WO2018137249A1 - 一种用于生理组织的探测器和探测方法 - Google Patents

一种用于生理组织的探测器和探测方法 Download PDF

Info

Publication number
WO2018137249A1
WO2018137249A1 PCT/CN2017/072775 CN2017072775W WO2018137249A1 WO 2018137249 A1 WO2018137249 A1 WO 2018137249A1 CN 2017072775 W CN2017072775 W CN 2017072775W WO 2018137249 A1 WO2018137249 A1 WO 2018137249A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
matching
physiological
frequency
wave
Prior art date
Application number
PCT/CN2017/072775
Other languages
English (en)
French (fr)
Inventor
刘振哲
赵林
张毅
Original Assignee
悦享趋势科技(北京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦享趋势科技(北京)有限责任公司 filed Critical 悦享趋势科技(北京)有限责任公司
Priority to PCT/CN2017/072775 priority Critical patent/WO2018137249A1/zh
Publication of WO2018137249A1 publication Critical patent/WO2018137249A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 

Definitions

  • the present invention relates to the field of detectors and, in particular, to a detector and method for detecting physiological tissue.
  • Pressure sensors such as conventional cuff sphygmomanometers, require a certain amount of pressure on the body tissue to detect physiological characteristics such as blood pressure, but such tests are often uncomfortable.
  • Ultrasonic sensors require specialized instruments and professional operators as well as professional interpreters, which are not available to the general public.
  • the electromagnetic sensors that have been popular in recent years use electromagnetic field or electromagnetic wave changes to detect the physiological tissue of the human body.
  • the sensor is non-invasive, compact, easy to carry, and easy to operate, and is the development direction of human tissue detection in the future.
  • the receiving antenna After receiving the wireless detecting electromagnetic signal carrying the physiological signal, the receiving antenna performs impedance matching through a matching device, so that the receiving circuit demodulates the physiological signal.
  • different antenna and circuit requirements are proposed for biosensors that measure human physiological tissues. Therefore, the prior art detector can only adapt to a part of the population, for example, it is suitable for people aged 20 to 50, and the population of other ages has a large difference in physiological conditions, and the error in the test is large, which affects the accuracy.
  • the embodiment of the invention provides a detector and a detection method for physiological tissue, so as to at least solve the problem that the test result is inaccurate and the universality is poor due to the difference of the population when the physiological parameters of the human body are measured by the electromagnetic method in the prior art. problem.
  • a probe for a physiological tissue including: a first receiving antenna, configured to receive a probe wave, wherein the probe wave carries a physiological signal; Off, connected to the first receiving antenna, for switching a circuit connection; a first matching device, wherein the first matching pair is when the first switching switch connects the first matching device to a circuit
  • the detecting electric wave performs impedance matching to obtain a first matching signal
  • the first receiving circuit is connected to the first matching unit, and is configured to demodulate the first physiological signal from the first matching signal
  • the second matching unit The second matching device performs impedance matching on the detecting wave to obtain a second matching signal, the second matching device and the first when the first switching switch connects the second matching device to the circuit.
  • the impedance of the matcher is different; the second receiving circuit is connected to the second matcher for demodulating the second physiological signal from the second matching signal; and the processor is configured to control the first switch
  • the matching device corresponding to the high quality signal is connected to the circuit, wherein the high quality signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal.
  • the first receiving antenna is configured to receive a detecting wave of a first frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a first matching signal.
  • the second matching unit is configured to perform impedance matching on the detecting wave of the first frequency to obtain a second matching signal.
  • the first receiving antenna is configured to receive the detecting wave of the first frequency and the second frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain the first Matching the signal
  • the second matcher is configured to perform impedance matching on the detecting wave of the second frequency to obtain a second matching signal.
  • the detector further includes: a second receiving antenna, configured to receive the detecting wave, wherein the detecting wave carries a physiological signal; and the second switching switch is connected to the second receiving antenna a third matching device, wherein, when the second switching switch connects the third matching device to the circuit, the third matching device performs impedance matching on the detecting wave to obtain a first a third matching circuit, connected to the third matching unit, for demodulating a third physiological signal from the third matching signal; a fourth matching device, wherein the second switching switch When the fourth matching device is connected to the circuit, the fourth matching device performs impedance matching on the detecting wave to obtain a fourth matching signal, and the impedances of the third matching device and the fourth matching device are different; the fourth receiving circuit And connected to the fourth matcher, configured to demodulate the fourth physiological signal from the fourth matching signal.
  • a second receiving antenna configured to receive the detecting wave, wherein the detecting wave carries a physiological signal
  • the second switching switch is connected to the second receiving antenna a third matching device,
  • the first receiving antenna is configured to receive the detecting wave of the first frequency and the second frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain the first a matching signal
  • the second matching unit is configured to perform impedance matching on the detecting wave of the second frequency to obtain a second matching signal
  • the second receiving antenna is configured to receive the first frequency and the second frequency Detecting an electric wave
  • the third matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a third matching signal
  • the fourth matching device is configured to perform impedance matching on the detecting wave of the second frequency to obtain The fourth matching signal.
  • the processor is configured to control the first switch and the second switch to connect a matcher corresponding to the high quality signal to the circuit, where the high quality signal is the a physiological signal, a signal having a higher quality parameter in the second physiological signal, the third physiological signal, and the fourth physiological signal.
  • the processor is further configured to calculate a physiological parameter of the physiological tissue to be tested according to the high quality signal.
  • a probe for a physiological tissue including: a first receiving antenna, configured to receive a probe wave, wherein the probe wave carries a physiological signal; a matching unit, configured to be connected to the first receiving antenna for performing impedance matching on the detecting wave to obtain a first matching signal; and a first receiving circuit connected to the first matching unit for using the first Decoding a first physiological signal in the matching signal; a second receiving antenna, configured to receive the detecting wave, wherein the detecting wave carries a physiological signal; and a second matching device is connected to the second receiving antenna, And performing impedance matching on the detecting wave to obtain a second matching signal, wherein the impedance of the second matching device and the first matching device are different; and the second receiving circuit is connected to the second matching device, and is configured to be used from the first Demodulating a second physiological signal in the two matching signals; a processor for determining a high quality signal, wherein the high quality signal is a quality in the first physiological signal
  • the first receiving antenna is configured to receive a detecting wave of a first frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a first matching signal.
  • the second receiving antenna is configured to receive the detecting wave of the first frequency
  • the second matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a second matching signal.
  • the processor is further configured to calculate a physiological parameter of the physiological tissue to be tested according to the high quality signal.
  • a first receiving antenna is used for receiving a detecting wave, wherein the detecting wave carries a physiological signal; and the first switching switch is connected to the first receiving antenna for switching the circuit connection; the first matching The first matching device performs impedance matching on the detecting wave to obtain a first matching signal when the first switching switch connects the first matching device to the circuit, and the first receiving circuit is connected to the first matching device for Demodulating the first physiological signal from the first matching signal; the second matching device, wherein when the first switching switch connects the second matching device to the circuit, the second matching device performs impedance matching on the detecting wave to obtain the second Matching signal, the impedance of the second matcher and the first matcher is different; the second receiving circuit is connected to the second matcher for demodulating the second physiological signal from the second matched signal; the processor is configured to control The first switching switch connects the matching device corresponding to the high quality signal to the circuit, wherein the high quality signal is a signal with a higher quality parameter in the first physiological signal
  • a method of detecting for a physiological tissue includes: receiving, by the first receiving antenna, a detecting wave, wherein the detecting wave carries a physiological signal; connecting the circuit through the first switching switch; and when the first switching switch connects the first matching device to the circuit Through
  • the first matching device performs impedance matching on the detecting wave to obtain a first matching signal; demodulates a first physiological signal from the first matching signal by using a first receiving circuit;
  • impedance matching is performed on the detecting wave by the second matching device to obtain a second matching signal, wherein impedances of the second matching device and the first matching device are different; Demodulating a second physiological signal from the second matching signal by using a second receiving circuit; controlling, by the processor, the first switching switch to connect a matching device corresponding to the high quality signal to the circuit, wherein the high quality The signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal
  • the first receiving antenna receives the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain a first matching signal.
  • the second matching performs impedance matching on the detection wave of the first frequency to obtain a second matching signal.
  • the first radio frequency and the second frequency of the probe wave are received by the first receiving antenna, and the first frequency match is used to perform impedance matching on the first frequency probe wave to obtain a first match. And performing signal impedance matching on the second frequency detecting wave by the second matching unit to obtain a second matching signal.
  • the method further includes: receiving, by the second receiving antenna, the detecting wave, wherein the detecting wave carries a physiological signal; the second switching switch is connected to the circuit; and the second switching switch
