WO2018137315A1 - 一种可调容性交叉耦合结构及腔体滤波器 - Google Patents

一种可调容性交叉耦合结构及腔体滤波器 Download PDF

Info

Publication number
WO2018137315A1
WO2018137315A1 PCT/CN2017/091076 CN2017091076W WO2018137315A1 WO 2018137315 A1 WO2018137315 A1 WO 2018137315A1 CN 2017091076 W CN2017091076 W CN 2017091076W WO 2018137315 A1 WO2018137315 A1 WO 2018137315A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
insulating medium
cross
medium card
cavity
Prior art date
Application number
PCT/CN2017/091076
Other languages
English (en)
French (fr)
Inventor
李世超
耿建武
陈瑞斌
Original Assignee
深圳市国人射频通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710061430.8A external-priority patent/CN106602192A/zh
Priority claimed from CN201720101895.7U external-priority patent/CN206506003U/zh
Application filed by 深圳市国人射频通信有限公司 filed Critical 深圳市国人射频通信有限公司
Publication of WO2018137315A1 publication Critical patent/WO2018137315A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present invention relates to the field of radio frequency communication technologies, and in particular, to a tunable capacitive cross-coupling structure and a cavity filter.
  • cavity filters With the development of microwave technology, cavity filters, with their low insertion loss, can meet the characteristics of high-power transmission requirements, and have been widely used in communication systems.
  • adding cross-coupling to generate transmission zeros can make the filter obtain steeper attenuation characteristics, making the overall index of the filter more ideal, and facilitating the miniaturization of the filter. Lightweight.
  • capacitive cross-coupling is difficult to match the actual demand value due to factors such as machining accuracy and assembly error. Since capacitive cross-coupling is a fixed structure, there is no adjustable space, and the re-snagging cover is required to replace and repair the capacitive cross-coupling. This method is labor intensive, has a need to even remove the cover several times in a row, and may adversely affect the filter's index and performance stability, and has poor operability.
  • a tunable capacitive cross-coupling structure comprising: a tunable capacitive cross-coupling component, the tunable capacitive cross-coupling component a groove that can be mounted to the barrier layer between two adjacent coupling cavities;
  • the tunable capacitive cross-coupling assembly includes an insulating medium card and a cross-coupling rod and an insulation adjusting screw mounted on the insulating medium card; the insulating medium card is slidably mounted in the groove, and Slidable along a side wall of the groove; [0007] the cross-coupling rod is dumbbell-shaped, passes through the insulating medium card and its two ends respectively protrude from the insulating medium card for coupling the two adjacent coupling cavities;
  • the insulation adjusting screw is coupled to the insulating medium card for controlling the insulating medium card to slide along a sidewall of the groove.
  • the bottom of the insulating medium card is provided with a first mounting position having a depth, and the cross-coupling rod is detachably mounted in the first mounting position.
  • the shaft of the cross-coupling rod is provided with two limiting bosses, and the limiting bosses are respectively clamped from two outer sides of the insulating medium card, thereby defining The position of the cross-coupling rod.
  • the bottom portion of the insulation adjusting screw is provided with a connecting portion
  • the top end of the insulating medium card is provided with a second mounting position in an inverted "T" shape, and the connecting portion is embedded and stuck. Connected to the second mounting location.
  • the adjustable capacitive cross-coupling assembly further includes a metal insert having a threaded inner hole for fixing to the partition wall layer; the insulating adjusting screw passes through the metal insert and Threaded fit.
  • the metal insert is oblong and the long ends are arc-shaped.
  • the arcuate end of the metal insert has a knurled structure to fit into the recess and to have an interference fit with the inner wall of the recess.
  • the present invention further provides a cavity filter including a cavity, a cover plate mounted at the mouth end of the cavity, the cavity having two adjacent coupling cavities, two Adjacent coupling cavity has a barrier wall layer
  • a resonant column is respectively mounted in the adjacent coupling cavity, the resonant column is a cylindrical column with a bottom; a tuning screw penetrates the cavity from the outside of the cover plate And extending from the mouth end of the resonant column into the interior of the resonant column.
  • the insulation adjusting screw extends from the inside of the cavity through the cover plate and is locked on the cover plate by an insulating medium nut;
  • the insulation adjusting screw can adjust the amount of penetration into the cavity to adjust the positional relationship between the cross-coupling rod and the resonant column.
