WO2018136541A1 - Lubrifiant moteur contenant des composés de polyéther - Google Patents

Lubrifiant moteur contenant des composés de polyéther Download PDF

Info

Publication number
WO2018136541A1
WO2018136541A1 PCT/US2018/014085 US2018014085W WO2018136541A1 WO 2018136541 A1 WO2018136541 A1 WO 2018136541A1 US 2018014085 W US2018014085 W US 2018014085W WO 2018136541 A1 WO2018136541 A1 WO 2018136541A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating composition
previous
lubricating
carbon atoms
acid
Prior art date
Application number
PCT/US2018/014085
Other languages
English (en)
Inventor
Michael J. MARCELLA
Colin D. REPKO
Original Assignee
The Lubrizol Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Lubrizol Corporation filed Critical The Lubrizol Corporation
Priority to CA3049665A priority Critical patent/CA3049665A1/fr
Priority to CN201880006704.6A priority patent/CN110168063A/zh
Priority to US16/478,782 priority patent/US20190352577A1/en
Priority to EP18709170.7A priority patent/EP3571271A1/fr
Publication of WO2018136541A1 publication Critical patent/WO2018136541A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/048Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to lubricant compositions primarily, but not exclusively intended for 4-stroke, typically air-cooled scooter and motorcycle engines, that demonstrate reduced static clutch friction between ferrous and non-ferrous surfaces, such as conventionally found in a motorcycle wet clutch.
  • lubricants may be formulated to have desired clutch friction properties that meet desired specifications.
  • Second, lubricants may be modified with a booster package or concentrate of additives intended to adjust the clutch friction performance of the lubricant to the desired specification.
  • additives commonly employed as booster additives to reduce clutch friction performance are molybdenum compounds, such as molybdenum dithiocarbamate compounds. These compounds can be costly.
  • Other additives used in boosting lubricants to reduce static clutch friction such as certain phenol compounds, which are employed as solubilizers, are coming under increasing regulatory pressure.
  • the disclosed technology therefore, addresses the problem of providing lubricants and booster packages for lubricants that effectively reduce the static friction in a clutch having at least one ferrous and one non-ferrous clutch plate. Further the disclosed technology solves the problem of providing lubricants and booster packages for lubricants that both effectively reduce static friction, while maintaining or improving at least one of fuel economy, cleanliness and wear. This is accomplished by the surprising discovery that certain polyethers and
  • polyetheramines in effective treat rates, reduce static friction between the ferrous and non- ferrous surfaces in a clutch having at least one ferrous and one non-ferrous clutch plate.
  • a combination of polyethers and/or polyetheramines and ashless friction modifiers in effective treat rates, provides reduced static friction while synergistically preserving fuel economy.
  • the present invention provides a lubricant composition
  • a lubricant composition comprising (a) an oil of lubricating viscosity, (b) a polyether compound, (c) an over-based detergent, (d) an ash-free friction modifier, (e) a dispersant, and (f) optionally, an antioxidant.
  • the polyether compound may comprise a
  • the ash-free friction modifier may be derived from an alpha-hydroxy carboxylic acid, such as a derivative of tartaric acid, citric acid, malic acid, lactic acid, glycolic acid, oligomers of said acids, or combinations thereof.
  • the ash-free friction modifier may be an imide, ester, or amide of tartaric acid, and in one embodiment, may be a tartaric acid imide.
  • the over-based detergent may comprise a metal containing detergent and wherein the metal is selected from the group consisting of sodium, magnesium and calcium.
  • the over-based detergent may be selected from the group consisting of sulfonates, phenates, salicylates, salixarates and mixtures thereof.
  • the detergent may comprise a calcium sulfonate detergent.
  • the lubricating composition the over-based detergent may be free or substantially free of phenates.
  • the lubricating composition may be free or substantially free of phenolic compounds, an in one embodiment, may be free or substantially free of alkyl phenolic compounds.
  • the lubricating composition may comprise a molybdenum containing compound, and in an alternative embodiment, may be free or substantially free of a molybdenum containing compound.
  • a lubricating composition may comprise (a) a major amount of an oil of lubricating viscosity, (b) 0.05 to 3.0 wt.% (or 0.1 to 2.0 wt.% or 0.1 to 1.0 wt.% or 0.2 to 0.8 wt.%) of a polyether compound, (c) 0.05 to 3.0 wt.% (or 0.1 to 2.0 wt.% or 0.1 to 1.0 wt.% or 0.2 to 0.8 wt.%) of an over-based detergent, (d) 0.05 to 2.0 wt.% (or 0.1 to 1.0 wt.% or 0.1 to 0.8 wt.% or 0.2 to 0.8 wt.%) of an ash-free friction modifier, and (e) 0.1 wt.% to 20 wt.%, (or 1.0 wt.% to 15 wt.%, or 1.5 wt.% to 10 wt.%, or 2 wt
  • the present invention provides methods of lubricating a wet clutch by supplying to the wet clutch a lubricating composition as taught herein.
  • the present invention provides methods of reducing static friction between a ferrous and non-ferrous surface in a wet clutch, wherein the wet clutch comprises at least one clutch plate having a non-ferrous surface and at least one clutch plate having a ferrous surface, the methods comprising supplying between the ferrous and non-ferrous clutch plate surfaces a lubricating composition as taught herein.
  • the present invention provides methods of lubricating an engine comprising supplying to an engine a lubricating composition as taught herein.
  • the engine may be a 4-stroke engine, and usefully an air-cooled engine, and typically an engine providing less than about 150, or 125 or 100 or 85 horsepower.
  • the method of lubricating the engine comprises supplying a lubricant composition that does not lubricate a wet clutch.
  • an additive concentrate for top treating a lubricating composition comprising (a) 2 to 35 wt.% (or 5 to 30 wt.% or 10 to 25 wt.% or 10 to 20 wt.%) of a polyether compound, (b) 2 to 25 wt.% (or 3 to 20 wt.% or 5 to 20 wt.% or
  • a lubricant composition comprising (a) a major amount of an oil of lubricating viscosity, and (b) 0.5 to 5.0 wt.% (or 0.5 to 3.0 wt.%) or 0.5 to 1.5 wt.%) of an additive concentrate provided herein.
  • the disclosed technology further provides lubricating compositions that provide reduced static friction while maintaining fuel economy.
  • the lubricant has a static friction characteristic index (SFI) according to JASO T903 :2011 MB specifications of less than 1.25 and in another embodiment, between 0.5 and 1.25.
  • SFI static friction characteristic index
  • the present invention provides, in one embodiment, a lubricant composition
  • a lubricant composition comprising (a) an oil of lubricating viscosity, (b) a polyether compound, (c) an over-based detergent, (d) an ash-free friction modifier, (e) a dispersant, and (f) optionally, an antioxidant.
  • Oil of Lubricating Viscosity oil of Lubricating Viscosity
  • the lubricating composition comprises an oil of lubricating viscosity.
  • oils include natural and synthetic oils, oil derived from hydrocracking, hydrogenation, and hydrofinishing, unrefined, refined and re-refined oils and mixtures thereof.
  • Unrefined oils are those obtained directly from a natural or synthetic source generally without (or with little) further purification treatment. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Purification techniques are known in the art and include solvent extraction, secondary distillation, acid or base extraction, filtration, percolation and the like. Re-refined oils are also known as reclaimed or reprocessed oils, and are obtained by processes similar to those used to obtain refined oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Natural oils useful in making the inventive lubricants include animal oils, vegetable oils (e.g., castor oil,), mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