  • the third matching device is connected to the circuit, impedance matching is performed on the detecting wave by the third matching device to obtain a third matching signal; and the third matching circuit is demodulated from the third matching signal.
  • a third physiological signal when the second switching switch connects the fourth matching device to the circuit, performing impedance matching on the detecting wave by the fourth matching device to obtain a fourth matching signal, the third The impedance of the matcher and the fourth matcher are different; the fourth physiological signal is demodulated from the fourth matched signal by the fourth receiving circuit.
  • the first radio frequency and the second frequency of the probe wave are received by the first receiving antenna, and the first frequency match is used to perform impedance matching on the first frequency probe wave to obtain a first match.
  • a signal performing impedance matching on the second frequency detecting wave by the second matching device to obtain a second matching signal, and receiving, by the second receiving antenna, the first frequency and the second frequency detecting wave Performing impedance matching on the first frequency of the detecting wave by the third matching device to obtain a third matching signal, and performing impedance matching on the second frequency detecting wave by the fourth matching device to obtain a fourth Match the signal.
  • the first switching switch and the second switching switch are controlled by the processor to connect a matching device corresponding to the high quality signal to the circuit, wherein the high quality signal is the first a signal having a higher quality parameter in a physiological signal, the second physiological signal, the third physiological signal, and the fourth physiological signal.
  • the physiological parameter of the physiological tissue to be tested is calculated by the processor according to the high quality signal.
  • a method of detecting for a physiological tissue includes: receiving, by the first receiving antenna, a detecting wave, wherein the detecting wave carries a physiological signal; performing impedance matching on the detecting wave by the first matching device to obtain a first matching signal; and adopting the first receiving circuit Demodulating a first physiological signal from the first matching signal; receiving the detecting wave by a second receiving antenna, wherein the detecting wave carries a physiological signal; and the detecting wave is performed by a second matching device Impedance matching, obtaining a second matching signal, the impedance of the second matching unit and the first matching unit are different; demodulating the second physiological signal from the second matching signal by the second receiving circuit; Determining a high quality signal, wherein the high quality signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal.
  • the first receiving antenna receives the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain a first matching signal.
  • the second receiving antenna receives the detecting wave of the first frequency, and performs impedance matching on the detecting wave of the first frequency by the second matching device to obtain a second matching signal.
  • the physiological parameter of the physiological tissue to be tested is calculated by the processor according to the high quality signal.
  • a first receiving antenna is used for receiving a detecting wave, wherein the detecting wave carries a physiological signal; and the first switching switch is connected to the first receiving antenna for switching the circuit connection; the first matching The first matching device performs impedance matching on the detecting wave to obtain a first matching signal when the first switching switch connects the first matching device to the circuit, and the first receiving circuit is connected to the first matching device for Demodulating the first physiological signal from the first matching signal; the second matching device, wherein when the first switching switch connects the second matching device to the circuit, the second matching device performs impedance matching on the detecting wave to obtain the second Matching signal, the impedance of the second matcher and the first matcher is different; the second receiving circuit is connected to the second matcher for demodulating the second physiological signal from the second matched signal; the processor is configured to control The first switching switch connects the matching device corresponding to the high quality signal to the circuit, wherein the high quality signal is a signal with a higher quality parameter in the first physiological signal
  • Matching the detection wave carrying the physiological signal through the matching device with different parameters can adapt to the physiological differences of different populations to obtain more accurate physiological tissue detection results, and achieve the technical effect of improving the accuracy of the physiological parameter detection result, thereby solving the existing In the technology, when measuring physiological parameters of human body by electromagnetic method, the technical results of inaccurate test results and poor universality due to crowd differences.
  • FIG. 1 is a schematic view of a probe for physiological tissue according to a first embodiment of the present invention
  • Figure 2 is a schematic illustration of a detector for physiological tissue in accordance with a second embodiment of the present invention.
  • Figure 3 is a schematic illustration of a detector for physiological tissue in accordance with a third embodiment of the present invention.
  • Figure 4 is a schematic illustration of a detector for physiological tissue in accordance with a fourth embodiment of the present invention.
  • Figure 5 is a schematic illustration of a detector for physiological tissue in accordance with a fifth embodiment of the present invention.
  • Figure 6 is a flow chart of a method for detecting physiological tissue according to a first embodiment of the present invention.
  • Figure 7 is a flow chart of a method for detecting physiological tissue in accordance with a second embodiment of the present invention.
  • FIG. 1 is a schematic view of a probe for physiological tissue according to a first embodiment of the present invention, as shown in FIG.
  • the device includes the following components:
  • the first receiving antenna is configured to receive the detecting wave, wherein the detecting wave carries the physiological signal, and the detecting wave may be of a frequency or a plurality of frequencies.
  • the first switch is connected to the first receiving antenna for switching the circuit connection, and the first switch can control the connection between the first matching device and the second matching device, and the first switching switch can only be connected to the first receiving antenna or One of the second receiving antennas.
  • a first matching device wherein, when the first switching switch connects the first matching device to the circuit, the first matching device performs impedance matching on the detecting wave to obtain a first matching signal.
  • the first receiving circuit is coupled to the first matching unit for demodulating the first physiological signal from the first matching signal. Since the first physiological signal is carried in the first matching signal, the first physiological signal can be demodulated from the first matching signal.
  • the second matching device performs impedance matching on the detecting wave to obtain a second matching signal, and the impedance of the second matching device and the first matching device
  • the matching state of the first matcher and the second matcher is different, and the impedances of the first matcher and the second matcher may not be used, or other matching parameters may be different, because the first matcher and the second matcher are different.
  • the matching state is different, and the characteristics of the physiological signals that can be matched by the first matcher and the second matcher may also be different, so that the physiological differences of different groups of people can be adapted.
  • the second receiving circuit is coupled to the second matching unit for demodulating the second physiological signal from the second matching signal.
  • a processor configured to control the first switch to connect the matcher corresponding to the high quality signal to the circuit, wherein the high quality signal is a signal with a higher quality parameter in the first physiological signal and the second physiological signal.
  • the physiological signals of different human bodies Due to physiological differences among different populations, for example, physiological differences among groups such as males, females, old people, youth, and children, the physiological signals of different human bodies have different intensities, and the same physiological signals have different matching signals after matching with different matching devices.
  • the physiological signals demodulated in the matching signal are also not used. Therefore, the physiological signal quality parameters of the two matching devices are different, and a signal with a higher quality parameter is selected to calculate the physiological parameters of the physiological tissue to be tested, thereby improving the physiological parameter detection. The accuracy of the results.
  • the processor is further configured to calculate physiological parameters of the physiological tissue to be tested according to the high quality signal.
  • the matching wave with different parameters is used to match the detecting waves carrying the physiological signals, which can adapt to the physiological differences of different populations to obtain more accurate physiological tissue detection results, and solve the measurement of human physiological parameters by electromagnetic method in the prior art.
  • the technical problems caused by inaccurate test results and poor universality due to crowd differences have achieved the technical effect of improving the accuracy of physiological parameter detection results and universal applicability.
  • the first receiving antenna receives the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain the first matching signal
  • the second matching device detects the first frequency.
  • the electric wave performs impedance matching to obtain a second matching signal.
  • the M group antennas receive the detection wave, wherein the detection wave carries the physiological signal; the multi-way switch realizes the connection between the M group receiving antenna and the N-channel matching device; the N-channel matching device respectively performs the receiving signal Matching, N matching signal is obtained; N matching signal is connected to L receiving circuit; L receiving circuit demodulates L physiological signal; processor controls multi-way switching switch to realize circuit connection switching, from L physiological signal, Select one or more channels with better signal quality for physiological information processing.
  • M, N and L are both positive integers, and their values can be a combination of various values.
  • the matching switching method can be analogized to more combinations through multiple sets of antennas. Realizing the reception of multiple frequency and multiple position detection waves, matching the detection waves carrying physiological signals through the matchers with different parameters, can obtain multi-channel high-quality signals, and can adapt to the physiological differences of different populations to obtain more accurate physiological tissue detection. As a result, the technical problem of measuring the physiological parameters of the human body by the electromagnetic method in the prior art, the test result is inaccurate and the universality is poor due to the difference of the population is solved.
  • FIG. 2 is a schematic diagram of a detector for physiological tissue according to a second embodiment of the present invention.
  • the receiving antenna 310 receives the detected wireless detecting electromagnetic signal having a frequency f1 carrying a physiological signal.
