WO2018138649A2 - Dispositivo e método para medição da distribuição espacial da concentração de compostos e das suas misturas num fuido e/ou do nível num fluido - Google Patents

Dispositivo e método para medição da distribuição espacial da concentração de compostos e das suas misturas num fuido e/ou do nível num fluido Download PDF

Info

Publication number
WO2018138649A2
WO2018138649A2 PCT/IB2018/050428 IB2018050428W WO2018138649A2 WO 2018138649 A2 WO2018138649 A2 WO 2018138649A2 IB 2018050428 W IB2018050428 W IB 2018050428W WO 2018138649 A2 WO2018138649 A2 WO 2018138649A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fluid
fluorescence
measuring
jet
Prior art date
Application number
PCT/IB2018/050428
Other languages
English (en)
French (fr)
Other versions
WO2018138649A4 (pt
WO2018138649A3 (pt
Inventor
Mário Nuno DE MATOS SEQUEIRA BERBERAN E SANTOS
Liliana MARQUES MARTELO
Original Assignee
Instituto Superior Técnico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Superior Técnico filed Critical Instituto Superior Técnico
Priority to US16/481,069 priority Critical patent/US11525780B2/en
Priority to EP18710516.8A priority patent/EP3623799A2/en
Priority to CN201880008646.0A priority patent/CN110234983A/zh
Publication of WO2018138649A2 publication Critical patent/WO2018138649A2/pt
Publication of WO2018138649A3 publication Critical patent/WO2018138649A3/pt
Publication of WO2018138649A4 publication Critical patent/WO2018138649A4/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/005Accessories not provided for in the groups B64D37/02 - B64D37/28
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/32Safety measures not otherwise provided for, e.g. preventing explosive conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0212Liquid borne; swimming apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0218Submersible, submarine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present invention relates to the measurement of the concentration of compounds and their mixtures in fluids and / or fluid level, in particular to devices and methods for measuring and / or monitoring the spatial distribution of concentration and level of fluids. a particular substance or a mixture of several substances. More specifically, the invention relates to devices and methods for measuring and monitoring oxygen concentration and / or the level of a fluid with intrinsic fluorescence, preferably in fuel systems.
  • the present invention may find specific application in the aerospace industry, for example in jet aircraft fuel systems, for monitoring the concentration of oxygen dissolved in jet fuel or present in free volume ( ullage) of a jet fuel tank and to measure its level in the fuel tank.
  • the US and European standards for free volume oxygen concentration impose a value of less than 9% for military aircraft and less than 12% for commercial aircraft (WN Cavage, Federal Aviation Administration, 2005, Report No .: DOT / FAA / AR-05/25).
  • the tank is considered inert by the European Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA) when the average oxygen concentration within each tank compartment is 12% or less from sea level up to 10,000 ft.
  • EASA European Aviation Safety Agency
  • FAA Federal Aviation Administration
  • the OBIGGS system is the most widely used onboard technology.
  • fuel tanks are inertized with nitrogen-enriched air (Nitrogen Enriched Air, NEA) generated during flight.
  • Inert gas (NEA) is produced with turbine-generated compressed air (bleed air), which is passed through an air separation module (ASM), usually made up of hollow fiber membranes.
  • ASM air separation module
  • This module divides air into a part rich in oxygen, carbon dioxide and water vapor, which is discharged into the atmosphere, and a part rich in nitrogen, which is the inert gas.
  • NEA R. Cherry, K. Warren, Federal Aviation Administration 1999; Report No .: DOT / FAA / AR-99/73 and W. M. Cavage, 0. Kils, Federal Aviation Administration 2002; Report No .: DOT / FAA / AR-02/51).
  • a sensor capable of monitoring oxygen concentration in fuel systems or fuel tanks in real time would mean optimizing OBBIGS operation, thereby reducing wear and fuel consumption.
  • the sensor consists of an electrochemical cell having an anode and a cathode dipped in an electrolyte solution.
  • the electrochemical cell is separated by a gas or liquid sample membrane whose oxygen concentration is to be measured. Oxygen from the sample diffuses through the membrane into the electrochemical cell to establish an equilibrium, this equilibrium being proportional to the oxygen concentration.
  • a change in oxygen concentration in the electrolyte causes a change in its electrical properties, resulting in a change in the electrical current through the system.
  • the current is proportional to the oxygen concentration in the electrolyte.
  • Operating limits and sensor sensitivity are defined by the electrolytes used. However, common electrolytes are not suitable for extreme operating temperatures. In particular, they are not suitable for the low temperatures encountered in aviation applications. In addition, this method requires the use of metal parts inside the tank, which increases the risk of explosion due to the possibility of sparks.
  • oxygen sensors have been developed for aircraft fuel tanks in which oxygen concentration is monitored by means of a sensor containing a luminescent substance. 0 oxygen attenuates the luminescence of that substance and therefore oxygen concentration can be determined by measuring the light emitted by the luminescent material.
  • WO 03/046422 describes one such system in which the oxygen concentration in an aircraft fuel tank is monitored using a material containing a luminescent ruthenium complex.
  • US Patent Document 2006 / 0171845A-1 describes the use of platinum (II) porphyrin tetrakis (pentafluorophenyl) as a phosphorescent compound, which is incorporated into an amorphous fluorinated polymeric matrix, and which serves for the detection of oxygen in a fuel tank. by airplane.
  • luminescent material must be able to withstand the low temperatures reached during flight, for example -50 ° C.
  • the materials used must be compatible with aviation requirements, in particular that the optical power does not exceed 5 mW / mm 2 (with an intrinsic safety limit of 35 mW) as specified in IEC 60079-28: 2015 optical standard. .
  • the present invention allows to monitor the oxygen concentration in aviation fuel tanks using luminescence intensity or the fluorescence lifetime of the fuel itself.
  • the operating principle of an optical sensor is based on changing at least one optical property of a given probe (eg absorption, luminescence, refractive index) in the presence of an analyte. This change is recorded on the device and provides qualitative information about the presence or absence of the analyte as well as quantitative, allowing the concentration of that analyte to be determined.
  • An optical shift based response offers numerous advantages in sensors. Using very sensitive instrumentation such as luminescence, very low concentrations of analyte can be determined. The response obtained is often fast, reversible and easily miniaturized.
  • An optical sensor can be defined as a device that reacts to an external signal (to the analyte) by generating a measurable and reversible optical signal.
  • Signal reversibility is an important parameter since it is desired to have continuous and often real-time measurements.
  • optical sensors The operation of optical sensors is based on the effect of the analyte on the absorption, diffusion and light emission processes. Since electromagnetic radiation has several measurable properties such as wavelength, intensity, polarization and phase, it is possible to measure and relate any change that occurs in these properties to the concentration of the analyte that we intend to detect. Absorption and luminescence are the most commonly used phenomena in optical sensors. Luminescence measurements are more sensitive than those obtained by absorption variation, reaching detection limits of about 10 ⁇ 15 mol dnr 3 . Luminescence intensity and temporal response are generally the parameters used to detect a particular analyte, however other parameters can be explored such as polarization and changes in the shape and position of the spectra.
  • the level of a liquid in a reservoir or tank is measured using a floating float mechanically or magnetically coupled to an external meter, an ultrasonic or optical transducer that measures the liquid level, or using a capacitance sensor. which monitors the change in dielectric constant between the plates of a capacitor resulting from a change in liquid level.
  • optical fibers for level detection in liquids is also well documented.
  • the main advantages of this type of sensor for measuring liquid levels are their passivity, ie they contain no moving mechanical parts and their intrinsic dielectric properties, meaning that there is no risk of sparks / deflagrations when used in fuels. virtually no electromagnetic interference.
  • the most common configurations use small prisms mounted at the end of two fiber optics, a tapered fiber optic tip, or a bent U-shaped fiber optic. In either case, the probe or fiber optic sensor is suspended or designed to move inside the tank. This sensor is potentially fragile and subject to damage from floating debris, vibration or dynamic effects during filling. Potential damage is greater with routine sensor maintenance due to biological or chemical fouling on the optical surface.
  • the fiber optic sensors described above are primarily used for rudimentary liquid level measurement, that is, for detecting whether the tank is empty, full or at some point in between. Too many such sensors are required for continuous level measurement of a liquid, which makes them impractical for continuous level measurement of a liquid in a tank.
  • Other sensors for liquid level measurement use a fiber optic doped with a fluorescent probe. Its main function is to absorb and re-emit light from a source of radiation present in the air. The light is refracted when a higher refractive index fluid is present in the tank and thus the output signal reflects the fluid level.
  • doping of the optical fiber with a fluorescent probe generally, and depending on the liquid to be measured, suffers from leaching and will have to be renewed frequently.
  • Distance measurement with active optical methods is well established when radiation from a pulsed or frequency modulated radiation source is detected after reflection by the target, which may be the surface of a liquid.
  • the distance is determined from the time elapsed between excitation and detection in the case of pulsed excitation, or from the resulting offset, in the case of frequency modulated excitation.
  • This method allows to determine the liquid level in a static tank.
  • the surface of the liquid is poorly reflective, either because it absorbs virtually all incident radiation or diffuses it in various directions, as with an agitated liquid, the method may be inappropriate because the return signal is erratic and / or too weak.
  • the present invention relates to a method for measuring the concentration of a substance or mixture of substances in a fluid with intrinsic fluorescence, preferably in fuel systems.
  • the invention further relates to an optical device suitable for implementing said method and comprising a sample excitation unit in which excitation light is generated; a signal detection unit emitted by the sample and a signal processing unit.
  • the device and method implemented by it also allow to determine the level and the spatial distribution in which the substance or mixture of liquid substances is in a certain reservoir or deposit.
  • the present invention relates to an optical method and device which implements the method for measuring and / or monitoring the spatial distribution of oxygen concentration in fuel systems and / or for determining the fuel level.
  • One of the applications is the measurement of oxygen concentration in aircraft fuel tanks on the fly.
  • the present invention provides a method for monitoring the dissolved oxygen concentration in a fuel or the gas phase oxygen concentration present in the free volume above the jet fuel in a tank.
  • the method is suitable for the low temperatures encountered in aviation applications and in fact applies across the temperature range from about 50 ° C to about -50 ° C found in these applications.
  • the present invention addresses the problem of measuring oxygen concentration and fuel level in fuel systems, and provides a solution capable of withstanding the full range of temperatures during flight, is reliable, has a life useful for several years, does not require metal parts inside the fuel tank and optimizes the operation of the OBBIGS system, thereby reducing wear and fuel consumption.
  • the present invention has the benefit of using optical technology in a fuel rich environment.
  • alternative technologies may require the use of electricity, metal parts, and conductive wires. This may introduce an extra risk of ignition in the fuel system.
  • the present method works without any electric current in regions where there is liquid fuel or in the form of vapor.
  • the advantages of the present invention relate to the fact that the sensors used are common and inexpensive.
  • the sensors constituting the present invention are less hazardous than conventional sensors; they are devoid of electrical components; they are not in direct contact with the mixture where the spatial distribution of compound concentration or other parameters is to be evaluated and are inexpensive and easily accessible. These sensors are therefore economical and meet regulatory and safety requirements.
  • FIG. 1 Jet A-1 emission spectra in the presence (dashed line) and absence (continuous line) of oxygen (N2 saturated fuel), obtained with excitation at 300 nm wavelength.
  • Fig. 2 Relative lifetime graph for deoxygenated samples (two different lots of Jet A-1 fuel) under study at different temperatures.
  • i2o is the lifetime at a temperature of 20 ° C.
  • Fig. 3 Identical emission spectra of two different samples (lots) of Jet Al fuel (300 nm wavelength excitation).
  • Fig.4 Stern-Volmer representation of Jet A-1 fuel lifetime for different oxygen percentages at three different temperatures: -50 ° C, 25 ° C and 50 ° C.
  • Fig.5 Schematic of an embodiment of the oxygen concentration measurement system in a fuel tank using a flexible fiber optic beam ending in a float.
