WO2018137157A1 - 编码速率的调整方法、基站和终端设备 - Google Patents

编码速率的调整方法、基站和终端设备 Download PDF

Info

Publication number
WO2018137157A1
WO2018137157A1 PCT/CN2017/072517 CN2017072517W WO2018137157A1 WO 2018137157 A1 WO2018137157 A1 WO 2018137157A1 CN 2017072517 W CN2017072517 W CN 2017072517W WO 2018137157 A1 WO2018137157 A1 WO 2018137157A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
base station
coding rate
cross
level target
Prior art date
Application number
PCT/CN2017/072517
Other languages
English (en)
French (fr)
Inventor
黄希珠
刘菁
郭轶
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/072517 priority Critical patent/WO2018137157A1/zh
Priority to CN201780083320.XA priority patent/CN110178343A/zh
Publication of WO2018137157A1 publication Critical patent/WO2018137157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present application relates to the field of communications, and in particular, to a method for adjusting a coding rate, a base station, and a terminal device.
  • the adaptive adjustable rate source coding is usually adopted, and the coding rate is dynamically adjusted according to the quality of the wireless channel and the system load, and the flexibility between the communication quality and the system capacity is adopted.
  • the configuration achieves a good balance. For example, when the system is lightly loaded, a higher coding rate is usually used to provide a high quality communication experience. Conversely, when the system load is heavy, by configuring a lower coding rate, it can occupy less system bandwidth and increase the total number of users accommodated by the system.
  • the terminal device does not adjust the coding rate to the target coding rate. , affecting system performance.
  • the embodiment of the present application provides a method for adjusting a coding rate, a base station, and a terminal device, to improve system performance.
  • the embodiment of the present application provides a method for adjusting a coding rate, including: receiving, by a base station, coding rate adjustment capability indication information of a terminal device, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports cross-level rate adjustment If the terminal device supports the cross-level rate adjustment, the base station determines the cross-level target coding rate of the terminal device, and the cross-level target coding rate is not adjacent or adjacent to the current coding rate of the terminal device; the base station sends the cross-level target code to the terminal device. rate.
  • the base station acquires the coding rate adjustment capability of the terminal device. Therefore, if the terminal device supports the inter-level rate adjustment, the terminal device may perform the current coding after the base station determines and delivers the cross-level target coding rate of the terminal device. The rate is adjusted to the cross-level target encoding rate, which improves the flexibility of the terminal device to adjust the encoding rate, thereby improving system performance and improving the user experience.
  • the determining, by the base station, the cross-level target coding rate of the terminal device includes: determining, by the base station, the cross-level target coding rate of the terminal device according to at least the current coding rate and the channel condition information of the terminal device.
  • the base station receives the coding rate adjustment capability indication information of the terminal device, where the base station receives the coding rate adjustment capability indication information sent by the terminal device by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the base station sends the cross-level target coding rate to the terminal device, where the base station sends the cross-level target coding rate to the terminal device by using MAC CE signaling or RRC signaling.
  • the method further includes: if the terminal device does not support the cross-level rate adjustment, the base station determines the non-cross-level target coding rate of the terminal device, where the non-cross-level target coding rate is adjacent to the current coding rate of the terminal device; The device sends a non-cross-level target encoding rate.
  • the base station determines a non-cross-level target coding rate of the terminal device, including: the base station is configured according to at least the terminal device The current coding rate and channel condition information determines the non-cross-level target coding rate of the terminal device.
  • the embodiment of the present application provides a method for adjusting a coding rate, where the terminal device reports the coding rate adjustment capability indication information to the base station, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment.
  • the terminal device receives the cross-level target coding rate sent by the base station; wherein the cross-level target coding rate is not adjacent or adjacent to the current coding rate of the terminal device; if the terminal device supports the cross-level rate adjustment, the terminal device adjusts the current coding rate. Rate the rate for the cross-level target.
  • the base station acquires the coding rate adjustment capability of the terminal device. Therefore, if the terminal device supports the inter-level rate adjustment, the terminal device may perform the current coding after the base station determines and delivers the cross-level target coding rate of the terminal device. The rate is adjusted to the cross-level target encoding rate, which improves the flexibility of the terminal device to adjust the encoding rate, thereby improving system performance and improving the user experience.
  • the terminal device reports the coding rate adjustment capability indication information to the base station, where the terminal device reports the coding rate adjustment capability indication information to the base station by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the terminal device receives the cross-level target coding rate sent by the base station, where the terminal device receives the cross-level target coding rate sent by the base station by using MAC CE signaling or RRC signaling.
  • an embodiment of the present application provides a base station, where the base station includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception and signal according to an instruction to perform memory storage.
  • the base station is configured to perform the method of any of the above first aspect or the first aspect when the processor executes the instruction stored in the memory.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception according to an instruction for executing the memory storage. And signaling, when the processor executes the instruction stored in the memory, the terminal device is configured to perform the method of any of the above second aspect or the second aspect.
  • the embodiment of the present application provides a base station, which is used to implement any one of the foregoing first aspect or the first aspect, and includes a corresponding functional module, which is used to implement the steps in the foregoing method.
  • the embodiment of the present application provides a terminal device, which is used to implement the method of any one of the foregoing second aspect or the second aspect, and includes a corresponding functional module, which is used to implement the steps in the foregoing method.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect The method in the implementation.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect The method in the implementation.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method of the first aspect or any possible implementation of the first aspect.
  • the embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the method in any of the possible implementations of the second aspect or the second aspect.
  • the embodiment of the present application provides a method for processing a communication delay, where the method includes: the base station configures a first threshold and a second threshold for the terminal device, where the first threshold is smaller than the second threshold; and the base station receives the delay from the terminal device. a parameter, where the delay parameter is reported by the terminal device when the link quality is higher than the first threshold or the link quality is lower than the second threshold; The station adjusts the CDRX period of the non-contiguous receiving air interface of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter.
  • the terminal device When the link quality of the terminal device is between the first threshold and the second threshold, the terminal device does not need to report its own delay parameter to the base station, and the terminal device can maintain its current delay parameter, thus reducing the terminal device. Reporting the number of the delay parameters to the base station, and avoiding the problem that the terminal device frequently reports the delay parameter to the base station. Further, in the embodiment of the present application, the overhead of processing the signaling by the base station is reduced, and the parameters corresponding to the terminal device are also frequently reduced. The problem of adjustment.
  • the delay parameter is an end-to-end communication delay.
  • the base station adjusts the CDRX period of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter, where the base station determines the end-to-end communication delay margin according to the end-to-end communication delay and the preset communication delay.
  • the base station increases the CDRX period of the air interface or increases the number of retransmissions of the air interface data packet; or, when the end-to-end communication delay margin is not greater than zero, the base station reduces the air interface.
  • the delay parameter is an end-to-end communication delay margin
  • the end-to-end communication delay margin is a difference between a preset communication delay and an end-to-end communication delay.
  • the base station adjusts the CDRX period of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter, including: when the end-to-end communication delay margin is greater than zero, the base station increases the CDRX period of the air interface or increases the air interface data packet. The number of retransmissions; or, when the end-to-end communication delay margin is not greater than zero, the base station reduces the CDRX period of the air interface or reduces the number of retransmissions of the air interface data packet.
  • the base station configures the first threshold and the second threshold for the terminal device, where the base station configures the first threshold and the second threshold for the terminal device by using the radio resource control RRC signaling or the medium access control element MAC CE signaling.
  • the embodiment of the present application provides a method for processing a communication delay, where the method includes: receiving, by the terminal device, a first threshold and a second threshold sent by the base station, where the first threshold is smaller than the second threshold; and the terminal device acquires the terminal device
  • the link quality is reported by the terminal device to the base station when the link quality is higher than the first threshold or the link quality is lower than the second threshold.
  • the delay parameter is used to enable the base station to adjust the air interface according to the delay parameter. The number of retransmissions of the CDRX period or air interface packet of the discontinuous reception air interface.
  • the terminal device When the link quality of the terminal device is between the first threshold and the second threshold, the terminal device does not need to report its own delay parameter to the base station, and the terminal device can maintain its current delay parameter, thus reducing the terminal device. Reporting the number of the delay parameters to the base station, and avoiding the problem that the terminal device frequently reports the delay parameter to the base station. Further, in the embodiment of the present application, the overhead of processing the signaling by the base station is reduced, and the parameters corresponding to the terminal device are also frequently reduced. The problem of adjustment.
  • the terminal device reports the delay parameter to the base station, where the terminal device acquires the end-to-end communication delay, and the terminal device reports the end-to-end communication delay to the base station.
  • the terminal device reports the delay parameter to the base station, where the terminal device acquires the end-to-end communication delay; the terminal device determines the end-to-end communication delay according to the end-to-end communication delay and the preset communication delay. The terminal device reports the end-to-end communication delay margin to the base station.
  • the embodiment of the present application provides a base station, where the base station includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception according to an instruction to execute the memory storage. Signal transmission, when the processor executes an instruction stored in the memory, the base station is configured to perform any one of the above eleventh or eleventh aspects.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory, a transceiver, and a processing
  • the memory device is configured to store instructions; the processor is configured to control the transceiver to perform signal reception and signal transmission according to the instructions for executing the memory storage, and the terminal device is configured to execute the twelfth time when the processor executes the memory storage instruction Aspect or any one of the twelfth aspects.
  • the embodiment of the present application provides a base station, which is used to implement any one of the foregoing eleventh or eleventh aspects, and includes a corresponding functional module, which is used to implement the steps in the foregoing method.
  • the embodiment of the present application provides a terminal device, which is used to implement any one of the foregoing twelfth or twelfth aspects, and includes a corresponding functional module, which is used to implement the steps in the foregoing method. .
  • a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the eleventh or eleventh aspects The method in the possible implementation.
  • a computer readable storage medium in a eighteenth aspect, storing instructions for causing the computer to perform any of the twelfth aspect or the twelfth aspect when it is run on a computer The method in the possible implementation.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the eleventh or eleventh aspects of the possible implementation.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the possible implementations of the twelfth or twelfth aspect.
  • the terminal device reports the coding rate adjustment capability indication information of the terminal device to the base station, so the base station can configure the terminal device to respond to the target device by combining the coding rate adjustment capability of the terminal device and the current coding rate of the terminal device.
  • the coding rate which improves the success rate of the terminal device in response to the target coding rate and improves system performance.
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a method for adjusting a coding rate according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a base station used for performing a coding rate adjustment method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal device for performing a coding rate adjustment method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another base station for performing a coding rate adjustment method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another terminal device for performing a coding rate adjustment method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for processing a communication delay according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an end-to-end communication delay according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station for performing a communication delay processing method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device for performing a communication delay processing method according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of another base station for performing a communication delay processing method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another terminal device for performing a communication delay processing method according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing a system architecture applicable to an embodiment of the present application.
  • the system architecture applicable to the embodiment of the present application includes at least a terminal device 101 having a communication function.
  • the terminal device 101 accesses the base station 102.
  • the terminal device 101 and the terminal device of the opposite end can access the same base station, and can also access the different base stations.
  • FIG. 1 is only an exemplary content in the embodiment of the present application, and is not limited to the application scenario of the application.
  • the base station in the embodiment of the present application may be a device for communicating with a terminal device, for example, may be a base station (Base Transceiver Station, BTS for short) in a GSM system or a CDMA system, or a base station (NodeB in a WCDMA system).
  • BTS Base Transceiver Station
  • NodeB base station
  • the abbreviation NB may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network in a future 5G network.
  • a side device or a network device in a future evolved PLMN network may be a device for communicating with a terminal device, for example, may be a base station (Base Transceiver Station, BTS for short) in a GSM system or a CDMA system, or a base station (NodeB in
  • the terminal device in the embodiment of the present application may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and various forms of user equipment (User Equipment, UE). , mobile station (MS), terminal, terminal equipment, and the like. For convenience of description, in the present application, it is simply referred to as a user equipment or a UE.
  • UE User Equipment
  • MS mobile station
  • terminal terminal equipment
  • FIG. 2 exemplarily shows a method for adjusting a coding rate according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • Step 201 The terminal device reports the coding rate adjustment capability indication information to the base station, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment, and the base station receives the coding rate adjustment capability indication information of the terminal device.