  • the changeover switch 340 performs two-way switching. When the switch 340 is switched to the first path, the first matcher 120 performs impedance matching, and the impedance matching increases the amplitude of the received signal and the signal-to-noise ratio is also enhanced, so that the receiving circuit 130 demodulates the physiological signal.
  • the second matcher 220 When the switch 340 is switched to the second path, the second matcher 220 performs impedance matching such that the amplitude of the signal received by the second path is increased and the signal to noise ratio is also enhanced, so that the receiving circuit 230 demodulates the physiological signal.
  • the processor (which may be the main processor CPU) compares the quality of the two received signals and then controls the switch 340 to always be on the better quality side.
  • the matching state of the first matcher 120 and the second matcher 220 is different to accommodate more people.
  • the processor is further configured to calculate physiological parameters of the physiological tissue to be tested according to the high quality signal.
  • the first receiving antenna is configured to receive the detecting wave of the first frequency and the second frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a first matching signal
  • the second matching device is configured to perform impedance matching on the detecting wave of the second frequency to obtain a second matching signal
  • FIG. 3 is a schematic diagram of a detector for physiological tissue according to a third embodiment of the present invention.
  • the receiving antenna-310 receives the detected wireless detecting electromagnetic signal having a frequency f1 carrying a physiological signal, and simultaneously The receiving antenna one 310 also receives the detected wireless detecting electromagnetic signal having a frequency of f2 carrying the physiological signal.
  • Two-way switching is performed by the changeover switch 340.
  • the switch 340 is switched to the first path, the first matcher 120 performs a impedance matching to the detection signal of f1, so that the received signal amplitude is increased and the signal-to-noise ratio is also enhanced, so that the receiving circuit 130 demodulates the physiological signal. .
  • the second matcher 220 When the switch 340 is switched to the second path, the second matcher 220 performs a impedance matching to the detection signal of f2, so that the amplitude of the signal received by the second path is increased, and the signal-to-noise ratio is also enhanced, so that the receiving circuit 230 demodulates.
  • Physiological signal The main processor CPU compares the quality of the two received signals and then controls the switch to always be on the better quality path.
  • the matching state of the first matcher 120 and the second matcher 220 is different to accommodate more people.
  • the processor is further configured to calculate physiological parameters of the physiological tissue to be tested according to the high quality signal.
  • the detector further includes: a second receiving antenna, configured to receive the detecting wave, wherein the detecting wave carries the physiological signal; and the second switching switch is connected to the second receiving antenna for switching a third matching device, wherein, when the second switching switch connects the third matching device to the circuit, the third matching device performs impedance matching on the detecting wave to obtain a third matching signal; the third receiving circuit, and the third a matcher connection for demodulating the third physiological signal from the third matching signal; a fourth matcher, wherein the fourth matcher performs the detected wave when the second switcher connects the fourth matcher to the circuit Impedance matching to obtain a fourth matching signal, The impedances of the third matcher and the fourth matcher are different; the fourth receiving circuit is connected to the fourth matcher for demodulating the fourth physiological signal from the fourth matched signal.
  • the first receiving antenna is configured to receive the detecting wave of the first frequency and the second frequency
  • the first matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a first matching signal
  • the second matching device is configured to use the second frequency
  • the detecting wave is impedance matched to obtain a second matching signal
  • the second receiving antenna is configured to receive the detecting wave of the first frequency and the second frequency
  • the third matching device is configured to perform impedance matching on the detecting wave of the first frequency to obtain a third matching
  • the fourth matching device is configured to perform impedance matching on the detecting wave of the second frequency to obtain a fourth matching signal.
  • the processor is configured to control the first switch and the second switch to connect the matcher corresponding to the high quality signal to the circuit, wherein the high quality signal is the first physiological signal, the second physiological signal, the third physiological signal, and the fourth physiological A signal with a higher quality parameter in the signal.
  • FIG. 4 is a schematic diagram of a detector for physiological tissue according to a fourth embodiment of the present invention.
  • the receiving antenna 510 receives the detected wireless detecting electromagnetic signal having a frequency f1 carrying a physiological signal, and simultaneously The receiving antenna 510 also receives the detected wireless detecting electromagnetic signal having a frequency of f2 carrying the physiological signal.
  • Two-way switching is performed by the changeover switch 540.
  • the switch 540 When the switch 540 is switched to the first path, the first matcher 520 performs a impedance matching to the detection signal of f1, so that the received signal amplitude is increased and the signal-to-noise ratio is also enhanced, so that the receiving circuit 530 demodulates the physiological signal.
  • the second matcher 522 When the switch 540 is switched to the second path, the second matcher 522 performs a impedance matching to the detection signal of f2, so that the amplitude of the signal received by the second path is increased, and the signal-to-noise ratio is also enhanced, so that the receiving circuit 532 demodulates. Physiological signal.
  • the receiving antenna 512 receives the detected wireless detecting electromagnetic signal with the frequency f1 carrying the physiological signal, and the receiving antenna 512 also receives the detected wireless detecting electromagnetic signal with the frequency f2 carrying the physiological signal.
  • Two-way switching is performed by the changeover switch 542.
  • the third matcher 524 performs a impedance matching to the detection signal of f1, so that the received signal amplitude is increased and the signal-to-noise ratio is also enhanced, so that the receiving circuit 534 demodulates the physiological signal.
  • the fourth matcher 526 When the switch 542 is switched to the fourth path, the fourth matcher 526 performs a impedance matching to the detection signal of f2, so that the amplitude of the signal received by the second path is increased, and the signal-to-noise ratio is also enhanced, so that the receiving circuit 536 demodulates. Physiological signal.
  • the main processor CPU controls the switching of the switches 540, 542, compares the signal quality received by the four channels, and then selects the strongest one as the receiving path, and calculates the physiological parameters of the physiological tissue to be tested to accommodate more people.
  • FIG. 5 is a schematic illustration of a detector for physiological tissue in accordance with a fifth embodiment of the present invention, as shown in Figure 5, the detector comprising:
  • the first receiving antenna (the receiving antenna 110) is configured to receive the detecting wave, wherein the detecting wave carries the physiological signal.
  • the first matcher (120) is connected to the first receiving antenna for performing impedance matching on the detecting wave to obtain a first matching signal.
  • the first receiving circuit (receiving circuit 130) is coupled to the first matching unit for demodulating the first physiological signal from the first matching signal.
  • the second receiving antenna (receiving antenna two 210) is configured to receive the detecting wave, wherein the detecting wave carries the physiological signal.
  • the second matcher (220) is connected to the second receiving antenna for performing impedance matching on the detecting wave to obtain a second matching signal, and the impedance of the second matching device and the first matching device are different.
  • the second receiving circuit (receiving circuit 230) is coupled to the second matching unit for demodulating the second physiological signal from the second matching signal.
  • a processor for determining a high quality signal, wherein the high quality signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal.
  • the processor can be integrated in the receiving circuit or can be a separate module, and the processor can also calculate the physiological parameters of the physiological tissue to be tested according to the high quality signal.
  • the first receiving antenna can receive the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain the first matching signal
  • the second receiving antenna also receives the detecting wave of the first frequency
  • the second matching The device performs impedance matching on the detecting wave of the first frequency to obtain a second matching signal.
  • the receiving antenna 110 receives the detected wireless detecting electromagnetic signal with the frequency f1 carrying the physiological signal, and the first matching unit 120 performs impedance matching, so that the received signal amplitude is increased and the signal-to-noise ratio is also enhanced, so that the receiving circuit is enabled. 130 demodulates the physiological signal.
  • another receiving antenna 2210 receives the detected wireless detecting electromagnetic signal with the frequency of f1 carrying the physiological signal, and the second matching unit 220 performs impedance matching, so that the amplitude of the signal received by the second channel is increased, and the signal is noise-negative.
  • the ratio is also enhanced to cause the receiving circuit 230 to demodulate the physiological signal.
  • the matching state of the first matcher 120 and the second matcher 220 is different to accommodate more people.
  • the probes for physiological tissues of the above first to fifth embodiments can be used as an antenna system.
  • the embodiment of the present invention further provides a method for detecting a physiological tissue, which can be performed by a detecting device of a physiological tissue according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for detecting a physiological tissue according to the first embodiment of the present invention. As shown in FIG. 6, the method includes the following steps:
  • Step S101 receiving a probe wave through the first receiving antenna, wherein the probe wave carries a physiological signal.
  • Step S102 the circuit is connected by the first switching switch.
  • Step S103 when the first switch is connected to the circuit by the first switch, the first matcher detects the power.
  • the wave performs impedance matching to obtain a first matching signal.
  • Step S104 demodulating the first physiological signal from the first matching signal by the first receiving circuit.
  • Step S105 when the first switch is connected to the circuit by the second switch, impedance matching is performed on the probe wave by the second matcher to obtain a second match signal, wherein the impedance of the second matcher and the first matcher are different.
  • Step S106 demodulating the second physiological signal from the second matching signal by the second receiving circuit.
  • Step S107 the first switching switch is controlled by the processor to connect the matching device corresponding to the high quality signal to the circuit, wherein the high quality signal is a signal with a higher quality parameter in the first physiological signal and the second physiological signal.