  • Fig.6 Schematic of an embodiment of the oxygen concentration measurement system in a fuel tank using a fixed column containing fiber optic beams terminating at various levels. Points A, B, and C refer to points at different heights in the tank.
  • Fig.7 Schematic of an embodiment of the fuel tank level measurement system using a radiation source and a detector connected to the top of the tank by fiber optics.
  • Fig. 8 Fluorescence decay of jet fuel corresponding to distinct distances from the fuel surface to the excitation source and detector.
  • the present invention relates to a method for measuring the spatial distribution of the concentration of a substance or mixture of substances in a fluid and / or the level in a fluid, comprising the following steps: (a) excitation light irradiation of the fluid;
  • the fluid is a fluorescent fluid.
  • the substance whose spatial distribution of the concentration to be measured is oxygen.
  • the method is for measuring oxygen concentration in jet aircraft fuel systems, and comprises the following steps:
  • the method is for measuring jet fuel level in a tank and comprises the following steps:
  • the excitation light source may be continuous, modulated or pulsed.
  • the excitation light source is a light emitting diode (LED) or a laser.
  • the excitation light is guided to the fuel by an optical fiber or an optical window, among others.
  • the fuel is one of the following: a hydrocarbon fuel, a petroleum derived fuel, Jet Al, Jet A, Jet B, TS-1, or Jet No. 3. more preferably a fuel comprising kerosene or naphtha kerosene.
  • the present invention also relates to an optical device suitable for implementing the above described method and comprising: a low intensity light source in which excitation light is generated to radiate a particular substance or mixture of substances; an optical fiber or optical window to guide the excitation light to the fuel; a photodetector for detecting fluorescence of a substance or mixture of substances; and a signal processing unit.
  • the excitation light source emits continuous, modulated or pulsed light.
  • the excitation light source is a light emitting diode (LED) or a laser.
  • the present invention further relates to a system for measuring oxygen concentration and / or fuel level in jet aircraft fuel tanks comprising: the optical device described above and a fuel tank.
  • the present invention further relates to the use of the optical device described above for measuring the spatial distribution of the concentration of a given substance or mixture of various substances and / or measuring the level of a fluid.
  • the optical device is used to determine the spatial distribution of a substance or the mixture of liquid substances or the level of a fluid in a
  • the optical device is used for measuring and / or monitoring the spatial distribution of dissolved oxygen concentration in the liquid fuel or fuel. present in the free volume of a fuel tank, preferably in act aircraft.
  • fuel system should be understood as the system that stores and distributes fuel along the airplane. This system consists of two main parts: fuel tanks and fuel distribution subsystems. Fuel tanks may be independent units or integral parts of the structure. Fuel is carried from the tanks to the engines through the fuel lines, control valves and pumps placed along the way, called fuel distribution subsystems.
  • luminescent substance is to be understood to refer to a substance that is useful in detecting oxygen according to the invention by luminescence and luminescence quenching.
  • Luminescence can be considered as a light emission that does not result from the temperature of the emitting substance but from the excitation of that substance, for example with incident light.
  • Photoluminescence is the luminescence produced by the absorption of light.
  • Luminescence quenching is the reduction in luminescence that results from the presence of an extinguishing substance such as oxygen. Contact with an extinguishing substance causes the luminescent substance to pass from the excited state to the ground state without emitting light, resulting in a reduction in luminescence intensity and lifetime.
  • light as used herein includes visible, infrared and ultraviolet radiation.
  • Light emitted by the luminescent substance shall be distinguished from light that is reflected or scattered by the indicated substance.
  • Luminescence is generally subdivided into two forms known as fluorescence and phosphorescence, which are well understood by those skilled in the art. Most substances that are luminescent are fluorescent or phosphorescent, but in some cases it is possible that luminescence occurs by a combination of both mechanisms.
  • luminescent substance refers to an atom or group of atoms in the luminescent substance responsible for the luminescence properties of that substance.
  • the luminescent substance of the invention is the commercial aviation fuel itself, and specifically act fuel.
  • Luminescence decay means the process whereby the substance containing the luminophores emits light upon excitation with a short-lived light pulse (typically dozens of picoseconds).
  • a short-lived light pulse typically dozens of picoseconds.
  • the progressive decrease in the intensity of light emitted is an exponential function of time, with a characteristic duration determined by the luminescence lifetime ( ⁇ ).
  • extinction is used to refer to a reduction in photoluminescence; In the present invention this is fluorescence. There are a wide variety of extinction processes that decrease the intensity and fluorescence lifetime of a given substance. In this case, extinction is a non-radiative transfer of energy
  • collision such as molecular oxygen (O2) ⁇ Oxygen is an effective extinguisher due to its unusual ground state (triplet state).
  • Extinction occurs when an oxygen molecule collides (colliding means "staying in proximity", typically less than 10 nm) with the excited fuel molecule, after which there is an energy transfer - which therefore allows the fluorescent molecule of fuel lose energy without emission.
  • the terms are interpreted macroscopically: fluorescence occurs, but the presence of the extinguisher reduces the number of photons emitted per unit of time, resulting in an observable reduction in fluorescence. of their lifetime.
  • the present invention provides a method for monitoring the dissolved oxygen concentration in a fuel or the gas phase oxygen concentration present in the free volume above the act fuel in a tank.
  • aviation fuel itself can be used to monitor the oxygen concentration in that fuel or in the free volume above the fuel, for example in a tank.
  • the present invention provides an optical method of detecting oxygen dissolved in jet fuel or in free volume above jet fuel, comprising the following steps:
  • the method is suitable for the low temperatures encountered in aviation applications and, in fact, applies over the entire temperature range, from about 50 ° C to about -50 ° C encountered in these applications.
  • the device, object of the present invention includes: a low intensity light source arranged to radiate jet fuel, liquid or free volume fuel, and a photodetector arranged to detect the fluorescence of jet fuel. Both the light source and photodetector are located outside the fuel tank, radiation entering and leaving the tank through an optical window or optical fiber.
  • the present invention can be used to advantage in aviation inerting applications as it is a fast and accurate means of monitoring the concentration of dissolved oxygen in the fuel or present in the free volume above it.
  • an intelligent inerting system can control nitrogen-enriched air (NEA) injection to decrease oxygen concentration and thus reduce OBIGGS system wear and fuel consumption without the risk of ignition is increased for this reason.
  • NAA nitrogen-enriched air
  • the present invention has the benefit of using optical technology in a fuel rich environment.
  • alternative technologies may require the use of electricity, metal parts, and conductive wires. This may introduce an extra risk of ignition in the fuel system.
  • the present method works without any electric current in regions where there is liquid fuel or in the form of vapor.
  • Dissolved oxygen concentration in jet fuel can also be monitored indirectly using a portion of fuel located above liquid fuel (free volume oxygen concentration is related to oxygen concentration in liquid fuel assuming equilibrium conditions) .
  • the method of this invention is based on the irradiation of jet fuel with light and the measurement of jet fuel fluorescence intensity or lifetime for different oxygen concentrations.
  • the fuel can be irradiated in one of the following ways: optical fiber, optical window, among others.
  • the intensity of light emitted by jet fuel can be measured with a suitable photodetector such as a photodiode, CCD (Charged Couple Device) element, etc., as is well known in the art.
  • the excitation source may be continuous, modulated or pulsed, for example, a light-emitting diode (LED) or a laser.
  • the measurement is associated with a signal processing unit for generating and emitting a signal derived from the intensity detected by the photosensor in response to the irradiation of act fuel by the light source.
  • the method of the present invention may be used for spot measurements of oxygen concentration.
  • the method may be used to continuously monitor the concentration of dissolved oxygen in the fuel or the fuel present in the free volume above the fuel.
  • the fuel is a hydrocarbon fuel containing polycyclic aromatic hydrocarbons.
  • the fuel may be a petroleum derived fuel.
  • the fuel may comprise kerosene.
  • the fuel may comprise naphtha kerosene.
  • the fuel is a jet aircraft fuel. This may be Jet Al fuel, suitable for most turbine engine airplanes, but also, for example, Jet A, Jet B or TS-1, the main fuel available in Russia and the Commonwealth of Independent States. (CSI), and also Jet No. 3, the main export grade Chinese fuel, essentially identical to Jet Al.
  • Fig. 1 shows the results obtained for increasing the emission intensity of jet fuel with the removal of oxygen.
  • the quenching of fluorescence emission due to oxygen in air is about 63% at a temperature of 26 ° C and pressure 1 atm, which is the maximum concentration that is likely to be found in an aircraft fuel tank.
  • Luminescence [suppressor] (eq. 1) where [suppressor] is the concentration of the suppressor, k q is a second order velocity constant that is temperature dependent, and ⁇ is the fluorescence lifetime in the absence of oxygen at room temperature. question.
  • is the fluorescence lifetime in the absence of oxygen at room temperature.
  • Fluorescence lifetime measurements provide specific numerical parameters that are little dependent on the origin of jet fuel, as shown in Fig. 2.
  • the fluorescence lifetime of the Jet Al fuel was determined by single-shot timing spectroscopy, with a system consisting of a Tsunami Spectra Physics (Ti: Sapphire) picosecond laser (80 MHz repetition speed, 100 fs pulses, 700- 1000 nm) and a Coherent 701-2 rhodamine 6G (560-610 nm) or DCM (620-700 nm) dye laser, synchronously pumped by a Coherent Innova 440-10 ionized argon laser.
  • the excitation pulses last from 3 to 4 ps with a repetition ratio of 1.9 MHz.
  • the excitation length typically used was 300 nm.
  • Fluorescence emission was observed with a polarizer set at an angle of 54.7 ° (magic angle) and recorded at 345 nm. Diffused light is eliminated by a shear filter and the emitted light is selected by a Jobin-Yvon HR320 monochromator with a 100-line / nm diffraction grating and measured by a Hamamatsu MCP 2809U-01 photomultiplier.
  • the instrumental response (IRF) has a width at half height of 39 ps. At 25 ° C the fluorescence lifetime measured in the absence of oxygen was 39 ns, and for the highest oxygen concentration (21%) it was 15 ns.
  • One embodiment of the surface-dissolved oxygen fuel metering system in equilibrium with the oxygen present in the free volume is the assembly of Fig. 5.
  • the excitation light (pulsed, modulated or continuous) enters fiber optic and is driven to the fuel.
  • Fuel emission is collected by another optical fiber and taken to the detector. The emission is ensured from near-surface fuel using a flexible fiber bundle that ends in a float ring. The beam is long enough to reach the bottom of the tank.
  • FIG. 6 Another embodiment of the jet fuel dissolved oxygen measurement system, and in equilibrium with the oxygen present in the free volume, is the mounting of Fig. 6.
  • the excitation light (pulsed, modulated or continuous) enters fiber optic bundles. and is driven to the fuel at various tank heights (points A, B and C) through a fixed, non-metallic column supporting the fiber bundles. Fuel emission is collected at various heights (points B and C in the example) and taken to the detector.
  • One embodiment of the fuel level measurement system in a tank is the mounting of Fig. 7.
  • the excitation light (pulsed or modulated) enters an optical fiber and crosses the tank in a linear path until it hits the fuel surface.
  • Fuel emission is collected by another optical fiber and taken to the detector.
  • pulsed excitation light of a wavelength is used. where the radiation is practically all absorbed on the surface, namely 300 nm.
  • the beginning of the fuel fluorescence signal (fluorescence decay) measured at 345 nm has a delay of 1/15 ns for each cm from the fuel surface to the radiation exit point at the top of the tank.
  • Fig. 8 shows two decays with a relative delay of 7.02 ns, corresponding to a distance of 105 cm.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A invenção refere-se a um método para medição da concentração de uma substância ou mistura de substâncias e/ou determinação do nível num fluido com fluorescência intrínseca, preferencialmente sistemas de combustível. A invenção refere-se ainda ao dispositivo ótico adequado para implementar o método, que compreende uma unidade onde se gera luz de excitação da amostra; uma unidade de deteção do sinal emitido pela amostra e uma unidade de processamento de sinal. O dispositivo e método por ele implementado permitem ainda determinar a distribuição espacial da substância ou mistura de substâncias líquidas e/ou o nível do fluido num reservatório. Uma das principais aplicações é a medição da concentração de oxigénio em tanques de combustível de aeronaves, baseada na medição da fluorescência intrínseca do combustível.