  • the invention has the advantages of compact structure design, simple assembly, adjustable capacitive cross-coupling performance of the product in the case of the disassembly-free cover plate, and strong operability.
  • FIG. 1 is a schematic structural view of a cavity filter ⁇ cover plate with a tunable capacitive cross-coupling structure.
  • FIG. 2 is a cross-sectional view of the cavity filter of FIG. 1 along two resonant columns;
  • FIG. 3 is a side cross-sectional view of the cavity filter of FIG. 1 along a partition wall layer; [0021] FIG.
  • FIG. 4 is a schematic structural view of the metal insert provided in FIG. 1;
  • FIG. 5 is a schematic structural view of the insulating medium card provided in FIG. 1;
  • FIGS. 1 through 5 The markings of FIGS. 1 through 5: a variable-capacity cross-coupling assembly 10, coupling cavities 20a and 20b, a resonant column 25, a tuning screw 27, a tuning nut 29, a barrier wall layer 30, a recess 35, an insulating medium card 40 , the groove 42 , the mounting hole 4 41 , the passage 443 , the first mounting position 44 , the second mounting position 46 , the cross coupling rod 50 , the limiting boss 52 , the insulation adjusting screw 60 , the connecting portion 66 , the metal insert 70 , The through hole 75, the cavity 80, the cover plate 82, the insulating medium nut 85, and the insulating spacer 87.
  • a cavity filter with a tunable capacitive cross-coupling structure according to an embodiment of the present invention, which mainly includes: a cavity 80, a cover plate 82 mounted at a mouth end of the cavity 80, and being disposed in the cavity Two adjacent coupling cavities 20a and 20b inside the body, two resonating columns 25 disposed in the coupling cavities 20a and 20b, and an adjustable-capacity cross-coupling assembly 10 mounted to the cavities 80, respectively.
  • the resonant column 25 is a cylindrical column having a bottom.
  • the resonant screw 27 penetrates the cover plate 82 through the tuning nut 29 and is mounted to the cover plate 82.
  • the position of each of the resonant screws 27 is aligned with the corresponding resonant column 25 in the coupling cavity.
  • the depth of the resonant screw 27 from the crotch end of the resonant column 25 to the inside can be controlled by thread adjustment.
  • the adjacent coupling cavities 20a, 20b are separated from each other by the partition wall layer 30. From the top of the barrier layer 30 Initially, a groove 35 is cut in the wall body. The primary purpose of the recess 35 is to mount the adjustable-capacity cross-coupling assembly 10.
  • the adjustable cross-coupling assembly 10 includes an insulating media card 40, a cross-coupling bar 50 coupled to the insulative media card 40, and an insulating adjustment screw 60 coupled to the insulative media card 40.
  • the insulating medium card 40 is mounted to the recess 35, and the two sides of the insulating medium card 40 that are connected to the side walls of the recess 35 are provided with grooves 42 that match the side walls of the recess 35.
  • the side wall of the recess 35 serves as a guide rail for guiding the insulating medium card 40 to be engaged with the recess 35.
  • the insulating medium card 40 can be slid and adjusted in the direction of the side wall of the recess 35.
  • the two corners of the bottom of the insulating medium card 40 are chamfered to facilitate quick installation of the insulating medium card to the recess 35.
  • the insulating medium card 40 has a first mounting location 44 for mounting the cross-coupling bar 50 and a second mounting location 46 for mounting the insulation adjustment. Screw 60.
  • FIG. 5 is an insulating medium card 40 provided by the present invention.
  • the insulating medium card is made of an elastic material.
  • the first mounting location 44 is vertically upwardly disposed from the bottom of the insulating media card 40.
  • the first mounting location 44 includes a circular mounting aperture 441 and an aisle 443 that communicates with the mounting aperture.
  • the diameter of the mounting hole 441 matches the diameter of the cross-coupling rod 50 to be equal to or close to the outer diameter of the cross-coupling rod 50.
  • the width of the aisle 443 is smaller than the diameter of the mounting hole 44 1 to prevent the cross-coupling rod 50 from slipping, and is also smaller than the outer diameter of the cross-coupling rod 50 after assembly to prevent the cross-coupling rod 50 from slipping; the width of the aisle 443 may be less than or equal to that before assembly. Or slightly larger than the diameter of the cross-coupling rod 50.
  • the aisle 443 originally expanded by the weir is retracted back to its original state, preferably further pressed by the side walls of the recess 35 to further contract, preventing the cross-coupling rod 50 is detached from the mounting hole 441.
  • the cross-coupling rod 50 in this embodiment has a round flat metal conductor connected at both ends, and the whole body is a dumbbell-shaped structure.