  • Step 202 If the terminal device supports cross-level rate adjustment, the base station determines a cross-level target coding rate of the terminal device, where the cross-level target coding rate is not adjacent or adjacent to the current coding rate of the terminal device; wherein, the cross-level target coding rate
  • the current encoding rate with the terminal device is the encoding rate of the encoding rate set between the two communicating terminal devices; the encoding rate concentration includes a plurality of encoding rates; the cross-level target encoding rate is adjacent to the current encoding rate of the terminal device.
  • Step 203 The base station sends a cross-level target coding rate to the terminal device, and the terminal device receives the cross-level target coding rate sent by the base station.
  • Step 204 If the terminal device supports cross-level rate adjustment, the terminal device adjusts the current coding rate to a cross-level target coding rate.
  • the method for adjusting the coding rate provided by the embodiment of the present application can be applied to the adjustment of the coding rate of the voice class, and can also be applied to the adjustment of the coding rate of the video class, such as a video phone.
  • the base station acquires the coding rate adjustment capability of the terminal device. Therefore, if the terminal device supports the inter-level rate adjustment, the terminal device may perform the current coding after the base station determines and delivers the cross-level target coding rate of the terminal device. The rate is adjusted to the cross-level target encoding rate, which improves the flexibility of the terminal device to adjust the encoding rate, thereby improving system performance and improving the user experience.
  • the two terminal devices that perform communication negotiate the coding rate adjustment capability of the two terminal devices, and the coding rate adjustment capability may specifically determine whether the terminal device supports the cross-level rate adjustment, for example, The session description protocol (SDP) negotiates the coding rate adjustment capability of two terminal devices.
  • SDP session description protocol
  • the base station may send a capability query request to the terminal device, where the capability query request is used to query the coding rate adjustment capability of the terminal device, and after receiving the capability query request, the terminal device may report the coding rate adjustment to the base station. Capability indication information.
  • the terminal device actively reports the coding rate adjustment capability indication information to the base station.
  • the capability of supporting cross-level rate adjustment may be implemented by a mode-change-neighbor parameter, that is, the coding rate adjustment capability indication information may specifically be a mode-change-neighbor parameter.
  • the two communication terminal devices can also negotiate the rate types supported by the two terminal devices, and can also determine the coding rate set applicable to the two terminal devices, and the coding rate. Any encoding rate included in the set can be supported by both terminal devices.
  • the coding rate set supported by the terminal device includes a plurality of coding rates, and the cross-level target coding rate and the non-trans-level coding rate are each one of a plurality of coding rates. In the embodiment of the present application, the multiple encoding rates included in the encoding rate set are sorted by size. If the terminal device does not support the inter-rate rate adjustment, the terminal device can only adjust the rate between the two adjacent coding rates. If the terminal device supports the inter-rate rate adjustment, the terminal device can adjust to any of the coding rate sets. A coding rate.
  • the encoding rate is concentrated to support 5 encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding rate 4, and encoding rate 5.
  • the cross-level target coding rate may be any coding rate in the coding rate set, such as the coding rate 4 adjacent to the coding rate 3, or the cross-level target coding rate is the coding rate 3 Non-adjacent coding rate 1.
  • the cross-level target coding rate is the coding rate 1
  • the cross-rate rate adjusted terminal device can directly adjust the coding rate from the coding rate 3 to the coding rate 1.
  • the present application provides an optional implementation manner.
  • the base station determines the cross-level target coding rate of the terminal device, including: determining, by the base station, the cross-level target coding rate of the terminal device according to at least the current coding rate and channel condition information of the terminal device.
  • the terminal device can report the current coding rate of the terminal device to the base station, and the base station can also obtain the current coding rate of the terminal device by using operations such as detection.
  • the terminal device may report the channel status information to the base station, and the base station may also obtain the channel status information by using an operation such as detecting.
  • the channel status information may be information that reflects channel quality, such as network load, network quality, and the like.
  • the parameters that can reflect the network quality are, for example, a packet loss rate
  • the parameters that can reflect the network load are: physical resource block (PRB) utilization, control channel elements (control) Channel element, CCE) utilization, etc.
  • PRB physical resource block
  • CCE control channel elements
  • the base station can increase the coding rate of the terminal device by using a better quality of the network, thereby obtaining a metal-oxide-semiconductor (MOS) gain, which can be caused when the network quality is deteriorated.
  • MOS metal-oxide-semiconductor
  • the coding rate of the terminal device is lowered a little, and the packet loss rate gain and the coverage gain are obtained.
  • the base station can combine the network quality and the network load to adjust the coding rate of the terminal device to a better coding rate.
  • the base station receives the coding rate adjustment capability indication information of the terminal device, where the base station includes a Media Access Control Control Element (MAC CE) signaling or a Radio Resource Control (RRC) message.
  • the coding rate adjustment capability indication information sent by the receiving terminal device.
  • the terminal device reports the coding rate adjustment capability indication information to the base station, and the terminal device reports the coding rate adjustment capability indication information to the base station by using the MAC CE signaling or the RRC signaling.
  • the MAC CE is a control plane message of the MAC layer defined in the standard 36.321.
  • the MAC CE signaling may include a Buffer Status Report (BSR), which is used to enable the terminal device to report the uplink data volume, and a Power Headroom Report (PHR), which is used to enable the terminal device to report power.
  • BSR Buffer Status Report
  • PHR Power Headroom Report
  • a MAC CE signaling may be newly defined for carrying the coding rate adjustment capability indication information.
  • the base station sends the cross-level target coding rate to the terminal device, where the base station sends the cross-level target coding rate to the terminal device by using MAC CE signaling or RRC signaling.
  • the terminal device receives the cross-level target coding rate sent by the base station, and the terminal device receives the cross-level target coding rate sent by the base station by using MAC CE signaling or RRC signaling.
  • the coding rate adjustment method further includes: if the terminal device does not support the cross-level rate adjustment, the base station determines the non-cross-level target coding rate of the terminal device, the non-cross-level target coding rate, and the current location of the terminal device.
  • the coding rate is adjacent; the base station transmits a non-cross-level target coding rate to the terminal device.
  • the encoding rate concentration supports five encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding. Rate 4 and coding rate 5.
  • the current coding rate is the coding rate of 3
  • the non-cross-level target coding rate can only be the coding rate 4 or the coding rate 2 in the coding rate set. That is to say, the non-cross-level target coding rate may not be adjacent to the current coding rate, and thus, if the terminal device does not support the cross-level rate adjustment, it can respond to the adjustment of the coding rate.
  • the determining, by the base station, the non-cross-level target coding rate of the terminal device includes: determining, by the base station, the non-cross-level target coding rate of the terminal device according to at least the current coding rate and the channel condition information of the terminal device.
  • the terminal device can report the current coding rate of the terminal device to the base station, and the base station can also obtain the current coding rate of the terminal device by using operations such as detection.
  • the terminal device may report the channel status information to the base station, and the base station may also obtain the channel status information by using an operation such as detecting.
  • the channel status information may be information that reflects network load, network quality, and the like on the channel of the terminal device.
  • the parameters that can reflect the network quality are, for example, a packet loss rate
  • the parameters that can reflect the network load are: physical resource block (PRB) utilization, control channel elements (control) Channel element, CCE) utilization, etc.
  • the present application further provides another embodiment. If the base station sends the cross-level target coding rate to the terminal device, and the terminal device does not support the cross-level rate adjustment, the terminal may have multiple implementation schemes. The device may not report the coding rate adjustment capability indication information to the base station, or may report the coding rate adjustment capability indication information.
  • the base station sends the cross-level target coding rate to the terminal device, and the terminal device does not support the cross-level rate adjustment, the terminal device can perform multiple adjustments, and adjust the first-level rate each time until the current coding rate is adjusted to the cross-level.
  • the target encoding rate is up to now.
  • the encoding rate concentrates on five encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding rate 4, and encoding rate 5.
  • the terminal device can perform the following operations: first adjust the current coding rate from the coding rate 2 to the coding rate 3, and then encode the current coding rate from the coding rate.
  • Rate 3 is adjusted to a coding rate of 4, and the current coding rate is adjusted from coding rate 4 to coding rate 5.
  • the base station sends the cross-level target coding rate to the terminal device, and the terminal device does not support the cross-level rate adjustment.
  • the terminal device can adjust the first-level rate, and the base station finds that the terminal device is not adjusted to the cross-level target coding rate, and the base station can again deliver the cross-level target coding rate after the preset time length, and the terminal device adjusts the first-level rate again. Loop until the end device adjusts the encoding rate to the cross-level target encoding rate.
  • the base station finds that the terminal device is not adjusted to the cross-level target coding rate. In particular, the base station detects the adjusted coding rate of the terminal device, or the terminal device adjusts the coding rate, and then reports the adjusted coding rate to the base station.
  • the base station can send the cross-level target coding rate again.
  • the preset duration can be a preset value of the base station side, which can be set by using a timer. If the preset time is long, the base station is long.
  • a new cross-level target coding rate can be re-determined based on the latest network status information.
  • the encoding rate concentrates on five encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding rate 4, and encoding rate 5.
  • the current coding rate is the coding rate 2
  • the cross-level target coding rate is the coding rate of 5
  • the terminal device adjusts the current coding rate from the coding rate 2 to the coding rate 3 after receiving the cross-level target coding rate.
  • the base station detects or receives the current coding rate reported by the terminal device, and finds that the terminal device does not adjust the coding rate to the coding rate 5, and then delivers the cross-level target coding rate again.
  • the cross-level target coding rate delivered this time is still At a coding rate of 5, the terminal device adjusts the current coding rate from coding rate 3 to coding rate 4 after receiving the cross-level target coding rate.
  • the base station detects or receives the current coding rate reported by the terminal device, and finds that the terminal device does not adjust the coding rate to the coding rate 5, and then delivers the cross-level target coding rate again.
  • the cross-level target coding rate delivered this time is still At a coding rate of 5, the terminal device adjusts the current coding rate from coding rate 4 to coding rate 5 after receiving the cross-level target coding rate.
  • the encoding rate concentrates on five encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding rate 4, and encoding rate 5.
  • the current coding rate is the coding rate 2
  • the cross-level target coding rate is the coding rate of 5
  • the terminal device adjusts the current coding rate from the coding rate 2 to the coding rate 3 after receiving the cross-level target coding rate.
  • the base station detects or receives the current coding rate reported by the terminal device, and finds that the terminal device does not adjust the coding rate to the coding rate 5, and then determines a new cross-level target coding rate according to the latest network status information, the latest cross.
  • the level target coding rate may be the same as or different from the previous cross-level target coding rate. For example, if the new cross-level target coding rate is 4, the terminal device adjusts the current coding rate from the coding rate 3 after receiving the cross-level target coding rate.
  • the encoding rate is 4.
  • the base station sends the cross-level target coding rate to the terminal device, and the terminal device does not support the cross-level rate adjustment, and the terminal device adjusts the first-level rate.
  • the encoding rate is concentrated to support 5 encoding rates, and the ordering by size is encoding rate 1, encoding rate 2, encoding rate 3, encoding rate 4, and encoding rate 5.
  • the current coding rate is the coding rate 2
  • the cross-level target coding rate is the coding rate of 5
  • the terminal device adjusts the current coding rate from the coding rate 2 to the coding rate 3 after receiving the cross-level target coding rate.
  • the base station sends the cross-level target coding rate to the terminal device, and the terminal device does not support the cross-level rate adjustment.
  • the terminal device increases the current coding rate by one level, if the cross-level target coding If the rate is less than the current coding rate, the terminal device lowers the current coding rate by a first rate.
  • FIG. 3 is a schematic structural diagram of a base station for performing a coding rate adjustment method according to an embodiment of the present disclosure.
  • the base station 300 includes a processor 301 and a transceiver 304, where:
  • the transceiver 304 is configured to receive the coding rate adjustment capability indication information of the terminal device, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment; and the cross-level target coding rate is sent to the terminal device. rate;
  • the processor 301 is configured to determine, if the terminal device supports cross-level rate adjustment, determine a cross-level target coding rate of the terminal device, where the cross-level target coding rate is not adjacent or adjacent to a current coding rate of the terminal device.
  • a memory 302 and a communication interface 303 are further included; wherein the processor 301, the memory 302, the communication interface 303, and the transceiver 304 are connected to each other through a bus 305.
  • the memory 302 can also be used to store program instructions, the processor calls the program instructions stored in the memory, can perform one or more steps in the embodiment of the encoding rate adjustment method, or an optional implementation thereof,
  • the base station 300 is caused to implement the functions of the base station in the above method.
  • the processor 301 is configured to determine, according to at least a current coding rate and channel condition information of the terminal device, a cross-level target coding rate of the terminal device.
  • the transceiver 304 is configured to: receive the coding rate adjustment capability indication information sent by the terminal device by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the transceiver 304 is configured to: send the cross-level target coding rate to the terminal device by using MAC CE signaling or RRC signaling.
  • the processor 301 is further configured to: if the terminal device does not support cross-level rate adjustment, determine a non-cross-level target coding rate of the terminal device, where the non-cross-level target coding rate is adjacent to a current coding rate of the terminal device; The device is further configured to: send a non-cross-level target coding rate to the terminal device.
  • the processor 301 is configured to determine, according to at least a current coding rate and channel condition information of the terminal device, a non-cross-level target coding rate of the terminal device.
  • the bus 305 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 302 includes a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • the memory may also include a non-volatile memory such as a flash memory.
  • a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above types of memories.
