WO2018137591A1 - 一种参考信号的传输方法、传输系统、基站及终端 - Google Patents

一种参考信号的传输方法、传输系统、基站及终端 Download PDF

Info

Publication number
WO2018137591A1
WO2018137591A1 PCT/CN2018/073715 CN2018073715W WO2018137591A1 WO 2018137591 A1 WO2018137591 A1 WO 2018137591A1 CN 2018073715 W CN2018073715 W CN 2018073715W WO 2018137591 A1 WO2018137591 A1 WO 2018137591A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
side device
subband
terminal
network side
Prior art date
Application number
PCT/CN2018/073715
Other languages
English (en)
French (fr)
Inventor
王爱玲
王森
潘成康
左君
徐国珍
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2018137591A1 publication Critical patent/WO2018137591A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the embodiments of the present disclosure relate to the field of mobile communications technologies, and in particular, to a method for transmitting a reference signal, a transmission system, a base station, and a terminal.
  • the channel reciprocity is used, and the base station side can obtain the downlink channel state information by using the uplink sounding reference signal (SRS) transmitted by the user, and then generate the downlink data. Precoding matrix for transmission, etc.
  • SRS uplink sounding reference signal
  • the accuracy of the channel estimation will seriously affect the system performance. For example, the low reference signal (RS, Reference Signal) configuration density will lead to intolerable channel estimation error, and the high RS configuration density will lead to excessive reference signal overhead and serious waste of resources.
  • the time-frequency resource allocation density of the SRS is mainly based on the consideration of satisfying the estimation performance of the worst scenario, and the SRS transmission is configured on the last symbol of one subframe.
  • SRS There are two transmission mechanisms of SRS, one is broadband transmission, that is, each user transmits SRS signals over the entire system bandwidth; one is sub-band transmission, that is, each user transmits SRS signals only on certain specific sub-bands.
  • subband transmission in order to achieve coverage of the full frequency band, it is necessary to transmit the subband SRS in the form of frequency hopping on a plurality of symbols, which will result in occupying more symbol resources.
  • each user can use a unique time domain cyclic shift to assist the receiver in distinguishing between different reference signals.
  • the transmission period of the SRS in LTE can be configured to be cyclical and aperiodic. If the SRS is configured to be periodically transmitted, the user will transmit the configured SRS every once in a predetermined period. For the periodic SRS, there is also a terminal (UE) level configuration time interval, which is used to specify whether the UE does not send after only one SRS is sent, or periodically transmits the SRS.
  • UE terminal
  • the triggering of the non-periodic SRS is indicated by higher layer signaling or downlink control information (DCI).
  • DCI downlink control information
  • each SRS cannot be orthogonally determined by cyclic shift, which will cause serious interference and poor channel estimation performance.
  • the cell user density is high, and the same time-frequency resource may be required to schedule more users in a limited resource, and at the same time, it is necessary to consider reducing interference and ensuring channel estimation accuracy.
  • the periodic or aperiodic transmission of the existing SRS is relatively fixed, and it is difficult to dynamically meet the 5G multi-scenario and multi-service and diverse system parameter configuration requirements, so it is required Consider a dynamic and flexible SRS configuration and transmission scheme.
  • the technical problem to be solved by the embodiments of the present disclosure is to provide a reference signal transmission method, a transmission system, a base station, and a terminal for implementing flexibility in improving transmission of a reference signal.
  • a method for transmitting a reference signal provided by an embodiment of the present disclosure is applied to a network side device, including:
  • the broadband sounding reference signal SRS periodically transmitted on the entire system frequency band, and estimating the channel quality of the uplink channel according to the received broadband SRS;
  • the method further includes:
  • the method before the step of receiving the broadband sounding reference signal SRS periodically transmitted by the terminal side device over the entire system frequency band, the method further includes:
  • the period configuration information of the transmission period of the wideband SRS is transmitted to the terminal side device.
  • the method further includes:
  • Determining whether the first SRS configuration information is the same as the second SRS configuration information of the terminal device that is locally maintained if the same, the process ends; if not, the second SRS of the terminal device that is locally maintained
  • the configuration information is updated to the first SRS configuration information, and the step of transmitting the first SRS configuration information to the terminal side device is entered.
  • the method when the first SRS configuration information is different from the second SRS configuration information of the terminal device that is locally maintained, the method further includes:
  • the first SRS configuration information is further sent to the terminal side device by using a system message.
  • the indication information of the SRS subband includes a frequency domain location and a bandwidth of an SRS subband, where the first SRS configuration information further includes an SRS subband.
  • the indication information of the channel quality of the downlink channel includes indication information of channel quality of each sub-band; the channel quality and/or downlink according to the uplink channel.
  • the channel quality of the channel, the step of allocating an SRS subband to the terminal side device including:
  • an optimal predetermined number of subbands are selected as the SRS subband of the terminal side device.
  • the step of transmitting the downlink reference signal to the terminal device includes: The network side device sends a downlink reference signal to the terminal side device, and carries information about a beam used by the network side device after the switching in the downlink reference signal.
  • the above method further includes:
  • the above method further includes:
  • the embodiment of the present disclosure further provides a method for transmitting a reference signal, which is applied to a terminal side device, and includes:
  • first SRS configuration information including indication information of an SRS subband
  • a subband SRS is transmitted on the SRS subband.
  • the method before the step of periodically transmitting the broadband sounding reference signal SRS over the entire system frequency band, the method further includes:
  • the SRS reconfiguration indication information when receiving an SRS reconfiguration indication information sent by the network side device by using the downlink control information DCI, the SRS reconfiguration indication information indicates that the terminal side device stops.
  • the sub-band SRS is sent on the currently configured SRS sub-band, and the foregoing method further includes:
  • the terminal side device further receives the first SRS configuration information sent by the network side device by using a system message.
  • the indication information of the SRS subband includes a frequency domain location and a bandwidth of an SRS subband, where the first SRS configuration information further includes an SRS subband.
  • the downlink reference signal carries the network side device used after the handover.
  • the information of the beam the terminal side device further demodulates from the downlink reference signal to obtain information about a beam used by the network side device after the handover.
  • the terminal side device when the terminal side device switches for beamforming adopted by the network side device, the terminal side device further carries in a broadband SRS or the subband SRS. Index information of the beam used by the terminal device after the handover.
  • the terminal side device further determines, according to a correspondence between the pre-established SRS sequence and the beam, an SRS sequence corresponding to a beam used by the network side device, And transmitting the broadband SRS or the sub-band SRS by using the determined SRS sequence.
  • the embodiment of the present disclosure further provides a network side device, including:
  • a first receiving unit configured to receive a broadband sounding reference signal SRS periodically transmitted by the terminal side device over the entire system frequency band, and estimate a channel quality of the uplink channel according to the received broadband SRS;
  • a first sending unit configured to send a downlink reference signal to the terminal side device, and receive feedback information about a channel quality of the downlink channel sent by the terminal side device;
  • a configuration unit configured to allocate an SRS subband to the terminal side device according to a channel quality of the uplink channel and/or a channel quality of the downlink channel, and generate a first SRS configuration that includes indication information of the SRS subband information;
  • a second sending unit configured to send the first SRS configuration information to the terminal side device
  • a second receiving unit configured to receive a subband SRS that is sent by the terminal side device on the SRS subband.
  • the network side device further includes:
  • a first estimating unit configured to estimate channel state information of the SRS subband according to the subband SRS sent by the terminal side device on the SRS subband.
  • the network side device further includes:
  • a third sending unit configured to send the period configuration information of the transmission period of the broadband SRS to the terminal side device before receiving the broadband sounding reference signal SRS periodically transmitted by the terminal side device on the entire system frequency band.
  • the network side device further includes:
  • a determining unit configured to determine whether the first SRS configuration information is the same as the second SRS configuration information of the terminal device that is locally maintained: if the same, no action is performed; if different, the local maintenance is performed.
  • the second SRS configuration information of the terminal side device is updated to the first SRS configuration information, and the second sending unit is triggered to send the first SRS configuration information.
  • the network side device further includes:
  • a fourth sending unit configured to send, by using the downlink control information DCI, an SRS reconfiguration to the terminal side device, when the first SRS configuration information is different from the second SRS configuration information of the terminal device that is locally maintained Instructing information, the SRS reconfiguration indication information instructing the terminal side device to stop transmitting the subband SRS on the currently configured SRS subband.
  • the second sending unit further sends the first SRS configuration information to the terminal side device by using a system message.
  • the indication information of the SRS subband includes a frequency domain location and a bandwidth of an SRS subband
  • the first SRS configuration information further includes an SRS subband.
  • the indication information of the channel quality of the downlink channel includes indication information of channel quality of each sub-band; and the configuration unit is specifically configured to: use the same sub- The channel quality of the corresponding uplink channel and the channel quality of the downlink channel are weighted and summed to obtain a channel quality evaluation of the subband; and according to the channel quality evaluation of each subband, an optimal predetermined number of subbands are selected as the The SRS subband of the terminal side device.
  • the first sending unit is further configured to: when the network side device switches for beamforming used by the terminal side device, in the downlink reference The signal carries information about a beam used by the network side device after the handover.
  • the network side device further includes:
  • a first determining unit configured to extract index information of a beam used by the terminal side device for the network side device that is carried in the broadband SRS or the subband SRS, and determine the terminal side device according to the index information For the beam used by the network side device.
  • the network side device further includes:
  • a second determining unit configured to determine an SRS sequence used by the broadband SRS or the sub-band SRS, and determine a beam corresponding to the SRS sequence according to a pre-established correspondence between the SRS sequence and a beam Obtaining a beam used by the terminal side device for the network side device.
  • the embodiment of the present disclosure further provides a terminal side device, including:
  • a first sending unit configured to periodically send the broadband sounding reference signal SRS on the entire system frequency band
  • a first receiving unit configured to receive a downlink reference signal sent by the network side device, estimate a channel quality of the downlink channel according to the downlink reference signal, and send feedback information of a channel quality of the downlink channel to the network side device;
  • a second receiving unit configured to receive, by the network side device, first SRS configuration information that includes indication information of an SRS subband
  • a second sending unit configured to send the subband SRS on the SRS subband.
  • the terminal side device further includes:
  • the third receiving unit is configured to receive period configuration information of a transmission period of the broadband SRS sent by the network side device, and determine a transmission period of the width SRS.
  • the terminal side device further includes:
  • a sending control unit configured to: when receiving an SRS reconfiguration indication information sent by the network side device by using the downlink control information DCI, the SRS reconfiguration indication information indicates that the terminal side device stops sending on the currently configured SRS subband
  • the subband SRS controls the second transmitting unit to stop transmitting the subband SRS on the SRS subband.
  • the second receiving unit is further configured to receive, by using a system message, the first SRS configuration information sent by the network side device.
  • the indication information of the SRS subband includes the frequency domain location and bandwidth of the SRS subband
  • the first SRS configuration information further includes an SRS subband.
  • the downlink reference signal carries the network-side device after the handover.
  • the first receiving unit is further configured to demodulate, from the downlink reference signal, information about a beam used by the network side device after the handover.
  • the first sending unit is further configured to carry in a broadband SRS when the terminal side device switches for beam generation used by the network side device. Index information of a beam used by the terminal device after switching; or
  • the second sending unit is further configured to: when the terminal side device switches the beam splitting used by the network side device, carry the index information of the beam used by the terminal side device after the switching in the subband SRS .
  • the first sending unit or the second sending unit is further configured to determine, according to a correspondence between a pre-established SRS sequence and a beam, to the network side.
  • the SRS sequence corresponding to the beam used by the device and transmitting the broadband SRS or the sub-band SRS by using the determined SRS sequence.
  • an embodiment of the present disclosure further provides another method for transmitting a reference signal, including:
  • the terminal side device periodically transmits the broadband sounding reference signal SRS over the entire system frequency band;
  • the network side device sends a downlink reference signal to the terminal side device
  • the terminal side device receives the downlink reference signal sent by the network side device, estimates channel quality of the downlink channel according to the downlink reference signal, and sends feedback information of channel quality of the downlink channel to the network side device;
  • the network side device allocates an SRS subband to the terminal side device according to the channel quality of the uplink channel and/or the channel quality of the downlink channel, and generates first SRS configuration information including the indication information of the SRS subband. And sending the first SRS configuration information to the terminal side device;
  • the network side device receives the subband SRS sent by the terminal side device on the SRS subband.
  • an embodiment of the present disclosure further provides a transmission system of a reference signal, including a network side device and at least one terminal side device, where:
  • the network side device is configured to receive a broadband sounding reference signal SRS periodically transmitted by the terminal side device on the entire system frequency band, and estimate a channel quality of the uplink channel according to the received broadband SRS; and send a downlink reference to the terminal side device.
  • Signaling, and receiving feedback information of channel quality of a downlink channel sent by the terminal side device assigning an SRS subband to the terminal side device according to channel quality of the uplink channel and/or channel quality of the downlink channel, and generating the a first SRS configuration information of the indication information of the SRS subband; transmitting the first SRS configuration information to the terminal side device; and receiving a subband SRS sent by the terminal side device on the SRS subband;