  • the matching electromagnetic wave carrying the physiological signal is matched by the matching device with different parameters, and the physiological tissue detection result of different populations can be adapted to obtain more accurate physiological tissue detection result, thereby realizing the improvement of the accuracy of the physiological parameter detection result.
  • the technical effect further solves the technical problem that the test result is inaccurate and the universality is poor due to the difference of the population when the physiological parameters of the human body are measured by the electromagnetic method in the prior art.
  • the first receiving antenna receives the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain a first matching signal
  • the first frequency is matched by the second matching.
  • the probe wave is impedance matched to obtain a second match signal.
  • the first radio frequency is detected by the first receiving antenna, and the first radio frequency is matched by the first matching device to obtain a first matching signal, and the second matching is performed.
  • the device performs impedance matching on the detection wave of the second frequency to obtain a second matching signal.
  • the detecting wave is received by the second receiving antenna, wherein the detecting wave carries the physiological signal; the second switching switch is connected to the circuit; and when the second switching switch connects the third matching device to the circuit, Performing impedance matching on the detecting wave by the third matching device to obtain a third matching signal; demodulating the third physiological signal from the third matching signal through the third receiving circuit; and connecting the fourth matching device to the circuit in the second switching switch
  • impedance matching is performed on the detecting wave by the fourth matching device to obtain a fourth matching signal, and impedances of the third matching device and the fourth matching device are different; and the fourth physiological circuit is demodulated from the fourth matching signal by the fourth receiving circuit signal.
  • the first radio frequency is detected by the first receiving antenna, and the first radio frequency is matched by the first matching device to obtain a first matching signal, and the second matching is performed.
  • the device performs impedance matching on the detecting wave of the second frequency to obtain a second matching signal, and receives the detecting wave of the first frequency and the second frequency through the second receiving antenna, and performs impedance matching on the detecting wave of the first frequency through the third matching device.
  • the first switch and the second switch are controlled by the processor to receive a high quality signal.
  • the corresponding matcher access circuit wherein the high quality signal is a signal having a higher quality parameter in the first physiological signal, the second physiological signal, the third physiological signal, and the fourth physiological signal.
  • the physiological parameter of the physiological tissue to be tested is calculated by the processor according to the high quality signal.
  • the detection wave is received by the M group receiving antenna, and the received signal is connected to the corresponding matching device through the multi-way switching switch, and the N-channel matching device respectively matches the received signal to obtain the N-channel.
  • Matching signal, N matching signal is connected to L channel receiving circuit, L channel receiving circuit demodulates L channel physiological signal, processor controls multi-way switching switch to realize circuit connection switching, selects signal quality from L channel receiving circuit Better one or more ways for physiological information processing.
  • the M antennas may be in the same or different forms, and each antenna may receive one frequency or multiple frequencies; the multiple antennas are respectively close to different positions of the human physiological tissue, thereby obtaining physiological information of the location.
  • the multi-way switch realizes that the connection between the M group receiving antenna and the N-channel matching device can be two-way or multi-way switching switches; the switching between the receiving antenna and the matching device is realized.
  • the N-channel matching device respectively matches the received signals, and the N-channel matching signals can be: N-channel matching devices, each of which has different impedances, and is adapted to match the detection signals of different frequencies and different groups of people; each of the matching devices Output a matching signal.
  • the N-channel matching circuit is connected to the L-channel receiving circuit, wherein: the partial matching device can share one receiving circuit; the L-channel receiving circuit demodulates the L-path physiological signal from the N matching signal;
  • the multi-path matching switching method proposed by the invention can be analogized to more kinds of combinations, and the plurality of frequencies and multiple position detecting waves can be received by the M group antenna, and the multi-channel high-quality signals can be obtained through the N sets of matching impedances, and finally more In order to enrich the physiological tissue information, the technical problems of inaccurate and uncommon physiological test results caused by population differences are solved to the greatest extent.
  • FIG. 7 is a flow chart of a method for detecting a physiological tissue according to a second embodiment of the present invention. As shown in FIG. 7, the method includes the following steps:
  • Step S201 receiving a probe wave through the first receiving antenna, wherein the probe wave carries a physiological signal.
  • Step S202 impedance matching is performed on the detecting wave by the first matching device to obtain a first matching signal.
  • Step S203 demodulating the first physiological signal from the first matching signal by the first receiving circuit.
  • Step S204 receiving a probe wave through the second receiving antenna, wherein the probe wave carries a physiological signal.
  • Step S205 impedance matching is performed on the detecting wave by the second matching device to obtain a second matching signal, and the impedances of the second matching device and the first matching device are different.
  • Step S206 demodulating the second physiological signal from the second matching signal by the second receiving circuit; determining a high quality signal by the processor, wherein the high quality signal is a higher quality parameter in the first physiological signal and the second physiological signal signal of.
  • the matching electromagnetic wave carrying the physiological signal is matched by the matching device with different parameters, and the physiological tissue detection result of different populations can be adapted to obtain more accurate physiological tissue detection result, thereby realizing the improvement of the accuracy of the physiological parameter detection result.
  • the technical effect further solves the technical problem that the test result is inaccurate and the universality is poor due to the difference of the population when the physiological parameters of the human body are measured by the electromagnetic method in the prior art.
  • the first receiving antenna receives the detecting wave of the first frequency
  • the first matching device performs impedance matching on the detecting wave of the first frequency to obtain a first matching signal, and receives the first through the second receiving antenna.
  • the frequency detecting wave is impedance matched by the second matching device to the detecting wave of the first frequency to obtain a second matching signal.
  • the high quality signal is screened by the processor analysis, and the physiological parameters of the physiological tissue to be tested are calculated according to the high quality signal.
  • the high quality signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal.
  • the detecting wave can be received by the M group receiving antennas, and the received signals are directly connected to the corresponding matching devices, and the M-channel matching device respectively matches the received signals to obtain the M-channel matching signals.
  • the M-channel matching signal is connected to the L-channel receiving circuit, and the L-channel receiving circuit demodulates the L-path physiological signal, and the processor directly selects one or more signals with better signal quality for physiological information processing from the L-channel receiving circuit.
  • the M antennas may be in the same or different forms, and each antenna may receive one frequency or multiple frequencies; the multiple antennas are respectively close to different positions of the human physiological tissue, thereby obtaining physiological information of the location.
  • the M-channel matching device respectively matches the received signals, and the M-channel matching signals can be: M-channel matching devices, each of which has different impedances, and is adapted to match the detection signals of different frequencies and different groups of people; each of the matching devices Output a matching signal.
  • the M-channel matching circuit is connected to the L-channel receiving circuit, wherein: the partial matching device can share one receiving circuit; the L-channel receiving circuit demodulates the L-path physiological signal from the M-channel matching signal;
  • the high-quality signal is directly analyzed by the processor, and the physiological parameters of the physiological tissue to be tested are calculated according to the high-quality signal.
  • the processor contains a kernel, and the kernel removes the corresponding program unit from the memory.
  • the kernel can be set to one or more, and the accuracy of the physiological parameter detection result can be improved by adjusting the kernel parameters.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
  • the first receiving antenna is configured to receive the detecting wave, wherein the detecting wave carries the physiological signal; the first switching switch is connected to the first receiving antenna for switching the circuit connection; the first matching device, wherein When the first switch is connected to the circuit by the first switch, the first matcher performs impedance matching on the probe wave to obtain a first match signal; the first receiving circuit is connected to the first matcher for use from the first a first physiological signal is demodulated in the matching signal; wherein, when the first switching switch connects the second matching device to the circuit, the second matching device performs impedance matching on the detecting wave to obtain a second matching signal, Second matcher and first matcher The impedance is different; the second receiving circuit is connected to the second matching unit for demodulating the second physiological signal from the second matching signal; and the processor is configured to control the matching of the first switching switch to the high quality signal
  • the device accesses the circuit, wherein the high quality signal is a signal having a higher quality parameter in the first physiological signal and the second physiological signal.
  • Matching the detection wave carrying the physiological signal through the matching device with different parameters can adapt to the physiological differences of different populations to obtain more accurate physiological tissue detection results, and achieve the technical effect of improving the accuracy of the physiological parameter detection result, thereby solving the existing In the technology, when measuring physiological parameters of human body by electromagnetic method, the technical results of inaccurate test results and poor universality due to crowd differences.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种用于生理组织的探测器和探测方法。其中,该探测器包括:第一接收天线(310),接收探测电波,探测电波中携带有生理信号;第一切换开关(340),与第一接收天线(310)连接,用于切换电路连接;第一匹配器(120),对探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路(130),与第一匹配器(120)连接,用于从第一匹配信号中解调出第一生理信号;第二匹配器(220),对探测电波进行阻抗匹配,得到第二匹配信号;第二接收电路(230),与第二匹配器(220)连接,用于从第二匹配信号中解调出第二生理信号;处理器,用于控制第一切换开关(340)将高质量信号所对应的匹配器接入电路。本探测器和探测方法解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。