  • animal oils e.g., castor oil,
  • mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
  • Synthetic lubricating oils are useful and include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers); poly(l-hexenes), poly(l-octenes), poly(l-decenes), and mixtures thereof; alkyl- benzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)- benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); diphenyl alkanes, alkylated diphenyl alkanes, alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homolog
  • Other synthetic lubricating oils include polyol esters (such as Priolube®3970), diesters, liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans.
  • Synthetic oils may be produced by Fischer- Tropsch reactions and typically may be hydroisomerized Fischer- Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer- Tropsch gas-to- liquid synthetic procedure as well as other gas-to-liquid oils.
  • Oils of lubricating viscosity may also be defined as specified in the American
  • the five base oil groups are as follows: Group I (sulfur content >0.03 wt.%, and/or ⁇ 90 wt.% saturates, viscosity index 80-120); Group II (sulfur content ⁇ 0.03 wt.%, and >90 wt.% saturates, viscosity index 80-120); Group III (sulfur content ⁇ 0.03 wt.%, and >90 wt.% saturates, viscosity index >120); Group IV (all polyalphaolefins (PAOs)); and Group V (all others not included in Groups I, II, III, or IV).
  • the oil of lubricating viscosity may also be an API Group 11+ base oil, which term refers to a Group
  • the oil of lubricating viscosity may be an API Group IV oil, or mixtures thereof, i.e., a polyalphaolefin.
  • the polyalphaolefin may be prepared by metallocene catalyzed processes or from a non-metallocene process.
  • the oil of lubricating viscosity comprises an API Group I, Group II, Group III, Group IV, Group V oil or mixtures thereof. Often the oil of lubricating viscosity is an API Group I, Group II, Group II+, Group III, Group IV oil or mixtures thereof. Alternatively, the oil of lubricating viscosity is often an API Group II, Group II+, Group III or Group IV oil or mixtures thereof. Alternatively, the oil of lubricating viscosity is often an API Group II, Group II+, Group
  • the amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt.% the sum of the amount of the additive as described herein above, and the other performance additives.
  • the major part of the fully formulated lubricating compositions disclosed herein that is, greater than 50 wt.% of the fully formulated lubricating compositions, will consist of one or more oils of lubricating viscosity.
  • the lubricating composition of the disclosed technology comprises at least 60 wt.%, or at least 70 wt.%, or at least 80 wt.% or at least 90 wt.% of an oil of lubricating viscosity.
  • the lubricating composition may be in the form of a concentrate and/or a fully formulated lubricant. If the lubricating composition of the invention is in the form of a concentrate (which may be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of the of components of the invention to the oil of lubricating viscosity and/or to diluent oil include the ranges of 1 :99 to 99: 1 by weight, or 80:20 to 10:90 by weight.
  • the lubricating composition may contain synthetic ester base fluids.
  • Synthetic esters may have a kinematic viscosity measured at 100 C of 2.5 mm 2 /s to 30 mm 2 /s.
  • the lubricating composition comprises less than 50 wt.% of a synthetic ester base fluid with a kinematic viscosity at 100 C of at least 5.5 mm 2 /s, or at least 6 mm 2 /s, or at least 8 mm 2 /s.
  • Synthetic esters of the present invention may comprise esters of a dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, and alkenyl malonic acids) with any of variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, and propylene glycol).
  • a dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid,
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, and tripentaerythritol. Esters can also be monoesters, such as are available under the trade name Priolube 1976TM (C18-alkyl ⁇ COO ⁇ C20 alkyl).
  • Synthetic ester base oils may be present in the lubricating composition of the invention in an amount less than 50 wt.% of the composition, or less than 40 wt.%, or less than 35 wt.%, or less than 28 wt.%, or less than 21 wt.%, or less than 17 wt.%, or less than 10 wt.%, or less than 5 wt.%) of the composition.
  • the lubricating composition of the invention is free of, or substantially free of, a synthetic ester base fluid having a kinematic viscosity of at least 5.5 mm 2 /s at 100 C.
  • the lubricating composition comprises an oil of lubricating viscosity and a polyether compound.
  • the polyether compound may comprise a polyether amine or a blend of polyethers and polyetheramines.
  • polyether compounds of the present invention may be represented by the Formula
  • R is a hydrogen or a linear, branched, or cyclic hydrocarbyl group of 1 to 32 (or
  • R 1 is selected from the group consisting of hydrogen, hydrocarbyl groups of 1 to 6 (or 1 to 4 or 1 to 2 or 1 or 2) carbon atoms, and mixtures thereof,
  • n is a number from 2 to about 50 (or 12 to 36 or 18 to 30 or 2 to 20), and
  • each R 2 is independently hydrogen or a hydrocarbyl group of 1 to 24 (or 2 to 24 or 4 to 20 or 8 to 20 or 12 to 18 or 2 to 12) carbon atoms,
  • each R 3 is independently hydrogen, a hydrocarbyl group of 1 to 24 (or 2 to 24 or 4 to 20 or 8 to 20 or 12 to 18 or 2 to 12) carbon atoms, or— [R 4 N(R 5 )] P R 6
  • R 4 is C 2 -Cio alkylene
  • R 5 and R 6 are independently hydrogen or a hydrocarbyl group of 1 to 6 (or 1 to 4 or 1 to
  • R 7 and R 8 are independently hydrogen or a hydrocarbyl group of 1 to 6 (or 1 to 4 or 1 to 2 or 2 to 4 or 3) carbon atoms, and
  • p is a number from 1-7.
  • Useful polyetheramines can be prepared by condensing hydric compound such as an alcohol or alkylphenol with an alkylene oxide, mixture of alkylene oxides or with several alkylene oxides in sequential fashion in a 1 :2-50 mole ratio of hydric compound to alkylene oxide, typically ethylene oxide, to form a polyether.
  • hydric compound such as an alcohol or alkylphenol
  • alkylene oxide mixture of alkylene oxides or with several alkylene oxides in sequential fashion in a 1 :2-50 mole ratio of hydric compound to alkylene oxide, typically ethylene oxide
  • the alcohols can be linear or branched from 1 to 32 carbon atoms, or from 1 to 26 or 2 to 26 or 4 to 24 or 8 to 20 or 10 to 20 or 12 to 18 carbon atoms.
  • the alkyl group of the alkylphenols may have a similar range of carbon atoms as the alcohols.
  • the alkylene oxides are preferably ethylene oxide, propylene oxide or butylene oxide.
  • the number of alkylene oxide units in the polyether may be from 2 to 50, or 12 to 36 or 18 to 30 or 2 to 20.
  • the polyether compound may be a
  • polyetheramine The polyetheramines of the present invention may be as represented by Formula 1 :
  • R is a hydrogen or hydrocarbyl group of 1 to 32 (or 1 to 26 or 2 to 26 or 4 to 24 or 8 to 20 or 10 to 20 or 12 to 18) carbon atoms
  • R 1 is selected from the group consisting of hydrogen, hydrocarbyl groups of 1 to 6 (or 1 to 4 or 1 to 2 or 1 or 2) carbon atoms, and mixtures thereof,
  • n is a number from 2 to about 50
  • A is selected from the group consisting of— R 7 NR 2 R 2 and— NR 3 R 3 , preferably— R 7 NR 2 R 2 , where
  • each R 2 is independently hydrogen or a hydrocarbyl group of 1 to 24 (or 2 to 24 or 4 to 20 or 8 to 20 or 12 to 18 or 2 to 12) carbon atoms,
  • each R 3 is independently hydrogen, a hydrocarbyl group of 1 to 24 (or 2 to 24 or 4 to 20 or 8 to 20 or 12 to 18 or 2 to 12) carbon atoms, or— [R 4 N(R 5 )] P R 6
  • R 4 is C2-C10 alkylene
  • R 5 and R 6 are independently hydrogen or a hydrocarbyl group of 1 to 6 (or 1 to 4 or 1 to 2 or 2 to 4),
  • R 7 and R 8 are independently hydrogen or a hydrocarbyl group of 1 to 6 (or 1 to 4 or 1 to 2 or 2 to 4 or 3) carbon atoms, and
  • p is a number from 1-7.
  • Useful polyetheramines can be prepared by converting a polyetheramine, as described above, by amination with ammonia, an amine or a polyamine to form a polyetheramine of the type where A is— NR 3 R 3 .
