Qm.
  • FIG. 17 is a diagram for explaining the determination process of the abnormality determination unit 419.
  • the abnormality determination unit 419 comprehensively determines abnormality from the four values of the measured value and estimated value of the resonance frequency, and the measured value and estimated value of the Q value.
  • abnormality determination unit 419 determines whether or not coordinates Pm (Qm, fm) enters a PASS area centered on coordinates P (Qc, fc) on the Qf plane. Determine if there is an abnormality. By doing in this way, as shown in FIG. 17, it is possible to set the area
  • the configuration of the fourth embodiment is similar to the configuration of the third embodiment, but the state of the combination of the resonance frequency and the Q value is not combined from the results determined individually for each of the resonance frequency and the Q value. Therefore, the determination can be performed efficiently and with high accuracy.
  • the temperature detection unit 112 uses various known temperature sensors. However, in the fifth embodiment, the temperature detection unit 112 detects the capacitance change of the piezoelectric element of the ultrasonic transducer 100. To estimate the temperature.
  • the temperature detector 112 can be applied to any of the first to fourth embodiments, but the case where the temperature detector 112 is applied to the second embodiment will be described as a representative.
  • FIG. 18 is a block diagram showing the configuration of the ultrasonic apparatus according to the fifth embodiment.
  • the ultrasonic apparatus according to the fifth embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 510.
  • the abnormality detection unit 510 includes a Q value detection unit 214, a Q value storage unit 218, a Q value estimation unit 216, a temperature detection unit 112, and an abnormality determination unit 219.
  • the driving circuit 104, the receiving circuit 106, the Q value detection unit 214, the Q value storage unit 218, the Q value estimation unit 216, and the abnormality determination unit 219 are the same as those in Embodiments 1 and 2, and will be described here. Do not repeat.
  • the temperature detection unit 112 includes a capacity detection unit 512, a capacity storage unit 514, and a temperature estimation unit 516.
  • the capacitance detection unit 512 connects a capacitance whose capacitance value is known in advance so as to be connected in series with the capacitance of the piezoelectric element of the ultrasonic transducer 100, and gives an AC voltage waveform. Since the voltage at the connection node of the two capacitors connected in series is a voltage obtained by dividing the AC voltage by the capacitance ratio, it is possible to detect what the capacitance value of the piezoelectric element is.
  • FIG. 19 is a diagram for explaining a first example of the temperature Tc estimation process in the temperature detection unit 112.
  • a specific temperature T 1, T 2, T 3, T 4, T 5
  • the capacitance values (Cini1, Cini2, Cini3, Cini4, Cini5) are measured.
  • the number of temperature points may be one point or a plurality of points.
  • the measured values at the measurement points P21 to P25 are stored in the capacity storage unit 514.
  • the temperature estimation unit 516 obtains a temperature-capacitance value relationship for each individual ultrasonic transducer from the stored capacitance value.
  • the relationship between the temperature and the capacity value can be calculated, for example, by storing temperature and capacity value table data and linearly interpolating between the data. Note that this relationship may be expressed by a mathematical expression such as a linear expression, a quadratic expression, or a polynomial expression, and the coefficient of the expression may be determined from the measurement points P21 to P25.
  • the temperature estimation unit 516 estimates the estimated temperature Tc by determining the temperature corresponding to the capacitance value Cm obtained from the capacitance detection unit 512 during use from the temperature-capacitance value characteristic Cstd given by a mathematical expression or a table.
  • temperature-capacitance characteristic data may be measured for each individual ultrasonic transducer, and the estimated temperature Tc may be obtained using the data.
  • -It takes time to measure and record the capacity characteristic data. Therefore, the following second example in which the initial value Cini at the standard temperature Tstd is measured and recorded for each individual transducer and the capacitance shift ⁇ C due to the temperature characteristic change is corrected using common data is more realistic. It is.
  • FIG. 20 is a diagram for explaining a second example of the temperature Tc estimation process in the temperature detection unit 112.
  • the temperature estimation unit 516 stores temperature-capacitance characteristics (Corg) of ultrasonic transducers commonly used in a plurality of ultrasonic apparatuses.
  • the temperature-capacitance characteristic (Corg) may be stored as a function (formula) of temperature, or may be stored in a data table like a map.
  • the capacitance value Cini at the temperature Tstd corresponding to the individual ultrasonic transducer 100 and the capacitance value shift ⁇ C of the temperature-capacitance characteristic (Corg) are calculated. This is a capacitance value shift ⁇ C due to individual differences. Then, a temperature-capacitance characteristic (Cstd) obtained by shifting the temperature-capacitance characteristic (Corg) by ⁇ C is obtained.
  • the temperature estimation unit 516 estimates the estimated temperature Tc by determining the temperature corresponding to the capacitance value Cm obtained from the capacitance detection unit 512 during use from Cstd given by a mathematical expression or a table.
  • the temperature estimation unit 516 calculates a difference ⁇ C1 between the measured capacitance value Cm and the capacitance value Cini read from the capacitance storage unit 514, and sets the temperature at which the Corg has changed by ⁇ C1 from Tstd as the estimated temperature Tc. It may be output.
  • the Q value estimation unit 216 When the estimated temperature Tc is received from the temperature detection unit 112, the Q value estimation unit 216 outputs the estimated Q value Qc.
  • Abnormality determination unit 219 performs the same operation as that described in Embodiment 2, and outputs signal SR5 indicating the determination result.
  • the ultrasonic device Since the ultrasonic device according to the fifth embodiment detects the temperature based on the capacitance change of the piezoelectric element originally included in the ultrasonic transducer 100, there is no need to add a new temperature sensor or the like.
  • the functions of the first to fourth embodiments can be realized at low cost.
  • the estimated value Qc and the like of the Q value are obtained through the temperature Tm or Tc.
  • the resonance frequency fc or the estimated value Qc of the Q value is estimated directly from the measured value Cm of the capacitance of the ultrasonic transducer 100.
  • FIG. 21 is a block diagram showing a configuration of an ultrasonic apparatus according to the sixth embodiment.
  • the ultrasonic apparatus according to the sixth embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 610.
  • the abnormality detection unit 610 includes a Q value detection unit 214, a Q value storage unit 218, a capacity detection unit 512, a Q value estimation unit 616, and an abnormality determination unit 219.
  • the drive circuit 104, the reception circuit 106, the Q value detection unit 214, the Q value storage unit 218, the capacity detection unit 512, and the abnormality determination unit 219 are the same as those in Embodiments 1, 2, and 5, and will be described here. Do not repeat.
  • FIG. 22 is a diagram for explaining a first example of the estimation process of the Q value estimation unit 616.
  • the Q value estimation unit 616 obtains a capacitance value-Q value relationship for each individual ultrasonic transducer from the stored Q value.
  • the relationship between the capacitance value and the Q value can be calculated, for example, by storing table data of the capacitance value and the Q value and linearly interpolating between the data.
  • This relationship may be expressed by a mathematical expression such as a linear expression, a quadratic expression, or a polynomial expression, and the coefficient of the mathematical expression may be determined from the measurement points P31 to P35.
  • the Q value estimating unit 616 estimates the estimated Q value Qc by determining a value corresponding to the capacity value Cm obtained from the capacity detecting unit 512 at the time of use from Qstd given by an equation or a table.
  • the capacitance value-Q value characteristic data may be measured for each individual ultrasonic transducer, and the estimated Q value Qc may be obtained using that data. It takes time to measure and record the capacitance value-Q value characteristic data every time. Accordingly, an initial value Qini at the capacitance value Cstd corresponding to the standard temperature Tstd is measured and recorded for each individual transducer, and the Q value shift ⁇ Q due to the change in capacitance characteristics is corrected using common data.
  • the example is more realistic.
  • FIG. 23 is a diagram for explaining a second example of the estimation process of the Q value estimation unit 616.
  • capacitance value Cstd and Q value Qini of ultrasonic transducer 100 measured at a predetermined temperature are stored in Q value storage unit 218.
  • the Q value estimation unit 616 stores a capacitance value-Q value characteristic (Qorg) of an ultrasonic transducer commonly used in a plurality of ultrasonic apparatuses.
  • the temperature-Q value characteristic (Qorg) may be stored as a function (formula) of temperature, or may be stored in a data table like a map.
  • the Q value Qini in the capacitance Cstd corresponding to the individual ultrasonic transducer 100 and the Q value shift ⁇ Q of the capacitance value-Q value characteristic (Qorg) are calculated. This is a Q value shift ⁇ Q due to individual differences. Then, a capacitance value-Q value characteristic (Qstd) obtained by shifting the capacitance value-Q value characteristic (Qorg) by ⁇ Q is obtained.
  • the Q value estimating unit 616 estimates the estimated Q value Qc by determining a value corresponding to the capacity value Cm obtained from the capacity detecting unit 512 at the time of use from Qstd given by an equation or a table.
  • a difference ⁇ Q1 between a Q value corresponding to a predetermined capacitance Cstd on the capacitance value-Q value characteristic (Qorg) and a Q value at the capacitance value Cm is calculated, and ⁇ Q1 is calculated with respect to Qini.
  • Qc may be obtained by addition.
  • the abnormality determination unit 219 Abnormality is determined, and a signal SR6 indicating the determination result is output.
  • the temperature detection unit 112 of the first to fifth embodiments is omitted, and only the capacitance detection unit 512 is provided. Further, the frequency estimation unit and the Q value estimation unit 616 directly estimate the Q value from the capacity measurement result Cm instead of the temperature.
  • Such a configuration can realize functions at low cost. That is, by omitting the temperature detection unit, the same result as in the fifth embodiment can be obtained, so that the same function can be realized at a lower cost.
  • the estimated value Qc of the Q value has been described as a representative example, but the present invention can be similarly applied to the resonance frequency fc in combination with the first embodiment.
  • FIG. 24 is a block diagram showing a configuration of an ultrasonic apparatus according to a modification of the sixth embodiment.
  • the ultrasonic apparatus according to the modification of the sixth embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 710.
  • the abnormality detection unit 710 includes a frequency detection unit 114, a frequency storage unit 118, a frequency estimation unit 716, a capacity detection unit 512, and an abnormality determination unit 119.
  • the drive circuit 104, the reception circuit 106, the frequency detection unit 114, and the frequency storage unit 118 are the same as those shown in FIG. 3, and description thereof will not be repeated.
  • Capacitance detection unit 512 is the same as that shown in FIG. 21, and description thereof will not be repeated.
  • the capacitance-resonance frequency characteristic is shifted in consideration of fini, and the frequency estimation value fc is obtained, so that the same effect as in the sixth embodiment can be obtained even in the case of the resonance frequency.
  • the estimated Q value Qc when the ambient environment such as temperature changes is obtained using map data or a relational expression that directly indicates the relationship between the capacity and the Q value.
  • map data or a relational expression that directly indicates the relationship between the capacity and the Q value.
  • individual ultrasonic transducers 100 have manufacturing variations. The case where the error becomes large can be considered when the common map data is applied to each ultrasonic transducer 100.
  • the seventh embodiment is characterized in that the capacity change rate is obtained so that the error can be reduced when such map data or relational expressions are shared. The point for obtaining the capacity change rate can be applied to any of Embodiments 1 to 4.
  • the capacitance of the piezoelectric element even if there is a manufacturing variation in the capacitance value, there is not much individual difference in the change rate (%) of the capacitance value when the temperature changes. Therefore, if the relationship between the capacity change rate and the Q value is set as a map or a relational expression, this data can be used in common during manufacturing.
  • FIG. 25 is a block diagram illustrating a configuration of an ultrasonic apparatus according to the seventh embodiment.
  • the ultrasonic apparatus of the seventh embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 810.
  • the abnormality detection unit 810 includes a Q value detection unit 214, a Q value storage unit 218, a capacity detection unit 512, a capacity storage unit 814, a capacity change rate calculation unit 812, a Q value estimation unit 816, and an abnormality determination unit. 219.
  • the driving circuit 104 Since the driving circuit 104, the receiving circuit 106, the Q value detection unit 214, the Q value storage unit 218, the capacity detection unit 512, and the abnormality determination unit 219 are the same as those in the first, second, and fifth embodiments, here The explanation will not be repeated.
  • the capacity change rate calculation unit 812 outputs, as a capacity change rate ⁇ Cm (%), a rate at which the capacity value Cm detected by the capacity detection unit 512 changes with respect to the capacity Cini.
  • the Q value estimation unit 816 is a relationship between the capacitance change rates ⁇ Cini1, ⁇ Cini2, ⁇ Cini3, ⁇ Cini4, ⁇ Cini5 of the ultrasonic transducer 100 at a predetermined temperature (T1, T2, T3, T4, T5) (capacity change rate). -Q value characteristic) is stored. This relationship is a value that can be commonly used for individual elements.
  • FIG. 26 is a diagram for explaining the estimation process of the Q value estimation unit 816.
  • the Q value estimation unit 816 calculates a capacity change rate-Q value characteristic by linearly interpolating between the measurement points from the measurement points P41 to P45. Note that this relationship may be expressed by a mathematical expression such as a polynomial, and the coefficient of the mathematical expression may be determined from the measurement points P41 to P45.
  • the Q value estimation unit 816 obtains a Q value corresponding to the capacity change rate ⁇ Cm from the capacity change rate-Q value characteristic, and outputs an estimated value Qc.
  • the error of the estimated value is reduced. be able to.
  • the estimated value Qc of the Q value has been described as a representative example, but the present invention can be similarly applied to the resonance frequency fc in combination with the first embodiment.
  • FIG. 27 is a block diagram showing a configuration of an ultrasonic apparatus according to a modification of the seventh embodiment.
  • the ultrasonic device according to the modification of the seventh embodiment includes an ultrasonic transducer 100, a drive circuit 104, a reception circuit 106, and an abnormality detection unit 910.
  • the abnormality detection unit 910 includes a frequency detection unit 114, a frequency storage unit 118, a frequency estimation unit 916, a capacity detection unit 512, a capacity storage unit 814, a capacity change rate calculation unit 812, and an abnormality determination unit 119. Including.
  • the driving circuit 104, the receiving circuit 106, the frequency detection unit 114, and the frequency storage unit 118 are the same as those shown in FIG. 3, and description thereof will not be repeated.
  • Capacitance detection unit 512, capacity change rate calculation unit 812, and capacity storage unit 814 are the same as those shown in FIG. 25, and description thereof will not be repeated.
  • the frequency estimation unit 916 obtains a resonance frequency corresponding to the capacity change rate ⁇ Cm from the capacity change rate-resonance frequency characteristic, and outputs the estimated resonance frequency fc.
  • 1 ultrasonic device 50 piezoelectric elements, 51, 52 electrodes, 60 case, 61 cylindrical part, 62 bottom part, 63 sound absorbing material, 71 resin, 80, 81 terminal, 100 ultrasonic transducer, 101 microcomputer, 102 memory, 103 detection Circuit, 104 driving circuit, 105 power supply, 106 receiving circuit, 110, 210, 310, 410, 510, 610, 710, 810, 910 abnormality detection unit, 112 temperature detection unit, 114 frequency detection unit, 116 frequency estimation unit, 118 Frequency storage unit, 119, 219, 319, 419 Abnormality determination unit, 214 Q value detection unit, 216, 616, 816 Q value estimation unit, 218 Q value storage unit, 320 determination unit, 512 capacity detection unit, 514, 814 capacity Storage unit, 516 Temperature estimation unit, 812 Capacity change rate calculation .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

