WO2018137462A1 - 一种切换方法和装置 - Google Patents

一种切换方法和装置 Download PDF

Info

Publication number
WO2018137462A1
WO2018137462A1 PCT/CN2017/119125 CN2017119125W WO2018137462A1 WO 2018137462 A1 WO2018137462 A1 WO 2018137462A1 CN 2017119125 W CN2017119125 W CN 2017119125W WO 2018137462 A1 WO2018137462 A1 WO 2018137462A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
handover
nar
key generation
par
Prior art date
Application number
PCT/CN2017/119125
Other languages
English (en)
French (fr)
Inventor
郑秀丽
徐小虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17894240.5A priority Critical patent/EP3544327B1/en
Publication of WO2018137462A1 publication Critical patent/WO2018137462A1/zh
Priority to US16/442,968 priority patent/US11044652B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0433Key management protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information

Definitions

  • the present application relates to the field of communications, and in particular, to a handover method and apparatus.
  • the mobile internet protocol version 6 (English: mobile internet protocol version 6, abbreviation: MIPv6) provides the home address (English: home address, abbreviation: HoA) and the care-of address for the mobile node (English: mobile node, MN for short). :care-of address, abbreviation: CoA).
  • MIPv6 mobile internet protocol version 6, abbreviation: MIPv6
  • HoA home address
  • MN care-of address
  • CoA abbreviation: CoA
  • the MN informs the mapping node between the HoA and the CoA by transmitting the correspondent node (English: corresponding node: CN), so that the CN can enable the CN to
  • the CoA is known to be bound to the MN to enable the MN to communicate with the CN using the CoA.
  • the MN When the MN is in the old access network, it can communicate with the CN via the old access router (English: previous access router, PAR) in the old access network.
  • the MN When the MN switches from the old access network to the new access network, the MN needs to disconnect from the PAR in the old access network and establish a new access router with the new access network.
  • Abbreviation: NAR) connection When the MN switches from the old access network to the new access network, the MN needs to disconnect from the PAR in the old access network and establish a new access router with the new access network.
  • NAR new care-of address supported by the new access network
  • NCoA new CoA
  • the old access network may be a home network
  • the new access network may be a foreign network.
  • the old access network may be a foreign network and the new access network may be another foreign network.
  • the handover delay includes the time required for the MN to disconnect from the PAR to the MN to bind the CN with the NCoA. It can be understood that when the MN switches to the NAR but has not completed the binding update with the CN, the CN Keep sending packets to PCoA. After these packets are routed to PAR, packet loss will occur.
  • VoIP voice over internet protocol
  • Embodiments of the present invention provide a handover method and apparatus for reducing handover delay in a process in which a MN switches from a legacy access network to a new access network.
  • a handover method may include: the MN sends the first indication information to the NAR via the PAR; wherein the first indication information is used to indicate the NAR to establish the handover test initialization message, and send the handover test to the communication peer node CN Initialization message; the handover test initialization message includes a new care-of address NCoA of the MN for instructing the CN to construct a handover key generation token according to the NCoA; the MN switches from the PAR to the NAR; then the MN receives the handover key generation order from the CN sent by the NAR Card; in turn, the MN is bound to the CN according to the handover key generation token.
  • the embodiment of the present invention obtains the handover key generation token by instructing the NAR to construct the handover test initialization message before the MN switches from the PAR to the NAR, so that the MN can directly receive the NAR transmission after the MN switches from the PAR to the NAR.
  • the care-of key generation token the MN does not need to send a handover test initialization message to the CN to obtain the handover key generation token.
  • the embodiment of the present invention reduces the binding update delay by reducing the handover test initialization message delay, thereby reducing the handover delay.
  • the MN sends the first indication information to the NAR via the PAR, where the MN sends the fast binding update FBU message to the PAR.
  • the FBU message includes the first indication information, and the FBU message. It is used to instruct the PAR to send a handover initialization HI message to the NAR, where the HI message includes the first indication information.
  • the first indication information is carried in the FBU message and the HI message in the process of verifying the legality of the NCoA, and is sent by the MN to the NAR via the PAR, so that the signaling overhead can be reduced.
  • the first indication information may also be carried in a new message sent by the MN to the PAR, and then carried in another new message by the PAR to the NAR.
  • the first indication information may also be carried in the FBU message sent by the MN to the PAR, and then carried in a new message by the PAR to the NAR.
  • the process of verifying the legality of the NCoA by the NAR and the process of the MN transmitting the first indication information to the NAR through the PAR may also be performed separately.
  • the first indication information may also be carried in a new message sent by the MN to the PAR, and then carried in the HI message by the PAR to the NAR.
  • the specific implementation manner of any of the foregoing new messages is not limited in the embodiment of the present invention.
  • the method may further include: acquiring the hometown by the MN Address HoA authentication parameter; the MN binding to the CN according to the handover key generation token may include: the MN binding to the CN according to the handover key generation token and the HoA authentication parameter.
  • the acquiring, by the MN, the HoA authentication parameter may include: obtaining, by the MN, the CGA parameter and the CGA signature locally; or The permanent home key generation token is obtained locally; or the MN sends a home test initialization message to the CN via the home agent, and receives the home test message from the CN sent by the home agent; wherein the home test message includes the home key generation token.
  • the MN's local includes the HoA authentication parameter
  • the MN may not need to send the home test initialization message to the CN to obtain the home key generation token constructed by the CN, thereby reducing the MN's overhead.
  • the MN obtains the permanent home key generation token locally, which may include: updating the binding of the MN from the local storage
  • the permanent home key generation token is obtained in the list; wherein the binding update list includes information that the MN is bound to the CN.
  • the second aspect provides a handover method, where the method includes: the PAR receives the first indication information sent by the MN, where the first indication information is used to instruct the NAR to construct the handover test initialization message, and sends the handover test initialization message to the CN;
  • the initialization message includes an NCoA of the MN for instructing the CN to construct a care-of key generation token according to the NCoA;
  • the PAR sends the first indication information to the NAR;
  • the PAR disconnects from the MN; so that the MN connects with the NAR, and receives the handover of the NAR transmission.
  • the key generates a token, which in turn is bound to the CN according to the care-of key generation token.
  • the PAR receiving the first indication information sent by the MN may include: the PAR receiving the fast binding update FBU message sent by the MN; the FBU message includes the first indication information; The NAR sends the first indication information, and the PAR sends a handover initialization HI message to the NAR according to the FBU message; the HI message includes the first indication information.
  • a handover method may include: receiving, by the NAR, first indication information sent by the PAR; the NAR transmitting, according to the first indication information, a handover test initialization message to the CN, where the handover test initialization message includes the NCoA of the MN, Instructing the CN to construct a handover key generation token according to the NCoA; the NAR receives the handover key generation token sent by the CN; the NAR is connected with the MN; the NAR sends the handover key generation token to the MN, so that the MN according to the handover key generation order The card is bound to the CN.
  • the receiving, by the NAR, the first indication information sent by the PAR may include: the NAR receives the handover initialization HI message sent by the PAR, and the HI message includes the first indication information.
  • the fourth aspect provides a handover method, which may include: receiving, by the CN, a handover test initialization message sent by the NAR; wherein, the handover test initialization message includes an NCoA of the mobile node MN; and the CN constructs a handover key generation token according to the NCoA of the MN; The CN sends a handover key generation token to the NAR; after the MN is connected to the NAR, the NAR sends the handover key generation token to the MN; the CN binds to the MN according to the handover key sent by the MN.
  • the CN binding to the MN according to the handover key generation token sent by the MN may include: the CN receiving the binding update message sent by the MN; and the binding update message including the forwarding secret Key generation token and home address HoA authentication parameter; wherein the HoA authentication parameter includes a CGA parameter and a CGA signature, or the HoA authentication parameter includes a permanent home key generation token, or the HoA authentication parameter includes a home key generation token;
  • the binding update message is sent to the MN to send a binding confirmation message.
  • an MN may include: a sending module, configured to send first indication information to the NAR via the PAR; where the first indication information is used to instruct the NAR to construct a handover test initialization message, and send the handover to the CN
  • the initialization message is tested; the handover test initialization message includes an NCoA for instructing the CN to construct a care-of key generation token according to the NCoA.
  • a connection module for switching to the PAR connection to connect to the NAR.
  • a receiving module configured to receive a care-of key generation token from the CN sent by the NAR.
  • a binding module is configured to bind the CN to the CN according to the handover key generation token.
  • the sending module is specifically configured to: send an FBU message to the PAR; the FBU message includes the first indication information, where the FBU message is used to indicate that the PAR sends the HI message to the NAR, where the HI message is sent. Includes first indication information.
  • the MN may further include: an acquiring module, configured to obtain a HoA authentication parameter.
  • the binding module is specifically configured to bind the CN according to the handover key generation token and the HoA authentication parameter.
  • the acquiring module is specifically configured to obtain the CGA parameter and the CGA signature locally; or obtain the permanent home security from the local The key generates a token; or, the home agent sends a home test initialization message to the CN, and receives a home test message from the CN sent by the home agent; wherein the home test message includes a home key generation token.
  • the acquiring module is configured to obtain a permanent home key generation token from the locally stored binding update list. ; the binding update list includes information bound to the CN.
  • a MN is provided, and the MN can implement the functions performed in the example of the handover method provided by the foregoing first aspect, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the MN includes a processor, a memory, a bus, and a communication interface; the processor is configured to support the MN to perform a corresponding function in the foregoing method.
  • the communication interface is used to support communication between the MN and other network elements.
  • the MN can also include a memory for coupling with the processor that holds the necessary program instructions and data for the MN.
  • the communication interface may specifically be a transceiver.
  • a computer storage medium for storing computer software instructions corresponding to the switching method provided by the first aspect, which includes a program designed to execute the fifth aspect.
  • the eighth aspect provides an access router, where the access router may include: a receiving module, configured to receive first indication information sent by the MN, where the first indication information is used to indicate that the NAR constructs the handover test initialization message, and The CN sends a handover test initialization message; the handover test initialization message includes a new care-of address NCoA of the MN, and is used to instruct the CN to construct a handover key generation token according to the NCoA. And a sending module, configured to send the first indication information to the NAR.
  • the connection module is configured to disconnect the connection with the MN; so that the MN connects with the NAR, and receives the handover key generation token sent by the NAR, and then binds to the CN according to the handover key generation token.
  • the access router may specifically be a PAR.
  • the receiving module is specifically configured to: receive the FBU message sent by the MN; and include the first indication information in the FBU message.
  • the sending module is specifically configured to send an HI message to the NAR according to the FBU message, where the HI message includes the first indication information.
  • an access router may implement the functions performed in the example of the handover method provided by the foregoing second aspect, and the functions may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the access router includes a processor, a memory, a bus, and a communication interface.
  • the processor is configured to support the access router to perform a corresponding function in the foregoing method.
  • the communication interface is used to support communication between the access router and other network elements.
  • the access router can also include a memory for coupling with the processor that retains the program instructions and data necessary for the access router.
  • the communication interface may specifically be a transceiver.
  • a computer storage medium for storing computer software instructions corresponding to the handover method provided by the second aspect, which includes a program designed to execute the foregoing eighth aspect.
  • an access router may include: a receiving module, configured to receive first indication information sent by the PAR.
  • the sending module is configured to send a handover test initialization message to the CN according to the first indication information, where the handover test initialization message includes a new care-of address NCoA of the MN, and is used to instruct the CN to construct a handover key generation token according to the NCoA.
  • the receiving module is further configured to receive a care-of key generation token sent by the CN.
  • the sending module is further configured to send the handover key generation token to the MN, so that the MN binds to the CN according to the handover key generation token.
  • the receiving module is further configured to receive the HI message sent by the PAR, where the HI message includes the first indication information.
  • an access router may implement the functions performed in the example of the handover method provided by the foregoing third aspect, where the function may be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the access router includes a processor, a memory, a bus, and a communication interface, where the processor is configured to support the access router to perform a corresponding function in the foregoing method. .
  • the communication interface is used to support communication between the access router and other network elements.
  • the access router can also include a memory for coupling with the processor that retains the program instructions and data necessary for the access router.
  • the communication interface may specifically be a transceiver.
  • a computer storage medium for storing computer software instructions corresponding to the switching method provided by the third aspect, which comprises a program designed to execute the eleventh aspect.
  • a CN may include: a receiving module, configured to receive a handover test initialization message sent by the NAR; wherein the handover test initialization message includes an NCoA of the MN.
  • a building module is configured to construct a care-of key generation token according to the MN's NCoA.
  • a sending module configured to send a handover key generation token to the NAR; after the MN is connected to the NAR, the NAR sends the handover key generation token to the MN.
  • the binding module is configured to bind the MN according to the token generated by the MN according to the MN.
  • the binding module is specifically configured to: receive a binding update message sent by the MN; the binding update message includes a handover key generation token and a home address HoA authentication parameter;
  • the HoA authentication parameter includes a CGA parameter and a CGA signature, or the HoA authentication parameter includes a permanent home key generation token, or the HoA authentication parameter includes a home key generation token; and the binding confirmation message is sent to the MN according to the binding update message.
  • a CN is provided, and the CN can implement the functions performed in the example of the handover method provided by the foregoing fourth aspect, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the CN includes a processor, a memory, a bus, and a communication interface; the processor is configured to support the CN to perform a corresponding function in the foregoing method.
  • the communication interface is used to support communication between the CN and other network elements.
  • the CN can also include a memory for coupling with the processor that holds the necessary program instructions and data for the CN.
  • the communication interface may specifically be a transceiver.
  • a computer storage medium for storing computer software instructions corresponding to the handover method provided by the fourth aspect, which includes a program designed to execute the fourteenth aspect.
  • the switching device or the computer storage medium provided above is used to perform the switching method provided above, and the beneficial effects that can be achieved can be referred to the beneficial effects in the corresponding methods provided above, and details are not described herein again. .
  • a switching system including MN, PAR, NAR, and CN.
  • the MN may be any of the MNs provided in the fifth aspect or the sixth aspect.
  • the PAR may be any of the access routers provided in the above eighth aspect or the ninth aspect.
  • the NAR may be any one of the access routers provided in the eleventh or twelfth aspect.
  • the CN may be any of the CNs provided in the fourteenth aspect or the fifteenth aspect.
  • the switching system is used to perform the switching method provided above, and the beneficial effects that can be achieved can be referred to the beneficial effects in the switching method and apparatus provided above, and details are not described herein again.
  • FIG. 1 is a schematic diagram of a system architecture applicable to a technical solution provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another system architecture applicable to the technical solution provided by the embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a handover method provided by the prior art
  • FIG. 5 is a schematic flowchart of a handover method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a MN constructing an FBU message according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of constructing mobility options according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another construction mobility option according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a PAR constructing an HI message according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an NAR construction handover test initialization message according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another construction mobility option according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a MN according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another MN according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an access router according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another access router according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another access router according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another access router according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a CN according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another CN according to an embodiment of the present invention.
  • the technical solution provided by the embodiment of the present invention can be applied to a system architecture including a home network and one or more foreign networks. Specifically, it can be applied to a scenario in which the MN switches from one network (hereinafter referred to as "old access network") to another network (hereinafter referred to as "new access network").
  • the old access network may be a home network
  • the new access network may be a foreign network.
  • the old access network may be a foreign network and the new access network may be another foreign network.
  • Each network can support one network segment, and each network segment can include one or more IP addresses. Different networks can support different network segments, and there is usually no intersection between network segments supported by different networks.
  • the MN When using the traditional IP technology, after the MN moves from the old access network to the new access network, it needs to modify its IP address in the old access network to the IP address supported by the new access network to realize communication with the CN. . Moreover, after the MN moves from the old access network to the new access network, the MN generally cannot continue to use the resources of the old access network.
  • MIPv6 When using MIPv6 technology, the MN does not need to modify the original IPv6 when using a network based on the transmission control protocol/internet protocol (TCP/IP) in the process of arbitrarily moving and roaming across the network.
  • TCP/IP transmission control protocol/internet protocol
  • the address ie the IP address of the MN in the old access network
  • MIPv6 technology is to achieve all-round mobile or roaming of the network.
  • MIPv6 technology provides a routing mechanism at the network layer that allows MNs to connect to any link using a permanent IPv6 address. New is to route packets to MNs that may have been changing locations quickly.
  • MIPv6 technology provides HoA and CoA for MN.
  • the MN's HoA remains unchanged while obtaining a temporary IP address (hereinafter referred to as NCoA) in the new access network.
  • NCoA temporary IP address
  • FIG. 1 is a schematic diagram of a system architecture to which the technical solution provided by the embodiment of the present invention is applied.
  • FIG. 1 is an example in which “the old access network is the home network, and the new access network is the foreign network 1”.
  • the system architecture shown in FIG. 1 may include: a home network and a foreign network 1.