  • the terminal side device is configured to periodically send a broadband SRS in the entire system frequency band, receive a downlink reference signal sent by the network side device, estimate a channel quality of the downlink channel according to the downlink reference signal, and send the channel quality to the network side device.
  • the feedback information of the channel quality of the downlink channel; the first SRS configuration information that is sent by the network side device and includes the indication information of the SRS subband; and the subband SRS is sent on the SRS subband.
  • an embodiment of the present disclosure further provides a network side device, including: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program The steps in the method of transmitting the reference signal as described above when executed by the processor.
  • an embodiment of the present disclosure further provides a terminal side device, including: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program The steps in the method of transmitting the reference signal as described above when executed by the processor.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to cause a network side device to implement the above The steps in the method of transmitting the reference signal.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to cause a terminal side device to implement the above The steps in the method of transmitting the reference signal.
  • the reference signal transmission method, the transmission system, the base station and the terminal implement the transmission of the hybrid broadband SRS and the sub-band SRS, and improve the SRS transmission flexibility.
  • the reference signal overhead can be reduced by increasing the transmission period of the broadband SRS, and the bandwidth configuration and transmission of the sub-band SRS is determined by the historical CSI information of the base station combined with the broadband SRS estimation and the CQI of the terminal, and can be flexibly configured according to the terminal service state. It is not necessary to use a frequency hopping method on multiple symbols to transmit multiple sub-bands to cover the entire frequency band, thereby improving resource utilization.
  • the sub-band SRS of the embodiment of the present disclosure may be configured to be aperiodic transmission, and the “SRS reconfiguration indication” information may be indicated by the DCI of the downlink control channel, and the indication mode of the DCI and the RRC signaling configuration in the LTE are used. Compared with the method, the delay can be reduced, which is more suitable for high-speed moving scenes.
  • the embodiments of the present disclosure can be applied to a multi-antenna system considering a digital domain and an analog domain hybrid architecture, and is a unified SRS flexible configuration and transmission method.
  • FIG. 1 is a schematic flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure
  • FIG. 2 is another schematic flowchart of a method for transmitting a reference signal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a scenario in which a terminal-side device beam does not switch according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a scenario of beam-forming switching of a terminal-side device provided in an embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of an interaction process between a base station and a terminal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a configuration example of a hybrid broadband SRS and a subband SRS according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the form of the base station is not limited, and may be any type of network side device.
  • the base station may be a Macro Base Station, a Pico Base Station, a Node B (referred to as a 3G mobile base station), an enhanced base station (eNB), a home enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), relay station, access point, RRU (Remote Radio Unit), RRH (Remote Radio Head), network side node in 5G mobile communication system, such as central unit ( CU, Central Unit) and distributed units (DU, Distributed Unit).
  • the terminal can be any type of terminal side device.
  • the terminal can be a mobile phone (or cell phone), or other device capable of transmitting or receiving wireless signals, including user equipment (UE), personal digital assistant (PDA), wireless modem, wireless communication device, handheld device, laptop Computers, cordless phones, wireless local loop (WLL) stations, CPE (Customer Premise Equipment) capable of converting mobile signals into WiFi signals, mobile smart hotspots, smart home appliances, or other non-human operations can spontaneously Equipment for communication in a mobile communication network, etc.
  • UE user equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • CPE Customer Premise Equipment
  • the periodic or aperiodic transmission of the existing SRS is relatively fixed, and it is difficult to dynamically satisfy the 5G multi-scene and multi-service and diverse system parameters. Configuration requirements.
  • the embodiments of the present disclosure provide a method for transmitting a reference signal, which is applied to a network side device. As shown in Figure 1, the method includes:
  • Step 11 The receiving terminal periodically transmits a broadband sounding reference signal (SRS) transmitted on the entire system frequency band, and estimates a channel quality of the uplink channel according to the received broadband SRS.
  • SRS broadband sounding reference signal
  • the channel quality of the uplink channel can be represented by channel state information (CSI).
  • CSI channel state information
  • the base station estimates the CSI of the uplink channel according to the received broadband SRS.
  • the terminal periodically transmits the broadband SRS.
  • the specific periodic configuration may be that before the step 11, the base station sends the period configuration information of the transmission period of the broadband SRS to the terminal, to configure the period.
  • the cycle can also be agreed upon by both parties to reduce the configuration steps.
  • Step 12 Send a downlink reference signal to the terminal, and receive feedback information of the channel quality of the downlink channel sent by the terminal.
  • the base station transmits downlink reference information (for example, CSI-RS) to the terminal, and the terminal measures the channel according to the downlink reference signal to obtain channel quality of the downlink channel, such as channel quality indicator (CQI) information.
  • CQI channel quality indicator
  • the terminal reports the channel quality information (such as CQI) estimated according to the downlink reference signal to the base station periodically or aperiodically through the uplink channel. Specifically, the reporting period can be flexibly configured as needed.
  • the base station may determine a precoding matrix and a modulation and coding scheme (MCS) according to the channel quality of the uplink channel obtained by the broadband SRS process and the channel quality of the downlink channel fed back by the terminal, and then may
  • MCS modulation and coding scheme
  • Step 13 The SRS subband is allocated to the terminal according to the channel quality of the uplink channel and/or the channel quality of the downlink channel, and the first SRS configuration information including the indication information of the SRS subband is generated.
  • the SRS subband is a partial frequency band in the system band.
  • Embodiments of the present disclosure perform transmission of subband SRS in addition to transmitting wideband SRS.
  • the base station will allocate the SRS subband for transmitting the subband SRS to the terminal according to the channel quality of the uplink channel and/or the channel quality of the downlink channel.
  • the indication information of the SRS subband includes a frequency domain position of the SRS subband (such as a start and stop position in the entire system band) and a bandwidth size.
  • the first SRS configuration information may further include cyclic shift information of the SRS sequence adopted on the SRS subband, and a subband SRS transmission manner.
  • the sub-band SRS transmission mode includes a transmission period at the time of periodic transmission and a transmission period at the time of aperiodic transmission.
  • the cyclic shift information is that when multiple users are multiplexed in the same resource block, and the user uses the same SRS sequence, each user is configured with no cyclic shift (ie, code division multiplexing) to ensure that different users transmit SRS. Orthogonality.
  • the entire frequency band can be monitored by using the wideband SRS, that is, the base station can obtain the uplink channel state information (CSI) of the entire frequency band through the wideband SRS estimation, thereby performing subband allocation accordingly.
  • the base station may not accurately determine which sub-band is configured for the user to transmit the sub-band SRS through the uplink CSI, and therefore may also use the downlink reference signal (for example, CSI-RS) in combination with the terminal.
  • the channel quality information (CQI) reported after the downlink channel state information is estimated is jointly determined.
  • the reporting form of the CQI by the terminal can be divided into a wideband CQI report (ie, an average of multiple CQIs of the entire bandwidth) and a terminal CQI report (different subbands have different CQI values).
  • the second method is mainly used in the embodiment of the present disclosure, and the CQI is a specific value, so the CQIs of different sub-bands can be sorted.
  • the uplink CSI and the estimated using the wideband SRS can be used.
  • the CQI reported by the user jointly determines to select a subband configuration with the best channel quality to transmit the subband SRS to the user.
  • the channel quality of the uplink channel corresponding to the same subband and the channel quality of the downlink channel are weighted and summed, and the channel quality evaluation of the subband is obtained. Then, based on the channel quality evaluation of each subband, an optimal predetermined number of subbands are selected as the SRS subband of the terminal.
  • the weighted summation is performed, the channel quality of the latest uplink channel and the channel quality of the downlink channel are usually calculated.
  • Step 14 Send the first SRS configuration information to the terminal.
  • the base station may send the first SRS configuration information to the terminal by using a system message.
  • Step 15 Receive a subband SRS sent by the terminal on the SRS subband.
  • the base station may further estimate channel state information of the SRS subband according to the subband SRS sent by the terminal on the SRS subband.
  • the embodiment of the present disclosure implements a hybrid transmission scheme of a wideband SRS and a subband SRS, and the embodiment of the present disclosure can greatly improve the flexibility of SRS transmission compared with the existing LTE SRS transmission scheme.
  • embodiments of the present disclosure may reduce reference signal overhead by increasing the transmission period of wideband SRS.
  • the bandwidth configuration and transmission of the sub-band SRS is determined by the historical CSI information of the base station combined with the broadband SRS estimation and the CQI reported by the terminal, so that it can be flexibly configured according to the terminal service state, and does not need to be transmitted by using frequency hopping on multiple symbols.
  • Multiple sub-bands cover the entire frequency band, which can improve resource utilization.
  • the base station may further determine whether the first SRS configuration information is related to a locally maintained second SRS configuration of the terminal. The information is the same. If they are the same, the process ends. If the difference is different, the second SRS configuration information of the terminal that is locally maintained is updated to the first SRS configuration information, and the steps 14 and 15 are performed to send the first SRS configuration information to the terminal, and Waiting to receive the subband SRS transmitted by the terminal on the SRS subband.
  • the base station may further send the downlink control information (DCI, Downlink Control Information) to the terminal.
  • DCI Downlink Control Information
  • the SRS reconfiguration indication information indicates that the terminal deprecates the configuration of the previous subband SRS, and stops transmitting the subband SRS on the currently configured SRS subband.
  • the SRS reconfiguration indication information may define a new DCI format in an existing DCI. One way is to indicate in the idle bits of the existing DCI, and the other way is to define new bits to indicate on the basis of the existing DCI bits.
  • the indication mode using the DCI can reduce the delay compared with the RRC signaling configuration mode in the LTE, and is more suitable for a high-speed mobile scenario.
  • the processing of multiple antennas in a 4G system is performed only in the data domain, and the analog domain performs a fixed mapping manner from the antenna array to the RF channel.
  • This method brings a very large cost overhead and algorithm processing complexity, especially in a high frequency band, for example.
  • millimeter wave communication systems At the 3GPP RAN1 #86 meeting, it has been determined to consider a digital domain and analog domain hybrid architecture multi-antenna system in a 5G new air interface system. Therefore, when designing the SRS transmission, consider the flexible configuration and transmission scheme of the combined beam.
  • the base station may dynamically configure the terminal to perform sub-band SRS transmission according to the beam switching situation of the base station and the terminal side device. Based on the hybrid architecture of digital and analog introduced in the 5G new air interface, the impact of base station (eNB) and terminal (UE) end beam transform on SRS configuration is considered.
  • eNB base station
  • UE terminal
  • the left part of FIG. 2 shows a scenario in which the beam of the base station (eNB) and the terminal (UE) end are not switched during transmission.
  • This example can also be seen as an existing LTE system without considering the analog end beam, that is, only one fixed beam case.
  • the right part of FIG. 3 shows a scenario in which the beam of the eNB is switched from Beam1 to Beam2 during transmission, and the beam at the UE side is not switched.
  • the eNB retransmits the downlink reference signal (CSI-RS) and sends it directly on the Beam2.
  • the CSI-RS can carry the information of the base station beam switching.
  • the base station sends a downlink reference signal to the terminal, and the base station carries the handover after the handover in the downlink reference signal.
  • the left part of FIG. 3 shows that the beam of the base station (eNB) does not switch during transmission, and the beam of the terminal (UE) is switched from beam1 to beam2 during transmission.
  • the right part of FIG. 4 shows a scenario in which the beam of the base station (eNB) is switched from Beam1 to Beam2 during transmission, and the beam of the terminal (UE) is switched from beam1 to beam2 during transmission.
  • the implementation manner is: the terminal further carries the index information of the beam used by the terminal after the handover in the broadband SRS or the sub-band SRS. .
  • the base station may extract index information of the beam used by the terminal for the base station carried in the broadband SRS or the sub-band SRS, and determine the information according to the index information.
  • the terminal is directed to the beam used by the base station.
  • the terminal further determines, according to the correspondence between the pre-established SRS sequence and the beam, the SRS sequence corresponding to the beam used by the base station, and uses the determined SRS sequence to send the broadband SRS or the location.
  • the statement takes SRS.
  • the base station may determine the SRS sequence used by the broadband SRS or the subband SRS, and determine the location according to the correspondence between the SRS sequence and the beam established in advance.
  • the beam corresponding to the SRS sequence is obtained, and the beam used by the terminal for the base station is obtained.
  • a method for transmitting a reference signal provided by an embodiment of the present disclosure, when applied to a terminal device includes:
  • step 41 the terminal periodically transmits the broadband SRS over the entire system frequency band.
  • the terminal can perform transmission of the broadband SRS according to a pre-configured cycle.
  • the terminal may also perform transmission of the broadband SRS according to the period configured by the base station.
  • the terminal may receive period configuration information of a transmission period of the broadband SRS transmitted by the base station, and determine a transmission period of the width SRS.
  • Step 42 The terminal receives the downlink reference signal sent by the base station, estimates the channel quality of the downlink channel according to the downlink reference signal, and sends feedback information of the channel quality of the downlink channel to the base station.
  • the channel quality of the downlink channel may be represented by a CQI, and the terminal may periodically or aperiodically transmit feedback information of the channel quality of the downlink channel to the base station.
  • Step 43 The terminal receives the first SRS configuration information that is sent by the base station and includes the indication information of the SRS subband.
  • the SRS subband is a partial frequency band allocated by the base station to the terminal from a system band.
  • the terminal may receive the first SRS configuration information sent by the base station by using a system message.