超音波装置(1)は、超音波トランスデューサ(100)と、駆動回路(104)と、受信回路(106)と、周波数検出部(114)と、周波数記憶部(118)と、温度検出部(112)と、異常判定部(119)とを備える。周波数検出部(114)は、超音波トランスデューサ(100)の共振周波数を検出する。周波数記憶部(118)は、予め定められた温度における超音波トランスデューサの共振周波数を記憶する。異常判定部(119)は、温度検出部(112)が検出した温度と周波数記憶部(118)に記憶された共振周波数(fini)と周波数検出部(114)が検出した共振周波数(fm)とに基づいて、超音波トランスデューサ(100)の異常を判定する。これにより、超音波トランスデューサの異常を精度良く検出することが可能な超音波装置を提供することができる。

Description

超音波装置
 この発明は、超音波装置に関し、特に、搭載する超音波トランスデューサの異常検知機能を備えた超音波装置に関する。
 超音波トランスデューサから超音波を送信し、被検出物で反射した反射波を超音波トランスデューサによって受信することによって、被検出物との距離などを測定する超音波装置が実用に供されている。
 超音波トランスデューサの振動面に、泥等の異物が付着したり、付着した水滴が凍結したりすると、超音波振動子による送波や受波ができなくなる。この結果、超音波振動子の前方に障害物があるにもかかわらず障害物が存在しないという誤った検知をする。
 特許第2998232号公報(特許文献1)は、泥等の異物の付着を検知できる超音波センサを開示する。この超音波センサは、超音波振動子の共振周波数を検出し、この共振周波数を監視して固有周波数と比較することにより超音波振動子の動作異常を検知する。
特許第2998232号公報
 しかしながら、温度が変化すると共振周波数は変化する。したがって、共振周波数の測定結果だけを用いて異常を検知する方法では、異常なのか温度変化なのか判別できない場合が考えられる。
 この発明は、上記の課題を解決するためになされたものであって、その目的は超音波トランスデューサの異常を精度良く検出することが可能な超音波装置を提供することである。
 本開示のある局面に関わる超音波装置は、超音波トランスデューサと、駆動回路と、受信回路と、周波数検出部と、記憶部と、温度検出部と、判定部とを備える。駆動回路は、超音波トランスデューサに音波を発信させる。受信回路は、超音波トランスデューサが受けた音波を受信する。周波数検出部は、超音波トランスデューサの共振周波数を検出する。記憶部は、予め定められた温度における超音波トランスデューサの共振周波数を記憶する。判定部は、温度検出部が検出した温度と記憶部に記憶された共振周波数と周波数検出部が検出した共振周波数とに基づいて、超音波トランスデューサの異常を判定する。
 本開示の第2の局面に関わる超音波装置は、超音波トランスデューサと、超音波トランスデューサに音波を発信させる駆動回路と、超音波トランスデューサが受けた音波を受信する受信回路と、超音波トランスデューサのQ値を検出するQ値検出部と、予め定められた温度における超音波トランスデューサのQ値を記憶する記憶部と、温度検出部と、温度検出部が検出した温度と記憶部に記憶されたQ値とQ値検出部が検出したQ値とに基づいて、超音波トランスデューサの異常を判定する判定部とを備える。
 本開示の第3の局面に関わる超音波装置は、超音波トランスデューサと、超音波トランスデューサに音波を発信させる駆動回路と、超音波トランスデューサが受けた音波を受信する受信回路と、超音波トランスデューサの共振周波数を検出する周波数検出部と、予め定められた温度における超音波トランスデューサの共振周波数を記憶する第1記憶部と、超音波トランスデューサのQ値を検出するQ値検出部と、予め定められた温度における超音波トランスデューサのQ値を記憶する第2記憶部と、温度検出部と、温度検出部が検出した温度と第1記憶部に記憶された共振周波数と周波数検出部が検出した共振周波数と第2記憶部に記憶されたQ値とQ値検出部が検出したQ値とに基づいて、超音波トランスデューサの異常を判定する判定部とを備える。
 好ましくは、判定部は、第1記憶部に記憶された共振周波数に基づいて温度検出部が検出した温度における共振周波数を推定する共振周波数推定部と、共振周波数推定部が推定した共振周波数に基づいて周波数検出部が検出した共振周波数が正常か異常かを判定する第1判定処理部と、第2記憶部に記憶されたQ値に基づいて温度検出部が検出した温度におけるQ値を推定するQ値推定部と、Q値推定部が推定したQ値に基づいてQ値検出部が検出したQ値が正常か異常かを判定する第2判定処理部とを含む。
 好ましくは、判定部は、第1記憶部に記憶された共振周波数に基づいて温度検出部が検出した温度における共振周波数を推定する共振周波数推定部と、第2記憶部に記憶されたQ値に基づいて温度検出部が検出した温度におけるQ値を推定するQ値推定部と、共振周波数推定部が推定した共振周波数とQ値推定部が推定したQ値との組み合わせに基づいて超音波トランスデューサが正常か異常かを判定する異常判定部とを含む。
 好ましくは、温度検出部は、超音波トランスデューサの容量を検出する容量検出部と、予め定められた温度における超音波トランスデューサの容量を記憶する容量記憶部と、容量検出部が検出した容量と容量記憶部が記憶した容量とに基づいて、温度を推定する温度推定部とを含む。
 本開示の第4の局面に関わる超音波装置は、超音波トランスデューサと、超音波トランスデューサに音波を発信させる駆動回路と、超音波トランスデューサが受けた音波を受信する受信回路と、超音波トランスデューサのQ値を検出するQ値検出部と、予め定められた温度における超音波トランスデューサのQ値を記憶する記憶部と、超音波トランスデューサの容量を検出する容量検出部と、予め定められた温度における超音波トランスデューサの容量を記憶する容量記憶部と、容量検出部が検出した容量と記憶部に記憶されたQ値とQ値検出部が検出したQ値とに基づいて、超音波トランスデューサの異常を判定する判定部とを備える。
 本開示の第5の局面に関わる超音波装置は、超音波トランスデューサと、超音波トランスデューサに音波を発信させる駆動回路と、超音波トランスデューサが受けた音波を受信する受信回路と、超音波トランスデューサの共振周波数を検出する周波数検出部と、予め定められた温度における前記超音波トランスデューサの共振周波数を記憶する記憶部と、超音波トランスデューサの容量を検出する容量検出部と、予め定められた温度における前記超音波トランスデューサの容量を記憶する容量記憶部と、容量検出部が検出した容量と記憶部に記憶された共振周波数と周波数検出部が検出した共振周波数とに基づいて、超音波トランスデューサの異常を判定する判定部とを備える。
 本発明によれば、精度良く超音波トランスデューサの異常を検出することができる。
超音波トランスデューサを備えた超音波装置の構成を示す概略ブロック図である。 超音波トランスデューサ100を示す断面図である。 実施の形態1の超音波装置の構成を示したブロック図である。 周波数推定部116における周波数fcの推定処理の第1例を説明するための図である。 周波数推定部116における周波数fcの推定処理の第2例を説明するための図である。 実施の形態2の超音波装置の構成を示したブロック図である。 Q値推定部216におけるQ値Qcの推定処理の第1例を説明するための図である。 Q値推定部216におけるQ値Qcの推定処理の第2例を説明するための図である。 水滴の付着と共振周波数の変化との関係を示すグラフである。 水滴の付着とQ値の変化との関係を示すグラフである。 泥の付着と共振周波数の変化との関係を示すグラフである。 泥の付着とQ値の変化との関係を示すグラフである。 実施の形態3で実行される判定処理を説明するためのフローチャートである。 実施の形態3に係る超音波装置の構成を示したブロック図である。 異常判定部319の動作を説明するための図である。 実施の形態4に係る超音波装置の構成を示したブロック図である。 異常判定部419の判定処理について説明するための図である。 実施の形態5に係る超音波装置の構成を示すブロック図である。 温度検出部112における温度Tcの推定処理の第1例を説明するための図である。 温度検出部112における温度Tcの推定処理の第2例を説明するための図である。 実施の形態6に係る超音波装置の構成を示すブロック図である。 Q値推定部616の推定処理の第1例を説明するための図である。 Q値推定部616の推定処理の第2例を説明するための図である。 実施の形態6の変形例の超音波装置の構成を示したブロック図である。 実施の形態7に係る超音波装置の構成を示すブロック図である。 Q値推定部816の推定処理を説明するための図である。 実施の形態7の変形例の超音波装置の構成を示したブロック図である。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
 [各実施例に共通な全体構成]
 図1は、超音波トランスデューサを備えた超音波装置の構成を示す概略ブロック図である。超音波装置1は、超音波トランスデューサ100と、マイコン101と、メモリ102と、検出回路103と、駆動回路104と、電源105と、受信回路106と、異常検出部110とを備える。
 マイコン101は、メモリ102に格納されているデータを読み出して、超音波トランスデューサ100の駆動に適した制御信号を駆動回路104に出力する。電源105は、たとえば12Vの直流電圧を駆動回路104に出力する。駆動回路104は、マイコン101から出力された制御信号に基づいて直流電圧から交流電圧を生成する。交流電圧は、必要に応じて増幅回路(図示せず)により昇圧された状態で超音波トランスデューサ100に供給される。超音波トランスデューサ100が駆動され、超音波トランスデューサ100から気中などに向けて超音波が送信(送波)される。