  • the home network includes PAR and home agent (English: home agent, abbreviation: HA), and the foreign network 1 includes NAR.
  • MN and CN can also be included in the system architecture. Among them, the MN moves from the home network to the foreign network 1.
  • the CN may be in the home network, in the foreign network 1, or in any foreign network other than the excluded network 1.
  • FIG. 1 is an example of a CN in a foreign network other than the foreign network 1.
  • the HoA can communicate with the CN.
  • the MN can communicate with the CN using the NCoA.
  • the HA intercepts the data packet whose destination address is HoA sent by the CN, and modifies the data packet whose destination address is HoA into the data packet whose destination address is NCoA, and then the destination address through PAR and NAR.
  • the data packet for the NCoA is sent to the MN.
  • FIG. 2 it is a schematic diagram of another system architecture to which the technical solution provided by the embodiment of the present invention is applied.
  • the system architecture shown in FIG. 2 may include: a home network, a foreign network 1, and a foreign network 2.
  • the home network includes HA
  • the foreign network 1 includes PAR
  • the foreign network 2 includes NAR.
  • MN and CN can also be included in the system architecture.
  • the MN moves from the foreign network 1 to the foreign network 2.
  • the CN may be in the home network, in the foreign network 1, or in the foreign network 2, or in any foreign network other than the excluded network 1 and the foreign network 2.
  • FIG. 2 is an example of a foreign network in which the CN is outside the foreign network 1 and the foreign network 2.
  • the MN When the MN is in the foreign network 1, the MN can directly communicate with the CN by using the old CoA (English: previous CoA, abbreviation: PCoA), which is the CoA supported by the foreign network 1.
  • PCoA International CoA, abbreviation: PCoA
  • the MN When the MN is in the foreign network 2, the MN can communicate with the CN using the NCoA (ie, the CoA supported by the foreign network 2).
  • the HA intercepts the data packet whose destination address is HoA sent by the CN, and modifies the data packet whose destination address is HoA into the data packet whose destination address is NCoA, and then passes the NAR to the destination address as NCoA.
  • the data packet is sent to the MN.
  • the handover delay includes at least: a delay in configuring the NCoA, and a binding update delay.
  • the NCoA can be configured before the MN establishes a connection with the NAR.
  • the switching method provided in this case is shown in FIG. 3, which is a schematic flowchart of a switching method provided by the prior art.
  • the method may include: a process of configuring an NCoA, a handover process, and a binding update process. specific:
  • the process of configuring the NCoA may include the following steps S11 to S13:
  • the MN sends a router solicitation for proxy advertisement (RtSolPr) message to the PAR, and the PAR receives the RtSolPr message.
  • RtSolPr proxy advertisement
  • the RtSolPr message is used to request the PAR to parse information of one or more access points (English: access point, abbreviated: AP), including [AP ID, AR-Info] tuple information.
  • the [AP ID, AR-Info] tuple information specifically includes an address of the AP and a network prefix of the AP and the AR (including PAR and NAR) connection ports.
  • the PAR After receiving the RtSolPr message, the PAR sends a route request proxy advertisement (English: proxy router advertisement, abbreviation: PrRtAdv) message to the MN, and the MN receives the PrRtAdv message.
  • PrRtAdv proxy router advertisement
  • the PrRtAdv message includes one or more [AP ID, AR-Info] tuple information. Among them, one AR can be connected to one or more APs. In the network where the MN accesses the AR, the MN needs to connect to the AP connected to the AR.
  • the MN configures the NCoA according to the information carried in the PrRtAdv message.
  • the method may further include: a process of verifying the legality of the NCoA. Specifically, the following steps S14 to S17 may be included:
  • the MN After configuring the NCoA, the MN sends a fast binding update (FBU) message to the PAR; the PAR receives the FBU message.
  • the FBU message includes NCoA.
  • the FBU message is used to indicate that the PAR is disconnected from the MN, and the PAR can modify the destination address of the received data packet whose destination address is HoA to NCoA. Then, the data packet whose destination address is NCoA is sent to the MN via the NAR.
  • the PAR may modify the destination address of the received data packet whose destination address is PCoA to NCoA, and then A packet whose destination address is NCoA is sent to the MN via the NAR.
  • the PAR sends a handover initialization (English: handover initiate, abbreviated: HI) message to the NAR according to the FBU message; the NAR receives the HI message.
  • the HI message includes NCoA.
  • the HI message can be used to indicate the legality of the NAR to verify the NCoA.
  • the NAR verifies the legality of the NCoA, and sends a handover acknowledgement (HACK) message to the PAR; the PAR receives the HACK message.
  • the HACK message is used to inform the PAR of the legality result of the NCoA.
  • the HACK message also includes information as to whether or not it can be connected to the MN.
  • the NAR determines that the NCoA is not stored in the network segment supported by the network to which the NAR belongs and the NCoA is not stored in the local area of the NAR, the NCoA is legal, that is, the MN can communicate with the CN by using the NCoA.
  • the HACK message may include information indicating that the NCoA is legal.
  • the NAR determines that the NCoA does not store the NCoA in the network segment supported by the network to which the NAR belongs or in the local area of the NAR, the NCoA is invalid, that is, the MN cannot communicate with the CN by using the NCoA.
  • the NAR can specify a legal CoA for the MN, where the legal CoA is in the network segment supported by the network to which the NAR belongs.
  • the NAR can carry the legal CoA in the HACK message and send it to the PAR.
  • the PAR may send the legal CoA to the MN, and the MN may use the legal CoA as the NCoA to communicate with the CN by using the NCoA.
  • the HACK message may further include information indicating that the NCoA verified in S16 is invalid.
  • the PAR sends a fast binding acknowledgement (English: fast binding acknowledgment, abbreviated: FBack) message to the MN according to the HACK message; the MN receives the FBack message.
  • FBack fast binding acknowledgement
  • the FBack message includes the NCoA legality result.
  • the method may further include: the PAR sends an FBack message carrying the NCoA legality result to the NAR according to the HACK message; and the NAR receives the FBack message. After receiving the FBack message, the NAR can receive the data packet sent by the PAR with the destination address being NCoA.
  • the switching process may include the following steps S21 to S22:
  • the method may further include: the PAR transmitting the received data packet addressed to the MN to the NAR through a tunnel between the PAR and the NAR.
  • the PAR packet sent by the PAR to the MN is from the CN.
  • the CN sends a data packet to the PAR (that is, the AR in the home network), and the destination address of the data packet is the HoA of the MN.
  • the CN sends a data packet to the PAR (ie, the AR in the foreign network), and the destination address of the data packet is the PCoA of the MN.
  • the MN may send an unsolicited neighbor advertisement (UNA) message to the NAR to inform the MN that the AP in the new access network is connected to the NAR.
  • the data packet sent by the received PAR may be sent to the MN after being connected to the MN.
  • steps S21 to S22 can be understood as: MN switches from PAR to NAR.
  • the binding update process may include the following steps S31-S32:
  • the MN is bound to the HA. That is, the MN informs the HA of the mapping relationship between the HoA and the NCoA.
  • the step S31 can be implemented by the following steps S31.1 to S31.2:
  • the MN sends a binding update (English: binding update, abbreviated: BU) message to the HA, and the HA receives the BU message sent by the MN.
  • BU binding update
  • the BU message includes NCoA.
  • S31.2 The HA replies with a binding acknowledgement (English: binding ack) message to the MN, and the MN receives a binding acknowledgement message of the HA reply.
  • a binding acknowledgement English: binding ack
  • the CN can continue to use the MN's HoA and send the data packet sent to the MN to the home network where the MN is located.
  • the HA in the home network intercepts the data packet, and then forwards the data packet to the MN in a tunnel manner according to the mapping relationship between the NCoA and the HoA obtained in S31, where the HA forwards the data packet to the MN, and the destination address It can be the NCoA.
  • process one is hereinafter referred to as process one.
  • the MN is bound to the HA, which can be understood as: establishing a binding relationship between the MN and the HA. If the old access network is a foreign network and the new access network is another foreign network, the MN is bound to the HA. It can be understood as: updating the binding relationship between the MN and the HA. Specifically, the MN informs the HA of the HoA and the NCoA. The mapping relationship between them.
  • the MN is bound to the CN.
  • the MN informs the CN of the mapping relationship between HoA and NCoA.
  • the MN is bound to the CN, which can be understood as: establishing a binding relationship between the MN and the CN. If the old access network is a foreign network and the new access network is another foreign network, the MN is bound to the CN. It can be understood that the MN informs the CN of the mapping relationship between the HoA and the NCoA.
  • the step S32 can be implemented by the following steps S32.1 to S32.2:
  • the MN sends a BU message to the CN, and the CN receives the MN to send a BU message.
  • the BU message includes NCoA.
  • the CN replies to the binding confirmation message to the MN, and the MN receives the binding confirmation message of the CN reply.
  • the binding confirmation message includes binding confirmation information.
  • the NCoA can be used to send the data packet to the foreign network where the NCoA is located. This process can be referred to as process two below.
  • the above process one can be referred to as a triangular routing process.
  • the above process 2 can be referred to as a route optimization communication process.
  • the MIPv6 technology uses a return routability procedure (RRP) to enhance the protection of binding updates between the MN and the CN.
  • RRP can include Home RRP and care-of RRP.
  • the Home RRP is used to determine whether the CN can utilize the HoA, communicate with the MN via the HA, and generate a home init cookie that the MN and the CN mutually agree with, that is, when the CN determines that the HoA can communicate with the MN.
  • the CN returns the home initialization cookie to the MN and generates a home key generation token (English: home keygen token).
  • the care-of RRP is used to determine whether the CN can use the NCoA to communicate directly with the MN, and generates a care-of init cookie that the MN and the CN mutually agree with, that is, when the CN determines that the NCoA can communicate with the MN.
  • the CN returns the transfer initialization cookie to the MN, and generates a care-of keygen token.
  • FIG. 4 a schematic diagram of a process of binding a MN to a CN provided by the prior art is provided. Before S32, the method may further include the following steps S32a to S32d:
  • S32a The MN constructs a home test init message (English: home test init) message, and sends a home test initialization message to the CN via the HA; the CN receives the home test initialization message sent by the MN via the HA.
  • a home test init message English: home test init
  • the source address of the home test initialization message is the HoA of the MN, and the destination address is the address of the CN (English: CN address).
  • the home test initialization message includes the home initialization cookie and the MN's HoA.
  • the CN generates a home key generation token based on the HoA of the MN.
  • S32b CN constructs a home test (English: home test) message, and returns a home test message to the MN via the HA; the MN receives the home test message of the CN reply via the HA.
  • a home test English: home test
  • the home test message is the response of the CN to the home test initialization message.
  • the source address of the home test message is the address of the CN, and the destination address is the HoA of the MN.
  • the home test message includes a home initialization cookie and a home key generation token.
  • the CN can confirm that the CN can communicate with the MN via the HA through the HA; then, generate a token according to the home signal generated by the MN's HoA, and reply to the MN to carry the home initialization cookie and hometown.
  • the home test message for the key generation token.
  • S32c The MN constructs a care-of test init message and sends a care-of test initialization message to the CN; the CN receives the care-of test initialization message sent by the MN.
  • the source address of the handover test initialization message is the NCoA of the MN, and the destination address is the address of the CN.
  • the handover test initialization message includes the transfer of the initialization cookie and the MN's NCoA.
  • the CN generates a care-of key generation token based on the MN's NCoA.
  • S32d The CN constructs a care-of test message and returns a handover test message to the MN; the MN receives the handover test message of the CN reply.
  • the handover test message is a response of the CN to the handover test initialization message.
  • the source address of the handover test message is the address of the CN, and the destination address is the NCoA of the MN.
  • the handover test message includes a handover initialization cookie and a handover key generation token.
  • the CN may confirm that the CN can communicate with the MN by using the NCoA; then, generate a handover key according to the MN's NCoA to generate a token, and reply to the MN to carry the handover initialization cookie and the care-of key. Generate a turn-over test message for the token.
  • S32 when S32 is executed after executing S32a to S32d, S32 may specifically include: the MN calculates a message authentication code according to the home key generation token and the handover key generation token, and sends a secure binding update message to the CN. .
  • the binding update delay may include at least the following delay:
  • the home test initializes the message delay, that is, the delay generated by S32a is executed.
  • the home test message delay that is, the delay generated by S32b is executed.
  • test initialization message delay is forwarded, that is, the delay generated by S32c is executed.
  • test message delay is handed over, that is, the delay generated by S32d is executed.
  • the delay of the binding update message sent to the HA that is, the delay generated by S31.1.
  • the delay of the binding acknowledgement message sent by the HA that is, the delay generated by S31.2.
  • the delay of the binding update message sent to the CN that is, the delay generated by S32.1.
  • the delay of the binding acknowledgement message sent by the CN that is, the delay generated by S32.2.
  • the embodiment of the present invention provides a handover method, which can reduce the handover delay by reducing the binding update delay.
  • the binding update delay can be reduced by reducing the handover test initialization message delay.
  • FIG. 5 it is a schematic flowchart of a handover method according to an embodiment of the present invention.
  • the method may include the following steps S401 to S413:
  • the MN sends an FBU message to the PAR; the PAR receives the FBU message.
  • the FBU message includes the first indication information.
  • the FBU message is used to instruct the PAR to send an HI message to the NAR.
  • the first indication information is included in the HI message.
  • the first indication information is used to instruct the NAR to construct a handover test initialization message and send the handover test initialization message to the CN.
  • the handover test initialization message includes an NCoA for instructing the CN to construct a care-of key generation token according to the NCoA.
  • the MN may perform S401 after performing the handover from the PAR to the NAR and after configuring the NCoA.
  • S401 For the specific implementation manner of the MN to configure the NCoA, reference may be made to the foregoing S11 to S13.
  • the FBU message in the technical solution shown in FIG. 5 further includes first indication information. Different from the HI message in the technical solution shown in FIG. 3, the HI message in the technical solution shown in FIG. 5 further includes first indication information.
  • the embodiment of the present invention further provides a format of an FBU message and a format of an HI message applicable to the technical solution shown in FIG. 5, and specifically can be referred to below.
  • the first indication information may include information required to instruct the NAR to construct a handover test initialization message, such as an address of the CN and a care-of initialization cookie.
  • a handover test initialization message such as an address of the CN and a care-of initialization cookie.
  • the first indication information including the address of the CN and the handover initialization cookie are taken as an example for description.
  • the role of the care-of test initialization message in the technical solution shown in FIG. 5 can be the same as that of the care-of test initialization message in the technical solution shown in FIG. 3, both for enabling the CN to verify whether the NCoA can communicate with the MN. It can be understood that the handover test initialization message in the technical solution shown in FIG. 3 has at least the following differences compared with the handover test initialization message in the technical solution shown in FIG. 5:
  • the first difference is that the handover test initialization message in the technical solution shown in FIG. 3 is constructed and transmitted to the CN after the MN switches from the PAR to the NAR, and the handover test initialization message in the technical solution shown in FIG. 5 is in the MN from the PAR. Build and transfer to the CN before switching to NAR.
  • the MN switching from PAR to NAR can be understood as: MN switches from the connection with PAR to the NAR connection.
  • the handover test initialization message in the technical solution shown in FIG. 5 can also be marked as: pre-care-of test init.
  • the second difference is that the handover test initialization message in the technical solution shown in FIG. 3 is constructed by the MN and transmitted by the MN to the CN.
  • the handover test initialization message in the technical solution shown in FIG. 5 is an NAR construction and is transmitted by the NAR to the CN.
  • the embodiment of the present invention further provides a format applicable to the handover test initialization message in the technical solution shown in FIG. 5, which can be specifically referred to below.
  • the PAR sends an HI message to the NAR according to the FBU message; the NAR receives the HI message.
  • the HI message includes the first indication information.
  • the HI message is used to indicate the validity of the NAR to verify the NCoA.
  • the NAR After receiving the HI message, the NAR verifies the legality of the NCoA, and sends a HACK message to the PAR, where the PAR receives the HACK message.
  • the HACK message is used to inform the PAR of the legality result of the NCoA.
  • the NAR sends an FBack message to the MN according to the HACK message; the MN receives the FBack message.
  • the FBack message includes the NCoA legality result.
  • the method may further include: the PAR sends an FBack message to the NAR, and the NAR receives the FBack message.
  • the first indication information is carried in the FBU message and the HI message in the process of verifying the legality of the NCoA, and is sent by the MN to the NAR via the PAR, so that the signaling overhead can be reduced.
  • the first indication information may also be carried in a new message sent by the MN to the PAR, and then carried in another new message by the PAR to the NAR.
  • the first indication information may also be carried in the FBU message sent by the MN to the PAR, and then carried in a new message by the PAR to the NAR.
  • the process of verifying the legality of the NCoA and the process of S401 can also be performed separately.
  • the first indication information may also be carried in a new message sent by the MN to the PAR, and then carried in the HI message by the PAR to the NAR.
  • the specific implementation manner of any of the foregoing new messages is not limited in the embodiment of the present invention.
  • the NAR constructs a handover test initialization message according to the first indication information.
  • the handover test initialization message includes a handover initialization cookie.
  • the NAR can construct a handover test initialization message according to the information of the CN and the forwarding initialization cookie.
  • the specific implementation process can refer to the process of the MN constructing the handover test initialization message.
  • the source address of the handover test initialization message is the address of the NAR, and the destination address is the address of the CN.
  • the NCoA included in the handover test initialization message may be the NCoA included in the HI message. If it is determined in S403 that the NCoA is invalid, the NCoA included in the handover test initialization message may be a legal NCoA designated by the NAR for the MN. For a description of the legal CoA, reference may be made to step S16 above.
  • sequence of S404 and S405 is not limited.
  • S405 may be executed first after S404, S405 may be executed first, and S404 and S405 may be performed at the same time.
  • the NAR sends a handover test initialization message to the CN; the CN receives the handover test initialization message.
  • the CN receives the handover test initialization message, that is, the technical solution provided by the embodiment of the present invention can implement the CN receiving the handover test initialization message before the MN switches from the PAR to the NAR, so that the update delay can be bound.
  • the handover test initialization message delay ie, the delay generated by S32c
  • S407 The CN constructs a handover key generation token according to the NCoA in the handover test initialization message.
  • the handover key generation token constructed by the CN in this step may be the care-of key generation token in the technical solution shown in FIG.
  • the CN sends a handover test message to the NAR; the NAR receives the handover test message sent by the CN.
  • the handover test message may include a handover initialization cookie and a handover key generation token.
  • the source address of the handover test message is the address of the CN, and the destination address is the address of the NAR.
  • the handover initialization cookie and the care-of key generation token can also be carried in a new message, and the NAR is sent by the CN.
  • the specific implementation manner of the above new message is not limited in the embodiment of the present invention.
  • the handover test message in the technical solution shown in FIG. 5 has the same function as the handover test message in the technical solution shown in FIG. 3, and is used to respond to the handover test initialization message.
  • a handover test message in the technical solution shown in FIG. 5 may be: setting a NCoA in a loose source route option of the handover test message in the technical solution shown in FIG.
  • the NAR is caused to send the handover test message to the MN.