  • the rod coupling 52 of the cross-coupling rod 50 is provided with two limiting bosses 52. After the cross-coupling rod 50 is mounted to the mounting hole 441, the two limiting bosses 52 are clamped on both sides of the insulating medium card 40 to further define the positional relationship of the cross-coupling rod 50 and the insulating medium card 40.
  • the second mounting position 46 is disposed on the top of the insulating medium card 40, and is generally in the shape of an inverted "T".
  • the insulation adjusting screw 60 in this embodiment is a column of an insulating material, and The bottom jaw is provided with a convex connecting portion 66 which is just snapped into the second mounting position 46 which is inverted "T" shaped.
  • the insulating adjusting screw 60 is loaded from the side of the insulating medium card 40 to the second mounting position 46, and the entire insulating medium card 40 is loaded into the recess 35.
  • the insulating medium card 40 has a tilt angle of not more than 5 degrees with the side of the recess 35 (see FIG. 5).
  • the tilt angle ⁇ is equal to 1 degree, but the tilt angle may be set to 0.5 to 4.5 degrees, or 0.5 to 2 degrees, according to actual needs. Since the insulating medium card 40 is not vertically mounted, the insulating medium card 40 generates a pressure on the insulating adjusting screw 60 installed inside thereof, and the insulating medium 40 and the insulating medium adjusting screw 60 are in contact with each other to generate vertical pressure and self-locking. It is advantageous for the stability and reliability of the overall structure, so as to ensure that the second mounting position 46 is in good contact with the insulation adjusting screw 60, and the insulation adjusting screw 60 is prevented from falling off from the second mounting position 46.
  • the position of the cross-coupling rod 50 can be controlled by adjusting the position of the insulation adjusting screw 60.
  • the insulating adjusting screw 60 is further provided with a metal insert 70.
  • the metal insert 70 is fixed to the side wall of the recess 35 and is threadedly coupled to the insulating adjustment screw 60.
  • the metal insert 70 is a flat elongated metal conductor having a circular arc shape at both ends, and a threaded through hole 75 is formed in the center thereof for the insulation adjusting screw 60 to pass through and be threaded.
  • the end portion of the circular arc is provided with a knurling structure.
  • the groove 35 is in the shape of a top and a narrow "T" shape, the mouth end is wider to mount the metal insert 70, and the inner end is narrower to mount the insulating medium card 40.
  • the two opposite inner side walls of the wider portion of the recess 35 are arcuate in shape to match the shape of the metal insert 70.
  • the two opposite side walls of the narrower portion of the recess 35 are substantially planar to form two lengths of flat vertical rails that cooperate with the recesses 42 of the dielectric card 40.
  • the top end of the insulation adjusting screw 60 penetrates the cover plate 82 from the inside of the cavity 80, and is mounted on the cover plate 82 through the insulating medium nut 85 and the insulating spacer 87.
  • the insulating adjustment screw 60 which is exposed on the outside of the cover plate 82, can adjust and control the depth of the insulation adjusting screw 60 to the cavity 80 by screwing.
  • the insulating medium card 40 to which the insulating adjusting screw 60 is attached is driven by the insulating adjusting screw 60 to slide in the vertical direction along the guide rail on the side wall of the recess 35.
  • the cross-coupling rod 50 mounted on the insulating medium card 40 moves in the same direction with the insulating adjustment screw 60.
  • Cross-coupling rod 50 and two adjacent coupling cavities The positional relationship of the resonant column 25 changes, resulting in a change in the coupling amount of the cavity filter.
  • the cross-coupling rod needs to be adjusted upward to achieve a higher coupling amount, so that the transmission zero reaches the required value;
  • the low-frequency suppression zone The transmission zero formed by the capacitive cross-coupling is stronger than the expected value of the design. Therefore, the cross-coupling rod can be adjusted downward to achieve the desired value.
  • the adjustable capacitive cross-coupling structure provided by the invention has the advantages of simple assembly process, high reliability, easy operation, and capacitive cross-coupling of the cavity in the case of the disassembly-free cover. The advantages of adjustment.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种可调容性交叉耦合结构,其特征在于,包括可调容性交叉耦合组件(10),所述可调容性交叉耦合组件可安装于两个相邻耦合腔(20a、20b)之间的隔离壁层(30)的凹槽(35);所述可调容性交叉耦合组件包括绝缘介质卡(40)以及安装在所述绝缘介质卡上的交叉耦合杆(50)和绝缘调节螺杆(60);所述绝缘介质卡可滑动地安装在所述凹槽,且可沿所述凹槽的侧壁滑动;所述交叉耦合杆呈哑铃状,穿过所述绝缘介质卡且其两端分别伸出所述绝缘介质卡分别用于耦合所述两个相邻耦合腔;所述绝缘调节螺杆连接到所述绝缘介质卡用于控制所述绝缘介质卡沿所述凹槽的侧壁滑动。本发明具有结构设计紧凑、装配简便、可操作性强的特点。