 超音波トランスデューサ100が物標からの反射波を受信した際、超音波トランスデューサ100にて発生した受波信号は電圧値として受信回路106に送られ、検出回路103を通してマイコン101に入力される。マイコン101により、物標の有無や移動に関する情報を把握することが可能となる。超音波装置1は、たとえば車などに搭載される超音波センサとして使用することができる。
 [超音波トランスデューサ100]
 図2は、超音波トランスデューサ100を示す断面図である。なお、図2に開示する超音波トランスデューサの構成は、例示であり、他の構成を有する超音波トランスデューサを用いた場合にも本実施の形態の超音波装置で異常を検出することが可能である。図2に示す超音波トランスデューサ100は、圧電素子50と、ケース60と、吸音材63と、端子80,81とを備える。ケース60は、有底筒状の形状を有する。ケース60は、たとえば、高い弾性を有しかつ軽量なアルミニウムで形成される。ケース60は、アルミニウムをたとえば鍛造または切削加工をすることによって作製される。
 ケース60は、円盤状の底部62と、底部62の周縁に沿って設けられた円筒状の筒状部61とを含む。圧電素子50は、たとえばチタン酸ジルコン酸鉛系セラミックスからなる。圧電素子50は、底部62の内面上に配置され、接着剤を用いて内面に接合される。超音波トランスデューサ100が駆動している際には、圧電素子50は、底部62とともにベンディング振動する。樹脂71は、ケース60の内部空間を埋めるように設けられる。吸音材63は、スポンジ等の成形体からなり、樹脂71と圧電素子50を収容する部分72との間に設けられる。吸音材63は、圧電素子50に間隔を空けて対向している。
 圧電素子50は、2つの電極51,52を有している。端子80は、ワイヤおよびケース60を介して電極52に電気的に接続される。端子81は、ワイヤを介して電極51に電気的に接続される。
 なお、図1の超音波トランスデューサ100としては、図2に示した2端子のもの以外にも、GND、送信、受信の3端子を有するものであっても良い。
 [実施の形態1]
 図3は、実施の形態1の超音波装置の構成を示したブロック図である。実施の形態1の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部110とを含む。
 異常検出部110は、周波数検出部114と、周波数記憶部118と、周波数推定部116と、温度検出部112と、異常判定部119とを含む。
 駆動回路104は、超音波トランスデューサ100に音波を発信させるように駆動信号を出力する。受信回路106は、超音波トランスデューサ100が受けた音波を受信する。
 周波数検出部114は、超音波トランスデューサ100の共振周波数fmを検出する。周波数記憶部118は、予め定められた温度における超音波トランスデューサ100の共振周波数fmを記憶する。たとえば、超音波装置を工場で生産している工程において、予め定められた温度の雰囲気において超音波トランスデューサ100を共振させたときに周波数検出部114で検出した周波数fmを、初期値finiとして周波数記憶部118に記憶させる。
 周波数検出部114、温度検出部112としては、公知のどのようなものを使用しても良い。たとえば、周波数検出部114は、特開2015-10888号公報等に記載されているように、残響周波数から共振周波数を計測する回路を使用することができる。また、温度検出部112は、サーミスタ等の感温素子であっても良く、車両などに設けられた外部の温度センサから温度情報を受信するようなものであっても良い。
 図4は、周波数推定部116における周波数fcの推定処理の第1例を説明するための図である。図3、図4を参照して、工場出荷時等の超音波トランスデューサ100に異常が生じていないことが分かっている状態で、特定の温度(T1,T2,T3,T4,T5)において、それぞれ共振周波数(fini1,fini2,fini3,fini4,fini5)を測定する。なお、温度点数は一点でも、複数点でも良い。測定点P1~P5の測定値は、周波数記憶部118に記憶される。周波数推定部116は、記憶された周波数から、個別の超音波トランスデューサごとの温度-共振周波数の関係fstdを求める。
 温度-共振周波数の関係は、例えば温度と共振周波数のテーブルデータを記憶して、データ間は線形補間して算出することができる。なお、この関係を一次式、二次式または多項式等の数式で表現し、測定点P1~P5から数式の係数を決定しても良い。
 使用時に温度検出部112から得られた温度Tmに対応する値を数式またはテーブルで与えられたfstdから決定することによって、周波数推定部116は、推定共振周波数fcを推定する。
 図4に示したように個別の超音波トランスデューサごとに温度特性のデータを測定しておき、そのデータを使用して推定共振周波数fcを求めても良いが、個別の超音波トランスデューサごとに温度特性のデータを測定および記録するのは時間がかかる。したがって、標準温度Tstdにおける初期値finiを個別のトランスデューサごとに測定および記録しておき、共通の標準データを用いて温度特性変化による周波数シフト分Δfの補正を行なう以下の第2例の方が現実的である。
 図5は、周波数推定部116における周波数fcの推定処理の第2例を説明するための図である。図3、図5を参照して、予め定められた温度(たとえば、Tstd=25℃)において計測された超音波トランスデューサ100の共振周波数fini(図5のP6に該当)が周波数記憶部118に記憶されている。周波数推定部116には、複数の超音波装置で共通に用いられる超音波トランスデューサの温度-共振周波数特性(図5のforg)が記憶されている。温度-共振周波数特性(forg)は、温度の関数(数式)として記憶されていても良いし、マップのようにデータテーブルで記憶されていても良い。
 個別の超音波トランスデューサ100に対応する温度Tstdにおける共振周波数finiと温度-共振周波数特性(forg)とのシフト分Δfを算出する。これは個体差による周波数シフト分Δfである。そして、温度-共振周波数特性(forg)をΔfシフトさせた温度-共振周波数特性(fstd)を求める。使用時に温度検出部112から得られた温度Tmに対応する値を数式またはテーブルで与えられたfstdから決定することによって、周波数推定部116は、推定共振周波数fcを推定する。
 なお、図示しないが、温度-共振周波数特性(forg)上での予め定められた温度Tstdに対応する共振周波数と温度Tmにおける共振周波数との差Δf1を算出し、finiに対してΔf1を加算してfcを求めても良い。
 図3に戻って、周波数推定部116は、温度検出部112から現在の測定温度Tmを受けると、推定共振周波数fcを出力する。なお、図3では、周波数記憶部118に記憶されたfiniが周波数推定部116に送信されているが、図4、図5に示したfstdが予め演算されて周波数記憶部118に記憶され周波数推定部116がこれを参照するのでも良い。
 異常判定部119は、温度検出部112が検出した温度Tmと周波数記憶部118に記憶された共振周波数finiと周波数検出部114が検出した共振周波数fmとに基づいて、超音波トランスデューサ100の異常を判定し、判定結果を示す信号SR1を出力する。
 より詳細には、周波数推定部116が、温度Tmと初期値finiとに基づいて、温度Tmにおける周波数推定値fcを推定し、異常判定部119が周波数推定値fcと測定値である共振周波数fmとを比較し、測定値が異常であるか否かを判定する。たとえば、異常判定部119は周波数推定値fcを中心としてプラス側しきい値f(+)とマイナス側しきい値f(-)を決定し、f(-)<fm<f(+)が成立した場合に測定値が正常であると判定し、成立しない場合に測定値が異常であると判定する。
 以上説明した構成とすることによって、実施の形態1に係る超音波装置は、従来よりも精度良く超音波トランスデューサの異常を検出することができる。
 すなわち、特許第2998232号公報(特許文献1)に示された方法では、周波数の変化を元に異常を検出するが、周波数は温度によっても変化する。水や泥などの異物の付着の異常を検出する場合、周波数が温度によって変化したのか、付着によって変化したのかを判別する必要がある。そこで、実施の形態1では周波数検出部114以外に温度検出部112を設け、検出した温度における周波数変化分を判定しきい値に反映させることによって、周波数変化が温度変化によるものか、それ以外の異常によるものかを判別することができる。
 [実施の形態2]
 実施の形態1では、異常を判定するパラメータとして共振周波数を用いたが、実施の形態2では、Q値を用いる。Q値は、尖鋭度、すなわち共振回路の共振のピークの鋭さを表す値「Q:Quality factor」として一般的に用いられる指標である。本願発明者は、泥の付着等の異常がQ値の変化としても検出できることに気付いた。
 図6は、実施の形態2の超音波装置の構成を示したブロック図である。実施の形態2の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部210とを含む。
 異常検出部210は、Q値検出部214と、Q値記憶部218と、Q値推定部216と、温度検出部112と、異常判定部219とを含む。
 駆動回路104、受信回路106、温度検出部112は、実施の形態1と同様であるので、ここでは説明を繰り返さない。