Description

DESCRIÇÃO
DISPOSITIVO E MÉTODO PARA MEDIÇÃO DA DISTRIBUIÇÃO ESPACIAL DA CONCENTRAÇÃO DE COMPOSTOS E DAS SUAS MISTURAS NUM FUIDO
E/OU DO NÍVEL NUM FLUIDO
CAMPO DA INVENÇÃO
A presente invenção insere-se no domínio da medição da concentração de compostos e das suas misturas em fluidos e/ou do nível de fluidos, em particular a dispositivos e métodos para a medição e/ou monitorização da distribuição espacial da concentração e do nível de uma determinada substância ou de uma mistura de várias substâncias. Mais especificamente, a invenção diz respeito a dispositivos e métodos para a medição e a monitorização da concentração de oxigénio e/ou do nível de um fluido com fluorescência intrínseca, preferencialmente em sistemas de combustível .
Mais particularmente, embora não exclusivamente, a presente invenção pode encontrar aplicação específica na indústria aeroespacial, por exemplo em sistemas de combustíveis para aviões de jato, para monitorizar a concentração de oxigénio dissolvido em combustível de jato (jet fuel) ou presente no volume livre (ullage) de um tanque de combustível de jato e para medir o seu nível no tanque de combustível.
ANTECEDENTES DA INVENÇÃO
Os incêndios e as explosões em tanques de combustível são uma das principais causas de acidente em aeronaves. Nestas, o combustível contém geralmente ar dissolvido, e consequentemente o combustível contém tipicamente algum oxigénio dissolvido. O ar também está presente no volume livre existente entre o nível do combustível e o cimo do tanque. A quantidade de oxigénio dissolvido no combustível diminui com a pressão, e à altitude de cruzeiro (baixas pressões), o oxigénio é desgaseifiçado do combustível. A mistura combustível-ar existente no volume livre do tanque é suscetível de ignição durante o voo, podendo esta resultar de avarias de equipamento ou de ataques externos . As explosões de tanques de combustível são o resultado de deflagrações no volume livre quando a sobrepressão de combustão gerada excede a resistência estrutural do tanque. Os sistemas de proteção para tanques de combustível de aeronaves são extremamente necessários para eliminar ou reduzir significativamente a sua exposição a vapores inflamáveis. As tecnologias de inertização do tanque de combustível seguem o preceito de proteção que consiste em manter a concentração de oxigénio no volume livre abaixo do limite de deflagração, mantendo- se assim a segurança do tanque durante todo o voo.
Para a conceção de aeronaves modernas, as normas americana e europeia para a concentração de oxigénio no volume livre impõem um valor inferior a 9% para as aeronaves militares e inferior a 12% para as comerciais (W. N. Cavage, Federal Aviation Administration, 2005, Report No.: DOT/FAA/AR-05/25) . 0 tanque é considerado inerte pela EASA (European Aviation Safety Agency) e pela FAA {Federal Aviation Administration) quando a concentração média de oxigénio dentro de cada compartimento do tanque é de 12% ou menos, desde o nível do mar e até aos 10.000 pés de altitude, e aumentando linearmente dos 12% a 10.000 pés para os 14,5% aos 40.000 pés de altitude; acima dessa altitude a concentração média de oxigénio é extrapolada também linearmente (European Aviation Safety Agency, Certification Specifications for Large Aeroplanes CS-25, Amendment 6, 2009 e Federal Aviation Administration: Part III Department of Transportation, Regulation 73 (140), 42444, 2008) .
Existem várias tecnologias para a inertização de tanques de combustíveis que foram desenvolvidas nos últimos anos, tais como: espuma de supressão de explosão, sistema de extinção de Halon, sistema de nitrogénio líquido, sistema de geração de gás inerte a bordo (On Board Inert Gas Generation System, OBIGGS), etc. (C. Yan, B. Xueqin, L. Guiping, S. Bing, Z. Yu, L. Zixuan, Chin. J. Aeronaut., 2015, 28, 394-402) .
O sistema OBIGGS é a tecnologia de bordo mais utilizada. Nas aeronaves equipadas com OBIGGS, os tanques de combustível são inertizados com ar enriquecido em nitrogénio {Nitrogen Enriched Air, NEA) gerado durante o voo. O gás inerte (NEA) é produzido com ar comprimido gerado pela própria turbina {bleed air) , que é passado por um módulo de separação {Air Separation Module, ASM) , normalmente constituído por membranas de fibras ocas. Este módulo divide o ar numa parte rica em oxigénio, dióxido de carbono e vapor de água, que é descarregada para a atmosfera, e noutra, rica em nitrogénio, que é o gás inerte NEA (R. Cherry, K. Warren, Federal Aviation Administration 1999; Report No . : DOT/FAA/AR-99/73 and W. M . Cavage, 0. Kils, Federal Aviation Administration 2002; Report No.: DOT/FAA/AR-02/51 ) . Um sensor capaz de monitorizar em tempo real a concentração de oxigénio em sistemas de combustível ou nos tanques de combustível significaria a possibilidade de otimizar o funcionamento do OBBIGS, reduzindo deste modo o seu desgaste bem como o consumo de combustível.
Uma tecnologia já estabelecida para estimar a concentração de oxigénio em gases e líquidos é a medição eletroquímica . 0 sensor é constituído por uma célula eletroquímica possuindo um ânodo e um cátodo mergulhados numa solução eletrolítica . A célula eletroquímica é separada por uma membrana da amostra de gás ou líquido cu a concentração de oxigénio se pretende medir. 0 oxigénio da amostra difunde através da membrana na célula eletroquímica para se estabelecer um equilíbrio, sendo este equilíbrio proporcional à concentração de oxigénio. Uma alteração na concentração de oxigénio no eletrólito provoca uma alteração nas suas propriedades elétricas, resultando numa alteração da corrente elétrica através do sistema. A corrente é proporcional à concentração de oxigénio no eletrólito. Os limites operacionais e a sensibilidade do sensor são definidos pelos eletrólitos utilizados. Contudo, os eletrólitos comuns não são adequados para temperaturas extremas de funcionamento. Em particular, não são adequados para as baixas temperaturas encontradas em aplicações de aviação. Além disso, este método requer a utilização de peças metálicas dentro do tanque, o que aumenta o risco de deflagração devido à possibilidade de faíscas.
Uma outra tecnologia proposta na U.S. Pat . No. 5,919,710 (Gord et al . ) refere-se à medição do oxigénio dissolvido no combustível através da dopagem do combustível com um luminóforo e na posterior medição da fosforescência deste luminóforo, quando excitado por um impulso de luz laser. A concentração de oxigénio está relacionada com o tempo de vida da radiação emitida pelo luminóforo. Um tal método não pode, contudo, ser visto como um método viável e prático de medição de concentrações de oxigénio no combustível em aplicações aeroespaciais, uma vez que a dopagem em massa de combustíveis com tais luminóforos seria impraticável .
Mais recentemente, foram desenvolvidos sensores de oxigénio para tanques de combustível de aviões, nos quais a concentração de oxigénio é monitorizada por meio de um sensor contendo uma substância luminescente . 0 oxigénio atenua a luminescência dessa substância e, portanto, a concentração de oxigénio pode ser determinada pela medição da luz emitida pelo material luminescente .
A patente WO 03/046422 descreve um desses sistemas, no qual a concentração de oxigénio num tanque de combustível de aeronave é monitorizada utilizando um material contendo um complexo luminescente de ruténio.
O documento da patente US 2006/0171845A-1 descreve a utilização de tetraquis (pentafluorofenil ) porfirina de platina (II) como composto fosforescente, que se encontra incorporado numa matriz polimérica fluorada amorfa, e que serve para a deteção de oxigénio num tanque de combustível de avião. Para ser adequado e viável para utilização em depósitos de combustível de aeronaves, o material luminescente deve ser capaz de suportar as baixas temperaturas atingidas durante o voo, por exemplo -50 °C. Além disso, é desejável que o dispositivo seja fiável e tenha uma vida útil de vários anos, propriedades estas que ainda não se encontram demonstradas por nenhuma tecnologia.
Por último, os materiais utilizados devem ser compatíveis com as exigências da aviação, nomeadamente que a potência ótica não exceda 5 mW/mm2 (com um limite intrínseco de segurança de 35 mW) , conforme especificado na norma ótica IEC 60079-28:2015.
De acordo com o exposto, existe a necessidade de desenvolver um método de medição da concentração de oxigénio em sistemas de combustível que seja capaz de suportar toda a gama de temperaturas durante o voo, seja fiável, tenha uma vida útil de vários anos, ausência de peças metálicas no interior do tanque de combustível e que permita otimizar o funcionamento do sistema OBBIGS, reduzindo deste modo o seu desgaste, bem como o consumo de combustível .
Verificou-se, com o método e dispositivo que implementa o método da presente invenção, que é possível avaliar a distribuição espacial da concentração de uma determinada substância ou de uma mistura de várias substâncias num fluido. Em particular, a presente invenção permite monitorizar a concentração de oxigénio nos tanques de combustível de aviação utilizando intensidade de luminescência ou o tempo de vida de fluorescência do próprio combustível. O principio de funcionamento de um sensor ótico baseia-se na mudança de pelo menos uma propriedade ótica de uma determinada sonda (por exemplo: absorção, luminescência, índice de refração) na presença de um analito. Essa mudança é registada no dispositivo e proporciona uma informação qualitativa sobre a presença ou não do analito, bem como quantitativa, permitindo determinar a concentração desse mesmo analito. Uma resposta baseada numa mudança ótica oferece inúmeras vantagens em sensores. Utilizando uma instrumentação muito sensível como a de luminescência, é possível determinar concentrações muito baixas de analito. A resposta obtida é muitas vezes rápida, reversível e de fácil miniaturização .
Um sensor ótico pode ser definido como um dispositivo que reage a um sinal externo (ao analito) gerando um sinal ótico mensurável e reversível. A reversibilidade do sinal é um parâmetro importante uma vez que desejado é termos medidas contínuas e muitas vezes em tempo real .
