WO2018137163A1 - 压缩机及具有其的车辆 - Google Patents

压缩机及具有其的车辆 Download PDF

Info

Publication number
WO2018137163A1
WO2018137163A1 PCT/CN2017/072523 CN2017072523W WO2018137163A1 WO 2018137163 A1 WO2018137163 A1 WO 2018137163A1 CN 2017072523 W CN2017072523 W CN 2017072523W WO 2018137163 A1 WO2018137163 A1 WO 2018137163A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
bearing
crankshaft
oil
low pressure
Prior art date
Application number
PCT/CN2017/072523
Other languages
English (en)
French (fr)
Inventor
杨开成
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to PCT/CN2017/072523 priority Critical patent/WO2018137163A1/zh
Publication of WO2018137163A1 publication Critical patent/WO2018137163A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to the field of refrigeration, and more particularly to a compressor and a vehicle having the same.
  • the bearing of a rotary compressor is subjected to the gas force generated by the compression component due to the compressed gas, and the reliability of the bearing directly affects the reliability of the product.
  • an oil supply hole is opened in the center of the rotating shaft, and the lubricating oil is branched along the oil supply hole to each bearing sliding member to participate in lubrication.
  • This type of use has better oil supply for stationary products, but for high-speed rail, aircraft, tanks, ships, buses, family cars, space shuttles, space stations, satellites, etc., the air-conditioning compressor equipment body has The vibration is greatly increased, and the oil level in the compressor and the oil supply in the crankshaft are difficult to ensure by conventional gravity and centrifugal force. The lubrication of the sliding parts cannot be guaranteed and the service life is affected.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a compressor that ensures the sustainability of the supply of lubricating oil.
  • the invention also proposes a vehicle having the above compressor.
  • a compressor includes: a casing having an intake port and an exhaust port; and a partition assembly, the partition assembly being disposed on the casing to separate the casing a low pressure chamber and a high pressure chamber, the suction port is in communication with the low pressure chamber, the exhaust port is in communication with the high pressure chamber, the partition assembly comprises a main bearing, and the high pressure chamber is provided with an oil pool;
  • An assembly, the cylinder assembly is disposed in the high pressure chamber, the cylinder assembly includes two cylinders and a middle partition disposed between the two cylinders, each of the cylinders is provided with a piston, at least one The suction inlet of the cylinder is in communication with the low pressure chamber, the main bearing is disposed on the cylinder assembly, and the middle partition is provided with a first oil passage communicating with the oil pool; a sub-bearing, a The sub-bearing is disposed on the cylinder assembly; the crankshaft includes an eccentric portion that cooperates with the piston, a sub-shaft portion that
  • the lubricating oil in the oil pool continuously enters into the first oil passage, ensuring the continuity of the lubricating oil supply, the lubrication principle is simple and reliable, the lubrication effect is ensured, and the crankshaft, the main bearing, the rolling bearing and the crankshaft are improved.
  • the service life of the sub-bearings and other components is small, the manufacturing and assembly process is simple, the cost is reduced, and the high-pressure chamber is provided, which can reduce the oil discharge of the compressor and reduce the noise of the compressor.
  • the rolling bearing to support the crankshaft, the deformation of the crankshaft can be avoided and the operational reliability of the compressor can be ensured.
  • a gap is provided between an inner peripheral wall of the middle partition and an outer peripheral wall of the connecting portion, and a first oil groove is disposed between the eccentric portion and the piston, and the pair A second oil groove is disposed between the bearing and the auxiliary shaft portion, and the second oil groove is in communication with the central shaft hole.
  • the central shaft hole penetrates the crankshaft in an axial direction of the crankshaft, and a seal member is disposed on an inner end surface of the housing on the inner surface of the high pressure chamber, the seal member And sealingly engaging with an outer peripheral wall of the auxiliary bearing, wherein the sealing member is provided with a flow space communicating with the central shaft hole.
  • the second oil groove includes a circumferential groove and an axial groove, the circumferential groove being formed as an annular groove extending in a circumferential direction, the annular groove being in communication with the first oil groove,
  • the axial groove is formed as an elongated groove extending in the axial direction, and the axial groove is in communication with the circumferential groove and the central shaft hole, respectively.
  • one end surface of the main bearing is located in the low pressure chamber, and a second oil passage communicating with the low pressure chamber is disposed between the main bearing and the main shaft portion.
  • the second oil passage is in communication with the first oil passage.
  • the inner diameter of the intermediate partition is greater than the outer diameter of the connecting portion to define the gap.
  • a filter is disposed within the first oil passage.
  • the flow area of the first oil passage is in the range of 0.5 mm to 4 mm.
  • the partition assembly further includes a partitioning plate that cooperates with an inner peripheral wall of the housing to define the low pressure chamber and the high pressure chamber, the partition The plate is provided with a fitting through hole that is in sealing engagement with the outer peripheral wall of the main bearing.
  • the compressor is a horizontal compressor.
  • a vehicle according to an embodiment of the present invention includes a compressor according to the above embodiment of the present invention.
  • the lubricating oil in the oil pool continuously enters into the first oil passage, thereby ensuring the continuity of the lubricating oil supply, the lubrication principle is simple and reliable, the lubrication effect is ensured, and the crankshaft is improved.
  • the service life of main bearings, rolling bearings and auxiliary bearings, as well as the small number of parts, simple manufacturing and assembly process, and low cost, and the high pressure chamber can reduce the oil discharge of the compressor and reduce the noise of the compressor.
  • the rolling bearing to support the crankshaft, the deformation of the crankshaft can be avoided and the operational reliability of the compressor can be ensured.
  • FIG. 1 is a schematic view of a compressor in accordance with some embodiments of the present invention.
  • FIG. 2 is a schematic view of a compressor according to further embodiments of the present invention.
  • Figure 3 is a schematic illustration of a compressor in accordance with further embodiments of the present invention.
  • FIG. 4 is a schematic view showing the internal structure of a compressor according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a middle partition in accordance with some embodiments of the present invention.
  • Figure 6 is a cross-sectional view of the intermediate partition shown in Figure 5;
  • Figure 7 is a schematic illustration of a middle partition in accordance with further embodiments of the present invention.
  • Figure 8 is a schematic illustration of a crankshaft in accordance with an embodiment of the present invention.
  • Figure 9 is a schematic view showing the cooperation of a crankshaft and a rolling bearing according to an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a main bearing in accordance with an embodiment of the present invention.
  • a housing 1 an air inlet 10, an exhaust port 11, a low pressure chamber 12, a high pressure chamber 13, a first housing 14, a second housing 15,
  • a partition assembly 2 a main bearing 20, a partition plate 21,
  • Cylinder assembly 4 Cylinder assembly 4, cylinder 40, intermediate partition 41, first oil passage 410, gap 42, piston 44,
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a compressor 100 according to an embodiment of the present invention will be described in detail below with reference to Figs. 1 to 10, wherein the compressor 100 may be a vertical compressor or a horizontal compressor, and the compressor 100 may also be a rotary compressor or a scroll compressor. Machine or vane compressor. Specifically, the compressor 100 can be applied to air-conditioned equipment such as high-speed rail, airplanes, tanks, ships, buses, family cars, space shuttles, space stations, satellites, and the like. More specifically, the refrigerant in the compressor 100 is a CO 2 refrigerant such as R744 refrigerant.