  • the communication interface 303 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the processor 301 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • An embodiment of the present application provides a method for adjusting a coding rate and a base station, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the base station are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the base station and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 4 is a schematic structural diagram of a terminal device for performing a coding rate adjustment method according to an embodiment of the present disclosure.
  • the terminal device 400 includes a processor 401 and a transceiver 404, where:
  • the transceiver is configured to report the coding rate adjustment capability indication information to the base station, and receive the cross-level target coding rate sent by the base station, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment;
  • the coding rate is not adjacent or adjacent to the current coding rate of the terminal device;
  • the processor is configured to adjust the current coding rate to a cross-level target coding rate if the terminal device supports cross-level rate adjustment.
  • a memory 402 and a communication interface 403 are further included; wherein the processor 401, the memory 402, the communication interface 403, and the transceiver 404 are connected to each other through a bus 405.
  • the memory may be further configured to store program instructions, the processor invoking program instructions stored in the memory, one or more steps in an embodiment of the encoding rate adjustment method, or an optional implementation thereof, such that The terminal device 400 implements the functions of the terminal device in the above method.
  • the transceiver 404 is configured to: report the coding rate adjustment capability indication information to the base station by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the transceiver 404 is configured to: receive, by using MAC CE signaling or RRC signaling, a cross-level target coding rate sent by the base station.
  • the bus 405 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 402 includes a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • the memory may also include a non-volatile memory such as a flash memory.
  • a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above types of memories.
  • the communication interface 403 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the processor 401 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • An embodiment of the present application provides a method for adjusting a coding rate and a terminal device, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the terminal device are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the terminal device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 5 is a schematic structural diagram of a base station used for performing a coding rate adjustment method according to an embodiment of the present disclosure. As shown in FIG. 5, the base station 500 is shown in FIG. The processing unit 501 and the transceiver unit 502 are included, wherein:
  • the transceiver unit 502 is configured to receive the coding rate adjustment capability indication information of the terminal device, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment; and the cross-level target coding rate is sent to the terminal device;
  • the processing unit 501 is configured to determine, if the terminal device supports the cross-level rate adjustment, determine the cross-level target coding rate of the terminal device, where the cross-level target coding rate is not adjacent or adjacent to the current coding rate of the terminal device.
  • the processing unit 501 is configured to determine, according to the current coding rate and channel condition information of the terminal device, a cross-level target coding rate of the terminal device.
  • the transceiver unit 502 is configured to: receive the coding rate adjustment capability indication information sent by the terminal device by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the transceiver unit 502 is configured to: send the cross-level target coding rate to the terminal device by using MAC CE signaling or RRC signaling.
  • the processing unit 501 is further configured to: if the terminal device does not support cross-level rate adjustment, determine a non-cross-level target coding rate of the terminal device, where the non-cross-level target coding rate is adjacent to a current coding rate of the terminal device;
  • the unit 502 is further configured to: send a non-cross-level target coding rate to the terminal device.
  • the processing unit 501 is configured to determine, according to the current coding rate and channel condition information of the terminal device, a non-cross-level target coding rate of the terminal device.
  • the transceiver unit may be implemented by a transceiver
  • the processing unit may be implemented by a processor.
  • a base station can include a processor, a transceiver, and a memory.
  • the memory may be used to store a program/code pre-installed at the time of leaving the base station, or may store a code used when the processor performs a coding rate adjustment method.
  • An embodiment of the present application provides a method for adjusting a coding rate and a base station, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the base station are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the base station and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 6 is a schematic structural diagram of a terminal device for performing a coding rate adjustment method according to an embodiment of the present disclosure.
  • the terminal device 600 includes a processing unit 601 and a transceiver unit 602, where:
  • the transceiver unit 602 is configured to report the coding rate adjustment capability indication information to the base station, and receive the cross-level target coding rate sent by the base station, where the coding rate adjustment capability indication information is used to indicate whether the terminal device supports the cross-level rate adjustment.
  • the target coding rate is not adjacent or adjacent to the current coding rate of the terminal device;
  • the processing unit 601 is configured to adjust the current coding rate to the cross-level target coding rate if the terminal device supports the cross-level rate adjustment.
  • the transceiver unit 602 is configured to: report the coding rate adjustment capability indication information to the base station by using the medium access control control element MAC CE signaling or the radio resource control RRC signaling.
  • the transceiver unit 602 is configured to: receive, by using MAC CE signaling or RRC signaling, a cross-level target coding rate sent by the base station.
  • An embodiment of the present application provides a method for adjusting a coding rate and a terminal device, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the terminal device are based on
  • the implementation of the terminal device and the method can be referred to each other, and the repeated description is not repeated.
  • the transceiver unit may be implemented by a transceiver
  • the processing unit may be implemented by a processor.
  • the terminal device can include a processor, a transceiver, and a memory.
  • the memory may be used to store a program/code pre-installed at the time of leaving the terminal device, or may store a code for the processor to execute the encoding rate adjustment method.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the implemented encoding rate of the base station. Any method of adjusting the program.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to execute the implemented encoding rate of the terminal device. Any method of adjusting the program.
  • the embodiment of the present application provides a computer program product including instructions, when it is run on a computer, causing the computer to perform any one of the implementation schemes of the implemented coding rate of the base station.
  • the embodiment of the present application provides a computer program product including instructions, when it is run on a computer, causing the computer to perform any one of the implementation schemes of the implemented encoding rate of the terminal device.
  • the embodiment of the present application provides a processing scheme of a communication delay.
  • the terminal device reports a delay parameter to the base station, and the base station may determine a delay margin according to the delay parameter, and further, according to the delay. The remaining amount is adjusted for the air interface operation, thereby improving the coverage of the air interface.
  • the condition that the terminal device reports the delay parameter to the base station is further limited, so that the terminal device can frequently report the delay parameter to the base station, and reduce the number of delay parameters reported by the terminal device to the base station, thereby reducing the number of delay parameters.
  • the base station processes the signaling overhead, and also reduces the problem of frequently adjusting the parameters corresponding to the terminal device.
  • FIG. 7 exemplarily provides a schematic flowchart of a method for processing a communication delay. As shown in FIG. 7, the method includes:
  • Step 701 The base station configures a first threshold and a second threshold for the terminal device, where the first threshold is smaller than the second threshold; the terminal device receives the first threshold and the second threshold sent by the base station, where the first threshold is less than the second threshold;
  • Step 702 The terminal device acquires a link quality of the terminal device.
  • Step 703 When the link quality is higher than the first threshold or the link quality is lower than the second threshold, the terminal device reports the delay parameter to the base station, where the delay parameter is used to enable the base station to adjust the discontinuity of the air interface according to the delay parameter.
  • Step 704 The base station adjusts the CDRX period of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter.
  • the base station can configure the first threshold and the second threshold for the terminal device in multiple manners, for example, the base station and the terminal device agree on the first threshold and the second threshold in an agreed manner; or the base station sends the signaling to the terminal.
  • the device sends the first threshold and the second threshold, so as to configure the first threshold and the second threshold on the terminal device.
  • a possible implementation manner is that the base station first configures the first threshold and the first terminal by using Radio Resource Control (RRC) signaling or Medium Access Control Control Element (MAC CE) signaling.
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Control Element
  • the second threshold if you need to update the configured first threshold and second threshold, then re-
  • the UE is configured by RRC signaling or MAC CE signaling.
  • the base station may separately send a signaling for sending the first threshold and the second threshold to the terminal device, and the base station may also carry the first threshold and the second threshold to other signaling, such as the first threshold and the first threshold.
  • the second threshold carries the RRC signaling sent by the base station to the terminal device.
  • the first threshold and the second threshold may also be carried in the MAC CE signaling sent by the base station to the terminal device.
  • the MAC CE is a control plane message of the MAC layer defined in the standard 36.321.
  • the MAC CE signaling may include a Buffer Status Report (BSR), which is used to enable the terminal device to report the uplink data volume, and a Power Headroom Report (PHR) for reporting the terminal device.
  • BSR Buffer Status Report
  • PHR Power Headroom Report
  • a MAC CE signaling may be newly defined to carry the first threshold and the second threshold.
  • the first threshold and the second threshold in the embodiment of the present application may be determined according to experience.
  • the base station may determine the first threshold and the second threshold according to the link quality, but is not limited thereto. That is, when the link quality of the terminal device is between the first threshold and the second threshold, the terminal device does not need to report its own delay parameter to the base station, and the terminal device can maintain its current delay parameter.
  • the problem that the terminal device reports the delay parameter to the base station is reduced, and the problem that the terminal device frequently reports the delay parameter to the base station is reduced.
  • the overhead of processing the signaling by the base station is reduced, and the corresponding to the terminal device is also reduced. The parameters are frequently adjusted for problems.
  • the link quality of the terminal device may be represented by a parameter indicating a link quality, such as a Signal to Interference plus Noise Ratio (SINR), or a reference signal received power ( Reference Signal Receiving Power, RSRP).
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • the delay parameter is an end-to-end communication delay.
  • the terminal device reports the delay parameter to the base station, including: the terminal device acquires the end-to-end communication delay; the terminal device reports the end-to-end communication delay to the base station.
  • the end-to-end communication delay in the embodiment of the present application specifically refers to the time taken for signaling to be transmitted from one terminal device to another terminal device for communication.
  • the end-to-end communication delay refers to the duration of time when a data packet is sent from the sender to the receiver.
  • FIG. 8 exemplarily shows a structural diagram of an end-to-end communication delay.
  • the terminal device as the transmitting end is transmitted at the time of the Launch Signal Responder (LSR).
  • a Real Time Control Protocol (RTCP) packet such as the SRi data packet shown in FIG. 8, is a terminal device that receives the RTCP packet after receiving the RTCP packet, and then goes to the terminal device as the transmitting end after experiencing the DLSR duration.
  • An RTCP packet is sent for feedback, as shown in the SRj feedback packet shown in FIG. 8, the terminal device as the transmitting end receives the RTCP packet fed back by the terminal device at the time of receiving A, so that the end-to-end communication delay calculation is calculated according to the formula. (1) shown:
  • the E2E delay is the end-to-end communication delay of the terminal device as the transmitting end; the time A is the A time, the time LSR is the LSR time, and the DLSR is the DLSR time length.
  • the two values of the LSR time and the DLSR duration are carried in the SRj feedback packet, and the terminal device as the transmitting end can obtain the two values when receiving the SRj feedback packet, and further serves as the terminal device of the transmitting end.
  • the actual end-to-end delay can be calculated according to equation (1).
  • the base station may adjust the CDRX period of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter, including: the base station according to the end-to-end communication delay and the pre-transmission Set the communication delay to determine the end-to-end communication delay margin.
  • the base station increases The CDRX cycle of the air interface; or when the end-to-end communication delay margin is greater than zero, the base station increases the number of retransmissions of the air interface data packet.
  • the base station when the end-to-end communication delay margin is not greater than zero, the base station reduces the CDRX period of the air interface; or when the end-to-end communication delay margin is not greater than zero, the base station reduces the number of retransmissions of the air interface data packet.
  • the preset communication delay may be a communication delay allowed by the operator, for example, may be 200 ms.
  • the end-to-end communication delay margin in English may be called delay budget) may be the difference between the preset communication delay and the end-to-end communication delay.
  • the terminal device reports the delay parameter to the base station, including: the terminal device acquires the end-to-end communication delay; the terminal device according to the end-to-end communication delay and the preset communication delay, Determining the end-to-end communication delay margin; the terminal device reports the end-to-end communication delay margin to the base station.
  • the delay parameter is an end-to-end communication delay margin
  • the end-to-end communication delay margin is a difference between a preset communication delay and an end-to-end communication delay, which may be a terminal.
  • the device determines the end-to-end communication delay margin based on the difference between the preset communication delay and the end-to-end communication delay.
  • the base station adjusts the CDRX period of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter, including: optionally, when the end-to-end communication delay margin is greater than zero, the base station increases the CDRX period of the air interface; or When the end-to-end communication delay margin is greater than zero, the base station increases the number of retransmissions of the air interface data packet.
  • the base station when the end-to-end communication delay margin is not greater than zero, the base station reduces the CDRX period of the air interface; or when the end-to-end communication delay margin is not greater than zero, the base station reduces the number of retransmissions of the air interface data packet.
  • the terminal device may include the link quality on the base station, or the base station detects the link quality of the terminal device when the base station receives the delay parameter reported by the terminal device, where the link quality is higher than the first In the case of a threshold, that is, in the case where the wireless environment is superior, the base station can increase the CDRX cycle of the air interface, thereby helping the terminal device to save energy.
  • the base station may increase the number of retransmissions of the air interface data packet, thereby improving the reliability of the air interface data transmission of the terminal device. Sex.