  • Published Patent Application EP310875 provides reaction conditions for the amination reaction, the disclosure of which is incorporated herein by reference.
  • the polyether intermediate can also be converted to a polyetheramine of the type where A is— R 7 R 2 R 2 by reaction with acrylonitrile followed by hydrogenation.
  • U.S. Pat. No. 5,094,667 provides reaction conditions for the cyanoethylation and subsequent hydrogenation, the disclosure of which is incorporated herein by reference.
  • Polyetheramines according to Formula 1 where A is— R 7 NH 2 are useful.
  • Commercial examples of useful polyetheramines are the Techron® range from Chevron and the Jeffamine® range from Huntsman.
  • the polyether compound is part of a fully formulated lubricant composition, it may be present in an amount of about 0.05 to about 3.0 wt.% (or about 0.1 to about 2.0 wt.% or about 0.1 to about 1.0 wt.% or about 0.2 to about 0.8 wt.%, with respect to the lubricating composition.
  • the polyether compound may be a component of an additive concentrate comprising the polyether compound, an ash-free friction modifier and optionally, a detergent.
  • the polyether compound may be present (on an oil free basis) at about 2 to about 35 wt.% or about 5 to about 30 wt.% or about 10 to about 25 wt.%) or about 10 to about 20 wt.%, with respect to the additive concentrate.
  • the lubricant composition will also include at least one ash-free friction modifier.
  • the friction modifier is a non-metal containing additive.
  • a non-metal containing additive may also be referred to as an ashless (or ash-free) additive, since it will typically not produce any sulfated ash when subjected to the conditions of ASTM D 874.
  • An additive is referred to as "non-metal containing" if it does not contribute metal content to the lubricant composition.
  • the friction modifier may be chosen from long chain fatty acid derivatives of amines, long chain fatty esters, or derivatives of long chain fatty epoxides; fatty imidazolines; amine salts of alkylphosphoric acids; and fatty esters, amides and/or imides of various hydroxy-carboxylic acids, such as tartaric acid, citric acid, malic acid, lactic acid, glycolic acid, and mandelic acid.
  • fatty alkyl or "fatty” in relation to friction modifiers means a carbon chain having 8 to 30 carbon atoms, typically a straight carbon chain.
  • ash-free friction modifier may comprise an amide, ester or imide derivative of a hydroxycarboxylic acid.
  • Such materials and their syntheses are known from, for instance, PCT Publn. No. WO 2006/044411 and US Publn. No. 2009/067091. They have been employed in lubricants for their properties as thermal or oxidative stability, deposit control, and friction control.
  • Suitable hydroxy-carboxylic acids include citric acid, tartaric acid, lactic acid, malic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, and mixtures thereof. Oligomers of such acids may also be employed (e.g., the self-condensate of glycolic acid by ester formation).
  • an amide, ester or imide derivative of a hydroxycarboxylic acid may be derived from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid includes a derivative (or compound derived from) tartaric acid or citric acid, or, in another embodiment, from tartaric acid.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid may be represented by Formula 2 (encompassing, 2a or 2b):
  • n' is 0 to 10 for Formula 2b, and 1 to 10 for Formula 2a;
  • p 1 to 5;
  • X is independently -CH 2 -, >CHR 4 , >CR 4 R 5 , >CHOR 6 , >C(OH)C0 2 R 6 ,
  • R 1 and R 2 are independently hydrocarbyl groups, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms;
  • R 3 is a hydrocarbyl group
  • R 4 and R 5 are independently keto-containing groups (such as acyl groups), ester groups, hydrocarbyl groups, -OR 6 , -CO2R 6 , or -OH (typically not more than one -OH when X is >CR 4 R 5 ); and
  • R 6 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms.
  • the compound of Formula (1) has m, n, X, and R 1 , R 2 and R 6 defined as follows: m is 0 or 1, n is 1 to 2, X is >CHOR 6 , and R 1 , R 2 and R 6 are independently hydrocarbyl groups containing 4 to 30 carbon atoms.
  • Y and Y' are both -O-
  • the compound of Formula 2 has m, n, X, Y, Y' and R 1 , R 2 and R 6 defined as follows: m is 0 or 1, n is 1 to 2, X is >CHOR 6 ; Y and Y' are both -0-, and R 1 , R 2 and R 6 are independently hydrogen or hydrocarbyl groups containing 4 to 30 carbon atoms.
  • the di -esters, di-amides, ester-amide, ester-imide compounds of Formula 2 may be prepared by reacting a dicarboxylic acid (such as tartaric acid), with an amine or alcohol, optionally in the presence of a known esterification catalyst.
  • a dicarboxylic acid such as tartaric acid
  • an amine or alcohol optionally in the presence of a known esterification catalyst.
  • ester-imide compounds it is necessary to have at least three carboxylic acid groups (such as provided by citric acid).
  • the amine or alcohol which is reacted typically has sufficient carbon atoms to fulfill the requirements of R 1 and/or R 2 as defined in Formula 2.
  • R 1 and R 2 are independently linear or branched hydrocarbyl groups. In one embodiment they are branched; in another they are linear; or some may be branched and some linear.
  • the R 1 and R 2 may be incorporated into Formula 2 by either an amine or an alcohol.
  • the alcohol includes both monohydric alcohol and polyhydric alcohol.
  • the carbon atoms of the alcohol may be linear chains, branched chains, or mixtures thereof.
  • suitable alcohols include 2-ethylhexanol, isotridecanol, Guerbet alcohols, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, Ctanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, Ctadecanol, nonadecanol, eicosanol, ethylene glycol, propylene glycol, 1,3-butylene glycol, 2,3- butylene glycol, 1,5-pentane diol, 1,6-hexane diol, glycerol, sorbitol, pentaerythritol,
  • a polyhydric alcohol is used in a mixture along with a monohydric alcohol; in such a combination the monohydric alcohol may constitute at least 60 or at least 90 mole% of the mixture.
  • the acid employed is tartaric acid, it may be a commercially available material, and it may exist in one or more isomeric forms such as d-tartaric acid, l-tartaric acid, d,l-tartaric acid or a racemic mixture of d-tartaric acid and l-tartaric acid, or mesotartaric acid.
  • the hydroxycarboxylic acid derivative may comprise a tartrimide such as a tartimide formed from a primary amine having 8 to 24 carbon atoms or 12 to 20 carbon atoms or 16 to 18 carbon atoms or mixtures thereof.
  • the tartrimide is oleyl tartrimide.
  • the hydroxycarboxylic acid derivative may comprise a tartrate ester such as a diester of tartaric acid and one or more alcohols having 8 to 24 carbon atoms or 8 to 18 carbon atoms or 12 to 14 carbon atoms.
  • the tartrate is the ester from mixed C12-C14 alcohols.
  • the amount of the ash-free friction modifier in a lubricant may be 0.05 to 3.0 wt.% or 0.05 to 2.0 wt.% (or 0.1 to 1.0 wt.% or 0.1 to 0.8 wt.% or 0.2 to 0.8 wt.%) with respect to the lubricant composition.
  • the ash-free friction modifier may also be present in a concentrate as described above, where it may be present (on an oil free basis) at 2 to 25 wt.% or 3 to 20 wt.% or 5 to 20 wt.%) or 7 to 10 wt.%>) with respect to the additive concentrate.
  • the amount of material may be two to twenty times the above concentration amounts.
  • the invention provides a lubricating composition further comprising an over-based, metal-containing detergent.
  • the metal of the metal -containing detergent may be zinc, sodium, calcium, barium, or magnesium.
  • the metal of the metal-containing detergent may be sodium, calcium, or magnesium.
  • the over-based, metal-containing detergent may be chosen from sulfonates, non-sulfur containing phenates, sulfur containing phenates, salixarates, salicylates, and mixtures thereof, or borated equivalents thereof.
  • the over-based detergent may be borated with a borating agent such as boric acid.
  • the over-based, metal-containing detergent may also include "hybrid" detergents formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described; for example, in US Pat. Nos. 6,429, 178, 6,429, 179, 6,153,565 and 6,281, 179.