  • a compressor 100 includes: a housing 1, a partition assembly 2, a cylinder assembly 4, a sub-bearing 8, a crankshaft 5, and a rolling bearing 9, wherein the housing 1 is provided Intake port 10 and exhaust port 11.
  • the partitioning assembly 2 is disposed on the casing 1 to partition the inside of the casing 1 into a low pressure chamber 12 and a high pressure chamber 13.
  • the suction port 10 communicates with the low pressure chamber 12, and the exhaust port 11 communicates with the high pressure chamber 13, thereby knowing that the high voltage
  • the pressure in the chamber 13 is greater than the pressure in the low pressure chamber 12, and there is a pressure difference between the high pressure chamber 13 and the low pressure chamber 12.
  • the high pressure and the low pressure merely indicate that the pressure of the high pressure is greater than the pressure of the low pressure, and the specific pressure values in the high pressure chamber 13 and the low pressure chamber 12 are not limited.
  • the partition assembly 2 includes a main bearing 20 in which an oil sump 3 is disposed.
  • the cylinder assembly 4 is disposed in the high pressure chamber 13, and the cylinder assembly 4 includes two cylinders 40 and a middle partition 41 disposed between the two cylinders 40.
  • Each cylinder 40 is provided with a piston 44, and at least one cylinder 40 is inhaled.
  • the inlet is in communication with the low pressure chamber 12.
  • the suction inlet of one of the cylinders 40 communicates with the low pressure chamber 12
  • the low pressure refrigerant entering the low pressure chamber 12 from the suction port 10 is first discharged into one of the cylinders 40 for compression, and once discharged from the cylinder 40
  • the compressed refrigerant is discharged into another cylinder 40 for a second compression.
  • the main bearing 20 is provided on the cylinder assembly 4.
  • a first oil passage 410 communicating with the oil pool 3 is provided in the partition 41.
  • the flow area of the first oil passage 410 ranges from 0.5 mm to 4 mm, so that the oil supply amount can be ensured.
  • the crankshaft 5 includes an eccentric portion 50 that cooperates with the piston 44, a sub-shaft portion 54 that engages with the sub-bearing 8, and a coupling portion 56 that engages with the intermediate partition plate 41.
  • the main bearing 20 is jacketed on the main shaft portion 55 of the crankshaft 5.
  • the rolling bearing 9 is provided on the inner wall of the casing 1, and the end of the crankshaft 5 that projects into the low pressure chamber 12 cooperates with the rolling bearing 9, and the outlet end of the center shaft hole 53 is located in the rolling bearing 9. It can be seen that since the rolling bearing 9 is located in the low pressure chamber 12, the outlet end of the center shaft hole 53 is located in the low pressure chamber 12, that is, the outlet end of the center shaft hole 53 is in a low pressure environment. Specifically, the rolling bearing 9 can be fixed to the inner wall of the casing 1 through the bearing bracket 17.
  • the outer peripheral wall of the bearing bracket 17 is fixed to the inner peripheral wall of the casing 1.
  • the bearing bracket 17 is fixed to the inner end surface of the casing 1.
  • the bearing bracket 17 and the housing 1 are integrally formed.
  • the play between the rolling bearing 9 and the crankshaft 5 is between 40 and 60 um, so that the assembly requirements are ensured even if the rolling bearing 9 is not perpendicular or dissimilar to the crankshaft 5.
  • a lubrication path is provided between the crankshaft 5 and the main bearing 20 and the sub-bearing 8.
  • One end of the lubrication path is in communication with the low pressure chamber 12 and the other end is in communication with the first oil passage 410. It can be seen that there is a pressure difference between the two ends of the lubrication path, and under the action of the pressure difference, the lubricating oil in the first oil passage 410 enters the lubrication path to the crankshaft 5, the main bearing 20 and the auxiliary bearing 8 The parts are lubricated.
  • the inlet end of the first oil passage 410 is in a high pressure environment, and thus the first oil passage is known.
  • the lubricating oil in the oil pool 3 will enter the first oil passage 410, and the lubricating oil in the first oil passage 410 will enter the central shaft hole 53, and then the central shaft hole 53
  • the lubricating oil inside is discharged into the rolling bearing 9 to lubricate the rolling bearing 9.
  • the lubricating oil for lubricating the rolling bearing 9 can be discharged into the low pressure chamber 12, and the oil temperature of the lubricating oil can be lowered, and the lubricating oil in the low pressure chamber 12 can be sucked into the cylinder 40 and discharged into the high pressure chamber 13, thereby Shorten the time the lubricant is at a high temperature and extend the life of the lubricant.
  • the external low-pressure refrigerant is sucked into the low-pressure chamber 12 from the suction port 10, and the low-pressure refrigerant in the low-pressure chamber 12 is sucked into the cylinder 40 through the suction inlet for compression, and the compressed high-pressure refrigerant is discharged.
  • the refrigerant in the high pressure chamber 13 is discharged into the casing 1 from the exhaust port 11 into the high pressure chamber 13. It can be seen that during the operation of the compressor 100, there is always a pressure difference between the high pressure chamber 13 and the low pressure chamber 12, so that the refrigerant in the oil pool 3 continues to enter the first oil passage 410 under the action of the pressure difference.
  • the components such as the rolling bearing 9, the crankshaft 5, the main bearing 20, and the sub-bearing 8 are lubricated.
  • the refrigerant discharged from the cylinder 40 is discharged into the high pressure chamber 13 and then discharged from the exhaust port 11, the refrigerant can be at a high pressure.
  • the oil and gas are separated in the chamber 13, so that the oil discharge amount of the exhaust port 11 can be reduced, and the high pressure chamber 13 can also function as a noise reduction.
  • the compressor 100 of the embodiment of the present invention by providing the low pressure chamber 12 and the high pressure chamber 13 in the casing 1, the first oil passage 410 in the middle partition 41, the center shaft hole 53 in the crankshaft 5, and the setting Lubricating the path, the lubricating oil in the oil pool 3 is discharged into the first oil passage 410 by the pressure difference between the high pressure chamber 13 and the low pressure chamber 12, and then the lubricating oil in the first oil passage 410 is discharged to the central shaft.
  • the hole 53 and the lubrication path are used to lubricate the crankshaft 5, the main bearing 20, the rolling bearing 9 and the auxiliary bearing 8, so that even if the compressor 100 is in a bumpy environment, the lubricating oil in the oil pool 3 continues to enter the first In the oil passage 410, the lubrication supply is continued, the lubrication principle is simple and reliable, the lubrication effect is ensured, the service life of the crankshaft 5, the main bearing 20, the rolling bearing 9 and the auxiliary bearing 8 is improved, and the number of parts is small, and the assembly is assembled.
  • the process is simple, the cost is reduced, and since the high pressure chamber 13 is provided, the oil discharge amount of the compressor 100 can be reduced, and the noise of the compressor 100 can be reduced.
  • the rolling bearing 9 the crankshaft 5 is supported, and the deformation of the crankshaft 5 can be avoided to ensure the operational reliability of the compressor 100.
  • a gap 42 is provided between the inner peripheral wall of the intermediate partition 41 and the outer peripheral wall of the connecting portion 56, and the first portion between the eccentric portion 50 and the piston 44 is provided.
  • An oil groove 52, a second oil groove 57 is disposed between the auxiliary bearing 8 and the counter shaft portion 54, and the second oil groove 57 communicates with the center shaft hole 53.
  • first oil passage 410 is located on the outer peripheral wall of the intermediate partition 41, and the other end of the first oil passage 410 is located on the inner peripheral wall of the intermediate partition 41 to communicate with the gap 42 from the first oil.
  • the lubricating oil flowing into the gap 42 by the passage channel 410 can flow to both sides to lubricate the two pistons 44, the two eccentric portions 50 and the two cylinders 40, and by providing the first oil groove 52, the eccentric portion 50 can be further