 Q値検出部214は、超音波トランスデューサ100のQ値Qmを検出する。Q値記憶部218は、予め定められた温度における超音波トランスデューサ100のQ値Qmを記憶する。たとえば、超音波装置を工場で生産している工程において、予め定められた温度の雰囲気において超音波トランスデューサ100を振動させたときにQ値検出部214で検出したQ値Qmを、初期値QiniとしてQ値記憶部218に記憶させる。
 Q値検出部214としては、公知のどのようなものを使用しても良い。たとえば、Q値検出部214は、特開2015-10888号公報等に記載されているように、残響周波数の減衰カーブからQ値を計測する。
 図7は、Q値推定部216におけるQ値Qcの推定処理の第1例を説明するための図である。図6、図7を参照して、工場出荷時等の超音波トランスデューサ100に異常が生じていないことが分かっている状態で、特定の温度(T1,T2,T3,T4,T5)において、それぞれQ値(Qini1,Qini2,Qini3,Qini4,Qini5)を測定する。なお、温度点数は一点でも、複数点でも良い。測定点P11~P15の測定値は、Q値記憶部218に記憶される。Q値推定部216は、記憶されたQ値から、個別の超音波トランスデューサごとの温度-Q値の関係を求める。
 温度-Q値の関係は、例えば温度とQ値のテーブルデータを記憶して、データ間は線形補間して算出することができる。なお、この関係を一次式、二次式または多項式等の数式で表現し、測定点P11~P15から数式の係数を決定しても良い。
 使用時に温度検出部112から得られた温度Tmに対応する値を数式またはテーブルで与えられたQstdから決定することによって、Q値推定部216は、推定Q値Qcを推定する。
 図7に示したように個別の超音波トランスデューサごとに温度特性のデータを測定しておき、そのデータを使用して推定Q値Qcを求めても良いが、個別の超音波トランスデューサごとに温度特性のデータを測定および記録するのは時間がかかる。したがって、標準温度Tstdにおける初期値Qiniを個別のトランスデューサごとに測定および記録しておき、共通のデータを用いて温度特性変化によるQ値シフト分ΔQの補正を行なう以下の第2例の方が現実的である。
 図8は、Q値推定部216におけるQ値Qcの推定処理の第2例を説明するための図である。図6、図8を参照して、予め定められた温度(たとえば、Tstd=25℃)において計測された超音波トランスデューサ100のQ値QiniがQ値記憶部218に記憶されている。Q値推定部216には、複数の超音波装置で共通に用いられる超音波トランスデューサの温度-Q値特性(Qorg)が記憶されている。温度-Q値特性(Qorg)は、温度の関数(数式)として記憶されていても良いし、マップのようにデータテーブルで記憶されていても良い。
 個別の超音波トランスデューサ100に対応する温度TstdにおけるQ値Qiniと温度-Q値特性(Qorg)とのQ値シフト分ΔQを算出する。これは、個体差によるQ値シフト分ΔQである。そして、温度-Q値特性(Qorg)をΔQシフトさせた温度-Q値特性(Qstd)を求める。使用時に温度検出部112から得られた温度Tmに対応する値を数式またはテーブルで与えられたQstdから決定することによって、Q値推定部216は、推定Q値Qcを推定する。
 なお、図示しないが、温度-Q値特性(Qorg)上での予め定められた温度Tstdに対応するQ値と温度TmにおけるQ値との差ΔQ1を算出し、Qiniに対してΔQ1を加算してQcを求めても良い。
 Q値推定部216は、温度検出部112から現在の測定温度Tmを受けると、推定Q値Qcを出力する。なお、図3では、Q値記憶部218に記憶されたQiniがQ値推定部216に送信されているが、図7、図8に示したQstdが予め演算されてQ値記憶部218に記憶されQ値推定部216がこれを参照するのでも良い。
 異常判定部219は、温度検出部112が検出した温度TmとQ値記憶部218に記憶されたQ値QiniとQ値検出部214が検出したQ値Qmとに基づいて、超音波トランスデューサ100の異常を判定し、判定結果を示す信号SR2を出力する。
 より詳細には、Q値推定部216が、温度Tmと初期値Qiniとに基づいて、温度TmにおけるQ値推定値Qcを推定し、異常判定部219が周波数推定値Qcと測定値であるQmとを比較し、測定値が異常であるか否かを判定する。たとえば、異常判定部219はQ値推定値Qcを中心としてプラス側しきい値Q(+)とマイナス側しきい値Q(-)を決定し、Q(-)<Qm<Q(+)が成立した場合に測定値が正常であると判定し、成立しない場合に測定値が異常であると判定する。
 以上説明した構成とすることによって、実施の形態2に係る超音波装置は、Q値を温度補正するため、精度良く超音波トランスデューサの異常を検出することができる。また、従来はQ値のみで異常を検出することは行なわれていなかったので、いままで判別できなかった異常を検出することが期待できる。
 [実施の形態3]
 実施の形態2では、Q値(共振先鋭度)で異常を判定した。実施の形態3では、共振周波数の変化とQ値の変化とを同時に観測することによって、異常の内容を分類可能とするものである。
 図9は、水滴の付着と共振周波数の変化との関係を示すグラフである。図10は、水滴の付着とQ値の変化との関係を示すグラフである。図11は、泥の付着と共振周波数の変化との関係を示すグラフである。図12は、泥の付着とQ値の変化との関係を示すグラフである。
 図9~図10から分かるように、超音波トランスデューサ100の振動面に水滴が付着した場合には、共振周波数は変わるが、Q値はほとんど変わらない。一方、図11~図12から分かるように、泥が付着した場合には、共振周波数とQ値は両方とも変化する(下がる)。
 図13は、実施の形態3で実行される判定処理を説明するためのフローチャートである。図13を参照して、ステップS1において実施の形態3に係る異常検出部は、初期の共振周波数とQ値とを記憶部に記憶させる。続いて、ステップS2において温度Tmが測定され、ステップS3において、現在の温度Tmにおける共振周波数fcおよびQ値Qcが推定される。
 ステップS2,S3の処理に並行して、ステップS4において、現在の共振周波数fmとQ値Qmとが測定される。
 ステップS3およびステップS4の処理が終了すると、ステップS5において、推定共振周波数fcに対する測定共振周波数fmの低下量Dfが判定しきい値Dfthよりも大きいか否かが判断される。Df>Dfthであった場合(S5でYES)、ステップS5からステップS6に処理が進められ、Q値の低下量DQが判定しきい値DQthよりも大きいか否かが判断される。
 ステップS6においてDQ>DQthであった場合(S6でYES)、ステップS7に処理が進められ、泥が超音波トランスデューサ100の共振面(図2の底部62)の全面に付着している可能性があると判断される。一方、DC>DQthでなかった場合(S6でNO)、ステップS8に処理が進められ、水が共振面に付着したか、または乾燥した泥が付着している可能性があると判断される。
 ステップS5において、Df>Dfthでなかった場合(S5でNO)、ステップS5からステップS9に処理が進められ、Q値の低下量DQが判定しきい値DQthよりも大きいか否かが判断される。
 ステップS9においてDQ>DQthであった場合(S9でYES)、ステップS10に処理が進められ、泥が超音波トランスデューサ100の共振面の1/2以上に付着している可能性があると判断される。一方、DQ>DQthでなかった場合(S9でNO)、ステップS11に処理が進められ、水が共振面に付着している可能性は低く、泥の付着は共振面の1/2以下であると判断される。
 図14は、実施の形態3に係る超音波装置の構成を示したブロック図である。実施の形態1の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部310とを含む。
 異常検出部310は、温度検出部112と、周波数検出部114と、周波数記憶部118と、周波数推定部116と、異常判定部119とを含む。温度検出部112、周波数検出部114、周波数記憶部118、周波数推定部116、および異常判定部119については、実施の形態1(図3)で説明したものと同様であるので、ここでは説明は繰り返さない。
 異常検出部310は、さらに、Q値検出部214と、Q値記憶部218と、Q値推定部216と、異常判定部219とを含む。Q値検出部214、Q値記憶部218、Q値推定部216、および異常判定部219については、実施の形態2(図6)で説明したものと同様であるので、ここでは説明は繰り返さない。
 異常検出部310は、さらに、異常判定部319を含む。異常判定部319は、異常判定部119,219とともに、判定部320を構成する。この判定部320は、温度検出部112が検出した温度Tmと周波数記憶部118に記憶された共振周波数finiと周波数検出部114が検出した共振周波数fmとQ値記憶部218に記憶されたQ値QiniとQ値検出部214が検出したQ値Qmとに基づいて、超音波トランスデューサ100の異常を判定する。
 異常判定部319は、異常判定部119および219の判定結果から総合的に異常の状態を判定する。異常判定部319は、異常の状態が水付着なのか、凍結または泥付着なのかを判定することができる。
 図15は、異常判定部319の動作を説明するための図である。図15を参照して、共振周波数fmが推定共振周波数fcによって定まるプラス側しきい値f(+)とマイナス側しきい値f(-)との間にあることを信号SR1が示す場合に、「f(OK)」と表記する。また、Q値Qmが推定Q値Qcによって定まるプラス側しきい値Q(+)とマイナス側しきい値Q(-)との間にあることを信号SR2が示す場合に、「Q(OK)」と表記する。