Description

一种可调容性交叉耦合结构及腔体滤波器
技术领域
[0001] 本发明涉及射频通信技术领域, 尤其涉及一种可调容性交叉耦合结构及腔体滤 波器。
背景技术
[0002] 随着微波技术的发展, 腔体滤波器以其低的插入损耗, 可满足大功率的传输要 求的特性, 在通信系统中得到了广泛的应用。 在腔体滤波器的设计过程中, 加 入交叉耦合产生传输零点, 可以使滤波器获得更为陡峭的衰减特性, 使滤波器 的整体指标更为理想, 同吋有利于实现滤波器的小型化、 轻量化。
[0003] 但是在传统的实际操作过程中, 由于机械加工精度、 装配误差等因素的影响, 容性交叉耦合很难做到与实际需求值正好匹配。 由于容性交叉耦合是固定的结 构, 没有可调节空间, 需要重新打幵盖板对容性交叉耦合进行更换维修。 这种 方法耗吋耗力, 有吋甚至需要连续拆卸几次盖板, 还可能对滤波器的指标和性 能稳定性产生不利的影响, 可操作性极差。
[0004] 因此, 亟需一种装配简单方便、 不需拆卸盖板实现容性交叉耦合可调、 结构可 靠性更高、 有利于批量生产的腔体滤波器来克服上述传统滤波器及上述专利的 缺陷。
技术问题
问题的解决方案
技术解决方案
[0005] 为了克服上述现有技术的缺点, 本发明在一方面提供一种可调容性交叉耦合结 构, 其特征在于, 包括可调容性交叉耦合组件, 所述可调容性交叉耦合组件可 安装于两个相邻耦合腔之间的隔离壁层的凹槽;
[0006] 所述可调容性交叉耦合组件包括绝缘介质卡以及安装在所述绝缘介质卡上的交 叉耦合杆和绝缘调节螺杆; 所述绝缘介质卡可滑动地安装在所述凹槽, 且可沿 所述凹槽的侧壁滑动; [0007] 所述交叉耦合杆呈哑铃状, 穿过所述绝缘介质卡且其两端分别伸出所述绝缘介 质卡分别用于耦合所述两个相邻耦合腔;
[0008] 所述绝缘调节螺杆连接到所述绝缘介质卡用于控制所述绝缘介质卡沿所述凹槽 的侧壁滑动。
[0009] 作为一种优选方案, 所述绝缘介质卡的底部幵设具有深度的第一安装位, 所述 交叉耦合杆可拆卸地装置在所述第一安装位内。
[0010] 作为一种优选方案, 所述交叉耦合杆的杆身设有两个限位凸台, 所述限位凸台 分别从所述绝缘介质卡的两个外侧面夹持, 从而限定所述交叉耦合杆的位置。
[0011] 作为一种优选方案, 所述绝缘调节螺杆的底部幵设有连接部, 所述绝缘介质卡 的顶端设有呈倒" T"字形的第二安装位, 所述连接部嵌入并卡接于所述第二安装 位。
[0012] 作为一种优选方案, 所述可调容性交叉耦合组件还包括用于固定到隔离壁层的 具有螺纹内孔的金属镶块; 所述绝缘调节螺杆穿过所述金属镶块并螺纹配合。
[0013] 作为一种优选方案, 所述金属镶块为扁长状, 两长端为圆弧形。
[0014] 作为一种优选方案, 所述金属镶块的圆弧形端部带有滚花结构, 以嵌合到所述 凹槽内并与所述凹槽的内壁过盈配合。
[0015] 本发明在另一方面还提供了一种腔体滤波器, 包括腔体、 装在所述腔体幵口端 的盖板, 所述腔体内具有两个相邻的耦合腔, 两个相邻的耦合腔具有隔离壁层
, 作为一种优选方案, 具有上面所述的可调容性交叉耦合结构。
[0016] 作为一种优选方案, 所述相邻耦合腔中分别安装有一根谐振柱, 所述谐振柱为 带有底部的筒状柱体; 调谐螺杆从所述盖板外部穿入所述腔体, 并从所述谐振 柱的幵口端伸入到谐振柱内部。
[0017] 作为一种优选方案, 所述绝缘调节螺杆从所述腔体内部延伸穿透所述盖板, 并 利用绝缘介质螺母锁紧在所述盖板上; 通过所述绝缘介质螺母, 所述绝缘调节 螺杆可调节伸入到所述腔体中进入量, 从而对所述交叉耦合杆与所述谐振柱之 间的位置关系进行调整。
发明的有益效果
有益效果 [0018] 本发明具有结构设计紧凑、 装配简便, 可在免拆卸盖板情况下对产品的容性交 叉耦合性能进行调节, 可操作性强的特性。
对附图的简要说明
附图说明
[0019] 图 1为一种具有可调容性交叉耦合结构的腔体滤波器掀幵盖板后的结构示意图
[0020] 图 2为图 1所提供的腔体滤波器的沿两根谐振柱的剖视图;