  • the indication information of the SRS subband may include a frequency domain location and a bandwidth of the SRS subband, and the first SRS configuration information may further include a cyclic shift information of the SRS sequence used on the SRS subband and a subband SRS transmission manner. Wait.
  • the sub-band SRS transmission mode includes a transmission period at the time of periodic transmission and a transmission period at the time of aperiodic transmission.
  • the terminal receives the first SRS configuration information, and may update the locally configured SRS configuration information, where the SRS configuration information may include indication information of the SRS subband, cyclic shift information of the SRS sequence used on the SRS subband, and subband SRS transmission. Ways and so on.
  • step 44 the terminal transmits the subband SRS on the SRS subband.
  • the embodiments of the present disclosure implement a flexible transmission of a wideband SRS and a subband SRS by a terminal.
  • the SRS reconfiguration indication information when receiving, by the terminal, an SRS reconfiguration indication information sent by the base station by using downlink control information (DCI), the SRS reconfiguration indication information indicates that the terminal stops sending on the currently configured SRS subband.
  • the terminal stops transmitting the subband SRS on the SRS subband.
  • the base station when the base station performs the handover of the beam used by the terminal, the base station carries the information of the beam used by the base station after the handover in the downlink reference signal sent to the terminal. At this time, the terminal further demodulates from the downlink reference signal to obtain information about a beam used by the base station after handover.
  • the terminal when the terminal is configured to switch the beam to the base station, the terminal further performs the following: the terminal further carries the index information of the beam used by the terminal after the handover in the broadband SRS or the sub-band SRS.
  • the base station may extract index information of the beam used by the terminal for the base station carried by the broadband SRS or the sub-band SRS. Determining, according to the index information, a beam used by the terminal for the base station. In another implementation manner, the terminal further determines, according to the correspondence between the pre-established SRS sequence and the beam, the SRS sequence corresponding to the beam used by the base station, and uses the determined SRS sequence to send the broadband SRS or the location. The statement takes SRS.
  • the base station may determine the SRS sequence used by the broadband SRS or the sub-band SRS, and determine a beam corresponding to the SRS sequence according to a pre-established correspondence between the SRS sequence and the beam, and obtain a The terminal is for the beam used by the base station.
  • the transmission method in the embodiment of the present disclosure includes:
  • Step a the terminal periodically transmits the broadband sounding reference signal SRS on the entire system frequency band;
  • Step b The base station receives the broadband SRS, and estimates channel quality of the uplink channel according to the received broadband SRS.
  • Step c the base station sends a downlink reference signal to the terminal
  • Step d the terminal receives the downlink reference signal sent by the base station, estimates channel quality of the downlink channel according to the downlink reference signal, and sends feedback information of channel quality of the downlink channel to the base station;
  • Step e the base station receives feedback information of channel quality of a downlink channel sent by the terminal;
  • step f the base station allocates an SRS subband to the terminal according to the channel quality of the uplink channel and/or the channel quality of the downlink channel, and generates first SRS configuration information including the indication information of the SRS subband. And sending the first SRS configuration information to the terminal;
  • Step g the terminal receives the first SRS configuration information sent by the base station, and sends a sub-band SRS on the SRS sub-band according to the first SRS configuration information;
  • Step h the base station receives a subband SRS sent by the terminal on the SRS subband.
  • Step 51 The base station (eNB) sends the broadband SRS pre-configuration information to the terminal (UE), where the pre-configuration information includes parameters such as a transmission period of the broadband SRS, and may further include indication information of the SRS sequence.
  • the pre-configuration information includes parameters such as a transmission period of the broadband SRS, and may further include indication information of the SRS sequence.
  • step 52 the terminal transmits a broadband SRS over the entire system band.
  • step 53 the base station estimates the CSI according to the received SRS.
  • step 54 the base station sends a downlink reference signal, such as a CSI-RS.
  • Step 55 The terminal performs channel estimation according to the received downlink reference signal, and obtains CQI of each subband.
  • Step 56 The terminal sends the CQI of each sub-band to the base station periodically or aperiodically.
  • the eNB allocates the SRS sub-band according to the CSI that is estimated by the last time and the CQI that is reported by the UE. For the specific allocation, refer to the foregoing description.
  • Step 58 The base station sends sub-band SRS configuration information to the terminal, where the SRS sub-band bandwidth size, the frequency band position, the SRS sequence, and the cyclic shift information, whether the indication is periodically sent, and the like may be carried.
  • step 59 the terminal transmits an SRS on the allocated SRS subband, and the base station receives the SRS from the SRS subband.
  • the wideband SRS 61 is configured in a periodic transmission mode, mainly for monitoring the entire transmission bandwidth, and its period is flexible and configurable.
  • the eNB may configure different sub-band SRSs, such as sub-band SRS 62 and sub-band SRS 63, for different beams.
  • the specific frequency domain location of the subband can be selected according to the broadband SRS monitoring result and the CQI reported by the UE.
  • the sub-band SRS in Figure 6 is sent aperiodically.
  • the broadband SRS and the sub-band SRS transmit collisions in the time domain, that is, when the same subframe transmission period SRS and the aperiodic SRS are configured, only the UE transmits the sub-band (non-periodic) SRS.
  • the embodiment of the present disclosure further provides a system and device for implementing the above method.
  • Embodiments of the present disclosure provide a transmission system of a reference signal including a base station and at least one terminal.
  • a transmission system of a reference signal including a base station and at least one terminal.
  • equipment units on the core network side among them:
  • the base station is configured to receive a broadband sounding reference signal SRS periodically transmitted by the terminal over the entire system frequency band, and estimate a channel quality of the uplink channel according to the received broadband SRS; send a downlink reference signal to the terminal, and send the terminal to send Feedback information of the channel quality of the downlink channel; assigning an SRS subband to the terminal according to the channel quality of the uplink channel and/or the channel quality of the downlink channel, and generating a first SRS including the indication information of the SRS subband Configuring information; transmitting the first SRS configuration information to the terminal; and receiving the sub-band SRS transmitted by the terminal on the SRS sub-band.
  • SRS broadband sounding reference signal
  • the terminal is configured to periodically send a broadband SRS on the entire system frequency band; receive a downlink reference signal sent by the base station, estimate a channel quality of the downlink channel according to the downlink reference signal, and send a channel quality of the downlink channel to the base station. Feedback information; receiving, by the base station, first SRS configuration information including indication information of an SRS subband; and transmitting a subband SRS on the SRS subband.
  • an embodiment of the present disclosure provides a base station, including:
  • the first receiving unit 71 is configured to receive the broadband sounding reference signal SRS periodically transmitted by the terminal over the entire system frequency band, and estimate the channel quality of the uplink channel according to the received broadband SRS.
  • the first sending unit 72 is configured to send a downlink reference signal to the terminal, and receive feedback information of a channel quality of the downlink channel sent by the terminal.
  • the configuration unit 73 is configured to allocate an SRS subband to the terminal according to a channel quality of the uplink channel and/or a channel quality of the downlink channel, and generate first SRS configuration information including indication information of the SRS subband. .
  • the second sending unit 74 is configured to send the first SRS configuration information to the terminal.
  • the second receiving unit 75 is configured to receive a subband SRS that is sent by the terminal on the SRS subband.
  • the foregoing base station may further include:
  • a first estimating unit configured to estimate channel state information of the SRS subband according to the subband SRS sent by the terminal on the SRS subband.
  • the SRS subband is a partial frequency band in the system band.
  • the above base station may further include:
  • a third sending unit configured to send, to the terminal, periodic configuration information of a transmission period of the broadband SRS, before the receiving terminal periodically transmits the broadband sounding reference signal SRS on the entire system frequency band.
  • the foregoing base station may further include:
  • a determining unit configured to determine whether the first SRS configuration information is the same as the second SRS configuration information of the terminal that is locally maintained: if the same, no action is performed; if not, the terminal that is locally maintained
  • the second SRS configuration information is updated to the first SRS configuration information, and the second sending unit is triggered to send the first SRS configuration information.
  • the foregoing base station may further include:
  • a fourth sending unit configured to send, by using the downlink control information DCI, an SRS reconfiguration indication information to the terminal, when the first SRS configuration information is different from the second SRS configuration information of the terminal that is locally maintained,
  • the SRS reconfiguration indication information indicates that the terminal stops transmitting the subband SRS on the currently configured SRS subband.
  • the second sending unit further sends the first SRS configuration information to the terminal by using a system message.
  • the indication information of the SRS subband includes a frequency domain location and a bandwidth size of the SRS subband
  • the first SRS configuration information further includes a cyclic shift information and a subband SRS transmission manner of the SRS sequence used on the SRS subband.
  • the sub-band SRS transmission mode includes a transmission period at the time of periodic transmission and a transmission period at the time of aperiodic transmission.
  • the indication information of the channel quality of the downlink channel includes indication information of channel quality of each sub-band.
  • the configuration unit is specifically configured to: perform weighted summation on channel quality of an uplink channel corresponding to the same subband and channel quality of a downlink channel, to obtain channel quality assessment of the subband; and select, according to channel quality assessment of each subband An optimal predetermined number of sub-bands are used as the SRS sub-band of the terminal.
  • the first sending unit is further configured to: when the base station performs beamforming handover for the terminal, carry information about a beam used by the base station after the handover in the downlink reference signal.
  • the foregoing base station may further include:
  • a first determining unit configured to extract index information of a beam used by the terminal for the base station, where the terminal is carried in the broadband SRS or the sub-band SRS, and determine, according to the index information, a beam used by the terminal for the base station .
  • the foregoing base station may further include:
  • a second determining unit configured to determine an SRS sequence used by the broadband SRS or the sub-band SRS, and determine a beam corresponding to the SRS sequence according to a pre-established correspondence between the SRS sequence and a beam Obtaining a beam used by the terminal for the base station.
  • the embodiment of the present disclosure further provides a terminal, including:
  • the first sending unit 81 is configured to periodically send the broadband sounding reference signal SRS over the entire system frequency band.
  • the first receiving unit 82 is configured to receive a downlink reference signal sent by the base station, estimate a channel quality of the downlink channel according to the downlink reference signal, and send feedback information of a channel quality of the downlink channel to the base station.
  • the second receiving unit 83 is configured to receive first SRS configuration information that is sent by the base station and includes indication information of an SRS subband.
  • the second sending unit 84 is configured to send the subband SRS on the SRS subband.
  • the above terminal further includes:
  • the third receiving unit is configured to receive period configuration information of a transmission period of the broadband SRS sent by the base station, and determine a transmission period of the width SRS.
  • the SRS subband is a partial frequency band allocated by the base station to the terminal from a system band.
  • the above terminal also includes:
  • a sending control unit configured to: when receiving an SRS reconfiguration indication information sent by the base station by using the downlink control information DCI, the SRS reconfiguration indication information instructing the terminal to stop transmitting the subband SRS on the currently configured SRS subband, Controlling the second transmitting unit to stop transmitting the subband SRS on the SRS subband.
  • the second receiving unit is further configured to receive, by using a system message, the first SRS configuration information sent by the base station.
  • the indication information of the SRS subband includes a frequency domain location and a bandwidth size of the SRS subband
  • the first SRS configuration information further includes cyclic shift information and a subsynthesis of the SRS sequence used on the SRS subband.
  • the sub-band SRS transmission mode includes a transmission period at the time of periodic transmission and a transmission period at the time of aperiodic transmission.
  • the downlink reference signal carries the information of the beam used by the base station after the handover
  • the first receiving unit is further used to Demodulating the downlink reference signal to obtain information about a beam used by the base station after handover.
  • the first sending unit is further configured to: when the terminal performs beamforming switching for the base station, carry the index information of the beam used by the terminal after the handover in the broadband SRS; or
  • the second sending unit is further configured to: when the terminal performs beamforming handover for the base station, carry the index information of the beam used by the terminal after the handover in the sub-band SRS.
  • the first sending unit or the second sending unit is further configured to determine, according to a correspondence between the pre-established SRS sequence and the beam, an SRS sequence corresponding to a beam used by the base station, and adopt The determined SRS sequence transmits the wideband SRS or the subband SRS.
  • the reference signal transmission method, the transmission system, the base station, and the terminal implement the transmission of the hybrid broadband SRS and the sub-band SRS, and improve the SRS transmission flexibility.
  • the reference signal overhead can be reduced by increasing the transmission period of the broadband SRS, and the bandwidth configuration and transmission of the sub-band SRS is determined by the historical CSI information of the base station combined with the broadband SRS estimation and the CQI reported by the terminal, and can be flexibly configured according to the terminal service status.
  • SRS transmission does not need to transmit multiple sub-bands over multiple symbols to cover the entire frequency band, so that resource utilization can be improved.
  • the sub-band SRS of the embodiment of the present disclosure may be configured to be aperiodic transmission, and the “SRS reconfiguration indication” information may be indicated by the DCI of the downlink control channel, and the indication mode of the DCI and the RRC signaling configuration in the LTE are used. Compared with the method, the delay can be reduced, which is more suitable for high-speed moving scenes.
  • the embodiments of the present disclosure can be applied to a multi-antenna system considering a digital domain and an analog domain hybrid architecture, and is a unified SRS flexible configuration and transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例提供了一种参考信号的传输方法、传输系统、基站及终端。本公开文本实施例实现了混合宽带SRS和子带SRS的传输,改善了SRS传输灵活性。在本公开文本实施例中,可以通过增加宽带SRS的传输周期来减少参考信号开销,而子带SRS的带宽配置与传输是基站联合宽带SRS估计的历史CSI信息以及终端上报的CQI所决定,可根据终端业务状态灵活配置SRS传输模式,不需要在多个符号上使用跳频的方式发送多个子带来覆盖全频带,可以提高资源利用率。另外,本公开文本实施例的子带SRS可以配置为非周期性传输,其"SRS重配置指示"信息可以通过下行控制信道的DCI进行指示,使用DCI的指示方式与LTE中的RRC信令配置方式相比可以减少时延,更适合高速移动场景。

