WO2018139138A1 - Duct device and ship - Google Patents

Duct device and ship Download PDF

Info

Publication number
WO2018139138A1
WO2018139138A1 PCT/JP2017/046307 JP2017046307W WO2018139138A1 WO 2018139138 A1 WO2018139138 A1 WO 2018139138A1 JP 2017046307 W JP2017046307 W JP 2017046307W WO 2018139138 A1 WO2018139138 A1 WO 2018139138A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
end portion
rear end
propeller
inner duct
Prior art date
Application number
PCT/JP2017/046307
Other languages
French (fr)
Japanese (ja)
Inventor
信 川淵
卓慶 山田
雅也 窪田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020197015060A priority Critical patent/KR102154472B1/en
Publication of WO2018139138A1 publication Critical patent/WO2018139138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the thrust flowing in the propeller of the stern is used to obtain the thrust in the propulsion direction generated by the inner duct and the outer duct, respectively, or by the increase of the wake
  • the wake coefficient can be increased.
  • the output of the power source that moves the propeller is suppressed, and the propulsion efficiency of the ship can be improved.
  • further improvement in propulsion efficiency is expected by improving the duct device.
  • the inner duct and the outer duct may be formed as at least a part of a cylindrical body.
  • the opening area of the inter-duct inlet defined by the front end portion of the inner duct and the front end portion of the outer duct is defined by the rear end portion of the inner duct and the rear end portion of the outer duct.
  • the ship 50 moves forward by the rotation of the propeller 101.
  • the bow is disposed forward and the stern 100B is disposed rearward with respect to the traveling direction of the ship 50 moving forward.
  • the forward direction of the traveling direction of the marine vessel 50 will be simply referred to as “front”, and the rear side of the forward direction of the marine vessel will be simply referred to as “rear”.
  • a direction parallel to the rotation axis AX of the shaft 103 is appropriately referred to as an axial direction, and a radial direction with respect to the rotation axis AX is appropriately referred to as a radial direction.
  • the cross section of the stay 4 has an airfoil shape and is formed so as not to obstruct the flow of water (seawater) in the inner duct 2 and the outer duct 3.
  • the cross-sectional shape of the stay 4 may be not only an airfoil shape but also an elliptical shape or a semi-elliptical shape.
  • the diameter from the rotation axis AX to the rear end 22 of the inner duct 2 is r
  • the distance L1 in the direction is 0.3r or more and 0.5r or less
  • the radial distance L3 from the rotation axis AX to the rear end portion 32 of the outer duct 3 is 0.5r or more and 0.9r or less. Is preferred.
  • a radial distance L2 (L3-L1) between the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 is set to 0.2r to 0.4r.
  • the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7.
  • the airfoil outer surface 36 ⁇ / b> A of the outer duct 3 ⁇ / b> A is formed in a slightly concave curved shape
  • the trailing edge 34 ⁇ / b> A of the airfoil of the outer duct 3 ⁇ / b> A is the rotation axis AX of the shaft 103. Is curved in the radial direction.
  • the front end portion 21 of the inner duct 2 and the front end portion 31 of the outer duct 3 are located on a predetermined same plane F1 perpendicular to the rotation axis AX of the shaft 103
  • the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located on a predetermined same plane F2 perpendicular to the rotation axis AX of the shaft 103.
  • the airfoil chord line 27 of the inner duct 2 and the airfoil chord line 37 of the outer duct 3 are formed by an angle ⁇ formed by the chord lines 27 and 37 and a line parallel to the rotational axis AX.
  • the inner duct 2 and the outer duct 3 are arranged such that the chord lines 27 and 37 are substantially parallel to each other.
  • the rear end portion 22E of the inner duct 2E and the rear end portion 32E of the outer duct 3E are located on a predetermined same plane F2 perpendicular to the rotational axis AX of the shaft 103.
  • the airfoil chord line 27E of the inner duct 2E and the airfoil chord line 37E of the outer duct 3E are formed by an angle ⁇ formed by the chord lines 27E and 37E and a line parallel to the rotational axis AX.
  • the inner duct 2E and the outer duct 3E are arranged so that the chord lines 27E and 37E are substantially parallel to each other.

Abstract

This duct device 1 is provided with an inner duct 2, an outer duct 3, and a stay, wherein the opening area Ao of an outflow port 8 between ducts defined by a rear end part 22 of the inner duct 2 and a rear end part 32 of the outer duct 3, is formed to be larger than an opening area Ai of an inflow port 7 between ducts defined by a front end part 21 of the inner duct 2 and a front end part 31 of the outer duct 3.