O funcionamento dos sensores óticos baseia-se no efeito do analito sobre os processos de absorção, difusão e emissão de luz. Uma vez que a radiação electromagnética possuiu várias propriedades mensuráveis tais como o comprimento de onda, intensidade, polarização e fase, é possível medir e relacionar qualquer mudança que ocorre nessas propriedades com a concentração do analito que pretendemos detectar. A absorção e a luminescência são os fenómenos mais usados em sensores óticos. As medidas de luminescência são mais sensíveis do que as obtidas por variação de absorção, chegando a limites de detecção de cerca de 10~15 mol dnr3. A intensidade e a resposta temporal da luminescência são geralmente os parâmetros usados para a detecção de um determinado analito, contudo outros parâmetros podem ser explorados como a polarização e alterações na forma e posição dos espectros.
Convencionalmente, a medição do nível de um líquido num reservatório ou depósito é feita através de uma boia flutuadora acoplada mecanicamente ou magneticamente a um medidor externo, um transdutor de ultrassom ou ótico que mede o nível de líquido, ou então recorrendo a um sensor de capacitância que monitoriza a alteração na constante dielétrica entre as placas de um condensador resultante de uma mudança no nível do líquido. Estes métodos requerem, contudo, a utilização de peças metálicas dentro do depósito ou do reservatório aumentando desse modo o risco de deflagração/explosão devido à possibilidade de faíscas que irá depender da natureza da substância ou da mistura constituída por várias substâncias de interesse a determinar .
O uso de fibras óticas para deteção de nível em líquidos está também bem documentado. As principais vantagens deste tipo de sensores para a medição de níveis de um líquido são a sua passividade, isto é, não conterem partes mecânicas móveis e as suas propriedades dielétricas intrínsecas, o que significa que não há risco de faíscas/deflagrações quando utilizados em combustíveis líquidos e praticamente nenhuma interferência eletromagnética . As configurações mais comuns usam prismas pequenos montados no final de duas fibras óticas, uma ponta de fibra ótica em forma cónica ou uma fibra ótica dobrada em forma de U. Em todos os casos, a sonda ou o sensor de fibra ótica é suspenso ou desenhado para se deslocar dentro do depósito. Este sensor é potencialmente frágil e sujeito a danos causados por detritos flutuantes, vibrações ou efeitos dinâmicos durante o enchimento. O dano potencial é maior havendo manutenção de rotina do sensor devido a incrustações biológicas ou químicas na superfície ótica.
Os sensores com fibras óticas descritos anteriormente são principalmente utilizados para a medição do nível de um líquido de um modo rudimentar, isto é, para detetar se o depósito está vazio, cheio ou com o nível em algum ponto intermédio. É necessário um número demasiado grande de tais sensores para uma medida contínua de nível de um líquido, o que os torna impraticáveis para uma medida contínua do nível de um líquido num depósito.
Outros sensores para medição do nível de um líquido usam uma fibra ótica dopada com uma sonda fluorescente. Esta tem com principal função absorver e reemitir a luz proveniente de uma fonte de radiação presente no ar. A luz é refratada quando um fluido de maior índice de refração está presente no depósito e desse modo o sinal de saída traduz o nível de fluido. Contudo essa dopagem da fibra ótica com uma sonda fluorescente geralmente, e dependendo do líquido a medir, sofre de lixiviação e terá que ser renovada frequentemente.
A medição de distâncias com métodos óticos ativos está bem estabelecida, quando se deteta radiação proveniente de uma fonte de radiação pulsada ou modulada em frequência, após reflexão pelo alvo, que pode ser a superfície de um líquido. A distância é determinada a partir do tempo decorrido entre a excitação e a deteção, no caso da excitação pulsada, ou a partir do desfasamento resultante, no caso de excitação modulada em frequência. Este método permite determinar o nível de líquido num depósito estático. No entanto, quando a superfície do líquido é má refletora, quer por absorver praticamente toda a radiação incidente, quer por a difundir em várias direções, como sucede com um líquido agitado, o método pode ser inadequado, por o sinal de retorno ser errático e/ou demasiado fraco.
A medição da fluorescência intrínseca do líquido, após excitação ótica pela fonte de radiação, permite ultrapassar estes problemas, medindo-se agora o sinal de fluorescência proveniente do líquido, também por qualquer dos dois métodos referidos.
BREVE DESCRIÇÃO DA INVENÇÃO
A presente invenção refere-se a um método para a medição da concentração de uma substância ou mistura de substâncias num fluido com fluorescência intrínseca, preferencialmente em sistemas de combustível. A invenção refere-se ainda ao dispositivo ótico adequado para implementar o dito método, e que compreende uma unidade de excitação da amostra na qual se gera luz de excitação; uma unidade de deteção do sinal emitido pela amostra e uma unidade de processamento de sinal.
O dispositivo e método por ele implementado permitem ainda determinar o nível e a distribuição espacial em que se encontra a substância ou a mistura de substâncias líquidas num determinado reservatório ou depósito.
Em particular, a presente invenção refere-se a um método ótico e respetivo dispositivo que implementa o método para a medição e/ou monitorização da distribuição espacial da concentração de oxigénio em sistemas de combustível e/ou para a determinação do nível de combustível, sendo uma das aplicações a medição da concentração de oxigénio em tanques de combustível de aeronaves a ato. A fim de mitigar pelo menos alguns dos problemas acima mencionados, a presente invenção proporciona um método para monitorizar a concentração de oxigénio dissolvido num combustível ou a concentração de oxigénio na fase gasosa presente no volume livre existente acima do combustível de jato, num tanque.
O método é adequado para as baixas temperaturas encontradas em aplicações de aviação e, de facto, aplica-se em toda a gama de temperaturas, desde cerca de 50 °C até cerca de -50 °C encontradas nestas aplicações.
Conforme detalhado acima, a presente invenção insere-se na problemática da medição da concentração de oxigénio e do nível de combustível em sistemas de combustível, e possibilita uma solução capaz de suportar toda a gama de temperaturas durante o voo, é fiável, tem uma vida útil de vários anos, não requer peças metálicas no interior do tanque de combustível e permite otimizar o funcionamento do sistema OBBIGS, reduzindo deste modo o seu desgaste, bem como o consumo de combustível.
A presente invenção tem o benefício de utilizar uma tecnologia ótica num ambiente rico em combustível. Em contraste, tecnologias alternativas podem exigir o uso de energia elétrica, peças metálicas e fios condutores de eletricidade . Isto pode introduzir um risco extra de ignição no sistema de combustível. O presente método funciona sem qualquer corrente elétrica nas regiões em que existe combustível líquido ou na forma de vapor.
As vantagens da presente invenção referem-se ao facto de os sensores utilizados serem comuns e de baixo custo. Os sensores que constituem a presente invenção são menos perigosos do que os sensores convencionais; são desprovidos de componentes elétricos; não estão em contacto direto com a mistura onde se pretende avaliar a distribuição espacial da concentração de compostos ou outros parâmetros e têm custo baixo sendo facilmente acessíveis. Estes sensores são, portanto, económicos e satisfazem as exigências regulatórias e de segurança.
BREVE DESCRIÇÃO DAS FIGURAS
FIG. 1: Espetros de emissão do combustível Jet A-l na presença (linha tracejada) e ausência (linha contínua) de oxigénio (combustível saturado em N2) , obtido com excitação ao comprimento de onda de 300 nm.
Fig. 2: Gráfico do tempo de vida relativo para as amostras desoxigenadas (dois lotes diferentes de combustível Jet A-l) em estudo, a diferentes temperaturas. i2o é o tempo de vida à temperatura de 20 °C.
Fig. 3: Espetros de emissão, idênticos, de duas amostras diferentes (lotes) de combustível Jet A-l (excitação ao comprimento de onda de 300 nm) . Fig.4: Representação de Stern-Volmer dos tempos de vida do combustível Jet A-1 para diferentes percentagens de oxigénio a três temperaturas diferentes: -50 °C, 25 °C e 50°C.
Fig.5: Esquema de uma concretização do sistema de medição da concentração de oxigénio num tanque de combustível, usando um feixe flexível de fibras óticas que termina num flutuador.
Fig.6: Esquema de uma concretização do sistema de medição da concentração de oxigénio num tanque de combustível, usando uma coluna fixa contendo feixes de fibras óticas que terminam a vários níveis. Os pontos A, B e C referem-se a pontos a diferentes alturas no tanque.
Fig.7: Esquema de uma concretização do sistema de medição de nível num tanque de combustível, usando uma fonte de radiação e um detetor ligados ao topo do tanque por fibras óticas.
Fig. 8: Decaimentos de fluorescência do combustível de jato, correspondentes a distâncias distintas da superfície do combustível à fonte de excitação e ao detetor.
DESCRIÇÃO PORMENORIZADA DA INVENÇÃO
A presente invenção diz respeito a um método para a medição da distribuição espacial da concentração de uma substância ou mistura de substâncias num fluido e/ou do nível num fluido, que compreende os seguintes passos: a) Irradiação do fluido com luz de excitação;
b) Deteção da luz emitida pelo fluido e que chega a um detetor;
c) Emissão e processamento digital do sinal obtido no detetor, obtendo-se o valor da intensidade ou do tempo de vida da fluorescência do fluido;
d) Conversão do tempo de vida ou da fluorescência do fluido em concentração de uma substância ou nível do fluido, através de uma calibração.
Num modo preferencial de realização do método da invenção, o fluido é um fluido com fluorescência intrínseca, preferencialmente combustível, e ainda mais preferencialmente combustível de aeronaves a ato.
Num outro modo preferencial de realização do método da invenção, a substância cu a distribuição espacial da concentração se pretende medir é oxigénio.
Num outro modo preferencial de realização do método da invenção, o método visa a medição da concentração de oxigénio em sistemas de combustível de aeronaves a jato, e compreende os seguintes passos:
a) Irradiação, com luz de excitação, do combustível líquido ou do combustível presente no volume livre do tanque de combustível a uma gama de temperaturas entre cerca de -50 °C a cerca de 50 °C;
b) Deteção da luz emitida pelo combustível líquido ou pelo combustível presente no volume livre, e que chega a um detetor;
c) Emissão e processamento digital do sinal obtido no detetor, obtendo-se o valor da intensidade ou do tempo de vida da fluorescência do combustível ;
d) Conversão do tempo de vida ou da fluorescência do combustível obtidos, em concentração de oxigénio através de uma calibração.
Num outro modo preferencial de realização do método da invenção, o método visa a medição do nível de combustível de jato num tanque e compreende os seguintes passos :
a) Irradiação com luz de excitação, do combustível líquido do tanque;
b) Deteção da luz emitida pelo combustível líquido e que chega a um detetor;
c) Processamento digital do sinal registado no detetor, obtendo-se a resposta da intensidade de fluorescência do combustível em resposta à excitação pulsada ou modulada;
d) Conversão do sinal de fluorescência do combustível obtido em nível do líquido, através de calibração e algoritmo.
Num modo ainda mais preferencial da invenção, a fonte de luz de excitação pode ser contínua, modulada ou pulsada. Num outro modo ainda mais preferencial de realização da invenção a fonte de luz de excitação é um díodo emissor de luz (LED) ou um laser. Num outro modo ainda mais preferencial de realização da invenção a luz de excitação é guiada até ao combustível por uma fibra ótica ou uma janela ótica, entre outras .
Num outro modo ainda mais preferencial de realização da invenção, o combustível é um dos seguintes: um combustível à base de hidrocarbonetos, um combustível derivado do petróleo, Jet A-l, Jet A, Jet B, TS-1, ou o Jet n° 3, mais preferencialmente um combustível que compreende querosene ou nafta-querosene .
A presente invenção diz também respeito a um dispositivo ótico adequado para implementar o método acima descrito e que compreende: uma fonte de luz de baixa intensidade na qual se gera luz de excitação para irradiar uma determinada substância ou mistura de substâncias; uma fibra ótica ou janela ótica para guiar a luz de excitação até ao combustível; um fotodetetor para deteção da fluorescência de uma substância ou mistura de substâncias; e uma unidade de processamento de sinal.
Num modo preferencial de realização da invenção, a fonte de luz de excitação emite luz contínua, modulada ou pulsada. Num outro modo preferencial de realização da invenção, a fonte de luz de excitação é um um díodo emissor de luz (LED) ou um laser.
A presente invenção diz ainda respeito a um sistema para a medição da concentração de oxigénio e/ou do nível de combustível em depósitos de combustível de aeronaves a jato que compreende: o dispositivo ótico acima descrito e um depósito de combustível.
A presente invenção diz ainda respeito à utilização do dispositivo ótico acima descrito para a medição da distribuição espacial da concentração de uma determinada substância ou mistura de várias substâncias e/ou medição do nível de um fluido.
Num modo preferencial de realização da invenção, o dispositivo ótico é utilizado para determinar a distribuição espacial de uma substância ou a mistura de substâncias líquidas ou o nível de um fluido num
determinado reservatório ou depósito. Num modo ainda mais preferencial de realização da invenção, o dispositivo ótico é utilizado para a medição e/ou monitorização da distribuição espacial da concentração de oxigénio dissolvido no combustível líquido ou do combustível presente no volume livre de um tanque de combustível, preferencialmente em aeronaves a ato.
Salvo indicação em contrário, "cerca de x" significa que qualquer valor x apresentado no decurso da descrição deve ser interpretado como um valor aproximado do valor x real, visto que tal aproximação ao valor real seria razoavelmente esperada pelo especialista na técnica, devido a condições experimentais e/ou medição que introduzem desvios ao valor real.
O termo "sistema de combustível" deve ser entendido como o sistema que armazena e distribui o combustível ao longo do avião. Este sistema consiste em duas partes principais: tanques de combustível e subsistemas de distribuição de combustível. Os tanques de combustível podem ser unidades independentes ou parte integrante da estrutura. O combustível é levado desde os tanques até aos motores através das linhas de combustível, válvulas de controlo e bombas colocadas ao longo do percurso, chamados subsistemas de distribuição de combustível .
O termo "substância luminescente" deve ser entendido como referindo-se a uma substância que é útil na deteção de oxigénio de acordo com a invenção por meio de luminescência e extinção de luminescência.
A "luminescência" pode ser considerada como uma emissão de luz que não resulta da temperatura da substância emissora mas sim da excitação dessa substância, por exemplo com luz incidente.
A " fotoluminescência" é a luminescência produzida pela absorção de luz.
A "extinção de luminescência" é a redução da luminescência que resulta da presença de uma substância extintora, tal como o oxigénio. O contacto com uma substância extintora faz com que a substância luminescente passe do estado excitado para o estado fundamental sem emitir luz, produzindo-se uma redução na intensidade e no respetivo tempo de vida da luminescência.
O termo "luz", tal como aqui utilizado, inclui radiação visível, infravermelha e ultravioleta. A luz emitida pela substância luminescente deve ser distinguida da luz que é refletida ou dispersa pela substância indicada . A luminescência é geralmente subdividida em duas formas conhecidas como fluorescência e fosforescência, que são bem compreendidas pelos especialistas na técnica. A maioria das substâncias que são luminescentes são fluorescentes ou fosforescentes, mas, em alguns casos, é possível que a luminescência ocorra por uma combinação dos dois mecanismos.
O termo "luminóforo" refere-se a um átomo ou grupo de átomos existentes na substância luminescente, responsável pelas propriedades de luminescência dessa substância. A substância luminescente da invenção é o próprio combustível utilizado na aviação comercial, e especificamente combustível de ato.
Entende-se por «decaimento de luminescência» o processo pelo qual a substância contendo os luminóforos emite luz, após excitação com um impulso de luz de curta duração (tipicamente dezenas de picossegundos ) . No caso mais simples, o decréscimo progressivo da intensidade da luz emitida é uma função exponencial do tempo, com uma duração característica determinada pelo tempo de vida de luminescência (τ) .
O termo "extinção" é utilizado para se referir a uma redução na fotoluminescência; na presente invenção esta é a fluorescência. Há uma grande variedade de processos de extinção que diminuem a intensidade e o tempo de vida de fluorescência de uma determinada substância. Neste caso, a extinção é uma transferência não radiativa de energia
(transferência de energia de ressonância) . Este processo faz com que a substância luminescente relaxe pela dissipação da energia de excitação por um extintor
("colisão") tal como oxigénio molecular (O2) · O oxigénio é um extintor eficaz devido ao seu estado fundamental invulgar (estado tripleto) .
A extinção ocorre quando uma molécula de oxigénio colide (colidir significa "ficar na proximidade", tipicamente menos de 10 nm) com a molécula de combustível excitada, após o que há uma transferência de energia - o que, portanto, permite que a molécula fluorescente de combustível perca energia sem emissão. No entanto, uma vez que é a concretização da presente invenção que está em causa, os termos são interpretados macroscopicamente: a fluorescência ocorre, mas a presença do extintor reduz o número de fotões emitidos por unidade de tempo, resultando numa redução da fluorescência observável e do respetivo tempo de vida. Para melhorar a conceção e operação dos sistemas de gestão de combustível, é importante medir a concentração de oxigénio no combustível líquido ou no volume livre sobre o combustível, num tanque.
A fim de mitigar pelo menos alguns dos problemas acima mencionados, a presente invenção proporciona um método para monitorizar a concentração de oxigénio dissolvido num combustível ou a concentração de oxigénio na fase gasosa presente no volume livre existente acima do combustível de ato, num tanque.
Verificou-se que o próprio combustível de aviação pode ser usado para monitorizar a concentração de oxigénio nesse combustível ou no volume livre situado acima do combustível, por exemplo num tanque.
A presente invenção proporciona um método ótico de deteção do oxigénio dissolvido em combustível de jato ou situado no volume livre acima do combustível de jato, compreendendo os seguintes passos:
1- Irradiação com luz de excitação, do combustível líquido ou de combustível presente no volume livre do tanque ;
2- Deteção da luz emitida pelo combustível líquido ou por combustível presente no volume livre e que chega a um detetor;
3- Processamento digital do sinal obtido no detetor, obtendo-se o valor da intensidade ou do tempo de vida da fluorescência do combustível;
4- Conversão dos valores do tempo de vida ou da intensidade de fluorescência do combustível obtidos em concentração de oxigénio através de uma calibração.
O método é adequado para as baixas temperaturas encontradas em aplicações de aviação e, de facto, aplica-se em toda a gama de temperaturas, desde cerca de 50 °C até cerca de -50 °C encontradas nestas aplicações.
O dispositivo, objeto da presente invenção, inclui: uma fonte de luz de baixa intensidade, disposta para irradiar combustível de jato, líquido ou combustível presente no volume livre, e um fotodetetor, disposto para detetar a fluorescência do combustível de jato. Tanto a fonte de luz como o fotodetetor estão localizados externamente ao tanque de combustível, a radiação entrando e saindo do tanque através de uma janela ótica ou de uma fibra ótica.