 また、図15において、fmがプラス側しきい値f(+)より高い場合に、「f(+)」と表記し、fmがマイナス側しきい値f(-)より低い場合に、「f(-)」と表記する。
 また、図15において、Qmがプラス側しきい値Q(+)より大きい場合に、「Q(+)」と表記し、Qmがマイナス側しきい値Q(-)より小さい場合に、「Q(-)」と表記する。
 信号SR1が「f(OK)」に該当し、かつ、信号SR2が「Q(OK)」に該当するときには、異常判定部319は、判定結果SR3として「PASS」を出力する。「PASS」は超音波トランスデューサ100が正常であることを示す。
 信号SR1がマイナス側しきい値より低い「f(-)」に該当し、かつ、信号SR2がマイナス側しきい値より低い「Q(-)」に該当するときには、異常判定部319は、判定結果SR3として「M2」を出力する。「M2」は超音波トランスデューサ100に氷または泥が付着している可能性があることを示す。
 信号SR1がマイナス側しきい値より低い「f(-)」に該当し、かつ、信号SR2が「Q(OK)」に該当するときには、異常判定部319は、判定結果SR3として「M1」を出力する。「M1」は超音波トランスデューサ100に水が付着している可能性があることを示す。
 なお、それ以外の場合には、図15において「F」と示されており、超音波トランスデューサ100が故障している可能性があることを示す。
 以上説明したように、実施の形態3の超音波装置によれば超音波トランスデューサ100の異常の状態を細かく推定できる。すなわち、異常が水付着なのか泥付着または凍結なのかを、周波数変化とQ値の変化の組合せで切り分けることができるため、より高精度な制御や修理の場合の分類等に応用できる。
 [実施の形態4]
 実施の形態4は、実施の形態3と似ているが、異常判定部の判定を変更している。
 図16は、実施の形態4に係る超音波装置の構成を示したブロック図である。実施の形態4の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部410とを含む。
 異常検出部410は、温度検出部112と、周波数検出部114と、周波数記憶部118と、周波数推定部116と、Q値検出部214と、Q値記憶部218と、Q値推定部216と、温度検出部112と、異常判定部419とを含む。
 温度検出部112、周波数検出部114、周波数記憶部118、および周波数推定部116については、実施の形態1(図3)で説明したものと同様である。Q値検出部214、Q値記憶部218、およびQ値推定部216については、実施の形態2(図6)で説明したものと同様である。したがって、ここではこれらの説明は繰り返さない。
 異常判定部419は、周波数推定部116が推定した共振周波数fcと、周波数検出部114が検出した共振周波数fmと、Q値推定部216が推定したQ値Qcと、Q値検出部214が検出したQ値Qmとに基づいて、超音波トランスデューサ100の異常を判定する。
 図17は、異常判定部419の判定処理について説明するための図である。異常判定部419は、共振周波数の測定値と推定値、Q値の測定値と推定値の4つから総合的に異常を判定する。図17を参照して、異常判定部419は、Q-f平面上において、座標P(Qc,fc)を中心にしたPASS領域に座標Pm(Qm,fm)が入るか否かで、正常か異常かの判定を行なう。このようにすることで、図17に示すように、判定結果PASS,M1,M2,Fに該当する領域を実際の実験結果等に合わせて細かく設定することが可能である。
 実施の形態4の構成は、実施の形態3の構成と似ているが、共振周波数、Q値の各々で個別に判別した結果を組み合わせるのではなく、はじめから共振周波数とQ値の組合せの状態によって1回で判別するため、効率よく、高精度な判定ができる。
 [実施の形態5]
 実施の形態1~4では、温度検出部112は、公知の種々の温度センサを用いることとしていたが、実施の形態5では、温度検出部112が超音波トランスデューサ100の圧電素子の容量変化を検出することによって温度を推定する。なお、この温度検出部112については、実施の形態1~4のいずれにも適用することができるが、代表として、実施の形態2に適用した場合を説明する。
 図18は、実施の形態5に係る超音波装置の構成を示すブロック図である。図18を参照して、実施の形態5の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部510とを含む。
 異常検出部510は、Q値検出部214と、Q値記憶部218と、Q値推定部216と、温度検出部112と、異常判定部219とを含む。
 駆動回路104、受信回路106、Q値検出部214と、Q値記憶部218と、Q値推定部216と、異常判定部219は、実施の形態1,2と同様であるので、ここでは説明を繰り返さない。
 温度検出部112は、容量検出部512と、容量記憶部514と、温度推定部516とを含む。
 容量検出部512は、あらかじめ容量値がわかっている容量を超音波トランスデューサ100の圧電素子の容量と直列接続になるように接続し、交流電圧波形を与える。直列接続された2つの容量の接続ノードの電圧は、交流電圧が容量比で分割した電圧となるので、圧電素子の容量値がいくらかを検出することができる。
 図19は、温度検出部112における温度Tcの推定処理の第1例を説明するための図である。図18、図19を参照して、工場出荷時等の超音波トランスデューサ100に異常が生じていないことが分かっている状態で、特定の温度(T1,T2,T3,T4,T5)において、それぞれ容量値(Cini1,Cini2,Cini3,Cini4,Cini5)を測定する。なお、温度点数は一点でも、複数点でも良い。測定点P21~P25の測定値は、容量記憶部514に記憶される。温度推定部516は、記憶された容量値から、個別の超音波トランスデューサごとの温度-容量値の関係を求める。
 温度-容量値の関係は、例えば温度と容量値のテーブルデータを記憶して、データ間は線形補間して算出することができる。なお、この関係を一次式、二次式または多項式等の数式で表現し、測定点P21~P25から数式の係数を決定しても良い。
 使用時に容量検出部512から得られた容量値Cmに対応する温度を数式またはテーブルで与えられた温度-容量値特性Cstdから決定することによって、温度推定部516は、推定温度Tcを推定する。
 図19に示したように個別の超音波トランスデューサごとに温度-容量特性のデータを測定しておき、そのデータを使用して推定温度Tcを求めても良いが、個別の超音波トランスデューサごとに温度-容量特性のデータを測定および記録するのは時間がかかる。したがって、標準温度Tstdにおける初期値Ciniを個別のトランスデューサごとに測定および記録しておき、共通のデータを用いて温度特性変化による容量シフト分ΔCの補正を行なう以下の第2例の方が現実的である。
 図20は、温度検出部112における温度Tcの推定処理の第2例を説明するための図である。図18、図20を参照して、予め定められた温度(たとえば、Tstd=25℃)において計測された超音波トランスデューサ100の容量値Ciniが容量記憶部514に記憶されている。温度推定部516には、複数の超音波装置で共通に用いられる超音波トランスデューサの温度-容量特性(Corg)が記憶されている。温度-容量特性(Corg)は、温度の関数(数式)として記憶されていても良いし、マップのようにデータテーブルで記憶されていても良い。
 個別の超音波トランスデューサ100に対応する温度Tstdにおける容量値Ciniと温度-容量特性(Corg)の容量値シフト分ΔCを算出する。これは、個体差による容量値シフト分ΔCである。そして、温度-容量特性(Corg)をΔCシフトさせた温度-容量特性(Cstd)を求める。使用時に容量検出部512から得られた容量値Cmに対応する温度を数式またはテーブルで与えられたCstdから決定することによって、温度推定部516は、推定温度Tcを推定する。
 なお、図示しないが、温度推定部516は、測定した容量値Cmと容量記憶部514から読み出した容量値Ciniとの差ΔC1を算出し、CorgがTstdからΔC1だけ変化した温度を推定温度Tcとして出力しても良い。
 Q値推定部216は、温度検出部112から推定温度Tcを受けると、推定Q値Qcを出力する。異常判定部219については、実施の形態2で説明した動作と同様な動作を行なって、判定結果を示す信号SR5を出力する。
 実施の形態5に係る超音波装置は、容量検出を超音波トランスデューサ100にもともと含まれている圧電素子の容量変化に基づいて温度を検出するので、新たに温度センサなどを追加する必要が無くなる。
 実施の形態5によれば、温度センサの追加が不要となるので、低コストで実施の形態1~4の機能を実現することができる。
 [実施の形態6]
 実施の形態1~5までは、温度TmまたはTcを仲介させてQ値の推定値Qc等を求めていた。実施の形態6では、超音波トランスデューサ100の容量の測定値Cmから直接的に共振周波数fcまたはQ値の推定値Qcを推定する。
 図21は、実施の形態6に係る超音波装置の構成を示すブロック図である。図21を参照して、実施の形態6の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部610とを含む。
 異常検出部610は、Q値検出部214と、Q値記憶部218と、容量検出部512と、Q値推定部616と、異常判定部219とを含む。