  • the piston 44 acts as a lubricant, which not only makes the lubricating oil path of the compressor 100 simple, but also improves the lubrication effect on the crankshaft 5, the piston 44 and the cylinder 40, and further improves the service life of the compressor 100.
  • the lubricating oil flowing into the first oil groove 52 flows into the center shaft hole 53 through the second oil groove 57, and the lubricating oil flowing into the second oil groove 57 can be applied to the auxiliary bearing 8 and the auxiliary shaft portion. 54 for lubrication.
  • the gap 42, the first oil groove 52, and the second oil groove 57 not only function to communicate the first oil passage 410 and the center shaft hole 53, but also serve as a part of the lubrication path, so that the structure of the compressor 100 is simple.
  • first oil passage 410 and the central shaft hole 53 can also communicate with each other through the lubricating oil flow path provided at other positions.
  • an oil hole or the like can be provided on the connecting portion 56 as long as lubrication can be performed. The oil flows from the first oil passage 410 to the center shaft hole 53.
  • the center shaft hole 53 penetrates the crankshaft 5 in the axial direction of the crankshaft 5, and the inner end surface of the housing 1 is located at the high pressure chamber 13.
  • a sealing member 16 is disposed on the sealing member 16 in sealing engagement with the outer peripheral wall of the sub-bearing 8.
  • the sealing member 16 is provided with a flow space 160 communicating with the central shaft hole 53.
  • the lubricating oil in the second oil groove 57 may be It flows into the flow space 160 and then flows into the center shaft hole 53 from the flow space 160, thereby making the structure of the crankshaft 5 simple.
  • a part of the lubricating oil in the second oil groove 57 may directly flow into the center shaft hole 53 through the oil hole provided in the counter shaft portion 54, and the lubricating oil in the second oil groove 57 Another portion may flow into the flow space 160 and then flow from the flow space 160 into the central shaft hole 53.
  • the second oil groove 57 includes a circumferential groove 570 and an axial groove 571 formed as a circumferential groove extending in the circumferential direction, and the annular groove 570
  • the axial groove 571 is formed as an elongated groove extending in the axial direction, and the axial groove 571 is in communication with the circumferential groove 570 and the central shaft hole 53, respectively.
  • the axial groove 571 may be formed as a spiral groove extending in the axial direction, so that the lubrication effect between the sub-bearing 8 and the crankshaft 5 can be improved.
  • one end surface of the main bearing 20 is located in the low pressure chamber 12, and it is understood that there is a pressure difference between the end faces of the main bearing 20.
  • a second oil passage 51 communicating with the low pressure chamber 12 is provided between the main bearing 20 and the crankshaft 5, and the second oil passage 51 communicates with the first oil passage 410, wherein the second oil passage 51 is part of the lubrication path .
  • the second oil passage 51 may be provided on the inner peripheral wall of the main bearing 20 or the second oil passage 51 may be provided on the outer peripheral wall of the crankshaft 5.
  • the outer peripheral wall of the crankshaft 5 and the inner peripheral wall of the main bearing 20 may be lubricated during the flow of the lubricating oil in the second oil passage 51. Thereby, the lubricating effect on the outer peripheral wall of the crankshaft 5 and the inner peripheral wall of the main bearing 20 can be ensured.
  • a first oil groove 52 is provided between each of the eccentric portion 50 and the piston 44, and the second oil passage 51 communicates with the first oil passage 410 through the first oil groove 52 and the gap 42.
  • the first oil groove 52 is provided on the outer peripheral wall of the eccentric portion 50.
  • the inner diameter of the intermediate partition 41 is greater than the outer diameter of the connecting portion 56 to define a gap 42.
  • the lubrication path may be composed of a plurality of oil outlet holes penetrating the crankshaft 5 in the radial direction, wherein a part of the oil outlet holes are provided on the main shaft portion 55, and a part of the oil outlet holes are provided in the counter shaft portion 54.
  • the remaining oil outlet hole is disposed on the connecting portion 56 to communicate with the first oil passage 410, so that the lubricating oil flowing out of the first oil passage 410 enters the central shaft hole 53 through the oil outlet hole, and then the central shaft A part of the lubricating oil in the hole 53 flows through the oil discharge hole to the main bearing 20 and the sub-bearing 8, and the other lubricating oil in the center shaft hole 53 flows to the rolling bearing 9.
  • a filter 6 is disposed within the first oil passage 410. Therefore, the lubricating oil flowing to the first oil passage 410 can function as a filter to improve the quality of the lubricating oil and prevent wear due to the entry of impurities into the main bearing 20.
  • the filter 6 is a filter. Thereby the structure of the filter 6 is made simple.
  • the partition assembly 2 further includes a partitioning plate 21 that cooperates with an inner peripheral wall of the housing 1 to define a low pressure chamber 12 and a high pressure chamber 13,
  • the partition plate 21 is provided with a fitting through hole, and the fitting through hole is in sealing engagement with the outer peripheral wall of the main bearing 20. Therefore, by providing the partitioning plate 21, it is possible to prevent the main bearing 20 from being deformed due to the pressure difference, and to prevent the cylinder 40 from being deformed by the deformation of the main bearing 20, thereby improving the reliability of the operation of the compressor 100.
  • a sealing ring is provided between the fitting through hole and the outer peripheral wall of the main bearing 20.
  • the suction inlet of the at least one cylinder 40 communicates with the low pressure chamber 12 through an intake passage provided on the partition plate 21.
  • the housing 1 includes a first housing 14 and a second housing 15, and the outer edge of the partition plate 21 is sandwiched between the first housing 14 and the second housing 15.
  • the fixing member is fixed to the first casing 14 and the second casing 15 through the outer edge of the partitioning plate 21, so that the fixing manner of the partitioning plate 21 is simple.
  • the compressor 100 when the compressor 100 is a rotary compressor, the compressor 100 further includes a motor 7, the motor 7 is disposed in the low pressure chamber 12, and the motor 7 includes the stator 70.
  • the rotor 70 is fixed to the inner peripheral wall of the casing 1, and the rotor 71 is rotatably provided in the stator 70.
  • the rotor 71 is fixed to the crankshaft 5 to drive the crankshaft 5 to rotate.
  • the motor 7 generates a certain amount of heat during operation, and the liquid refrigerant entering the low-pressure refrigerant from the intake port 10 into the low-pressure chamber 12 is vaporized by the heat radiated from the motor 7, thereby reducing the suction into the cylinder.
  • the liquid refrigerant content in the refrigerant in 40 can avoid the liquid hammer phenomenon of the compressor 100 to a certain extent.
  • a vehicle according to an embodiment of the present invention includes the compressor 100 according to the above embodiment of the present invention.
  • the lubricating oil in the oil pool 3 continues to enter the first oil passage 410, ensuring the continuity of the lubricating oil supply, and the lubrication principle is simple and reliable, ensuring lubrication.
  • the effect is to improve the service life of the components such as the crankshaft 5, the main bearing 20, the rolling bearing 9 and the auxiliary bearing 8, and at the same time, the number of parts is small, the manufacturing assembly process is simple, the cost is reduced, and the high-pressure chamber 13 is provided, so that the oil discharge of the compressor 100 can be reduced.
  • the amount of noise is reduced by the compressor 100.
  • the rolling bearing 9 the crankshaft 5 is supported, and the deformation of the crankshaft 5 can be avoided to ensure the operational reliability of the compressor 100.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种压缩机及具有其的车辆。压缩机包括:壳体、分隔组件、气缸组件、副轴承、曲轴和滚动轴承,分隔组件设在壳体上以将壳体内分隔成低压腔和高压腔,气缸组件设在高压腔内,气缸组件包括气缸和中隔板,中隔板内设有与油池连通的第一油路通道,曲轴内设有中心轴孔,中心轴孔的入口端与第一油路通道连通,曲轴与主轴承和副轴承之间设有润滑路径,润滑路径的一端与低压腔连通且另一端与第一油路通道连通,中心轴孔的出口端位于滚动轴承内。