  • phenate/salicylates e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described; for example, in US Pat. Nos. 6,429, 178, 6,429, 179, 6,153,565 and 6,281, 179.
  • hybrid sulfonate/phenate detergent For example, a “hybrid sulfonate/phenate detergent is employed, the "hybrid detergent would be considered equivalent to amounts of distinct phenate and sulfonate detergents introducing like amounts of phenate and sulfonate soaps, respectively.
  • an over-based, metal-containing detergent may be a zinc, sodium, calcium or magnesium salt of a sulfonate, a phenate, sulfur containing phenate, salixarate or salicylate.
  • Over-based sulfonates, salixarates, phenates and salicylates typically have a total base number of 120 to 700 TBN.
  • the over-based, metal-containing detergent may be a calcium or magnesium an over-based detergent.
  • the lubricating composition comprises a calcium sulfonate over-based detergent, which may have a TBN of 120 to 700.
  • the over-based sulfonate detergent may have a metal ratio of 12 to less than 20, or 12 to 18, or 20 to 30, or 22 to 25.
  • Over-based sulfonates typically have a total base number of 120 to 700, or 250 to 600, or 300 to 500 (on an oil free basis).
  • Over-based detergents are known in the art.
  • the sulfonate detergent may be a linear or branched alkylbenzene sulfonate detergent having a metal ratio of at least 8 as is described in paragraphs [0026] to [0037] of US Publn. No. 2005/065045 (granted as US Pat. No. 7,407,919).
  • Linear alkyl benzenes may have the benzene ring attached anywhere on the linear chain, usually at the 2, 3 or 4 position, or mixtures thereof.
  • Linear alkylbenzene sulfonate detergent may be particularly useful for assisting in improving fuel economy.
  • the alkylbenzene sulfonate detergent may be a branched alkylbenzene sulfonate, a linear alkylbenzene sulfonate, or mixtures thereof.
  • the lubricating composition may be free of linear alkylbenzene sulfonate detergent.
  • the sulfonate detergent may be a metal salt of one or more oil-soluble alkyl toluene sulfonate compounds as disclosed in paragraphs [0046] to [0053] of US Publn. No. 2008/0119378.
  • the detergent such as a branched alkylbenzenesulfonate detergent, may be present in the lubricating composition at 0.1 to 3 wt.%, or 0.25 to 1.5 wt.%, or 0.5 to 1.1 wt.%.
  • the lubricating composition further comprises a "hybrid" detergent formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, or sulfonates/phenates/salicylates.
  • a "hybrid" detergent formed with mixed surfactant systems including phenate and/or sulfonate components, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, or sulfonates/phenates/salicylates.
  • Detergents may be present in an amount of 0.05 to 3.0 wt.% (or 0.1 to 2.0 wt.% or 0.1 to 1.0 wt.%) or 0.2 to 0.8 wt.%>) with respect to the fully formulated lubricant composition.
  • the detergent may be present in the additive concentrate in an amount (on an oil free basis) of 10 to 80 wt.% (or 10 to 75 wt.% or 30 to 75 wt.% or 40 wt.% to 70 wt.%) with respect to the additive concentrate.
  • a lubricating composition may be prepared by adding the product of the process described herein to an oil of lubricating viscosity, optionally in the presence of other
  • the lubricating composition of the disclosed technology optionally comprises other performance additives.
  • the other performance additives may include at least one of a molybdenum compound, a metal deactivators, viscosity modifiers, detergents, friction modifiers, antiwear agents, corrosion inhibitors, dispersants, extreme pressure agents, antioxidants, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents (different from those of the invention) and mixtures thereof.
  • fully-formulated lubricating oil will contain one or more of these performance additives.
  • the lubricant composition may also include molybdenum containing compounds, such as molybdenum containing dithiocarbamate compounds and nitrogen-containing molybdenum compounds, such as those described in U.S. Pat. No. 6,329,327; and organomolybdenum compounds made from the reaction of a molybdenum source, fatty oil, and a diamine as described in U.S. Pat. No. 6,914,037.
  • the molybdenum compound may be present in the lubricant composition at 0.005 to 2 wt.% of the composition, or 0.01 to 1.3 wt.% of the composition, or even 0.02 to 1.0 wt.% of the composition.
  • the molybdenum compound may provide the lubricant composition with 0 to 1000 ppm, or 5 to 1000 ppm, or 10 to 750 ppm 5 ppm to 300 ppm, or 20 ppm to 250 ppm of molybdenum. In some embodiments, however, the lubricant composition will be free or substantially free of molybdenum compounds.
  • the lubricating composition in a further embodiment may comprise an antioxidant, wherein the antioxidant comprises a phenolic or an aminic antioxidant or mixtures thereof.
  • the antioxidants include diarylamines, alkylated diarylamines, hindered phenols, or mixtures thereof.
  • the antioxidant may be present at 0.1 wt.% to 3 wt.%, or 0.5 wt.% to 2.75 wt.%, or 1 wt.%) to 2.5 wt.%) of the lubricating composition.
  • the diarylamine or alkylated diarylamine may be a phenyl-a-naphthylamine (PANA), an alkylated diphenylamine, or an alkylated phenylnapthylamine, or mixtures thereof.
  • the alkylated diphenylamine may include di-nonylated diphenylamine, nonyl diphenylamine, Ctyl diphenylamine, di-octylated diphenylamine, di-decylated diphenylamine, decyl diphenylamine and mixtures thereof.
  • the diphenylamine may include nonyl diphenylamine, dinonyl diphenylamine, Ctyl diphenylamine, dioctyl diphenylamine, or mixtures thereof.
  • the alkylated diphenylamine may include nonyl diphenylamine, or dinonyl diphenylamine.
  • the alkylated diarylamine may include Ctyl, di-octyl, nonyl, di-nonyl, decyl or di-decyl phenylnapthylamines.
  • the hindered phenol antioxidant often contains a secondary butyl and/or a tertiary butyl group as a sterically hindering group.
  • the phenol group may be further substituted with a hydrocarbyl group (typically linear or branched alkyl) and/or a bridging group linking to a second aromatic group.
  • hindered phenol antioxidants examples include 2,6-di-tert- butylphenol, 4-methyl-2,6-di-tert-butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4 propyl-2,6-di- tert-butyl phenol or 4-butyl-2,6-di-tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol.
  • the hindered phenol antioxidant may be an ester and may include, e.g., IrganoxTM L-135 from Ciba. A more detailed description of suitable ester-containing hindered phenol antioxidant chemistry is found in US Pat. No.
  • the lubricating composition may in a further embodiment include a dispersant, or mixtures thereof.
  • the dispersant may be a succinimide dispersant, a Mannich dispersant, a succinamide dispersant, a polyolefin succinic acid ester, amide, or ester-amide, or mixtures thereof.
  • the dispersant may be present as a single dispersant.
  • the dispersant may be present as a mixture of two or three different dispersants, wherein at least one may be a succinimide dispersant.
  • the succinimide dispersant may be derived from an aliphatic polyamine, or mixtures thereof.
  • the aliphatic polyamine may be aliphatic polyamine such as an ethylenepolyamine, a propylenepolyamine, a butylenepolyamine, or mixtures thereof.
  • the aliphatic polyamine may be ethylenepolyamine.
  • the aliphatic polyamine may be chosen from ethylenediamine, diethylenetriamine, triethylenetetramine,
  • the dispersant may be a polyolefin succinic acid ester, amide, or ester-amide.
  • a polyolefin succinic acid ester may be a polyisobutylene succinic acid ester of pentaerythritol, or mixtures thereof.
  • a polyolefin succinic acid ester-amide may be a polyisobutylene succinic acid reacted with an alcohol (such as pentaerythritol) and a polyamine as described above.
  • the dispersant may be an N-substituted long chain alkenyl succinimide.
  • An example of an N-substituted long chain alkenyl succinimide is polyisobutylene succinimide.