Description

ダクト装置および船舶Duct device and ship
 本発明は、ダクト装置およびダクト装置を備える船舶に関する。 The present invention relates to a duct device and a ship including the duct device.
 一般に、プロペラの前方に配置され、プロペラに向けた水流を形成するダクト装置を備えた船舶が知られている。この種のダクト装置では、従来、プロペラのシャフトを支持するボス部の周囲に配置される内側ダクトと、この内側ダクトの外側に配置される外側ダクトとを備えた、いわゆる二重ダクト構造が知られている(例えば、特許文献1参照)。 Generally, a ship equipped with a duct device disposed in front of a propeller and forming a water flow toward the propeller is known. In this type of duct apparatus, a so-called double duct structure is conventionally known that includes an inner duct disposed around a boss portion that supports a propeller shaft and an outer duct disposed outside the inner duct. (For example, refer to Patent Document 1).
韓国公開特許第10-2014-0015929号公報Korean Published Patent No. 10-2014-0015929
 上記のような、いわゆる二重ダクト構造を有するダクト装置では、船尾のプロペラに流入する流れを利用して、内側ダクト及び外側ダクトがそれぞれ発生させる推進方向の推力を得たり、伴流の増加により伴流係数を高めることができる。特に、推力を発生させることにより、プロペラを動かす動力源の出力が抑制され、船舶の推進効率の向上を図ることができる。この種のダクト装置において、ダクト装置の改善により、更なる推進効率の向上が期待される。 In the duct apparatus having the so-called double duct structure as described above, the thrust flowing in the propeller of the stern is used to obtain the thrust in the propulsion direction generated by the inner duct and the outer duct, respectively, or by the increase of the wake The wake coefficient can be increased. In particular, by generating thrust, the output of the power source that moves the propeller is suppressed, and the propulsion efficiency of the ship can be improved. In this type of duct device, further improvement in propulsion efficiency is expected by improving the duct device.
 本発明は、上述した課題を解決するものであり、推進効率の向上を図ったダクト装置およびダクト装置を備える船舶を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the ship provided with the duct apparatus and duct apparatus which aimed at the improvement of propulsion efficiency.
 本発明に係るダクト装置は、船体の船尾に設けられたプロペラの前方においてプロペラのシャフトを支持するボス部の周囲の少なくとも一部に配置される内側ダクトと、内側ダクトの外側に配置される外側ダクトと、内側ダクト及び外側ダクトを船体に支持するステーと、を備え、内側ダクト及び外側ダクトの断面は、それぞれ翼型であり、内側ダクトの前端部と外側ダクトの前端部とで規定されるダクト間流入口の開口面積よりも、内側ダクトの後端部と外側ダクトの後端部とで規定されるダクト間流出口の開口面積を大きく形成したことを特徴とする。 The duct device according to the present invention includes an inner duct disposed at least in the periphery of a boss portion supporting a propeller shaft in front of a propeller provided at the stern of the hull, and an outer duct disposed outside the inner duct. A duct and a stay that supports the inner duct and the outer duct on the hull, and the cross sections of the inner duct and the outer duct are each a wing shape, and are defined by the front end portion of the inner duct and the front end portion of the outer duct. The opening area of the inter-duct outlet defined by the rear end of the inner duct and the rear end of the outer duct is larger than the opening area of the inter-duct inlet.
 この構成において、内側ダクトの翼型の翼弦線とシャフトの回転軸心と平行な線とがなす角度は、外側ダクトの翼型の翼弦線と回転軸心と平行な線とがなす角度よりも大きくしてもよい。 In this configuration, the angle between the airfoil chord line of the inner duct and the line parallel to the rotation axis of the shaft is the angle between the airfoil chord line of the outer duct and the line parallel to the rotation axis. May be larger.
 また、外側ダクトは、翼型の後縁がシャフトの回転軸心に対して径方向に湾曲してもよい。 In the outer duct, the trailing edge of the airfoil may be curved in the radial direction with respect to the rotational axis of the shaft.
 また、内側ダクトの後端部と外側ダクトの後端部とは、シャフトの回転軸心に垂直な同一面上に位置する構成としてもよい。 Further, the rear end portion of the inner duct and the rear end portion of the outer duct may be arranged on the same plane perpendicular to the rotation axis of the shaft.
 また、シャフトの回転軸心からプロペラの先端までの径方向の距離をrとした場合、回転軸心から内側ダクトの後端部までの径方向の距離は、0.3r以上0.5r以下であり、回転軸心から外側ダクトの後端部までの径方向の距離は、0.5r以上0.9r以下であることが好ましい。この場合、内側ダクトの後端部と外側ダクトの後端部との径方向の距離は、0.2r以上0.4r以下であることが好ましい。 When the radial distance from the rotation axis of the shaft to the tip of the propeller is r, the radial distance from the rotation axis to the rear end of the inner duct is 0.3r to 0.5r. In addition, the radial distance from the rotation axis to the rear end of the outer duct is preferably 0.5r or more and 0.9r or less. In this case, the radial distance between the rear end portion of the inner duct and the rear end portion of the outer duct is preferably 0.2r or more and 0.4r or less.
 また、内側ダクトの前端部と外側ダクトの前端部とは、シャフトの回転軸心に垂直な同一面上に位置し、内側ダクトの翼型の翼弦長を外側ダクトの翼型の翼弦長よりも長く形成した構成としてもよい。 Also, the front end of the inner duct and the front end of the outer duct are located on the same plane perpendicular to the rotational axis of the shaft, and the airfoil chord length of the inner duct is the same as the airfoil chord length of the outer duct. It is good also as a structure formed longer.
 また、内側ダクトの翼型の翼弦長を外側ダクトの翼型の翼弦長よりも短く形成すると共に、内側ダクトの前端部と外側ダクトの前端部との距離よりも内側ダクトの後端部と外側ダクトの後端部との距離を長く形成してもよい。 The inner duct airfoil chord length is shorter than the outer duct airfoil chord length, and the inner duct rear end portion is longer than the distance between the inner duct front end portion and the outer duct front end portion. You may form long distance with the rear-end part of an outer duct.
 また、本発明に係るダクト装置は、船体の船尾に設けられたプロペラの前方においてプロペラのシャフトを支持するボス部の周囲の少なくとも一部に配置される内側ダクトと、内側ダクトの外側に配置される外側ダクトと、内側ダクト及び外側ダクトを船体に支持するステーと、を備え、内側ダクト及び外側ダクトの断面は、それぞれ翼型であり、内側ダクトの後端部と外側ダクトの後端部とは、シャフトの回転軸心に垂直な同一面上に位置することを特徴とする。 Further, the duct device according to the present invention is disposed at least a part of the periphery of the boss portion supporting the propeller shaft in front of the propeller provided at the stern of the hull, and disposed outside the inner duct. An outer duct and a stay that supports the inner duct and the outer duct on the hull, and the inner duct and the outer duct have wing-shaped sections, respectively, and the rear end of the inner duct and the rear end of the outer duct Are located on the same plane perpendicular to the rotational axis of the shaft.
 この構成において、シャフトの回転軸心からプロペラの先端までの径方向の距離をrとした場合、回転軸心から内側ダクトの後端部までの径方向の距離は、0.3r以上0.5r以下であり、回転軸心から外側ダクトの後端部までの径方向の距離は、0.5r以上0.9r以下であることが好ましい。さらに、内側ダクトの後端部と外側ダクトの後端部との径方向の距離は、0.2r以上0.4r以下であることが好ましい。 In this configuration, when the radial distance from the rotation axis of the shaft to the tip of the propeller is r, the radial distance from the rotation axis to the rear end of the inner duct is 0.3r or more and 0.5r. The radial distance from the rotation axis to the rear end of the outer duct is preferably 0.5r or more and 0.9r or less. Further, the radial distance between the rear end portion of the inner duct and the rear end portion of the outer duct is preferably 0.2r or more and 0.4r or less.
 また、ボス部と内側ダクトとの間、及び、内側ダクトと外側ダクトとの間の少なくとも一方に設けられ、船体を前進させる推進力を生じるプロペラの回転方向とは逆方向の水流を該プロペラに与えるリアクションフィンを備えてもよい。 In addition, a water flow in a direction opposite to the direction of rotation of the propeller, which is provided between at least one of the boss portion and the inner duct and between the inner duct and the outer duct and generates a propulsive force to advance the hull, is applied to the propeller. The reaction fin to give may be provided.
 また、内側ダクト及び外側ダクトは筒状体として形成され、内側ダクト及び外側ダクトの少なくとも一方は、筒状体の軸心をシャフトの回転軸心から偏心させてもよい。 Further, the inner duct and the outer duct may be formed as a cylindrical body, and at least one of the inner duct and the outer duct may decenter the axis of the cylindrical body from the rotational axis of the shaft.
 また、内側ダクト及び外側ダクトは、少なくとも筒状体の一部として形成されてもよい。 Further, the inner duct and the outer duct may be formed as at least a part of a cylindrical body.
 本発明に係る船舶は、船体と、船体の船尾に配置されたプロペラと、船尾のプロペラの前方に配置された上記ダクト装置と、を備えてもよい。 The ship according to the present invention may include a hull, a propeller disposed at the stern of the hull, and the duct device disposed in front of the stern propeller.
 本発明によれば、内側ダクトの前端部と外側ダクトの前端部とで規定されるダクト間流入口の開口面積よりも、内側ダクトの後端部と外側ダクトの後端部とで規定されるダクト間流出口の開口面積を大きく形成したことにより、ダクト間流出口での流出速度をダクト間流入口での流入速度よりも小さくすることができる。このため、伴流係数の向上を図り、推進効率の向上を実現できる。 According to the present invention, the opening area of the inter-duct inlet defined by the front end portion of the inner duct and the front end portion of the outer duct is defined by the rear end portion of the inner duct and the rear end portion of the outer duct. By forming the opening area of the inter-duct outlet large, the outflow speed at the inter-duct outlet can be made smaller than the inflow speed at the inter-duct inlet. For this reason, the wake coefficient can be improved and the propulsion efficiency can be improved.
図1は、第1実施形態に係るダクト装置の一例を模式的に示す側面図である。FIG. 1 is a side view schematically showing an example of a duct device according to the first embodiment. 図2は、第1実施形態に係るダクト装置の一例を模式的に示す正面図である。FIG. 2 is a front view schematically showing an example of the duct device according to the first embodiment. 図3は、第1実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 3 is a partially enlarged view schematically showing an example of the duct device according to the first embodiment. 図4は、第2実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 4 is a partially enlarged view schematically showing an example of the duct device according to the second embodiment. 図5は、第3実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 5 is a partially enlarged view schematically showing an example of the duct device according to the third embodiment. 図6は、第4実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 6 is a partially enlarged view schematically showing an example of the duct device according to the fourth embodiment. 図7は、第5実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 7 is a partially enlarged view schematically showing an example of the duct device according to the fifth embodiment. 図8は、第5実施形態の変形例に係るダクト装置の一例を模式的に示す部分拡大図である。FIG. 8 is a partially enlarged view schematically showing an example of a duct device according to a modification of the fifth embodiment. 図9は、第6実施形態に係るダクト装置の一例を模式的に示す正面図である。FIG. 9 is a front view schematically showing an example of the duct device according to the sixth embodiment. 図10は、第7実施形態に係るダクト装置の一例を模式的に示す正面図である。FIG. 10 is a front view schematically showing an example of the duct device according to the seventh embodiment. 図11は、第7実施形態の変形例に係るダクト装置の一例を模式的に示す正面図である。FIG. 11 is a front view schematically showing an example of a duct device according to a modified example of the seventh embodiment. 図12は、第8実施形態に係るダクト装置の一例を模式的に示す正面図である。FIG. 12 is a front view schematically showing an example of a duct device according to the eighth embodiment. 図13は、第8実施形態の変形例に係るダクト装置の一例を模式的に示す正面図である。FIG. 13 is a front view schematically showing an example of a duct device according to a modification of the eighth embodiment.
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The requirements of the embodiments described below can be combined as appropriate. Some components may not be used.
<第1実施形態>
 図1は、第1実施形態に係るダクト装置の一例を模式的に示す側面図である。図2は、第1実施形態に係るダクト装置の一例を模式的に示す正面図であって、図1のA-A線矢視図に相当する。図3は、第1実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。
<First Embodiment>
FIG. 1 is a side view schematically showing an example of a duct device according to the first embodiment. FIG. 2 is a front view schematically showing an example of the duct device according to the first embodiment, and corresponds to a view taken along the line AA in FIG. FIG. 3 is a partially enlarged view schematically showing an example of the duct device according to the first embodiment.
 図1に示すように、船舶50は、船体100の船尾100Bに設けられたプロペラ101と、プロペラ101の前方に配置されたダクト装置1と、プロペラ101の後方に配置された舵120とを備えている。ダクト装置1は、船体100の船尾100Bに配置される。プロペラ101は、シャフト103を介して、船体100に搭載された動力源(不図示)と接続される。動力源は、ディーゼルエンジンのようなエンジン及びモータの少なくとも一方を含む。船体100は、シャフト103を回転可能に支持する船尾管(ボス部)104を備える。動力源は、シャフト103を介してプロペラ101を回転させる。プロペラ101は、シャフト103の末端に連結されるハブ101Aと、このハブ101Aの外周面に放射状に設けられる複数のブレード101Bとを備え、シャフト103の回転軸心AXを中心に回転する。プロペラ101が回転することにより、船舶50が航走する。 As shown in FIG. 1, the ship 50 includes a propeller 101 provided on the stern 100B of the hull 100, a duct device 1 arranged in front of the propeller 101, and a rudder 120 arranged behind the propeller 101. ing. The duct device 1 is disposed on the stern 100B of the hull 100. Propeller 101 is connected to a power source (not shown) mounted on hull 100 through shaft 103. The power source includes at least one of an engine such as a diesel engine and a motor. The hull 100 includes a stern tube (boss portion) 104 that rotatably supports the shaft 103. The power source rotates the propeller 101 via the shaft 103. The propeller 101 includes a hub 101A connected to the end of the shaft 103, and a plurality of blades 101B provided radially on the outer peripheral surface of the hub 101A, and rotates around the rotation axis AX of the shaft 103. As the propeller 101 rotates, the ship 50 sails.
 プロペラ101の回転により、船舶50は、船首側に前進する。前進する船舶50の進行方向に関して前方に船首が配置され、後方に船尾100Bが配置される。以下の説明において、前進する船舶50の進行方向に関して前方を単に前方と適宜称し、前進する船舶の進行方向に関して後方を単に後方と適宜称する。また、シャフト103の回転軸心AXと平行な方向を適宜、軸方向と称し、回転軸心AXに対する放射方向を適宜、径方向と称する。 The ship 50 moves forward by the rotation of the propeller 101. The bow is disposed forward and the stern 100B is disposed rearward with respect to the traveling direction of the ship 50 moving forward. In the following description, the forward direction of the traveling direction of the marine vessel 50 will be simply referred to as “front”, and the rear side of the forward direction of the marine vessel will be simply referred to as “rear”. A direction parallel to the rotation axis AX of the shaft 103 is appropriately referred to as an axial direction, and a radial direction with respect to the rotation axis AX is appropriately referred to as a radial direction.