  • the terminal device may include the link quality on the base station, or the base station detects the link quality of the terminal device when the base station receives the delay parameter reported by the terminal device, where the link quality is higher than the first A threshold, that is to say, in a wireless environment, the base station can reduce the CDRX cycle of the air interface, thereby reducing the end-to-end communication delay of the terminal device.
  • the base station can reduce the number of retransmissions of the air interface data packet, thereby reducing end-to-end communication of the terminal device. Delay.
  • the CDRX period of the air interface in the embodiment of the present application may be a period in which the base station periodically sends a data packet to the terminal device.
  • the number of retransmissions of the air interface data packet in the embodiment of the present application may be the number of times the base station retransmits the data packet to the terminal device.
  • the CDRX period of the air interface configured by the base station is 20 ms. If the UE link quality is higher than the first threshold and a delay parameter is reported, the base station adjusts the CDRX period of the air interface to 60 ms according to the delay parameter. Help the UE save power. Or the maximum number of retransmissions of the air interface configured by the base station to the UE is 5, and if the UE link quality is lower than the second threshold and a delay parameter is reported, the base station adjusts the maximum number of retransmissions of the air interface to 2 according to the delay parameter. Wait, these are just an example.
  • the CDRX period of the air interface is increased by the base station.
  • the CDRX period of the multiple air interfaces is preset.
  • the CDRX week of the base station from the preset multiple air interfaces.
  • a CDRX period of the air interface larger than the current CDRX period is selected and updated to the current air interface CDRX period.
  • the adjustment step of the CDRX period of the preset air interface for example, the step size is set to 10 milliseconds (ms) each time, when the base station needs to increase the CDRX period of the air interface, the base station increases the CDRX period of the current air interface by 10 ms.
  • the base station determines the delay of the air interface to be relaxed according to the delay parameter reported by the current UE, and sets the delay to the CDRX period of the air interface.
  • the delay parameter reported by the UE is 100 ms
  • the CDRX period configuration of the current air interface is configured.
  • the base station updates the CDRX cycle of the air interface to 100ms.
  • the CDRX period of the air interface is reduced by the base station.
  • the CDRX period of the multiple air interfaces is preset.
  • the CDRX period of the base station from the preset multiple air interfaces.
  • the adjustment step of the CDRX period of the preset air interface for example, the step size is set to 10 milliseconds (ms) each time, when the base station needs to reduce the CDRX period of the air interface, the base station reduces the CDRX period of the current air interface by 10 ms.
  • the base station increases the number of retransmissions of the air interface data packet by using multiple methods, for example, preset the number of retransmission times of multiple air interface data packets.
  • the base station needs to increase the number of retransmissions of the air interface data packet, the base station The number of retransmissions of the air interface packets with a larger number of retransmissions than the current air interface data packet is selected in the number of retransmissions of the plurality of air interface data packets, and is updated to the number of retransmissions of the current air interface data packet.
  • the adjustment step size of the retransmission times of the preset air interface data packet for example, each time the step size is set to 1 time, when the base station needs to increase the number of retransmissions of the air interface data packet, the base station will use the current air interface data packet. The number of retransmissions is increased by one. Or, the base station determines the delay of the air interface to be relaxed according to the delay parameter reported by the current UE, and sets the corresponding number of retransmissions.
  • the delay parameter reported by the UE is 100 ms
  • the current number of air interface retransmission times is 5, if The time required for retransmission is 8ms, and the base station can increase the number of air interface retransmissions to 12 (the ratio of 100ms to 8ms).
  • the base station reduces the number of retransmissions of the air interface data packet by using multiple methods, for example, preset the number of retransmission times of multiple air interface data packets.
  • the base station needs to reduce the number of retransmissions of the air interface data packet, the base station In the preset number of retransmissions of the plurality of air interface data packets, a number of retransmissions of the air interface data packet smaller than the number of retransmissions of the current air interface data packet is selected, and the number of retransmissions of the current air interface data packet is updated.
  • the adjustment step size of the retransmission times of the preset air interface data packet for example, each time the step size is set to 1 time, when the base station needs to reduce the number of retransmissions of the air interface data packet, the base station will use the current air interface data packet. The number of retransmissions is reduced by one.
  • FIG. 9 is a schematic structural diagram of a base station for performing a communication delay processing method according to an embodiment of the present disclosure.
  • the base station 900 includes a processor 901 and a transceiver 904, where:
  • the transceiver 904 is configured to receive a delay parameter from the terminal device, where the delay parameter is reported by the terminal device when the link quality is higher than the first threshold or the link quality is lower than the second threshold.
  • the processor 901 is configured to configure a first threshold and a second threshold for the terminal device, where the first threshold is smaller than the second threshold, and the CDRX period of the discontinuous receiving air interface of the air interface or the number of retransmissions of the air interface data packet is adjusted according to the delay parameter.
  • a memory 902 and a communication interface 903 are further included; wherein the processor 901, the memory 902, the communication interface 903, and the transceiver 904 are connected to each other through a bus 905.
  • the memory may also be used to store program instructions
  • the processor calls the program instructions stored in the memory, may perform one or more steps in the embodiment of the communication delay processing method, or an optional implementation thereof
  • the base station 900 is enabled to implement the functions of the base station in the above method.
  • the delay parameter is an end-to-end communication delay.
  • the processor 901 is configured to determine an end-to-end communication delay margin according to the end-to-end communication delay and a preset communication delay; when the end-to-end communication delay margin is greater than zero, the base station increases.
  • the CDRX cycle of the air interface increases the number of retransmissions of the air interface data packet; or, when the end-to-end communication delay margin is not greater than zero, the base station reduces the CDRX cycle of the air interface or reduces the number of retransmissions of the air interface data packet.
  • the delay parameter is an end-to-end communication delay margin
  • the end-to-end communication delay margin is a difference between a preset communication delay and an end-to-end communication delay.
  • the processor 901 is configured to: when the end-to-end communication delay margin is greater than zero, the base station increases the CDRX period of the air interface or increases the number of retransmissions of the air interface data packet; or, when the end-to-end communication delay margin When not greater than zero, the base station reduces the CDRX period of the air interface or reduces the number of retransmissions of the air interface data packet.
  • the processor 901 is configured to configure the first threshold and the second threshold for the terminal device by using a radio resource control RRC signaling or a medium access control element MAC CE signaling.
  • the bus 905 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 902 includes a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the communication interface 903 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the processor 901 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the embodiment of the present application provides a communication delay processing method and a base station, which are used to solve the problem that the terminal device that exists in the prior art may not respond to the target coding rate sent by the base station.
  • the method and the base station are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the base station and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 10 is a schematic structural diagram of a terminal device for performing a communication delay processing method according to an embodiment of the present disclosure.
  • the terminal device 1000 includes a processor 1001 and a transceiver 1004, where:
  • the transceiver 1004 is configured to receive a first threshold and a second threshold that are sent by the base station, where the first threshold is smaller than the second threshold; and reporting a delay parameter to the base station;
  • the processor 1001 is configured to obtain a link quality of the terminal device.
  • the delay parameter is reported to the base station by using the transceiver.
  • the base station is configured to adjust the CDRX period of the non-contiguous receiving air interface of the air interface or the number of retransmissions of the air interface data packet according to the delay parameter.
  • a memory 1002 and a communication interface 1003 are further included; wherein the processor 1001, the memory 1002, the communication interface 1003, and the transceiver 1004 are connected to each other through a bus 1005.
  • the memory may also be used to store program instructions
  • the processor calls the program instructions stored in the memory, may perform one or more steps in the embodiment of the communication delay processing method, or an optional implementation thereof,
  • the terminal device 1000 is caused to implement the functions of the terminal device in the above method.
  • the processor 1001 is configured to obtain an end-to-end communication delay
  • the transceiver 1004 is configured to report an end-to-end communication delay to the base station.
  • the processor 1001 is configured to obtain an end-to-end communication delay; determine an end-to-end communication delay margin according to the end-to-end communication delay and a preset communication delay; and the transceiver 1004 is configured to The base station reports the end-to-end communication delay margin.
  • the bus 1005 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 1002 includes a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • the memory may also include a non-volatile memory such as a flash memory.
  • a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above types of memories.
  • the communication interface 1003 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the processor 1001 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 1001 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the embodiment of the present application provides a communication delay processing method and a terminal device, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the terminal device are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the terminal device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 11 is a schematic structural diagram of a base station for performing a communication delay processing method according to an embodiment of the present disclosure.
  • the base station 1100 includes a processing unit 1101 and a transceiver unit 1102, where:
  • the transceiver unit 1102 is configured to receive a delay parameter from the terminal device, where the delay parameter is reported by the terminal device when the link quality is higher than the first threshold or the link quality is lower than the second threshold.
  • the processing unit 1101 is configured to configure a first threshold and a second threshold for the terminal device, where the first threshold is smaller than the second threshold, and the CDRX period of the discontinuous receiving air interface of the air interface or the number of retransmissions of the air interface data packet is adjusted according to the delay parameter.
  • the delay parameter is an end-to-end communication delay.
  • the processing unit 1101 is configured to determine the end-to-end according to the end-to-end communication delay and the preset communication delay.
  • the communication delay margin when the end-to-end communication delay margin is greater than zero, the base station increases the CDRX period of the air interface or increases the number of retransmissions of the air interface data packet; or, when the end-to-end communication delay margin is not greater than zero.
  • the base station reduces the CDRX period of the air interface or reduces the number of retransmissions of the air interface data packet.
  • the delay parameter is an end-to-end communication delay margin
  • the end-to-end communication delay margin is a difference between a preset communication delay and an end-to-end communication delay.
  • the processing unit 1101 is configured to: when the end-to-end communication delay margin is greater than zero, the base station increases the CDRX period of the air interface or increases the number of retransmissions of the air interface data packet; or, when the end-to-end communication delay margin When not greater than zero, the base station reduces the CDRX period of the air interface or reduces the number of retransmissions of the air interface data packet.
  • the processing unit 1101 is configured to configure the first threshold and the second threshold for the terminal device by using the radio resource control RRC signaling or the medium access control element MAC CE signaling.
  • the transceiver unit may be implemented by a transceiver unit
  • the processing unit may be implemented by the processing unit.
  • the base station can include a processing unit, a transceiver unit, and a storage unit.
  • the storage unit may be used to store a program/code pre-installed at the time of leaving the base station, or may store a code used when the processing unit executes the communication delay processing method.
  • the embodiment of the present application provides a communication delay processing method and a base station, which are used to solve the problem that the terminal device that exists in the prior art may not respond to the target coding rate sent by the base station.
  • the method and the base station are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the base station and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 12 is a schematic structural diagram of a terminal device for performing a communication delay processing method according to an embodiment of the present disclosure.
  • the terminal device 1200 includes a processing unit 1201 and a transceiver unit 1202, where:
  • the transceiver unit 1202 is configured to receive a first threshold and a second threshold that are sent by the base station, where the first threshold is smaller than the second threshold; and reporting a delay parameter to the base station;
  • the processing unit 1201 is configured to obtain a link quality of the terminal device.
  • the transceiver unit 1202 reports the delay parameter to the base station, where the delay parameter is used.
  • the number of retransmissions of the CDRX period or the air interface data packet of the discontinuous reception air interface for the base station to adjust the air interface according to the delay parameter.
  • the processing unit 1201 is configured to obtain an end-to-end communication delay
  • the transceiver unit 1202 is configured to report an end-to-end communication delay to the base station.
  • the processing unit 1201 is configured to obtain an end-to-end communication delay; determine an end-to-end communication delay margin according to the end-to-end communication delay and a preset communication delay; and the transceiver unit 1202 is configured to The base station reports the end-to-end communication delay margin.
  • the embodiment of the present application provides a communication delay processing method and a terminal device, which are used to solve the problem that a terminal device that exists in the prior art may not respond to a target coding rate sent by a base station.
  • the method and the terminal device are based on the same application concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the terminal device and the method can be referred to each other, and the repeated description is not repeated.
  • the transceiver unit may be implemented by a transceiver
  • the processing unit may be implemented by a processor.
  • the terminal device can include a processor, a transceiver, and a memory.
  • the memory may be used to store a program/code pre-installed at the time of leaving the terminal device, or may be stored for the processor to execute the encoding speed. The code when the rate adjustment method is used.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the implemented communication delay of the base station. Any method of processing a solution.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions when it is executed on a computer, causing the computer to perform the implemented communication of the terminal device. Any method of delaying the treatment scheme.
  • an embodiment of the present application provides a computer program product including instructions, when executed on a computer, causing a computer to perform any one of the implemented communication delay processing schemes of the foregoing base station.
  • the embodiment of the present application provides a computer program product including instructions, when executed on a computer, causing a computer to execute any one of the implemented communication delay processing schemes of the terminal device.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种编码速率的调整方法、基站和终端设备,基站接收终端设备的编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;若终端设备支持跨级速率调整,则基站确定终端设备的跨级目标编码速率,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;基站向终端设备发送跨级目标编码速率。