Description

一种参考信号的传输方法、传输系统、基站及终端
相关申请的交叉引用
本申请主张在2017年1月26日在中国提交的中国专利申请号No.201710062830.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本实施例涉及移动通信技术领域,具体涉及一种参考信号的传输方法、传输系统、基站及终端。
背景技术
在长期演进时分双工(LTE TDD)系统中,利用信道互易性,基站端可以通过用户传输的上行探测参考信号(SRS,Sounding Reference Signal)来获取下行信道状态信息,然后生成用于下行数据传输的预编码矩阵等。而信道估计的精确度将严重影响系统性能,例如低参考信号(RS,Reference Signal)配置密度将导致不能容忍的信道估计误差,高RS配置密度则将导致过高参考信号开销,资源浪费严重。
现有的LTE系统中,SRS的时频资源配置密度主要基于满足最差场景的估计性能的考虑,并且是在一个子帧的最后一个符号上配置SRS传输。SRS的传输机制有两种,一种是宽带传输,即每个用户在整个系统带宽上传输SRS信号;一种是子带传输,即每个用户只在一些特定的子带上传输SRS信号。但是,在子带传输时,为了实现覆盖全频带,需要在多个符号上通过跳频的形式发送子带SRS,这将导致占用更多符号资源。此外,当多个用户复用同一个时频资源时,每个用户可以使用一个独特的时域循环移位来协助接收机区分不同的参考信号。
LTE中SRS的传输周期可以配置成周期性和非周期性传输。若SRS配置成周期性传输的方式,则用户将会按照既定的周期每隔一段时间传输一次配置的SRS。对于周期性SRS,还有一个终端(UE)级的配置时间间隔,用于指定UE是只发送一个SRS后就不再发送,还是周期性发送SRS。对于非周 期的SRS的触发是通过高层信令或下行控制信息(DCI,downlink control information)进行指示的。
针对现有的SRS传输方案,当复用的用户数增加到一定程度时,通过循环移位的方式不能正交的区分每个SRS,这样将会导致严重干扰以及带来较差的信道估计性能。尤其在5G系统中,小区用户密度很高,在有限的资源中可能需要相同的时频资源同时调度更多的用户,同时需要考虑降低干扰和保证信道估计精度。另外,现有SRS的周期或非周期传输,不论是传输周期还是传输的内容相对来说都是比较固定的,难以动态的满足5G多场景和多业务以及多样性的系统参数配置需求,因此需要考虑动态灵活的SRS配置及传输方案。
发明内容
本公开文本实施例要解决的技术问题是提供一种参考信号的传输方法、传输系统、基站及终端,用以实现改善参考信号的传输的灵活性。
在第一方面中,本公开文本实施例提供的一种参考信号的传输方法,应用于网络侧设备,包括:
接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
向终端侧设备发送下行参考信号,并接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;
向所述终端侧设备发送所述第一SRS配置信息;以及
接收所述终端侧设备在所述SRS子带上发送的子带SRS。
在本公开文本的一个可行实施例中,上述方法中,在接收所述终端侧设备在所述SRS子带上发送的SRS的步骤之后,上述方法还包括:
根据所述终端侧设备在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
在本公开文本的一个可行实施例中,上述方法中,在接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS的步骤之前,上述方法还包括:
向终端侧设备发送所述宽带SRS的发送周期的周期配置信息。
在本公开文本的一个可行实施例中,上述方法中,在生成所述第一SRS配置信息的步骤之后,上述方法还包括:
判断所述第一SRS配置信息是否与本地维护的所述终端侧设备的第二SRS配置信息相同:若相同,则结束流程;若不同,则将本地维护的所述终端侧设备的第二SRS配置信息更新为所述第一SRS配置信息,并进入所述向所述终端侧设备发送所述第一SRS配置信息的步骤。
在本公开文本的一个可行实施例中,上述方法中,在所述第一SRS配置信息与本地维护的所述终端侧设备的第二SRS配置信息不同时,上述方法还包括:
通过下行控制信息DCI,向所述终端侧设备发送一SRS重配置指示信息,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述方法中,进一步通过系统消息,向所述终端侧设备发送所述第一SRS配置信息。
在本公开文本的一个可行实施例中,上述方法中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
在本公开文本的一个可行实施例中,上述方法中,所述下行信道的信道质量的指示信息包括各个子带的信道质量的指示信息;所述根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带的步骤,包括:
对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估;以及
根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端侧设备的SRS子带。
在本公开文本的一个可行实施例中,上述方法中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述向终端侧设备发送下行参考信号的步骤,包括:所述网络侧设备向所述终端侧设备发送下行参考信号,并在所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息。
在本公开文本的一个可行实施例中,上述方法还包括:
提取所述宽带SRS或所述子带SRS中携带的所述终端侧设备针对网络侧设备所采用的波束的索引信息,根据所述索引信息,确定所述终端侧设备针对网络侧设备所采用的波束。
在本公开文本的一个可行实施例中,上述方法还包括:
确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端侧设备针对网络侧设备所采用的波束。
在第二方面中,本公开文本实施例还提供了一种参考信号的传输方法,应用于终端侧设备,包括:
周期性的在整个系统频带上发送宽带探测参考信号SRS;
接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
接收所述网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及
在所述SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述方法中,在周期性的在整个系统频带上发送宽带探测参考信号SRS的步骤之前,上述方法还包括:
接收网络侧设备发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
在本公开文本的一个可行实施例中,上述方法中,在接收到网络侧设备通过下行控制信息DCI发送的一SRS重配置指示信息时,所述SRS重配置 指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS,上述方法还包括:
停止在所述SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述方法中,所述终端侧设备进一步通过系统消息,接收网络侧设备发送的所述第一SRS配置信息。
在本公开文本的一个可行实施例中,上述方法中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
在本公开文本的一个可行实施例中,上述方法中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息,所述终端侧设备进一步从所述下行参考信号中解调获得切换后所述网络侧设备所采用的波束的信息。
在本公开文本的一个可行实施例中,上述方法中,在所述终端侧设备针对网络侧设备所采用的波束发生切换时,所述终端侧设备进一步在宽带SRS或所述子带SRS中携带切换后所述终端侧设备所采用的波束的索引信息。
在本公开文本的一个可行实施例中,上述方法中,所述终端侧设备进一步根据预先建立的SRS序列与波束之间的对应关系,确定针对网络侧设备所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。
在第三方面中,本公开文本实施例还提供了一种网络侧设备,包括:
第一接收单元,用于接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
第一发送单元,用于向终端侧设备发送下行参考信号,并接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
配置单元,用于根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的 第一SRS配置信息;
第二发送单元,用于向所述终端侧设备发送所述第一SRS配置信息;以及
第二接收单元,用于接收所述终端侧设备在所述SRS子带上发送的子带SRS。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
第一估计单元,用于根据所述终端侧设备在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
第三发送单元,用于在接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS之前,向终端侧设备发送所述宽带SRS的发送周期的周期配置信息。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
判断单元,用于判断所述第一SRS配置信息是否与本地维护的所述终端侧设备的第二SRS配置信息相同:若相同,则不执行任何动作;若不同,则将本地维护的所述终端侧设备的第二SRS配置信息更新为所述第一SRS配置信息,并触发所述第二发送单元发送所述第一SRS配置信息。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
第四发送单元,用于在所述第一SRS配置信息与本地维护的所述终端侧设备的第二SRS配置信息不同时,通过下行控制信息DCI,向所述终端侧设备发送一SRS重配置指示信息,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述网络侧设备中,所述第二发送单元进一步通过系统消息,向所述终端侧设备发送所述第一SRS配置信息。
在本公开文本的一个可行实施例中,上述网络侧设备中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
在本公开文本的一个可行实施例中,上述网络侧设备中,所述下行信道的信道质量的指示信息包括各个子带的信道质量的指示信息;所述配置单元,具体用于:对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估;根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端侧设备的SRS子带。
在本公开文本的一个可行实施例中,上述网络侧设备中,所述第一发送单元,进一步用于在网络侧设备针对所述终端侧设备所采用的波束发生切换时,在所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
第一确定单元,用于提取所述宽带SRS或所述子带SRS中携带的所述终端侧设备针对网络侧设备所采用的波束的索引信息,根据所述索引信息,确定所述终端侧设备针对网络侧设备所采用的波束。
在本公开文本的一个可行实施例中,上述网络侧设备还包括:
第二确定单元,用于确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端侧设备针对网络侧设备所采用的波束。
在第四方面中,本公开文本实施例还提供了一种终端侧设备,包括:
第一发送单元,用于周期性的在整个系统频带上发送宽带探测参考信号SRS;
第一接收单元,用于接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
第二接收单元,用于接收所述网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及
第二发送单元,用于在所述SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述终端侧设备还包括:
第三接收单元,用于接收网络侧设备发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
在本公开文本的一个可行实施例中,上述终端侧设备还包括:
发送控制单元,用于在接收到网络侧设备通过下行控制信息DCI发送的一SRS重配置指示信息时,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS,控制所述第二发送单元停止在所述SRS子带上发送子带SRS。
在本公开文本的一个可行实施例中,上述终端侧设备中,所述第二接收单元,进一步用于通过系统消息,接收网络侧设备发送的所述第一SRS配置信息。
在本公开文本的一个可行实施例中,上述终端侧设备中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
在本公开文本的一个可行实施例中,上述终端侧设备中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息,所述第一接收单元,进一步用于从所述下行参考信号中解调获得切换后所述网络侧设备所采用的波束的信息。
在本公开文本的一个可行实施例中,上述终端侧设备中,所述第一发送单元,进一步用于在所述终端侧设备针对网络侧设备所采用的波束发生切换时,在宽带SRS中携带切换后所述终端侧设备所采用的波束的索引信息;或者,
所述第二发送单元,进一步用于在所述终端侧设备针对网络侧设备所采用的波束发生切换时,在所述子带SRS中携带切换后所述终端侧设备所采用的波束的索引信息。