  • the polyisobutylene from which polyisobutylene succinic anhydride is derived has a number average molecular weight of 350 to 5000, or 550 to 3000 or 750 to 2500 g/mole Succinimide dispersants and their preparation are disclosed, for instance in US Pat. Nos. 3, 172,892,
  • the dispersants may also be post-treated by conventional methods by a reaction with any of a variety of agents.
  • agents such as boric acid, urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids such as terephthalic acid, hydrocarbon- substituted succinic anhydrides, maleic anhydride, nitriles, epoxides, and phosphorus compounds.
  • the post-treated dispersant is borated.
  • the post-treated dispersant is reacted with dimercaptothiadiazoles.
  • the post-treated dispersant is reacted with phosphoric or phosphorous acid. In one embodiment, the post-treated dispersant is reacted with terephthalic acid and boric acid (as described in US Publn. No. 2009/0054278.
  • the dispersant may be present at 0.1 wt.% to 20 wt.%, (or 1.0 wt.% to 15 wt.%, or 1.5 wt.% to 10 wt.%, or 2 wt.% to 6 wt.% or 1 to 3 wt.%) of the lubricating composition.
  • the succinimide dispersant may comprise a polyisobutylene succinimide, wherein the polyisobutylene from which polyisobutylene succinimide is derived has a number average molecular weight of 350 to 5000, or 750 to 2500 g/mole.
  • oil-soluble titanium compounds as disclosed in US Pat. No. 7,727,943 and US Publn. No. 2006/0014651.
  • the oil-soluble titanium compounds may function as antiwear agents, friction modifiers, antioxidants, deposit control additives, or more than one of these functions.
  • the oil soluble titanium compound is a titanium (IV) alkoxide.
  • the titanium alkoxide is formed from a monohydric alcohol, a polyol or mixtures thereof.
  • the monohydric alkoxides may have 2 to 16, or 3 to 10 carbon atoms.
  • the titanium alkoxide is titanium (IV) isopropoxide.
  • the titanium alkoxide is titanium (IV) 2 ethylhexoxide.
  • the titanium compound comprises the alkoxide of a vicinal 1,2-diol or polyol.
  • the 1,2-vicinal diol comprises a fatty acid mono-ester of glycerol, often the fatty acid is oleic acid.
  • the oil soluble titanium compound is a titanium carboxylate.
  • the titanium (IV) carboxylate is titanium neodecanoate.
  • the lubricating composition may in one embodiment further include a phosphorus- containing antiwear agent.
  • the phosphorus-containing antiwear agent may be a zinc dialkyldithiophosphate, phosphite, phosphate, phosphonate, and ammonium phosphate salts, or mixtures thereof.
  • Zinc dialkyldithiophosphates are known in the art.
  • the antiwear agent of whatever type, may be present at 0 wt.% to 3 wt.%, or 0.1 wt.% to 1.5 wt.%, or 0.5 wt.% to 0.9 wt.%) of the lubricating composition.
  • EP agents may also be present.
  • EP agents that are soluble in the oil include sulfur- and chlorosulfur-containing EP agents, dimercaptothiadiazole or CS 2 derivatives of dispersants (typically succinimide dispersants), derivative of chlorinated hydrocarbon EP agents and phosphorus EP agents.
  • dispersants typically succinimide dispersants
  • chlorinated wax examples include chlorinated wax;
  • sulfurized olefins such as sulfurized isobutylene
  • hydrocarbyl-substituted 2,5-dimercapto- 1,3,4-thiadiazole or oligomers thereof
  • organic sulfides and polysulfides such as
  • dibenzyl disulfide bis-(chlorobenzyl) disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, sulfurized terpene, and sulfurized Diels- Alder adducts
  • phosphosulfurized hydrocarbons such as the reaction product of phosphorus sulfide with turpentine or methyl oleate
  • phosphorus esters such as the dihydrocarbon and trihydrocarbon phosphites, e.g., dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite; dipentylphenyl phosphite, tridecyl phosphite, distearyl phosphite and polypropylene substituted phenol phosphite
  • dialkylphosphoric acids or derivatives including, for example, the amine salt of a reaction product of a dialkyldithiophosphoric acid with propylene oxide and subsequently followed by a further reaction with P2O5; and mixtures thereof (as described in US Pat. No. 3,197,405).
  • the amount of EP agent, if present, may be 0.001 to 5 wt.%, or 0.1 to 2 wt.%, or 0.2 to 1 wt.%.
  • Foam inhibitors that may be useful in the lubricant compositions of the disclosed technology include polysiloxanes, copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including fluorinated polysiloxanes, trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers.
  • the amount of foam inhibitor, if present, may be 0.001 to 0.012 wt.% or to 0.004 wt.%, or 0.001 to 0.003 wt.%.
  • Viscosity improvers may be included in the compositions of this invention.
  • Viscosity improvers are usually polymers, including polyisobutenes, polymethacrylates (PMA) and polymethacrylic acid esters, diene polymers, polyalkylstyrenes, esterified styrene-maleic anhydride copolymers, hydrogenated alkenylarene-conjugated diene copolymers and polyolefins also referred to as olefin copolymer or CP).
  • PMA's are prepared from mixtures of methacrylate monomers having different alkyl groups.
  • the alkyl groups may be either straight chain or branched chain groups containing from 1 to 18 carbon atoms.
  • Most PMA's are viscosity modifiers as well as pour point depressants.
  • the viscosity index improver is a polyolefin comprising ethylene and one or more higher olefin, such as propylene.
  • Polymeric viscosity modifiers may be present in a lubricating composition from 0.1 to 10 wt.%, 0.3 to 5 wt.%, or 0.5 to 2.5 wt.%.
  • Pour point depressants that may be useful in the lubricant compositions of the disclosed technology include polyalphaolefins, esters of maleic anhydride-styrene copolymers,
  • pour point depressants may be present in a lubricating composition from 0.1 to 10 wt.%, 0.3 to 5 wt.%, or 0.5 to 2.5 wt.%.
  • Demulsifiers include trialkyl phosphates, and various polymers and copolymers of ethylene glycol, ethylene oxide, propylene oxide, or mixtures thereof.
  • Metal deactivators include derivatives of benzotriazoles (typically tolyltriazole), 1,2,4- triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or 2-alkyldithiobenzothiazoles.
  • the metal deactivators may also be described as corrosion inhibitors.
  • Seal swell agents include sulfolene derivatives Exxon Necton-37TM (FN 1380) and Exxon Mineral Seal OilTM (FN 3200).
  • Suitable friction modifiers other than the ash-free friction modifiers disclosed above may include long chain fatty acid derivatives of amines, fatty esters, or fatty epoxides; fatty imidazolines such as condensation products of carboxylic acids and polyalkylene- polyamines; amine salts of alkylphosphoric acids; fatty phosphonates; fatty phosphites; borated phospholipids, borated fatty epoxides; glycerol esters; borated glycerol esters; fatty amines; alkoxylated fatty amines; borated alkoxylated fatty amines; hydroxyl and polyhydroxy fatty amines including tertiary hydroxy fatty amines; hydroxy alkyl amides; metal salts of fatty acids; metal salts of alkyl salicylates; fatty oxazolines; fatty ethoxylated alcohols; condensation products of carboxylic acids and polyalkylene
  • Friction modifiers may also encompass materials such as sulfurized fatty compounds and olefins, sunflower oil or soybean oil monoester of a polyol and an aliphatic carboxylic acid.
  • the friction modifier may be a long chain fatty acid ester.
  • the long chain fatty acid ester may be a mono-ester and in another embodiment the long chain fatty acid ester may be a triglyceride.
  • the present technology discloses fully formulated lubricants as well as additive concentrates for top-treating lubricants. Where the additive concentrate comprises the polyether compound, ash-free friction modifier and optional detergent, the present technology
  • an existing lubricant may be top treated with 0.5 to 15 wt.% or 05 to 10 wt.% or 0.5 to 5.0 wt.% or 0.5 to 3.0 wt.% or 0.5 to 1.5 wt.% or 0.5 to 1.2 wt.% of the additive concentrate.
  • the friction properties of the lubricant may be adjusted to render the treated lubricant suitable for use in a scooter engine, even where the pre-treated lubricant was suitable for use in a motorcycle having an engine and a wet clutch.