Description

压缩机及具有其的车辆 技术领域
本发明涉及制冷领域,尤其是涉及一种压缩机及具有其的车辆。
背景技术
旋转式压缩机的轴承承受压缩组件因压缩气体而产生的气体力,轴承的可靠性直接影响产品可靠性。家用空调及家用冰箱领域为保证轴承可靠性,在旋转轴中心开设供油孔,润滑油沿供油孔分流至各轴承滑动部件参与润滑。这种使用方式对静置放置的产品供油效果较好,但是对于高铁、飞机、坦克、轮船、大巴车、家用轿车、航天飞机、空间站、卫星等移动领域,所涉及空调压缩机设备本体有着大幅度颠簸振动,压缩机内油面高度及曲轴内供油量用常规重力、离心力等方法均难以保证,无法保证滑动部件的润滑,影响使用寿命。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种压缩机,保证润滑油供应持续性。
本发明还提出一种具有上述压缩机的车辆。
根据本发明实施例的压缩机,包括:壳体,所述壳体上设有吸气口和排气口;分隔组件,所述分隔组件设在所述壳体上以将所述壳体内分隔成低压腔和高压腔,所述吸气口与所述低压腔连通,所述排气口与所述高压腔连通,所述分隔组件包括主轴承,所述高压腔内设有油池;气缸组件,所述气缸组件设在所述高压腔内,所述气缸组件包括两个气缸和设在所述两个气缸之间的中隔板,每个所述气缸内设有活塞,至少一个所述气缸的吸气入口与所述低压腔连通,所述主轴承设在所述气缸组件上,所述中隔板内设有与所述油池连通的第一油路通道;副轴承,所述副轴承设在所述气缸组件上;曲轴,所述曲轴包括与所述活塞配合的偏心部、与所述副轴承配合的副轴部和与所述中隔板配合的连接部,所述主轴承外套在所述曲轴的主轴部上,所述曲轴的一端伸入到所述低压腔内,所述曲轴内设有中心轴孔,所述中心轴孔的入口端与所述第一油路通道连通,所述曲轴与所述主轴承和所述副轴承之间设有润滑路径,所述润滑路径的一端与所述低压腔连通且另一端与所述第一油路通道连通;滚动轴承,所述滚动轴承设在所述壳体的内壁上,所述曲轴的伸入到所述低压腔内的端部与所述滚动轴承配合,所述中心轴孔的出口端位于所述滚动轴承内。
根据本发明实施例的压缩机,油池内的润滑油会持续进入到第一油路通道内,保证润滑油供应持续性,润滑原理简单可靠,保证了润滑效果,提高曲轴、主轴承、滚动轴承和副轴承等部件的使用寿命,同时零件数量少,制造装配工艺简单,降低成本,又由于设置高压腔,可以降低压缩机的排油量,降低压缩机的噪音。同时通过设置滚动轴承,对曲轴起到支撑的作用,可以避免曲轴变形,保证压缩机的运行可靠性。
在本发明的一些实施例中,所述中隔板的内周壁和所述连接部的外周壁之间设有间隙,所述偏心部和所述活塞之间设有第一油槽,所述副轴承和所述副轴部之间设有第二油槽,所述第二油槽与所述中心轴孔连通。
在本发明的一些实施例中,所述中心轴孔在所述曲轴的轴向上贯穿所述曲轴,所述壳体的位于所述高压腔的内端面上设有密封件,所述密封件与所述副轴承的外周壁密封配合,所述密封件内设有与所述中心轴孔连通的流动空间。
在本发明的一些实施例中,所述第二油槽包括周向槽和轴向槽,所述周向槽形成为沿周向延伸的环形槽,所述环形槽与所述第一油槽连通,所述轴向槽形成为沿轴向延伸的长条形槽,所述轴向槽分别与所述周向槽和所述中心轴孔连通。
在本发明的一些实施例中,所述主轴承的一侧端面位于所述低压腔内,所述主轴承和所述主轴部之间设有与所述低压腔连通的第二油路通道,所述第二油路通道与所述第一油路通道连通。
在本发明的一些实施例中,所述中隔板的内径大于所述连接部的外径以限定出所述间隙。
在本发明的一些实施例中,所述第一油路通道内设有过滤器。
在本发明的一些实施例中,所述第一油路通道的流通面积的取值范围为0.5mm~4mm。
在本发明的一些实施例中,所述分隔组件还包括分隔板,所述分隔板与所述壳体的内周壁配合以限定出所述低压腔和所述高压腔,所述分隔板上设有装配通孔,所述装配通孔与所述主轴承的外周壁密封配合。
在本发明的一些实施例中,所述压缩机为卧式压缩机。
根据本发明实施例的车辆,包括根据本发明上述实施例的压缩机。
根据本发明实施例的车辆,通过设置上述的压缩机,油池内的润滑油会持续进入到第一油路通道内,保证润滑油供应持续性,润滑原理简单可靠,保证了润滑效果,提高曲轴、主轴承、滚动轴承和副轴承等部件的使用寿命,同时零件数量少,制造装配工艺简单,降低成本,又由于设置高压腔,可以降低压缩机的排油量,降低压缩机的噪音。同时通过设置滚动轴承,对曲轴起到支撑的作用,可以避免曲轴变形,保证压缩机的运行可靠性。
附图说明
图1为根据本发明一些实施例的压缩机的示意图;
图2为根据本发明另一些实施例的压缩机的示意图;
图3为根据本发明再一些实施例的压缩机的示意图;
图4为根据本发明实施例的压缩机的内部结构示意图;
图5为根据本发明一些实施例的中隔板的示意图;
图6为图5所示的中隔板的剖视图;
图7为根据本发明另一些实施例的中隔板的示意图;
图8为根据本发明实施例的曲轴的示意图;
图9为根据本发明实施例的曲轴与滚动轴承的配合示意图;
图10为根据本发明实施例的主轴承的示意图。
附图标记:
压缩机100、
壳体1、吸气口10、排气口11、低压腔12、高压腔13、第一壳体14、第二壳体15、
分隔组件2、主轴承20、分隔板21、
油池3、
气缸组件4、气缸40、中隔板41、第一油路通道410、间隙42、活塞44、
曲轴5、偏心部50、第二油路通道51、第一油槽52、中心轴孔53、副轴部54、主轴部55、连接部56、第二油槽57、周向槽570、轴向槽571、
过滤器6、
电机7、定子70、转子71、
副轴承8、
滚动轴承9、