在本公开文本的一个可行实施例中,上述终端侧设备中,所述第一发送单元或第二发送单元,进一步用于根据预先建立的SRS序列与波束之间的对应关系,确定针对网络侧设备所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。
在第五方面中,本公开文本实施例还提供了另一种参考信号的传输方法,包括:
终端侧设备周期性的在整个系统频带上发送宽带探测参考信号SRS;
网络侧设备接收所述宽带SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
所述网络侧设备向所述终端侧设备发送下行参考信号;
所述终端侧设备接收网络侧设备发送的所述下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
所述网络侧设备接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
所述网络侧设备根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,生成包括有所述SRS子带的指示信息的第一SRS配置信息,并向所述终端侧设备发送所述第一SRS配置信息;
所述终端侧设备接收所述网络侧设备发送的所述第一SRS配置信息,根据所述第一SRS配置信息在所述SRS子带上发送的子带SRS;以及
所述网络侧设备接收所述终端侧设备在所述SRS子带上发送的子带SRS。
在第六方面中,本公开文本实施例还提供了一种参考信号的传输系统,包括有网络侧设备和至少一个终端侧设备,其中:
所述网络侧设备,用于接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;向终端侧设备发送下行参考信号,并接收终端侧设备发送的下行信道的信道质量的反馈信息;根据所述上行信道的信道质量和/或下行信道的信道质量,为终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;向终端侧设备发送所述第一SRS配置信息;以及,接收终端侧设备在所述SRS子带上发送的子带SRS;
所述终端侧设备,用于周期性的在整个系统频带上发送宽带SRS;接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向网络侧设备发送下行信道的信道质量的反馈信息;接收网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及,在所述SRS子带上发送子带SRS。
在第七方面中,本公开文本实施例还提供了一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的参考信号的传输方法中的步骤。
在第八方面中,本公开文本实施例还提供了一种终端侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的参考信号的传输方法中的步骤。
在第九方面中,本公开文本实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时使得网络侧设备实现如上所述的参考信号的传输方法中的步骤。
在第十方面中,本公开文本实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时使得终端侧设备实现如上所述的参考信号的传输方法中的步骤。
与现有技术相比,本公开文本实施例提供的参考信号的传输方法、传输系统、基站及终端,实现了混合宽带SRS和子带SRS的传输,改善了SRS传输灵活性。例如,可以通过增加宽带SRS的传输周期来减少参考信号开销,而子带SRS的带宽配置与传输是基站联合宽带SRS估计的历史CSI信息以及终端的CQI所决定,可根据终端业务状态灵活配置,不需要在多个符号上使用跳频的方式发送多个子带来覆盖全频带,从而可以提高资源利用率。另外,本公开文本实施例的子带SRS可以配置为非周期性传输,其“SRS重配置指示”信息可以通过下行控制信道的DCI进行指示,使用DCI的指示方式与LTE中的RRC信令配置方式相比可以减少时延,更适合高速移动场景。另外,本公开文本实施例可以适用于考虑数字域和模拟域混合架构多天线系统,是一种统一的SRS灵活配置和传输方法。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中 的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开文本实施例提供的参考信号的传输方法的一种流程示意图;
图2为本公开文本实施例提供的参考信号的传输方法的另一种流程示意图;
图3为本公开文本实施例中提供的终端侧设备波束不发生切换的场景示意图;
图4为本公开文本实施例中提供的终端侧设备波束发生切换的场景示意图;
图5为本公开文本实施例提供的基站和终端之间的交互过程的示例图;
图6为本公开文本实施例提供的混合宽带SRS和子带SRS的一种配置示例图;
图7为本公开文本实施例提供的基站的一种结构示意图;以及
图8为本公开文本实施例提供的终端的一种结构示意图。
具体实施方式
为使本公开文本实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开文本的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开文本实施例的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开文本的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开文本的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而 不应对本公开文本实施例的实施过程构成任何限定。另外,本文中术语“系统”和“网络”在本文中常可互换使用,术语“用户”和“终端”在本文中常可互换使用。
本公开文本实施例中,基站的形式不限,可以是任何类型的网络侧设备。例如,基站可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)、5G移动通信系统中的网络侧节点,如中央单元(CU,Central Unit)和分布式单元(DU,Distributed Unit)等。另外,终端可以是任何类型的终端侧设备。例如,终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备(UE)、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
如背景技术中描述的,现有SRS的周期或非周期传输,不论是传输周期还是传输的内容相对来说都是比较固定的,难以动态的满足5G多场景和多业务以及多样性的系统参数配置需求。
为提高参考信号传输的灵活性,本公开文本实施例提供了一种参考信号的传输方法,应用于网络侧设备。如图1所示,该方法包括:
步骤11,接收终端周期性的在整个系统频带上发送的宽带探测参考信号(SRS),并根据接收到的宽带SRS,估计上行信道的信道质量。
这里,上行信道的信道质量可以通过信道状态信息(CSI,Channel state information)来表示。基站根据接收到的宽带SRS,估计得到上行信道的CSI。本公开文本实施例中,终端周期性的发送宽带SRS,具体的周期配置可以是在步骤11之前,基站向终端发送所述宽带SRS的发送周期的周期配置信息,以对该周期进行配置。当然,该周期也可以是双方事先约定好的,以减少配置步骤。
步骤12,向终端发送下行参考信号,并接收所述终端发送的下行信道的 信道质量的反馈信息。
这里,基站向终端传输下行参考信息(例如CSI-RS),终端根据下行参考信号测量信道,获得下行信道的信道质量,如信道质量指示(CQI,Channel Quality Indicator)信息。终端通过上行信道,周期/非周期的向基站上报根据下行参考信号估计到的信道质量信息(如CQI)。具体的,上报周期可根据需要进行灵活配置。
在上述步骤12之后,基站可以根据宽带SRS过程获得的上行信道的信道质量以及终端反馈的下行信道的信道质量,确定预编码矩阵以及调制与编码策略(MCS,Modulation and Coding Scheme),然后可以向终端传输业务数据,之后业务流程可以参照现有LTE系统,本文不再赘述。
步骤13,根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息。
这里,所述SRS子带为系统频带中的部分频带。本公开文本实施例除了传输宽带SRS,还进行子带SRS的传输。基站将根据上行信道的信道质量和/或下行信道的信道质量,为所述终端分配用于传输子带SRS的SRS子带。所述SRS子带的指示信息包括SRS子带的频域位置(如在整个系统频带中的起止位置)及带宽大小。所述第一SRS配置信息还可以包括有SRS子带上采用的SRS序列的循环移位信息,子带SRS发送方式。这里,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。循环移位信息是在同一资源块复用多个用户,且用户使用相同的SRS序列时,给每个用户配置不用的循环移位(即进行码分复用),以保证不同用户传输SRS的正交性。
在为终端分配SRS子带时,可以利用宽带SRS监控整个频带,即基站可以通过宽带SRS估计获得整个频带的上行信道状态信息(CSI),从而据此进行子带分配。考虑到若宽带SRS的传输周期配置较大时,基站仅仅通过上行CSI,可能不能准确确定将哪个子带配置给用户传输子带SRS,故还可以结合终端通过下行参考信号(例如CSI-RS)估计出下行信道状态信息后上报的信道质量信息(CQI)来联合确定。
另外,终端进行CQI的上报形式可以分为宽带CQI上报(即整个带宽多个CQI的平均值)以及终端CQI上报(不同子带具有不同的CQI值)。在本公开文本实施例中主要用到的是第二种方式,CQI是具体的值,所以可以对不同子带的CQI进行排序。在TDD系统中,因为信道互易性,在不考虑干扰的情况下,上下行相同频带具有一致的CQI,而因为正常情况下都是有干扰存在,所以可以根据利用宽带SRS估计的上行CSI和用户上报的CQI,联合判断选择一个信道质量最好的子带配置给用户传输子带SRS。作为一种实现方式,对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估。然后,根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端的SRS子带。这里,进行加权求和时,通常采用最近一次的上行信道的信道质量和下行信道的信道质量进行计算。
步骤14,向所述终端发送所述第一SRS配置信息。
这里,基站可以通过系统消息,向所述终端发送所述第一SRS配置信息。
步骤15,接收所述终端在所述SRS子带上发送的子带SRS。
这里,在上述步骤15之后,基站还可以根据所述终端在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
通过以上步骤,本公开文本实施例实现了一种宽带SRS和子带SRS的混合传输方案,与现有LTE的SRS传输方案相比,本公开文本实施例可以大大提高SRS传输的灵活性。例如,本公开文本实施例可以通过增加宽带SRS的传输周期来减少参考信号开销。另外,子带SRS的带宽配置与传输是基站联合宽带SRS估计的历史CSI信息以及终端上报的CQI所决定,从而可以根据终端业务状态灵活配置,不需要在多个符号上使用跳频的方式发送多个子带来覆盖全频带,可以提高资源利用率。
本公开文本实施例在上述步骤13中,在生成所述第一SRS配置信息的步骤之后,所述基站还可以判断所述第一SRS配置信息是否与本地维护的所述终端的第二SRS配置信息相同。若相同,则结束流程。若不同,则将本地维护的所述终端的第二SRS配置信息更新为所述第一SRS配置信息,并进入所述步骤14和步骤15,以向终端发送所述第一SRS配置信息,并等待接收 所述终端在所述SRS子带上发送的子带SRS。
更进一步的,在所述第一SRS配置信息与本地维护的所述终端的第二SRS配置信息不同时,所述基站还可以通过下行控制信息(DCI,Downlink Control Information),向所述终端发送一SRS重配置指示信息。所述SRS重配置指示信息指示所述终端弃用之前的子带SRS的配置,停止在当前配置的SRS子带上发送子带SRS。具体的,该SRS重配置指示信息可以在现有的DCI中定义新的DCI格式。一种方式是在现有DCI的空闲比特中进行指示,而另一种方式是在现有DCI比特基础上定义新的比特来指示。使用DCI的指示方式与LTE中的RRC信令配置方式相比可以减少时延,更适合高速移动场景。
目前4G系统中多天线的处理只在数据域进行,模拟域进行天线阵子到射频通道的固定映射方式,这种方式会带来非常大的成本开销以及算法处理复杂度,特别是在高频段例如毫米波通信系统中。在3GPP RAN1#86次会议上已经确定了在5G新空口系统中考虑数字域和模拟域混合架构多天线系统。因此在进行SRS传输设计时,要考虑结合波束(beam)的灵活配置和传输方案。
考虑数字域和模拟域混合架构的多天线系统,SRS需要用于辅助进行波束管理。在本公开文本实施例中,基站可以根据基站和终端侧设备的波束切换情况来动态配置终端进行子带SRS传输。基于5G新空口中引入数字和模拟的混合架构,考虑基站(eNB)和终端(UE)端波束变换对于SRS配置的影响。对于本公开文本实施例的上述方法可以作为一种统一的传输框架来进行SRS的灵活配置。
例如,请参照图2,图2的左侧部分给出了基站(eNB)和终端(UE)端的波束(beam)在传输过程中都不进行切换的一种场景。该示例也可以看作是现有LTE系统中不考虑模拟端波束即只有一个固定beam情况。图3的右侧部分给出了eNB的beam在传输过程中由Beam1切换到了Beam2,而UE端的beam不进行切换的场景。此时因为在eNB端的beam发生切换后,eNB再发送下行参考信号(CSI-RS)会直接在Beam2上发送,可以在CSI-RS中承载基站端beam切换的信息。
本公开文本实施例在基站针对所述终端所采用的波束发生切换时,在上述步骤12中,基站向所述终端发送下行参考信号,并在所述下行参考信号中携带切换后所述基站所采用的波束的信息。
请参照图3,图3的左侧部分给出了基站(eNB)端的波束(beam)在传输过程中不进行切换,而终端(UE)的beam在传输过程中由beam1切换到了beam2的一种场景。图4的右侧部分给出了基站(eNB)端的beam在传输过程中由Beam1切换到了Beam2,且终端(UE)的beam在传输过程中由beam1切换到了beam2的场景。