A presente invenção pode ser usada com vantagem em aplicações de inertização na aviação, pois é um meio rápido e preciso de monitorizar a concentração de oxigénio dissolvido no combustível ou presente no volume livre acima deste. Com o conhecimento da concentração de oxigénio, um sistema de inertização inteligente pode controlar a injeção de ar enriquecido em nitrogénio (NEA) para diminuir a concentração de oxigénio e assim reduzir o desgaste do sistema OBIGGS e o consumo de combustível, sem que o risco de ignição seja aumentado por essa razão.
A presente invenção tem o benefício de utilizar uma tecnologia ótica num ambiente rico em combustível. Em contraste, tecnologias alternativas podem exigir o uso de energia elétrica, peças metálicas e fios condutores de eletricidade . Isto pode introduzir um risco extra de ignição no sistema de combustível. O presente método funciona sem qualquer corrente elétrica nas regiões em que existe combustível líquido ou na forma de vapor.
A concentração de oxigénio dissolvido no combustível de jato pode também ser monitorizada indiretamente, recorrendo a uma porção de combustível localizada acima do combustível líquido (a concentração de oxigénio no volume livre está relacionada com a concentração de oxigénio no combustível líquido, assumindo condições de equilíbrio) .
O método desta invenção baseia-se na irradiação do combustível de jato com luz e na medição da intensidade ou do tempo de vida da fluorescência do combustível de jato, para diferentes concentrações de oxigénio.
O combustível pode ser irradiado através de uma das seguintes formas: fibra ótica, janela ótica, entre outras .
A intensidade da luz emitida pelo combustível de jato pode ser medida com um fotodetetor adequado, tal como um fotodíodo, elemento CCD {Charged Couple Device) , etc, como é bem conhecido na técnica. A fonte de excitação pode ser continua, modulada ou pulsada, por exemplo, um LED (Light-Emitting Diode, díodo emissor de luz) ou um laser.
A medição está associada a uma unidade de processamento de sinal para gerar e emitir um sinal derivado da intensidade detetada pelo fotossensor, em resposta à irradiação do combustível de ato pela fonte de luz .
Numa forma de realização, o método da presente invenção pode ser utilizado para medições pontuais da concentração de oxigénio. Alternativamente, o método pode ser utilizado para monitorizar continuamente a concentração de oxigénio dissolvido no combustível ou do combustível presente no volume livre acima do combustível.
Numa forma de realização, o combustível é um combustível à base de hidrocarbonetos, contendo hidrocarbonetos aromáticos policíclicos . Numa outra forma de realização da presente invenção, o combustível pode ser um combustível derivado do petróleo. Ainda noutra forma de realização da presente invenção, o combustível pode compreender querosene. Ainda noutra forma de realização, o combustível pode compreender nafta-querosene . Na forma de realização preferida da presente invenção, o combustível é um combustível para aviões a jato. Este pode ser o combustível Jet A-l, adequado para a maioria dos aviões de motores de turbina, mas também, por exemplo, o Jet A, o Jet B ou o TS-1, o principal combustível disponível na Rússia e na Comunidade de Estados Independentes (CSI), e também o combustível Jet n° 3, principal combustível chinês com grau de exportação, essencialmente idêntico ao Jet A-l.
As análises iniciais consistem em combustível de jato exposto ao ar, tendo o oxigénio presente por efeito reduzir a intensidade de fluorescência, quando o combustível de jato é irradiado com luz ultravioleta (UV) ou visível (250-400 nm) . Ao passar-se uma corrente de nitrogénio pelo combustível de jato, reduz-se assim drasticamente o oxigénio dissolvido no combustível de jato, a emissão de fluorescência aumenta de forma significativa (Fig. 1) .
Na Fig. 1 mostram-se os resultados obtidos para o aumento da intensidade de emissão do combustível de jato com a remoção de oxigénio. Tipicamente, na gama de comprimento de onda de 330-450 nm (cobrindo a gama espetral para a emissão de combustível Jet A-l), a extinção da emissão de fluorescência devida ao oxigénio presente no ar é de cerca de 63% a uma temperatura de 26 °C e à pressão de 1 atm, o que corresponde à concentração máxima que é provável encontrar num tanque de combustível de aeronave.
Para a calibração do tempo de vida de uma determinada substância ou de uma mistura constituída por várias substâncias dissolvidas num líquido ou no volume livre existente num depósito, é possível usar a equação de Stern-Volmer, no caso de ocorrer uma supressão do tempo de vida de luminescência:
Figure imgf000019_0001
[ supressor ] (eq. 1) onde [supressor] é a concentração do supressor, kq é uma constante de velocidade de segunda ordem que é dependente da temperatura, e το é o tempo de vida de fluorescência na ausência de oxigénio à temperatura em questão. Para a calibração da intensidade é válida a mesma relação, substituindo το/τ por Io/I, em que Io é a intensidade na ausência de supressor.
Para a calibração do tempo de vida do combustível de jato para diferentes concentrações de oxigénio, é possível usar a equação de Stern-Volmer:
Figure imgf000019_0002
onde [O2] é a concentração de oxigénio, kq é uma constante de velocidade de segunda ordem que é dependente da temperatura, e το é o tempo de vida de fluorescência na ausência de oxigénio à temperatura em questão. Para a calibração da intensidade é válida a mesma relação, substituindo το/τ por Io/I, em que Io é a intensidade na ausência de oxigénio.
As medições de tempo de vida de fluorescência fornecem parâmetros numéricos específicos que são pouco dependentes da proveniência do combustível para jato, como se pode observar na Fig. 2.
Com efeito, observa-se na Fig. 2, que a resposta à temperatura do tempo de vida relativo de fluorescência do combustível é a mesma para dois lotes diferentes de combustível Jet A-l, mostrando-se que o método não é dependente da fonte de combustível de jato. Observam-se espetros de emissão idênticos para dois diferentes lotes de combustível Jet A-l, provando mais uma vez que o método não é condicionado pela fonte de combustível, como se observa na Fig. 3.
EXEMPLOS
Exemplo 1
Uma diminuição da temperatura produz um aumento no tempo de vida da fluorescência do combustível Jet A-l puro, Fig. 4. A representação de Stern-Volmer dos tempos de vida de luminescência é praticamente linear, com um declive que depende da temperatura, Fig. 4. A concentração de oxigénio a qualquer temperatura pode ser quantificada e monitorizada com base nesta relação.
Esta relação foi obtida experimentalmente da seguinte forma: colocou-se o combustível Jet A-l puro numa célula de quartzo de 1 cm de percurso ótico que se encontra selada com uma suba de silicone. O espaço vazio acima do combustível contém uma mistura N2/O2 de composição controlada (percentagens de oxigénio entre 0% e 21% em volume) . Controlou-se a composição da mistura gasosa recorrendo a um misturador de gases de fluxo. Mediu-se para as diferentes percentagens de oxigénio o tempo de vida de fluorescência do combustível Jet A-l puro. O tempo de vida de fluorescência do combustível Jet A-l foi determinado por espetroscopia de cronometragem de monofotão, com um sistema constituído por um laser de picossegundos Tsunami Spectra Physics ( Ti : Sapphire ) (velocidade de repetição 80 MHz, pulsos de 100 fs, 700-1000 nm) e por um laser de corantes Coherent 701-2 de rodamina 6G (560-610 nm) ou DCM (620-700 nm) , bombeados de modo síncrono por um laser de árgon ionizado Coherent Innova 440-10. Os pulsos de excitação têm duração de 3 a 4 ps com uma razão de repetição de 1,9 MHz. O comprimento de excitação utilizado foi tipicamente de 300 nm. A emissão de fluorescência foi observada com um polarizador colocado segundo um ângulo de 54,7° (ângulo mágico) e registada aos 345 nm. A luz difundida é eliminada por um filtro de corte e a luz emitida é selecionada por um monocromador Jobin-Yvon HR320 com uma rede de difração de 100 linhas/nm e medida por um fotomultiplicador Hamamatsu MCP 2809U-01. A resposta instrumental (IRF) tem uma largura a meia altura de 39 ps . À temperatura de 25 °C o tempo de vida fluorescência medido na ausência de oxigénio foi de 39 ns, e para a concentração de oxigénio mais elevada (21%) foi de 15 ns .
Exemplo 2
Uma concretização do sistema de medição do oxigénio dissolvido no combustível de ato, junto à superfície, e em equilíbrio com o oxigénio presente no volume livre, consiste na montagem da Fig. 5. A luz de excitação (pulsada, modulada ou contínua) entra por uma fibra ótica e é conduzida até ao combustível. A emissão do combustível é recolhida por outra fibra ótica e levada ao detetor. Assegura-se que a emissão é proveniente de combustível próximo da superfície usando um feixe de fibras flexível que termina num anel flutuador. O feixe tem comprimento suficiente para se poder atingir o fundo do tanque .
Exemplo 3
Outra concretização do sistema de medição do oxigénio dissolvido no combustível de jato, e em equilíbrio com o oxigénio presente no volume livre, consiste na montagem da Fig. 6. A luz de excitação (pulsada, modulada ou contínua) entra por feixes de fibras óticas e é conduzida até ao combustível, a várias alturas do tanque (pontos A, B e C) , através de uma coluna fixa, não metálica, que suporta os feixes de fibras. A emissão do combustível é recolhida a várias alturas (pontos B e C, no exemplo) e levada ao detetor.
Exemplo 4
Uma concretização do sistema de medição do nível de combustível num tanque consiste na montagem da Fig. 7. A luz de excitação (pulsada ou modulada) entra por uma fibra ótica e atravessa o tanque num trajeto linear, até incidir na superfície do combustível. A emissão do combustível é recolhida por outra fibra ótica e levada ao detetor.
Exemplo 5
Noutra concretização do sistema de medição do nível de combustível num tanque, correspondendo à Fig. 7, usa-se luz de excitação pulsada com um comprimento de onda em que a radiação é praticamente toda absorvida na superfície, designadamente 300 nm. Nessa situação o inicio do sinal de fluorescência (decaimento de fluorescência) do combustível, medido a 345 nm, apresenta um atraso de 1/15 ns por cada cm de distância da superfície do combustível ao ponto de saída da radiação, no topo do tanque. Na Fig. 8 apresentam-se dois decaimentos com um atraso relativo de 7,02 ns, correspondente a uma distância de 105 cm.