密封件16、流动空间160、
轴承支架17。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、 “外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图10详细描述根据本发明实施例的压缩机100,其中压缩机100可以为立式压缩机或者卧式压缩机,压缩机100也可以为旋转式压缩机、涡旋式压缩机或者叶片式压缩机等。具体地,压缩机100可以应用在高铁、飞机、坦克、轮船、大巴车、家用轿车、航天飞机、空间站、卫星等设有空调的设备上。更具体地,压缩机100中的冷媒为CO2冷媒例如R744冷媒。
如图1-图4所示,根据本发明实施例的压缩机100,包括:壳体1、分隔组件2、气缸组件4、副轴承8、曲轴5和滚动轴承9,其中壳体1上设有吸气口10和排气口11。分隔组件2设在壳体1上以将壳体1内分隔成低压腔12和高压腔13,吸气口10与低压腔12连通,排气口11与高压腔13连通,由此可知,高压腔13内的压力大于低压腔12内的压力,高压腔13和低压腔12之间存在压力差。需要进行说明的是,在本发明的描述中,高压和低压只是表明高压的压力大于低压的压力,而不对高压腔13和低压腔12内的具体压力值进行限定。
分隔组件2包括主轴承20,高压腔13内设有油池3。气缸组件4设在高压腔13内,气缸组件4包括两个气缸40和设在两个气缸40之间的中隔板41,每个气缸40内设有活塞44,至少一个气缸40的吸气入口与低压腔12连通。当每个气缸40的吸气入口均与低压腔12连通时,从吸气口10进入到低压腔12内的低压冷媒分别排入到每个气缸40内进行压缩。当其中一个气缸40的吸气入口与低压腔12连通时,从吸气口10进入到低压腔12内的低压冷媒先排入到其中一个气缸40中进行压缩,从上述气缸40排出的经过一次压缩后的冷媒排入到另一个气缸40内进行第二次压缩。
主轴承20设在气缸组件4上。隔板41内设有与油池3连通的第一油路通道410。可选地,第一油路通道410的流通面积的取值范围为0.5mm~4mm,从而可以保证供油量。曲轴5包括与活塞44配合的偏心部50、与副轴承8配合的副轴部54和与中隔板41配合的连接部56,主轴承20外套在曲轴5的主轴部55上。
曲轴5的一端伸入到低压腔12内,曲轴5内设有中心轴孔53,中心轴孔53的入口端与第一油路通道410连通。滚动轴承9设在壳体1的内壁上,曲轴5的伸入到低压腔12内的端部与滚动轴承9配合,中心轴孔53的出口端位于滚动轴承9内。由此可知,由于滚动轴承9位于低压腔12内,因此中心轴孔53的出口端位于低压腔12内,即中心轴孔53的出口端处于低压环境。具体地,滚动轴承9可以通过轴承支架17固定在壳体1的内壁上。在图1所示的示例中,轴承支架17的外周壁固定在壳体1的内周壁上。在图2所示的示例中,轴承支架17固定在壳体1的内端面上。在图3所示的示例中,轴承支架17与壳体1为一体成型件。优选地,滚动轴承9与曲轴5之间的游隙介于40~60um,从而即使滚动轴承9与曲轴5不垂直或不同心也可保证装配要求。
曲轴5与主轴承20和副轴承8之间设有润滑路径,润滑路径的一端与低压腔12连通且另一端与第一油路通道410连通。由此可知,润滑路径的两端之间存在压力差,在压力差的作用下,第一油路通道410内的润滑油会进入到润滑路径中以对曲轴5、主轴承20和副轴承8等部件进行润滑。
具体而言,由于第一油路通道410与油池3连通,且油池3位于高压腔13内,因此第一油路通道410的入口端处于高压环境,由此可知,第一油路通道410的入口端和中心轴孔53的出口端之间存在压力差。因此在压力差的作用下,油池3中的润滑油会进入到第一油路通道410中,第一油路通道410中的润滑油会进入到中心轴孔53内,然后中心轴孔53内的润滑油排到滚动轴承9中以对滚动轴承9进行润滑。对滚动轴承9进行润滑的润滑油可以排入到低压腔12内,润滑油的油温可以得到降低,低压腔12内的润滑油可以再被吸入到气缸40后排入到高压腔13,从而可以缩短润滑油处于高温状态的时间,延长润滑油的使用寿命。
在压缩机100运行的过程中,外界的低压冷媒从吸气口10吸入到低压腔12内,低压腔12内的低压冷媒通过吸气入口吸入到气缸40内进行压缩,压缩后的高压冷媒排入到高压腔13内,高压腔13内的冷媒从排气口11排出壳体1。由此可知,在压缩机100的运行过程中,高压腔13和低压腔12之间始终存在压力差,因此在压力差的作用下,油池3内的冷媒持续进入到第一油路通道410内以对滚动轴承9、曲轴5、主轴承20和副轴承8等部件进行润滑。
由于从气缸40排出的冷媒先排入到高压腔13后再从排气口11排出,冷媒可以在高压 腔13内进行油气分离,从而可以降低排气口11的排油量,同时高压腔13还可以起到降噪的作用。
根据本发明实施例的压缩机100,通过在壳体1内设置低压腔12和高压腔13、在中隔板41内设置第一油路通道410、在曲轴5上设置中心轴孔53和设置润滑路径,利用高压腔13和低压腔12之间的压力差将油池3内的润滑油排入到第一油路通道410内,然后第一油路通道410内的润滑油排向中心轴孔53和润滑路径,以实现对曲轴5、主轴承20、滚动轴承9和副轴承8等部件进行润滑,从而即使压缩机100处于颠簸环境,油池3内的润滑油也会持续进入到第一油路通道410内,保证润滑油供应持续性,润滑原理简单可靠,保证了润滑效果,提高曲轴5、主轴承20、滚动轴承9和副轴承8等部件的使用寿命,同时零件数量少,制造装配工艺简单,降低成本,又由于设置高压腔13,可以降低压缩机100的排油量,降低压缩机100的噪音。同时通过设置滚动轴承9,对曲轴5起到支撑的作用,可以避免曲轴5变形,保证压缩机100的运行可靠性。