  • a fully formulated lubricant composition in different embodiments may have a composition as disclosed in the following table:
  • An additive concentrate in different embodiments may have a composition as disclosed in the following table: Additive Embodiments (wt.%)
  • the technology disclosed may include a method of lubricating one of a wet clutch or an internal combustion engine, comprising supplying to the wet clutch or the engine a lubricating composition comprising (a) an oil of lubricating viscosity, (b) a polyether compound, (c) an over-based detergent, (d) an ash-free friction modifier; (e) a dispersant and (f) optionally, an antioxidant.
  • a lubricating composition comprising (a) an oil of lubricating viscosity, (b) a polyether compound, (c) an over-based detergent, (d) an ash-free friction modifier; (e) a dispersant and (f) optionally, an antioxidant.
  • the technology disclosed may include a method of lubricating an internal combustion engine comprising supplying to the engine a lubricating composition as described above.
  • the internal combustion engine may be a 4-stroke engine.
  • the internal combustion engine may be fitted with an emission control system or a turbocharger.
  • Examples of the emission control system include particulate filters, or systems employing selective catalytic reduction (SCR).
  • the internal combustion engine may be port fuel injected or direct injection.
  • the internal combustion engine is a gasoline direct injection (GDI) engine.
  • GDI gasoline direct injection
  • the technology disclosed may include a method of lubricating a wet clutch, wherein the wet clutch comprises at least one clutch plate having a non-ferrous surface and at least one clutch plate having a ferrous surface, comprising supplying to the wet clutch, and more particularly, suppling between the interface of the ferrous and non-ferrous surfaces, a lubricating composition as described herein.
  • the technology disclosed may include a method of reducing static friction between a ferrous and non-ferrous surface, such as may be found in a wet clutch having at least one clutch plate having a non-ferrous surface and at least one clutch plate having a ferrous surface, the method comprising supplying between the ferrous and non-ferrous clutch plate surfaces a lubricating composition as described herein.
  • the lubricant compositions of the present invention may be employed in a wet clutch, that is, where clutch plates which are immersed in a lubricant. Such clutches are well known and not extensively described herein, save that they typically contain a two or more plates.
  • Plate materials may include steel (that is, a ferrous material), and non- ferrous materials, such as paper, ceramic, and carbon fiber.
  • the present technology is particularly useful in reducing static friction between a steel plate and a carbon fiber or fiberglass plate. While the present invention may be taught in relation to reducing at least one of static friction and dynamic friction between a ferrous and non-ferrous surface exemplified in a wet clutch, it will be understood that the compositions of the present invention may be useful in reducing one of static or dynamic friction between ferrous and non-ferrous surfaces in other contexts.
  • the lubricating compositions of the present invention may have a total sulfated ash content of 1.2 wt.% or less.
  • the sulfur content of the lubricating composition may be 1 wt.%> or less, or 0.8 wt.%> or less, or 0.5 wt.%> or less, or 0.3 wt.%> or less.
  • the sulfur content may be in the range of 0.001 wt.% to 0.5 wt.%, or 0.01 wt.% to 0.3 wt.%.
  • the phosphorus content may be 0.2 wt.%> or less, or 0.12 wt.%> or less, or 0.1 wt.%> or less, or 0.085 wt.%) or less, or 0.08 wt.%> or less, or even 0.06 wt.%> or less, 0.055 wt.%> or less, or 0.05 wt.%> or less.
  • the phosphorus content may be 0.04 wt.%> to 0.12 wt.%>.
  • the phosphorus content may be 100 ppm to 1000 ppm, or 200 ppm to 600 ppm.
  • the total sulfated ash content may be 0.3 wt.%> to 1.2 wt.%, or 0.5 wt.%> to 1.1 wt.%> of the lubricating composition. In one embodiment, the sulfated ash content may be 0.5 wt.%> to 1.1 wt.%) of the lubricating composition.
  • the lubricating composition may be characterized as having (i) a sulfur content of 0.5 wt.%> or less, (ii) a phosphorus content of 0.15 wt.%> or less, and (iii) a sulfated ash content of 0.5 wt.%> to 1.5 wt.%> or less.
  • the lubricating composition may be characterized as having at least one of (i) a sulfur content of 0.2 wt.%> to 0.4 wt.%> or less, (ii) a phosphorus content of 0.08 wt.%> to 0.15 wt.%, and (iii) a sulfated ash content of 0.5 wt.%> to 1.5 wt.%> or less.
  • the lubricating composition may be characterized as having a sulfated ash content of 0.5 wt.% to 1.2 wt.%.
  • TBN values are (total base number) measured by the methodology described in D4739 (buffer).
  • the lubricating composition may be characterized as having a total base number (TBN) content of at least 5 mg KOH/g.
  • the lubricating composition may be characterized as having a total base number (TBN) content of 6 to 13 mg KOH/g, or 7 to 12 mg KOH/g.
  • the lubricant may have a SAE viscosity grade of XW-Y, wherein X may be 0, 5, 10, or 15; and Y may be 16, 20, 30, 40, or 50 or a monograde viscosity of SAE 20, 30, 40, or SAE 50.
  • the internal combustion engine disclosed herein may have a steel surface on a cylinder bore, cylinder block, or piston ring.
  • the internal combustion engine may have a surface of steel, or an aluminum alloy, or an aluminum composite.
  • the internal combustion engine may be an aluminum block engine where the internal surface of the cylinder bores has been thermally coated with iron, such as by a plasma transferred wire arc (PTWA) thermal spraying process.
  • PTWA plasma transferred wire arc
  • Thermally-coated iron surfaces may be subjected to conditioning to provide ultra-fine surfaces.
  • a series of 10W-30 motorcycle lubricants are prepared as summarized in Table 1.
  • the inventive oil examples 1 and 2 of the invention contain a polyethyleneamine, an over-based detergent, an ash-free friction modifier, and a dispersant, as well as several other conventional lubricant additives.
  • the inventive oils are evaluated and compared to a similarly formulated oil without the polyetheramine (Comparative 1).
  • the lubricants are evaluated for balance of static and dynamic friction performance.
  • the industry-standard JASO T 903 :2011 test utilizes a clutch pack consisting of several steel disks and fiber plates enclosed in a test head.
  • the clutch pack operates in a temperature controlled oil bath.
  • An electric motor is then used to rotate the fiber plates to 3,600 RPM while the steel disks are held static in the test head.
  • This motoring phase there is no pressure applied to the clutch pack.
  • a metal disc connected to the electric motor simulates vehicle inertia. During this dynamic engagement, parameters such as speed and torque are measured and are used to calculate the Dynamic Friction Characteristic Index (DFI) and Stop Time Index (STI).
  • DFI Dynamic Friction Characteristic Index
  • STI Stop Time Index
  • SFI Static Friction Characteristic Index
  • inventive lubricant composition provides for desired reduction in static friction.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having
  • hydrocarbyl groups include:
  • hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • aliphatic e.g., alkyl or alkenyl
  • alicyclic e.g., cycloalkyl, cycloalkenyl
  • aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • substituted hydrocarbon substituents that is, substituents containing non- hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulphoxy);
  • hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms;
  • heteroatoms include sulphur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
  • substituents as pyridyl, furyl, thienyl and imidazolyl.
  • no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
  • substantially free of defines an amount which is present as impurities, e.g., a trace amount or a non-effective amount.