 ダクト装置1は、図1及び図2に示すように、プロペラ101の前方に配置される内側ダクト2及び外側ダクト3と、これら内側ダクト2及び外側ダクト3と船体100の少なくとも一部とを接続するステー4とを備えている。内側ダクト2は、プロペラ101の前方において、プロペラ101の回転軸心AXの周囲を囲むように配置され、外側ダクト3は、内側ダクト2の外側に該内側ダクト2の周囲を囲むように配置される。本実施形態では、内側ダクト2及び外側ダクト3は、それぞれ円筒形状に形成され、これらを組み合わせた、いわゆる二重ダクト形状を呈する。内側ダクト2及び外側ダクト3は、船尾管104の一部を囲んで配置され、ステー4は、内側ダクト2及び外側ダクト3と船尾管104とを連結する。 As shown in FIGS. 1 and 2, the duct device 1 connects the inner duct 2 and the outer duct 3 disposed in front of the propeller 101, and connects the inner duct 2 and the outer duct 3 and at least a part of the hull 100. And stay 4 to be provided. The inner duct 2 is disposed in front of the propeller 101 so as to surround the rotation axis AX of the propeller 101, and the outer duct 3 is disposed outside the inner duct 2 so as to surround the periphery of the inner duct 2. The In the present embodiment, the inner duct 2 and the outer duct 3 are each formed in a cylindrical shape and have a so-called double duct shape in which these are combined. The inner duct 2 and the outer duct 3 are arranged so as to surround a part of the stern tube 104, and the stay 4 connects the inner duct 2, the outer duct 3 and the stern tube 104.
 内側ダクト2は、前端部21と、この前端部21よりも後方に配置されてプロペラ101と対向する後端部22とを備える。前端部21は、流体(海水など)が流入する内側ダクト流入口5を規定し、後端部22は、流体が流出する内側ダクト流出口6を規定する。内側ダクト2は、前端部21から後端部22に向けて、内径が漸次短くなるように傾斜する略円錐台の円筒形状を呈した筒状体として構成されており、内側ダクト流出口6は、内側ダクト流入口5よりも小さく形成されている。 The inner duct 2 includes a front end portion 21 and a rear end portion 22 that is arranged behind the front end portion 21 and faces the propeller 101. The front end 21 defines the inner duct inlet 5 through which fluid (seawater or the like) flows, and the rear end 22 defines the inner duct outlet 6 through which fluid flows out. The inner duct 2 is configured as a cylindrical body having a substantially truncated cone cylindrical shape that is inclined so that the inner diameter gradually decreases from the front end portion 21 toward the rear end portion 22. The inner duct inlet 5 is formed smaller than the inner duct inlet 5.
 また、外側ダクト3は、内側ダクト2の外側に、流路となる空間を介して配置される。外側ダクト3は、前端部31と、この前端部31よりも後方に配置されてプロペラ101と対向する後端部32とを備える。前端部31は、内側ダクト2の前端部21とともに、上記した流路に流体が流入するダクト間流入口7を規定し、後端部32は、内側ダクト2の後端部22とともに流体が流出するダクト間流出口8を規定する。外側ダクト3は、内側ダクト2と同様に、前端部31から後端部32に向けて、内径が漸次短くなるように傾斜する略円錐台の円筒形状を呈した筒状体として構成されている。本構成では、ダクト間流出口8がダクト間流入口7よりも大きくなるように、内側ダクト2及び外側ダクト3の形状が規定されている。 The outer duct 3 is disposed outside the inner duct 2 via a space serving as a flow path. The outer duct 3 includes a front end portion 31 and a rear end portion 32 that is arranged behind the front end portion 31 and faces the propeller 101. The front end portion 31 and the front end portion 21 of the inner duct 2 define the inter-duct inlet 7 through which fluid flows into the flow path described above, and the rear end portion 32 flows out of the fluid along with the rear end portion 22 of the inner duct 2. An inter-duct outlet 8 is defined. Similar to the inner duct 2, the outer duct 3 is configured as a cylindrical body having a substantially truncated cone cylindrical shape that is inclined so that the inner diameter gradually decreases from the front end portion 31 toward the rear end portion 32. . In this configuration, the shapes of the inner duct 2 and the outer duct 3 are defined so that the inter-duct outlet 8 is larger than the inter-duct inlet 7.
 本実施形態では、内側ダクト2及び外側ダクト3は、ステー4を介して、船尾管104に連結固定されている。ステー4は、図2に示すように、内端部4Aが船尾管104の上面に固定され、この上面から鉛直上方に延びている。ステー4は、内側ダクト2を貫通し、該ステー4の内端部4Aと外端部4Bとの間に形成された中間部4Cが内側ダクト2に連結されている。また、ステー4の外端部4Bは、外側ダクト3の内周面に連結されている。ステー4の断面は翼型を呈しており、内側ダクト2内及び外側ダクト3内の水(海水)の流れを阻害しないように形成されている。ステー4の断面形状は、翼型だけでなく、楕円型や半楕円型としてもよい。 In the present embodiment, the inner duct 2 and the outer duct 3 are connected and fixed to the stern tube 104 via the stay 4. As shown in FIG. 2, the stay 4 has an inner end 4 </ b> A fixed to the upper surface of the stern tube 104 and extends vertically upward from the upper surface. The stay 4 passes through the inner duct 2, and an intermediate portion 4 </ b> C formed between the inner end 4 </ b> A and the outer end 4 </ b> B of the stay 4 is connected to the inner duct 2. Further, the outer end 4 </ b> B of the stay 4 is connected to the inner peripheral surface of the outer duct 3. The cross section of the stay 4 has an airfoil shape and is formed so as not to obstruct the flow of water (seawater) in the inner duct 2 and the outer duct 3. The cross-sectional shape of the stay 4 may be not only an airfoil shape but also an elliptical shape or a semi-elliptical shape.
 内側ダクト2及び外側ダクト3は、少なくともこれら内側ダクト2(筒状体)の軸心SX1及び外側ダクト3(筒状体)の軸心SX2と、シャフト103の回転軸心AXとが平行となるように配置されている。本実施形態では、内側ダクト2及び外側ダクト3は、プロペラ101のシャフト103と同心上、すなわち、内側ダクト2及び外側ダクト3の各軸心SX1,SX2とシャフト103の回転軸心AXとが一致するように配置されている。 In the inner duct 2 and the outer duct 3, at least the axis SX1 of the inner duct 2 (cylindrical body) and the axis SX2 of the outer duct 3 (cylindrical body) are parallel to the rotational axis AX of the shaft 103. Are arranged as follows. In the present embodiment, the inner duct 2 and the outer duct 3 are concentric with the shaft 103 of the propeller 101, that is, the axial centers SX1, SX2 of the inner duct 2 and the outer duct 3 coincide with the rotational axis AX of the shaft 103. Are arranged to be.
 図3に示すように、内側ダクト2及び外側ダクト3の断面は、それぞれ翼型である。内側ダクト2及び外側ダクト3の翼型は、流体との相互作用によって効率良く揚力を得られる外形を有する。具体的には、内側ダクト2の翼型は、前端部21の輪郭を形成する前縁23から後端部22の輪郭を形成する後縁24に向かって徐々に細くなる形状である。本実施形態では、内側ダクト2の翼型の外面26は、直線状、あるいは内面25の凸度合いよりも小さい凸、あるいは凹な曲面状である。内側ダクト2の翼型の内面25は、内側(船尾管104側)に凸な曲面状である。内側ダクト2の翼型形状において、前縁23と後縁24とを結ぶ直線が翼弦線27を規定する。同様に、外側ダクト3の翼型は、前端部31の輪郭を形成する前縁33から後端部32の輪郭を形成する後縁34に向かって徐々に細くなる形状である。本実施形態では、外側ダクト3の翼型の外面36は、直線状、あるいは内面35の凸度合いよりも小さい凸、あるいは凹な曲面状である。外側ダクト3の翼型の内面35は、内側(内側ダクト2側)に凸な曲面状である。また、外側ダクト3の翼型形状において、前縁33と後縁34とを結ぶ直線が翼弦線37を規定する。 As shown in FIG. 3, the cross sections of the inner duct 2 and the outer duct 3 are each an airfoil. The airfoils of the inner duct 2 and the outer duct 3 have an outer shape that can efficiently obtain lift by interaction with a fluid. Specifically, the airfoil of the inner duct 2 has a shape that gradually narrows from the front edge 23 that forms the contour of the front end portion 21 toward the rear edge 24 that forms the contour of the rear end portion 22. In the present embodiment, the airfoil outer surface 26 of the inner duct 2 is linear, or has a convex or concave curved surface that is smaller than the convexity of the inner surface 25. The airfoil inner surface 25 of the inner duct 2 has a curved surface convex toward the inner side (stern tube 104 side). In the airfoil shape of the inner duct 2, a straight line connecting the leading edge 23 and the trailing edge 24 defines a chord line 27. Similarly, the airfoil of the outer duct 3 has a shape that gradually narrows from the front edge 33 that forms the contour of the front end portion 31 toward the rear edge 34 that forms the contour of the rear end portion 32. In the present embodiment, the airfoil outer surface 36 of the outer duct 3 is linear, or has a convex or concave curved surface that is smaller than the convexity of the inner surface 35. The airfoil inner surface 35 of the outer duct 3 has a curved surface that protrudes inward (inner duct 2 side). Further, in the airfoil shape of the outer duct 3, a straight line connecting the leading edge 33 and the trailing edge 34 defines a chord line 37.
 水上(海上)を船舶50が前進すると、水(海水)の少なくとも一部は、上記した内側ダクト流入口5及びダクト間流入口7を通じて、内側ダクト2内及び外側ダクト3内に流入する。流入した水は、内側ダクト2及び外側ダクト3の各内面(内周面)25,35及び各外面(外周面)26,36に沿って流れる。内側ダクト2及び外側ダクト3は、それぞれ内面25,35の方が外面26,36よりも凸度合いが大きく形成されているため、内面25,35に沿って流れる流速が外面26,36に沿って流れる流速よりも大きくなり、ベルヌーイの定理により、各前端部21,31における内側ダクト2及び外側ダクト3の各内面(内周面)25,35側が負圧になり、揚力が発生する。この揚力の軸方向の成分によって、推力が発生する。本構成では、内側ダクト2及び外側ダクト3がそれぞれ推力を発生させるため、その分、プロペラ101を動かす動力源の出力が抑制され、推進効率(燃料の利用効率)を高めることができる。 When the ship 50 advances on the water (on the sea), at least a part of the water (seawater) flows into the inner duct 2 and the outer duct 3 through the inner duct inlet 5 and the inter-duct inlet 7 described above. The inflowed water flows along the inner surfaces (inner peripheral surfaces) 25 and 35 and the outer surfaces (outer peripheral surfaces) 26 and 36 of the inner duct 2 and the outer duct 3. Since the inner duct 2 and the outer duct 3 are formed such that the inner surfaces 25 and 35 are more convex than the outer surfaces 26 and 36, respectively, the flow velocity flowing along the inner surfaces 25 and 35 is along the outer surfaces 26 and 36. It becomes larger than the flowing flow velocity, and according to Bernoulli's theorem, the inner surfaces 2 (inner peripheral surfaces) 25 and 35 of the inner duct 2 and the outer duct 3 at the front end portions 21 and 31 become negative pressure, and lift is generated. Thrust is generated by the axial component of this lift. In this configuration, since the inner duct 2 and the outer duct 3 each generate thrust, the output of the power source that moves the propeller 101 is suppressed accordingly, and the propulsion efficiency (fuel utilization efficiency) can be increased.
 ところで、内側ダクト2及び外側ダクト3を組み合わせた二重ダクト構造では、推進効率の更なる向上を図る構成が模索されている。発明者の鋭意研究によれば、ダクト間流出口8から流出される水(海水)の流速が、ダクト間流入口7に流入される水(海水)の流速よりも早い場合、プロペラ101に対する水の流れの迎角が相対的に小さくなり、同一回転数においてプロペラ推力(伴流係数)が減少する。伴流係数は、プロペラ101に流入する水の流速が船速に対してどれだけ遅くなっているかを示す値であり、伴流係数が大きいほど、船舶の推進効率が改善する。このため、ダクト間流出口8の水の流速がダクト間流入口7の水の流速よりも早い構成では、伴流係数が低減して船舶50の推進効率が低減することが判明した。 By the way, in the double duct structure in which the inner duct 2 and the outer duct 3 are combined, a structure for further improving the propulsion efficiency is being sought. According to the inventor's earnest research, when the flow velocity of water (seawater) flowing out from the interduct duct outlet 8 is faster than the flow velocity of water (seawater) flowing into the interduct inlet 7, The angle of attack of the flow becomes relatively small, and the propeller thrust (wake coefficient) decreases at the same rotational speed. The wake coefficient is a value indicating how slow the flow velocity of the water flowing into the propeller 101 is with respect to the ship speed, and the propulsion efficiency of the ship improves as the wake coefficient increases. For this reason, it has been found that the wake coefficient is reduced and the propulsion efficiency of the ship 50 is reduced in a configuration in which the flow velocity of water at the inter-duct outlet 8 is higher than the flow velocity of water at the inter-duct inlet 7.
 この問題を解決するために、本実施形態では、ダクト間流出口8の開口面積Aoをダクト間流入口7の開口面積Aiよりも大きく形成している。具体的には、図3に示すように、内側ダクト2の翼型の翼弦線27とシャフト103の回転軸心AXと平行な線とがなす角度θ1は、外側ダクト3の翼型の翼弦線37と回転軸心AXと平行な線とがなす角度θ2よりも大きく形成されている。この構成では、内側ダクト2の翼型の傾斜角度が外側ダクト3の翼型の傾斜角度よりも大きくなり、ダクト間流出口8の開口面積Aoをダクト間流入口7の開口面積Aiよりも大きく形成することができる。 In order to solve this problem, in this embodiment, the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7. Specifically, as shown in FIG. 3, the angle θ1 formed by the airfoil chord line 27 of the inner duct 2 and the line parallel to the rotational axis AX of the shaft 103 is the airfoil blade of the outer duct 3. It is formed larger than the angle θ2 formed by the chord line 37 and a line parallel to the rotational axis AX. In this configuration, the airfoil inclination angle of the inner duct 2 is larger than the airfoil inclination angle of the outer duct 3, and the opening area Ao of the interduct outlet 8 is larger than the opening area Ai of the interduct inlet 7. Can be formed.
 ダクト間流入口7での流入速度Vi、ダクト間流出口8での流出速度Voとすると、連続の式により、
   Ai×Vi=Ao×Vo   (1)
 が成立する。この数式(1)は、
   Vo=Ai/Ao×Vi   (2)
 となる。上述のように開口面積Aoは開口面積Aiよりも大きいため、流出速度Voを流入速度Viよりも小さくすることができる。
Assuming that the inflow speed Vi at the inlet 7 between the ducts and the outflow speed Vo at the outlet 8 between the ducts,
Ai x Vi = Ao x Vo (1)
Is established. This equation (1) is
Vo = Ai / Ao × Vi (2)
It becomes. Since the opening area Ao is larger than the opening area Ai as described above, the outflow speed Vo can be made smaller than the inflow speed Vi.
 この構成によれば、ダクト間流出口8での流出速度Voをダクト間流入口7での流入速度Viよりも小さく(遅く)するディフューザ効果を奏することができる。このため、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図ることができる。従って、船舶50の推進効率の向上を実現でき、所要馬力を低減することができる。 According to this configuration, it is possible to achieve a diffuser effect in which the outflow velocity Vo at the inter-duct outlet 8 is smaller (slower) than the inflow velocity Vi at the inter-duct inlet 7. For this reason, the resistance at the time of driving the propeller 101 can be reduced, and the wake coefficient can be improved accordingly. Therefore, the propulsion efficiency of the ship 50 can be improved, and the required horsepower can be reduced.