本公开文本实施例当终端针对基站所采用的波束发生切换时,一种实现方式是:所述终端进一步在宽带SRS或所述子带SRS中携带切换后所述终端所采用的波束的索引信息。此时,在上述步骤11或步骤15中,基站可以提取所述宽带SRS或所述子带SRS中携带的所述终端针对基站所采用的波束的索引信息,根据所述索引信息,确定所述终端针对基站所采用的波束。另一种实现方式是终端进一步根据预先建立的SRS序列与波束之间的对应关系,确定针对基站所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。这样,在上述步骤11或步骤15中,基站可以确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端针对基站所采用的波束。
请参照图4,本公开文本实施例提供的参考信号的传输方法,在应用于终端侧设备时,所述方法包括:
步骤41,终端周期性的在整个系统频带上发送宽带SRS。
这里,终端可以按照预先配置的周期进行宽带SRS的发送。另外,终端也可以根据基站配置的周期进行宽带SRS的发送。此时,在步骤41之前,终端可以接收基站发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
步骤42,终端接收基站发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述基站发送下行信道的信道质量的反馈信息。
这里,下行信道的信道质量可以通过CQI来表示,终端可以周期或非周期性的向基站发送下行信道的信道质量的反馈信息。
步骤43,终端接收所述基站发送的包括有SRS子带的指示信息的第一SRS配置信息。
这里,所述SRS子带为基站从系统频带中为所述终端分配的部分频带。终端可以通过系统消息,接收基站发送的所述第一SRS配置信息。所述SRS子带的指示信息可以包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还可以包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式等。这里,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。终端接收到第一SRS配置信息,可以据此更新本地配置的SRS配置信息,该SRS配置信息可以包括SRS子带的指示信息,SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式等内容。
步骤44,终端在所述SRS子带上发送子带SRS。
通过以上步骤,本公开文本实施例实现了终端灵活的发送宽带SRS和子带SRS。
本公开文本实施例中,终端如果接收到基站通过下行控制信息(DCI)发送的一SRS重配置指示信息时,所述SRS重配置指示信息指示所述终端停止在当前配置的SRS子带上发送子带SRS时,则终端停止在所述SRS子带上发送子带SRS。
类似的,考虑数字域和模拟域混合架构的多天线系统,SRS需要用于辅助进行波束管理。在本公开文本实施例中,在基站针对所述终端所采用的波束发生切换时,基站在向所述终端发送的下行参考信号中携带切换后所述基站所采用的波束的信息。此时,所述终端进一步从所述下行参考信号中解调获得切换后所述基站所采用的波束的信息。而在终端针对基站所采用的波束发生切换时,一种实现方式是:所述终端进一步在宽带SRS或所述子带SRS中携带切换后所述终端所采用的波束的索引信息。这样,基站可以提取所述宽带SRS或所述子带SRS中携带的所述终端针对基站所采用的波束的索引信息。根据所述索引信息,确定所述终端针对基站所采用的波束。另一种实现方式是终端进一步根据预先建立的SRS序列与波束之间的对应关系,确定针 对基站所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。这样,基站可以确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端针对基站所采用的波束。
以上从网络侧和终端侧分别说明了本公开文本实施例的参考信号的传输方法。从基站和终端之间的交互的角度看,在本公开文本实施例的传输方法,包括:
步骤a,终端周期性的在整个系统频带上发送宽带探测参考信号SRS;
步骤b,基站接收所述宽带SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
步骤c,所述基站向所述终端发送下行参考信号;
步骤d,所述终端接收基站发送的所述下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述基站发送下行信道的信道质量的反馈信息;
步骤e,所述基站接收所述终端发送的下行信道的信道质量的反馈信息;
步骤f,所述基站根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端分配SRS子带,生成包括有所述SRS子带的指示信息的第一SRS配置信息,并向所述终端发送所述第一SRS配置信息;
步骤g,所述终端接收所述基站发送的所述第一SRS配置信息,根据所述第一SRS配置信息在所述SRS子带上发送子带SRS;以及
步骤h,所述基站接收所述终端在所述SRS子带上发送的子带SRS。
下面结合图5说明本公开文本实施例中基站和终端之间的一种交互过程的示例:
步骤51,基站(eNB)向终端(UE)发送宽带SRS预配置信息,该预配置信息包括有宽带SRS的发送周期等参数,还可以包括SRS序列的指示信息。
步骤52,终端在整个系统频带上发送宽带SRS。
步骤53,基站根据接收到的SRS,估计CSI。
步骤54,基站发送下行参考信号,如CSI-RS。
步骤55,终端根据接收到的下行参考信号,进行信道估计,获得各个子带的CQI。
步骤56,终端周期性或非周期的向基站发送各个子带的CQI。
步骤57,eNB根据最近一次估计到的CSI以及UE最近一次上报的CQI分配SRS子带,具体分配方式可以参考前文的描述。
步骤58,基站向终端发送子带SRS配置信息,其中可以携带有SRS子带的带宽大小、频带位置、SRS序列及循环移位信息,是否周期性发送的指示等内容。
步骤59,终端在分配的SRS子带上发送SRS,基站从SRS子带上接收SRS。
图6则给出了应用本公开文本实施例所述传输方法的混合宽带SRS和子带SRS的一种配置示例图。图6中,宽带SRS 61被配置成周期性传输模式,主要用来监控整个传输带宽,且其周期灵活可配。针对不同波束,eNB可配置不同子带SRS,如子带SRS 62和子带SRS 63。子带具体频域位置可根据宽带SRS监控结果以及UE上报的CQI进行选取。图6中子带SRS是非周期发送的。如若宽带SRS和子带SRS在时域发送碰撞,即配置在同一子帧发送周期SRS和非周期SRS时,则只配置UE发送子带(非周期)SRS。
基于以上实施例提供的参考信号的传输方法,本公开文本实施例还提供了实现以上方法的系统及设备。
本公开文本实施例提供了一种参考信号的传输系统,该系统包括有基站和至少一个终端。当然,还可以包括核心网侧的设备单元。其中:
所述基站,用于接收终端周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;向终端发送下行参考信号,并接收终端发送的下行信道的信道质量的反馈信息;根据所述上行信道的信道质量和/或下行信道的信道质量,为终端分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;向终端发送所述第一SRS配置信息;以及,接收终端在所述SRS子带上发送的子带SRS。
所述终端,用于周期性的在整个系统频带上发送宽带SRS;接收基站发 送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向基站发送下行信道的信道质量的反馈信息;接收基站发送的包括有SRS子带的指示信息的第一SRS配置信息;以及,在所述SRS子带上发送子带SRS。
具体的,请参照图7,本公开文本实施例提供了一种基站,包括:
第一接收单元71,用于接收终端周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量。
第一发送单元72,用于向终端发送下行参考信号,并接收所述终端发送的下行信道的信道质量的反馈信息。
配置单元73,用于根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息。
第二发送单元74,用于向所述终端发送所述第一SRS配置信息。
第二接收单元75,用于接收所述终端在所述SRS子带上发送的子带SRS。
这里,上述基站还可以包括:
第一估计单元,用于根据所述终端在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
这里,所述SRS子带为系统频带中的部分频带。
上述基站还可以包括:
第三发送单元,用于在接收终端周期性的在整个系统频带上发送的宽带探测参考信号SRS之前,向终端发送所述宽带SRS的发送周期的周期配置信息。
这里,上述基站还可以包括:
判断单元,用于判断所述第一SRS配置信息是否与本地维护的所述终端的第二SRS配置信息相同:若相同,则不执行任何动作;若不同,则将本地维护的所述终端的第二SRS配置信息更新为所述第一SRS配置信息,并触发所述第二发送单元发送所述第一SRS配置信息。
这里,上述基站还可以包括:
第四发送单元,用于在所述第一SRS配置信息与本地维护的所述终端的第二SRS配置信息不同时,通过下行控制信息DCI,向所述终端发送一SRS 重配置指示信息,所述SRS重配置指示信息指示所述终端停止在当前配置的SRS子带上发送子带SRS。
这里,所述第二发送单元进一步通过系统消息,向所述终端发送所述第一SRS配置信息。
这里,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式。这里,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
这里,所述下行信道的信道质量的指示信息包括各个子带的信道质量的指示信息。所述配置单元,具体用于:对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估;根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端的SRS子带。
这里,所述第一发送单元,进一步用于在基站针对所述终端所采用的波束发生切换时,在所述下行参考信号中携带切换后所述基站所采用的波束的信息。
这里,上述基站还可以包括:
第一确定单元,用于提取所述宽带SRS或所述子带SRS中携带的所述终端针对基站所采用的波束的索引信息,根据所述索引信息,确定所述终端针对基站所采用的波束。
这里,上述基站还可以包括:
第二确定单元,用于确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端针对基站所采用的波束。
具体的,请参照图8,本公开文本实施例还提供了一种终端,包括:
第一发送单元81,用于周期性的在整个系统频带上发送宽带探测参考信号SRS。
第一接收单元82,用于接收基站发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述基站发送下行信道的信道质量 的反馈信息。
第二接收单元83,用于接收所述基站发送的包括有SRS子带的指示信息的第一SRS配置信息。
第二发送单元84,用于在所述SRS子带上发送子带SRS。
这里,上述终端还包括:
第三接收单元,用于接收基站发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
这里,所述SRS子带为基站从系统频带中为所述终端分配的部分频带。
上述终端还包括:
发送控制单元,用于在接收到基站通过下行控制信息DCI发送的一SRS重配置指示信息时,所述SRS重配置指示信息指示所述终端停止在当前配置的SRS子带上发送子带SRS,控制所述第二发送单元停止在所述SRS子带上发送子带SRS。
这里,上述终端中,所述第二接收单元,进一步用于通过系统消息,接收基站发送的所述第一SRS配置信息。
这里,上述终端中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式。这里,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
这里,上述终端中,在基站针对所述终端所采用的波束发生切换时,所述下行参考信号中携带切换后所述基站所采用的波束的信息,所述第一接收单元,进一步用于从所述下行参考信号中解调获得切换后所述基站所采用的波束的信息。
这里,上述终端中,所述第一发送单元,进一步用于在所述终端针对基站所采用的波束发生切换时,在宽带SRS中携带切换后所述终端所采用的波束的索引信息;或者,
所述第二发送单元,进一步用于在所述终端针对基站所采用的波束发生切换时,在所述子带SRS中携带切换后所述终端所采用的波束的索引信息。
这里,上述终端中,所述第一发送单元或第二发送单元,进一步用于根 据预先建立的SRS序列与波束之间的对应关系,确定针对基站所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。
综上,本公开文本实施例提供的参考信号的传输方法、传输系统、基站及终端,实现了混合宽带SRS和子带SRS的传输,改善了SRS传输灵活性。例如,可以通过增加宽带SRS的传输周期来减少参考信号开销,而子带SRS的带宽配置与传输是基站联合宽带SRS估计的历史CSI信息以及终端上报的CQI所决定,可根据终端业务状态灵活配置SRS传输,不需要在多个符号上使用跳频的方式发送多个子带来覆盖全频带,从而可以提高资源利用率。另外,本公开文本实施例的子带SRS可以配置为非周期性传输,其“SRS重配置指示”信息可以通过下行控制信道的DCI进行指示,使用DCI的指示方式与LTE中的RRC信令配置方式相比可以减少时延,更适合高速移动场景。另外,本公开文本实施例可以适用于考虑数字域和模拟域混合架构多天线系统,是一种统一的SRS灵活配置和传输方法。
以上所述是本公开文本的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (44)