[0021] 图 3为图 1所提供的腔体滤波器的沿隔离壁层的侧视剖视图;
[0022] 图 4为图 1所提供的金属镶块的结构示意图;
[0023] 图 5为图 1提供的绝缘介质卡的结构示意图;
[0024] 图 1至图 5的标记: 可调容交叉耦合组件 10、 耦合腔 20a和 20b、 谐振柱 25、 调谐 螺杆 27、 调谐螺母 29、 隔离壁层 30、 凹槽 35、 绝缘介质卡 40、 凹槽 42、 安装孔 4 41、 过道 443、 第一安装位 44、 第二安装位 46、 交叉耦合杆 50、 限位凸台 52、 绝 缘调节螺杆 60、 连接部 66、 金属镶块 70、 通孔 75、 腔体 80、 盖板 82、 绝缘介质 螺母 85、 绝缘垫片 87。
本发明的实施方式
[0025] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0026] 图 1为本实施例所提供的一种具有可调容性交叉耦合结构的腔体滤波器, 主要 包括: 腔体 80、 装在腔体 80幵口端的盖板 82、 设置于腔体内部的两个相邻耦合 腔 20a和 20b、 分别设置在耦合腔 20a和 20b的两根谐振柱 25, 以及安装到腔体 80的 可调容交叉耦合组件 10。
[0027] 谐振柱 25为具有底部的筒状柱体。 谐振螺杆 27通过调谐螺母 29穿透盖板 82且安 装到盖板 82上, 每根谐振螺杆 27的位置正对准于耦合腔中的对应的谐振柱 25。 通过螺纹调节可控制谐振螺杆 27从谐振柱 25的幵口端进入到内部的深度。
[0028] 相邻耦合腔 20a、 20b之间通过隔离壁层 30相互隔幵来。 从隔离壁层 30的顶部幵 始, 在其壁身切割出一个凹槽 35。 凹槽 35的主要目的是用于安装可调容交叉耦 合组件 10。 可调容交叉耦合组件 10包括: 绝缘介质卡 40、 连接到绝缘介质卡 40 的交叉耦合杆 50以及连接到绝缘介质卡 40的绝缘调节螺杆 60。 绝缘介质卡 40安 装到凹槽 35, 绝缘介质卡 40的与凹槽 35侧壁连接的两个侧面设有与凹槽 35侧壁 相匹配的凹槽 42。 如此, 凹槽 35的侧壁作为导轨, 引导绝缘介质卡 40与凹槽 35 卡接安装。 装配吋, 绝缘介质卡 40可在沿凹槽 35的侧壁方向进行滑动、 调节。
[0029] 优选地, 参考图 5, 绝缘介质卡 40底部的两个角经过倒角处理, 以便于将绝缘 介质卡快速装置到凹槽 35。
[0030] 参考图 1和图 5, 绝缘介质卡 40具有第一安装位 44和第二安装位 46, 第一安装位 44用于安装交叉耦合杆 50, 第二安装位 46用于安装绝缘调节螺杆 60。
[0031] 图 5为本发明所提供的绝缘介质卡 40。 所述绝缘介质卡为弹性材料制成。 第一 安装位 44从绝缘介质卡 40的底部竖直向上幵设, 第一安装位 44包括一个圆形的 安装孔 441、 以及连通该安装孔的过道 443。 安装孔 441的直径与交叉耦合杆 50的 直径相匹配, 可等于或接近交叉耦合杆 50的外径。 过道 443的宽度小于安装孔 44 1的直径以免交叉耦合杆 50滑落, 在装配后也同吋小于交叉耦合杆 50的外径以免 交叉耦合杆 50滑落; 过道 443的宽度在装配前可小于、 等于或略大于交叉耦合杆 50的直径。 当把交叉耦合杆 50沿过道 443滑动安装到第一安装位 44的安装孔 441 吋, 过道 443受到交叉耦合杆 50的挤压发生弹性形变, 从而允许交叉耦合杆 50沿 着过道进入安装孔 441。 交叉耦合杆 50顺着过道 443滑动到安装孔 441之后, 原本 被扩张幵的过道 443收缩回原来的状态, 优选地, 还被凹槽 35的两侧壁挤压从而 进一步收缩, 阻止交叉耦合杆 50从安装孔 441中脱离。
[0032] 参考图 1和图 2, 本实施例中的交叉耦合杆 50为两端连接有圆扁形金属导体, 整 体为一个哑铃状结构。 交叉耦合杆 50的杆身环周设有两个限位凸台 52。 交叉耦 合杆 50安装到安装孔 441后, 两个限位凸台 52夹持在绝缘介质卡 40的两侧, 进一 步限定交叉耦合杆 50与绝缘介质卡 40的位置关系。