 ここで、内側ダクト2の翼型の翼弦線27とシャフト103の回転軸心AXと平行な線とがなす角度θ1を大きくすることにより、内側ダクト2の内側ダクト流出口6の開口面積が相対的に小さくなり、内側ダクト流出口6での流出速度が増加する。しかし、内側ダクト流出口6から流出された水は、プロペラ101のハブ101Aを含む中央部に供給されるため、プロペラ効率(伴流係数)への影響を抑制することができる。 Here, by increasing the angle θ1 formed between the airfoil chord line 27 of the inner duct 2 and a line parallel to the rotational axis AX of the shaft 103, the opening area of the inner duct outlet 6 of the inner duct 2 is increased. It becomes relatively small, and the outflow speed at the inner duct outlet 6 increases. However, since the water flowing out from the inner duct outlet 6 is supplied to the central portion including the hub 101A of the propeller 101, the influence on the propeller efficiency (wake coefficient) can be suppressed.
 また、本実施形態では、内側ダクト2の前端部21と外側ダクト3の前端部31とは、シャフト103の回転軸心AXに垂直な所定の同一面F1上に位置し、内側ダクト2の後端部22と外側ダクト3の後端部32とは、シャフト103の回転軸心AXに垂直な所定の同一面F2上に位置する。この構成によれば、内側ダクト2及び外側ダクト3の翼弦長(コード長)が同等に形成されるため、内側ダクト2及び外側ダクト3にそれぞれ推力を発生させることができ、推進効率の向上を実現できる。 In the present embodiment, the front end portion 21 of the inner duct 2 and the front end portion 31 of the outer duct 3 are located on a predetermined same plane F1 perpendicular to the rotation axis AX of the shaft 103, and the rear of the inner duct 2. The end 22 and the rear end 32 of the outer duct 3 are located on a predetermined same plane F2 perpendicular to the rotation axis AX of the shaft 103. According to this configuration, since the chord lengths (cord lengths) of the inner duct 2 and the outer duct 3 are formed to be equal, thrust can be generated in the inner duct 2 and the outer duct 3, respectively, and the propulsion efficiency is improved. Can be realized.
 また、内側ダクト2の後端部22と外側ダクト3の後端部32とが所定の同一面F2上に位置することにより、内側ダクト2の後端部22と外側ダクト3の後端部32とを揃えて配置することができる。このため、各ダクトの後端部22,32とプロペラ101との距離をほぼ一定とすることができ、各ダクトの後端部22,32で規定されるダクト間流出口8から流出されてプロペラ101に流入する流れの均一化を図ることができ、伴流係数の向上を図ることができる。 Further, the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located on a predetermined same plane F2, so that the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located. And can be arranged. Therefore, the distance between the rear end portions 22 and 32 of each duct and the propeller 101 can be made substantially constant, and the propeller is discharged from the inter-duct outlet 8 defined by the rear end portions 22 and 32 of each duct. The flow flowing into 101 can be made uniform, and the wake coefficient can be improved.
 また、本実施形態では、シャフト103の回転軸心AXからプロペラ101のブレード101Bの先端までの径方向の距離をrとした場合、回転軸心AXから内側ダクト2の後端部22までの径方向の距離L1は、0.3r以上0.5r以下であり、回転軸心AXから外側ダクト3の後端部32までの径方向の距離L3は、0.5r以上0.9r以下とすることが好ましい。この場合、内側ダクト2の後端部22と外側ダクト3の後端部32との径方向の距離L2(L3-L1)は、0.2r以上0.4r以下に設けられる。距離L2が、0.2rよりも小さい場合には、内側ダクト2と外側ダクト3とが接近し、これらダクト間の干渉を生じる。また、0.4rよりも大きい場合には、上記した各ダクトの内面25,35に沿って流れる流速と外面26,36に沿って流れる流速との流速差が得られにくくなり、内側ダクト2と外側ダクト3に発生する推力が低減することが想定されるためである。 Further, in this embodiment, when the radial distance from the rotation axis AX of the shaft 103 to the tip of the blade 101B of the propeller 101 is r, the diameter from the rotation axis AX to the rear end 22 of the inner duct 2. The distance L1 in the direction is 0.3r or more and 0.5r or less, and the radial distance L3 from the rotation axis AX to the rear end portion 32 of the outer duct 3 is 0.5r or more and 0.9r or less. Is preferred. In this case, a radial distance L2 (L3-L1) between the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 is set to 0.2r to 0.4r. When the distance L2 is smaller than 0.2r, the inner duct 2 and the outer duct 3 come close to each other, causing interference between these ducts. Further, if it is larger than 0.4r, it becomes difficult to obtain a flow velocity difference between the flow velocity flowing along the inner surfaces 25, 35 of each duct and the flow velocity flowing along the outer surfaces 26, 36. This is because the thrust generated in the outer duct 3 is assumed to be reduced.
<第2実施形態>
 図4は、第2実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。この第2実施形態に係るダクト装置1Aは、図4に示すように、外側ダクト3Aの形状が異なる。第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
Second Embodiment
FIG. 4 is a partially enlarged view schematically showing an example of the duct device according to the second embodiment. As shown in FIG. 4, the duct device 1A according to the second embodiment is different in the shape of the outer duct 3A. The same components as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 第2実施形態に係るダクト装置1Aにおいても、ダクト間流出口8の開口面積Aoをダクト間流入口7の開口面積Aiよりも大きく形成している。具体的には、図4に示すように、外側ダクト3Aの翼型の外面36Aは若干凹な曲面状に形成され、外側ダクト3Aの翼型の後縁34Aは、シャフト103の回転軸心AXに対して径方向に湾曲している。別の表現では、外側ダクト3Aの翼型のキャンバ線38Aは、後縁34Aに向かって、内側ダクト2の翼弦線27から徐々に離間するように湾曲している。これにより、ダクト装置1Aでは、ダクト間流出口8の開口面積Aoがダクト間流入口7の開口面積Aiよりも大きく形成されるため、ダクト間流出口8での流出速度Voをダクト間流入口7での流入速度Viよりも小さく(遅く)するディフューザ効果を奏することができる。このため、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図り、ひいては、推進効率の向上を実現できる。 Also in the duct apparatus 1A according to the second embodiment, the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7. Specifically, as shown in FIG. 4, the airfoil outer surface 36 </ b> A of the outer duct 3 </ b> A is formed in a slightly concave curved shape, and the trailing edge 34 </ b> A of the airfoil of the outer duct 3 </ b> A is the rotation axis AX of the shaft 103. Is curved in the radial direction. In other words, the airfoil camber line 38A of the outer duct 3A is curved so as to gradually move away from the chord line 27 of the inner duct 2 toward the trailing edge 34A. Thereby, in the duct apparatus 1A, since the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7, the outflow velocity Vo at the inter-duct outlet 8 is set to the inter-duct inlet. The diffuser effect that is smaller (slower) than the inflow velocity Vi in FIG. For this reason, the resistance at the time of driving the propeller 101 can be reduced, and the wake coefficient can be improved correspondingly, and as a result, the propulsion efficiency can be improved.
 また、本実施形態においても、内側ダクト2の前端部21と外側ダクト3Aの前端部31Aとは、シャフト103の回転軸心AXに垂直な所定の同一面F1上に位置し、内側ダクト2の後端部22と外側ダクト3Aの後端部32Aとは、シャフト103の回転軸心AXに垂直な所定の同一面F2上に位置する。この構成によれば、内側ダクト2及び外側ダクト3Aの翼弦長(コード長)が同等に形成されるため、内側ダクト2及び外側ダクト3Aにそれぞれ推力を発生させることができ、推進効率の向上を実現できる。 Also in the present embodiment, the front end portion 21 of the inner duct 2 and the front end portion 31A of the outer duct 3A are located on a predetermined same plane F1 perpendicular to the rotation axis AX of the shaft 103, and the inner duct 2 The rear end portion 22 and the rear end portion 32A of the outer duct 3A are located on a predetermined same plane F2 perpendicular to the rotation axis AX of the shaft 103. According to this configuration, since the chord lengths (cord lengths) of the inner duct 2 and the outer duct 3A are formed to be equal, thrust can be generated in the inner duct 2 and the outer duct 3A, respectively, and the propulsion efficiency is improved. Can be realized.
 また、内側ダクト2の後端部22と外側ダクト3Aの後端部32Aとが所定の同一面F2上に位置することにより、内側ダクト2の後端部22と外側ダクト3Aの後端部32Aとを揃えて配置することができる。このため、各ダクトの後端部22,32Aとプロペラ101との距離をほぼ一定とすることができ、各ダクトの後端部22,32Aで規定されるダクト間流出口8から流出されてプロペラ101に流入する流れの均一化を図ることができ、伴流係数の向上を図ることができる。 Further, the rear end portion 22 of the inner duct 2 and the rear end portion 32A of the outer duct 3A are located on a predetermined same plane F2, so that the rear end portion 22 of the inner duct 2 and the rear end portion 32A of the outer duct 3A are located. And can be arranged. For this reason, the distance between the rear end portions 22, 32A of each duct and the propeller 101 can be made substantially constant, and the propeller is discharged from the inter-duct outlet 8 defined by the rear end portions 22, 32A of each duct. The flow flowing into 101 can be made uniform, and the wake coefficient can be improved.
 また、本実施形態では、シャフト103の回転軸心AXからプロペラ101のブレード101Bの先端までの径方向の距離をrとした場合、回転軸心AXから内側ダクト2の後端部22までの径方向の距離L1は、0.3r以上0.5r以下であり、回転軸心AXから外側ダクト3Aの後端部32Aまでの径方向の距離L3は、0.5r以上0.9r以下とすることが好ましい。この場合、内側ダクト2の後端部22と外側ダクト3Aの後端部32Aとの径方向の距離L2(L3-L1)は、0.2r以上0.4r以下に設けられる。この構成によれば、内側ダクト2と外側ダクト3Aとの干渉を抑制するとともに、各ダクトの内面25,35Aに沿って流れる流速と外面26,36Aに沿って流れる流速との流速差を所定値以上に確保することができ、内側ダクト2と外側ダクト3Aに発生する推力の低減を抑制できる。 Further, in this embodiment, when the radial distance from the rotation axis AX of the shaft 103 to the tip of the blade 101B of the propeller 101 is r, the diameter from the rotation axis AX to the rear end 22 of the inner duct 2. The distance L1 in the direction is 0.3r or more and 0.5r or less, and the radial distance L3 from the rotation axis AX to the rear end portion 32A of the outer duct 3A is 0.5r or more and 0.9r or less. Is preferred. In this case, a radial distance L2 (L3-L1) between the rear end portion 22 of the inner duct 2 and the rear end portion 32A of the outer duct 3A is set to be 0.2r to 0.4r. According to this configuration, the interference between the inner duct 2 and the outer duct 3A is suppressed, and the flow velocity difference between the flow velocity flowing along the inner surfaces 25 and 35A of each duct and the flow velocity flowing along the outer surfaces 26 and 36A is a predetermined value. This can be ensured as described above, and a reduction in thrust generated in the inner duct 2 and the outer duct 3A can be suppressed.
<第3実施形態>
 図5は、第3実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。この第3実施形態に係るダクト装置1Bは、図5に示すように、内側ダクト2Bの形状が異なる。第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
<Third Embodiment>
FIG. 5 is a partially enlarged view schematically showing an example of the duct device according to the third embodiment. As shown in FIG. 5, the duct device 1B according to the third embodiment is different in the shape of the inner duct 2B. The same components as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 第3実施形態に係るダクト装置1Bにおいても、ダクト間流出口8の開口面積Aoをダクト間流入口7の開口面積Aiよりも大きく形成している。具体的には、図5に示すように、内側ダクト2Bは翼型の翼弦長が外側ダクト3の翼型の翼弦長よりも長く形成されている。内側ダクト2Bの前端部21Bと外側ダクト3の前端部31とは、シャフト103の回転軸心AXに垂直な所定の同一面F1上に位置することにより、内側ダクト2Bの後端部22Bは、外側ダクト3の後端部32よりも軸方向にプロペラ101に接近して突出する。また、内側ダクト2Bの翼型の翼弦線27Bと、外側ダクト3の翼型の翼弦線37とは、これら翼弦線27B,37と回転軸心AXと平行な線とがなす角度θが同一に形成されている。すなわち、内側ダクト2Bと外側ダクト3とは、翼弦線27B,37が互いに略平行となるように配置されている。 Also in the duct apparatus 1B according to the third embodiment, the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7. Specifically, as shown in FIG. 5, the inner duct 2 </ b> B is formed such that the airfoil chord length is longer than the airfoil chord length of the outer duct 3. The front end portion 21B of the inner duct 2B and the front end portion 31 of the outer duct 3 are positioned on a predetermined same plane F1 perpendicular to the rotation axis AX of the shaft 103, whereby the rear end portion 22B of the inner duct 2B is It protrudes closer to the propeller 101 in the axial direction than the rear end portion 32 of the outer duct 3. The airfoil chord line 27B of the inner duct 2B and the airfoil chord line 37 of the outer duct 3 are formed by an angle θ formed by the chord lines 27B and 37 and a line parallel to the rotational axis AX. Are formed identically. That is, the inner duct 2B and the outer duct 3 are arranged so that the chord lines 27B and 37 are substantially parallel to each other.
 上記した構成によれば、内側ダクト2Bの前端部21Bと外側ダクト3の前端部31との距離L4よりも、内側ダクト2Bの後端部22Bと外側ダクト3の後端部32との距離L5は長く(大きく)形成される。このため、ダクト間流出口8の開口面積Aoは、ダクト間流入口7の開口面積Aiよりも大きく形成される。従って、ダクト間流出口8での流出速度Voをダクト間流入口7での流入速度Viよりも小さく(遅く)するディフューザ効果を奏することができるため、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図り、ひいては、推進効率の向上を実現できる。 According to the configuration described above, the distance L5 between the rear end portion 22B of the inner duct 2B and the rear end portion 32 of the outer duct 3 is larger than the distance L4 between the front end portion 21B of the inner duct 2B and the front end portion 31 of the outer duct 3. Is formed long (large). For this reason, the opening area Ao of the outlet 8 between ducts is formed larger than the opening area Ai of the inlet 7 between ducts. Accordingly, a diffuser effect can be achieved in which the outflow speed Vo at the inter-duct outlet 8 is made smaller (slower) than the inflow speed Vi at the inter-duct inlet 7, so that resistance when the propeller 101 is driven can be reduced. Therefore, the wake coefficient can be improved, and as a result, the propulsion efficiency can be improved.
 また、本実施形態では、内側ダクト2Bの翼弦長(コード長)を外側ダクト3の翼弦長(コード長)よりも長く形成したため、内側ダクト2Bにより大きな推力を発生させることができる。 In the present embodiment, since the chord length (cord length) of the inner duct 2B is formed longer than the chord length (cord length) of the outer duct 3, a large thrust can be generated by the inner duct 2B.
 <第4実施形態>
 図6は、第4実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。この第4実施形態に係るダクト装置1Cは、図6に示すように、内側ダクト2Cの形状が異なる。第1実施形態と同一の構成については、同一の符号を付して説明を省略する。
<Fourth embodiment>