Description

一种用于生理组织的探测器和探测方法 技术领域
本发明涉及探测器领域,具体而言,涉及一种用于生理组织的探测器和探测方法。
背景技术
传统的生物传感器有压力传感器、超声传感器、电磁传感器等等。压力传感器如传统的袖带式血压计,需要在人体组织上施加一定的压力,才能测到血压等生理特征,但是这样的测试往往令人不舒服。超声传感器需要专门的仪器和专业操作人员以及专业解读人员,不是普通大众所能家里配备的。
近几年流行的电磁传感器,是利用电磁场或者电磁波的变化,来探测人体的生理组织的状况。这种传感器无侵入、小巧、携带方便、操作简易,是将来人体组织探测的发展方向。现有技术中,接收天线接收到携带生理信号的无线探测电磁信号之后,通过一个匹配器进行阻抗匹配,以使接收电路解调出生理信号。但是,由于人体的差异性,以及天气、温度、湿度、衣物、年龄等等的差异性,都对测量人体生理组织的生物传感器提出了不同的天线和电路要求。所以,现有技术的探测器只能适应一部分人群,例如对20岁至50岁的人群比较适用,而其他年龄的人群由于生理情况差异较大,测试时误差较大,影响准确度。
但是这种传感器容易受到人体差异性的影响,从而影响探测结果。例如,男人女人、冬天夏天、雨天晴天、手腕粗细等等,都能造成测试的差异性很大,对天线和电路的要求的差异性也很大。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种用于生理组织的探测器和探测方法,以至少解决现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。
根据本发明实施例的一个方面,提供了一种用于生理组织的探测器,包括:第一接收天线,用于接收探测电波,其中,所述探测电波中携带有生理信号;第一切换开 关,与所述第一接收天线连接,用于切换电路连接;第一匹配器,其中,在所述第一切换开关将所述第一匹配器接入电路时,所述第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路,与所述第一匹配器连接,用于从所述第一匹配信号中解调出第一生理信号;第二匹配器,其中,在所述第一切换开关将所述第二匹配器接入电路时,所述第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同;第二接收电路,与所述第二匹配器连接,用于从所述第二匹配信号中解调出第二生理信号;处理器,用于控制所述第一切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
在本发明实施例中,所述第一接收天线用于接收第一频率的探测电波,所述第一匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,所述第二匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,所述第一接收天线用于接收第一频率和第二频率的探测电波,所述第一匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,所述第二匹配器用于对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,所述探测器还包括:第二接收天线,用于接收探测电波,其中,所述探测电波中携带有生理信号;第二切换开关,与所述第二接收天线连接,用于切换电路连接;第三匹配器,其中,在所述第二切换开关将所述第三匹配器接入电路时,所述第三匹配器对所述探测电波进行阻抗匹配,得到第三匹配信号;第三接收电路,与所述第三匹配器连接,用于从所述第三匹配信号中解调出第三生理信号;第四匹配器,其中,在所述第二切换开关将所述第四匹配器接入电路时,所述第四匹配器对所述探测电波进行阻抗匹配,得到第四匹配信号,第三匹配器和第四匹配器的阻抗不同;第四接收电路,与所述第四匹配器连接,用于从所述第四匹配信号中解调出第四生理信号。
在本发明实施例中,所述第一接收天线用于接收第一频率和第二频率的探测电波,所述第一匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,所述第二匹配器用于对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号,所述第二接收天线用于接收所述第一频率和所述第二频率的探测电波,所述第三匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第三匹配信号,所述第四匹配器用于对所述第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
在本发明实施例中,所述处理器用于控制所述第一切换开关和所述第二切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号、 所述第二生理信号、所述第三生理信号和所述第四生理信号中质量参数较高的信号。
在本发明实施例中,所述处理器还用于根据所述高质量信号计算待测生理组织的生理参数。
根据本发明实施例的另一个方面,还提供了一种用于生理组织的探测器,包括:第一接收天线,用于接收探测电波,其中,所述探测电波中携带有生理信号;第一匹配器,与所述第一接收天线连接,用于对所述探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路,与所述第一匹配器连接,用于从所述第一匹配信号中解调出第一生理信号;第二接收天线,用于接收所述探测电波,其中,所述探测电波中携带有生理信号;第二匹配器,与所述第二接收天线连接,用于对所述探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同;第二接收电路,与所述第二匹配器连接,用于从所述第二匹配信号中解调出第二生理信号;处理器,用于确定高质量信号,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
在本发明实施例中,所述第一接收天线用于接收第一频率的探测电波,所述第一匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,所述第二接收天线用于接收所述第一频率的探测电波,所述第二匹配器用于对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,所述处理器还用于根据所述高质量信号计算待测生理组织的生理参数。
在本发明实施例中,采用第一接收天线,用于接收探测电波,其中,探测电波中携带有生理信号;第一切换开关,与第一接收天线连接,用于切换电路连接;第一匹配器,其中,在第一切换开关将第一匹配器接入电路时,第一匹配器对探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路,与第一匹配器连接,用于从第一匹配信号中解调出第一生理信号;第二匹配器,其中,在第一切换开关将第二匹配器接入电路时,第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同;第二接收电路,与第二匹配器连接,用于从第二匹配信号中解调出第二生理信号;处理器,用于控制第一切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。
根据本发明实施例的另一个方面,提供了一种用于生理组织的探测方法。该方法包括:通过第一接收天线接收探测电波,其中,所述探测电波中携带有生理信号;通过第一切换开关切换电路连接;在所述第一切换开关将第一匹配器接入电路时,通过 所述第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;通过第一接收电路从所述第一匹配信号中解调出第一生理信号;在所述第一切换开关将第二匹配器接入电路时,通过所述第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,其中,所述第二匹配器和所述第一匹配器的阻抗不同;通过第二接收电路从所述第二匹配信号中解调出第二生理信号;通过处理器控制所述第一切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
在本发明实施例中,通过所述第一接收天线接收第一频率的探测电波,通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过所述第二匹配对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,通过所述第一接收天线接收第一频率和第二频率的探测电波,通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过所述第二匹配器对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,所述方法还包括:通过第二接收天线接收探测电波,其中,所述探测电波中携带有生理信号;通过第二切换开关切换电路连接;在所述第二切换开关将所述第三匹配器接入电路时,通过所述第三匹配器对所述探测电波进行阻抗匹配,得到第三匹配信号;通过第三接收电路从所述第三匹配信号中解调出第三生理信号;在所述第二切换开关将所述第四匹配器接入电路时,通过所述第四匹配器对所述探测电波进行阻抗匹配,得到第四匹配信号,所述第三匹配器和所述第四匹配器的阻抗不同;通过第四接收电路从所述第四匹配信号中解调出第四生理信号。
在本发明实施例中,通过所述第一接收天线接收第一频率和第二频率的探测电波,通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过所述第二匹配器对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号,通过所述第二接收天线接收所述第一频率和所述第二频率的探测电波,通过所述第三匹配器对所述第一频率的探测电波进行阻抗匹配,得到第三匹配信号,通过所述第四匹配器对所述第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
在本发明实施例中,通过所述处理器控制所述第一切换开关和所述第二切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号、所述第二生理信号、所述第三生理信号和所述第四生理信号中质量参数较高的信号。
在本发明实施例中,通过所述处理器根据所述高质量信号计算待测生理组织的生理参数。
根据本发明实施例的另一个方面,提供了一种用于生理组织的探测方法。该方法包括:通过第一接收天线接收探测电波,其中,所述探测电波中携带有生理信号;通过第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;通过第一接收电路从所述第一匹配信号中解调出第一生理信号;通过第二接收天线接收所述探测电波,其中,所述探测电波中携带有生理信号;通过第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,所述第二匹配器和所述第一匹配器的阻抗不同;通过第二接收电路从所述第二匹配信号中解调出第二生理信号;通过处理器确定高质量信号,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