Description

编码速率的调整方法、基站和终端设备 技术领域
本申请涉及通信领域,尤其涉及一种编码速率的调整方法、基站和终端设备。
背景技术
通信系统中,语音、视频等媒体内容需要经过采样、量化成为数字信号后进行压缩编码再通过通信网络进行传送。在移动通信系统中,由于无线信道环境变化较快,通常采用自适应可调速率的信源编码,根据无线信道质量及系统负载情况动态调整编码速率,在通信质量与系统容量之间通过灵活的配置达到较好的平衡。比如,当系统负载较轻时,通常采用较高的编码速率,从而提供高品质的通信体验。反之,在系统负载较重时,通过配置较低的编码速率,可以占用较少的系统带宽而增加系统容纳的总用户数。
在现有技术中,若基站向终端设备下发的目标编码速率与终端设备当前的编码速率之间的速率等级相差至少两个速率等级时,该终端设备不会将编码速率调整至目标编码速率,影响系统性能。
发明内容
本申请实施例提供了一种编码速率的调整方法、基站和终端设备,提高系统性能。
第一方面,本申请实施例提供一种编码速率的调整方法,包括:基站接收终端设备的编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;若终端设备支持跨级速率调整,则基站确定终端设备的跨级目标编码速率,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;基站向终端设备发送跨级目标编码速率。
本申请实施例中由于基站获取终端设备的编码速率调整能力,因此若终端设备支持跨级速率调整,则在基站确定并下发终端设备的跨级目标编码速率后,该终端设备可以将当前编码速率调整为跨级目标编码速率,从而提高了终端设备调整编码速率的灵活性,进而提升了系统性能,提升了用户体验。
可选地,基站确定终端设备的跨级目标编码速率,包括:基站至少根据终端设备的当前编码速率和信道状况信息确定终端设备的跨级目标编码速率。
可选地,基站接收终端设备的编码速率调整能力指示信息,包括:基站通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令接收终端设备发送的编码速率调整能力指示信息。
可选地,基站向终端设备发送跨级目标编码速率,包括:基站通过MAC CE信令或者RRC信令向终端设备发送跨级目标编码速率。
可选地,该方法还包括:若终端设备不支持跨级速率调整,基站确定终端设备的非跨级目标编码速率,非跨级目标编码速率与终端设备的当前编码速率相邻;基站向终端设备发送非跨级目标编码速率。
可选地,基站确定终端设备的非跨级目标编码速率,包括:基站至少根据终端设备的 当前编码速率和信道状况信息确定终端设备的非跨级目标编码速率。
第二方面,本申请实施例提供一种编码速率的调整方法,包括:终端设备向基站上报编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;终端设备接收基站发送的跨级目标编码速率;其中,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;若终端设备支持跨级速率调整,终端设备将当前编码速率调整为跨级目标编码速率。
本申请实施例中由于基站获取终端设备的编码速率调整能力,因此若终端设备支持跨级速率调整,则在基站确定并下发终端设备的跨级目标编码速率后,该终端设备可以将当前编码速率调整为跨级目标编码速率,从而提高了终端设备调整编码速率的灵活性,进而提升了系统性能,提升了用户体验。
可选地,终端设备向基站上报编码速率调整能力指示信息,包括:终端设备通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令向基站上报编码速率调整能力指示信息。
可选地,终端设备接收基站发送的跨级目标编码速率,包括:终端设备通过MAC CE信令或者RRC信令接收基站发送的跨级目标编码速率。
第三方面,本申请实施例提供一种基站,基站包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,基站用于执行上述第一方面或第一方面中任一种方法。
第四方面,本申请实施例提供一种终端设备,终端设备包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端设备用于执行上述第二方面或第二方面中任一种方法。
第五方面,本申请实施例提供一种基站,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第六方面,本申请实施例提供一种终端设备,用于实现上述第二方面或第二方面中的任意一种的方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,本申请实施例提供一种通信时延的处理方法,方法包括:基站为终端设备配置第一门限和第二门限,第一门限小于第二门限;基站从终端设备接收时延参数,其中,时延参数是终端设备在链路质量高于第一门限或链路质量低于第二门限时上报的;基 站根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
当终端设备的链路质量处于第一门限和第二门限之间的情况下,终端设备无需向基站上报自己的时延参数,终端设备可以维持自己当前的时延参数,如此,减少了终端设备向基站上报时延参数的数量,避免终端设备频繁向基站上报时延参数的问题,进一步,本申请实施例中减少了基站处理信令的开销,且也减少了对终端设备对应的参数进行频繁调整的问题。
可选地,时延参数为端到端的通信时延。
可选地,基站根据时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:基站根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,时延参数为端到端的通信时延余量,端到端的通信时延余量为预设的通信时延和端到端的通信时延的差值。
可选地,基站根据时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,基站为终端设备配置第一门限和第二门限,包括:基站通过无线资源控制RRC信令或媒体接入控制元素MAC CE信令为终端设备配置第一门限和第二门限。
第十二方面,本申请实施例提供一种通信时延的处理方法,方法包括:终端设备接收基站下发的第一门限和第二门限,第一门限小于第二门限;终端设备获取终端设备的链路质量;当链路质量高于第一门限或链路质量低于第二门限时,终端设备向基站上报时延参数;其中,时延参数用于使基站根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
当终端设备的链路质量处于第一门限和第二门限之间的情况下,终端设备无需向基站上报自己的时延参数,终端设备可以维持自己当前的时延参数,如此,减少了终端设备向基站上报时延参数的数量,避免终端设备频繁向基站上报时延参数的问题,进一步,本申请实施例中减少了基站处理信令的开销,且也减少了对终端设备对应的参数进行频繁调整的问题。
可选地,终端设备向基站上报时延参数,包括:终端设备获取端到端的通信时延;终端设备向基站上报端到端的通信时延。
可选地,终端设备向基站上报时延参数,包括:终端设备获取端到端的通信时延;终端设备根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;终端设备向基站上报端到端的通信时延余量。
第十三方面,本申请实施例提供一种基站,基站包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,基站用于执行上述第十一方面或第十一方面中的任意一种方法。
第十四方面,本申请实施例提供一种终端设备,终端设备包括存储器、收发器和处理 器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端设备用于执行上述第十二方面或第十二方面中的任意一种方法。
第十五方面,本申请实施例提供一种基站,用于实现上述第十一方面或第十一方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第十六方面,本申请实施例提供一种终端设备,用于实现上述第十二方面或第十二方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。
第十七方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第十一方面或第十一方面的任意可能的实现方式中的方法。
第十八方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第十二方面或第十二方面的任意可能的实现方式中的方法。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第十一方面或第十一方面的任意可能的实现方式中的方法。
第二十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第十二方面或第十二方面的任意可能的实现方式中的方法。
本申请实施例中终端设备向基站上报了终端设备的编码速率调整能力指示信息,因此基站可以结合终端设备的编码速率调整能力以及终端设备当前的编码速率为终端设备配置一个终端设备可以响应的目标编码速率,从而提高了终端设备响应目标编码速率的成功率,提高系统性能。
附图说明
图1为本申请实施例提供的一种系统架构示意图;
图2为本申请实施例提供的一种编码速率的调整方法;
图3为本申请实施例提供的一种用于执行编码速率调整方法的基站的结构示意图;
图4为本申请实施例提供的一种用于执行编码速率调整方法的终端设备的结构示意图;
图5为本申请实施例提供的另一种用于执行编码速率调整方法的基站的结构示意图;
图6为本申请实施例提供的另一种用于执行编码速率调整方法的终端设备的结构示意图;
图7为本申请实施例提供的一种通信时延的处理方法的流程示意图;
图8为本申请实施例提供的一种端到端的通信时延的结构示意图;
图9为本申请实施例提供的一种用于执行通信时延处理方法的基站的结构示意图;
图10为本申请实施例提供的一种用于执行通信时延处理方法的终端设备的结构示意图;
图11为本申请实施例提供的另一种用于执行通信时延处理方法的基站的结构示意图;
图12为本申请实施例提供的另一种用于执行通信时延处理方法的终端设备的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
图1示例性示出了本申请实施例适用的一种系统架构示意图,如图1所示,本申请实施例适用的系统架构至少包括具有通信功能的终端设备101。终端设备101接入基站102中。可选地,终端设备101和对端的终端设备可接入同一个基站,也可接入不同的基站中,本申请实施例中图1仅仅为示例性内容,并不对本申请应用场景进行限定。
以下,对本申请中的部分用语进行解释说明,以便与本领域技术人员理解。
本申请实施例中的基站可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称BTS),也可以是WCDMA系统中的基站(NodeB,简称NB),还可以是LTE系统中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本申请实施例中的终端设备可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,简称为用户设备或UE。
图2示例性示出了本申请实施例提供的一种编码速率的调整方法,如图2所示,该方法包括:
步骤201,终端设备向基站上报编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;基站接收终端设备的编码速率调整能力指示信息;
步骤202,若终端设备支持跨级速率调整,则基站确定终端设备的跨级目标编码速率,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;其中,跨级目标编码速率与终端设备的当前编码速率都是两个通信的终端设备之间协商的编码速率集中的编码速率;编码速率集中包括多个编码速率;跨级目标编码速率与终端设备的当前编码速率相邻具体是指:在两个通信的终端设备之间协商的编码速率集中:跨级目标编码速率与当前编码速率为相邻的两个编码速率;
步骤203,基站向终端设备发送跨级目标编码速率;终端设备接收基站发送的跨级目标编码速率;
步骤204,若终端设备支持跨级速率调整,终端设备将当前编码速率调整为跨级目标编码速率。
本申请实施例提供的编码速率的调整方法可适用于语音类的编码速率的调整,也可应用于视频类的编码速率的调整,比如视频电话等等。
本申请实施例中由于基站获取终端设备的编码速率调整能力,因此若终端设备支持跨级速率调整,则在基站确定并下发终端设备的跨级目标编码速率后,该终端设备可以将当前编码速率调整为跨级目标编码速率,从而提高了终端设备调整编码速率的灵活性,进而提升了系统性能,提升了用户体验。
可以理解,上述实施例提供的编码速率的调整方法也适用于非跨级速率调整。
可选地,上述步骤201之前,进行通信的两个终端设备之间协商两个终端设备的编码速率调整能力,编码速率调整能力具体可为终端设备是否支持跨级速率调整,比如可通过 会话描述协议(session description protocal,SDP)协商两个终端设备的编码速率调整能力。可选地,上述步骤201之前,基站可向终端设备发送能力查询请求,能力查询请求用于查询终端设备的编码速率调整能力,终端设备接收到该能力查询请求之后,可向基站上报编码速率调整能力指示信息。另一种可选地实施方案中,终端设备在与对端的终端设备协商了终端设备的编码速率调整能力之后,终端设备主动向基站上报编码速率调整能力指示信息。
本申请中一种可选地实施例中,是否支持跨级速率调整的能力可通过mode-change-neighbor参数来体现,也就是说,编码速率调整能力指示信息具体可为mode-change-neighbor参数的值,比如mode-change-neighbor=1,则表示终端设备不支持跨级速率调整,若mode-change-neighbor=0,则表示终端设备支持跨级速率调整。
进行通信的两个终端设备之间经过协商,两个通信的终端设备之间也可协商两个终端设备所支持的速率类型,还可确定出两个终端设备适用的编码速率集,该编码速率集中包括的任一个编码速率,两个终端设备均能支持。终端设备支持的编码速率集中包括多个编码速率,跨级目标编码速率和非跨级编码速率均为多个编码速率中的一个。本申请实施例中,编码速率集中包括的多个编码速率按大小排序。若终端设备不支持跨级速率调整,则终端设备仅能在相邻的两个编码速率之间进行速率调整,若终端设备支持跨级速率调整,则终端设备可以调整至编码速率集中包括的任一个编码速率。
上述步骤203中,举个例子,比如编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率3,则跨级目标编码速率可以为编码速率集中的任一个编码速率,比如为与编码速率3相邻的编码速率4,或者跨级目标编码速率为与编码速率3不相邻的编码速率1。步骤204中,若跨级目标编码速率为编码速率1,则跨级速率调整的终端设备可直接将编码速率从编码速率3调整至编码速率1。
本申请提供一种可选地实施方案,基站确定终端设备的跨级目标编码速率,包括:基站至少根据终端设备的当前编码速率和信道状况信息确定终端设备的跨级目标编码速率。可选地,终端设备可向基站上报终端设备的当前编码速率,基站也可通过检测等操作获取终端设备的当前编码速率。可选地,终端设备可向基站上报信道状况信息,基站也可通过检测等操作获取信道状况信息。信道状况信息可为能够反映信道质量的信息,比如网络负荷、网络质量等信息。具体来说,能反应网络质量的参数比如为:丢包率(packet loss rate)等;能反应网络负荷的参数比如为:物理资源块(physical resource block,PRB)利用率、控制信道元素(control channel element,CCE)利用率等。
可选地,基站可在网络质量较好的情况下,将终端设备的编码速率调高一些,从而获取金属氧化物半导体(metal-oxide-semiconductor,mos)增益,可在网络质量变差时,将终端设备的编码速率调低一些,获得丢包率增益和覆盖增益。再比如在网络负载重时,将终端设备的编码速率调低一些,从而缓解网络拥塞,再比如在网络负载轻时,将终端设备的编码速率调高一些,从而提高信令的通过率。再比如,基站可结合网络质量和网络负载两方面的因素,综合将终端设备的编码速率调整为一个较优的编码速率。
可选地,基站接收终端设备的编码速率调整能力指示信息,包括:基站通过媒体接入控制控制元素(Media Access Control Control Element,MAC CE)信令或者无线资源控制(Radio Resource Control,RRC)信令接收终端设备发送的编码速率调整能力指示信息。 相应地,可选地,终端设备向基站上报编码速率调整能力指示信息,包括:终端设备通过MAC CE信令或者RRC信令向基站上报编码速率调整能力指示信息。
本申请实施例中MAC CE是标准36.321中定义的MAC层的控制面消息。MAC CE信令可包括缓冲区状态报告(Buffer Status Report,BSR),用于使终端设备上报上行数据量的信令;功率余量报告(Power Headroom Report,PHR),用于使终端设备上报功率余量的信令等等,不同功能定义的MAC CE信令不同,所以本申请实施例中也可能是新定义一个MAC CE信令用于承载编码速率调整能力指示信息。
可选地,基站向终端设备发送跨级目标编码速率,包括:基站通过MAC CE信令或者RRC信令向终端设备发送跨级目标编码速率。相应地,可选地,终端设备接收基站发送的跨级目标编码速率,包括:终端设备通过MAC CE信令或者RRC信令接收基站发送的跨级目标编码速率。
本申请提供的另一个实施例中,编码速率调整方法还包括:若终端设备不支持跨级速率调整,基站确定终端设备的非跨级目标编码速率,非跨级目标编码速率与终端设备的当前编码速率相邻;基站向终端设备发送非跨级目标编码速率。
基于上述内容中所描述的两个终端设备协商后的编码速率集,举个例子,比如编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率3,则非跨级目标编码速率仅仅可以为编码速率集中的编码速率4或编码速率2。也就是说,非跨级目标编码速率不可以与当前编码速率不相邻,如此,若终端设备不支持跨级速率调整也能够响应编码速率的调整的目的。
可选地,基站确定终端设备的非跨级目标编码速率,包括:基站至少根据终端设备的当前编码速率和信道状况信息确定终端设备的非跨级目标编码速率。可选地,终端设备可向基站上报终端设备的当前编码速率,基站也可通过检测等操作获取终端设备的当前编码速率。可选地,终端设备可向基站上报信道状况信息,基站也可通过检测等操作获取信道状况信息。信道状况信息可为能够反映终端设备的信道上的网络负荷、网络质量等信息。具体来说,能反应网络质量的参数比如为:丢包率(packet loss rate)等;能反应网络负荷的参数比如为:物理资源块(physical resource block,PRB)利用率、控制信道元素(control channel element,CCE)利用率等。
本申请还提供另一种实施例,若基站向终端设备发送跨级目标编码速率,而终端设备不支持跨级速率调整,此时终端可存在多种实现方案,在以下多种实现方案中终端设备可以不向基站上报编码速率调整能力指示信息,也可以上报编码速率调整能力指示信息。
实现方式一,基站向终端设备发送跨级目标编码速率,而终端设备不支持跨级速率调整,则终端设备可进行多次调整,每次调整一级速率,直至将当前编码速率调整至跨级目标编码速率为止。
比如,编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率2,则跨级目标编码速率为编码速率5,则终端设备可以进行如下操作:先将当前编码速率从编码速率2调整至编码速率3,再将当前编码速率从编码速率3调整至编码速率4,再将当前编码速率从编码速率4调整至编码速率5。
实现方式二,基站向终端设备发送跨级目标编码速率,而终端设备不支持跨级速率调 整,则终端设备可调整一级速率,基站发现终端设备未调整至跨级目标编码速率,则基站经过预设时长后可再次下发跨级目标编码速率,终端设备再调整一级速率,如此循环,直至终端设备将编码速率调整至跨级目标编码速率为止。基站发现终端设备未调整至跨级目标编码速率具体来说可通过多种方式,比如基站检测终端设备调整后的编码速率,或者终端设备调整编码速率之后,将调整后的编码速率上报给基站。基站经过预设时长后可再次下发跨级目标编码速率,具体来说,预设时长可以为基站侧预先设置的一个值,可通过定时器来设置,如果该预设时长时间较长,基站再次下发跨级目标编码速率时也可以根据最新的网络状况信息重新确定一个新的跨级目标编码速率。
比如,编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率2,则跨级目标编码速率为编码速率5,则终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率2调整至编码速率3。基站经检测或者通过接收终端设备上报的当前编码速率,发现终端设备并未将编码速率调整至编码速率5,则再次下发跨级目标编码速率,此次下发的跨级目标编码速率仍为编码速率5,终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率3调整至编码速率4。基站经检测或者通过接收终端设备上报的当前编码速率,发现终端设备并未将编码速率调整至编码速率5,则再次下发跨级目标编码速率,此次下发的跨级目标编码速率仍为编码速率5,终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率4调整至编码速率5。