  • the NAR After receiving the handover test message sent by the CN, the NAR sends the handover test message to the MN if it detects that the MN has switched to the NAR; if the MN has not detected that the MN has switched to the NAR, the handover test message is cached.
  • the NAR may discard the handover test message when the MN has not detected that the MN has switched to the NAR within a preset time period from the moment when the handover test message is cached, thereby reducing the storage resource.
  • the implementation manner of the preset time period is not limited in the embodiment of the present invention.
  • S409 The MN disconnects from the PAR and establishes a connection with the NAR.
  • the MN may perform S409 after moving from the old access network to the new access network.
  • S409 reference may be made to the foregoing S21 to S22.
  • the NAR can receive the handover test message after performing S408, and the handover test message can be buffered, the handover test message can be immediately sent to the MN after the NAR detects the connection with the MN. In this way, the delay in constructing the handover test message can also be reduced.
  • S411 The MN is bound to the HA. This step is the same as S31 above.
  • S412 The MN acquires the HoA authentication parameter. This can be done in any of the following ways:
  • the MN may use the permanent home key generation token as a HoA authentication parameter.
  • the permanent home key generation token stored in the local area of the MN may be periodically updated by the MN and the CN, that is, the MN and the CN periodically send messages to each other to obtain the Jiujiaxiang key generation token.
  • the subsequent MN can use the permanent home key generation token to construct the BU message, thereby reducing overhead.
  • the binding update delay may not include the home test initialization message delay and the home test message delay, thereby reducing the binding update delay.
  • the MN may obtain a permanent home key generation token from a locally stored binding update list.
  • the binding update list records the binding information of the MN and the CN, and may include the permanent home key generation token, the IP address of the CN, the HoA address of the MN, the CoA address of the MN, and the initial value of the lifetime of the binding update message. , the remaining lifetime value of the binding update, and the maximum value of the serial number.
  • the MN does not store the permanent home key generation token locally, but stores the cryptographically generated addresses (CGA) parameter and the CGA signature, the MN can use the CGA parameter and the CGA signature as the HoA. Authentication parameters.
  • the binding update delay may not include the home test initialization message delay and the home test message delay, thereby reducing the binding update delay.
  • the MN does not store the permanent home key generation token locally and the HoA is not a CGA address, indicating that the MN is the first time to access the network (including the home network and the foreign network), that is, the MN has not yet been with the CN.
  • the MN can request the home key to generate a token from the CN through the Home RRP; then, the MN can request the CN for permanent through the initial CGA-based authentication (English: CGA-based authentication).
  • the home key generates a token.
  • Mode 3 The MN obtains a home key generation token (that is, the home key generation token in S32 above) through the HA, and the specific implementation process may refer to S32a to S32b. Then, the home key is generated by the token. As a HoA authentication parameter. It should be noted that since the home key generation token has an expiration date, it will expire after the expiration date. Therefore, in order to ensure that the acquired home key generation token is within the validity period, the MN may obtain the HoA authentication parameter after receiving the FBack message. Alternatively, the MN periodically acquires the home key generation token, and when the MN needs to construct the binding request message, generates a token according to the obtained latest home key, and constructs the binding request message. Of course, the specific implementation is not limited to this.
  • the MN obtains the HoA authentication parameter locally, and the acquired HoA authentication parameter has no expiration date, that is, it can be used all the time. Therefore, the MN can also establish the connection with the NAR before establishing the connection with the NAR. That is, S412 is executed, so that the acquired HoA authentication parameter is directly used when S413 is executed.
  • S411 and S412 are not limited in the embodiment of the present invention.
  • S413 The MN binds to the CN according to the HoA authentication parameter and the handover key generation token. This step is the same as S32 above.
  • the MN calculates a message authentication code according to the HoA authentication parameter and the care-of key generation token, and then the MN may send a new message carrying the message authentication code to the CN.
  • the CN may send a new message carrying the binding confirmation information to the MN.
  • the specific implementation manner of any of the foregoing new messages is not limited in the embodiment of the present invention.
  • the MN may transmit the handover test initialization message to the CN through the NAR before establishing a connection with the NAR in the new access network; thus, after the MN establishes a connection with the NAR, the NAR may forward the handover.
  • the test message is sent to the MN.
  • the embodiment of the present invention can reduce the binding update delay by reducing the handover test initialization message delay, thereby reducing the handover delay.
  • the handover method provided by the embodiment of the present invention can also reduce the home test initialization message delay and the home test message delay, etc., and can be specifically referred to above.
  • the FBU message in step S401 carries a first indication message.
  • FIG. 6 a schematic diagram of a MN constructing an FBU message provided by the technical solution shown in FIG.
  • the first indication information is carried in the FBU message, and the first indication information includes an address of the CN and a handover initialization cookie as an example.
  • the MN first encapsulates the sequence number of the FBU message (English: sequence), and then encapsulates the identifier of the FBU message; finally, encapsulates the mobility option (English: mobility option), where the mobility option of the FBU message includes the first indication information. .
  • the identifier of the FBU message may include: an acknowledgement (hereinafter referred to as "A") identifier, a home agent registration (hereinafter referred to as "H") identifier, and a link-local address compatibility (hereinafter referred to as “L”). Identification, key management mobility capabilities (labeled “K” below), reserved bits (English: reserved) and expiration date (English: lifetime).
  • A acknowledgement
  • H home agent registration
  • L link-local address compatibility
  • the mobility options for the FBU message may include mobility option 1 and mobility option 2, mobility option 1 includes the address of the CN, and mobility option 2 includes the handover initialization cookie.
  • the mobility option 1 may be referred to as a CN address option (English: CN address option), and the mobility option 2 may be referred to as a care-of init cookie option.
  • the MN can customize the mobility options (including mobility option 1 and mobility option 2) by (English: type-length-value, abbreviated: TLV) format.
  • FIG. 7 it is a schematic diagram of constructing mobility option 1. Specifically: First, set the type and length of the mobility option 1; then, set the option data of the mobility option 1 (English: option data) to the address of the CN.
  • FIG. 7 is an example in which the mobility option 1 is set to 6 and the length is set to 16.
  • FIG. 8 it is a schematic diagram of constructing mobility option 2. Specifically: First, set the type and length of mobility option 2; then, set the option data of mobility option 2 to the forwarding initialization cookie. 8 is an example in which the mobility option 2 is set to 7 and the length is set to 8.
  • the HI message in step S402 carries the first indication message.
  • a schematic diagram of a PAR HI message is provided for the technical solution shown in FIG. 5.
  • 9 is a description of the first indication information carried by the HI message, and the first indication information includes the address of the CN and the handover initialization cookie as an example.
  • the PAR first encapsulates the sequence number; then, encapsulates the identifier of the HI message; finally, encapsulates the mobility option, wherein the mobility option of the FBU message includes the first indication information.
  • the identifier of the HI message may include: an allocation address configuration (hereinafter referred to as "S") identifier, a buffer identifier (hereinafter referred to as "U”) identifier, a reserved bit, and a code.
  • S allocation address configuration
  • U buffer identifier
  • the mobility options for the HI message may include mobility option 3 and mobility option 4, mobility option 3 includes the address of the CN, and mobility option 4 includes the handover initialization cookie.
  • the method for constructing the mobility option 3 can refer to FIG. 7. Refer to Figure 8 for the method of constructing mobility option 4.
  • the NAR constructs a handover test initialization message according to the first indication information.
  • the handover test initialization message constructed by the NAR includes a care-of initialization cookie, an NCoA, and an add-on flag (such as "P").
  • the flag is used to characterize that the care-of test initialization message is constructed by NAR.
  • FIG. 10 a schematic diagram of a handover test initialization message is constructed for an NAR.
  • the care-of test initialization message in Figure 10 includes the NCoA and the care-of-initial cookie. Specifically: NAR first encapsulates the flag and reserved bits; then, the encapsulation forwards the initialization cookie; finally encapsulates the mobility option.
  • the mobility options for handing over the test initialization message include mobility option 5; mobility option 5 includes NCoA.
  • the mobility option 5 can be referred to as a reachable care-of address option.
  • FIG. 11 it is a schematic diagram of constructing mobility option 5. Specifically: first set the type and length of mobility option 5; then, set the option data of mobility option 5 to NCoA. 11 is an example in which the mobility option 5 is set to 8 and the length is set to 16.
  • MN, PAR, NAR and CN contain corresponding hardware structures and/or software modules for performing respective functions.
  • Those skilled in the art will readily appreciate that the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the modules and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform functional module division on MN, PAR, NAR, and CN according to the foregoing method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 12 is a schematic structural diagram of a MN12 according to an embodiment of the present invention.
  • the MN 12 shown in Fig. 12 may be the MN provided above.
  • the MN 12 may include a sending module 1201, a connecting module 1202, a receiving module 1203, and a binding module 1204.
  • the MN 12 may further include: an obtaining module 1205.
  • the transmitting module 1201 is configured to support the MN 12 to perform S11 and S14 in FIG. 3; S32a and S32c in FIG. 4, S401 in FIG. 5, and/or other processes for the techniques described herein.
  • Connection module 1202 is for supporting MN 12 to perform S21 through S22 in FIG. 3, S409 in FIG. 5, and/or other processes for the techniques described herein.
  • the receiving module 1203 is configured to support the MN 12 to perform S17 in FIG. 3, S32b and S32d in FIG. 4, and/or other processes for the techniques described herein.
  • Binding module 1204 is for supporting MN 12 to perform S31 and S32 in FIG. 3, S31.1, S31.2, S32.1, and S32.2 in FIG.
  • the acquisition module 1205 is configured to execute S412 in FIG.
  • the MN 12 may further include: a storage module.
  • the storage module is configured to store program codes and data corresponding to the method by which the MN 12 performs any of the handovers provided above.
  • the foregoing sending module 1201 may be a transmitter
  • the receiving module 1203 may be a receiver
  • the transmitter and the receiver may be integrated to form a transceiver.
  • the connection module 1202, the binding module 1204, and the acquisition module 1205 may be embedded in hardware or in a memory independent of the MN 12, so that the processor invokes operations corresponding to the above respective units.
  • FIG. 13 is a schematic structural diagram of a MN 13 according to an embodiment of the present invention.
  • the MN 13 shown in Fig. 13 may be the MN provided above.
  • the MN 13 may include a memory 1300, a processor 1301, a communication interface 1302, and a bus 1303; wherein the memory 1300, the processor 1301, and the communication interface 1302 are connected to each other through a bus 1303.
  • the memory 1300 is configured to store computer execution instructions, and when the MN 13 is running, the processor 1301 executes computer execution instructions stored in the memory 1300 to cause the MN 13 to perform any of the switching methods provided above.
  • the related descriptions in the above and the drawings, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of an access router 14 according to an embodiment of the present invention.
  • the access router 14 shown in Figure 14 can be the PAR provided above.
  • the access router 14 can include a receiving module 1401, a sending module 1402, and a connecting module 1403.
  • the receiving module 1401 is configured to support the access router 14 to perform S11, S14, and S16 in FIG. 3, S401 and S403 in FIG. 5, and/or other processes for the techniques described herein.
  • the transmitting module 1402 is configured to support the access router 14 to perform S15 and S17 in FIG. 3; S402 and S404 in FIG. 5, and/or other processes for the techniques described herein.
  • Connection module 1403 is used to support access router 14 to perform S21 in FIG. 3, S409 in FIG. 5, and/or other processes for the techniques described herein.
  • the access router 14 may further include: a storage module.
  • the storage module is used to store the program code and data corresponding to the access router 14 performing any of the switching methods provided above.
  • the receiving module 1401 may be a receiver
  • the sending module 1402 may be a transmitter
  • the receiver and the transmitter may be integrated to form a transceiver.
  • the connection module 1403 may be embedded in hardware or in a memory independent of the access router 14 in order to facilitate the processor to invoke operations corresponding to the various units above.
  • FIG. 15 is a schematic structural diagram of an access router 15 according to an embodiment of the present invention.
  • the access router 15 shown in Figure 15 can be the PAR provided above.
  • the access router 15 may include a memory 1500, a processor 1501, a communication interface 1502, and a bus 1503.
  • the memory 1500, the processor 1501, and the communication interface 1502 are connected to each other through a bus 1503.
  • the memory 1500 is for storing computer execution instructions.
  • the processor 1501 executes computer execution instructions stored in the memory 1500 to cause the access router 15 to perform any of the handover methods provided above.
  • For specific switching methods refer to the related descriptions in the above and the drawings, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of an access router 16 according to an embodiment of the present invention.
  • the access router 16 shown in Figure 16 can be the NAR provided above.
  • the access router 16 can include a receiving module 1601, a sending module 1602, and a connecting module 1603.
  • the receiving module 1601 is configured to support the access router 16 to perform S15 and S17 in FIG. 3, S402, S404, and S408 in FIG. 5, and/or other processes for the techniques described herein.
  • the transmitting module 1602 is configured to support the access router 16 to perform S16 in FIG. 3; S403, S406, and S410 in FIG. 5, and/or other processes for the techniques described herein.
  • Connection module 1603 is used to support access router 16 to perform S22 in FIG. 3, S409 in FIG. 5, and/or other processes for the techniques described herein.
  • the access router 16 may further include: a storage module.
  • the storage module is configured to store the access code 16 and the program code and data corresponding to any of the switching methods provided above.
  • the receiving module 1601 may be a receiver
  • the sending module 1602 may be a transmitter
  • the receiver and the transmitter may be integrated to form a transceiver.
  • the connection module 1603 can be embedded in hardware or in a memory independent of the access router 16 in order to facilitate the processor to invoke operations corresponding to the various units above.
  • FIG. 17 is a schematic structural diagram of an access router 17 according to an embodiment of the present invention.
  • the access router 17 shown in Figure 17 can be the NAR provided above.
  • the access router 17 may include a memory 1700, a processor 1701, a communication interface 1702, and a bus 1703; wherein the memory 1700, the processor 1701, and the communication interface 1702 are connected to each other through a bus 1703.
  • the memory 1700 is for storing computer execution instructions, and when the access router 17 is running, the processor 1701 executes computer execution instructions stored by the memory 1700 to cause the access router 17 to perform any of the switching methods provided above.
  • the access router 17 For specific switching methods, refer to the related descriptions in the above and the drawings, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of a CN18 according to an embodiment of the present invention.
  • the CN 18 shown in Fig. 18 may be the CN provided above.
  • the CN 18 may include a receiving module 1801, a building module 1802, a sending module 1803, and a binding module 1804.
  • the receiving module 1801 is configured to support the CN 18 to perform S32a and S32c in FIG. 4, S406 in FIG. 5, and/or other processes for the techniques described herein.
  • the building module 1802 is for supporting the CN 18 to perform S407 in FIG. 5, and/or other processes for the techniques described herein.
  • the transmitting module 1803 is configured to support the CN 18 to perform S32b and S32d in FIG. 4, S408 in FIG. 5, and/or other processes for the techniques described herein.
  • Binding module 1804 is for supporting CN 18 to perform S32 in FIG. 3, S32.1 through S32.2 in FIG. 4, S413 in FIG. 5, and/or other processes for the techniques described herein.
  • the CN 18 may further include: a storage module.
  • the storage module is configured to store the program code and data corresponding to any of the switching methods provided by the CN 18.
  • the receiving module 1801 may be a receiver
  • the sending module 1803 may be a transmitter
  • the receiver and the transmitter may be integrated to form a transceiver.
  • the building module 1802 and the binding module 1804 can be embedded in hardware or in isolation from the memory of the access router 18 in order to facilitate the processor to invoke operations corresponding to the various units above.
  • FIG. 19 is a schematic structural diagram of a CN19 according to an embodiment of the present invention.
  • the CN 19 shown in Fig. 19 may be the CN provided above.
  • the CN 19 may include a memory 1900, a processor 1901, a communication interface 1902, and a bus 1903; wherein the memory 1900, the processor 1901, and the communication interface 1902 are connected to each other through a bus 1903.
  • the memory 1900 is used to store computer execution instructions.
  • the processor 1901 executes computer execution instructions stored in the memory 1900 to cause the CN 19 to perform any of the switching methods provided above.
  • switching methods refer to the related descriptions in the above and the drawings, and details are not described herein again.
  • the embodiment of the invention further provides a storage medium, which may include a memory.
  • the storage medium can be applied to the MN 13 shown in FIG. 13, in which case the memory can be the memory 1300 in FIG. Alternatively, it can be applied to the access router 15 shown in FIG. 15, in which case the memory can be the memory 1500 in FIG. Alternatively, it can be applied to the access router 17 shown in FIG. 17, in which case the memory can be the memory 1700 in FIG. Alternatively, it can be applied to the CN 19 shown in FIG. 19, in which case the memory can be the memory 1900 of FIG.
  • the memory may include a volatile memory, such as a random access memory (English: random-access memory, abbreviation: RAM)
  • the memory may also include non-volatile memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English) : hard disk drive (abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviated: SSD);
  • the memory 902 may also include a combination of the above types of memory.
  • the processor provided by the embodiment of the present invention may be a processor or a collective name of multiple processing elements.
  • the processor can be the processor 1301 of FIG.
  • the processor may be the processor 1501 in FIG.
  • the processor may be the processor 1701 in FIG.
  • the processor may be the processor 1901 of FIG.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a general purpose processor, a digital signal processor (English: digital signal processor, abbreviation: DSP), an application specific integrated circuit (English: application-specific Integrated circuit, abbreviation: ASIC), field programmable gate array (English: field programmable gate array, abbreviated: FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application-specific Integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like.
  • the dedicated processor may also include a chip having other dedicated processing functions in the MN 12, MN 13, access router 14, access router 15, access router 16, access router 17, CN 18 or CN 19.
  • the communication interface provided by the embodiment of the present invention may specifically be a transceiver on the device.
  • the transceiver can be a wireless transceiver.
  • the communication interface can be the communication interface 1302 of FIG.
  • the communication interface can be the communication interface 1502 in FIG.
  • the communication interface can be the communication interface 1702 in FIG.
  • the communication interface can be the communication interface 1902 of FIG.
  • the wireless transceiver can be an antenna of the device or the like.
  • the communication interface transmits and receives data to and from other devices, such as the base station, through the communication interface.
  • the bus provided by the embodiment of the present invention may include a data bus, a power bus, a control bus, a signal status bus, and the like.
  • This bus can be the bus 1303 in FIG.
  • the bus can be bus 1503 in FIG.
  • the bus can be bus 1703 in FIG.
  • the bus can be bus 1903 of FIG.
  • various buses are illustrated as system buses in FIGS. 13, 15, 17, and 19.
  • the buses in Figures 13, 15, 17, and 19 are represented by only one thick line, but do not indicate that there is only one bus or one type of bus.
  • each step in any one of the switching method flows provided above may be implemented by a processor in hardware form executing a computer-executed instruction in software in a memory. To avoid repetition, we will not repeat them here.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种切换方法和装置,涉及通信领域,用以在MN从旧接入网络切换至新接入网络的过程中,减小切换时延。方法包括:MN经PAR向NAR发送第一指示信息;第一指示信息用于指示NAR构建转交测试初始化消息,并向CN发送转交测试初始化消息;转交测试初始化消息包括MN的NCoA,用于根据NCoA向CN请求转交密钥生成令牌;MN从PAR切换至NAR;MN接收NAR发送的来自CN的转交密钥生成令牌;MN根据转交密钥生成令牌与CN绑定。