Claims

REIVINDICAÇÕES
1. Método para a medição da distribuição espacial da concentração de uma substância ou mistura de substâncias num fluido e/ou medição do nível num fluido caracterizado por compreender os seguintes passos :
a) Irradiação do fluido com luz de excitação;
b) Deteção da luz emitida pelo fluido e que chega a um detetor;
c) Emissão e processamento digital do sinal obtido no detetor, obtendo-se o valor da intensidade ou do tempo de vida da fluorescência do fluido; d) Conversão do tempo de vida ou da fluorescência do fluido em concentração de uma substância ou nível do fluido, através de uma calibração.
2. Método de acordo com a reivindicação 1 caraterizado por o fluido ser um fluido com fluorescência intrínseca .
3. Método de acordo com a reivindicação 2 caraterizado por o fluido com fluorescência intrínseca ser combustível .
4. Método de acordo com a reivindicação 3 caraterizado por o fluido com fluorescência intrínseca ser combustível de aeronaves a ato.
5. Método de acordo com qualquer uma das reivindicações anteriores, caracterizado por a substância cu a distribuição espacial da concentração se pretende medir ser oxigénio.
6. Método de acordo com as reivindicações 1 a 5 para a medição da concentração de oxigénio em sistemas de combustível de aeronaves a jato, caracterizado por compreender os seguintes passos:
a) Irradiação, com luz de excitação, do combustível líquido ou do combustível presente no volume livre do tanque de combustível a uma gama de temperaturas entre cerca de -50 °C a cerca de 50 °C; Deteção da luz emitida pelo combustível liquido ou pelo combustível presente no volume livre, e que chega a um detetor;
Emissão e processamento digital do sinal obtido no detetor, obtendo-se o valor da intensidade ou do tempo de vida da fluorescência do combustível ;
Conversão do tempo de vida ou da fluorescência do combustível obtidos, em concentração de oxigénio através de uma calibração.
7. Método de acordo com as reivindicações 1 a 4 para a medição do nível de combustível de ato num tanque caraterizado por compreender os seguintes passos:
e) Irradiação com luz de excitação, do combustível líquido do tanque;
f) Deteção da luz emitida pelo combustível líquido e que chega a um detetor;
g) Processamento digital do sinal registado no detetor, obtendo-se a resposta da intensidade de fluorescência do combustível em resposta à excitação pulsada ou modulada;
h) Conversão do sinal de fluorescência do combustível obtido em nível do líquido, através de calibração e algoritmo.
8. Método, de acordo com as reivindicações anteriores, caracterizado por a fonte de luz de excitação ser contínua, modulada ou pulsada.
9. Método, de acordo com a reivindicação 8, caracterizado por a fonte de luz de excitação ser um díodo emissor de luz (LED) ou um laser.
10. Método, de acordo com as reivindicações anteriores, caracterizado por a luz de excitação ser guiada até ao combustível por uma fibra ótica ou uma janela ótica, entre outras.
. Método, de acordo com as reivindicações 4 a 7, caracterizado por o combustível ser um dos seguintes: um combustível à base de hidrocarbonetos, um combustível derivado do petróleo, Jet A-l, Jet A, Jet B, TS-1, ou o Jet n° 3.
12. Método, de acordo com a reivindicação 11, caracterizado por o combustível compreender querosene ou nafta-querosene .
13. Dispositivo ótico adequado para implementar o método das reivindicações 1 a 12 caraterizado por compreender: uma fonte de luz de baixa intensidade na qual se gera luz de excitação para irradiar uma determinada substância ou mistura de substâncias; fibra ótica ou uma janela ótica para guiar a luz de excitação até ao combustível; um fotodetetor para deteção da fluorescência de uma substância ou mistura de substâncias; e uma unidade de processamento de sinal .
14. Dispositivo de acordo com a reivindicação 13 caracterizado por a fonte de luz de excitação emitir luz contínua, modulada ou pulsada.
15. Dispositivo de acordo com a reivindicação 14, caracterizado por a fonte de luz de excitação ser um díodo emissor de luz (LED) ou um laser.
16. Sistema para a medição da concentração de oxigénio e/ou do nível de combustível em depósitos de combustível de aeronaves a ato que compreende: o dispositivo ótico de acordo com as reivindicações 13 a 15 e um depósito de combustível.
17. Utilização do dispositivo das reivindicações 13 a 15 para a medição da distribuição espacial da concentração de uma determinada substância ou de uma mistura de várias substâncias num fluido e/ou medição do nível de um fluido.
18. Utilização de acordo com a reivindicação 17 para a medição da distribuição espacial de uma substância ou a mistura de substâncias líquidas e/ou medição do nível de um fluido num determinado reservatório ou depósito .
19. Utilização do dispositivo de acordo com a reivindicação 8 para a medição da distribuição espacial da concentração de oxigénio dissolvido no combustível líquido ou do combustível presente no volume livre de um tanque de combustível, preferencialmente em aeronaves a jato.
PCT/IB2018/050428 2017-01-26 2018-01-24 Dispositivo e método para medição da distribuição espacial da concentração de compostos e das suas misturas num fuido e/ou do nível num fluido WO2018138649A2 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/481,069 US11525780B2 (en) 2017-01-26 2018-01-24 Device and method for measuring the spatial distribution of the concentration of compounds and mixtures thereof in a fluid and/or the level in a fluid
EP18710516.8A EP3623799A2 (en) 2017-01-26 2018-01-24 Device and method for measuring the spatial distribution of the concentration of compounds and their mixtures in a fluid and/or for determining the fluid level
CN201880008646.0A CN110234983A (zh) 2017-01-26 2018-01-24 测量流体内化合物及其混合物浓度的空间分布和/或流体内料位的装置与方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT109877 2017-01-26
PT109877A PT109877A (pt) 2017-01-26 2017-01-26 Método ótico para a medição da concentração de oxigénio em sistemas de combustível.