 駆動回路104、受信回路106、Q値検出部214、Q値記憶部218、容量検出部512、および異常判定部219は、実施の形態1,2,5と同様であるので、ここでは説明を繰り返さない。
 図22は、Q値推定部616の推定処理の第1例を説明するための図である。図21、図22を参照して、工場出荷時等の超音波トランスデューサ100に異常が生じていないことが分かっている状態で、特定の温度(T1,T2,T3,T4,T5)にそれぞれ対応する容量値(Cini1,Cini2,Cini3,Cini4,Cini5)において、それぞれQ値(Qini1,Qini2,Qini3,Qini4,Qini5)を測定する。なお、温度点数は一点でも、複数点でも良い。測定点P31~P35の測定値は、Q値記憶部218に記憶される。Q値推定部616は、記憶されたQ値から、個別の超音波トランスデューサごとの容量値-Q値の関係を求める。
 容量値-Q値の関係は、例えば容量値とQ値のテーブルデータを記憶して、データ間は線形補間して算出することができる。なお、この関係を一次式、二次式または多項式等の数式で表現し、測定点P31~P35から数式の係数を決定しても良い。
 使用時に容量検出部512から得られた容量値Cmに対応する値を数式またはテーブルで与えられたQstdから決定することによって、Q値推定部616は、推定Q値Qcを推定する。
 図22に示したように個別の超音波トランスデューサごとに容量値-Q値特性のデータを測定しておき、そのデータを使用して推定Q値Qcを求めても良いが、個別の超音波トランスデューサごとに容量値-Q値特性のデータを測定および記録するのは時間がかかる。したがって、標準温度Tstd対応する容量値Cstdにおける初期値Qiniを個別のトランスデューサごとに測定および記録しておき、共通のデータを用いて容量特性変化によるQ値シフト分ΔQの補正を行なう以下の第2例の方が現実的である。
 図23は、Q値推定部616の推定処理の第2例を説明するための図である。図20、図23を参照して、予め定められた温度(たとえば、Tstd=25℃)において計測された超音波トランスデューサ100の容量値CstdとQ値QiniがQ値記憶部218に記憶されている。Q値推定部616には、複数の超音波装置で共通に用いられる超音波トランスデューサの容量値-Q値特性(Qorg)が記憶されている。温度-Q値特性(Qorg)は、温度の関数(数式)として記憶されていても良いし、マップのようにデータテーブルで記憶されていても良い。
 個別の超音波トランスデューサ100に対応する容量CstdにおけるQ値Qiniと容量値-Q値特性(Qorg)のQ値シフト分ΔQを算出する。これは、個体差によるQ値シフト分ΔQである。そして、容量値-Q値特性(Qorg)をΔQシフトさせた容量値-Q値特性(Qstd)を求める。使用時に容量検出部512から得られた容量値Cmに対応する値を数式またはテーブルで与えられたQstdから決定することによって、Q値推定部616は、推定Q値Qcを推定する。
 なお、図示しないが、容量値-Q値特性(Qorg)上での予め定められた容量Cstdに対応するQ値と容量値CmにおけるQ値との差ΔQ1を算出し、Qiniに対してΔQ1を加算してQcを求めても良い。
 異常判定部219は、温度検出部112が検出した温度TmとQ値記憶部218に記憶されたQ値QiniとQ値検出部214が検出したQ値Qmとに基づいて、超音波トランスデューサ100の異常を判定し、判定結果を示す信号SR6を出力する。
 実施の形態6では、実施の形態1~5の温度検出部112をなくし、容量検出部512のみにする。また、周波数推定部やQ値推定部616では、温度ではなく容量測定結果Cmから直接にQ値を推定する。
 このような構成により低コストで機能を実現することができる。すなわち、温度検出部を省略することで、実施の形態5と同じ結果が得られるため、より低コストで同じ機能を実現することができる。
 [実施の形態6の変形例]
 実施の形態6では、Q値の推定値Qcについて代表的に例示して説明したが、共振周波数fcにも実施の形態1に組み合わせることによって同様に適用可能である。
 図24は、実施の形態6の変形例の超音波装置の構成を示したブロック図である。実施の形態6の変形例の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部710とを含む。
 異常検出部710は、周波数検出部114と、周波数記憶部118と、周波数推定部716と、容量検出部512と、異常判定部119とを含む。
 駆動回路104は、受信回路106は、周波数検出部114は、周波数記憶部118は、図3で示したものと同様であり説明は繰り返さない。容量検出部512は、図21で示したものと同様であり説明は繰り返さない。
 周波数推定部716において、容量-共振周波数特性をfiniを考慮してシフトさせ、周波数推定値fcを求めることによって、共振周波数の場合も実施の形態6と同様な効果が得られる。
 [実施の形態7]
 実施の形態6では、直接的に容量とQ値との関係を示すマップデータまたは関係式を使用して、温度等の周囲環境が変化した場合のQ値推定値Qcを求めた。しかし、個々の超音波トランスデューサ100には製造ばらつきがある。共通のマップデータを個々の超音波トランスデューサ100に対して適用するのは誤差が大きくなる場合が考えられる。実施の形態7では、このようなマップデータまたは関係式を共通にしたときに誤差を小さくできるように、容量変化率を求める点が特徴である。なお、容量変化率を求める点については、実施の形態1~4のいずれにも適用することができる。
 たとえば、圧電素子の容量に関していえば、容量値に製造ばらつきがあったとしても、温度が変化したときの容量値の変化率(%)にはあまり個体差は無い。したがって、容量変化率とQ値との関係をマップや関係式としておけば、製造時に共通にこのデータを用いることができる。
 図25は、実施の形態7に係る超音波装置の構成を示すブロック図である。図25を参照して、実施の形態7の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部810とを含む。
 異常検出部810は、Q値検出部214と、Q値記憶部218と、容量検出部512と、容量記憶部814と、容量変化率算出部812と、Q値推定部816と、異常判定部219とを含む。
 駆動回路104、受信回路106、Q値検出部214と、Q値記憶部218と、容量検出部512と、異常判定部219は、実施の形態1,2,5と同様であるので、ここでは説明は繰り返さない。
 容量変化率算出部812は、容量検出部512が検出した容量値Cmが容量Ciniに対して変化した割合を容量変化率ΔCm(%)として出力する。Q値推定部816は、予め定められた温度(T1,T2,T3,T4,T5)における超音波トランスデューサ100の容量変化率ΔCini1,ΔCini2,ΔCini3,ΔCini4,ΔCini5とQとの関係(容量変化率-Q値特性)を記憶する。この関係は、個別の素子に対して共通に用いることができる値である。
 図26は、Q値推定部816の推定処理を説明するための図である。Q値推定部816は、測定点P41~P45から、測定点の間を線形補間して容量変化率-Q値特性を算出する。なお、この関係を多項式等の数式で表現し、測定点P41~P45から数式の係数を決定しても良い。Q値推定部816は、容量変化率-Q値特性から容量変化率ΔCmに対応するQ値を求め、推定値Qcを出力する。
 実施の形態7の構成とすれば、容量に個体バラツキがある場合でも容量変化率をQ値推定部の入力とすることによって共通のマップまたは数式を使用した場合でも、推定値の誤差を小さくすることができる。
 [実施の形態7の変形例]
 実施の形態7では、Q値の推定値Qcについて代表的に例示して説明したが、共振周波数fcにも実施の形態1に組み合わせることによって同様に適用可能である。
 図27は、実施の形態7の変形例の超音波装置の構成を示したブロック図である。実施の形態7の変形例の超音波装置は、超音波トランスデューサ100と、駆動回路104と、受信回路106と、異常検出部910とを含む。
 異常検出部910は、周波数検出部114と、周波数記憶部118と、周波数推定部916と、容量検出部512と、容量記憶部814と、容量変化率算出部812と、異常判定部119とを含む。
 駆動回路104と、受信回路106と、周波数検出部114と、周波数記憶部118とは、図3で示したものと同様であり説明は繰り返さない。容量検出部512と、容量変化率算出部812と、容量記憶部814とは、図25で示したものと同様であり説明は繰り返さない。
 周波数推定部916は、容量変化率-共振周波数特性から容量変化率ΔCmに対応する共振周波数を求め、推定共振周波数fcを出力する。
 このようにすれば、共振周波数の場合も実施の形態7と同様な効果が得られる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 超音波装置、50 圧電素子、51,52 電極、60 ケース、61 筒状部、62 底部、63 吸音材、71 樹脂、80,81 端子、100 超音波トランスデューサ、101 マイコン、102 メモリ、103 検出回路、104 駆動回路、105 電源、106 受信回路、110,210,310,410,510,610,710,810,910 異常検出部、112 温度検出部、114 周波数検出部、116 周波数推定部、118 周波数記憶部、119,219,319,419 異常判定部、214 Q値検出部、216,616,816 Q値推定部、218 Q値記憶部、320 判定部、512 容量検出部、514,814 容量記憶部、516 温度推定部、812 容量変化率算出部。