FIG. 6 is a partially enlarged view schematically showing an example of the duct device according to the fourth embodiment. As shown in FIG. 6, the duct device 1C according to the fourth embodiment is different in the shape of the inner duct 2C. About the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 第4実施形態に係るダクト装置1Cにおいても、ダクト間流出口8の開口面積Aoをダクト間流入口7の開口面積Aiよりも大きく形成している。具体的には、図6に示すように、内側ダクト2Cは翼型の翼弦長が外側ダクト3の翼型の翼弦長よりも短く形成されている。さらに、内側ダクト2Cの後端部22Cは、外側ダクト3の後端部32よりも軸方向にプロペラ101から離間した位置に設けられる。また、内側ダクト2Cの翼型の翼弦線27Cと、外側ダクト3の翼型の翼弦線37とは、これら翼弦線27C,37と回転軸心AXと平行な線とがなす角度θが同一に形成されている。すなわち、内側ダクト2Cと外側ダクト3とは、翼弦線27C,37が互いに略平行となるように配置されている。 Also in the duct apparatus 1C according to the fourth embodiment, the opening area Ao of the inter-duct outlet 8 is formed larger than the opening area Ai of the inter-duct inlet 7. Specifically, as shown in FIG. 6, the inner duct 2 </ b> C is formed so that the airfoil chord length is shorter than the airfoil chord length of the outer duct 3. Furthermore, the rear end portion 22C of the inner duct 2C is provided at a position that is more distant from the propeller 101 in the axial direction than the rear end portion 32 of the outer duct 3. The airfoil chord line 27C of the inner duct 2C and the airfoil chord line 37 of the outer duct 3 are formed by an angle θ formed by the chord lines 27C and 37 and a line parallel to the rotational axis AX. Are formed identically. That is, the inner duct 2C and the outer duct 3 are arranged such that the chord lines 27C and 37 are substantially parallel to each other.
 上記した構成によれば、内側ダクト2Cの前端部21Cと外側ダクト3の前端部31との距離L6よりも、内側ダクト2Cの後端部22Cと外側ダクト3の後端部32との距離L7は長く(大きく)形成される。このため、ダクト間流出口8の開口面積Aoは、ダクト間流入口7の開口面積Aiよりも大きく形成される。従って、ダクト間流出口8での流出速度Voをダクト間流入口7での流入速度Viよりも小さく(遅く)するディフューザ効果を奏することができるため、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図り、ひいては、船舶50の推進効率の向上を実現できる。 According to the configuration described above, the distance L7 between the rear end portion 22C of the inner duct 2C and the rear end portion 32 of the outer duct 3 is larger than the distance L6 between the front end portion 21C of the inner duct 2C and the front end portion 31 of the outer duct 3. Is formed long (large). For this reason, the opening area Ao of the outlet 8 between ducts is formed larger than the opening area Ai of the inlet 7 between ducts. Accordingly, a diffuser effect can be achieved in which the outflow speed Vo at the inter-duct outlet 8 is made smaller (slower) than the inflow speed Vi at the inter-duct inlet 7, so that resistance when the propeller 101 is driven can be reduced. Accordingly, the wake coefficient can be improved, and as a result, the propulsion efficiency of the ship 50 can be improved.
 また、本実施形態では、ダクト間流出口8の開口面積Aoがダクト間流入口7の開口面積Aiよりも大きい条件の下、外側ダクト3に対する内側ダクト2Cの軸方向位置を自在に変更することができ、ダクト装置1Cの配置構成の自由度を高めることができる。 In the present embodiment, the axial position of the inner duct 2C relative to the outer duct 3 can be freely changed under the condition that the opening area Ao of the inter-duct outlet 8 is larger than the opening area Ai of the inter-duct inlet 7. The degree of freedom of the arrangement configuration of the duct device 1C can be increased.
<第5実施形態>
 図7は、第5実施形態に係るダクト装置の一例を模式的に示す部分拡大図である。この第5実施形態に係るダクト装置1Dに関し、第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
<Fifth Embodiment>
FIG. 7 is a partially enlarged view schematically showing an example of the duct device according to the fifth embodiment. Regarding the duct device 1D according to the fifth embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、図7に示すように、内側ダクト2の前端部21と外側ダクト3の前端部31とは、シャフト103の回転軸心AXに垂直な所定の同一面F1上に位置し、内側ダクト2の後端部22と外側ダクト3の後端部32とは、シャフト103の回転軸心AXに垂直な所定の同一面F2上に位置する。また、内側ダクト2の翼型の翼弦線27と、外側ダクト3の翼型の翼弦線37とは、これら翼弦線27,37と回転軸心AXと平行な線とがなす角度θが同一に形成されている。すなわち、内側ダクト2と外側ダクト3とは、翼弦線27,37が互いに略平行となるように配置されている。 In the present embodiment, as shown in FIG. 7, the front end portion 21 of the inner duct 2 and the front end portion 31 of the outer duct 3 are located on a predetermined same plane F1 perpendicular to the rotation axis AX of the shaft 103, The rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located on a predetermined same plane F2 perpendicular to the rotation axis AX of the shaft 103. The airfoil chord line 27 of the inner duct 2 and the airfoil chord line 37 of the outer duct 3 are formed by an angle θ formed by the chord lines 27 and 37 and a line parallel to the rotational axis AX. Are formed identically. That is, the inner duct 2 and the outer duct 3 are arranged such that the chord lines 27 and 37 are substantially parallel to each other.
 この構成によれば、内側ダクト2及び外側ダクト3の翼弦長(コード長)が同等に形成されるため、内側ダクト2及び外側ダクト3にそれぞれ推力を発生させることができ、推進効率の向上を実現できる。また、内側ダクト2の後端部22と外側ダクト3の後端部32とが所定の同一面F2上に位置することにより、内側ダクト2の後端部22と外側ダクト3の後端部32とを揃えて配置することができる。この構成では、ダクト間流出口8の開口面積Aoがダクト間流入口7の開口面積Aiよりも小さくなるものの、各ダクトの後端部22,32とプロペラ101との距離をほぼ一定とすることができる。このため、各ダクトの後端部22,32で規定されるダクト間流出口8から流出されてプロペラ101に流入する流れの均一化を図ることができ、伴流係数の向上を図ることができる。 According to this configuration, since the chord lengths (cord lengths) of the inner duct 2 and the outer duct 3 are formed to be equal, thrust can be generated in the inner duct 2 and the outer duct 3, respectively, and the propulsion efficiency is improved. Can be realized. Further, the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located on a predetermined same plane F2, so that the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 are located. And can be arranged. In this configuration, although the opening area Ao of the inter-duct outlet 8 is smaller than the opening area Ai of the inter-duct inlet 7, the distance between the rear end portions 22 and 32 of each duct and the propeller 101 is substantially constant. Can do. For this reason, the flow that flows out from the inter-duct outlet 8 defined by the rear end portions 22 and 32 of each duct and flows into the propeller 101 can be made uniform, and the wake coefficient can be improved. .
 また、本実施形態では、シャフト103の回転軸心AXからプロペラ101のブレード101Bの先端までの径方向の距離をrとした場合、回転軸心AXから内側ダクト2の後端部22までの径方向の距離L1は、0.3r以上0.5r以下であり、回転軸心AXから外側ダクト3の後端部32までの径方向の距離L3は、0.5r以上0.9r以下とすることが好ましい。この場合、内側ダクト2の後端部22と外側ダクト3の後端部32との径方向の距離L2(L3-L1)は、0.2r以上0.4r以下に設けられる。この構成によれば、内側ダクト2と外側ダクト3との干渉を抑制するとともに、各ダクトの内面25,35に沿って流れる流速と外面26,36に沿って流れる流速との流速差を所定値以上に確保することができ、内側ダクト2と外側ダクト3に発生する推力の低減を抑制できる。 Further, in this embodiment, when the radial distance from the rotation axis AX of the shaft 103 to the tip of the blade 101B of the propeller 101 is r, the diameter from the rotation axis AX to the rear end 22 of the inner duct 2. The distance L1 in the direction is 0.3r or more and 0.5r or less, and the radial distance L3 from the rotation axis AX to the rear end portion 32 of the outer duct 3 is 0.5r or more and 0.9r or less. Is preferred. In this case, a radial distance L2 (L3-L1) between the rear end portion 22 of the inner duct 2 and the rear end portion 32 of the outer duct 3 is set to 0.2r to 0.4r. According to this configuration, interference between the inner duct 2 and the outer duct 3 is suppressed, and a difference between the flow velocity flowing along the inner surfaces 25 and 35 of each duct and the flow velocity flowing along the outer surfaces 26 and 36 is a predetermined value. This can be ensured as described above, and a reduction in thrust generated in the inner duct 2 and the outer duct 3 can be suppressed.
 次に、第5実施形態の変形例について説明する。図8は、第5実施形態の変形例に係るダクト装置の一例を模式的に示す部分拡大図である。この変形例に係るダクト装置1Eに関し、第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。本変形例では、内側ダクト2E及び外側ダクト3Eは、それぞれ翼弦長(コード長)が軸心SX1,SX2を中心とした周方向の位置によって異なる点で第5実施形態のダクト装置1Dと構成を異にする。 Next, a modification of the fifth embodiment will be described. FIG. 8 is a partially enlarged view schematically showing an example of a duct device according to a modification of the fifth embodiment. Regarding the duct device 1E according to this modified example, the same components as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the present modification, the inner duct 2E and the outer duct 3E are each configured in the same manner as the duct device 1D of the fifth embodiment in that the chord length (cord length) is different depending on the position in the circumferential direction about the axes SX1 and SX2. Make different.
 本変形例では、図8に示すように、内側ダクト2Eの後端部22Eと外側ダクト3Eの後端部32Eとは、シャフト103の回転軸心AXに垂直な所定の同一面F2上に位置する。また、内側ダクト2Eの翼型の翼弦線27Eと、外側ダクト3Eの翼型の翼弦線37Eとは、これら翼弦線27E,37Eと回転軸心AXと平行な線とがなす角度θが同一に形成されている。すなわち、内側ダクト2Eと外側ダクト3Eとは、翼弦線27E,37Eが互いに略平行となるように配置されている。 In the present modification, as shown in FIG. 8, the rear end portion 22E of the inner duct 2E and the rear end portion 32E of the outer duct 3E are located on a predetermined same plane F2 perpendicular to the rotational axis AX of the shaft 103. To do. The airfoil chord line 27E of the inner duct 2E and the airfoil chord line 37E of the outer duct 3E are formed by an angle θ formed by the chord lines 27E and 37E and a line parallel to the rotational axis AX. Are formed identically. That is, the inner duct 2E and the outer duct 3E are arranged so that the chord lines 27E and 37E are substantially parallel to each other.
 本変形例によれば、内側ダクト2Eの後端部22Eと外側ダクト3Eの後端部32Eとが所定の同一面F2上に位置することにより、内側ダクト2Eの後端部22Eと外側ダクト3Eの後端部32Eとを揃えて配置することができる。このため、上記した第5実施形態と同様に、各ダクトの後端部22E,32Eとプロペラ101との距離をほぼ一定とすることができる。従って、各ダクトの後端部22E,32Eで規定されるダクト間流出口8から流出されてプロペラ101に流入する流れの均一化を図ることができ、伴流係数の向上を図ることができる。 According to this modification, the rear end portion 22E of the inner duct 2E and the rear end portion 32E of the outer duct 3E are positioned on a predetermined same plane F2, so that the rear end portion 22E of the inner duct 2E and the outer duct 3E are arranged. The rear end 32E can be aligned. For this reason, similarly to the fifth embodiment described above, the distance between the rear end portions 22E and 32E of each duct and the propeller 101 can be made substantially constant. Therefore, the flow that flows out from the inter-duct outlet 8 defined by the rear end portions 22E and 32E of each duct and flows into the propeller 101 can be made uniform, and the wake coefficient can be improved.
 一方、内側ダクト2E及び外側ダクト3Eは、それぞれ翼弦長(コード長)が周方向の位置によって異なる。具体的には、内側ダクト2Eは、船尾管104よりも上方に位置する上部の翼弦長よりも、船尾管104よりも下方に位置する下部の翼弦長の方が短く形成されている。また、内側ダクト2Eの翼弦長は、該内側ダクト2Eの上部から下部に向けて漸次短くなるように傾斜しており、内側ダクト2Eの前端部21Eは、所定の同一面F3上に位置する。外側ダクト3Eも同様に、船尾管104よりも上方に位置する上部の翼弦長よりも、船尾管104よりも下方に位置する下部の翼弦長の方が短く形成されている。また、外側ダクト3Eの翼弦長は、該外側ダクト3Eの上部から下部に向けて漸次短くなるように傾斜しており、外側ダクト3Eの前端部31Eは、内側ダクト2Eの前端部21Eとともに、所定の同一面F3上に位置する。 On the other hand, the inner duct 2E and the outer duct 3E have different chord lengths (cord lengths) depending on positions in the circumferential direction. Specifically, the inner duct 2E is formed such that the lower chord length located below the stern tube 104 is shorter than the upper chord length located above the stern tube 104. Further, the chord length of the inner duct 2E is inclined so as to gradually become shorter from the upper part to the lower part of the inner duct 2E, and the front end portion 21E of the inner duct 2E is located on a predetermined same plane F3. . Similarly, in the outer duct 3E, the lower chord length positioned below the stern tube 104 is shorter than the upper chord length positioned above the stern tube 104. Further, the chord length of the outer duct 3E is inclined so as to gradually become shorter from the upper part to the lower part of the outer duct 3E, and the front end part 31E of the outer duct 3E, together with the front end part 21E of the inner duct 2E, It is located on a predetermined same plane F3.
 海中における水の流れ(潮の流れ)は複雑であり、一般に、海面からの深さが深い方が、水の流れが速い傾向にあると知られている。この構成では、内側ダクト2E及び外側ダクト3Eにおける下部の翼弦長が上部の翼弦長よりも短いため、該内側ダクト2E及び外側ダクト3Eの下部でそれぞれ発生する推力が低減するものの、より流れの速い水が内側ダクト2E及び外側ダクト3Eに沿って流れる際の流れ抵抗を低減することができる。このため、伴流係数の向上を図り、船舶50の推進効率の向上を実現できる。 The flow of water in the sea (tide flow) is complicated, and it is generally known that the water flow tends to be faster when the depth from the sea surface is deeper. In this configuration, since the lower chord length in the inner duct 2E and the outer duct 3E is shorter than the upper chord length, the thrust generated in the lower portion of the inner duct 2E and the outer duct 3E is reduced, but the flow is further increased. It is possible to reduce the flow resistance when the fast water flows along the inner duct 2E and the outer duct 3E. Therefore, the wake coefficient can be improved and the propulsion efficiency of the ship 50 can be improved.
 また、本変形例においても、シャフト103の回転軸心AXからプロペラ101のブレード101Bの先端までの径方向の距離をrとした場合、回転軸心AXから内側ダクト2Eの後端部22Eまでの径方向の距離L1は、0.3r以上0.5r以下であり、回転軸心AXから外側ダクト3Eの後端部32Eまでの径方向の距離L3は、0.5r以上0.9r以下とすることが好ましい。この場合、内側ダクト2Eの後端部22Eと外側ダクト3Eの後端部32Eとの径方向の距離L2(L3-L1)は、0.2r以上0.4r以下に設けられる。この構成によれば、内側ダクト2Eと外側ダクト3Eとの干渉を抑制するとともに、各ダクトの内面25E,35Eに沿って流れる流速と外面26E,36Eに沿って流れる流速との流速差を所定値以上に確保することができ、内側ダクト2Eと外側ダクト3Eに発生する推力の低減を抑制できる。 Also in this modified example, when the radial distance from the rotational axis AX of the shaft 103 to the tip of the blade 101B of the propeller 101 is r, the distance from the rotational axis AX to the rear end 22E of the inner duct 2E. The radial distance L1 is 0.3r to 0.5r, and the radial distance L3 from the rotation axis AX to the rear end portion 32E of the outer duct 3E is 0.5r to 0.9r. It is preferable. In this case, the radial distance L2 (L3-L1) between the rear end portion 22E of the inner duct 2E and the rear end portion 32E of the outer duct 3E is set to be 0.2r to 0.4r. According to this configuration, the interference between the inner duct 2E and the outer duct 3E is suppressed, and the flow velocity difference between the flow velocity flowing along the inner surfaces 25E and 35E of each duct and the flow velocity flowing along the outer surfaces 26E and 36E is a predetermined value. This can be ensured as described above, and a reduction in thrust generated in the inner duct 2E and the outer duct 3E can be suppressed.