再比如,编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率2,则跨级目标编码速率为编码速率5,则终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率2调整至编码速率3。基站经检测或者通过接收终端设备上报的当前编码速率,发现终端设备并未将编码速率调整至编码速率5,则根据最新的网络状况信息再次确定一个新的跨级目标编码速率,该最新的跨级目标编码速率可以与上一次的跨级目标编码速率相同或不同,比如新的跨级目标编码速率为4,则终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率3调整至编码速率4。
实现方式三,基站向终端设备发送跨级目标编码速率,而终端设备不支持跨级速率调整,则终端设备调整一级速率。
比如,比如编码速率集中支持5个编码速率,按大小排序依次为编码速率1、编码速率2、编码速率3、编码速率4和编码速率5。假设当前编码速率为编码速率2,则跨级目标编码速率为编码速率5,则终端设备接收到跨级目标编码速率之后将当前编码速率从编码速率2调整至编码速率3。基站向终端设备发送跨级目标编码速率,而终端设备不支持跨级速率调整,若跨级目标编码速率大于当前编码速率,则终端设备将当前编码速率调高一级速率,若跨级目标编码速率小于当前编码速率,则终端设备将当前编码速率调低一级速率。
基于相同构思,本申请提供一种基站300,用于执行上述方法流程。图3为本申请实施例提供的一种用于执行编码速率调整方法的基站的结构示意图,如图3所示,该基站300包括处理器301和收发器304,其中:
收发器304,用于接收终端设备的编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;向终端设备发送跨级目标编码速 率;
处理器301,用于若终端设备支持跨级速率调整,则确定终端设备的跨级目标编码速率,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻。
可选地,还包括存储器302和通信接口303;其中,处理器301、存储器302、通信接口303和收发器304通过总线305相互连接。
可选地,存储器302还可以用于存储程序指令,处理器调用该存储器中存储的程序指令,可以执行编码速率调整方法的实施例中的一个或多个步骤,或其中可选的实施方式,使得基站300实现上述方法中基站的功能。
可选地,处理器301,用于:至少根据终端设备的当前编码速率和信道状况信息确定终端设备的跨级目标编码速率。
可选地,收发器304,用于:通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令接收终端设备发送的编码速率调整能力指示信息。
可选地,收发器304,用于:通过MAC CE信令或者RRC信令向终端设备发送跨级目标编码速率。
可选地,处理器301,还用于:若终端设备不支持跨级速率调整,确定终端设备的非跨级目标编码速率,非跨级目标编码速率与终端设备的当前编码速率相邻;收发器,还用于:向终端设备发送非跨级目标编码速率。
可选地,处理器301,用于:至少根据终端设备的当前编码速率和信道状况信息确定终端设备的非跨级目标编码速率。
总线305可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器302以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
通信接口303可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器301可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请实施例提供一种编码速率的调整方法和基站,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和基站是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此基站与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种终端设备400,用于执行上述方法流程。图4为本申请实施例提供的一种用于执行编码速率调整方法的终端设备的结构示意图,如图4所示,该终端设备400包括处理器401和收发器404,其中:
收发器,用于向基站上报编码速率调整能力指示信息;接收基站发送的跨级目标编码速率;其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;其中,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;
处理器,用于若终端设备支持跨级速率调整,则将当前编码速率调整为跨级目标编码速率。
可选地,还包括存储器402和通信接口403;其中,处理器401、存储器402、通信接口403和收发器404通过总线405相互连接。
可选地,存储器还可以用于存储程序指令,处理器调用该存储器中存储的程序指令,可以执行编码速率调整方法的实施例中的一个或多个步骤,或其中可选的实施方式,使得终端设备400实现上述方法中终端设备的功能。
可选地,收发器404,用于:通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令向基站上报编码速率调整能力指示信息。
可选地,收发器404,用于:通过MAC CE信令或者RRC信令接收基站发送的跨级目标编码速率。
总线405可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器402以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
通信接口403可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器401可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请实施例提供一种编码速率的调整方法和终端设备,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和终端设备是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此终端设备与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种基站500,用于执行上述方法流程。图5为本申请实施例提供的一种用于执行编码速率调整方法的基站的结构示意图,如图5所示,该基站500 包括处理单元501和收发单元502,其中:
收发单元502,用于接收终端设备的编码速率调整能力指示信息,其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;向终端设备发送跨级目标编码速率;
处理单元501,用于若终端设备支持跨级速率调整,则确定终端设备的跨级目标编码速率,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻。
可选地,处理单元501,用于:至少根据终端设备的当前编码速率和信道状况信息确定终端设备的跨级目标编码速率。
可选地,收发单元502,用于:通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令接收终端设备发送的编码速率调整能力指示信息。
可选地,收发单元502,用于:通过MAC CE信令或者RRC信令向终端设备发送跨级目标编码速率。
可选地,处理单元501,还用于:若终端设备不支持跨级速率调整,确定终端设备的非跨级目标编码速率,非跨级目标编码速率与终端设备的当前编码速率相邻;收发单元502,还用于:向终端设备发送非跨级目标编码速率。
可选地,处理单元501,用于:至少根据终端设备的当前编码速率和信道状况信息确定终端设备的非跨级目标编码速率。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元可以由收发器实现,处理单元可以由处理器实现。基站可以包括处理器、收发器和存储器。其中,存储器可以用于存储基站出厂时预装的程序/代码,也可以存储用于处理器执行编码速率调整方法时的代码等。
本申请实施例提供一种编码速率的调整方法和基站,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和基站是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此基站与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种终端设备600,用于执行上述方法流程。图6为本申请实施例提供的一种用于执行编码速率调整方法的终端设备的结构示意图,如图6所示,该终端设备600包括处理单元601和收发单元602,其中:
收发单元602,用于向基站上报编码速率调整能力指示信息;接收基站发送的跨级目标编码速率;其中,编码速率调整能力指示信息用于指示终端设备是否支持跨级速率调整;其中,跨级目标编码速率与终端设备的当前编码速率不相邻或相邻;
处理单元601,用于若终端设备支持跨级速率调整,则将当前编码速率调整为跨级目标编码速率。
可选地,收发单元602,用于:通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令向基站上报编码速率调整能力指示信息。
可选地,收发单元602,用于:通过MAC CE信令或者RRC信令接收基站发送的跨级目标编码速率。
本申请实施例提供一种编码速率的调整方法和终端设备,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和终端设备是基于 同一申请构思的,由于方法及装置解决问题的原理相似,因此终端设备与方法的实施可以相互参见,重复之处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元可以由收发器实现,处理单元可以由处理器实现。终端设备可以包括处理器、收发器和存储器。其中,存储器可以用于存储终端设备出厂时预装的程序/代码,也可以存储用于处理器执行编码速率调整方法时的代码等。
可选地,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述基站的所实现的编码速率的调整方案的任一种方法。可选地,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述终端设备的所实现的编码速率的调整方案的任一种方法。
可选地,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述基站的所实现的编码速率的调整方案的任一种方法。
可选地,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述终端设备的所实现的编码速率的调整方案的任一种方法。
在终端设备的通信过程中,如果终端设备不向基站上报端到端时延或时延余量,基站无法知道实际通信的时延余量,因此也无法根据时延余量进行空口操作的调整,导致空口的覆盖率较低。基于此,本申请实施例提供了一种通信时延的处理方案,在该方案中,终端设备向基站上报时延参数,基站可根据时延参数确定出时延余量,进而根据该时延余量进行空口操作的调整,从而提高空口的覆盖率。进一步,本申请实施例中,还限定了终端设备向基站上报时延参数的条件,如此,可避免终端设备频繁向基站上报时延参数,减少终端设备向基站上报时延参数的数量,减少了基站处理信令的开销,且也减少了对终端设备对应的参数进行频繁调整的问题,下面对本申请实施例进行详细介绍。
图7示例性提供一种通信时延的处理方法的流程示意图,如图7所示,方法包括:
步骤701,基站为终端设备配置第一门限和第二门限,第一门限小于第二门限;终端设备接收基站下发的第一门限和第二门限,第一门限小于第二门限;
步骤702,终端设备获取终端设备的链路质量;
步骤703,当链路质量高于第一门限或链路质量低于第二门限时,终端设备向基站上报时延参数;其中,时延参数用于使基站根据时延参数调整空口的非连续接收(cell-discontinuous reception,CDRX)周期或空口数据包的重传次数;基站从终端设备接收时延参数,其中,时延参数是终端设备在链路质量高于第一门限或链路质量低于第二门限时上报的;
步骤704,基站根据时延参数调整空口的CDRX周期或空口数据包的重传次数。
上述步骤701中基站可通过多种方式为终端设备配置第一门限和第二门限,比如基站和终端设备通过提前约定的方式约定第一门限和第二门限;或者基站通过下发信令向终端设备发送第一门限和第二门限,从而实现在终端设备上配置第一门限和第二门限的目的。一种可能的实施方式为,基站先通过无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制元素(Medium Access Control Control Element,MAC CE)信令给终端设备配置第一门限和第二门限,若需要对配置的第一门限和第二门限进行更新的话,则重新 通过RRC信令或者MAC CE信令给UE配置。
可选地,基站可单独发送一条信令用于向终端设备发送第一门限和第二门限,基站也可将第一门限和第二门限携带于其它信令上,比如将第一门限和第二门限携带于基站向终端设备发送的RRC信令。或者,第一门限和第二门限还可以携带在基站向终端设备发送的MAC CE信令中发送。
本申请实施例中MAC CE是标准36.321中定义的MAC层的控制面消息。MAC CE信令可包括包括缓冲区状态报告(Buffer Status Report,BSR),用于使终端设备上报上行数据量的信令;功率余量报告(Power Headroom Report,PHR),用于使终端设备上报功率余量的信令等等,不同功能定义的MAC CE信令不同,所以本申请实施例中也可能是新定义一个MAC CE信令用于承载第一门限和第二门限。
本申请实施例中的第一门限和第二门限,可根据经验来确定,比如,基站可根据链路质量来确定第一门限和第二门限,但不限于此。也就是说,当终端设备的链路质量处于第一门限和第二门限之间的情况下,终端设备无需向基站上报自己的时延参数,终端设备可以维持自己当前的时延参数,如此,减少了终端设备向基站上报时延参数的数量,避免终端设备频繁向基站上报时延参数的问题,进一步,本申请实施例中减少了基站处理信令的开销,且也减少了对终端设备对应的参数进行频繁调整的问题。
上述步骤702中,终端设备的链路质量可用能够表示链路质量的参数来表示,比如可为信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR),也可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)。
本申请中提供一种可选地的实施方案,时延参数为端到端的通信时延。终端设备向基站上报时延参数,包括:终端设备获取端到端的通信时延;终端设备向基站上报端到端的通信时延。本申请实施例中端到端的通信时延具体是指信令从进行通信的一个终端设备传输至另一个终端设备所花费的时间。
可选地,端到端的通信时延指的是一个数据包从发送端发送开始计时,到接收端收到总共经历的时长。图8示例性示出了端到端的通信时延的结构示意图,如图8所示,按照现有机制的计算,作为发送端的终端设备在发射信号应答器(Launch Signal Responder,LSR)时刻发送了一个实时传输控制协议((Real Time Control Protocol,RTCP)包,如图8中所示的SRi数据包,作为接收端的终端设备收到该RTCP包后在经历了DLSR时长后向作为发送端的终端设备发送了一个RTCP包进行反馈,如图8中所示的SRj反馈包,作为发送端的终端设备在A时刻接收到作为接收端的终端设备反馈的RTCP包,这样端到端的通信时延计算就按公式(1)所示:
E2E delay=(time A-time LSR-DLSR)/2……公式(1)
在公式(1)中,E2E delay为作为发送端的终端设备的端到端的通信时延;time A为A时刻,time LSR为LSR时刻,DLSR为DLSR时长。
在公式(1)中,LSR时刻和DLSR时长这两个值是携带在SRj反馈包中的,作为发送端的终端设备在收到SRj反馈包时可以获得该两个值,进而作为发送端的终端设备可以根据公式(1)可以算出实际的端到端时延。
在时延参数为端到端的通信时延的情况下,可选地,基站根据时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:基站根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量。可选地,当端到端的通信时延余量大于零时,基站增加 空口的CDRX周期;或者当端到端的通信时延余量大于零时,基站增加空口数据包的重传次数。可选地,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期;或者当端到端的通信时延余量不大于零时,基站减少空口数据包的重传次数。
可选地,本申请实施例中,预设的通信时延可为运营商允许的通信时延,比如可为200ms。可选地,端到端的通信时延余量(英文可称为delay budget)可为预设的通信时延和端到端的通信时延的差值。
本申请中提供另一种可能的实施方案,终端设备向基站上报时延参数,包括:终端设备获取端到端的通信时延;终端设备根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;终端设备向基站上报端到端的通信时延余量。
在时延参数为端到端的通信时延余量的情况下,可选地,端到端的通信时延余量为预设的通信时延和端到端的通信时延的差值,可为终端设备根据预设的通信时延和端到端的通信时延的差值确定出的端到端的通信时延余量。可选地,基站根据时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:可选地,当端到端的通信时延余量大于零时,基站增加空口的CDRX周期;或者当端到端的通信时延余量大于零时,基站增加空口数据包的重传次数。可选地,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期;或者当端到端的通信时延余量不大于零时,基站减少空口数据包的重传次数。
本申请实施例中,当端到端的通信时延余量大于零时,也就是说,预设的通信时延大于终端设备的端到端的通信时延,基站增加空口的CDRX周期或增加空口数据包的重传次数。可选地,终端设备可向基站上包括链路质量,或者,基站在接收到终端设备上报的时延参数的情况下,基站对终端设备的链路质量进行检测,在链路质量高于第一门限的情况下,也就是说在无线环境较优的情况下,基站可增加空口的CDRX周期,从而帮助终端设备节能。可选地,在链路质量低于第二门限的情况下,也就是说在无线环境较差的情况下,基站可增加空口数据包的重传次数,从而提高终端设备的空口数据传输的可靠性。
本申请实施例中,当端到端的通信时延余量不大于零时,也就是说,预设的通信时延不大于终端设备的端到端的通信时延,基站减少空口的CDRX周期或增加空口数据包的重传次数。可选地,终端设备可向基站上包括链路质量,或者,基站在接收到终端设备上报的时延参数的情况下,基站对终端设备的链路质量进行检测,在链路质量高于第一门限,也就是说在无线环境较优的情况下,基站可减少空口的CDRX周期,从而可减少终端设备的端到端的通信时延。可选地,在链路质量低于第二门限的情况下,也就是说在无线环境较差的情况下,基站可减少空口数据包的重传次数,从而可减少终端设备的端到端的通信时延。
本申请实施例中的空口的CDRX周期可为基站周期性向终端设备发送数据包的周期。本申请实施例中的空口数据包的重传次数可为基站向终端设备重传数据包的次数。
例如:基站已经给UE配置了空口的CDRX周期为20ms,如果此时UE链路质量高于第一门限并上报了一个时延参数,基站根据该时延参数调整空口的CDRX周期为60ms,以帮助UE省电。或者基站给UE配置的空口最大重传次数为5,如果此时UE链路质量低于第二门限并上报了一个时延参数,基站根据该时延参数调整空口的最大重传次数为2。等等,这些都只是一个示例。
本申请实施例中,基站增加空口的CDRX周期,有多种方式,比如说预设多个空口的CDRX周期,当基站需要增加空口的CDRX周期时,基站从预设的多个空口的CDRX周 期里选择一个比当前的空口的CDRX周期大的空口的CDRX周期,将其更新为当前的空口的CDRX周期。再或者,预设空口的CDRX周期的调整步长,比如每次将步长设置为10毫秒(ms),则当基站需要增加空口的CDRX周期时,基站将当前的空口的CDRX周期增加10ms。再或者,基站根据当前UE上报的时延参数来判断空口可放宽的时延,并将该时延设置为空口的CDRX周期,例如:UE上报的时延参数为100ms,当前空口的CDRX周期配置为60ms,则基站将空口的CDRX周期更新为100ms。