  1. 一种参考信号的传输方法,应用于网络侧设备,所述方法包括:
    接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
    向终端侧设备发送下行参考信号,并接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
    根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;
    向所述终端侧设备发送所述第一SRS配置信息;以及
    接收所述终端侧设备在所述SRS子带上发送的子带SRS。
  2. 如权利要求1所述的方法,其中,在接收所述终端侧设备在所述SRS子带上发送的子带SRS的步骤之后,所述方法还包括:
    根据所述终端侧设备在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
  3. 如权利要求1或2所述的方法,其中,在接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS的步骤之前,所述方法还包括:
    向终端侧设备发送所述宽带SRS的发送周期的周期配置信息。
  4. 如权利要求1至3中任一项所述的方法,其中,在生成所述第一SRS配置信息的步骤之后,所述方法还包括:
    判断所述第一SRS配置信息是否与本地维护的所述终端侧设备的第二SRS配置信息相同;
    若相同,则结束流程;以及
    若不同,则将本地维护的所述终端侧设备的第二SRS配置信息更新为所述第一SRS配置信息,并进入所述向所述终端侧设备发送所述第一SRS配置信息的步骤。
  5. 如权利要求4所述的方法,其中,在所述第一SRS配置信息与本地维护的所述终端侧设备的第二SRS配置信息不同时,所述方法还包括:
    通过下行控制信息DCI,向所述终端侧设备发送一SRS重配置指示信息,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS。
  6. 如权利要求1至5中任一项所述的方法,其中,所述网络侧设备进一步通过系统消息,向所述终端侧设备发送所述第一SRS配置信息。
  7. 如权利要求1至6中任一项所述的方法,其中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
  8. 如权利要求1至7中任一项所述的方法,其中,所述下行信道的信道质量的指示信息包括各个子带的信道质量的指示信息;所述根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带的步骤,包括:
    对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估;以及
    根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端侧设备的SRS子带。
  9. 如权利要求1至8中任一项所述的方法,其中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述向终端侧设备发送下行参考信号的步骤,包括:所述网络侧设备向所述终端侧设备发送下行参考信号,并在所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息。
  10. 如权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    提取所述宽带SRS或所述子带SRS中携带的所述终端侧设备针对网络侧设备所采用的波束的索引信息;以及
    根据所述索引信息,确定所述终端侧设备针对网络侧设备所采用的波束。
  11. 如权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    确定所述宽带SRS或所述子带SRS所采用的SRS序列;以及
    根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序 列对应的波束,得到所述终端侧设备针对网络侧设备所采用的波束。
  12. 一种参考信号的传输方法,应用于终端侧设备,所述方法包括:
    周期性的在整个系统频带上发送宽带探测参考信号SRS;
    接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
    接收所述网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及
    在所述SRS子带上发送子带SRS。
  13. 如权利要求12所述的方法,其中,在周期性的在整个系统频带上发送宽带探测参考信号SRS的步骤之前,所述方法还包括:
    接收网络侧设备发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
  14. 如权利要求12或13所述的方法,其中,在接收到网络侧设备通过下行控制信息DCI发送的一SRS重配置指示信息时,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS,所述方法还包括:
    停止在所述SRS子带上发送子带SRS。
  15. 如权利要求12至14中任一项所述的方法,其中,所述终端侧设备进一步通过系统消息,接收网络侧设备发送的所述第一SRS配置信息。
  16. 如权利要求12至15中任一项所述的方法,其中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
  17. 如权利要求12至16中任一项所述的方法,其中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息,所述终端侧设备进一步从所述下行参考信号中解调获得切换后所述网络侧设备所采用的波束的信息。
  18. 如权利要求12至17中任一项所述的方法,其中,
    在所述终端侧设备针对网络侧设备所采用的波束发生切换时,所述终端侧设备进一步在宽带SRS或所述子带SRS中携带切换后所述终端侧设备所采用的波束的索引信息。
  19. 如权利要求12至18中任一项所述的方法,其中,
    所述终端侧设备进一步根据预先建立的SRS序列与波束之间的对应关系,确定针对网络侧设备所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。
  20. 一种网络侧设备,包括:
    第一接收单元,用于接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
    第一发送单元,用于向终端侧设备发送下行参考信号,并接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
    配置单元,用于根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;
    第二发送单元,用于向所述终端侧设备发送所述第一SRS配置信息;以及
    第二接收单元,用于接收所述终端侧设备在所述SRS子带上发送的子带SRS。
  21. 如权利要求20所述的网络侧设备,其中,所述网络侧设备还包括:
    第一估计单元,用于根据所述终端侧设备在所述SRS子带上发送的子带SRS,估计所述SRS子带的信道状态信息。
  22. 如权利要求20或21所述的网络侧设备,其中,所述网络侧设备还包括:
    第三发送单元,用于在接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS之前,向终端侧设备发送所述宽带SRS的发送周期的周期配置信息。
  23. 如权利要求20至22中任一项所述的网络侧设备,其中,所述网络侧设备还包括:
    判断单元,用于判断所述第一SRS配置信息是否与本地维护的所述终端侧设备的第二SRS配置信息相同;
    若相同,则所述网络侧设备不执行任何动作;
    若不同,则所述网络侧设备将本地维护的所述终端侧设备的第二SRS配置信息更新为所述第一SRS配置信息,并触发所述第二发送单元发送所述第一SRS配置信息。
  24. 如权利要求23所述的网络侧设备,其中,所述网络侧设备还包括:
    第四发送单元,用于在所述第一SRS配置信息与本地维护的所述终端侧设备的第二SRS配置信息不同时,通过下行控制信息DCI,向所述终端侧设备发送一SRS重配置指示信息,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS。
  25. 如权利要求20至24中任一项所述的网络侧设备,其中,所述第二发送单元进一步通过系统消息,向所述终端侧设备发送所述第一SRS配置信息。
  26. 如权利要求20至25中任一项所述的网络侧设备,其中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
  27. 如权利要求20至26中任一项所述的网络侧设备,其中,所述下行信道的信道质量的指示信息包括各个子带的信道质量的指示信息;所述配置单元,具体用于:对同一子带对应的上行信道的信道质量和下行信道的信道质量进行加权求和,得到该子带的信道质量评估;根据各个子带的信道质量评估,选择出最优的预定数量的子带,作为所述终端侧设备的SRS子带。
  28. 如权利要求20至27中任一项所述的网络侧设备,其中,
    所述第一发送单元,进一步用于在网络侧设备针对所述终端侧设备所采用的波束发生切换时,在所述下行参考信号中携带切换后所述网络侧设备所 采用的波束的信息。
  29. 如权利要求20至28中任一项所述的网络侧设备,其中,所述网络侧设备还包括:
    第一确定单元,用于提取所述宽带SRS或所述子带SRS中携带的所述终端侧设备针对网络侧设备所采用的波束的索引信息,根据所述索引信息,确定所述终端侧设备针对网络侧设备所采用的波束。
  30. 如权利要求20至29中任一项所述的网络侧设备,其中,所述网络侧设备还包括:
    第二确定单元,用于确定所述宽带SRS或所述子带SRS所采用的SRS序列,以及,根据预先建立的所述SRS序列与波束之间的对应关系,确定所述SRS序列对应的波束,得到所述终端侧设备针对网络侧设备所采用的波束。
  31. 一种终端侧设备,包括:
    第一发送单元,用于周期性的在整个系统频带上发送宽带探测参考信号SRS;
    第一接收单元,用于接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
    第二接收单元,用于接收所述网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及
    第二发送单元,用于在所述SRS子带上发送子带SRS。
  32. 如权利要求31所述的终端侧设备,其中,所述终端侧设备还包括:
    第三接收单元,用于接收网络侧设备发送的宽带SRS的发送周期的周期配置信息,确定宽度SRS的发送周期。
  33. 如权利要求31或32所述的终端侧设备,其中,所述终端侧设备还包括:
    发送控制单元,用于在接收到网络侧设备通过下行控制信息DCI发送的一SRS重配置指示信息时,所述SRS重配置指示信息指示所述终端侧设备停止在当前配置的SRS子带上发送子带SRS,控制所述第二发送单元停止在所述SRS子带上发送子带SRS。
  34. 如权利要求31至33中任一项所述的终端侧设备,其中,所述第二接收单元,进一步用于通过系统消息,接收网络侧设备发送的所述第一SRS配置信息。
  35. 如权利要求31至34中任一项所述的终端侧设备,其中,所述SRS子带的指示信息包括SRS子带的频域位置及带宽大小,所述第一SRS配置信息还包括有SRS子带上采用的SRS序列的循环移位信息和子带SRS发送方式,其中,所述子带SRS发送方式包括周期性发送时的发送周期以及非周期性发送时的发送周期。
  36. 如权利要求31至35中任一项所述的终端侧设备,其中,在网络侧设备针对所述终端侧设备所采用的波束发生切换时,所述下行参考信号中携带切换后所述网络侧设备所采用的波束的信息,所述第一接收单元,进一步用于从所述下行参考信号中解调获得切换后所述网络侧设备所采用的波束的信息。
  37. 如权利要求31至36中任一项所述的终端侧设备,其中,
    所述第一发送单元,进一步用于在所述终端侧设备针对网络侧设备所采用的波束发生切换时,在宽带SRS中携带切换后所述终端侧设备所采用的波束的索引信息;或者,
    所述第二发送单元,进一步用于在所述终端侧设备针对网络侧设备所采用的波束发生切换时,在所述子带SRS中携带切换后所述终端侧设备所采用的波束的索引信息。
  38. 如权利要求31至37中任一项所述的终端侧设备,其中,
    所述第一发送单元或第二发送单元,进一步用于根据预先建立的SRS序列与波束之间的对应关系,确定针对网络侧设备所采用的波束所对应的SRS序列,并采用所确定的SRS序列,发送所述宽带SRS或所述子带SRS。
  39. 一种参考信号的传输方法,包括:
    终端侧设备周期性的在整个系统频带上发送宽带探测参考信号SRS;
    网络侧设备接收所述宽带SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;
    所述网络侧设备向所述终端侧设备发送下行参考信号;
    所述终端侧设备接收网络侧设备发送的所述下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向所述网络侧设备发送下行信道的信道质量的反馈信息;
    所述网络侧设备接收所述终端侧设备发送的下行信道的信道质量的反馈信息;
    所述网络侧设备根据所述上行信道的信道质量和/或下行信道的信道质量,为所述终端侧设备分配SRS子带,生成包括有所述SRS子带的指示信息的第一SRS配置信息,并向所述终端侧设备发送所述第一SRS配置信息;
    所述终端侧设备接收所述网络侧设备发送的所述第一SRS配置信息,根据所述第一SRS配置信息在所述SRS子带上发送子带SRS;以及
    所述网络侧设备接收所述终端侧设备在所述SRS子带上发送的子带SRS。
  40. 一种参考信号的传输系统,所述系统包括有网络侧设备和至少一个终端侧设备,其中:
    所述网络侧设备,用于接收终端侧设备周期性的在整个系统频带上发送的宽带探测参考信号SRS,并根据接收到的宽带SRS,估计上行信道的信道质量;向终端侧设备发送下行参考信号,并接收终端侧设备发送的下行信道的信道质量的反馈信息;根据所述上行信道的信道质量和/或下行信道的信道质量,为终端侧设备分配SRS子带,并生成包括有所述SRS子带的指示信息的第一SRS配置信息;向终端侧设备发送所述第一SRS配置信息;以及,接收终端侧设备在所述SRS子带上发送的子带SRS;
    所述终端侧设备,用于周期性的在整个系统频带上发送宽带SRS;接收网络侧设备发送的下行参考信号,根据所述下行参考信号,估计下行信道的信道质量,并向网络侧设备发送下行信道的信道质量的反馈信息;接收网络侧设备发送的包括有SRS子带的指示信息的第一SRS配置信息;以及,在所述SRS子带上发送子带SRS。
  41. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至11中任一项所述的参考信号的传输方法中的步骤。
  42. 一种终端侧设备,包括:处理器、存储器及存储在所述存储器上并 可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求12至19中任一项所述的参考信号的传输方法中的步骤。
  43. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的参考信号的传输方法中的步骤。
  44. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求12至19中任一项所述的参考信号的传输方法中的步骤。
PCT/CN2018/073715 2017-01-26 2018-01-23 一种参考信号的传输方法、传输系统、基站及终端 WO2018137591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710062830.0A CN108365937B (zh) 2017-01-26 2017-01-26 一种参考信号的传输方法、传输系统、基站及终端
CN201710062830.0 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018137591A1 true WO2018137591A1 (zh) 2018-08-02