Abstract

La présente invention concerne des compositions lubrifiantes pour des moteurs de scooter et des procédés pour réduire le frottement statique entre des surfaces ferreuses et non-ferreuses, tel que le cas dans un embrayage humide. Les compositions lubrifiantes de la présente invention contiennent des composés de polyéther en combinaison avec un ou plusieurs modificateurs de frottement exempts de cendres.
PCT/US2018/014085 2017-01-17 2018-01-17 Lubrifiant moteur contenant des composés de polyéther WO2018136541A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3049665A CA3049665A1 (fr) 2017-01-17 2018-01-17 Lubrifiant moteur contenant des composes de polyether
CN201880006704.6A CN110168063A (zh) 2017-01-17 2018-01-17 含有聚醚化合物的发动机润滑剂
US16/478,782 US20190352577A1 (en) 2017-01-17 2018-01-17 Engine lubricant containing polyether compounds
EP18709170.7A EP3571271A1 (fr) 2017-01-17 2018-01-17 Lubrifiant moteur contenant des composés de polyéther

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762446930P 2017-01-17 2017-01-17
US62/446,930 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018136541A1 true WO2018136541A1 (fr) 2018-07-26

Family

ID=61569392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/014085 WO2018136541A1 (fr) 2017-01-17 2018-01-17 Lubrifiant moteur contenant des composés de polyéther

Country Status (5)

Country Link
US (1) US20190352577A1 (fr)
EP (1) EP3571271A1 (fr)
CN (1) CN110168063A (fr)
CA (1) CA3049665A1 (fr)
WO (1) WO2018136541A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951518B (zh) * 2019-11-15 2022-04-15 山西潞安矿业(集团)有限责任公司 一种有机摩擦改进剂及降低低粘度润滑油摩擦系数的方法
EP4179049A1 (fr) * 2020-07-09 2023-05-17 ExxonMobil Technology and Engineering Company Compositions lubrifiantes pour huile moteur et procédés de fabrication associés, présentant une excellente protection contre l'usure du moteur et une excellente protection contre la corrosion

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3197405A (en) 1962-07-09 1965-07-27 Lubrizol Corp Phosphorus-and nitrogen-containing compositions and process for preparing the same
US3316177A (en) 1964-12-07 1967-04-25 Lubrizol Corp Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
US3340281A (en) 1965-06-14 1967-09-05 Standard Oil Co Method for producing lubricating oil additives
US3351552A (en) 1964-09-08 1967-11-07 Lubrizol Corp Lithium compounds as rust inhibitors for lubricants
US3381022A (en) 1963-04-23 1968-04-30 Lubrizol Corp Polymerized olefin substituted succinic acid esters
USRE26433E (en) 1963-12-11 1968-08-06 Amide and imide derivatives of metal salts of substituted succinic acids
US3433744A (en) 1966-11-03 1969-03-18 Lubrizol Corp Reaction product of phosphosulfurized hydrocarbon and alkylene polycarboxylic acid or acid derivatives and lubricating oil containing the same
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
US3467668A (en) 1965-04-27 1969-09-16 Roehm & Haas Gmbh Polyamines comprising ethylene and imidazolinyl groups
US3501405A (en) 1967-08-11 1970-03-17 Rohm & Haas Lubricating and fuel compositions comprising copolymers of n-substituted formamide-containing unsaturated esters
US3542680A (en) 1963-04-23 1970-11-24 Lubrizol Corp Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
US3576743A (en) 1969-04-11 1971-04-27 Lubrizol Corp Lubricant and fuel additives and process for making the additives
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
EP0310875A1 (fr) 1987-09-30 1989-04-12 BASF Aktiengesellschaft Combustibles contenant une polyétheramine pour moteur à allumage par étincelle
EP0355895A2 (fr) 1988-08-05 1990-02-28 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de dérivés de l'anhydride succinique
US5094667A (en) 1990-03-20 1992-03-10 Exxon Research And Engineering Company Guerbet alkyl ether mono amines
US6153565A (en) 1996-05-31 2000-11-28 Exxon Chemical Patents Inc Overbased metal-containing detergents
US6165235A (en) 1997-08-26 2000-12-26 The Lubrizol Corporation Low chlorine content compositions for use in lubricants and fuels
US6281179B1 (en) 1996-05-31 2001-08-28 Infineum Usa L.P. Process for preparing an overbased metal-containing detergents
US6329327B1 (en) 1999-09-30 2001-12-11 Asahi Denka Kogyo, K.K. Lubricant and lubricating composition
US6429178B1 (en) 1996-05-31 2002-08-06 Infineum Usa L.P. Calcium overbased metal-containing detergents
US6429179B1 (en) 1996-05-31 2002-08-06 Infineum U.S.A. L.P. Calcium overbased metal-containing detergents
EP1238047A1 (fr) * 1999-10-25 2002-09-11 Infineum International Limited Composition d'huile lubrifiante contenant deux additifs au molybdene
US6559105B2 (en) 2000-04-03 2003-05-06 The Lubrizol Corporation Lubricant compositions containing ester-substituted hindered phenol antioxidants
US20050065045A1 (en) 2001-11-05 2005-03-24 Wilk Melody A. Sulfonate detergent system for improved fuel economy
US6914037B2 (en) 2002-02-08 2005-07-05 Ethyl Corporation Molybdenum-containing lubricant additive compositions and processes for making and using same
US20060014651A1 (en) 2004-07-19 2006-01-19 Esche Carl K Jr Additives and lubricant formulations for improved antiwear properties
WO2006044411A1 (fr) 2004-10-12 2006-04-27 The Lubrizol Corporation Dérivés d’acide tartarique permettant d’augmenter les économies de combustible et jouant le rôle d’agents anti-usure dans les huiles de carter, et préparations basées sur lesdits dérivés
US7238650B2 (en) 2002-06-27 2007-07-03 The Lubrizol Corporation Low-chlorine, polyolefin-substituted, with amine reacted, alpha-beta unsaturated carboxylic compounds
US20080119378A1 (en) 2006-11-21 2008-05-22 Chevron Oronite Company Llc Functional fluids comprising alkyl toluene sulfonates
US20090054278A1 (en) 2005-02-18 2009-02-26 The Lubrizol Corporation Multifunctional Dispersants
US20090067091A1 (en) 2007-09-06 2009-03-12 Samsung Electronics Co., Ltd. Process for filling a patterned media of a hard disk with UV-cured lubricant
US7727943B2 (en) 2005-03-28 2010-06-01 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
US20110224115A1 (en) * 2008-10-22 2011-09-15 The Lubrizol Corporation Reducing High-Aqueous Content Sludge in Diesel Engines
US8216448B2 (en) 2003-11-07 2012-07-10 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US20140051617A1 (en) * 2011-05-04 2014-02-20 The Lubrizol Corporation Motorcycle Engine Lubricant
US20140073543A1 (en) * 2011-05-26 2014-03-13 The Lubrizol Corporation Stabilized Blends Containing Friction Modifiers
WO2015195614A1 (fr) * 2014-06-18 2015-12-23 The Lubrizol Corporation Lubrifiant pour moteurs de motocycles
US20160230117A1 (en) * 2011-01-12 2016-08-11 The Lubrizol Corporation Engine Lubricants Containing a Polyether