Description

一种切换方法和装置
本申请要求于2017年01月25日提交中国专利局、申请号为201710061365.9、发明名称为“一种切换方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种切换方法和装置。
背景技术
移动互联网协议版本6(英文:mobile internet protocol version 6,缩写:MIPv6)为移动节点(英文:mobile node,简称:MN)提供了家乡地址(英文:home address,缩写:HoA)和转交地址(英文:care-of address,缩写:CoA)。当MN移动至外地网络时,可以获得该外地网络支持的一个CoA,然后,MN通过向通信对端节点(英文:corresponding node,缩写:CN)告知HoA与CoA之间的映射关系,使得CN能够获知CoA,从而与MN绑定,以实现MN利用CoA与CN通信。
MN在旧接入网络中时,可以经旧接入网络中的旧接入路由器(英文:previous access router,缩写:PAR)与CN通信。MN从旧接入网络切换至新接入网络时,首先MN需要断开与旧接入网络中的PAR的连接,并建立与新接入网络中的新接入路由器(英文:new access router,缩写:NAR)的连接;然后,MN获取新接入网络支持的一个新转交地址(英文:new CoA,缩写:NCoA),利用NCoA与CN绑定,以实现MN利用NCoA经NAR与CN通信。其中,旧接入网络可以是家乡网络,新接入网络可以是外地网络。或者,旧接入网络可以是一个外地网络,新接入网络可以是另一个外地网络。
在MIPv6中,切换时延包括MN断开与PAR的连接至MN利用NCoA与CN绑定所需的时间,可以理解的,在MN切换到NAR,但是尚未完成与CN的绑定更新时,CN保持向PCoA发送数据包,这些数据包路由到PAR后,将会发生丢包。
这对实时性要求比较高的业务,如在IP协议上传输的语音(英文:voice over internet protocol,缩写:VoIP)业务,的传输性能影响较大。因此,减小切换时延是亟待解决的问题。
发明内容
本发明实施例提供一种切换方法和装置,用以在MN从旧接入网络切换至新接入网络的过程中,减小切换时延。
第一方面,提供一种切换方法,可以包括:MN经PAR向NAR发送第一指示信息;其中,第一指示信息用于指示NAR构建转交测试初始化消息,并向通信对端节点CN发送转交测试初始化消息;转交测试初始化消息包括MN的新转交地址NCoA,用于指示CN根据NCoA构建转交密钥生成令牌;MN从PAR切换至NAR;然后MN接收NAR发送的来自CN的转交密钥生成令牌;进而MN根据转交密钥生成令牌与CN绑定。该情况下,本发明实施例在MN从PAR切换至NAR之前,通过指示NAR 构建转交测试初始化消息,获得转交密钥生成令牌,从而在MN从PAR切换至NAR之后,MN可以直接接收NAR发送的转交密钥生成令牌,MN不需要向CN发送转交测试初始化消息,获取转交密钥生成令牌。这样,与现有技术相比,本发明实施例通过减小转交测试初始化消息时延,来减小绑定更新时延,进而减小切换时延。
在第一方面的第一种可能的实现方式中,MN经PAR向NAR发送第一指示信息,可以包括:MN向PAR发送快速绑定更新FBU消息;FBU消息中包括第一指示信息,FBU消息用于指示PAR向NAR发送切换初始化HI消息,HI消息中包括第一指示信息。该情况下,第一指示信息是在验证NCoA的合法性的过程中携带在FBU消息和HI消息中由MN经PAR发送给NAR的,这样,可以减小信令开销。
具体实现时,第一指示信息也可以携带在一个新的消息中由MN发送给PAR,再携带在另一个新的消息中由PAR发送给NAR。第一指示信息还可以携带在FBU消息中由MN发送给PAR,再携带在一个新的消息中由PAR发送给NAR。另外,NAR验证NCoA的合法性的过程与MN通过PAR向NAR发送第一指示信息的过程也可以分开执行。例如,第一指示信息还可以携带在一个新的消息中由MN发送给PAR,再携带在HI消息中由PAR发送给NAR。本发明实施例对上述任一新的消息的具体实现方式均不进行限定。
结合第一方面或第一方面的第一种可能的实现方式中,在第一方面的第二种可能的实现方式中,在MN从PAR切换至NAR之前,该方法还可以包括:MN获取家乡地址HoA认证参数;MN根据转交密钥生成令牌与CN绑定,可以包括:MN根据转交密钥生成令牌和HoA认证参数与CN绑定。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,MN获取HoA认证参数,可以包括:MN从本地获取CGA参数和CGA签名;或者,MN从本地获取永久家乡密钥生成令牌;或者,MN经家乡代理向CN发送家乡测试初始化消息,并接收家乡代理发送的来自CN的家乡测试消息;其中,家乡测试消息包括家乡密钥生成令牌。这样,当MN的本地中包括HoA认证参数时,MN可以不需要再向CN发送家乡测试初始化消息,获取CN构建的家乡密钥生成令牌,从而减少MN的开销。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,MN从本地获取永久家乡密钥生成令牌,可以包括:MN从本地存储的绑定更新列表中获取永久家乡密钥生成令牌;其中,绑定更新列表中包括MN与CN绑定的信息。
第二方面,提供一种切换方法,可以包括:PAR接收MN发送的第一指示信息;其中,第一指示信息用于指示NAR构建转交测试初始化消息,并向CN发送转交测试初始化消息;转交测试初始化消息包括MN的NCoA,用于指示CN根据NCoA构建转交密钥生成令牌;PAR向NAR发送第一指示信息;PAR断开与MN的连接;以便MN与NAR连接,并接收NAR发送的转交密钥生成令牌,进而根据转交密钥生成令牌与CN绑定。
在第二方面的第一种可能的实现方式中,PAR接收MN发送的第一指示信息,可以包括:PAR接收MN发送的快速绑定更新FBU消息;FBU消息中包括第一指示信息;PAR向NAR发送第一指示信息,包括:PAR根据FBU消息,向NAR发送切换 初始化HI消息;HI消息中包括第一指示信息。
第三方面,提供一种切换方法,可以包括:NAR接收PAR发送的第一指示信息;NAR根据第一指示信息,向CN发送转交测试初始化消息;其中,转交测试初始化消息包括MN的NCoA,用于指示CN根据NCoA构建转交密钥生成令牌;NAR接收CN发送的转交密钥生成令牌;NAR与MN连接;NAR将转交密钥生成令牌发送给MN,以便MN根据转交密钥生成令牌与CN绑定。
在第三方面的第一种可能的实现方式中,NAR接收PAR发送的第一指示信息,可以包括:NAR接收PAR发送的切换初始化HI消息,HI消息中包括第一指示信息。
第四方面,提供一种切换方法,可以包括:CN接收NAR发送的转交测试初始化消息;其中,转交测试初始化消息包括移动节点MN的NCoA;CN根据MN的NCoA,构建转交密钥生成令牌;CN向NAR发送转交密钥生成令牌;以便MN与NAR连接之后,NAR将转交密钥生成令牌发送给MN;CN根据MN发送的转交密钥与MN绑定。
在第四方面的第一种可能的实现方式中,CN根据MN发送的转交密钥生成令牌与MN绑定,可以包括:CN接收MN发送的绑定更新消息;绑定更新消息包括转交密钥生成令牌和家乡地址HoA认证参数;其中,HoA认证参数包括CGA参数和CGA签名,或HoA认证参数包括永久家乡密钥生成令牌,或HoA认证参数包括家乡密钥生成令牌;CN根据绑定更新消息,向MN发送绑定确认消息。
本发明实施例第二方面、第三方面和第四方面提供的切换方法,其所能达到的有益效果可参考第一方面提供的切换方法中的有益效果,此处不再赘述。
第五方面,提供一种MN,该MN可以包括:发送模块,用于经PAR向NAR发送第一指示信息;其中,第一指示信息用于指示NAR构建转交测试初始化消息,并向CN发送转交测试初始化消息;转交测试初始化消息包括NCoA,用于指示CN根据NCoA构建转交密钥生成令牌。连接模块,用于与PAR连接切换至与NAR连接。接收模块,用于接收NAR发送的来自CN的转交密钥生成令牌。绑定模块,用于根据转交密钥生成令牌与CN绑定。其中,本发明实施例的第五方面提供的MN所能达到的有益效果可参考上述第一方面,此处不再赘述。
在第五方面的第一种可能的实现方式中,发送模块具体用于,向PAR发送FBU消息;FBU消息中包括第一指示信息,FBU消息用于指示PAR向NAR发送HI消息,HI消息中包括第一指示信息。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,该MN还可以包括:获取模块,用于获取HoA认证参数。绑定模块具体用于,根据转交密钥生成令牌和HoA认证参数与CN绑定。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,获取模块具体用于,从本地获取CGA参数和CGA签名;或者,从本地获取永久家乡密钥生成令牌;或者,经家乡代理向CN发送家乡测试初始化消息,并接收家乡代理发送的来自CN的家乡测试消息;其中,家乡测试消息包括家乡密钥生成令牌。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,获取模块具体用于,从本地存储的绑定更新列表中获取永久家乡密钥生成令牌;其中, 绑定更新列表中包括与CN绑定的信息。
第六方面,提供一种MN,该MN可以实现上述第一方面提供的切换方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在第六方面的一种可能的实现方式中,该MN的结构中包括处理器、存储器、总线和通信接口;该处理器被配置为支持该MN执行上述方法中相应的功能。该通信接口用于支持该MN与其他网元之间的通信。该MN还可以包括存储器,该存储器用于与处理器耦合,其保存该MN必要的程序指令和数据。该通信接口具体可以是收发器。
第七方面,提供了一种计算机存储介质,用于存储上述第一方面提供的切换方法所对应的计算机软件指令,其包含用于执行上述第五方面所设计的程序。
第八方面,提供一种接入路由器,该接入路由器可以包括:接收模块,用于接收MN发送的第一指示信息;其中,第一指示信息用于指示NAR构建转交测试初始化消息,并向CN发送转交测试初始化消息;转交测试初始化消息包括MN的新转交地址NCoA,用于指示CN根据NCoA构建转交密钥生成令牌。发送模块,用于向NAR发送第一指示信息。连接模块,用于断开与MN的连接;以便MN与NAR连接,并接收NAR发送的转交密钥生成令牌,进而根据转交密钥生成令牌与CN绑定。其中,本发明实施例的第八方面提供的接入路由器所能达到的有益效果可参考上述第二方面,此处不再赘述。该接入路由器具体可以是PAR。
在第八方面的第一种可能的实现方式中,接收模块具体用于,接收MN发送的FBU消息;FBU消息中包括第一指示信息。发送模块具体用于,根据FBU消息,向NAR发送HI消息;HI消息中包括第一指示信息。
第九方面,提供一种接入路由器,该接入路由器可以实现上述第二方面提供的切换方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在第九方面的一种可能的实现方式中,该接入路由器的结构中包括处理器、存储器、总线和通信接口;该处理器被配置为支持该接入路由器执行上述方法中相应的功能。该通信接口用于支持该接入路由器与其他网元之间的通信。该接入路由器还可以包括存储器,该存储器用于与处理器耦合,其保存该接入路由器必要的程序指令和数据。该通信接口具体可以是收发器。
第十方面,提供了一种计算机存储介质,用于存储上述第二方面提供的切换方法所对应的计算机软件指令,其包含用于执行上述第八方面所设计的程序。
第十一方面,提供一种接入路由器,该接入路由器可以包括:接收模块,用于接收PAR发送的第一指示信息。发送模块,用于根据第一指示信息,向CN发送转交测试初始化消息;其中,转交测试初始化消息包括MN的新转交地址NCoA,用于指示CN根据NCoA构建转交密钥生成令牌。接收模块还用于,接收CN发送的转交密钥生成令牌。连接模块,用于与MN连接。发送模块还用于,将转交密钥生成令牌发送给MN,以便MN根据转交密钥生成令牌与CN绑定。其中,本发明实施例的第九方面提供的接入路由器所能达到的有益效果可参考上述第三方面,此处不再赘述。该接入路由器具体可以是NAR。
在第十一方面的第一种可能的实现方式中,接收模块还用于,接收PAR发送的HI消息,HI消息中包括第一指示信息。
第十二方面,提供一种接入路由器,该接入路由器可以实现上述第三方面提供的切换方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在第十二方面的一种可能的实现方式中,该接入路由器的结构中包括处理器、存储器、总线和通信接口;该处理器被配置为支持该接入路由器执行上述方法中相应的功能。该通信接口用于支持该接入路由器与其他网元之间的通信。该接入路由器还可以包括存储器,该存储器用于与处理器耦合,其保存该接入路由器必要的程序指令和数据。该通信接口具体可以是收发器。
第十三方面,提供了一种计算机存储介质,用于存储上述第三方面提供的切换方法所对应的计算机软件指令,其包含用于执行上述第十一方面所设计的程序。
第十四方面,提供了一种CN,该CN可以包括:接收模块,用于接收NAR发送的转交测试初始化消息;其中,转交测试初始化消息包括MN的NCoA。构建模块,用于根据MN的NCoA,构建转交密钥生成令牌。发送模块,用于向NAR发送转交密钥生成令牌;以便MN与NAR连接之后,NAR将转交密钥生成令牌发送给MN。绑定模块,用于根据MN发送的包含由转交密钥生成令牌与MN绑定。其中,本发明实施例的第十一方面提供的CN所能达到的有益效果可参考上述第四方面,此处不再赘述。
在第十四方面的第一种可能的实现方式中,绑定模块具体用于,接收MN发送的绑定更新消息;绑定更新消息包括转交密钥生成令牌和家乡地址HoA认证参数;其中,HoA认证参数包括CGA参数和CGA签名,或HoA认证参数包括永久家乡密钥生成令牌,或HoA认证参数包括家乡密钥生成令牌;根据绑定更新消息,向MN发送绑定确认消息。
第十五方面,提供了一种CN,该CN可以实现上述第四方面提供的切换方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在第十五方面的一种可能的实现方式中,该CN的结构中包括处理器、存储器、总线和通信接口;该处理器被配置为支持该CN执行上述方法中相应的功能。该通信接口用于支持该CN与其他网元之间的通信。该CN还可以包括存储器,该存储器用于与处理器耦合,其保存该CN必要的程序指令和数据。该通信接口具体可以是收发器。
第十六方面,提供了一种计算机存储介质,用于存储上述第四方面提供的切换方法所对应的计算机软件指令,其包含用于执行上述第十四方面所设计的程序。
上述提供的任一种切换装置或计算机存储介质用于执行上文所提供的切换方法,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
另外,还提供了一种切换系统,包括MN、PAR、NAR和CN。其中,MN可以是上述第五方面或第六方面提供的任一种MN。PAR可以是上述第八方面或第九方面提供的任一种接入路由器。NAR可以是第十一方面或第十二方面提供的任一种接入路由 器。CN可以是第十四方面或第十五方面提供的任一种CN。该切换系统用于执行上文所提供的切换方法,其所能达到的有益效果可参考上文所提供的切换方法和装置中的有益效果,此处不再赘述。
附图说明
图1为本发明实施例提供的技术方案所适用的一种系统架构的示意图;
图2为本发明实施例提供的技术方案所适用的另一种系统架构的示意图;
图3为现有技术提供的一种切换方法的流程示意图;
图4为为现有技术提供的一种MN与CN绑定的流程示意图;
图5为本发明实施例提供的一种切换方法的流程示意图;
图6为本发明实施例提供的一种MN构建FBU消息的示意图;
图7为本发明实施例提供的一种构建移动性选项的示意图;
图8为本发明实施例提供的另一种构建移动性选项的示意图;
图9为本发明实施例提供的一种PAR构建HI消息的示意图;
图10为本发明实施例提供的一种NAR构建转交测试初始化消息的示意图;
图11为本发明实施例提供的另一种构建移动性选项的示意图;
图12为本发明实施例提供的一种MN的结构示意图;
图13为本发明实施例提供的另一种MN的结构示意图;
图14为本发明实施例提供的一种接入路由器的结构示意图;
图15为本发明实施例提供的另一种接入路由器的结构示意图;
图16为本发明实施例提供的另一种接入路由器的结构示意图;
图17为本发明实施例提供的另一种接入路由器的结构示意图;
图18为本发明实施例提供的一种CN的结构示意图;
图19为本发明实施例提供的另一种CN的结构示意图。
具体实施方式
本发明实施例提供的技术方案可以应用于包括家乡网络以及一个或多个外地网络的系统架构中。具体的,可以应用于MN从一个网络(下文中称为“旧接入网络”)切换到另一个网络(下文中称为“新接入网络”)的场景中。其中,旧接入网络可以是家乡网络,新接入网络可以是外地网络。或者,旧接入网络可以是一个外地网络,新接入网络可以是另一个外地网络。每个网络可以支持一个网段,每个网段可以包括一个或多个IP地址。不同网络可以支持不同的网段,且不同网络支持的网段之间一般没有交集。
采用传统IP技术时,MN从旧接入网络移动至新接入网络之后,需要将其在旧接入网络中的IP地址修改为新接入网络所支持的IP地址,才能实现与CN的通信。并且,MN从旧接入网络移动至新接入网络之后,MN一般不能继续使用旧接入网络的资源。