在本发明实施例中,通过所述第一接收天线接收第一频率的探测电波,通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过所述第二接收天线接收所述第一频率的探测电波,通过所述第二匹配器对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,通过所述处理器根据所述高质量信号计算待测生理组织的生理参数。
在本发明实施例中,采用第一接收天线,用于接收探测电波,其中,探测电波中携带有生理信号;第一切换开关,与第一接收天线连接,用于切换电路连接;第一匹配器,其中,在第一切换开关将第一匹配器接入电路时,第一匹配器对探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路,与第一匹配器连接,用于从第一匹配信号中解调出第一生理信号;第二匹配器,其中,在第一切换开关将第二匹配器接入电路时,第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同;第二接收电路,与第二匹配器连接,用于从第二匹配信号中解调出第二生理信号;处理器,用于控制第一切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。通过不同参数的匹配器对携带生理信号的探测电波进行匹配,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,实现了提高生理参数检测结果准确性的技术效果,进而解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明第一实施例的用于生理组织的探测器的示意图;
图2是根据本发明第二实施例的用于生理组织的探测器的示意图;
图3是根据本发明第三实施例的用于生理组织的探测器的示意图;
图4是根据本发明第四实施例的用于生理组织的探测器的示意图;
图5是根据本发明第五实施例的用于生理组织的探测器的示意图;
图6是根据本发明第一实施例的用于生理组织的探测方法的流程图;以及
图7是根据本发明第二实施例的用于生理组织的探测方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
根据本发明实施例,提供了一种用于生理组织的探测器的实施例,图1是根据本发明第一实施例的用于生理组织的探测器的示意图,如图1所示,该探测器包括如下组成部分:
第一接收天线,用于接收探测电波,其中,探测电波中携带有生理信号,探测电波可以是一种频率的,也可以是多种频率的。
第一切换开关,与第一接收天线连接,用于切换电路连接,第一切换开关可以控制切换与第一匹配器或第二匹配器的连接,第一切换开关只能连接第一接收天线或第二接收天线中的一个。
第一匹配器,其中,在第一切换开关将第一匹配器接入电路时,第一匹配器对探测电波进行阻抗匹配,得到第一匹配信号。
第一接收电路,与第一匹配器连接,用于从第一匹配信号中解调出第一生理信号。由于第一匹配信号中携带有第一生理信号,因此,可以从第一匹配信号中解调出第一生理信号。
第二匹配器,其中,在第一切换开关将第二匹配器接入电路时,第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同,第一匹配器和第二匹配器的匹配状态不一样,可以是第一匹配器和第二匹配器的阻抗不用,也可以是其他匹配参数不同,由于第一匹配器和第二匹配器的匹配状态不一样,第一匹配器和第二匹配器的能够匹配出的生理信号的特征也可能不同,这样可以适应不同的人群的生理差异。
第二接收电路,与第二匹配器连接,用于从第二匹配信号中解调出第二生理信号。
处理器,用于控制第一切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。由于不同人群的生理差异,例如,男性、女性、老年、青年、儿童等群体的生理差异,不同人体的生理信号的强度不同,同样的生理信号在不同的匹配器匹配后的匹配信号不同,从匹配信号中解调出的生理信号也不用,因此,两个匹配器中的生理信号质量参数不同,选取其中质量参数较高的一个信号来计算待测生理组织的生理参数,能够提高生理参数检测结果的准确性。处理器还用于根据高质量信号计算待测生理组织的生理参数。
通过上述实施例,采用不同参数的匹配器对携带生理信号的探测电波进行匹配,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题,达到了提高生理参数检测结果准确性和人群普适性的技术效果。
在本发明实施例中,第一接收天线接收第一频率的探测电波,第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,第二匹配器对第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,M组天线接收探测电波,其中,探测电波中携带有生理信号;多路切换开关实现M组接收天线与N路匹配器的连接;N路匹配器分别对接收信号进行匹配,得到N路匹配信号;N路匹配信号连接L路接收电路;L路接收电路解调出L路生理信号;处理器控制多路切换开关实现电路连接的切换,从L路生理信号中,选择信号质量较好的一路或多路用于生理信息处理。M,N和L都是正整数,其数值可以是多种数值的组合。
在本发明实施例中,将所述匹配切换方法可以类推到更多种组合,通过多组天线 实现多个频率、多个位置探测电波的接收,通过不同参数的匹配器对携带生理信号的探测电波进行匹配,可以获得多路优质信号,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,进而解决了现有技术中通过电磁方法测量人体生理参数,因人群差异带来的测试结果不准确、普适性差的技术问题。
图2是根据本发明第二实施例的用于生理组织的探测器的示意图,如图2所示,接收天线一310接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,由切换开关340进行两路切换。当开关340切换到第一路时,第一匹配器120进行阻抗匹配,阻抗匹配使得接收到的信号幅度增大、信噪比也增强,以使接收电路130解调出生理信号。当开关340切换到第二路时,第二匹配器220进行阻抗匹配,使得第二路接收到的信号幅度增大、信噪比也增强,以使接收电路230解调出生理信号。处理器(可以是主处理器CPU)比较两路接收到的信号质量,然后控制切换开关340始终处于较好质量的那一路上。在此,第一匹配器120和第二匹配器220的匹配状态不一样,以适应更多的人群。处理器还用于根据高质量信号计算待测生理组织的生理参数。
作为一种可选的实施方式,第一接收天线用于接收第一频率和第二频率的探测电波,第一匹配器用于对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,第二匹配器用于对第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
图3是根据本发明第三实施例的用于生理组织的探测器的示意图,如图3所示,接收天线一310接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,同时,接收天线一310也接收到检测到的携带生理信号的频率为f2的无线探测电磁信号。由切换开关340进行两路切换。当切换开关340切换到第一路时,第一匹配器120进行阻抗匹配到f1的探测信号,使得接收到的信号幅度增大、信噪比也增强,以使接收电路130解调出生理信号。当开关340切换到第二路时,第二匹配器220进行阻抗匹配到f2的探测信号,使得第二路接收到的信号幅度增大、信噪比也增强,以使接收电路230解调出生理信号。主处理器CPU比较两路接收到的信号质量,然后控制开关始终处于较好质量的那一路上。在此,第一匹配器120和第二匹配器220的匹配状态不一样,以适应更多的人群。处理器还用于根据高质量信号计算待测生理组织的生理参数。
作为一种可选的实施方式,探测器还包括:第二接收天线,用于接收探测电波,其中,探测电波中携带有生理信号;第二切换开关,与第二接收天线连接,用于切换电路连接;第三匹配器,其中,在第二切换开关将第三匹配器接入电路时,第三匹配器对探测电波进行阻抗匹配,得到第三匹配信号;第三接收电路,与第三匹配器连接,用于从第三匹配信号中解调出第三生理信号;第四匹配器,其中,在第二切换开关将第四匹配器接入电路时,第四匹配器对探测电波进行阻抗匹配,得到第四匹配信号, 第三匹配器和第四匹配器的阻抗不同;第四接收电路,与第四匹配器连接,用于从第四匹配信号中解调出第四生理信号。
第一接收天线用于接收第一频率和第二频率的探测电波,第一匹配器用于对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,第二匹配器用于对第二频率的探测电波进行阻抗匹配,得到第二匹配信号,第二接收天线用于接收第一频率和第二频率的探测电波,第三匹配器用于对第一频率的探测电波进行阻抗匹配,得到第三匹配信号,第四匹配器用于对第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
处理器用于控制第一切换开关和第二切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号、第二生理信号、第三生理信号和第四生理信号中质量参数较高的信号。
图4是根据本发明第四实施例的用于生理组织的探测器的示意图,如图4所示,接收天线一510接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,同时,接收天线一510也接收到检测到的携带生理信号的频率为f2的无线探测电磁信号。由切换开关540进行两路切换。当开关540切换到第一路时,第一匹配器520进行阻抗匹配到f1的探测信号,使得接收到的信号幅度增大、信噪比也增强,以使接收电路530解调出生理信号。当开关540切换到第二路时,第二匹配器522进行阻抗匹配到f2的探测信号,使得第二路接收到的信号幅度增大、信噪比也增强,以使接收电路532解调出生理信号。
接收天线二512接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,同时,接收天线二512也接收到检测到的携带生理信号的频率为f2的无线探测电磁信号。由切换开关542进行两路切换。当开关542切换到第三路时,第三匹配器524进行阻抗匹配到f1的探测信号,使得接收到的信号幅度增大、信噪比也增强,以使接收电路534解调出生理信号。当开关542切换到第四路时,第四匹配器526进行阻抗匹配到f2的探测信号,使得第二路接收到的信号幅度增大、信噪比也增强,以使接收电路536解调出生理信号。
主处理器CPU控制开关540、542的切换,比较四路接收到的信号质量,然后选择最强的一路作为接收通路,并计算待测生理组织的生理参数,以适应更多的人群。
根据本发明实施例,还提供了一种用于生理组织的探测器。图5是根据本发明第五实施例的用于生理组织的探测器的示意图,如图5所示,该探测器包括:
第一接收天线(接收天线一110),用于接收探测电波,其中,探测电波中携带有生理信号。