在本发明的一些实施例中,如图1-图4所示,中隔板41的内周壁和连接部56的外周壁之间设有间隙42,偏心部50和活塞44之间设有第一油槽52,副轴承8和副轴部54之间设有第二油槽57,第二油槽57与中心轴孔53连通。
具体而言,第一油路通道410的一端位于中隔板41的外周壁上,第一油路通道410的另一端位于中隔板41的内周壁上以与间隙42连通,从第一油路通道410流入到间隙42内的润滑油可以流向两侧以对两个活塞44、两个偏心部50和两个气缸40进行润滑,又通过设置第一油槽52,可以进一步对偏心部50和活塞44起到润滑作用,不仅使得压缩机100的润滑油路简单,且提高了对曲轴5、活塞44和气缸40的润滑效果,进一步提高压缩机100的使用寿命。同时通过设置第二油槽57,流入到第一油槽52内的润滑油通过第二油槽57流入到中心轴孔53中,流入到第二油槽57中的润滑油可以对副轴承8和副轴部54进行润滑。由此可知,间隙42、第一油槽52和第二油槽57不仅起到连通第一油路通道410和中心轴孔53的作用,还作为润滑路径的一部分,使得压缩机100的结构简单。
当然可以理解的是,第一油路通道410和中心轴孔53之间也可以通过设置在其他位置的润滑油流路进行连通,例如可以在连接部56上设置油孔等,只要可以使得润滑油从第一油路通道410流向中心轴孔53即可。
在本发明的一些实施例中,如图1-图4、图8和图9所示,中心轴孔53在曲轴5的轴向上贯穿曲轴5,壳体1的位于高压腔13的内端面上设有密封件16,密封件16与副轴承8的外周壁密封配合,密封件16内设有与中心轴孔53连通的流动空间160。从而通过设置密封件16,将中心轴孔53与高压腔13间隔开,保证中心轴孔53的出口端和第一油路通道410的入口端之间存在压力差。在本发明的一些具体示例中,第二油槽57内的润滑油可 以流入到流动空间160内,然后从流动空间160流入到中心轴孔53内,从而使得曲轴5的结构简单。在本发明的另一些具体示例中,第二油槽57内的润滑油的一部分可以通过设在副轴部54上的油孔直接流入到中心轴孔53内,第二油槽57内的润滑油的另一部分可以流入到流动空间160内,然后从流动空间160流入到中心轴孔53内。
如图1-图3所示,在本发明的具体实施例中,第二油槽57包括周向槽570和轴向槽571,周向槽570形成为沿周向延伸的环形槽,环形槽570与第一油槽52连通,轴向槽571形成为沿轴向延伸的长条形槽,轴向槽571分别与周向槽570和中心轴孔53连通。从而可以保证润滑油的流动过程顺畅。优选地,轴向槽571可以形成为沿轴向延伸的螺旋槽,从而可以提高副轴承8和曲轴5之间的润滑效果。
在本发明的一些实施例中,如图1-图3所示,主轴承20的一侧端面位于低压腔12内,由此可知,主轴承20的两侧端面之间存在压力差。主轴承20和曲轴5之间设有与低压腔12连通的第二油路通道51,第二油路通道51与第一油路通道410连通,其中第二油路通道51为润滑路径的一部分。具体地,第二油路通道51可以设在主轴承20的内周壁上或者第二油路通道51可以设在曲轴5的外周壁上。
由于主轴承20的一侧端面位于低压腔12内,主轴承20的另一侧端面位于高压腔13内,因此主轴承20的两侧端面之间存在压力差,由此可知,第二油路通道51的两端之间存在压力差。第一油路通道410的入口端处于高压环境,第二油路通道51的出口端处于低压环境。在压力差的作用下,油池3内的润滑油进入到第一油路通道410内,第一油路通道410内的润滑油进入到第二油路通道51内,然后第二油路通道51内的润滑油排入到低压腔12内。润滑油在第二油路通道51内流动的过程中可以对曲轴5的外周壁和主轴承20的内周壁进行润滑。从而可以保证对曲轴5的外周壁和主轴承20的内周壁的润滑效果。
在本发明的具体示例中,每个偏心部50和活塞44之间设有第一油槽52,第二油路通道51通过第一油槽52和间隙42与第一油路通道410连通。
如图8和图9所示,在本发明的一些具体示例中,第一油槽52设在偏心部50的外周壁上。在本发明的优选实施例中,中隔板41的内径大于连接部56的外径以限定出间隙42。从而使得中隔板41和曲轴5的结构简单,同时进一步便于进入到间隙42内的润滑油流向位于中隔板41两侧的气缸40、偏心部50和活塞44。
在本发明的一些实施例中,润滑路径可以由在径向上贯穿曲轴5的多个出油孔组成,其中一部分出油孔设在主轴部55上,其中一部分出油孔设在副轴部54,其余部分的出油孔设在连接部56上以与第一油路通道410连通,从而从第一油路通道410流出的润滑油通过出油孔进入到中心轴孔53内,然后中心轴孔53内的一部分润滑油通过出油孔流向主轴承20和副轴承8,中心轴孔53内的另一部分润滑油流向滚动轴承9。
在本发明的一些实施例中,如图7所示,第一油路通道410内设有过滤器6。从而可以流向第一油路通道410的润滑油起到过滤的作用,提高润滑油品质,避免因杂质进入到主轴承20内而引起磨损。可选地,过滤器6为过滤网。从而使得过滤器6的结构简单。
如图1-图3所示,根据本发明的一些实施例,分隔组件2还包括分隔板21,分隔板21与壳体1的内周壁配合以限定出低压腔12和高压腔13,分隔板21上设有装配通孔,装配通孔与主轴承20的外周壁密封配合。从而通过设置分隔板21,可以避免主轴承20由于压力差而发生变形,避免气缸40因主轴承20变形而变形,提高压缩机100运行的可靠性。优选地,装配通孔和主轴承20的外周壁之间设有密封圈。具体地,至少一个气缸40的吸气入口通过设在分隔板21上的吸气通道与低压腔12连通。