采用MIPv6技术时,MN在跨网络随意移动和漫游的过程中,使用基于传输控制协议/互联网络协议(英文:transmission control protocol/internet protocol,缩写:TCP/IP)的网络时,不用修改原IPv6地址(即MN在旧接入网络中的IP地址),并且可以继续享有旧接入网络中的一切权限。简单的说,MIPv6技术就是实现网络全方位的移动 或者漫游。MIPv6技术在网络层提供了一种使MN可以使用一个永久的IPv6地址连接到任何链路上的路由机制。新是将数据包路由到那些可能一直在快速地改变位置的MN上。
MIPv6技术为MN提供了HoA和CoA。当MN从旧接入网络移动至新接入网络时,MN的HoA保持不变,同时获得新接入网络中的一个临时的IP地址(下文中称为NCoA)。
参考图1,是本发明实施例提供的技术方案所适用的一种系统架构的示意图。其中,图1是以“旧接入网络是家乡网络,新接入网络是外地网络1”为例进行说明的。图1所示的系统架构可以包括:家乡网络和外地网络1。其中,家乡网络中包括PAR和家乡代理(英文:home agent,缩写:HA),外地网络1中包括NAR。另外,系统架构中还可以包括MN和CN。其中,MN从家乡网络中移动至外地网络1中。CN可以在家乡网络中,也可以在外地网络1中,还可以在除外地网络1之外的任一外地网络中。图1是以CN在外地网络1之外的一个外地网络中为例进行说明的。
当MN在家乡网络中时,可以利用HoA与CN通信。当MN在外地网络1中时,MN可以利用NCoA与CN通信,。
当MN在外地网络1中时,HA截获CN发送的目的地址为HoA的数据包,并将目的地址为HoA的数据包修改为目的地址为NCoA的数据包,然后经PAR和NAR,将目的地址为NCoA的数据包发送给MN。
参考图2,是本发明实施例提供的技术方案所适用的另一种系统架构的示意图。图2中是以“旧接入网络是外地网络1,新接入网络是外地网络2”为例进行说明的。图2所示的系统架构可以包括:家乡网络、外地网络1和外地网络2。其中,家乡网络中包括HA,外地网络1中包括PAR,外地网络2中包括NAR。另外,系统架构中还可以包括MN和CN。其中,MN从外地网络1中移动至外地网络2中。CN可以在家乡网络中,也可以在外地网络1中,还可以在外地网络2中,还可以在除外地网络1和外地网络2之外的任一外地网络中。图2中是以CN在外地网络1和外地网络2之外的一个外地网络为例进行说明的。
当MN在外地网络1中时,MN可以利用旧CoA(英文:previous CoA,缩写:PCoA),与CN直接通信,PCoA即外地网络1支持的CoA。当MN在外地网络2中时,MN可以利用NCoA(即外地网络2支持的CoA)与CN通信。
当MN在外地网络2中时,HA截获CN发送的目的地址为HoA的数据包,并将目的地址为HoA的数据包修改为目的地址为NCoA的数据包,然后经NAR,将目的地址为NCoA的数据包发送给MN。
MN从旧接入网络移动至新接入网络时,需要断开与旧接入网络中的PAR之间的连接,并建立与新接入网络中的NAR之间的连接,下文中将该过程称为“切换过程”。另外,在MN与NAR建立连接之后,还需要执行:配置NCoA的过程,以及绑定更新过程等,才能实现CN利用NCoA与MN通信。由此可知,切换时延至少包括:配置NCoA的时延,以及绑定更新时延。
为了减少切换时延,可以在MN与NAR建立连接之前配置NCoA。该情况下提供的切换方法如图3所示,为一种现有技术提供的切换方法的流程示意图。该方法可以 包括:配置NCoA的过程,切换过程,以及绑定更新过程。具体的:
配置NCoA的过程,可以包括以下步骤S11~S13:
S11:MN向PAR发送代理路由通告(英文:router solicitation for proxy advertisement,缩写:RtSolPr)消息,PAR接收该RtSolPr消息。
RtSolPr消息用于请求PAR解析一个或多个接入点(英文:access point,缩写:AP)的信息,包括[AP ID,AR-Info]元组信息。
其中,[AP ID,AR-Info]元组信息具体包括AP的地址和该AP与AR(包括PAR和NAR)连接端口的网络前缀。
S12:PAR接收到RtSolPr消息后,向MN发送路由请求代理通告(英文:proxy router advertisement,缩写:PrRtAdv)消息,MN接收该PrRtAdv消息。
PrRtAdv消息包括一个或多个[AP ID,AR-Info]元组信息。其中,一个AR可以与一个或多个AP连接。MN在接入AR所在的网络中,首先需要与AR连接的AP连接。
S13:MN根据PrRtAdv消息中携带的信息,配置NCoA。
进一步的,该方法还可以包括:验证NCoA的合法性的过程。具体可以包括以下步骤S14~S17:
S14:MN配置NCoA后,向PAR发送快速绑定更新(英文:fast binding update,缩写:FBU)消息;PAR接收该FBU消息。FBU消息包括NCoA。
当旧接入网络为家乡网络,新接入网络为外地网络时,FBU消息用于指示PAR与MN断开连接之后,PAR可以将接收到的目的地址是HoA的数据包的目的地址修改为NCoA,然后经NAR向MN发送目的地址为NCoA的数据包。
当旧接入网络和新接入网络均为外地网络时,FBU消息用于指示PAR与MN断开连接之后,PAR可以将接收到的目的地址是PCoA的数据包的目的地址修改为NCoA,然后经NAR向MN发送目的地址为NCoA的数据包。
S15:PAR根据FBU消息,向NAR发送切换初始化(英文:handover initiate,缩写:HI)消息;NAR接收该HI消息。其中,HI消息包括NCoA。
HI消息可以用于指示NAR验证NCoA的合法性。
S16:NAR验证NCoA的合法性,并向PAR发送切换确认(英文:handover acknowledge,缩写:HACK)消息;PAR接收该HACK消息。其中,HACK消息用于将NCoA的合法性结果告知PAR。此外,HACK消息还包括是否可以与MN连接的信息。
若NAR确定NCoA在NAR所属的网络支持的网段内且NAR的本地中未存储该NCoA,则说明该NCoA合法,也就是说,MN可以利用NCoA与CN通信。该情况下,HACK消息可以包括表示该NCoA合法的信息。
若NAR确定NCoA不在NAR所属的网络支持的网段内或NAR的本地中存储该NCoA,则说明该NCoA不合法,也就是说,MN不可以利用NCoA与CN通信。该情况下,NAR可以为MN指定一个合法的CoA,其中,该合法的CoA在NAR所属的网络支持的网段内。并且,NAR可以将该合法的CoA携带在HACK消息中发送给PAR。后续,PAR可以将该合法的CoA发送给MN,MN可以将该合法的CoA作为NCoA,从而利用该NCoA与CN通信。可以理解的,该情况下,HACK消息中还可以包括表 示S16中所验证的NCoA不合法的信息。
S17:PAR根据HACK消息,向MN发送快速绑定确认(英文:fast binding acknowledgment,缩写:FBack)消息;MN接收该FBack消息。其中,FBack消息中包括NCoA合法性结果。
具体实现时,该方法还可以包括:PAR根据HACK消息,向NAR发送携带NCoA合法性结果的FBack消息;NAR接收该FBack消息。NAR接收FBack消息后,可以接收PAR发送的目的地址为NCoA的数据包。
切换过程,可以包括以下步骤S21~S22:
S21:MN接收到FBack之后,断开与PAR的连接。
可以理解的,在执行S15~S17之后,PAR与NAR之间的隧道已被建立好。这样,在执行S21之后,该方法还可以包括:PAR通过PAR与NAR之间的隧道,将接收的发往MN的数据包发送给NAR。
其中,PAR接收的发往MN数据包来自CN。具体的:当旧接入网络是家乡网络时,CN向PAR(即家乡网络中的AR)发送数据包,该数据包的目的地址是MN的HoA。当旧接入网络是外地网络时,CN向PAR(即该外地网络中的AR)发送数据包,该数据包的目的地址是MN的PCoA。
S22:MN建立与NAR的连接。
MN可以在与新接入网络中的AP连接之后,向NAR发送非请求邻居通告(英文:unsolicited neighbor advertisement,缩写:UNA)消息,以告知MN已与新接入网络中的AP连接,以便NAR可以在与MN连接之后,将接收到的PAR发送的数据包发送给MN。
可以理解的,步骤S21至S22可以理解为:MN从PAR切换至NAR。
绑定更新过程,可以包括以下步骤S31~S32:
S31:MN与HA绑定。即,MN将HoA与NCoA的映射关系告知HA。
该步骤S31可以通过以下步骤S31.1~S31.2实现:
S31.1:MN向HA发送绑定更新(英文:binding update,缩写:BU)消息,HA接收MN发送的BU消息。其中,BU消息中包括NCoA。
S31.2:HA向MN回复绑定确认(英文:binding ack)消息,MN接收HA回复的绑定确认消息。
可以理解的,对于CN来说,其可以继续使用MN的HoA,并将向MN发送的数据包发往MN所在的家乡网络。家乡网络中的HA截获该数据包,然后可以根据S31中已获得的NCoA和HoA的映射关系,通过隧道方式将该数据包转发给MN,其中,HA将该数据包转发给MN时,目的地址可以是该NCoA。下文中将该过程称为过程一。
可以理解的,若旧接入网络是家乡网络,新接入网络是外地网络,则MN与HA绑定,可以理解为:建立MN与HA之间的绑定关系。若旧接入网络是外地网络,新接入网络是另一个外地网络,则MN与HA绑定,可以理解为:更新MN与HA之间的绑定关系,具体是MN向HA告知HoA与NCoA之间的映射关系。
S32:MN与CN绑定。MN将HoA与NCoA的映射关系告知CN。
可以理解的,若旧接入网络是家乡网络,新接入网络是外地网络,则MN与CN 绑定,可以理解为:建立MN与CN之间的绑定关系。若旧接入网络是外地网络,新接入网络是另一个外地网络,则MN与CN绑定,可以理解为:MN向CN告知HoA与NCoA之间的映射关系。
该步骤S32可以通过以下步骤S32.1~S32.2实现:
S32.1:MN向CN发送BU消息,CN接收MN发送BU消息。其中,BU消息中包括NCoA。
S32.2:CN向MN回复绑定确认消息,MN接收CN回复的绑定确认消息。其中,绑定确认消息包括绑定确认信息。
对于CN来说,在获知HoA与NCoA的映射关系之后,可以使用NCoA将数据包发往该NCoA所在的外地网络。下文中将该过程可以称为过程二。
上述过程一可以称作三角路由过程。上述过程二可以称作路由优化后的通信过程。
可选的,MIPv6技术中采用了返回路由可达过程(英文:return routability procedure,缩写:RRP)来加强对MN与CN之间的绑定更新的保护。RRP可以包括Home RRP和care-of RRP。其中,Home RRP用来判断CN是否可以利用HoA,经HA与MN进行通信,并且产生MN与CN互相认同的家乡初始化cookie(英文:home init cookie),即当CN确定可以利用HoA与MN通信时,CN向MN返回该家乡初始化cookie,并生成家乡密钥生成令牌(英文:home keygen token)。care-of RRP用来判断CN是否可以利用NCoA,与MN直接进行通信,并且产生MN与CN互相认同的转交初始化cookie(英文:care-of init cookie),即当CN确定可以利用NCoA与MN通信时,CN向MN返回该转交初始化cookie,并生成转交密钥生成令牌(英文:care-of keygen token)。基于此,如图4所示,为现有技术提供的一种MN与CN绑定的流程示意图。在S32之前,该方法还可以包括以下步骤S32a~S32d:
S32a:MN构建家乡测试初始化(英文:home test init)消息,并经HA向CN发送家乡测试初始化消息;CN经HA接收MN发送的家乡测试初始化消息。
其中,家乡测试初始化消息的源地址是MN的HoA,目的地址是CN的地址(英文:CN address)。家乡测试初始化消息包括家乡初始化cookie和MN的HoA。CN根据MN的HoA生成家乡密钥生成令牌。
S32b:CN构建家乡测试(英文:home test)消息,并经HA向MN回复家乡测试消息;MN经HA接收CN回复的家乡测试消息。
其中,家乡测试消息是CN对家乡测试初始化消息的响应。家乡测试消息的源地址是CN的地址,目的地址是MN的HoA。其中,家乡测试消息中包括家乡初始化cookie和家乡密钥生成令牌。
具体的:CN可以在接收到家乡测试初始化消息之后,确认CN可以利用HoA经HA与MN进行通信;然后,根据MN的HoA生成家乡密钥生成令牌,并向MN回复携带家乡初始化cookie和家乡密钥生成令牌的家乡测试消息。
S32c:MN构建转交测试初始化(英文:care-of test init)消息,并向CN发送转交测试初始化消息;CN接收MN发送的转交测试初始化消息。
其中,转交测试初始化消息的源地址是MN的NCoA,目的地址是CN的地址。转交测试初始化消息包括转交初始化cookie和MN的NCoA。CN根据MN的NCoA 生成转交密钥生成令牌。
S32d:CN构建转交测试(英文:care-of test)消息,并向MN回复转交测试消息;MN接收CN回复的转交测试消息。
其中,转交测试消息是CN对转交测试初始化消息的响应。转交测试消息的源地址是CN的地址,目的地址是MN的NCoA。其中,转交测试消息中包括转交初始化Cookie和转交密钥生成令牌。
具体的:CN可以在接收到转交测试初始化消息之后,确认CN可以利用NCoA与MN进行通信;然后,根据MN的NCoA生成转交密钥生成令牌,并向MN回复携带转交初始化cookie和转交密钥生成令牌的转交测试消息。
需要说明的是,在执行S32a~S32d之后再执行S32时,S32具体可以包括:MN根据家乡密钥生成令牌和转交密钥生成令牌计算消息认证码,向CN发送安全的绑定更新消息。
由图4可知,绑定更新时延,至少可以包括以下时延:
家乡测试初始化消息时延,即:执行S32a产生的时延。
家乡测试消息时延,即执行S32b产生的时延。
转交测试初始化消息时延,即:执行S32c产生的时延。
转交测试消息时延,即:执行S32d产生的时延。
发送给HA的绑定更新消息的时延,即:执行S31.1产生的时延。
HA发送的绑定确认消息的时延,即:执行S31.2产生的时延。
发送给CN的绑定更新消息的时延,即:执行S32.1产生的时延。
CN发送的绑定确认消息的时延,即:执行S32.2产生的时延。
由上文描述可知,图3所示的技术方案只能通过减小配置NCoA的时延来减小切换时延,不能减小绑定更新时延。基于此,本发明实施例提供了一种切换方法,可以通过减小绑定更新时延来减小切换时延。具体的,可以通过减小转交测试初始化消息时延来减小绑定更新时延。可选的,还可以通过减小构建转交测试消息的时延。还可以通过减小家乡测试初始化消息时延和家乡测试消息时延来减小绑定更新时延。
下面结合附图,对本发明的实施例进行描述。如图5所示,为本发明实施例提供的一种切换方法的流程示意图。该方法可以包括以下步骤S401~S413:
S401:MN向PAR发送FBU消息;PAR接收该FBU消息。其中,FBU消息中包括第一指示信息。FBU消息用于指示PAR向NAR发送HI消息。HI消息中包括第一指示信息。第一指示信息用于指示NAR构建转交测试初始化消息,并向CN发送该转交测试初始化消息。转交测试初始化消息包括NCoA,用于指示CN根据NCoA构建转交密钥生成令牌。
MN可以在执行从PAR切换至NAR之前,且配置了NCoA之后,执行S401。MN配置NCoA的具体实现方式可以参考上述S11至S13。
可以理解的,与图3所示的技术方案中的FBU消息不同的是,图5所示的技术方案中的FBU消息中还包括第一指示信息。与图3所示的技术方案中的HI消息不同的是,图5所示的技术方案中的HI消息中还包括第一指示信息。本发明实施例还提供了可适用于图5所示的技术方案的FBU消息的格式和HI消息的格式,具体可参考下文。
第一指示信息可以包括用于指示NAR构建转交测试初始化消息所需的信息,例如CN的地址和转交初始化cookie等。下文中均是以第一指示信息包括CN的地址和转交初始化cookie为例进行说明的。
图5所示的技术方案中的转交测试初始化消息的作用可以与图3所示的技术方案中的转交测试初始化消息的作用相同,均用于使CN验证是否可以利用NCoA与MN通信。可以理解的,图3所示的技术方案中的转交测试初始化消息与图5所示的技术方案中的转交测试初始化消息相比,至少包含以下区别:
区别一,图3所示的技术方案中的转交测试初始化消息是在MN从PAR切换至NAR之后构建并传输给CN的,图5所示的技术方案中的转交测试初始化消息是在MN从PAR切换至NAR之前构建并传输给CN的。其中,MN从PAR切换至NAR们可以理解为:MN从与PAR的连接切换至于NAR连接。
基于此,也可以将图5所示的技术方案中的转交测试初始化消息标记为:pre-care-of test init。
区别二,图3所示的技术方案中的转交测试初始化消息是由MN构建,并由MN传输给CN的。图5所示的技术方案中的转交测试初始化消息是NAR构建,并由NAR传输给CN的。本发明实施例还提供了可适用于图5所示的技术方案中的转交测试初始化消息的格式,具体可参考下文。
S402:PAR根据FBU消息,向NAR发送HI消息;NAR接收该HI消息。其中,HI消息中包括第一指示信息。HI消息用于指示NAR验证NCoA的合法性。
S403:NAR接收到HI消息后,验证NCoA的合法性,并向PAR发送HACK消息,PAR接收HACK消息。其中,HACK消息用于将NCoA的合法性结果告知PAR。
S404:NAR根据HACK消息,向MN发送FBack消息;MN接收该FBack消息。其中,FBack消息中包括NCoA合法性结果。