[0033] 参考图 5, 第二安装位 46设置在绝缘介质卡 40的顶部, 整体为一个倒立的" T"字 形状。
[0034] 参考图 1和图 3, 本实施例中的绝缘调节螺杆 60为一截绝缘材质的柱体, 且在其 底部幵设有一个外凸的连接部 66, 该连接部 66恰好地卡接到呈倒" T"字状的第二 安装位 46。 绝缘调节螺杆 60从绝缘介质卡 40的侧面装入到第二安装位 46, 再把 整个绝缘介质卡 40装入到凹槽 35。
[0035] 优选地, 绝缘介质卡 40与凹槽 35的侧边具有不超过 5度的倾斜角 Θ (见图 5) 。
本实施例中, 倾斜角 Θ等于 1度, 但可以根据实际需要将倾斜角设置为 0.5至 4.5度 , 或者 0.5至 2度。 由于绝缘介质卡 40不是竖直安装, 所以绝缘介质卡 40对安装在 其内部的绝缘调节螺杆 60产生一个压力, 绝缘介质 40与绝缘介质调节螺杆 60接 触面产生竖向压力而自锁紧, 有利于整体结构的稳定可靠, 从而保证第二安装 位 46与绝缘调节螺杆 60接触良好, 避免绝缘调节螺杆 60从第二安装位 46中脱落 。 由上述结构可知道, 可通过调节绝缘调节螺杆 60的位置来控制交叉耦合杆 50 的位置。 为了方便调节绝缘调节螺杆 60, 参考图 1、 图 3和图 4, 绝缘调节螺杆 60 还套设有一个金属镶块 70。 金属镶块 70与凹槽 35的侧壁固定, 并与绝缘调节螺 杆 60螺纹连接。
[0036] 金属镶块 70为一个两端为圆弧形的扁长状金属导体, 并在其中央贯穿有螺纹通 孔 75, 供绝缘调节螺杆 60穿过并螺纹配合。 圆弧形的端部设有滚花结构, 将金 属镶块 70套设到绝缘调节螺杆 60后, 滚花结构与凹槽 35的弧面设计内侧壁实现 过盈配合, 金属镶块被卡接在凹槽 35内并同吋固定在绝缘介质卡 40的上方, 以 阻止绝缘介质卡 40从凹槽 35侧壁上的导轨脱离。
[0037] 在本实施例中, 凹槽 35为一个上宽下窄的" T"字形状, 幵口端较宽以安装金属 镶块 70, 内端较窄以安装绝缘介质卡 40。 另外, 凹槽 35较宽部分的两个相对内 侧壁为弧面设计, 与金属镶块 70的形状配合。 凹槽 35较窄部分的两个相对侧壁 面基本上为平面从而构成两段平竖向导轨, 与绝缘介质卡 40的凹槽 42配合。
[0038] 为了实现可调节的功能, 绝缘调节螺杆 60的顶端从腔体 80的内部穿透过盖板 82 , 并通过绝缘介质螺母 85和绝缘垫片 87安装在盖板 82上。 顶端露在盖板 82外面 的绝缘调节螺杆 60, 可通过螺纹调节和控制绝缘调节螺杆 60进入到腔体 80的深 度。 连接着绝缘调节螺杆 60的绝缘介质卡 40受到了绝缘调节螺杆 60的带动, 沿 凹槽 35侧壁上的导轨在竖直方向上滑动。 安装在绝缘介质卡 40上的交叉耦合杆 5 0随着绝缘调节螺杆 60进行同向运动。 交叉耦合杆 50与两个相邻间的耦合腔内的 谐振柱 25的位置关系发生变化, 从而导致腔体滤波器的耦合量发生变化。
[0039] 如果低频抑制区该容性交叉耦合形成的传输零点与预先设计值相比较弱, 只需 将交叉耦合杆向上调整, 即可达到较高的耦合量, 使得传输零点达到需求值; 如果低频抑制区该容性交叉耦合形成的传输零点与设计预期值相比较强, 此吋 只需将交叉耦合杆向下调整, 就可以达到预期值。
[0040] 综上所述, 本发明所提供的可调容性交叉耦合结构, 具有装配工艺简单、 可靠 性较高、 便于操作、 在免拆卸盖板情况下可对腔体容性交叉耦合进行调节的优 点。
[0041] 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出 若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范 围应以所附权利要求为准。