Claims (8)

  1.  超音波トランスデューサと、
     前記超音波トランスデューサに音波を発信させる駆動回路と、
     前記超音波トランスデューサが受けた音波を受信する受信回路と、
     前記超音波トランスデューサの共振周波数を検出する周波数検出部と、
     予め定められた温度における前記超音波トランスデューサの共振周波数を記憶する記憶部と、
     温度検出部と、
     前記温度検出部が検出した温度と前記記憶部に記憶された共振周波数と前記周波数検出部が検出した共振周波数とに基づいて、前記超音波トランスデューサの異常を判定する判定部とを備える、超音波装置。
  2.  超音波トランスデューサと、
     前記超音波トランスデューサに音波を発信させる駆動回路と、
     前記超音波トランスデューサが受けた音波を受信する受信回路と、
     前記超音波トランスデューサのQ値を検出するQ値検出部と、
     予め定められた温度における前記超音波トランスデューサのQ値を記憶する記憶部と、
     温度検出部と、
     前記温度検出部が検出した温度と前記記憶部に記憶されたQ値と前記Q値検出部が検出したQ値とに基づいて、前記超音波トランスデューサの異常を判定する判定部とを備える、超音波装置。
  3.  超音波トランスデューサと、
     前記超音波トランスデューサに音波を発信させる駆動回路と、
     前記超音波トランスデューサが受けた音波を受信する受信回路と、
     前記超音波トランスデューサの共振周波数を検出する周波数検出部と、
     予め定められた温度における前記超音波トランスデューサの共振周波数を記憶する第1記憶部と、
     前記超音波トランスデューサのQ値を検出するQ値検出部と、
     予め定められた温度における前記超音波トランスデューサのQ値を記憶する第2記憶部と、
     温度検出部と、
     前記温度検出部が検出した温度と前記第1記憶部に記憶された共振周波数と前記周波数検出部が検出した共振周波数と前記第2記憶部に記憶されたQ値と前記Q値検出部が検出したQ値とに基づいて、前記超音波トランスデューサの異常を判定する判定部とを備える、超音波装置。
  4.  前記超音波装置は、
     前記第1記憶部に記憶された共振周波数に基づいて前記温度検出部が検出した温度における共振周波数を推定する共振周波数推定部と、
     前記第2記憶部に記憶されたQ値に基づいて前記温度検出部が検出した温度におけるQ値を推定するQ値推定部とをさらに備え、
     前記判定部は、
     前記共振周波数推定部が推定した共振周波数に基づいて前記周波数検出部が検出した共振周波数が正常か異常かを判定する第1判定処理部と、
     前記Q値推定部が推定したQ値に基づいて前記Q値検出部が検出したQ値が正常か異常かを判定する第2判定処理部とを含む、請求項3に記載の超音波装置。
  5.  前記超音波装置は、
     前記第1記憶部に記憶された共振周波数に基づいて前記温度検出部が検出した温度における共振周波数を推定する共振周波数推定部と、
     前記第2記憶部に記憶されたQ値に基づいて前記温度検出部が検出した温度におけるQ値を推定するQ値推定部とをさらに備え、
     前記判定部は、前記共振周波数推定部が推定した共振周波数と前記Q値推定部が推定したQ値との組み合わせに基づいて前記超音波トランスデューサが正常か異常かを判定する、請求項3に記載の超音波装置。
  6.  前記温度検出部は、
     前記超音波トランスデューサの容量を検出する容量検出部と、
     予め定められた温度における前記超音波トランスデューサの容量を記憶する容量記憶部と、
     前記容量検出部が検出した容量と前記容量記憶部が記憶した容量とに基づいて、温度を推定する温度推定部とを含む、請求項1~5のいずれか1項に記載の超音波装置。
  7.  超音波トランスデューサと、
     前記超音波トランスデューサに音波を発信させる駆動回路と、
     前記超音波トランスデューサが受けた音波を受信する受信回路と、
     前記超音波トランスデューサのQ値を検出するQ値検出部と、
     予め定められた温度における前記超音波トランスデューサのQ値を記憶する記憶部と、
     前記超音波トランスデューサの容量を検出する容量検出部と、
     予め定められた温度における前記超音波トランスデューサの容量を記憶する容量記憶部と、
     前記容量検出部が検出した容量と前記記憶部に記憶されたQ値と前記Q値検出部が検出したQ値とに基づいて、前記超音波トランスデューサの異常を判定する判定部とを備える、超音波装置。
  8.  超音波トランスデューサと、
     前記超音波トランスデューサに音波を発信させる駆動回路と、
     前記超音波トランスデューサが受けた音波を受信する受信回路と、
     前記超音波トランスデューサの共振周波数を検出する周波数検出部と、
     予め定められた温度における前記超音波トランスデューサの共振周波数を記憶する記憶部と、
     前記超音波トランスデューサの容量を検出する容量検出部と、
     予め定められた温度における前記超音波トランスデューサの容量を記憶する容量記憶部と、
     前記容量検出部が検出した容量と前記記憶部に記憶された共振周波数と前記周波数検出部が検出した共振周波数とに基づいて、前記超音波トランスデューサの異常を判定する判定部とを備える、超音波装置。
PCT/JP2018/000268 2017-01-25 2018-01-10 超音波装置 WO2018139192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018564459A JP6702442B2 (ja) 2017-01-25 2018-01-10 超音波装置
CN201880008522.2A CN110226333A (zh) 2017-01-25 2018-01-10 超声波装置
EP18744293.4A EP3576428B1 (en) 2017-01-25 2018-01-10 Ultrasonic apparatus with an anomaly determining unit
US16/512,426 US20190339370A1 (en) 2017-01-25 2019-07-16 Ultrasonic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017011157 2017-01-25
JP2017-011157 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/512,426 Continuation US20190339370A1 (en) 2017-01-25 2019-07-16 Ultrasonic apparatus