第一匹配器(120),与第一接收天线连接,用于对探测电波进行阻抗匹配,得到第一匹配信号。
第一接收电路(接收电路130),与第一匹配器连接,用于从第一匹配信号中解调出第一生理信号。
第二接收天线(接收天线二210),用于接收探测电波,其中,探测电波中携带有生理信号。
第二匹配器(220),与第二接收天线连接,用于对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同。
第二接收电路(接收电路230),与第二匹配器连接,用于从第二匹配信号中解调出第二生理信号。
处理器(图中未示出),用于确定高质量信号,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。其中,处理器可以集成在接收电路中,也可以是单独的模块,处理器还能够根据高质量信号计算待测生理组织的生理参数。
第一接收天线可以接收第一频率的探测电波,第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,第二接收天线也接收第一频率的探测电波,第二匹配器对第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
接收天线一110接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,第一匹配器120进行阻抗匹配,使得接收到的信号幅度增大、信噪比也增强,以使接收电路130解调出生理信号。同时,有另外一个接收天线二210接收到检测到的携带生理信号的频率为f1的无线探测电磁信号,第二匹配器220进行阻抗匹配,使得第二路接收到的信号幅度增大、信噪比也增强,以使接收电路230解调出生理信号。在此,第一匹配器120和第二匹配器220的匹配状态不一样,以适应更多的人群。
上述第一至第五实施例的用于生理组织的探测器都可以作为天线系统使用。
本发明实施例还提供了一种生理组织的探测方法,该探测方法可以由本发明实施例的生理组织的探测装置执行,图6是根据本发明第一实施例的生理组织的探测方法的流程图,如图6所示,该方法包括如下步骤:
步骤S101,通过第一接收天线接收探测电波,其中,探测电波中携带有生理信号。
步骤S102,通过第一切换开关切换电路连接。
步骤S103,在第一切换开关将第一匹配器接入电路时,通过第一匹配器对探测电 波进行阻抗匹配,得到第一匹配信号。
步骤S104,通过第一接收电路从第一匹配信号中解调出第一生理信号。
步骤S105,在第一切换开关将第二匹配器接入电路时,通过第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,其中,第二匹配器和第一匹配器的阻抗不同。
步骤S106,通过第二接收电路从第二匹配信号中解调出第二生理信号。
步骤S107,通过处理器控制第一切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。
通过本发明实施例的上述步骤,采用不同参数的匹配器对携带生理信号的探测电波进行匹配,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,实现了提高生理参数检测结果准确性的技术效果,进而解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。
在本发明实施例中,通过第一接收天线接收第一频率的探测电波,通过第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过第二匹配对第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,通过第一接收天线接收第一频率和第二频率的探测电波,通过第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过第二匹配器对第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,通过第二接收天线接收探测电波,其中,探测电波中携带有生理信号;通过第二切换开关切换电路连接;在第二切换开关将第三匹配器接入电路时,通过第三匹配器对探测电波进行阻抗匹配,得到第三匹配信号;通过第三接收电路从第三匹配信号中解调出第三生理信号;在第二切换开关将第四匹配器接入电路时,通过第四匹配器对探测电波进行阻抗匹配,得到第四匹配信号,第三匹配器和第四匹配器的阻抗不同;通过第四接收电路从第四匹配信号中解调出第四生理信号。
在本发明实施例中,通过第一接收天线接收第一频率和第二频率的探测电波,通过第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过第二匹配器对第二频率的探测电波进行阻抗匹配,得到第二匹配信号,通过第二接收天线接收第一频率和第二频率的探测电波,通过第三匹配器对第一频率的探测电波进行阻抗匹配,得到第三匹配信号,通过第四匹配器对第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
在本发明实施例中,通过处理器控制第一切换开关和第二切换开关将高质量信号 所对应的匹配器接入电路,其中,高质量信号为第一生理信号、第二生理信号、第三生理信号和第四生理信号中质量参数较高的信号。
在本发明实施例中,通过处理器根据高质量信号计算待测生理组织的生理参数。
在本发明实施例中,可以通过M组接收天线接收探测电波,将接收到的信号通过多路切换开关连接到相应的匹配器上,由N路匹配器分别对接收信号进行匹配,得到N路匹配信号,N路匹配信号连接到L路接收电路上,L路接收电路解调出L路生理信号,处理器控制多路切换开关实现电路连接的切换,从L路接收电路中,选择信号质量较好的一路或多路用于生理信息处理。
在本发明实施例中,M组天线可以为相同或不同形式,每个天线可以接收一种频率或多种频率;多个天线分别贴近人体生理组织不同的位置,从而获得所处位置的生理信息。多路切换开关实现M组接收天线与N路匹配器的连接可以是多路切换开关为两路或多路;实现接收天线和匹配器连接的切换。N路匹配器分别对接收信号进行匹配,得到N路匹配信号可以是:N路匹配器,每个匹配器阻抗均不同,分别适配对不同频率、不同人群探测信号的匹配;每路匹配器输出一路匹配信号。N路匹配电路连接L路接收电路可以是:部分匹配器可共用一路接收电路;L路接收电路从N路匹配信号中解调出L路生理信号;
由于人体的差异性,以及天气、温度、湿度、衣物等等的差异性,都对测量人体生理组织的生物传感器提出了不同的天线和电路要求。从天线的角度来看,就是每一种情况的天线需要不同的匹配。因此现有传统技术方案只能适应一部分人群,例如对20岁至50岁的人群比较适用。而其他年龄的人群却无法准确测试。本发明提出的多路匹配切换方法可以类推到更多种组合,通过M组天线实现多个频率、多个位置探测电波的接收,通过N组匹配阻抗,可以获得多路优质信号,最终得到更为丰富的生理组织信息,从而最大程度上解决人群差异性带来的生理参数测试结果不准确和普适性差的技术问题。
图7是根据本发明第二实施例的生理组织的探测方法的流程图,如图7所示,该方法包括如下步骤:
步骤S201,通过第一接收天线接收探测电波,其中,探测电波中携带有生理信号。
步骤S202,通过第一匹配器对探测电波进行阻抗匹配,得到第一匹配信号。
步骤S203,通过第一接收电路从第一匹配信号中解调出第一生理信号。
步骤S204,通过第二接收天线接收探测电波,其中,探测电波中携带有生理信号。
步骤S205,通过第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同。
步骤S206,通过第二接收电路从第二匹配信号中解调出第二生理信号;通过处理器确定高质量信号,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。
通过本发明实施例的上述步骤,采用不同参数的匹配器对携带生理信号的探测电波进行匹配,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,实现了提高生理参数检测结果准确性的技术效果,进而解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。
在本发明实施例中,通过第一接收天线接收第一频率的探测电波,通过第一匹配器对第一频率的探测电波进行阻抗匹配,得到第一匹配信号,通过第二接收天线接收第一频率的探测电波,通过第二匹配器对第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
在本发明实施例中,通过处理器分析筛选出高质量信号,并根据高质量信号计算待测生理组织的生理参数。其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。
在本发明实施例中,可以通过M组接收天线接收探测电波,将接收到的信号分别直接连接到相应的匹配器上,由M路匹配器分别对接收信号进行匹配,得到M路匹配信号,M路匹配信号连接到L路接收电路上,L路接收电路解调出L路生理信号,处理器直接从L路接收电路中,选择信号质量较好的一路或多路用于生理信息处理。
在本发明实施例中,M组天线可以为相同或不同形式,每个天线可以接收一种频率或多种频率;多个天线分别贴近人体生理组织不同的位置,从而获得所处位置的生理信息。M路匹配器分别对接收信号进行匹配,得到M路匹配信号可以是:M路匹配器,每个匹配器阻抗均不同,分别适配对不同频率、不同人群探测信号的匹配;每路匹配器输出一路匹配信号。M路匹配电路连接L路接收电路可以是:部分匹配器可共用一路接收电路;L路接收电路从M路匹配信号中解调出L路生理信号;
在本发明实施例中,通过处理器直接分析筛选出高质量信号,并根据高质量信号计算待测生理组织的生理参数。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来提高生理参数检测结果的准确性。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本发明所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明实施例采用第一接收天线,用于接收探测电波,其中,探测电波中携带有生理信号;第一切换开关,与第一接收天线连接,用于切换电路连接;第一匹配器,其中,在第一切换开关将第一匹配器接入电路时,第一匹配器对探测电波进行阻抗匹配,得到第一匹配信号;第一接收电路,与第一匹配器连接,用于从第一匹配信号中解调出第一生理信号;第二匹配器,其中,在第一切换开关将第二匹配器接入电路时,第二匹配器对探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器 的阻抗不同;第二接收电路,与第二匹配器连接,用于从第二匹配信号中解调出第二生理信号;处理器,用于控制第一切换开关将高质量信号所对应的匹配器接入电路,其中,高质量信号为第一生理信号和第二生理信号中质量参数较高的信号。通过不同参数的匹配器对携带生理信号的探测电波进行匹配,能够适应不同人群生理差异性得到更加精确的生理组织检测结果,实现了提高生理参数检测结果准确性的技术效果,进而解决了现有技术中通过电磁方法测量人体生理参数时,因人群差异导致的测试结果不准确、普适性差的技术问题。