Claims

权利要求书
[权利要求 1] 一种可调容性交叉耦合结构, 其特征在于, 包括可调容性交叉耦合组 件 (10) , 所述可调容性交叉耦合组件可安装于两个相邻耦合腔 (20 a、 20b) 之间的隔离壁层 (30) 的凹槽 (35) ;
所述可调容性交叉耦合组件 (10) 包括绝缘介质卡 (40) 以及安装在 所述绝缘介质卡上的交叉耦合杆 (50) 和绝缘调节螺杆 (60) ; 所述 绝缘介质卡 (40) 可滑动地安装在所述凹槽 (35) , 且可沿所述凹槽
(35) 的侧壁滑动;
所述交叉耦合杆 (50) 呈哑铃状, 穿过所述绝缘介质卡 (40) 且其两 端分别伸出所述绝缘介质卡 (40) 分别用于耦合所述两个相邻耦合腔
(20a 20b) ;
所述绝缘调节螺杆 (60) 连接到所述绝缘介质卡 (40) 用于控制所述 绝缘介质卡 (40) 沿所述凹槽 (35) 的侧壁滑动。
[权利要求 2] 根据权利要求 1所述的可调容性交叉耦合结构, 其特征在于, 所述绝 缘介质卡 (40) 的底部幵设具有深度的第一安装位 (44) , 所述交叉 耦合杆 (50) 可拆卸地装置在所述第一安装位 (44) 内。
[权利要求 3] 根据权利要求 1所述的可调容性交叉耦合结构, 其特征在于, 所述交 叉耦合杆 (50) 的杆身设有两个限位凸台 (52) , 所述限位凸台分别 从所述绝缘介质卡的两个外侧面夹持, 从而限定所述交叉耦合杆的位
[权利要求 4] 根据权利要求 1所述的可调容性交叉耦合结构, 其特征在于, 所述绝 缘调节螺杆 (60) 的底部幵设有连接部 (66) , 所述绝缘介质卡 (40 ) 的顶端设有呈倒" T"字形的第二安装位 (46) , 所述连接部嵌入并 卡接于所述第二安装位。
[权利要求 5] 根据权利要求 1所述的可调容性交叉耦合结构, 其特征在于, 所述可 调容性交叉耦合组件还包括用于固定到隔离壁层 (30) 的具有螺纹内 孔的金属镶块 (70) ; 所述绝缘调节螺杆 (60) 穿过所述金属镶块 ( 70) 并螺纹配合。 [权利要求 6] 根据权利要求 5所述的可调容性交叉耦合结构, 其特征在于, 所述金 属镶块 (70) 为扁长状, 两长端为圆弧形。
[权利要求 7] 根据权利要求 6所述的可调容性交叉耦合结构, 其特征在于, 所述金 属镶块 (70) 的圆弧形端部带有滚花结构, 以嵌合到所述凹槽 (30) 内并与所述凹槽 (30) 的内壁过盈配合。
[权利要求 8] 一种腔体滤波器, 包括腔体 (80) 、 装在所述腔体幵口端的盖板 (82
) , 所述腔体 (80) 内具有两个相邻的耦合腔 (20a、 20b) , 两个相 的耦合腔 (20a、 20b) 具有隔离壁层 (30) , 其特征在于, 具有权 利要求 1~7所述的可调容性交叉耦合结构。
[权利要求 9] 根据权利要求 8所述的腔体滤波器, 其特征在于, 所述相邻耦合腔 (2
0a、 20b) 中分别安装有一根谐振柱 (25) , 所述谐振柱 (25) 为带 有底部的筒状柱体; 调谐螺杆 (27) 从所述盖板外部穿入所述腔体, 并从所述谐振柱 (25) 的幵口端伸入到谐振柱内部。
[权利要求 10] 根据权利要求 9所述的腔体滤波器, 其特征在于, 所述绝缘调节螺杆
(60) 从所述腔体内部延伸穿透所述盖板 (82) , 并利用绝缘介质螺 母 (85) 锁紧在所述盖板上; 通过所述绝缘介质螺母, 所述绝缘调节 螺杆 (60) 可调节伸入到所述腔体 (80) 中进入量, 从而对所述交叉 耦合杆 (50) 与所述谐振柱 (25) 之间的位置关系进行调整。
PCT/CN2017/091076 2017-01-26 2017-06-30 一种可调容性交叉耦合结构及腔体滤波器 WO2018137315A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710061430.8A CN106602192A (zh) 2017-01-26 2017-01-26 一种可调容性交叉耦合结构及腔体滤波器
CN201720101895.7 2017-01-26
CN201720101895.7U CN206506003U (zh) 2017-01-26 2017-01-26 一种可调容性交叉耦合结构及腔体滤波器
CN201710061430.8 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018137315A1 true WO2018137315A1 (zh) 2018-08-02