具体地,如图1-图3所示,壳体1包括第一壳体14和第二壳体15,分隔板21的外沿夹持在第一壳体14和第二壳体15之间,固定连接件穿过分隔板21的外沿固定在第一壳体14和第二壳体15上,从而使得分隔板21的固定方式简单。
在本发明的具体示例中,如图1-图3所示,当压缩机100为旋转式压缩机时,压缩机100还包括电机7,电机7设在低压腔12内,电机7包括定子70和转子71,定子70固定在壳体1的内周壁上,转子71可转动地设在定子70内,转子71固定在曲轴5上以驱动曲轴5转动。具体而言,电机7运行时会产生一定的热量,从吸气口10进入到低压腔12内的低压冷媒中的液态冷媒会在电机7散出的热量作用下汽化,从而可以降低吸入到气缸40内的冷媒中的液态冷媒含量,可以在一定程度上避免压缩机100发生液击现象。
根据本发明实施例的车辆,包括根据本发明上述实施例的压缩机100。
根据本发明实施例的车辆,通过设置上述的压缩机100,油池3内的润滑油会持续进入到第一油路通道410内,保证润滑油供应持续性,润滑原理简单可靠,保证了润滑效果,提高曲轴5、主轴承20、滚动轴承9和副轴承8等部件的使用寿命,同时零件数量少,制造装配工艺简单,降低成本,又由于设置高压腔13,可以降低压缩机100的排油量,降低压缩机100的噪音。同时通过设置滚动轴承9,对曲轴5起到支撑的作用,可以避免曲轴5变形,保证压缩机100的运行可靠性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示 例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种压缩机,其特征在于,包括:
    壳体,所述壳体上设有吸气口和排气口;
    分隔组件,所述分隔组件设在所述壳体上以将所述壳体内分隔成低压腔和高压腔,所述吸气口与所述低压腔连通,所述排气口与所述高压腔连通,所述分隔组件包括主轴承,所述高压腔内设有油池;
    气缸组件,所述气缸组件设在所述高压腔内,所述气缸组件包括两个气缸和设在所述两个气缸之间的中隔板,每个所述气缸内设有活塞,至少一个所述气缸的吸气入口与所述低压腔连通,所述主轴承设在所述气缸组件上,所述中隔板内设有与所述油池连通的第一油路通道;
    副轴承,所述副轴承设在所述气缸组件上;
    曲轴,所述曲轴包括与所述活塞配合的偏心部、与所述副轴承配合的副轴部和与所述中隔板配合的连接部,所述主轴承外套在所述曲轴的主轴部上,所述曲轴的一端伸入到所述低压腔内,所述曲轴内设有中心轴孔,所述中心轴孔的入口端与所述第一油路通道连通,所述曲轴与所述主轴承和所述副轴承之间设有润滑路径,所述润滑路径的一端与所述低压腔连通且另一端与所述第一油路通道连通;
    滚动轴承,所述滚动轴承设在所述壳体的内壁上,所述曲轴的伸入到所述低压腔内的端部与所述滚动轴承配合,所述中心轴孔的出口端位于所述滚动轴承内。
  2. 根据权利要求1所述的压缩机,其特征在于,所述中隔板的内周壁和所述连接部的外周壁之间设有间隙,所述偏心部和所述活塞之间设有第一油槽,所述副轴承和所述副轴部之间设有第二油槽,所述第二油槽与所述中心轴孔连通。
  3. 根据权利要求2所述的压缩机,其特征在于,所述中心轴孔在所述曲轴的轴向上贯穿所述曲轴,所述壳体的位于所述高压腔的内端面上设有密封件,所述密封件与所述副轴承的外周壁密封配合,所述密封件内设有与所述中心轴孔连通的流动空间。
  4. 根据权利要求2或3所述的压缩机,其特征在于,所述第二油槽包括周向槽和轴向槽,所述周向槽形成为沿周向延伸的环形槽,所述环形槽与所述第一油槽连通,所述轴向槽形成为沿轴向延伸的长条形槽,所述轴向槽分别与所述周向槽和所述中心轴孔连通。
  5. 根据权利要求1-5中任一项所述的压缩机,其特征在于,所述主轴承的一侧端面位于所述低压腔内,所述主轴承和所述主轴部之间设有与所述低压腔连通的第二油路通道,所述第二油路通道与所述第一油路通道连通。
  6. 根据权利要求2-5中任一项所述的压缩机,其特征在于,所述中隔板的内径大于所述连接部的外径以限定出所述间隙。
  7. 根据权利要求1-6中任一项所述的压缩机,其特征在于,所述第一油路通道内设有过滤器。
  8. 根据权利要求1-7中任一项所述的压缩机,其特征在于,所述第一油路通道的流通面积的取值范围为0.5mm~4mm。
  9. 根据权利要求1-8中任一项所述的压缩机,其特征在于,所述分隔组件还包括分隔板,所述分隔板与所述壳体的内周壁配合以限定出所述低压腔和所述高压腔,所述分隔板上设有装配通孔,所述装配通孔与所述主轴承的外周壁密封配合。
  10. 根据权利要求1-9中任一项所述的压缩机,其特征在于,所述压缩机为卧式压缩机。
  11. 一种车辆,其特征在于,包括根据权利要求1-10中任一项所述的压缩机。
PCT/CN2017/072523 2017-01-24 2017-01-24 压缩机及具有其的车辆 WO2018137163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072523 WO2018137163A1 (zh) 2017-01-24 2017-01-24 压缩机及具有其的车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072523 WO2018137163A1 (zh) 2017-01-24 2017-01-24 压缩机及具有其的车辆