<第6実施形態>
 図9は、第6実施形態に係るダクト装置の一例を模式的に示す正面図である。この図9では、各ダクト2,3の前端部21,31側から描いており、簡略化のために後端部側を省略している。また、第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
<Sixth Embodiment>
FIG. 9 is a front view schematically showing an example of the duct device according to the sixth embodiment. In FIG. 9, the ducts 2 and 3 are drawn from the front end portions 21 and 31 side, and the rear end portion side is omitted for simplification. Moreover, about the structure same as the structure demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 ダクト装置1Fは、図9に示すように、内側ダクト2及び外側ダクト3を支持するステー(リアクションフィン)40と、内側ダクト2と外側ダクト3との間に設けられるフィン(リアクションフィン)41とを備える。ステー40は、このステー40の内端部40Aが船尾管104の外周面に固着され、該船尾管104の外周面から回転軸心AXの径方向に延出している。ステー40は、例えば、回転軸心AXの径方向(放射方向)であって、水平に対して45度の傾斜角度で左上方に延出している。このステー40は、内側ダクト2を貫通し、該ステー40の内端部40Aと外端部40Bとの間に形成された中間部40Cが内側ダクト2に連結されている。また、ステー40の外端部40Bは、外側ダクト3を貫通して該外側ダクト3に連結されている。なお、図9では、ステー40の外端部40Bが外側ダクト3を貫通しているが、外側ダクト3の内面35に連結してもよい。本実施形態では、内側ダクト2及び外側ダクト3の各軸心SX1,SX2とシャフト103の回転軸心AXとが一致するように配置されている。 As shown in FIG. 9, the duct device 1 </ b> F includes a stay (reaction fin) 40 that supports the inner duct 2 and the outer duct 3, and a fin (reaction fin) 41 provided between the inner duct 2 and the outer duct 3. Is provided. The stay 40 has an inner end 40A of the stay 40 fixed to the outer peripheral surface of the stern tube 104 and extends from the outer peripheral surface of the stern tube 104 in the radial direction of the rotation axis AX. The stay 40 is, for example, in the radial direction (radial direction) of the rotation axis AX and extends to the upper left at an inclination angle of 45 degrees with respect to the horizontal. The stay 40 passes through the inner duct 2, and an intermediate portion 40 </ b> C formed between the inner end portion 40 </ b> A and the outer end portion 40 </ b> B of the stay 40 is connected to the inner duct 2. Further, the outer end portion 40 </ b> B of the stay 40 passes through the outer duct 3 and is connected to the outer duct 3. In FIG. 9, the outer end 40 </ b> B of the stay 40 passes through the outer duct 3, but may be connected to the inner surface 35 of the outer duct 3. In the present embodiment, the axial centers SX1 and SX2 of the inner duct 2 and the outer duct 3 are arranged so as to coincide with the rotational axis AX of the shaft 103.
 フィン41は、回転軸心AXの径方向に複数(5つ)延在し、内側ダクト2の外面26と外側ダクト3の内面35とを連結する。これらフィン41は、例えば、回転軸心AXの径方向(放射方向)であって左右に水平にそれぞれ延出する2つと、回転軸心AXの径方向(放射方向)であって、水平に対して45度の傾斜角度で左右下方に延出する2つと、回転軸心AXの径方向(放射方向)であって、水平に対して45度の傾斜角度で右上方に延出する1つの、計5つが設けられる。本実施形態では、上記したステー40と5つのフィン41は、船体100を前進させる推進力を生じるプロペラ101の回転方向とは逆方向の流れをプロペラ101に与えるように、ひねりを付けて設けられている。本実施形態では、ステー40が支持部材だけでなくリアクションフィンとしても機能するため、ダクト装置1Fの構成を簡素化できる。 A plurality of (five) fins 41 extend in the radial direction of the rotation axis AX, and connect the outer surface 26 of the inner duct 2 and the inner surface 35 of the outer duct 3. These fins 41 are, for example, two radially extending in the radial direction (radial direction) of the rotational axis AX and horizontally extending to the left and right, and the radial direction (radial direction) of the rotational axis AX, Two extending in the left and right direction at an inclination angle of 45 degrees, and one extending in the radial direction (radial direction) of the rotation axis AX and extending to the upper right at an inclination angle of 45 degrees with respect to the horizontal, A total of five are provided. In the present embodiment, the stay 40 and the five fins 41 described above are provided with a twist so as to give the propeller 101 a flow in a direction opposite to the rotation direction of the propeller 101 that generates a propulsive force that advances the hull 100. ing. In the present embodiment, since the stay 40 functions not only as a support member but also as a reaction fin, the configuration of the duct device 1F can be simplified.
 ステー40及びフィン41は、プロペラ101が回転して船体100が前進するとき、プロペラ101の回転方向と逆方向の流れをプロペラ101に送り込む。このため、プロペラ101の後方にてプロペラ101の回転方向と同じ方向で発生する回転流が減少される。この結果、回転流によるプロペラ101の推進効率の低下が抑えられ、プロペラ101の推進性能の向上を図ることができる。 When the propeller 101 rotates and the hull 100 moves forward, the stay 40 and the fin 41 send a flow in a direction opposite to the rotation direction of the propeller 101 to the propeller 101. For this reason, the rotational flow generated in the same direction as the rotation direction of the propeller 101 behind the propeller 101 is reduced. As a result, a decrease in propulsion efficiency of the propeller 101 due to the rotating flow is suppressed, and the propulsion performance of the propeller 101 can be improved.
<第7実施形態>
 図10は、第7実施形態に係るダクト装置の一例を模式的に示す正面図であり、図11は、第7実施形態の変形例に係るダクト装置の一例を模式的に示す正面図である。この図10,11においても、各ダクト2G(2H),3(3H)の前端部21G(21H),31(31H)側から描いており、簡略化のために後端部側を省略している。また、第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
<Seventh embodiment>
FIG. 10 is a front view schematically showing an example of a duct device according to the seventh embodiment, and FIG. 11 is a front view schematically showing an example of a duct device according to a modification of the seventh embodiment. . Also in FIGS. 10 and 11, the ducts 2G (2H) and 3 (3H) are drawn from the front end portions 21G (21H) and 31 (31H) side, and the rear end portion side is omitted for simplification. Yes. Moreover, about the structure same as the structure demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 ダクト装置1Gは、図10に示すように、内側ダクト2Gと外側ダクト3とを備える。外側ダクト3は、この外側ダクト3の軸心SX2と回転軸心AXとが一致するように配置されている。一方、内側ダクト2Gは、この内側ダクト2Gの軸心SX1が回転軸心AXに対して鉛直下方に位置するように偏心して配置されている。このように、内側ダクト2Gは、外側ダクト3に対して、鉛直下方に偏心配置されているため、内側ダクト2Gの前端部21Gと外側ダクト3の前端部31とで規定されるダクト間流入口7は上部側が下部側よりも広くなる。 The duct apparatus 1G includes an inner duct 2G and an outer duct 3 as shown in FIG. The outer duct 3 is disposed such that the axis SX2 of the outer duct 3 and the rotation axis AX coincide with each other. On the other hand, the inner duct 2G is arranged eccentrically so that the axis SX1 of the inner duct 2G is positioned vertically below the rotation axis AX. Thus, since the inner duct 2G is eccentrically arranged vertically downward with respect to the outer duct 3, the inter-duct inlet defined by the front end portion 21G of the inner duct 2G and the front end portion 31 of the outer duct 3 is provided. 7 is wider on the upper side than on the lower side.
 上述したように、一般に、海面からの深さが深い方が、水の流れが速く、深さが浅い方が、水の流れが遅い傾向にある。本実施形態では、ダクト間流入口7の上部側の開口面積を下部側よりも広くしたため、流速の遅い水の流れを、より多くプロペラ101に供給することができる。従って、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図り、ひいては、船舶の推進効率の向上を実現できる。 As described above, generally, the depth from the sea surface tends to be faster when the water flow is faster and the depth is shallower as the water flow is slower. In the present embodiment, since the opening area on the upper side of the inter-duct inlet 7 is made larger than that on the lower side, a flow of water having a low flow rate can be supplied to the propeller 101 more. Therefore, the resistance when the propeller 101 is driven can be reduced, and the wake coefficient can be improved correspondingly, thereby improving the propulsion efficiency of the ship.
 変形例に係るダクト装置1Hは、図11に示すように、内側ダクト2Hと外側ダクト3Hとを備え、これら内側ダクト2H及び外側ダクト3Hの軸心SX1,SX2がそれぞれ回転軸心AXに対して鉛直上方に位置するように偏心して配置されている。この構成では、内側ダクト2H及び外側ダクト3Hが鉛直上方に偏心配置されているため、内側ダクト2Hの前端部21Hが規定する内側ダクト流入口5は、回転軸心AXの上部側が下部側よりも広くなる。このため、本変形例においても、流速の遅い水の流れを、より多くプロペラ101に供給することができるため、プロペラ101が駆動する際の抵抗を低減でき、その分、伴流係数の向上を図り、ひいては、船舶の推進効率の向上を実現できる。 As shown in FIG. 11, the duct device 1H according to the modification includes an inner duct 2H and an outer duct 3H, and the axial centers SX1 and SX2 of the inner duct 2H and the outer duct 3H are respectively relative to the rotational axis AX. They are arranged eccentrically so as to be positioned vertically upward. In this configuration, since the inner duct 2H and the outer duct 3H are eccentrically arranged vertically upward, the inner duct inlet 5 defined by the front end portion 21H of the inner duct 2H is such that the upper side of the rotational axis AX is lower than the lower side. Become wider. For this reason, also in this modification, since the flow of water with a slow flow rate can be supplied to the propeller 101 more, the resistance when the propeller 101 is driven can be reduced, and the wake coefficient is improved accordingly. As a result, the propulsion efficiency of the ship can be improved.
<第8実施形態>
 図12は、第8実施形態に係るダクト装置の一例を模式的に示す正面図であり、図13は、第8実施形態の変形例に係るダクト装置の一例を模式的に示す正面図である。この図12,13においても、各ダクト2(2J),3I(3J)の前端部21(21J),31I(31J)側から描いており、簡略化のために後端部側を省略している。また、第1実施形態で説明した構成と同一の構成については、同一の符号を付して説明を省略する。
<Eighth Embodiment>
FIG. 12 is a front view schematically showing an example of a duct device according to the eighth embodiment, and FIG. 13 is a front view schematically showing an example of a duct device according to a modification of the eighth embodiment. . Also in FIGS. 12 and 13, the ducts 2 (2J) and 3I (3J) are drawn from the front end portions 21 (21J) and 31I (31J) side, and the rear end portion side is omitted for simplification. Yes. Moreover, about the structure same as the structure demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 ダクト装置1Iは、図12に示すように、内側ダクト2と外側ダクト3Iとを備える。内側ダクト2は、略円筒形状の筒状体として形成され、外側ダクト3Iは、半円筒状(筒状体の一部)に形成されて、内側ダクト2(船尾管104)の上方に配置されている。内側ダクト2と外側ダクト3Iの軸心SX1,SX2は回転軸心AXと一致する。ここで、半円筒状(筒状体の一部)の軸心は、筒状体を構成した際の軸心とする。 The duct apparatus 1I includes an inner duct 2 and an outer duct 3I as shown in FIG. The inner duct 2 is formed as a substantially cylindrical tubular body, and the outer duct 3I is formed in a semi-cylindrical shape (a part of the tubular body) and is disposed above the inner duct 2 (stern tube 104). ing. The axial centers SX1, SX2 of the inner duct 2 and the outer duct 3I coincide with the rotational axis AX. Here, the axial center of the semi-cylindrical shape (a part of the cylindrical body) is the axial center when the cylindrical body is configured.
 上述したように、一般に、海面からの深さが深い方が、水の流れが速い傾向にあり、より流れの速い水がダクト装置1Iを流れると流れ抵抗が増大するおそれがある。本実施形態では、外側ダクト3Iを、半円筒状(筒状体の一部)に形成して内側ダクト2(船尾管104)の上方に配置しているため、内側ダクト2及び外側ダクト3Iに沿って流れる際の流れ抵抗を低減することができる。このため、伴流係数の向上を図り、推進効率の向上を実現できる。 As described above, generally, the deeper the depth from the sea surface, the faster the flow of water, and there is a possibility that the flow resistance increases when faster flowing water flows through the duct device 1I. In the present embodiment, the outer duct 3I is formed in a semi-cylindrical shape (a part of a cylindrical body) and disposed above the inner duct 2 (stern tube 104). Flow resistance when flowing along can be reduced. For this reason, the wake coefficient can be improved and the propulsion efficiency can be improved.
 また、変形例に係るダクト装置1Jは、図13に示すように、内側ダクト2Jと外側ダクト3Jとを備え、これら内側ダクト2J及び外側ダクト3Jをともに半円筒状(筒状体の一部)に形成している。これら内側ダクト2J及び外側ダクト3Jは、船尾管104の上方に配置されており、内側ダクト2J及び外側ダクト3Jの軸心SX1,SX2は回転軸心AXと一致する。本変形例においても、内側ダクト2J及び外側ダクト3Jに沿って流れる際の流れ抵抗を低減することができるため、伴流係数の向上を図り、推進効率の向上を実現できる。 Moreover, as shown in FIG. 13, the duct apparatus 1J according to the modification includes an inner duct 2J and an outer duct 3J, and both the inner duct 2J and the outer duct 3J are semicylindrical (part of a cylindrical body). Is formed. The inner duct 2J and the outer duct 3J are disposed above the stern tube 104, and the axes SX1 and SX2 of the inner duct 2J and the outer duct 3J coincide with the rotational axis AX. Also in this modification, since the flow resistance when flowing along the inner duct 2J and the outer duct 3J can be reduced, the wake coefficient can be improved and the propulsion efficiency can be improved.
 本実施形態では、内側ダクト2J及び外側ダクト3I,3Jを半円筒状に形成したが、筒状体の一部として、船尾管104(回転軸心AX)の周囲の少なくとも上部に配置されているのであれば、形状を適宜変更してもよい。 In the present embodiment, the inner duct 2J and the outer ducts 3I and 3J are formed in a semi-cylindrical shape, but are arranged at least on the periphery of the stern tube 104 (rotation axis AX) as a part of the cylindrical body. If it is, you may change a shape suitably.
 1、1A、1B、1C、1D、1F、1E、1G、1H、1I、1J ダクト装置
 2、2B、2C、2E、2G、2H、2J 内側ダクト
 3、3A、3E、3H、3I、3J 外側ダクト
 4 ステー
 4A 内端部
 4B 外端部
 4C 中間部
 7 ダクト間流入口
 8 ダクト間流出口
 21、21B、21C、21E、21G、21H 前端部
 22、22B、22C、22E 後端部
 27、27B、27C、27E 翼弦線
 31、31A、31E 前端部
 32、32A、32E 後端部
 37、37E 翼弦線
 38A キャンバ線
 40 ステー(リアクションフィン)
 41 フィン(リアクションフィン)
 50 船舶
 100 船体
 100B 船尾
 101 プロペラ
 103 シャフト
 104 船尾管(ボス部)
 AX 回転軸心
 Ai 開口面積
 Ao 開口面積
 SX1 軸心
 SX2 軸心
 Vi 流入速度
 Vo 流出速度
 θ1 角度
 θ2 角度
1, 1A, 1B, 1C, 1D, 1F, 1E, 1G, 1H, 1I, 1J Duct device 2, 2B, 2C, 2E, 2G, 2H, 2J Inner duct 3, 3A, 3E, 3H, 3I, 3J Outside Duct 4 Stay 4A Inner end 4B Outer end 4C Intermediate 7 Duct inlet 8 Duct outlet 21, 21B, 21C, 21E, 21G, 21H Front end 22, 22B, 22C, 22E Rear end 27, 27B , 27C, 27E chord line 31, 31A, 31E front end 32, 32A, 32E rear end 37, 37E chord line 38A camber line 40 stay (reaction fin)
41 Fin (Reaction Fin)
50 Ship 100 Hull 100B Stern 101 Propeller 103 Shaft 104 Stern tube (boss)
AX Axis of rotation Ai Aperture area Ao Aperture area SX1 Axis center SX2 Axis center Vi Inflow speed Vo Outflow speed θ1 angle θ2 angle