Family

ID=62978800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091076 WO2018137315A1 (zh) 2017-01-26 2017-06-30 一种可调容性交叉耦合结构及腔体滤波器

Country Status (1)

Country Link
WO (1) WO2018137315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298899A (zh) * 2020-02-20 2022-11-04 株式会社Kmw 空腔滤波器及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2847557Y (zh) * 2005-11-28 2006-12-13 浙江三维通信股份有限公司 带可调电容耦合结构的腔体滤波器
CN203503769U (zh) * 2013-10-12 2014-03-26 京信通信系统(中国)有限公司 交叉耦合组件及同轴腔体无源器件
US20150244050A1 (en) * 2011-03-31 2015-08-27 Ace Technologies Coproration Rf filter for adjusting coupling amount or transmission zero
CN204857913U (zh) * 2015-07-31 2015-12-09 深圳市国人射频通信有限公司 一种腔体滤波器
CN106602192A (zh) * 2017-01-26 2017-04-26 深圳市国人射频通信有限公司 一种可调容性交叉耦合结构及腔体滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2847557Y (zh) * 2005-11-28 2006-12-13 浙江三维通信股份有限公司 带可调电容耦合结构的腔体滤波器
US20150244050A1 (en) * 2011-03-31 2015-08-27 Ace Technologies Coproration Rf filter for adjusting coupling amount or transmission zero
CN203503769U (zh) * 2013-10-12 2014-03-26 京信通信系统(中国)有限公司 交叉耦合组件及同轴腔体无源器件
CN204857913U (zh) * 2015-07-31 2015-12-09 深圳市国人射频通信有限公司 一种腔体滤波器
CN106602192A (zh) * 2017-01-26 2017-04-26 深圳市国人射频通信有限公司 一种可调容性交叉耦合结构及腔体滤波器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298899A (zh) * 2020-02-20 2022-11-04 株式会社Kmw 空腔滤波器及其制造方法
CN115298899B (zh) * 2020-02-20 2024-04-02 株式会社Kmw 空腔滤波器及其制造方法

Similar Documents

Publication Publication Date Title
US9887442B2 (en) RF filter for adjusting coupling amount or transmission zero
CN102361117B (zh) 一种基于容性交叉耦合飞杆的同轴腔体谐振器
KR100985717B1 (ko) 슬라이딩 방식을 이용한 주파수 튜너블 필터
US20070090899A1 (en) Electronically tunable dielectric resonator circuits
US9184479B2 (en) Multi mode filter for realizing wide band using capacitive coupling / inductive coupling and capable of tuning coupling value
FI123304B (fi) Resonaattorisuodin
US20100073111A1 (en) Tem mode resonator
CN110729539A (zh) 一种腔体滤波器
KR101541292B1 (ko) 크로스 커플링 조절 장치 및 이를 포함하는 rf 캐비티 필터
KR20150016069A (ko) 가변 고주파 필터 장치 및 어셈블리
WO2018137315A1 (zh) 一种可调容性交叉耦合结构及腔体滤波器
KR102081950B1 (ko) 고주파 필터 및 그 튜닝 장치
US10862183B2 (en) Microwave bandpass filter comprising a conductive housing with a dielectric resonator therein and including an internal coupling element providing coupling between HEEx and HEEy modes
KR200404256Y1 (ko) 노치 조정이 가능한 고주파 여파기
JP4643681B2 (ja) 共振器、導波管フィルタ
CN206506003U (zh) 一种可调容性交叉耦合结构及腔体滤波器
US20060255888A1 (en) Radio-frequency filter
KR101207141B1 (ko) 커플링 양 또는 전송 제로를 조절할 수 있는 rf 필터
CN106602192A (zh) 一种可调容性交叉耦合结构及腔体滤波器
KR100887213B1 (ko) 주파수 튜너블 필터
RU2316087C1 (ru) Свч-фильтр
US10236551B2 (en) Electrically tuneable waveguide structure
US6404307B1 (en) Resonant cavity coupling mechanism
KR101237227B1 (ko) 슬라이딩 방식을 이용한 주파수 튜너블 필터
CN113964465B (zh) 一种腔体滤波器的可调感性交叉耦合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894344

Country of ref document: EP

Kind code of ref document: A1