Family

ID=62978107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073715 WO2018137591A1 (zh) 2017-01-26 2018-01-23 一种参考信号的传输方法、传输系统、基站及终端

Country Status (2)

Country Link
CN (1) CN108365937B (zh)
WO (1) WO2018137591A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435900A (zh) * 2019-02-20 2020-07-21 维沃移动通信有限公司 资源配置的方法和设备
WO2022133707A1 (en) * 2020-12-22 2022-06-30 Qualcomm Incorporated Dynamic reconfiguration associated with transmitting sounding reference signal (srs) information

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417193B (zh) * 2019-01-07 2023-05-09 中国移动通信有限公司研究院 一种带宽部分bwp的接入方法、终端及基站
CN113439410A (zh) * 2019-02-15 2021-09-24 苹果公司 用于动态配置用户装备探测参考信号(srs)资源的系统和方法
CN114070506B (zh) * 2020-07-31 2023-04-07 中国移动通信有限公司研究院 处理参考信号的方法、参考信号的指示方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934382A (zh) * 2010-06-04 2013-02-13 Lg电子株式会社 终端基于非周期性探测参考信号触发发送探测参考信号的方法和控制发送非周期性探测参考信号的上行发送功率的方法
CN103905105A (zh) * 2014-02-19 2014-07-02 大唐移动通信设备有限公司 一种双流波束赋形方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2297980B1 (en) * 2008-06-24 2018-08-29 Mitsubishi Electric Corporation Antenna selection with frequency-hopped sounding reference signals
CN102035619B (zh) * 2009-09-29 2016-05-25 电信科学技术研究院 信道质量信息反馈的方法、系统和设备
CN104426627B (zh) * 2013-08-20 2018-04-10 北京久华信信息技术有限公司 一种tdd系统中上行探测参考信号的发送方法
CN104734762B (zh) * 2013-12-20 2018-12-25 中兴通讯股份有限公司 一种发现信号的处理方法、装置和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934382A (zh) * 2010-06-04 2013-02-13 Lg电子株式会社 终端基于非周期性探测参考信号触发发送探测参考信号的方法和控制发送非周期性探测参考信号的上行发送功率的方法
CN103905105A (zh) * 2014-02-19 2014-07-02 大唐移动通信设备有限公司 一种双流波束赋形方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Further Discussion on SRS Transmission for NR", 3GPP TSG RAN WG1 MEETING #8 7, 18 November 2016 (2016-11-18), XP051175361 *
CATT: "On Beam Determination", RL-1611389, 3GPP TSG RAN WG1 MEETING #87, 18 November 2016 (2016-11-18), XP051175370 *
CATT: "QCL Between CSI-RS for Beam Management", RL-1611388, 3GPPTSG RAN WG1 MEETING #87, 18 November 2016 (2016-11-18), XP051175369 *
CMCC: "Consideration on Fexible SRS Configuration and Transmission for NR", RL-1612185, 3GPPTSG RAN WG1 #87, 18 October 2016 (2016-10-18), XP051176137 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435900A (zh) * 2019-02-20 2020-07-21 维沃移动通信有限公司 资源配置的方法和设备
CN111435900B (zh) * 2019-02-20 2022-04-22 维沃移动通信有限公司 资源配置的方法和设备
WO2022133707A1 (en) * 2020-12-22 2022-06-30 Qualcomm Incorporated Dynamic reconfiguration associated with transmitting sounding reference signal (srs) information

Also Published As

Publication number Publication date
CN108365937B (zh) 2020-05-15
CN108365937A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
US11658718B2 (en) Apparatus and method for controlling transmission in a communication system
US11979347B2 (en) Systems and methods for adaptive pilot allocation
WO2018137591A1 (zh) 一种参考信号的传输方法、传输系统、基站及终端
CN106899382B (zh) 用于LTE TDD eIMTA系统中的灵活子帧的非周期CSI报告触发的方法
KR101528571B1 (ko) 이종의 통신 시스템에서 상이한 유형의 기지국들을 협동시키기 위한 시스템 및 방법
US20210014016A1 (en) Reference signal transmission method and apparatus
US20150365941A1 (en) Resource allocation in a radio communication network
US11316575B2 (en) Multiple channel quality indicator (CQI) reports for link adaptation
WO2013169170A1 (en) Method and arrangement in a wireless communication system
US11785637B2 (en) Multiple channel state feedback reports for MU-MIMO scheduling assistance
US20090316676A1 (en) Method and Apparatus for Coupled Sounding
KR102200645B1 (ko) 리소스 구성 방법 및 장치
US10986630B2 (en) Method for scheduling transmission in wireless communications system, and device
CN116114209A (zh) 用于用户设备预期的公共波束切换的方法和装置
JP2023533428A (ja) 複数のダウンリンクリソースに関する拡張csi報告のための方法および装置
CN111586741B (zh) 一种信息上报方法及终端
WO2020029293A1 (zh) 无线通信方法、用户设备和基站
CN114390584A (zh) 一种iab节点的上报、配置与传输方法
US10419097B2 (en) CSI receiving method and access network device
CN117560034A (zh) 确定直放站链路发送模式的方法、设备、装置及存储介质
JP2015029343A (ja) 無線通信システム、基地局及びその制御方法
CN117459985A (zh) 波束指示方法、装置及存储介质
CN116939839A (zh) 传输处理方法、网络设备、终端、装置及存储介质
CN117939542A (zh) 保护间隔的确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18745142

Country of ref document: EP

Kind code of ref document: A1