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180575B1 (en) * 1998-08-04 2001-01-30 Mobil Oil Corporation High performance lubricating oils
US6458172B1 (en) * 2000-03-03 2002-10-01 The Lubrizol Corporation Fuel additive compositions and fuel compositions containing detergents and fluidizers
US6408812B1 (en) * 2000-09-19 2002-06-25 The Lubrizol Corporation Method of operating spark-ignition four-stroke internal combustion engine
US6525004B1 (en) * 2001-05-01 2003-02-25 Infineum International Inc. Combustion improving additive for small engine lubricating oils
US9051529B2 (en) * 2009-06-04 2015-06-09 The Lubrizol Corporation Lubricating composition containing friction modifier and viscosity modifier
CA2823623A1 (fr) * 2011-01-04 2012-07-12 The Lubrizol Corporation Fluide de transmission variable en continu ayant une durabilite anti-vibrations prolongee
EP2721127A1 (fr) * 2011-06-15 2014-04-23 The Lubrizol Corporation Composition lubrifiante contenant un sel d'acide carboxylique
CN103608440A (zh) * 2011-06-15 2014-02-26 卢布里佐尔公司 含有芳族羧酸的酯的润滑组合物
SG11201601919SA (en) * 2013-09-30 2016-04-28 Lubrizol Corp Method of friction control

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
US3219666A (en) 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3197405A (en) 1962-07-09 1965-07-27 Lubrizol Corp Phosphorus-and nitrogen-containing compositions and process for preparing the same
US3381022A (en) 1963-04-23 1968-04-30 Lubrizol Corp Polymerized olefin substituted succinic acid esters
US3542680A (en) 1963-04-23 1970-11-24 Lubrizol Corp Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
USRE26433E (en) 1963-12-11 1968-08-06 Amide and imide derivatives of metal salts of substituted succinic acids
US3351552A (en) 1964-09-08 1967-11-07 Lubrizol Corp Lithium compounds as rust inhibitors for lubricants
US3316177A (en) 1964-12-07 1967-04-25 Lubrizol Corp Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
US3467668A (en) 1965-04-27 1969-09-16 Roehm & Haas Gmbh Polyamines comprising ethylene and imidazolinyl groups
US3340281A (en) 1965-06-14 1967-09-05 Standard Oil Co Method for producing lubricating oil additives
US3433744A (en) 1966-11-03 1969-03-18 Lubrizol Corp Reaction product of phosphosulfurized hydrocarbon and alkylene polycarboxylic acid or acid derivatives and lubricating oil containing the same
US3501405A (en) 1967-08-11 1970-03-17 Rohm & Haas Lubricating and fuel compositions comprising copolymers of n-substituted formamide-containing unsaturated esters
US3576743A (en) 1969-04-11 1971-04-27 Lubrizol Corp Lubricant and fuel additives and process for making the additives
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
EP0310875A1 (fr) 1987-09-30 1989-04-12 BASF Aktiengesellschaft Combustibles contenant une polyétheramine pour moteur à allumage par étincelle
EP0355895A2 (fr) 1988-08-05 1990-02-28 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de dérivés de l'anhydride succinique
US5094667A (en) 1990-03-20 1992-03-10 Exxon Research And Engineering Company Guerbet alkyl ether mono amines
US6153565A (en) 1996-05-31 2000-11-28 Exxon Chemical Patents Inc Overbased metal-containing detergents
US6429178B1 (en) 1996-05-31 2002-08-06 Infineum Usa L.P. Calcium overbased metal-containing detergents
US6281179B1 (en) 1996-05-31 2001-08-28 Infineum Usa L.P. Process for preparing an overbased metal-containing detergents
US6429179B1 (en) 1996-05-31 2002-08-06 Infineum U.S.A. L.P. Calcium overbased metal-containing detergents
US6165235A (en) 1997-08-26 2000-12-26 The Lubrizol Corporation Low chlorine content compositions for use in lubricants and fuels
US6329327B1 (en) 1999-09-30 2001-12-11 Asahi Denka Kogyo, K.K. Lubricant and lubricating composition
EP1238047A1 (fr) * 1999-10-25 2002-09-11 Infineum International Limited Composition d'huile lubrifiante contenant deux additifs au molybdene
US6559105B2 (en) 2000-04-03 2003-05-06 The Lubrizol Corporation Lubricant compositions containing ester-substituted hindered phenol antioxidants
US20050065045A1 (en) 2001-11-05 2005-03-24 Wilk Melody A. Sulfonate detergent system for improved fuel economy
US7407919B2 (en) 2001-11-05 2008-08-05 The Lubrizol Corporation Sulfonate detergent system for improved fuel economy
US6914037B2 (en) 2002-02-08 2005-07-05 Ethyl Corporation Molybdenum-containing lubricant additive compositions and processes for making and using same
US7238650B2 (en) 2002-06-27 2007-07-03 The Lubrizol Corporation Low-chlorine, polyolefin-substituted, with amine reacted, alpha-beta unsaturated carboxylic compounds
US8216448B2 (en) 2003-11-07 2012-07-10 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US20060014651A1 (en) 2004-07-19 2006-01-19 Esche Carl K Jr Additives and lubricant formulations for improved antiwear properties
WO2006044411A1 (fr) 2004-10-12 2006-04-27 The Lubrizol Corporation Dérivés d’acide tartarique permettant d’augmenter les économies de combustible et jouant le rôle d’agents anti-usure dans les huiles de carter, et préparations basées sur lesdits dérivés
US20090054278A1 (en) 2005-02-18 2009-02-26 The Lubrizol Corporation Multifunctional Dispersants
US7727943B2 (en) 2005-03-28 2010-06-01 The Lubrizol Corporation Titanium compounds and complexes as additives in lubricants
US20080119378A1 (en) 2006-11-21 2008-05-22 Chevron Oronite Company Llc Functional fluids comprising alkyl toluene sulfonates
US20090067091A1 (en) 2007-09-06 2009-03-12 Samsung Electronics Co., Ltd. Process for filling a patterned media of a hard disk with UV-cured lubricant
US20110224115A1 (en) * 2008-10-22 2011-09-15 The Lubrizol Corporation Reducing High-Aqueous Content Sludge in Diesel Engines
US20160230117A1 (en) * 2011-01-12 2016-08-11 The Lubrizol Corporation Engine Lubricants Containing a Polyether
US20140051617A1 (en) * 2011-05-04 2014-02-20 The Lubrizol Corporation Motorcycle Engine Lubricant
US20140073543A1 (en) * 2011-05-26 2014-03-13 The Lubrizol Corporation Stabilized Blends Containing Friction Modifiers
WO2015195614A1 (fr) * 2014-06-18 2015-12-23 The Lubrizol Corporation Lubrifiant pour moteurs de motocycles

Also Published As

Publication number Publication date
EP3571271A1 (fr) 2019-11-27
CN110168063A (zh) 2019-08-23
CA3049665A1 (fr) 2018-07-26
US20190352577A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
CA2991791C (fr) Lubrifiants a base de dialkyldithiophosphate de zinc et leur utilisation dans des moteurs a combustion interne suralimentes
EP3158032B1 (fr) Lubrifiant pour moteurs de motocycles
WO2017011687A1 (fr) Lubrifiants contenant magnésium et leur utilisation pour améliorer un pré-allumage à basse vitesse
US10336959B2 (en) Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
CA3050440C (fr) Lubrifiants contenant des detergents surbasiques en termes de calcium et de magnesium et procede d'amelioration du pre-allumage a basse vitesse
EP3322785B1 (fr) Lubrifiants à base de titane et leur utilisation pour améliorer un pré-allumage à basse vitesse
US20170015933A1 (en) Additives and lubricating oil compositions for improving low speed pre-ignition
EP3322781B1 (fr) Lubrifiants à base d'un détergent contenant du calcium et leur utilisation pour améliorer un pré-allumage à basse vitesse
WO2018136541A1 (fr) Lubrifiant moteur contenant des composés de polyéther
EP3571268B1 (fr) Lubrifiants comprenant des détergents contenant du calcium et utilisation de ces derniers pour améliorer un pré-allumage à faible vitesse
EP3452566B1 (fr) Lubrifiants destinés à être utilisés dans des moteurs suralimentés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18709170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3049665

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018709170

Country of ref document: EP

Effective date: 20190819