本申请实施例中,基站减少空口的CDRX周期,有多种方式,比如说预设多个空口的CDRX周期,当基站需要减少空口的CDRX周期时,基站从预设的多个空口的CDRX周期里选择一个比当前的空口的CDRX周期小的CSRX周期,将其更新为当前的空口的CDRX周期。再或者,预设空口的CDRX周期的调整步长,比如每次将步长设置为10毫秒(ms),则当基站需要减少空口的CDRX周期时,基站将当前的空口的CDRX周期减少10ms。
本申请实施例中,基站增加空口数据包的重传次数,有多种方式,比如说预设多个空口数据包的重传次数,当基站需要增加空口数据包的重传次数时,基站从预设的多个空口数据包的重传次数里选择一个比当前的空口数据包的重传次数大的空口数据包的重传次数,将其更新为当前的空口数据包的重传次数。再或者,预设空口数据包的重传次数的调整步长,比如每次将步长设置为1次,则当基站需要增加空口数据包的重传次数时,基站将当前的空口数据包的重传次数增加1次。再或者,基站根据当前UE上报的时延参数来判断空口可放宽的时延,并设置对应的重传次数,例如:UE上报的时延参数为100ms,当前空口重传次数为5次,假如重传一次需要的时间为8ms,则基站最多可以将空口重传次数增加到12(100ms与8ms的比值)次。
本申请实施例中,基站减少空口数据包的重传次数,有多种方式,比如说预设多个空口数据包的重传次数,当基站需要减少空口数据包的重传次数时,基站从预设的多个空口数据包的重传次数里选择一个比当前的空口数据包的重传次数小的空口数据包的重传次数,将其更新为当前的空口数据包的重传次数。再或者,预设空口数据包的重传次数的调整步长,比如每次将步长设置为1次,则当基站需要减少空口数据包的重传次数时,基站将当前的空口数据包的重传次数减少1次。
基于相同构思,本申请提供一种基站900,用于执行上述方法流程。图9为本申请实施例提供的一种用于执行通信时延处理方法的基站的结构示意图,如图9所示,该基站900包括处理器901和收发器904,其中:
收发器904,用于从终端设备接收时延参数,其中,时延参数是终端设备在链路质量高于第一门限或链路质量低于第二门限时上报的;
处理器901,用于为终端设备配置第一门限和第二门限,第一门限小于第二门限;根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
可选地,还包括存储器902和通信接口903;其中,处理器901、存储器902、通信接口903和收发器904通过总线905相互连接。
可选地,存储器还可以用于存储程序指令,处理器调用该存储器中存储的程序指令,可以执行通信时延处理方法的实施例中的一个或多个步骤,或其中可选的实施方式,使得基站900实现上述方法中基站的功能。
可选地,时延参数为端到端的通信时延。
可选地,处理器901,用于根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,时延参数为端到端的通信时延余量,端到端的通信时延余量为预设的通信时延和端到端的通信时延的差值。
可选地,处理器901,用于当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,处理器901,用于通过无线资源控制RRC信令或媒体接入控制元素MAC CE信令为终端设备配置第一门限和第二门限。
总线905可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器902以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
通信接口903可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器901可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请实施例提供一种通信时延处理方法和基站,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和基站是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此基站与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种终端设备1000,用于执行上述方法流程。图10为本申请实施例提供的一种用于执行通信时延处理方法的终端设备的结构示意图,如图10所示,该终端设备1000包括处理器1001和收发器1004,其中:
收发器1004,用于接收基站下发的第一门限和第二门限,第一门限小于第二门限;向基站上报时延参数;
处理器1001,用于获取终端设备的链路质量;当链路质量高于第一门限或链路质量低于第二门限时,通过收发器向基站上报时延参数;其中,时延参数用于使基站根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
可选地,还包括存储器1002和通信接口1003;其中,处理器1001、存储器1002、通信接口1003和收发器1004通过总线1005相互连接。
可选地,存储器还可以用于存储程序指令,处理器调用该存储器中存储的程序指令,可以执行通信时延处理方法的实施例中的一个或多个步骤,或其中可选的实施方式,使得终端设备1000实现上述方法中终端设备的功能。
可选地,处理器1001,用于获取端到端的通信时延;收发器1004,用于向基站上报端到端的通信时延。
可选地,处理器1001,用于获取端到端的通信时延;根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;收发器1004,用于向基站上报端到端的通信时延余量。
总线1005可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器1002以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
通信接口1003可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器1001可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器1001还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请实施例提供一种通信时延处理方法和终端设备,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和终端设备是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此终端设备与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种基站1100,用于执行上述方法流程。图11为本申请实施例提供的一种用于执行通信时延处理方法的基站的结构示意图,如图11所示,该基站1100包括处理单元1101和收发单元1102,其中:
收发单元1102,用于从终端设备接收时延参数,其中,时延参数是终端设备在链路质量高于第一门限或链路质量低于第二门限时上报的;
处理单元1101,用于为终端设备配置第一门限和第二门限,第一门限小于第二门限;根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
可选地,时延参数为端到端的通信时延。
可选地,处理单元1101,用于根据端到端的通信时延和预设的通信时延,确定端到端 的通信时延余量;当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,时延参数为端到端的通信时延余量,端到端的通信时延余量为预设的通信时延和端到端的通信时延的差值。
可选地,处理单元1101,用于当端到端的通信时延余量大于零时,基站增加空口的CDRX周期或增加空口数据包的重传次数;或者,当端到端的通信时延余量不大于零时,基站减少空口的CDRX周期或减少空口数据包的重传次数。
可选地,处理单元1101,用于通过无线资源控制RRC信令或媒体接入控制元素MAC CE信令为终端设备配置第一门限和第二门限。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元可以由收发单元实现,处理单元可以由处理单元实现。基站可以包括处理单元、收发单元和存储单元。其中,存储单元可以用于存储基站出厂时预装的程序/代码,也可以存储用于处理单元执行通信时延处理方法时的代码等。
本申请实施例提供一种通信时延处理方法和基站,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和基站是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此基站与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种终端设备1200,用于执行上述方法流程。图12为本申请实施例提供的一种用于执行通信时延处理方法的终端设备的结构示意图,如图12所示,该终端设备1200包括处理单元1201和收发单元1202,其中:
收发单元1202,用于接收基站下发的第一门限和第二门限,第一门限小于第二门限;向基站上报时延参数;
处理单元1201,用于获取终端设备的链路质量;当链路质量高于第一门限或链路质量低于第二门限时,通过收发单元1202向基站上报时延参数;其中,时延参数用于使基站根据时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
可选地,处理单元1201,用于获取端到端的通信时延;收发单元1202,用于向基站上报端到端的通信时延。
可选地,处理单元1201,用于获取端到端的通信时延;根据端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;收发单元1202,用于向基站上报端到端的通信时延余量。
本申请实施例提供一种通信时延处理方法和终端设备,用以解决现有技术中存在的终端设备可能不响应基站下发的目标编码速率的问题。其中,方法和终端设备是基于同一申请构思的,由于方法及装置解决问题的原理相似,因此终端设备与方法的实施可以相互参见,重复之处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元可以由收发器实现,处理单元可以由处理器实现。终端设备可以包括处理器、收发器和存储器。其中,存储器可以用于存储终端设备出厂时预装的程序/代码,也可以存储用于处理器执行编码速 率调整方法时的代码等。
可选地,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述基站的所实现的通信时延处理方案的任一种方法。
可选地,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述终端设备的所实现的通信时延处理方案的任一种方法。
可选地,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述基站的所实现的通信时延处理方案的任一种方法。
可选地,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述终端设备的所实现的通信时延处理方案的任一种方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种编码速率的调整方法,其特征在于,包括:
    基站接收终端设备的编码速率调整能力指示信息,其中,所述编码速率调整能力指示信息用于指示所述终端设备是否支持跨级速率调整;
    若所述终端设备支持跨级速率调整,则所述基站确定所述终端设备的跨级目标编码速率,所述跨级目标编码速率与所述终端设备的当前编码速率不相邻或相邻;
    所述基站向所述终端设备发送所述跨级目标编码速率。
  2. 如权利要求1所述的方法,其特征在于,所述基站确定所述终端设备的跨级目标编码速率,包括:
    所述基站至少根据所述终端设备的当前编码速率和信道状况信息确定所述终端设备的跨级目标编码速率。
  3. 如权利要求1或2所述的方法,其特征在于,所述基站接收终端设备的编码速率调整能力指示信息,包括:
    所述基站通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令接收终端设备发送的所述编码速率调整能力指示信息。
  4. 如权利要求1至3任意一项所述的方法,其特征在于,所述基站向所述终端设备发送所述跨级目标编码速率,包括:
    所述基站通过MAC CE信令或者RRC信令向所述终端设备发送所述跨级目标编码速率。
  5. 如权利要求1至4任意一项所述的方法,其特征在于,所述方法还包括:
    若所述终端设备不支持跨级速率调整,所述基站确定所述终端设备的非跨级目标编码速率,所述非跨级目标编码速率与所述终端设备的当前编码速率相邻;
    所述基站向所述终端设备发送所述非跨级目标编码速率。
  6. 如权利要求5所述的方法,其特征在于,所述基站确定所述终端设备的非跨级目标编码速率,包括:
    所述基站至少根据所述终端设备的当前编码速率和所述信道状况信息确定所述终端设备的非跨级目标编码速率。
  7. 一种编码速率的调整方法,其特征在于,包括:
    终端设备向基站上报编码速率调整能力指示信息,其中,所述编码速率调整能力指示信息用于指示所述终端设备是否支持跨级速率调整;
    所述终端设备接收所述基站发送的跨级目标编码速率;其中,所述跨级目标编码速率与所述终端设备的当前编码速率不相邻或相邻;
    若所述终端设备支持跨级速率调整,所述终端设备将所述当前编码速率调整为所述跨级目标编码速率。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备向基站上报编码速率调整能力指示信息,包括:
    所述终端设备通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令向基站上报编码速率调整能力指示信息。
  9. 如权利要求7或8所述的方法,其特征在于,所述终端设备接收所述基站发送的 跨级目标编码速率,包括:
    所述终端设备通过MAC CE信令或者RRC信令接收所述基站发送的跨级目标编码速率。
  10. 一种基站,其特征在于,所述基站包括收发器和处理器,其中:
    所述收发器,用于接收终端设备的编码速率调整能力指示信息,其中,所述编码速率调整能力指示信息用于指示所述终端设备是否支持跨级速率调整;向所述终端设备发送所述跨级目标编码速率;
    所述处理器,用于若所述终端设备支持跨级速率调整,则确定所述终端设备的跨级目标编码速率,所述跨级目标编码速率与所述终端设备的当前编码速率不相邻或相邻。
  11. 如权利要求10所述的基站,其特征在于,所述处理器,用于:
    至少根据所述终端设备的当前编码速率和信道状况信息确定所述终端设备的跨级目标编码速率。
  12. 如权利要求10或11所述的基站,其特征在于,所述收发器,用于:
    通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令接收终端设备发送的所述编码速率调整能力指示信息。
  13. 如权利要求10至12任意一项所述的基站,其特征在于,所述收发器,用于:
    通过MAC CE信令或者RRC信令向所述终端设备发送所述跨级目标编码速率。
  14. 如权利要求10至13任意一项所述的基站,其特征在于,所述处理器,还用于:
    若所述终端设备不支持跨级速率调整,确定所述终端设备的非跨级目标编码速率,所述非跨级目标编码速率与所述终端设备的当前编码速率相邻;
    所述收发器,还用于:
    向所述终端设备发送所述非跨级目标编码速率。
  15. 如权利要求14所述的基站,其特征在于,所述处理器,用于:
    至少根据所述终端设备的当前编码速率和所述信道状况信息确定所述终端设备的非跨级目标编码速率。
  16. 一种终端设备,其特征在于,所述终端设备包括存储器、收发器和处理器,其中:
    所述收发器,用于向基站上报编码速率调整能力指示信息;接收所述基站发送的跨级目标编码速率;其中,所述编码速率调整能力指示信息用于指示所述终端设备是否支持跨级速率调整;其中,所述跨级目标编码速率与所述终端设备的当前编码速率不相邻或相邻;
    所述处理器,用于若所述终端设备支持跨级速率调整,则将所述当前编码速率调整为所述跨级目标编码速率。
  17. 如权利要求16所述的终端设备,其特征在于,所述收发器,用于:
    通过媒体接入控制控制元素MAC CE信令或者无线资源控制RRC信令向基站上报编码速率调整能力指示信息。
  18. 如权利要求16或17所述的终端设备,其特征在于,所述收发器,用于:
    通过MAC CE信令或者RRC信令接收所述基站发送的跨级目标编码速率。
  19. 一种通信时延的处理方法,其特征在于,所述方法包括:
    基站为终端设备配置第一门限和第二门限,所述第一门限小于所述第二门限;
    所述基站从所述终端设备接收时延参数,其中,所述时延参数是所述终端设备在链路质量高于所述第一门限或所述链路质量低于所述第二门限时上报的;
    所述基站根据所述时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
  20. 如权利要求19所述的方法,其特征在于,所述时延参数为端到端的通信时延。
  21. 如权利要求20所述的方法,其特征在于,所述基站根据所述时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:
    所述基站根据所述端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;
    当所述端到端的通信时延余量大于零时,所述基站增加所述空口的CDRX周期或增加空口数据包的重传次数;或者,
    当所述端到端的通信时延余量不大于零时,所述基站减少所述空口的CDRX周期或减少空口数据包的重传次数。
  22. 如权利要求19所述的方法,其特征在于,所述时延参数为端到端的通信时延余量,所述端到端的通信时延余量为预设的通信时延和端到端的通信时延的差值。
  23. 如权利要求22所述的方法,其特征在于,所述基站根据所述时延参数调整空口的CDRX周期或空口数据包的重传次数,包括:
    当所述端到端的通信时延余量大于零时,所述基站增加所述空口的CDRX周期或增加空口数据包的重传次数;或者,
    当所述端到端的通信时延余量不大于零时,所述基站减少所述空口的CDRX周期或减少空口数据包的重传次数。
  24. 如权利要求19至23任意一项所述的方法,其特征在于,所述基站为所述终端设备配置第一门限和第二门限,包括:
    所述基站通过无线资源控制RRC信令或媒体接入控制元素MAC CE信令为所述终端设备配置第一门限和第二门限。
  25. 一种通信时延的处理方法,其特征在于,所述方法包括:
    终端设备接收基站下发的第一门限和第二门限,所述第一门限小于所述第二门限;
    所述终端设备获取所述终端设备的链路质量;
    当链路质量高于所述第一门限或所述链路质量低于所述第二门限时,所述终端设备向所述基站上报所述时延参数;
    其中,所述时延参数用于使所述基站根据所述时延参数调整空口的非连续接收空口的CDRX周期或空口数据包的重传次数。
  26. 如权利要求25所述的方法,其特征在于,所述终端设备向所述基站上报所述时延参数,包括:
    所述终端设备获取端到端的通信时延;
    所述终端设备向所述基站上报所述端到端的通信时延。
  27. 如权利要求25所述的方法,其特征在于,所述终端设备向所述基站上报所述时延参数,包括:
    所述终端设备获取端到端的通信时延;
    所述终端设备根据所述端到端的通信时延和预设的通信时延,确定端到端的通信时延余量;
    所述终端设备向所述基站上报所述端到端的通信时延余量。
  28. 一种基站,其特征在于,所述基站包括存储器、收发器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,并控制所述收发器进行信号接收和信号发送,当所述处理器执行所述存储器存储的指令时,所述基站用于执行如权利要求19-24任一权利要求所述的方法。
  29. 一种终端设备,其特征在于,所述终端设备包括存储器、收发器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,并控制所述收发器进行信号接收和信号发送,当所述处理器执行所述存储器存储的指令时,所述终端设备用于执行如权利要求25-27任一权利要求所述的方法。
PCT/CN2017/072517 2017-01-24 2017-01-24 编码速率的调整方法、基站和终端设备 WO2018137157A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/072517 WO2018137157A1 (zh) 2017-01-24 2017-01-24 编码速率的调整方法、基站和终端设备
CN201780083320.XA CN110178343A (zh) 2017-01-24 2017-01-24 编码速率的调整方法、基站和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072517 WO2018137157A1 (zh) 2017-01-24 2017-01-24 编码速率的调整方法、基站和终端设备