Publications (3)

Publication Number Publication Date
WO2018138649A2 true WO2018138649A2 (pt) 2018-08-02
WO2018138649A3 WO2018138649A3 (pt) 2018-10-25
WO2018138649A4 WO2018138649A4 (pt) 2018-12-06

Family

ID=61622627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/050428 WO2018138649A2 (pt) 2017-01-26 2018-01-24 Dispositivo e método para medição da distribuição espacial da concentração de compostos e das suas misturas num fuido e/ou do nível num fluido

Country Status (5)

Country Link
US (1) US11525780B2 (pt)
EP (1) EP3623799A2 (pt)
CN (1) CN110234983A (pt)
PT (1) PT109877A (pt)
WO (1) WO2018138649A2 (pt)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT109877A (pt) * 2017-01-26 2018-07-26 Inst Superior Tecnico Método ótico para a medição da concentração de oxigénio em sistemas de combustível.
US11193916B2 (en) * 2019-05-02 2021-12-07 SciLogica Corp. Calibration of a gas sensor
CN111103029B (zh) * 2019-12-26 2021-04-30 河南理工大学 一种用于煤仓煤位光纤光栅智能监测装置及监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919710A (en) 1996-07-18 1999-07-06 The United States Of America As Represented By The Secretary Of The Air Force Optical method for quantitating dissolved oxygen in fuel
WO2003046422A1 (en) 2001-11-28 2003-06-05 Kenneth Susko On-board fuel inerting system
US20060171845A1 (en) 2005-01-31 2006-08-03 Dakota Technologies, Inc. Sensors for measuring analytes

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043286A (en) * 1985-07-03 1991-08-27 Abbott Laboratories Method and sensor for measuring oxygen concentration
WO1992000388A1 (en) * 1990-07-02 1992-01-09 The Regents Of The University Of California Detection of analytes using fluorescent energy transfer
US5198871A (en) * 1991-06-18 1993-03-30 Southwest Research Institute Laser-induced-fluorescence inspection of jet fuels
US7289204B2 (en) * 2001-05-03 2007-10-30 Delta Dansk Elektronik, Lys & Akustik Apparatus and sensing devices for measuring fluorescence lifetimes of fluorescence sensors
WO2004113169A1 (de) * 2003-06-16 2004-12-29 Siemens Aktiengesellschaft Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank
US7352464B2 (en) * 2004-01-05 2008-04-01 Southwest Sciences Incorporated Oxygen sensor for aircraft fuel inerting systems
WO2005119216A1 (en) * 2004-05-27 2005-12-15 Envision Instruments, Llc Systems and methods for in situ spectroscopic measurements
US9442070B1 (en) * 2004-10-05 2016-09-13 Photon Systems, Inc. Native fluorescence detection methods, devices, and systems for organic compounds
US7251027B2 (en) * 2005-05-17 2007-07-31 The Boeing Company Real time in situ monitoring of a solution
EP1742038A1 (en) * 2005-07-06 2007-01-10 Academisch Medisch Centrum bij de Universiteit van Amsterdam Device and method for determining the concentration of a substance
AU2006315664B2 (en) * 2005-11-10 2012-03-08 Tautheta Instruments Llc Apparatus and method for system identification
US7385692B1 (en) * 2006-04-28 2008-06-10 The United Of America As Represented By The Administrator Of Nasa Method and system for fiber optic determination of gas concentrations in liquid receptacles
US20070259451A1 (en) * 2006-05-03 2007-11-08 Heanue John F Fluorescence measurement method and apparatus
CA2648632C (en) * 2006-06-01 2014-03-18 Ecolab Inc. Uv fluorometric sensor and method for using the same
US8081313B2 (en) * 2007-05-24 2011-12-20 Airbus Operations Limited Method and apparatus for monitoring gas concentration in a fluid
WO2009082418A2 (en) * 2007-10-12 2009-07-02 Real-Time Analyzers, Inc. Method and apparatus for determining properties of fuels
US7839492B2 (en) * 2008-06-12 2010-11-23 Ut-Battelle, Llc Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel
GB0813715D0 (en) * 2008-07-28 2008-09-03 Airbus Uk Ltd A monitor and a method for measuring oxygen concentration
EP2550523A4 (en) * 2010-03-25 2018-01-24 Mocon, Inc. Luminescence lifetime based analyte sensing instruments and calibration technique
US20140229010A1 (en) * 2010-04-09 2014-08-14 Real-Time Analysers, Inc. Method of monitoring and controlling activity involving a fuel composition
US8455845B2 (en) * 2010-08-23 2013-06-04 Saudi Arabian Oil Company Method for detecting drag reducer additives in gasoline
US9298193B2 (en) * 2010-10-22 2016-03-29 Kenneth Susko Optical probe containing oxygen, temperature, and pressure sensors and monitoring and control systems containing the same
US20140256593A1 (en) * 2011-11-22 2014-09-11 University Of Maryland, Baltimore Plasmonic substrates for metal-enhanced fluorescence based sensing, imaging and assays
US9709499B1 (en) * 2013-09-12 2017-07-18 Innovative Scientific Solutions, Inc. Measurement of oxygen
US9869664B2 (en) * 2013-12-18 2018-01-16 Saudi Arabian Oil Company Method for non-intrusive measurement of low water content in oil
US10149640B2 (en) * 2014-06-16 2018-12-11 The Regents Of The University Of California Measuring oxygen levels in an implant, and implants having incorporated oxygen sensing
US9804086B2 (en) * 2014-11-13 2017-10-31 Emcee Electronics, Inc. Biodiesel detector
US20160334353A1 (en) * 2015-05-15 2016-11-17 General Electric Company Sensor for in situ selective detection of components in a fluid
US10844794B2 (en) * 2016-12-21 2020-11-24 Delavan Inc. Fuel quality monitoring systems
US10532822B2 (en) * 2017-01-25 2020-01-14 The Boeing Company Gas-flammability sensing systems and methods
PT109877A (pt) * 2017-01-26 2018-07-26 Inst Superior Tecnico Método ótico para a medição da concentração de oxigénio em sistemas de combustível.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919710A (en) 1996-07-18 1999-07-06 The United States Of America As Represented By The Secretary Of The Air Force Optical method for quantitating dissolved oxygen in fuel
WO2003046422A1 (en) 2001-11-28 2003-06-05 Kenneth Susko On-board fuel inerting system
US20060171845A1 (en) 2005-01-31 2006-08-03 Dakota Technologies, Inc. Sensors for measuring analytes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"European Aviation Safety Agency", CERTIFICATION SPECIFICATIONS FOR LARGE AEROPLANES CS-25, vol. 6, 2009
"Federal Aviation Administration: Part III Department of Transportation", REGULATION, vol. 73, no. 140, 2008, pages 42444
C. YAN; B. XUEQIN; L. GUIPING; S. BING; Z. YU; L. ZIXUAN, CHIN. J. AERONAUT., vol. 28, 2015, pages 394 - 402
R. CHERRY; K. WARREN, FEDERAL AVIATION ADMINISTRATION, 1999
W. M. CAVAGE; 0. KILS, FEDERAL AVIATION ADMINISTRATION, 2002
W. N. CAVAGE, FEDERAL AVIATION ADMINISTRATION, 2005

Also Published As

Publication number Publication date
WO2018138649A4 (pt) 2018-12-06
PT109877A (pt) 2018-07-26
US11525780B2 (en) 2022-12-13
US20200003687A1 (en) 2020-01-02
CN110234983A (zh) 2019-09-13
EP3623799A2 (en) 2020-03-18
WO2018138649A3 (pt) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2018138649A2 (pt) Dispositivo e método para medição da distribuição espacial da concentração de compostos e das suas misturas num fuido e/ou do nível num fluido
US7352464B2 (en) Oxygen sensor for aircraft fuel inerting systems
RU2302000C2 (ru) Способ и система маркировки и определения подлинности жидких углеводородов
US7456969B2 (en) Device and method for monitoring the oxygen concentration in an aircraft tank
DE102004011731A1 (de) Robuste Palladium-basierte Wasserstoffsensoren
JP7489972B2 (ja) 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法
He et al. Dust aerosols detected using a ground‐based polarization lidar and CALIPSO over Wuhan (30.5 N, 114.4 E), China
US10532822B2 (en) Gas-flammability sensing systems and methods
Brunamonti et al. Redistribution of black carbon in aerosol particles undergoing liquid‐liquid phase separation
Ren et al. Airborne intercomparison of HO x measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS
Rollins et al. A laser-induced fluorescence instrument for aircraft measurements of sulfur dioxide in the upper troposphere and lower stratosphere
Schreiner et al. Chemical, microphysical, and optical properties of polar stratospheric clouds
RU2661258C2 (ru) Система нейтрального газа для топливного бака воздушного судна, приспособленная для вычисления количества кислорода, присутствующего в нейтральном газе, нагнетаемом в указанный бак
Barker et al. Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence
Fong et al. A dye-doped optical sensor for the detection of biodiesel in diesel
Gross et al. Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence
Greenberg et al. Advanced particulate sensors for spacecraft early warning fire detection
Chen et al. Detection of explosive mixtures in the ullage of aircraft fuel tanks
Lemoine et al. Laser‐Induced Fluorescence
Philbrick Raman lidar capability to measure tropospheric properties
Mendoza et al. Advances towards the qualification of an aircraft fuel tank inert environment fiber optic oxygen sensor system
Andrews et al. Multispectral fluorometric sensor for real time in-situ detection of marine petroleum spills
Mendoza et al. Highly distributed multi-point, temperature and pressure compensated, fiber optic oxygen sensors (FOxSense) for aircraft fuel tank environment and safety monitoring
Cavage Measuring oxygen concentration in a fuel tank ullage
WO2020027675A1 (pt) Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18710516

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018710516

Country of ref document: EP

Effective date: 20190826