Publications (1)

Publication Number Publication Date
WO2018139192A1 true WO2018139192A1 (ja) 2018-08-02

Family

ID=62978302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000268 WO2018139192A1 (ja) 2017-01-25 2018-01-10 超音波装置

Country Status (5)

Country Link
US (1) US20190339370A1 (ja)
EP (1) EP3576428B1 (ja)
JP (1) JP6702442B2 (ja)
CN (1) CN110226333A (ja)
WO (1) WO2018139192A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056722A (ja) * 2018-10-03 2020-04-09 株式会社Soken 物体検知装置
WO2022009706A1 (ja) * 2020-07-10 2022-01-13 株式会社デンソー 物体検知装置
US20220260712A1 (en) * 2019-06-04 2022-08-18 Tdk Electronics Ag Ultrasonic Transducer and Method for Producing an Ultrasonic Transducer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139193A1 (ja) * 2017-01-25 2018-08-02 株式会社村田製作所 超音波装置
US11269067B2 (en) * 2017-09-12 2022-03-08 Semiconductor Components Industries, Llc Response-based determination of piezoelectric transducer state
DE102018129044A1 (de) * 2018-11-19 2020-05-20 Valeo Schalter Und Sensoren Gmbh Verfahren und Analysesystem zum Bestimmen eines Zustands einer Membran eines Ultraschallsensors
CN111726741B (zh) * 2020-06-22 2021-09-17 维沃移动通信有限公司 麦克风状态检测方法及装置
EP4060378A1 (en) * 2021-03-17 2022-09-21 Hyundai Mobis Co., Ltd. Vehicle ultrasonic sensor control system and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998232B2 (ja) 1991-02-28 2000-01-11 松下電工株式会社 超音波センサー
JP2003000610A (ja) * 2000-10-20 2003-01-07 Ethicon Endo Surgery Inc 負荷をかけた状態およびひび割れ状態の超音波的に同調されているブレードを識別するための方法
JP2009254819A (ja) * 2008-04-15 2009-11-05 Olympus Medical Systems Corp 手術用電源供給装置
JP2015010888A (ja) 2013-06-27 2015-01-19 パナソニック株式会社 超音波センサ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156551B2 (en) * 2003-06-23 2007-01-02 Siemens Medical Solutions Usa, Inc. Ultrasound transducer fault measurement method and system
GB0315526D0 (en) * 2003-07-03 2003-08-06 Qinetiq Ltd Thermal detector
JP2009128786A (ja) * 2007-11-27 2009-06-11 Canon Inc 光スキャナ及び画像形成装置
US8095327B2 (en) * 2008-04-15 2012-01-10 Olympus Medical Systems Corp. Power supply apparatus for operation
JP2009285175A (ja) * 2008-05-29 2009-12-10 Olympus Medical Systems Corp 超音波診断装置
JP4703700B2 (ja) * 2008-09-16 2011-06-15 パナソニック株式会社 超音波振動子および超音波流量計
US20140296688A1 (en) * 2011-06-06 2014-10-02 The Hong Kong University Of Science And Technology Surface deformation sensor
JP2013059236A (ja) * 2011-09-09 2013-03-28 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP6071320B2 (ja) * 2011-10-20 2017-02-01 キヤノン株式会社 圧電デバイス、塵埃除去装置、撮像装置、及び電子機器
JP5915904B2 (ja) * 2012-06-22 2016-05-11 ソニー株式会社 処理装置、処理方法、及び、プログラム
JP6226692B2 (ja) * 2012-10-19 2017-11-08 東芝メディカルシステムズ株式会社 超音波診断装置及び超音波探触子
JP2014115225A (ja) * 2012-12-11 2014-06-26 Rcs:Kk 比較的に狭帯域の無線信号を用いた相互間距離測定装置
JP2014115255A (ja) * 2012-12-12 2014-06-26 Panasonic Corp 超音波センサ
DE102013015410A1 (de) * 2013-09-17 2015-03-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors Ultraschallsensorvorrichtung und Kraftfahrzeug
DE102014106011A1 (de) * 2014-04-29 2015-10-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung und Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998232B2 (ja) 1991-02-28 2000-01-11 松下電工株式会社 超音波センサー
JP2003000610A (ja) * 2000-10-20 2003-01-07 Ethicon Endo Surgery Inc 負荷をかけた状態およびひび割れ状態の超音波的に同調されているブレードを識別するための方法
JP2009254819A (ja) * 2008-04-15 2009-11-05 Olympus Medical Systems Corp 手術用電源供給装置
JP2015010888A (ja) 2013-06-27 2015-01-19 パナソニック株式会社 超音波センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576428A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056722A (ja) * 2018-10-03 2020-04-09 株式会社Soken 物体検知装置
JP7127465B2 (ja) 2018-10-03 2022-08-30 株式会社Soken 物体検知装置
US20220260712A1 (en) * 2019-06-04 2022-08-18 Tdk Electronics Ag Ultrasonic Transducer and Method for Producing an Ultrasonic Transducer
WO2022009706A1 (ja) * 2020-07-10 2022-01-13 株式会社デンソー 物体検知装置
JP2022016127A (ja) * 2020-07-10 2022-01-21 株式会社Soken 物体検知装置
JP7354951B2 (ja) 2020-07-10 2023-10-03 株式会社Soken 物体検知装置

Also Published As

Publication number Publication date
JP6702442B2 (ja) 2020-06-03
EP3576428A4 (en) 2021-03-17
US20190339370A1 (en) 2019-11-07
JPWO2018139192A1 (ja) 2019-08-08
CN110226333A (zh) 2019-09-10
EP3576428A1 (en) 2019-12-04
EP3576428B1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2018139192A1 (ja) 超音波装置
US7004031B2 (en) Ultrasonic sensor
EP1752765A2 (en) Frictional characteristic measuring apparatus and tire directed thereto
US20200072955A1 (en) Method for determining a functional status of an ultrasonic sensor by means of a transfer function of the ultrasonic sensor, ultrasonic sensor device and motor vehicle
JP6658922B2 (ja) 超音波装置
US11833543B2 (en) Ultrasonic apparatus
JP2019015682A (ja) 超音波式の物体検出装置
US11573319B2 (en) Method for operating an ultrasonic sensor of a vehicle with reduced diagnostics in a measuring mode of the ultrasonic sensor, and ultrasonic sensor device
JP5658061B2 (ja) 力学量センサ
CN100580386C (zh) 用于确定和/或监控过程变量的方法
KR20230118638A (ko) 자동차용 초음파 센서 시스템 및 초음파 센서 시스템의동작 방법
JP4421455B2 (ja) 傾斜角度測定装置
JP3880047B2 (ja) 超音波センサ
CN112162289B (zh) 超声波测距方法和装置
WO2021124751A1 (ja) 物体検知装置、物体検知方法、および物体検知プログラム
WO2021124752A1 (ja) 物体検知装置、物体検知方法、および物体検知プログラム
US20230204440A1 (en) Method and system for determining the state of a sensor whose mechanical behaviour is nonlinear as a function of the amplitude of the pressure exerted
JP7301050B2 (ja) 電気化学的発電機に結合された音響センサの誤動作を検出するための方法と前記方法を実行するデバイス
US20220299615A1 (en) Vehicle ultrasonic sensor control system and control method
US8229680B2 (en) Method and apparatus for loosening of fasteners on structures
CA2467233C (en) Ultrasonic sensor
JPWO2020064153A5 (ja)
US20180074025A1 (en) Ultrasonic Vibration Sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744293

Country of ref document: EP

Effective date: 20190826