具体实现时,该方法还可以包括:PAR向NAR发送FBack消息,NAR接收该FBack消息。
S403~S404的具体实现过程可以参考上文中的步骤S16~S17。
可以理解的,上述S401~S404中,第一指示信息是在验证NCoA的合法性的过程中携带在FBU消息和HI消息中由MN经PAR发送给NAR的,这样,可以减小信令开销。具体实现时,第一指示信息也可以携带在一个新的消息中由MN发送给PAR,再携带在另一个新的消息中由PAR发送给NAR。第一指示信息还可以携带在FBU消息中由MN发送给PAR,再携带在一个新的消息中由PAR发送给NAR。另外,验证NCoA的合法性的过程与S401的过程也可以分开执行。例如,第一指示信息还可以携带在一个新的消息中由MN发送给PAR,再携带在HI消息中由PAR发送给NAR。本发明实施例对上述任一新的消息的具体实现方式均不进行限定。
S405:NAR根据第一指示信息构建转交测试初始化消息。其中,转交测试初始化消息中包括转交初始化cookie。
NAR可以根据CN的地址和转交初始化cookie等信息构建转交测试初始化消息,其具体实现过程可以参考MN构建转交测试初始化消息的过程。转交测试初始化消息的源地址是NAR的地址,目的地址是CN的地址。
可以理解的,若在S403中确定NCoA合法,则转交测试初始化消息中包括的NCoA可以是HI消息中包括的NCoA。若在S403中确定NCoA不合法,则转交测试初始化消息中包括的NCoA可以是NAR为MN指定的合法的NCoA。关于该合法的CoA的相关解释可以参考上文中的步骤S16。
本发明实施例对S404与S405的先后顺序不进行限定,例如,可以先执行S404后执行S405,也可以先执行S405再执行S404,还可以同时执行S404和S405。
S406:NAR向CN发送转交测试初始化消息;CN接收转交测试初始化消息。
至此,CN接收到了转交测试初始化消息,也就是说,本发明实施例提供的技术方案可以在MN从PAR切换至NAR之前,实现CN接收到转交测试初始化消息,这样,可以绑定更新时延中可以不包括转交测试初始化消息时延(即执行S32c产生的时延),从而减少绑定更新时延。
S407:CN根据转交测试初始化消息中的NCoA,构建转交密钥生成令牌。
该步骤中CN构建的转交密钥生成令牌可以是图3所示的技术方案中的转交密钥生成令牌。
S408:CN向NAR发送转交测试消息;NAR接收CN发送的转交测试消息。其中,转交测试消息中可以包括转交初始化cookie和转交密钥生成令牌。
转交测试消息的源地址是CN的地址,目的地址是NAR的地址。
可以理解的,在上述S408中,转交初始化cookie和转交密钥生成令牌也可以携带在一个新的消息中由CN发送NAR。本发明实施例对上述新的消息的具体实现方式均不进行限定。
图5所示的技术方案中的转交测试消息与图3所示的技术方案中的转交测试消息的作用相同,均是用于响应转交测试初始化消息。可选的,图5所示的技术方案中的一种转交测试消息,可以是在图3所示的技术方案中的转交测试消息的松散源路由选项(英文:loose source route)设置NCoA,以使得NAR将该转交测试消息发送给MN。
NAR接收到CN发送的转交测试消息之后,若检测到MN已切换至NAR,则将该转交测试消息发送至MN;若没有检测到MN已切换至NAR,则缓存该转交测试消息。可选的,NAR可以在从缓存该转交测试消息的时刻开始的预设时间段内没有检测到MN已切换至NAR的情况下,可以丢弃转交测试消息,从而减小存储资源。本发明实施例对该预设时间段的实现方式不进行限定。
S409:MN断开与PAR的连接,并建立与NAR连接。
MN可以在从旧接入网络移动至新接入网络之后,执行S409。S409的具体实现方式可以参考上述S21~S22,另外,关于在执行MN断开与PAR的连接,以及建立与NAR的连接之后的数据包的传输过程,均可以参考上文。
S410:NAR在检测到与MN连接之后,向MN发送转交测试消息。
可以理解的,由于在执行S408之后,NAR可以接收到转交测试消息,并且,可以对转交测试消息进行缓存,因此在NAR检测到与MN连接之后,可以立即将该转交测试消息发送给MN。这样,还可以减少构建转交测试消息的时延。
S411:MN与HA绑定。该步骤与上文中的S31相同。
S412:MN获取HoA认证参数。具体可以通过以下任一方式实现:
方式1:若MN的本地存储有永久家乡密钥生成令牌(英文:permanent home keygen token),则MN可以将该永久家乡密钥生成令牌作为HoA认证参数。其中,MN的本地中存储的永久家乡密钥生成令牌可以是MN与CN周期性刷新得到的,即MN与CN周期性互相发送消息,以获取久家乡密钥生成令牌。这样,后续MN可以利用永久家乡密钥生成令牌构建BU消息,从而减小开销。并且,在该方式中,绑定更新时延中可以不包括家乡测试初始化消息时延和家乡测试消息时延,从而减小绑定更新时延。可选的,MN可以从本地存储的绑定更新列表中获取永久家乡密钥生成令牌。绑定更新列表中记录了MN与CN绑定的信息,具体可以包括永久家乡密钥生成令牌、CN的IP地址、MN的HoA地址、MN的CoA地址、绑定更新消息的生存时间初始值、绑定更新的剩余生存时间值和序列号的最大值等。
方式2:若MN的本地没有存储永久家乡密钥生成令牌,但是存储有加密产生地址(英文:cryptographically generated addresses,缩写CGA)参数和CGA签名,则MN可以将该CGA参数和CGA签名作为HoA认证参数。这样,绑定更新时延中可以不包括家乡测试初始化消息时延和家乡测试消息时延,从而减小绑定更新时延。
需要说明的是,MN的本地没有存储永久家乡密钥生成令牌且HoA不是CGA地址,说明MN是首次接入网络(包括家乡网络和外地网络),也就是说,MN还没有与CN之间通信过,该情况下,可选的,MN可以通过Home RRP向CN请求家乡密钥生成令牌;然后,MN可以通过初始的CGA-based认证(英文:CGA-based authentication),向CN请求永久家乡密钥生成令牌。
方式3:MN经HA向CN获取家乡密钥生成令牌(即上文S32中的家乡密钥生成令牌),其具体实现过程可以参考S32a~S32b;然后,将该家乡密钥生成令牌作为HoA认证参数。需要说明的是,由于家乡密钥生成令牌具有有效期,超过有效期之后就会失效。因此,为了保证获取到的家乡密钥生成令牌在有效期内,可选的,MN可以在接收到FBack消息之后再获取HoA认证参数。或者,可选的,MN周期性获取家乡密钥生成令牌,并在MN需要构建绑定请求消息时,根据获取到的最新的家乡密钥生成令牌,构建该绑定请求消息。当然,具体实现时不限于此。
可以理解的,由于在方式1和方式2中,MN均是在本地获取HoA认证参数,并且所获取的HoA认证参数没有有效期,即可以一直使用,因此,MN也可以在建立与NAR的连接之前即执行S412,从而在执行S413时直接使用获取到的HoA认证参数。
本发明实施例对S411与S412的执行顺序不进行限定。
S413:MN根据HoA认证参数和转交密钥生成令牌与CN绑定。该步骤与上文中的S32相同。
需要说明的是,在步骤S413的具体实现中,MN根据HoA认证参数和转交密钥生成令牌计算消息认证码,然后MN可以向CN发送携带消息认证码的新的消息。CN可以向MN发送携带绑定确认信息的新的消息。本发明实施例对上述任一新的消息的具体实现方式均不进行限定。
本发明实施例提供的切换方法中,MN可以在与新接入网络中的NAR建立连接之前,通过NAR将转交测试初始化消息传输至CN;这样,MN与NAR建立连接之后,NAR可将该转交测试消息发送至MN。与现有技术相比,本发明实施例可以通过减小 转交测试初始化消息时延,来减小绑定更新时延,进而减小切换时延。进一步的,本发明实施例提供的切换方法还可以减小家乡测试初始化消息时延和家乡测试消息时延等,具体可以参考上文。
在图5所示的技术方案中,步骤S401中的FBU消息携带第一指示消息。基于此,如图6所示,为图5所示的技术方案提供的一种MN构建FBU消息的示意图。其中,图6中是以FBU消息携带第一指示信息,且第一指示信息包括CN的地址和转交初始化cookie为例进行说明的。具体的:MN首先封装FBU消息的序列号(英文:sequence),然后封装FBU消息的标识;最后,封装移动性选项(英文:mobility option),其中,FBU消息的移动性选项包括第一指示信息。其中,FBU消息的标识可以包括:确认(下文中标记为“A”)标识、家乡代理注册(下文中标记为“H”)标识、本地链路地址兼容性(下文中标记为“L”)标识、密钥管理移动性能力(下文中标记为“K”)标识、预留位(英文:reserved)和有效期(英文:lifetime)等。
FBU消息的移动性选项可以包括移动性选项1和移动性选项2,移动性选项1包括CN的地址,移动性选项2包括转交初始化cookie。本发明实施例中,可以将移动性选项1称为CN的地址选项(英文:CN address option),可以将移动性选项2称为转交初始化cookie选项(英文:care-of init cookie option)。MN可以通过(英文:type-length-value,缩写:TLV)格式自定义移动性选项(包括移动性选项1和移动性选项2)。
如图7所示,为一种构建移动性选项1的示意图。具体的:首先,设置移动性选项1的类型和长度;然后,将移动性选项1的选项数据(英文:option data)设置为CN的地址。其中,图7是以将移动性选项1的类型设置为6,长度设置为16为例说明的。
如图8所示,为一种构建移动性选项2的示意图。具体的:首先,设置移动性选项2的类型和长度;然后,将移动性选项2的option data设置为转交初始化cookie。其中,图8是以将移动性选项2的类型设置为7,长度设置为8为例说明的。
在图5所示的技术方案中,步骤S402中的HI消息携带第一指示消息。基于此,如图9所示,为图5所示的技术方案提供的一种PAR构建HI消息的示意图。其中,图9是以HI消息携带第一指示信息,且第一指示信息包括CN的地址刚和转交初始化cookie为例说明的。具体的:PAR首先封装序列号;然后,封装HI消息的标识;最后,封装移动性选项,其中,FBU消息的移动性选项包括第一指示信息。其中,HI消息的标识可以包括:分配地址配置(下文中标记为“S”)标识、缓冲标识(下文中标记为“U”)标识、预留位和code等。
HI消息的移动性选项可以包括移动性选项3和移动性选项4,移动性选项3包括CN的地址,移动性选项4包括转交初始化cookie。本发明实施例中,构建移动性选项3的方法可参考图7。构建移动性选项4的方法可参考图8。
在图5所示的技术方案中,NAR根据第一指示信息构建转交测试初始化消息。NAR构建的转交测试初始化消息包括转交初始化cookie、NCoA以及添加标识位(如“P”)。标识位用以表征该转交测试初始化消息是NAR构建的。基于此,如图10所示,为一种NAR构建转交测试初始化消息的示意图。其中,图10中的转交测试初始化消息包 括NCoA和转交初始化cookie。具体的:NAR首先封装标识位和预留位;然后,封装转交初始化cookie;最后封装移动性选项。
转交测试初始化消息的移动性选项包括移动性选项5;移动性选项5包括NCoA。本发明实施例中,可以将移动性选项5称为可到达转交地址选项(英文:reachable care-of address option)。
如图11所示,为一种构建移动性选项5的示意图。具体的:首先设置移动性选项5的类型和长度;然后,将移动性选项5的option data设置为NCoA。其中,图11是以移动性选项5的类型设置为8,长度设置为16为例说明的。
上述主要从MN、PAR、NAR和CN的角度对本发明实施例提供的方案进行了介绍。可以理解的是,为了实现上述各个功能,MN、PAR、NAR和CN包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对MN、PAR、NAR和CN进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图12所示,为本发明实施例提供的一种MN12的结构示意图。图12所示的MN12可以是上文中提供的MN。该MN12可以包括:发送模块1201、连接模块1202、接收模块1203和绑定模块1204。另外,该MN12还可以包括:获取模块1205。
其中,发送模块1201用于支持MN12执行图3中的S11和S14;图4中的S32a和S32c,图5中的S401,和/或用于本文所描述的技术的其它过程。连接模块1202用于支持MN12执行图3中的S21至S22,图5中的S409,和/或用于本文所描述的技术的其它过程。接收模块1203用于支持MN12执行图3中的S17,图4中的S32b和S32d,和/或用于本文所描述的技术的其它过程。绑定模块1204用于支持MN12执行图3中的S31和S32,图4中的S31.1、S31.2、S32.1和S32.2,和/或用于本文所描述的技术的其它过程。获取模块1205用于执行图5中的S412。另外,MN12还可以包括:存储模块。存储模块用于存储MN12执行上文所提供的任一切换的方法所对应的程序代码和数据。
在硬件实现上,上述发送模块1201可以为发送器,上述接收模块1203可以为接收器,发送器和接收器可以集成在一起构成收发器。连接模块1202、绑定模块1204和获取模块1205可以以硬件形式内嵌于或独立于MN12的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图13所示,为本发明实施例提供的一种MN13的结构示意图。图13所示的MN13可以是上文中提供的MN。该MN13可以包括:存储器1300、处理器1301、通 信接口1302以及总线1303;其中,存储器1300、处理器1301、通信接口1302通过总线1303相互连接。存储器1300用于存储计算机执行指令,当MN13运行时,处理器1301执行存储器1300存储的计算机执行指令,以使MN13执行上文提供的任意一种切换方法。具体的切换方法可参考上文及附图中的相关描述,此处不再赘述。
如图14所示,为本发明实施例提供的一种接入路由器14的结构示意图。图14所示的接入路由器14可以是上文中提供的PAR。该接入路由器14可以包括:接收模块1401、发送模块1402和连接模块1403。
其中,接收模块1401用于支持接入路由器14执行图3中的S11、S14和S16,图5中的S401和S403,和/或用于本文所描述的技术的其它过程。发送模块1402用于支持接入路由器14执行图3中的S15和S17;图5中的S402和S404,和/或用于本文所描述的技术的其它过程。连接模块1403用于支持接入路由器14执行图3中的S21,图5中的S409,和/或用于本文所描述的技术的其它过程。另外,接入路由器14还可以包括:存储模块。存储模块用于存储接入路由器14执行上文所提供的任一切换方法所对应的程序代码和数据。
在硬件实现上,上述接收模块1401可以为接收器,上述发送模块1402可以为发送器,接收器和发送器可以集成在一起构成收发器。连接模块1403可以以硬件形式内嵌于或独立于接入路由器14的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图15所示,为本发明实施例提供的一种接入路由器15的结构示意图。图15所示的接入路由器15可以是上文中提供的PAR。该接入路由器15可以包括:存储器1500、处理器1501、通信接口1502以及总线1503;其中,存储器1500、处理器1501、通信接口1502通过总线1503相互连接。存储器1500用于存储计算机执行指令,当接入路由器15运行时,处理器1501执行存储器1500存储的计算机执行指令,以使接入路由器15执行上文提供的任意一种切换方法。具体的切换方法可参考上文及附图中的相关描述,此处不再赘述。
如图16所示,为本发明实施例提供的一种接入路由器16的结构示意图。图16所示的接入路由器16可以是上文中提供的NAR。该接入路由器16可以包括:接收模块1601、发送模块1602和连接模块1603。
其中,接收模块1601用于支持接入路由器16执行图3中的S15和S17,图5中的S402、S404和S408,和/或用于本文所描述的技术的其它过程。发送模块1602用于支持接入路由器16执行图3中的S16;图5中的S403、S406和S410,和/或用于本文所描述的技术的其它过程。连接模块1603用于支持接入路由器16执行图3中的S22,图5中的S409,和/或用于本文所描述的技术的其它过程。另外,接入路由器16还可以包括:存储模块。存储模块用于存储接入路由器16执行上文所提供的任一切换方法所对应的程序代码和数据。
在硬件实现上,上述接收模块1601可以为接收器,上述发送模块1602可以为发送器,接收器和发送器可以集成在一起构成收发器。连接模块1603可以以硬件形式内嵌于或独立于接入路由器16的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图17所示,为本发明实施例提供的一种接入路由器17的结构示意图。图17所示的接入路由器17可以是上文中提供的NAR。该接入路由器17可以包括:存储器1700、处理器1701、通信接口1702以及总线1703;其中,存储器1700、处理器1701、通信接口1702通过总线1703相互连接。存储器1700用于存储计算机执行指令,当接入路由器17运行时,处理器1701执行存储器1700存储的计算机执行指令,以使接入路由器17执行上文提供的任意一种切换方法。具体的切换方法可参考上文及附图中的相关描述,此处不再赘述。