Publications (1)

Publication Number Publication Date
WO2018137163A1 true WO2018137163A1 (zh) 2018-08-02

Family

ID=62977797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072523 WO2018137163A1 (zh) 2017-01-24 2017-01-24 压缩机及具有其的车辆

Country Status (1)

Country Link
WO (1) WO2018137163A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314318A (en) * 1992-02-18 1994-05-24 Hitachi, Ltd. Horizontal multi-cylinder rotary compressor
CN203614415U (zh) * 2013-08-26 2014-05-28 广东美芝制冷设备有限公司 旋转式压缩机及具有该旋转式压缩机的冷冻循环装置
CN106704198A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机及具有其的车辆
CN206429421U (zh) * 2017-01-24 2017-08-22 广东美芝制冷设备有限公司 压缩机及具有其的车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314318A (en) * 1992-02-18 1994-05-24 Hitachi, Ltd. Horizontal multi-cylinder rotary compressor
CN203614415U (zh) * 2013-08-26 2014-05-28 广东美芝制冷设备有限公司 旋转式压缩机及具有该旋转式压缩机的冷冻循环装置
CN106704198A (zh) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 压缩机及具有其的车辆
CN206429421U (zh) * 2017-01-24 2017-08-22 广东美芝制冷设备有限公司 压缩机及具有其的车辆

Similar Documents

Publication Publication Date Title
US9617996B2 (en) Compressor
CN106704198B (zh) 压缩机及具有其的车辆
CN106762666B (zh) 压缩机及具有其的车辆
WO2015022775A1 (ja) スクロール圧縮機
US6422844B2 (en) Screw compressor
US7731486B2 (en) Compressor with dual pathways for returning lubricating oil
CN103912493A (zh) 压缩机及具有该压缩机的制冷系统
JP6762785B2 (ja) 開放型冷媒圧縮機
CN110617222B (zh) 一种电动汽车空调用卧式旋转压缩机及工作方法
CN110925211A (zh) 一种低背压滚动转子式压缩机及空调
WO2018137163A1 (zh) 压缩机及具有其的车辆
JP2011174453A (ja) スクロール圧縮機
JPS6327104Y2 (zh)
WO2018137159A1 (zh) 压缩机及具有其的车辆
JP2022528287A (ja) ポンプボディアセンブリ、圧縮機及びエアコン
CN219176571U (zh) 一种用于压缩机的曲轴结构及压缩机
JP2014218985A (ja) 気体圧縮機
CN113978206B (zh) 一种前排气旋叶式汽车空调压缩机
CN219101527U (zh) 一种用于压缩机的主轴承组件及压缩机
CN211950862U (zh) 一种低背压滚动转子式压缩机及空调
US8944781B2 (en) Electrically driven gas compressor
CN219754796U (zh) 涡旋压缩机及车辆
CN217898186U (zh) 压缩机泵体、压缩机及温度调节系统
CN220581266U (zh) 一种摆动转子结构及一体式摆动转子式泵体组件
CN116241473A (zh) 一种用于压缩机的曲轴结构及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894465

Country of ref document: EP

Kind code of ref document: A1