Claims (15)

  1.  船体の船尾に設けられたプロペラの前方において前記プロペラのシャフトを支持するボス部の周囲の少なくとも一部に配置される内側ダクトと、
     前記内側ダクトの外側に配置される外側ダクトと、
     前記内側ダクト及び前記外側ダクトを前記船体に支持するステーと、を備え、
     前記内側ダクト及び前記外側ダクトの断面は、それぞれ翼型であり、
     前記内側ダクトの前端部と前記外側ダクトの前端部とで規定されるダクト間流入口の開口面積よりも、前記内側ダクトの後端部と前記外側ダクトの後端部とで規定されるダクト間流出口の開口面積を大きく形成したことを特徴とするダクト装置。
    An inner duct disposed in at least a part of the periphery of a boss portion supporting a shaft of the propeller in front of a propeller provided at the stern of the hull;
    An outer duct disposed outside the inner duct;
    A stay that supports the inner duct and the outer duct on the hull, and
    Cross sections of the inner duct and the outer duct are respectively airfoils,
    The gap between the ducts defined by the rear end of the inner duct and the rear end of the outer duct is larger than the opening area of the inter-duct inlet defined by the front end of the inner duct and the front end of the outer duct. A duct device characterized in that the opening area of the outlet is large.
  2.  前記内側ダクトの前記翼型の翼弦線と前記シャフトの回転軸心と平行な線とがなす角度は、前記外側ダクトの前記翼型の翼弦線と前記回転軸心と平行な線とがなす角度よりも大きいことを特徴とする請求項1に記載のダクト装置。 The angle formed by the chord line of the airfoil of the inner duct and a line parallel to the rotation axis of the shaft is determined by the line parallel to the chord line of the airfoil and the rotation axis of the outer duct. The duct device according to claim 1, wherein the duct device is larger than an angle formed.
  3.  前記外側ダクトは、前記翼型の後縁が前記シャフトの回転軸心に対して径方向に湾曲していることを特徴とする請求項1または2に記載のダクト装置。 The duct device according to claim 1 or 2, wherein the outer duct has a trailing edge of the airfoil curved in a radial direction with respect to a rotation axis of the shaft.
  4.  前記内側ダクトの後端部と前記外側ダクトの後端部とは、前記シャフトの回転軸心に垂直な同一面上に位置することを特徴とする請求項1から3のいずれか一項に記載のダクト装置。 4. The rear end portion of the inner duct and the rear end portion of the outer duct are located on the same plane perpendicular to the rotation axis of the shaft. 5. Duct equipment.
  5.  前記シャフトの回転軸心から前記プロペラの先端までの径方向の距離をrとした場合、
     前記回転軸心から前記内側ダクトの後端部までの径方向の距離は、0.3r以上0.5r以下であり、
     前記回転軸心から前記外側ダクトの後端部までの径方向の距離は、0.5r以上0.9r以下であることを特徴とする請求項4に記載のダクト装置。
    When the radial distance from the rotation axis of the shaft to the tip of the propeller is r,
    The radial distance from the rotational axis to the rear end of the inner duct is 0.3r to 0.5r,
    The duct device according to claim 4, wherein a radial distance from the rotation axis to a rear end portion of the outer duct is 0.5r or more and 0.9r or less.
  6.  前記内側ダクトの後端部と前記外側ダクトの後端部との径方向の距離は、0.2r以上0.4r以下であることを特徴とする請求項5に記載のダクト装置。 The duct device according to claim 5, wherein a radial distance between a rear end portion of the inner duct and a rear end portion of the outer duct is 0.2r or more and 0.4r or less.
  7.  前記内側ダクトの前端部と前記外側ダクトの前端部とは、前記シャフトの回転軸心に垂直な同一面上に位置し、前記内側ダクトの前記翼型の翼弦長を前記外側ダクトの前記翼型の翼弦長よりも長く形成したことを特徴とする請求項1に記載のダクト装置。 The front end portion of the inner duct and the front end portion of the outer duct are located on the same plane perpendicular to the rotational axis of the shaft, and the chord length of the airfoil of the inner duct is defined as the blade of the outer duct. The duct device according to claim 1, wherein the duct device is formed longer than a chord length of the mold.
  8.  前記内側ダクトの前記翼型の翼弦長を前記外側ダクトの前記翼型の翼弦長よりも短く形成すると共に、前記内側ダクトの前端部と前記外側ダクトの前端部との距離よりも前記内側ダクトの後端部と前記外側ダクトの後端部との距離を長く形成したことを特徴とする請求項1に記載のダクト装置。 The chord length of the airfoil of the inner duct is formed shorter than the chord length of the airfoil of the outer duct, and the inner length is longer than the distance between the front end portion of the inner duct and the front end portion of the outer duct. The duct device according to claim 1, wherein a distance between a rear end portion of the duct and a rear end portion of the outer duct is formed long.
  9.  船体の船尾に設けられたプロペラの前方において前記プロペラのシャフトを支持するボス部の周囲の少なくとも一部に配置される内側ダクトと、
     前記内側ダクトの外側に配置される外側ダクトと、
     前記内側ダクト及び前記外側ダクトを前記船体に支持するステーと、を備え、
     前記内側ダクト及び前記外側ダクトの断面は、それぞれ翼型であり、
     前記内側ダクトの後端部と前記外側ダクトの後端部とは、前記シャフトの回転軸心に垂直な同一面上に位置することを特徴とするダクト装置。
    An inner duct disposed in at least a part of the periphery of a boss portion supporting a shaft of the propeller in front of a propeller provided at the stern of the hull;
    An outer duct disposed outside the inner duct;
    A stay that supports the inner duct and the outer duct on the hull, and
    Cross sections of the inner duct and the outer duct are respectively airfoils,
    The rear end portion of the inner duct and the rear end portion of the outer duct are located on the same plane perpendicular to the rotational axis of the shaft.
  10.  前記シャフトの回転軸心から前記プロペラの先端までの径方向の距離をrとした場合、
     前記回転軸心から前記内側ダクトの後端部までの径方向の距離は、0.3r以上0.5r以下であり、
     前記回転軸心から前記外側ダクトの後端部までの径方向の距離は、0.5r以上0.9r以下であることを特徴とする請求項9に記載のダクト装置。
    When the radial distance from the rotation axis of the shaft to the tip of the propeller is r,
    The radial distance from the rotational axis to the rear end of the inner duct is 0.3r to 0.5r,
    10. The duct device according to claim 9, wherein a radial distance from the rotation axis to a rear end portion of the outer duct is 0.5 r or more and 0.9 r or less.
  11.  前記内側ダクトの後端部と前記外側ダクトの後端部との径方向の距離は、0.2r以上0.4r以下であることを特徴とする請求項10に記載のダクト装置。 The duct device according to claim 10, wherein a distance in a radial direction between a rear end portion of the inner duct and a rear end portion of the outer duct is 0.2r or more and 0.4r or less.
  12.  前記ボス部と前記内側ダクトとの間、及び、前記内側ダクトと前記外側ダクトとの間の少なくとも一方に設けられ、前記船体を前進させる推進力を生じる前記プロペラの回転方向とは逆方向の水流を該プロペラに与えるリアクションフィンを備えることを特徴とする請求項1から11のいずれかに記載のダクト装置。 Water flow in a direction opposite to the direction of rotation of the propeller that is provided between at least one of the boss portion and the inner duct and at least one of the inner duct and the outer duct to generate a propulsive force that advances the hull. The duct apparatus according to claim 1, further comprising a reaction fin that gives the propeller to the propeller.
  13.  前記内側ダクト及び前記外側ダクトは筒状体として形成され、
     前記内側ダクト及び前記外側ダクトの少なくとも一方を、前記筒状体の軸心を前記シャフトの回転軸心から偏心させたことを特徴とする請求項1から12のいずれかに記載のダクト装置。
    The inner duct and the outer duct are formed as a cylindrical body,
    The duct device according to any one of claims 1 to 12, wherein at least one of the inner duct and the outer duct is configured such that an axis of the cylindrical body is eccentric from a rotation axis of the shaft.
  14.  前記内側ダクト及び前記外側ダクトは、少なくとも筒状体の一部として形成されることを特徴とする請求項1から13のいずれかに記載のダクト装置。 The duct device according to any one of claims 1 to 13, wherein the inner duct and the outer duct are formed as at least a part of a cylindrical body.
  15.  船体と、
     前記船体の船尾に配置されたプロペラと、
     前記船尾のプロペラの前方に配置された請求項1から14のいずれか一項に記載のダクト装置と、
     を備えることを特徴とする船舶。
    The hull,
    A propeller disposed at the stern of the hull;
    The duct device according to any one of claims 1 to 14, disposed in front of the stern propeller,
    A ship characterized by comprising.
PCT/JP2017/046307 2017-01-27 2017-12-25 Duct device and ship WO2018139138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197015060A KR102154472B1 (en) 2017-01-27 2017-12-25 Duct device and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-013266 2017-01-27
JP2017013266A JP6811629B2 (en) 2017-01-27 2017-01-27 Duct equipment and ships