Claims (20)

  1. 一种用于生理组织的探测器,包括:
    第一接收天线,设置为接收探测电波,其中,所述探测电波中携带有生理信号;
    第一切换开关,与所述第一接收天线连接,设置为切换电路连接;
    第一匹配器,其中,在所述第一切换开关将所述第一匹配器接入电路时,所述第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;
    第一接收电路,与所述第一匹配器连接,设置为从所述第一匹配信号中解调出第一生理信号;
    第二匹配器,其中,在所述第一切换开关将所述第二匹配器接入电路时,所述第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,所述第二匹配器和所述第一匹配器的阻抗不同;
    第二接收电路,与所述第二匹配器连接,设置为从所述第二匹配信号中解调出第二生理信号;
    处理器,设置为控制所述第一切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
  2. 根据权利要求1所述的探测器,其中,
    所述第一接收天线设置为接收第一频率的探测电波,
    所述第一匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    所述第二匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
  3. 根据权利要求1所述的探测器,其中,
    所述第一接收天线设置为接收第一频率和第二频率的探测电波,
    所述第一匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    所述第二匹配器设置为对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
  4. 根据权利要求1所述的探测器,其中,所述探测器还包括:
    第二接收天线,设置为接收探测电波,其中,所述探测电波中携带有生理信号;
    第二切换开关,与所述第二接收天线连接,设置为切换电路连接;
    第三匹配器,其中,在所述第二切换开关将所述第三匹配器接入电路时,所述第三匹配器对所述探测电波进行阻抗匹配,得到第三匹配信号;
    第三接收电路,与所述第三匹配器连接,设置为从所述第三匹配信号中解调出第三生理信号;
    第四匹配器,其中,在所述第二切换开关将所述第四匹配器接入电路时,所述第四匹配器对所述探测电波进行阻抗匹配,得到第四匹配信号,所述第三匹配器和所述第四匹配器的阻抗不同;
    第四接收电路,与所述第四匹配器连接,设置为从所述第四匹配信号中解调出第四生理信号。
  5. 根据权利要求4所述的探测器,其中,
    所述第一接收天线设置为接收第一频率和第二频率的探测电波,
    所述第一匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    所述第二匹配器设置为对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号,
    所述第二接收天线设置为接收所述第一频率和所述第二频率的探测电波,
    所述第三匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第三匹配信号,
    所述第四匹配器设置为对所述第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
  6. 根据权利要求5所述的探测器,其中,
    所述处理器设置为控制所述第一切换开关和所述第二切换开关将高质量信号 所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号、所述第二生理信号、所述第三生理信号和所述第四生理信号中质量参数较高的信号。
  7. 根据权利要求1至5中任一项所述的探测器,其中,
    所述处理器还设置为根据所述高质量信号计算待测生理组织的生理参数。
  8. 一种用于生理组织的探测器,包括:
    第一接收天线,设置为接收探测电波,其中,所述探测电波中携带有生理信号;
    第一匹配器,与所述第一接收天线连接,设置为对所述探测电波进行阻抗匹配,得到第一匹配信号;
    第一接收电路,与所述第一匹配器连接,设置为从所述第一匹配信号中解调出第一生理信号;
    第二接收天线,设置为接收所述探测电波,其中,所述探测电波中携带有生理信号;
    第二匹配器,与所述第二接收天线连接,设置为对所述探测电波进行阻抗匹配,得到第二匹配信号,第二匹配器和第一匹配器的阻抗不同;
    第二接收电路,与所述第二匹配器连接,设置为从所述第二匹配信号中解调出第二生理信号;
    处理器,设置为确定高质量信号,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
  9. 根据权利要求8所述的探测器,其中,
    所述第一接收天线设置为接收第一频率的探测电波,
    所述第一匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    所述第二接收天线设置为接收所述第一频率的探测电波,
    所述第二匹配器设置为对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
  10. 根据权利要求8或9所述的探测器,其中,
    所述处理器还设置为根据所述高质量信号计算待测生理组织的生理参数。
  11. 一种用于生理组织的探测方法,包括:
    通过第一接收天线接收探测电波,其中,所述探测电波中携带有生理信号;
    通过第一切换开关切换电路连接;
    在所述第一切换开关将第一匹配器接入电路时,通过所述第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;
    通过第一接收电路从所述第一匹配信号中解调出第一生理信号;
    在所述第一切换开关将第二匹配器接入电路时,通过所述第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,其中,所述第二匹配器和所述第一匹配器的阻抗不同;
    通过第二接收电路从所述第二匹配信号中解调出第二生理信号;
    通过处理器控制所述第一切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
  12. 根据权利要求11所述的方法,其中,
    通过所述第一接收天线接收第一频率的探测电波,
    通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    通过所述第二匹配器对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
  13. 根据权利要求11所述的方法,其中,
    通过所述第一接收天线接收第一频率和第二频率的探测电波,
    通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    通过所述第二匹配器对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号。
  14. 根据权利要求11所述的方法,其中,所述方法还包括:
    通过第二接收天线接收探测电波,其中,所述探测电波中携带有生理信号;
    通过第二切换开关切换电路连接;
    在所述第二切换开关将第三匹配器接入电路时,通过所述第三匹配器对所述探测电波进行阻抗匹配,得到第三匹配信号;
    通过第三接收电路从所述第三匹配信号中解调出第三生理信号;
    在所述第二切换开关将第四匹配器接入电路时,通过所述第四匹配器对所述探测电波进行阻抗匹配,得到第四匹配信号,所述第三匹配器和所述第四匹配器的阻抗不同;
    通过第四接收电路从所述第四匹配信号中解调出第四生理信号。
  15. 根据权利要求14所述的方法,其中,
    通过所述第一接收天线接收第一频率和第二频率的探测电波;
    通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号;
    通过所述第二匹配器对所述第二频率的探测电波进行阻抗匹配,得到第二匹配信号;
    通过所述第二接收天线接收所述第一频率和所述第二频率的探测电波;
    通过所述第三匹配器对所述第一频率的探测电波进行阻抗匹配,得到第三匹配信号;
    通过所述第四匹配器对所述第二频率的探测电波进行阻抗匹配,得到第四匹配信号。
  16. 根据权利要求15所述的方法,其中,
    通过所述处理器控制所述第一切换开关和所述第二切换开关将高质量信号所对应的匹配器接入电路,其中,所述高质量信号为所述第一生理信号、所述第二生理信号、所述第三生理信号和所述第四生理信号中质量参数较高的信号。
  17. 根据权利要求11至15中任一项所述的方法,其中,
    通过所述处理器根据所述高质量信号计算待测生理组织的生理参数。
  18. 一种用于生理组织的探测方法,包括:
    通过第一接收天线接收探测电波,其中,所述探测电波中携带有生理信号;
    通过第一匹配器对所述探测电波进行阻抗匹配,得到第一匹配信号;
    通过第一接收电路从所述第一匹配信号中解调出第一生理信号;
    通过第二接收天线接收所述探测电波,其中,所述探测电波中携带有生理信号;
    通过第二匹配器对所述探测电波进行阻抗匹配,得到第二匹配信号,所述第二匹配器和所述第一匹配器的阻抗不同;
    通过第二接收电路从所述第二匹配信号中解调出第二生理信号;
    通过处理器确定高质量信号,其中,所述高质量信号为所述第一生理信号和所述第二生理信号中质量参数较高的信号。
  19. 根据权利要求18所述的方法,其中,
    通过所述第一接收天线接收第一频率的探测电波,
    通过所述第一匹配器对所述第一频率的探测电波进行阻抗匹配,得到第一匹配信号,
    通过所述第二接收天线接收所述第一频率的探测电波,
    通过所述第二匹配器对所述第一频率的探测电波进行阻抗匹配,得到第二匹配信号。
  20. 根据权利要求18或19所述的方法,其中,
    通过所述处理器根据所述高质量信号计算待测生理组织的生理参数。
PCT/CN2017/072775 2017-01-26 2017-01-26 一种用于生理组织的探测器和探测方法 WO2018137249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072775 WO2018137249A1 (zh) 2017-01-26 2017-01-26 一种用于生理组织的探测器和探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072775 WO2018137249A1 (zh) 2017-01-26 2017-01-26 一种用于生理组织的探测器和探测方法

Publications (1)

Publication Number Publication Date
WO2018137249A1 true WO2018137249A1 (zh) 2018-08-02

Family

ID=62977901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072775 WO2018137249A1 (zh) 2017-01-26 2017-01-26 一种用于生理组织的探测器和探测方法

Country Status (1)

Country Link
WO (1) WO2018137249A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219532B1 (en) * 1997-10-28 2001-04-17 Nec Corporation Movable radio terminal device capable of precisely matching impedances
US20020165458A1 (en) * 2001-03-02 2002-11-07 Carter Scott J. Patient telemetry device with auto-compensation for impedance changes in leadset antenna
CN101401302A (zh) * 2006-03-09 2009-04-01 Nxp股份有限公司 无线电接收机
CN101521492A (zh) * 2008-02-29 2009-09-02 瑞昱半导体股份有限公司 阻抗匹配电路及其相关方法
CN103493381A (zh) * 2011-01-14 2014-01-01 皇家飞利浦有限公司 分集无线电接收机系统
CN103782184A (zh) * 2011-09-07 2014-05-07 皇家飞利浦有限公司 Rf阵列线圈/天线阻抗的动态修改
CN104274185A (zh) * 2013-07-01 2015-01-14 西门子公司 确定检查区域的运动

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219532B1 (en) * 1997-10-28 2001-04-17 Nec Corporation Movable radio terminal device capable of precisely matching impedances
US20020165458A1 (en) * 2001-03-02 2002-11-07 Carter Scott J. Patient telemetry device with auto-compensation for impedance changes in leadset antenna
CN101401302A (zh) * 2006-03-09 2009-04-01 Nxp股份有限公司 无线电接收机
CN101521492A (zh) * 2008-02-29 2009-09-02 瑞昱半导体股份有限公司 阻抗匹配电路及其相关方法
CN103493381A (zh) * 2011-01-14 2014-01-01 皇家飞利浦有限公司 分集无线电接收机系统
CN103782184A (zh) * 2011-09-07 2014-05-07 皇家飞利浦有限公司 Rf阵列线圈/天线阻抗的动态修改
CN104274185A (zh) * 2013-07-01 2015-01-14 西门子公司 确定检查区域的运动

Similar Documents

Publication Publication Date Title
Prieve et al. Prediction of conductive hearing loss using wideband acoustic immittance
CN103621110B (zh) 用于多声道音频的室内特征化和校正
CN105409241B (zh) 麦克风校准
US7809427B2 (en) Time domain inverse scattering techniques for use in microwave imaging
Aduen et al. Accuracy and precision of three echocardiographic methods for estimating mean pulmonary artery pressure
KR950002442B1 (ko) 오디오 신호처리 시스템을 검사하기 위한 장치
CN105004937B (zh) 使用窄带补偿的噪声指数测量方法
CN100439928C (zh) 网络分析器、网络分析方法
CN107242871B (zh) 一种人体阻抗测量中自动判别四、八电极的方法
EP1411829A2 (en) Space-time microwave imaging for cancer detection
US20160331266A1 (en) Biological impedance measurement probe, measurement system and method based on spectral characteristic
CN110477954B (zh) 基于弹性成像的检测设备
CN108508287A (zh) 基于矢量网络分析仪和功率计测量噪声系数的测量方法
CN106535217A (zh) 基于gdop分析的gsm‑r干扰源融合定位方法
JPH0198982A (ja) 超音波装置、並びに超音波測定及び超音波検査を行う方法
US7561701B2 (en) Method and apparatus for identifying the direction of incidence of an incoming audio signal
ES2971955T3 (es) Radar móvil de banda ultraancha para monitorizar los niveles de líquido torácico y la función cardiorrespiratoria
Barrera-Figueroa Free-field reciprocity calibration of measurement microphones at frequencies up to 150 kHz
WO2018137249A1 (zh) 一种用于生理组织的探测器和探测方法
Sun et al. Akte-liquid: Acoustic-based liquid identification with smartphones
CN104274209A (zh) 一种基于移动智能终端的新型胎心仪
US7537566B2 (en) Bone strength measuring instrument and method
Yazdani et al. Ultrasound shear wave attenuation imaging for grading liver steatosis in volunteers and patients with non-alcoholic fatty liver disease: A pilot study
Radulescu et al. Hydrophones’ effective diameter measurements as a quasi-continuous function of frequency
JP2019211314A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894402

Country of ref document: EP

Kind code of ref document: A1