如图18所示,为本发明实施例提供的一种CN18的结构示意图。图18所示的CN18可以是上文中提供的CN。该CN18可以包括:接收模块1801、构建模块1802、发送模块1803和绑定模块1804。
其中,接收模块1801用于支持CN18执行图4中的S32a和S32c,图5中的S406,和/或用于本文所描述的技术的其它过程。构建模块1802用于支持CN18执行图5中的S407,和/或用于本文所描述的技术的其它过程。发送模块1803用于支持CN18执行图4中的S32b和S32d,图5中的S408,和/或用于本文所描述的技术的其它过程。绑定模块1804用于支持CN18执行图3中的S32,图4中的S32.1至S32.2,图5中的S413,和/或用于本文所描述的技术的其它过程。另外,CN18还可以包括:存储模块。存储模块用于存储CN18执行上文所提供的任一切换方法所对应的程序代码和数据。
在硬件实现上,上述接收模块1801可以为接收器,上述发送模块1803可以为发送器,接收器和发送器可以集成在一起构成收发器。构建模块1802和绑定模块1804可以以硬件形式内嵌于或独立于接入路由器18的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图19所示,为本发明实施例提供的一种CN19的结构示意图。图19所示的CN19可以是上文中提供的CN。该CN19可以包括:存储器1900、处理器1901、通信接口1902以及总线1903;其中,存储器1900、处理器1901、通信接口1902通过总线1903相互连接。存储器1900用于存储计算机执行指令,当CN19运行时,处理器1901执行存储器1900存储的计算机执行指令,以使CN19执行上文提供的任意一种切换方法。具体的切换方法可参考上文及附图中的相关描述,此处不再赘述。
本发明实施例还提供了一种存储介质,该存储介质可以包括存储器。其中,该存储介质可以应用于图13中所示的MN13中,该情况下,该存储器可以是图13中的存储器1300。或者,可以应用于图15中所示的接入路由器15中,该情况下,该存储器可以是图15中的存储器1500。或者,可以应用于图17中所示的接入路由器17中,该情况下,该存储器可以是图17中的存储器1700。或者,可以应用于图19中所示的CN19中,该情况下,该存储器可以是图19的存储器1900。
本发明实施例提供的存储器(包括存储器1300、存储器1500、存储器1700和存储器1900)可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器902还可以包括上 述种类的存储器的组合。
本发明实施例提供的处理器可以是一个处理器,也可以是多个处理元件的统称。该处理器可以是图13中的处理器1301。处理器可以是图15中的处理器1501。处理器可以是图17中的处理器1701。处理器可以是图19的处理器1901。例如,处理器可以是中央处理器(英文:central processing unit,缩写:CPU),通用处理器,数字信号处理器(英文:digital signal processor,缩写:DSP),专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),现场可编程门阵列(英文:field programmable gate array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有MN12、MN13、接入路由器14、接入路由器15、接入路由器16、接入路由器17、CN18或CN19中其他专用处理功能的芯片。
本发明实施例提供的通信接口具体可以是装置上的收发器。该收发器可以为无线收发器。该通信接口可以是图13中的通信接口1302。通信接口可以是图15中的通信接口1502。通信接口可以是图17中的通信接口1702。通信接口可以是图19的通信接口1902。例如,无线收发器可以是装置的天线等。通信接口通过通信接口与其他设备,例如与基站之间进行数据的收发。
本发明实施例提供的总线可以包括数据总线、电源总线、控制总线和信号状态总线等。该总线可以是图13中的总线1303。总线可以是图15中的总线1503。总线可以是图17中的总线1703。总线可以是图19的总线1903。本实施例中为了清楚说明,在图13、图15、图17和图19中将各种总线都示意为系统总线。为便于表示,图13、图15、图17和图19中的总线仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在具体实现过程中,上文中提供的任意一种切换方法流程中的各步骤均可以通过硬件形式的处理器执行存储器中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种切换方法,其特征在于,所述方法包括:
    移动节点MN经旧接入路由器PAR向新接入路由器NAR发送第一指示信息;其中,所述第一指示信息用于指示所述NAR构建转交测试初始化消息,并向通信对端节点CN发送所述转交测试初始化消息;所述转交测试初始化消息包括所述MN的新转交地址NCoA,用于根据所述NCoA向所述CN请求转交密钥生成令牌;
    所述MN从所述PAR切换至所述NAR;
    所述MN接收所述NAR发送的来自所述CN的所述转交密钥生成令牌;
    所述MN根据所述转交密钥生成令牌与所述CN绑定。
  2. 根据权利要求1所述的方法,其特征在于,所述MN经PAR向NAR发送第一指示信息,包括:
    所述MN向所述PAR发送快速绑定更新FBU消息;所述FBU消息中包括所述第一指示信息,所述FBU消息用于指示所述PAR向所述NAR发送切换初始化HI消息,所述HI消息中包括所述第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述MN从所述PAR切换至所述NAR之前,所述方法还包括:所述MN获取家乡地址HoA认证参数;
    所述MN根据所述转交密钥生成令牌与所述CN绑定,包括:
    所述MN根据所述转交密钥生成令牌和所述HoA认证参数,与所述CN绑定。
  4. 根据权利要求3所述的方法,其特征在于,所述MN获取HoA认证参数,包括:
    所述MN从本地获取HoA的加密生成地址CGA属性,所述HoA的加密生成地址CGA属性包括CGA参数和CGA签名;
    或者,所述MN从本地获取永久家乡密钥生成令牌;
    或者,所述MN经家乡代理向所述CN发送家乡测试初始化消息,并接收所述家乡代理发送的来自所述CN的家乡测试消息;其中,所述家乡测试消息包括家乡密钥生成令牌。
  5. 根据权利要求4所述的方法,其特征在于,所述MN从本地获取永久家乡密钥生成令牌,包括:
    所述MN从本地存储的绑定更新列表中获取永久家乡密钥生成令牌;其中,所述绑定更新列表中包括所述MN与所述CN绑定的信息。
  6. 一种切换方法,其特征在于,所述方法包括:
    旧接入路由器PAR接收移动节点MN发送的第一指示信息;其中,所述第一指示信息用于指示新接入路由器NAR构建转交测试初始化消息,并向通信对端节点CN发送所述转交测试初始化消息;所述转交测试初始化消息包括所述MN的新转交地址NCoA,用于指示所述CN根据所述NCoA构建转交密钥生成令牌;
    所述PAR向所述NAR发送所述第一指示信息;
    所述PAR断开与所述MN的连接;以便所述MN与所述NAR连接,并接收所述NAR发送的所述转交密钥生成令牌,进而根据所述转交密钥生成令牌与所述CN绑定。
  7. 根据权利要求6所述的方法,其特征在于,所述PAR接收所述MN发送的第 一指示信息,包括:
    所述PAR接收所述MN发送的快速绑定更新FBU消息;所述FBU消息中包括所述第一指示信息;
    所述PAR向所述NAR发送所述第一指示信息,包括:
    所述PAR根据所述FBU消息,向所述NAR发送切换初始化HI消息;所述HI消息中包括所述第一指示信息。
  8. 一种切换方法,其特征在于,所述方法包括:
    新接入路由器NAR接收旧接入路由器PAR发送的第一指示信息;
    所述NAR根据所述第一指示信息,向通信对端节点CN发送转交测试初始化消息;其中,所述转交测试初始化消息包括移动节点MN的新转交地址NCoA,用于指示所述CN根据所述NCoA构建转交密钥生成令牌;
    所述NAR接收所述CN发送的所述转交密钥生成令牌;
    所述NAR与所述MN连接;
    所述NAR将所述转交密钥生成令牌发送给所述MN,以便所述MN根据所述转交密钥生成令牌与所述CN绑定。
  9. 根据权利要求8所述的方法,其特征在于,所述NAR接收所述PAR发送的第一指示信息,包括:
    所述NAR接收所述PAR发送的切换初始化HI消息,所述HI消息中包括所述第一指示信息。
  10. 一种切换方法,其特征在于,所述方法包括:
    通信对端节点CN接收新接入路由器NAR发送的转交测试初始化消息;其中,所述转交测试初始化消息包括移动节点MN的新转交地址NCoA;
    所述CN根据所述MN的所述NCoA,构建转交密钥生成令牌;
    所述CN向所述NAR发送所述转交密钥生成令牌;以便所述MN与所述NAR连接之后,所述NAR将所述转交密钥生成令牌发送给所述MN;
    所述CN根据所述MN发送的所述转交密钥生成令牌与所述MN绑定。
  11. 根据权利要求10所述的方法,其特征在于,所述CN根据所述MN发送的所述转交密钥生成令牌与所述MN绑定,包括:
    所述CN接收所述MN发送的绑定更新消息;所述绑定更新消息包括所述转交密钥生成令牌和家乡地址HoA认证参数;其中,所述HoA认证参数包括加密生成地址CGA参数和所述CGA签名,或所述HoA认证参数包括永久家乡密钥生成令牌,或所述HoA认证参数包括家乡密钥生成令牌;
    所述CN根据所述绑定更新消息,向所述MN发送绑定确认消息。
  12. 一种移动节点MN,其特征在于,所述MN包括:
    发送模块,用于经旧接入路由器PAR向新接入路由器NAR发送第一指示信息;其中,所述第一指示信息用于指示所述NAR构建转交测试初始化消息,并向通信对端节点CN发送所述转交测试初始化消息;所述转交测试初始化消息包括新转交地址NCoA,用于指示所述CN根据所述NCoA构建转交密钥生成令牌;
    连接模块,用于从与所述PAR连接切换至与所述NAR连接;
    接收模块,用于接收所述NAR发送的来自所述CN的所述转交密钥生成令牌;
    绑定模块,用于根据所述转交密钥生成令牌与所述CN绑定。
  13. 根据权利要求12所述的MN,其特征在于,
    所述发送模块具体用于,向所述PAR发送快速绑定更新FBU消息;所述FBU消息中包括所述第一指示信息,所述FBU消息用于指示所述PAR向所述NAR发送切换初始化HI消息,所述HI消息中包括所述第一指示信息。
  14. 根据权利要求12或13所述的MN,其特征在于,所述MN还包括:
    获取模块,用于获取家乡地址HoA认证参数;
    所述绑定模块具体用于,根据所述转交密钥生成令牌和所述HoA认证参数,与所述CN绑定。
  15. 根据权利要求14所述的MN,其特征在于,所述获取模块具体用于:
    从本地获取HoA的加密生成地址CGA属性,所述HoA的加密生成地址CGA属性包括CGA参数和CGA签名;
    或者,从本地获取永久家乡密钥生成令牌;
    或者,经家乡代理向所述CN发送家乡测试初始化消息,并接收所述家乡代理发送的来自所述CN的家乡测试消息;其中,所述家乡测试消息包括家乡密钥生成令牌。
  16. 根据权利要求15所述的MN,其特征在于,
    所述获取模块具体用于,从本地存储的绑定更新列表中获取永久家乡密钥生成令牌;其中,所述绑定更新列表中包括与所述CN绑定的信息。
  17. 一种移动节点MN,其特征在于,所述MN包括处理器、存储器、通信接口和总线,所述处理器、所述存储器和所述通信接口之间通过所述总线连接并完成相互间的通信,所述存储器中用于存储计算机执行指令,所述MN运行时,所述处理器执行所述存储器中的计算机执行指令以利用所述MN中的硬件资源执行权利要求1至5中任一所述方法的切换方法。
  18. 一种接入路由器,其特征在于,所述接入路由器包括:
    接收模块,用于接收移动节点MN发送的第一指示信息;其中,所述第一指示信息用于指示新接入路由器NAR构建转交测试初始化消息,并向通信对端节点CN发送所述转交测试初始化消息;所述转交测试初始化消息包括所述MN的新转交地址NCoA,用于指示所述CN根据所述NCoA构建转交密钥生成令牌;
    发送模块,用于向所述NAR发送所述第一指示信息;
    连接模块,用于断开与所述MN的连接;以便所述MN与所述NAR连接,并接收所述NAR发送的所述转交密钥生成令牌,进而根据所述转交密钥生成令牌与所述CN绑定。
  19. 根据权利要求18所述的接入路由器,其特征在于,
    所述接收模块具体用于,接收所述MN发送的快速绑定更新FBU消息;所述FBU消息中包括所述第一指示信息;
    所述发送模块具体用于,根据所述FBU消息,向所述NAR发送切换初始化HI消息;所述HI消息中包括所述第一指示信息。
  20. 一种接入路由器,其特征在于,所述接入路由器包括处理器、存储器、通信 接口和总线,所述处理器、所述存储器和所述通信接口之间通过所述总线连接并完成相互间的通信,所述存储器中用于存储计算机执行指令,所述接入路由器运行时,所述处理器执行所述存储器中的计算机执行指令以利用所述接入路由器中的硬件资源执行权利要求6至7中任一所述方法的切换方法。
  21. 一种接入路由器,其特征在于,所述接入路由器包括:
    接收模块,用于接收旧接入路由器PAR发送的第一指示信息;
    发送模块,用于根据所述第一指示信息,向通信对端节点CN发送转交测试初始化消息;其中,所述转交测试初始化消息包括移动节点MN的新转交地址NCoA,用于指示所述CN根据所述NCoA构建转交密钥生成令牌;
    所述接收模块还用于,接收所述CN发送的所述转交密钥生成令牌;
    连接模块,用于与所述MN连接;
    所述发送模块还用于,将所述转交密钥生成令牌发送给所述MN,以便所述MN根据所述转交密钥生成令牌与所述CN绑定。
  22. 根据权利要求21所述的接入路由器,其特征在于,
    所述接收模块具体用于,接收所述PAR发送的切换初始化HI消息,所述HI消息中包括所述第一指示信息。
  23. 一种接入路由器,其特征在于,所述接入路由器包括处理器、存储器、通信接口和总线,所述处理器、所述存储器和所述通信接口之间通过所述总线连接并完成相互间的通信,所述存储器中用于存储计算机执行指令,所述接入路由器运行时,所述处理器执行所述存储器中的计算机执行指令以利用所述接入路由器中的硬件资源执行权利要求8至9中任一所述方法的切换方法。
  24. 一种通信对端节点CN,其特征在于,所述CN包括:
    接收模块,用于接收新接入路由器NAR发送的转交测试初始化消息;其中,所述转交测试初始化消息包括移动节点MN的新转交地址NCoA;
    构建模块,用于根据所述MN的所述NCoA,构建转交密钥生成令牌;
    发送模块,用于向所述NAR发送所述转交密钥生成令牌;以便所述MN与所述NAR连接之后,所述NAR将所述转交密钥生成令牌发送给所述MN;
    绑定模块,用于根据所述MN发送的所述转交密钥生成令牌与所述MN绑定。
  25. 根据权利要求24所述的CN,其特征在于,
    所述绑定模块具体用于,接收所述MN发送的绑定更新消息;所述绑定更新消息包括所述转交密钥生成令牌和家乡地址HoA认证参数;其中,所述HoA认证参数包括加密生成地址CGA参数和所述CGA签名,或所述HoA认证参数包括永久家乡密钥生成令牌,或所述HoA认证参数包括家乡密钥生成令牌;根据所述绑定更新消息,向所述MN发送绑定确认消息。
  26. 一种通信对端节点CN,其特征在于,所述CN包括处理器、存储器、通信接口和总线,所述处理器、所述存储器和所述通信接口之间通过所述总线连接并完成相互间的通信,所述存储器中用于存储计算机执行指令,所述CN运行时,所述处理器执行所述存储器中的计算机执行指令以利用所述CN中的硬件资源执行权利要求10至11中任一所述方法的切换方法。
PCT/CN2017/119125 2017-01-25 2017-12-27 一种切换方法和装置 WO2018137462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17894240.5A EP3544327B1 (en) 2017-01-25 2017-12-27 Switching method and device
US16/442,968 US11044652B2 (en) 2017-01-25 2019-06-17 Handover method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061365.9A CN108347723B (zh) 2017-01-25 2017-01-25 一种切换方法和装置
CN201710061365.9 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/442,968 Continuation US11044652B2 (en) 2017-01-25 2019-06-17 Handover method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137462A1 true WO2018137462A1 (zh) 2018-08-02