Publications (1)

Publication Number Publication Date
WO2018139138A1 true WO2018139138A1 (en) 2018-08-02

Family

ID=62979628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046307 WO2018139138A1 (en) 2017-01-27 2017-12-25 Duct device and ship

Country Status (3)

Country Link
JP (1) JP6811629B2 (en)
KR (1) KR102154472B1 (en)
WO (1) WO2018139138A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405787B2 (en) 2021-03-23 2023-12-26 三井E&S造船株式会社 stern duct

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963100U (en) * 1982-10-22 1984-04-25 三菱重工業株式会社 Reaction Fin
JPS60139699U (en) * 1984-02-29 1985-09-14 三菱重工業株式会社 Marine nozzle device
US5928042A (en) * 1998-03-26 1999-07-27 Glenn F. Mattina Propeller guard
KR20140015925A (en) * 2012-07-27 2014-02-07 현대중공업 주식회사 A propulsion apparatus for ship
KR20140015929A (en) * 2012-07-27 2014-02-07 현대중공업 주식회사 A propulsion apparatus for ship

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025247B2 (en) * 2006-12-13 2012-09-12 ユニバーサル造船株式会社 Ship duct and ship with ship duct

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963100U (en) * 1982-10-22 1984-04-25 三菱重工業株式会社 Reaction Fin
JPS60139699U (en) * 1984-02-29 1985-09-14 三菱重工業株式会社 Marine nozzle device
US5928042A (en) * 1998-03-26 1999-07-27 Glenn F. Mattina Propeller guard
KR20140015925A (en) * 2012-07-27 2014-02-07 현대중공업 주식회사 A propulsion apparatus for ship
KR20140015929A (en) * 2012-07-27 2014-02-07 현대중공업 주식회사 A propulsion apparatus for ship

Also Published As

Publication number Publication date
JP6811629B2 (en) 2021-01-13
KR20190066634A (en) 2019-06-13
KR102154472B1 (en) 2020-09-10
JP2018118699A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US9328613B2 (en) Propeller arrangement, in particular for watercraft
CN105936332B (en) Arrangement for a multi-propeller vessel comprising an outer propeller shaft and method for producing such an arrangement
JP5539025B2 (en) Front fixed wing with duct
JP5230852B1 (en) Small ducted propeller and ship
EP2338783A1 (en) Twin skeg ship
CN112512918A (en) Propulsion device for marine vehicles using outboard water jets
US20200017181A1 (en) Apparatus for propelling fluid, especially for propulsion of a floating vehicle
WO2018139138A1 (en) Duct device and ship
JP5901512B2 (en) Duct device and ship using the same
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
JP6138680B2 (en) Duct equipment
JP6021678B2 (en) Duct device and ship using the same
KR20120053206A (en) Propeller boss cap and propulsion apparatus having the same
WO2018025644A1 (en) Ship
RU2405713C2 (en) Screw with cumulative effect
JP6057798B2 (en) Pump and water jet propulsion device
KR20150035640A (en) Propulsion apparatus for vessel
JP2022154737A (en) Vessel propulsion device, vessel
JP2014156200A (en) Fin device and ship
KR20020042973A (en) Multi-purposed stator
KR20120001305A (en) Variable pitch propeller with rake angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015060

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894198

Country of ref document: EP

Kind code of ref document: A1