Publications (1)

Publication Number Publication Date
WO2018137157A1 true WO2018137157A1 (zh) 2018-08-02

Family

ID=62977900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072517 WO2018137157A1 (zh) 2017-01-24 2017-01-24 编码速率的调整方法、基站和终端设备

Country Status (2)

Country Link
CN (1) CN110178343A (zh)
WO (1) WO2018137157A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086425A1 (en) * 2004-03-05 2005-09-15 Kabushiki Kaisha Toshiba Wireless communication method and apparatus
CN101702812A (zh) * 2009-11-03 2010-05-05 北京邮电大学 一种非连续接收控制方法及装置
CN101860964A (zh) * 2009-04-09 2010-10-13 大唐移动通信设备有限公司 终端上行能力获取方法、设备及系统
CN102045844A (zh) * 2009-10-12 2011-05-04 华为技术有限公司 能力信息上报方法和装置
CN102131241A (zh) * 2011-03-15 2011-07-20 上海华为技术有限公司 一种控制流媒体速率的方法、基站及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741507B (zh) * 2008-11-14 2012-10-17 华为技术有限公司 语音帧编码方式的调整方法及装置
CN101741445B (zh) * 2008-11-19 2013-03-27 中兴通讯股份有限公司 非码本预编码mimo传输方法及基站
CN101754267B (zh) * 2008-12-09 2012-12-19 中兴通讯股份有限公司 一种链路自适应传输方法及设备
US9407563B2 (en) * 2013-08-12 2016-08-02 Qualcomm Incorporated Methods and apparatuses for adapting application uplink rate to wireless communications network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086425A1 (en) * 2004-03-05 2005-09-15 Kabushiki Kaisha Toshiba Wireless communication method and apparatus
CN101860964A (zh) * 2009-04-09 2010-10-13 大唐移动通信设备有限公司 终端上行能力获取方法、设备及系统
CN102045844A (zh) * 2009-10-12 2011-05-04 华为技术有限公司 能力信息上报方法和装置
CN101702812A (zh) * 2009-11-03 2010-05-05 北京邮电大学 一种非连续接收控制方法及装置
CN102131241A (zh) * 2011-03-15 2011-07-20 上海华为技术有限公司 一种控制流媒体速率的方法、基站及系统

Also Published As

Publication number Publication date
CN110178343A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
EP3422796B1 (en) Wireless terminal and base station
CN109997329B (zh) 用于harq定时配置的同步控制的系统和方法
JP6257759B2 (ja) マルチキャリア環境内における無線リンク性能を向上させるためのシステム及び方法
US9407563B2 (en) Methods and apparatuses for adapting application uplink rate to wireless communications network
US20170310601A1 (en) Radio-aware transmission control protocol rate control
KR20170067830A (ko) 링크 상태, 트래픽 유형 및/또는 우선 순위에 대한 통신 파라미터 적응
US20180020467A1 (en) Scheduling voice-over-ip users in wireless systems using carrier aggregation
US20190223256A1 (en) Data transmission method, network device, and terminal device
WO2018228558A1 (zh) 一种传输数据的方法、网络设备和终端设备
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
TW201714437A (zh) 用於縮減潛時的機制之臨界技術
JP6997203B2 (ja) フィードバック情報伝送方法、端末装置及びネットワーク機器
US10917817B2 (en) Methods and apparatus for discarding packets in a wireless communication network
WO2017045125A1 (zh) 语音自适应参数的调整方法、系统及相关设备
JP6685295B2 (ja) 基地局
TW201935879A (zh) 傳輸訊息的方法、接收訊息的方法、終端設備和網路設備
US20190116216A1 (en) Method and apparatus for adjusting encoding rate
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2017045127A1 (zh) 媒体自适应参数的调整方法、系统及相关设备
WO2016197295A1 (zh) 多媒体业务的方法、处理装置及通信设备
US9106381B2 (en) Method and system configuring a base station to trigger HS-DPCCH generation
WO2018137157A1 (zh) 编码速率的调整方法、基站和终端设备
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
WO2019051791A1 (zh) 传输数据的方法和设备
JP6389126B2 (ja) 無線通信装置及び送信フレーム制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893952

Country of ref document: EP

Kind code of ref document: A1