Family

ID=62962460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119125 WO2018137462A1 (zh) 2017-01-25 2017-12-27 一种切换方法和装置

Country Status (4)

Country Link
US (1) US11044652B2 (zh)
EP (1) EP3544327B1 (zh)
CN (1) CN108347723B (zh)
WO (1) WO2018137462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111107598B (zh) * 2019-12-28 2022-04-29 深圳市新国都通信技术有限公司 一种通讯模组网络运营商自动切换的方法
CN113873008B (zh) * 2021-08-30 2024-03-19 浪潮电子信息产业股份有限公司 一种rdma网络节点的连接重配方法、装置、系统及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001261A (zh) * 2006-01-09 2007-07-18 华为技术有限公司 一种MIPv6移动节点的通信方法
CN101043727A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 一种演进网络中目标优选三层快速切换的实现方法
WO2008026977A1 (en) * 2006-08-30 2008-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for prefix management in moving networks

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE469522T1 (de) * 2000-10-18 2010-06-15 Ericsson Telefon Ab L M Nahtlose weiterreichung bei mobile ip
WO2003034683A1 (en) * 2001-10-11 2003-04-24 Nokia Corporation Method and system for managing data flow between mobile nodes, access routers and peer nodes
US7793098B2 (en) * 2003-05-20 2010-09-07 Nokia Corporation Providing privacy to nodes using mobile IPv6 with route optimization
US7746891B2 (en) * 2003-05-29 2010-06-29 Kddi Corporation Enabling mobile IPv6 communication over a network containing IPv4 components using ISATAP
US7228431B2 (en) * 2003-08-21 2007-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Aggregated binding updates and acknowledgments in Mobile IPv6
US7548525B2 (en) * 2003-10-18 2009-06-16 Samsung Electronics Co., Ltd System and method for providing handover of a mobile IP terminal in a wireless network
US20080253329A1 (en) * 2003-12-11 2008-10-16 Matsushita Electric Industrial Co., Ltd. Communication Handover Method, Communication System, Communication Message Processing Method, and Communication Message Processing Program
US7620979B2 (en) * 2003-12-22 2009-11-17 Nokia Corporation Supporting mobile internet protocol in a correspondent node firewall
US20050175002A1 (en) * 2004-02-09 2005-08-11 Nokia Corporation Alternative method to the return routability test to send binding updates to correspondent nodes behind firewalls
KR20060127185A (ko) * 2004-02-13 2006-12-11 마츠시타 덴끼 산교 가부시키가이샤 데이터 통신 네트워크에 있어서의 시그널링 관리
GB2413461B (en) * 2004-04-23 2006-05-10 Matsushita Electric Ind Co Ltd Crytographic optimisation for duplicate address detection
BRPI0511841A (pt) * 2004-06-11 2008-01-15 Matsushita Electric Ind Co Ltd métodos de transferência de passagem de comunicação em um sistema de comunicação e de processamento de mensagem de comunicação
KR100594819B1 (ko) * 2004-08-03 2006-07-03 한국전자통신연구원 핸드오버 방법
CN101006682B (zh) * 2004-08-20 2013-03-06 艾利森电话股份有限公司 快速网络附着
CN100512525C (zh) * 2004-11-29 2009-07-08 中兴通讯股份有限公司 一种用于HMIPv6的MAP域内快速切换的方法
KR100582731B1 (ko) * 2005-03-03 2006-05-22 삼성전자주식회사 모바일 IPv6 망에서 이동 호스트를 이용한 트래픽 교환방법
US7606201B2 (en) * 2005-04-25 2009-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Handover enabler
WO2006129136A1 (en) * 2005-06-03 2006-12-07 Telefonaktiebolaget Lm Ericsson (Publ) MOBILE IPv6 ROUTE OPTIMIZATION IN DIFFERENT ADDRESS SPACES
CN101204046B (zh) * 2005-06-21 2011-08-17 摩托罗拉移动公司 用于建立在发送器节点和接收器节点的代理之间的直接路由的方法、设备和系统
JP2007036641A (ja) * 2005-07-27 2007-02-08 Hitachi Communication Technologies Ltd ホームエージェント装置、及び通信システム
EP1826958A1 (en) * 2006-02-28 2007-08-29 Matsushita Electric Industrial Co., Ltd. Route optimization with location privacy support
JP2010507301A (ja) * 2006-10-20 2010-03-04 パナソニック株式会社 ネットワーク・ベース及びホスト・ベースの混合モビリティ管理における方法
KR101408874B1 (ko) * 2007-05-04 2014-06-17 재단법인서울대학교산학협력재단 무선통신시스템에서 이종망간 핸드오버 장치 및 방법
KR20090001009A (ko) * 2007-06-29 2009-01-08 충남대학교산학협력단 이동 IPv6망에서 이동 단말의 데이터 트래픽을 이용한핸드오버 지연시간 측정 방법
KR100989732B1 (ko) * 2008-08-14 2010-10-26 성균관대학교산학협력단 HMIPv6 네트워크 기반 핸드오버 제어 방법 및 이를 위한 액세스 라우터와 모바일 노드
US8953798B2 (en) * 2010-10-29 2015-02-10 Telefonaktiebolaget L M Ericsson (Publ) Enhanced cryptographically generated addresses for secure route optimization in mobile internet protocol
CN104135747B (zh) * 2014-07-04 2017-09-22 广州杰赛科技股份有限公司 移动IPv6节点切换方法及移动IPv6节点

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001261A (zh) * 2006-01-09 2007-07-18 华为技术有限公司 一种MIPv6移动节点的通信方法
CN101043727A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 一种演进网络中目标优选三层快速切换的实现方法
WO2008026977A1 (en) * 2006-08-30 2008-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for prefix management in moving networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3544327A4

Also Published As

Publication number Publication date
EP3544327A4 (en) 2019-12-11
EP3544327B1 (en) 2020-12-23
EP3544327A1 (en) 2019-09-25
CN108347723B (zh) 2021-01-29
US11044652B2 (en) 2021-06-22
US20190306771A1 (en) 2019-10-03
CN108347723A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US8279807B2 (en) Communication control method, network node, and mobile terminal
US8792453B2 (en) Secure tunnel establishment upon attachment or handover to an access network
JP5205468B2 (ja) ネットワーク・ベース・モビリティからホスト・ベース・モビリティへのハンドオーバ時におけるルート最適化の継続性
US8570976B2 (en) Method and system for fast handover in hierarchical mobile IPv6
US20100208706A1 (en) Network node and mobile terminal
KR20080008935A (ko) 이동 통신 시스템에서 ip 주소 선 설정 방법
US8442006B2 (en) Wireless LAN mobility
Giust et al. A network-based localized mobility solution for distributed mobility management
JP2009529265A (ja) 動的ルータ広告を使用する高速ハンドオーバのための方法及びシステム
JP4330034B2 (ja) 改良型マイクロ移動性管理
JP2010517454A (ja) パケット・ベースの通信ネットワークにおけるネットワーク・ベースおよびホスト・ベースのモビリティ管理
US8400980B2 (en) Fast handover system and method thereof
WO2008000133A1 (fr) Procédé, système et appareil de réalisation d'un transfert rapide
US8824353B2 (en) Mobility route optimization in a network having distributed local mobility anchors
WO2007131404A1 (fr) Méthode et dispositif de transfert rapide
US20090257401A1 (en) Communication system, mobile router and home agent
KR100915513B1 (ko) 프락시 모바일 IPv6에서 패킷 손실을 줄이기 위한 패킷버퍼링 장치 및 방법
US11044652B2 (en) Handover method and apparatus
KR100934086B1 (ko) 무선접속 시스템의 핸드오버 방법 및 이를 지원하는 게이트웨이
KR101084138B1 (ko) Map 도메인 간 핸드오버 수행 방법
JP4560432B2 (ja) モバイルノードの認証方法
Zhang et al. Seamless mobility management schemes for IPv6-based wireless networks
Zhang et al. Performance analysis of seamless handover in mobile IPv6-based cellular networks
JP2006024982A (ja) セキュリティ・アソシエーションの確立方法
Indumathi et al. An Extension of Proxy Mobile IPv6 for Reducing Handover Latency and Packet Loss using Transient Binding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017894240

Country of ref document: EP

Effective date: 20190617

NENP Non-entry into the national phase

Ref country code: DE