US3542680A - Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same - Google Patents

Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same Download PDF

Info

Publication number
US3542680A
US3542680A US866081A US3542680DA US3542680A US 3542680 A US3542680 A US 3542680A US 866081 A US866081 A US 866081A US 3542680D A US3542680D A US 3542680DA US 3542680 A US3542680 A US 3542680A
Authority
US
United States
Prior art keywords
acid
hydrocarbon
ester
esters
succinic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US866081A
Inventor
William M Le Suer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Application granted granted Critical
Publication of US3542680A publication Critical patent/US3542680A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1817Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/54Amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/08Halogenated waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/20Containing nitrogen-to-oxygen bonds
    • C10M2215/202Containing nitrogen-to-oxygen bonds containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines

Definitions

  • esters are the mono esters, diesters, and mixtures thereof prepared from polyisobutenyl-substituted succinic acid or anhydride and monohydroxy or polyhydroxy phenols.
  • the esters are especially useful as additives in fuels and lubricants.
  • This invention relates to novel compositions of matter and processes for preparing the same.
  • this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
  • esters of substantially saturated monoor polycarboxylic acids and a hydroxy aromatic compound said ester being characterized by the presence Within its structure of (A) a carboxylic acid moiety which is an acyl radical of a monoor polycarboxylic acid having at least about fifty aliphatic carbon atoms and (B) an oxy aromatic radical which is an oxy radical of a hydroxy aromatic compound.
  • the lubricant and fuel compositions of the invention are achieved by incorporating at least one of these esters into a lubricant or fuel as explained more fully hereafter.
  • esters of carboxylic acids and hydroxy aromatic compounds can be represented generically by the formula where R is the residue of the acid group and R is the residue of the hydroxy aromatic compound.
  • acyl radical refers to the group 0 ll Bil-C- and oxy aromatic radical refers to O-R
  • R is the residue of the acid group
  • oxy aromatic radical refers to O-R
  • the acyl radical can be O alkenyl-OH-QI- alkcnyl-CH-lIi-OH CHz-fi-OH C1124"?- O
  • the oxy aromatic radical is derived from a polyhydric phenol of the formula the oxy radical can be --0 (oH)1 z 0 2% 0H
  • the acyl radical of the esters of this invention is derived from a monoor polycarboxylic acid.
  • One particularly important characteristic of the acyl radical is its size. The radical should contain at least about fifty aliphatic carbon atoms.
  • acyl radical preferably should be substantially saturated, i.e., at least about 95% of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
  • the acyl radical of the esters should be substantially free from oil-solubilizing pendant groups, that is, groups having more than about six aliphatic carbon atoms. Although, some such oil-solubilizing pendant groups may be present, they preferably will not exceed one such group for every twenty-five aliphatic carbon atoms in the principal hydrocarbon chain of the acyl radical.
  • the acyl radical may contain polar substitutents provided that the polar substitutents are not present in proporitons sufficiently large to alter significantly the hydrocarbon character of the radical.
  • Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc. such polar substituents, if present, preferably Will not exceed by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
  • the process involves the reaction of (1) an ethylenically unsaturated carboxylic acid, acid halide, or anhydride with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about fifty aliphatic carbon atoms at a temperature within the range of about l00300 C.
  • the chlorinated hydrocarbon or ethylenically unsaturated hydrocarbon reactant can, of course, contain polar substitutents, oil-solubilizing pendant groups, and be unsaturated within the general limitations explained hereinabove. It is these hydrocarbon reactants which provides most of the aliphatic carbon atoms present in the acyl moiety of the final products.
  • the carboxylic acid reactant When preparing the carboxylic acid acylating agent according to one of these two processes, the carboxylic acid reactant usually corresponds to the formula R (COOH) where R is characterized by the presence of at least one ethylenically unsaturated carbon-tocarbon covalent bond and n is an integer from one to six and preferably one or two.
  • the acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these. Ordinarily, the total number of carbon atoms in the acidic reactant will not exceed ten and generally will not exceed six.
  • the acidic reactant will have at least one ethylenic linkage in an a,;8-position with respect to at least one carboxyl function.
  • exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhyride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, lO-decenonic acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
  • the carboxylic acid acylating agents may contain cyclic and/or aromatic groups.
  • the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
  • the substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention.
  • These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about 300 C., preferably, 100200 C.
  • the product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents.
  • the product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired.
  • the substituted succinic anhydrides may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
  • the ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefin polymers and the corresponding chlorinated products.
  • the polymers and chlorinated polymers derived from mono-olefins having from two to about thirty carbon atoms are preferred.
  • the especially useful polymers are the polymers of 1- mono-olcfins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-l-heptene, 3-cyclohexyl 1 butene, and Z-methyl-S-propyhl-hexene.
  • Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position likewise are useful. These are exemplified by 2-butene, 3-pentene, and 4- octcne.
  • interpolymers of l-mono-olefins such as illustrated above with each other and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant.
  • Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propane with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p-methyl-styrene, l-hexene with 1,3-hexadiene, l-octene with l-hexene, lheptene with l-pentene, 3-methyl-1-butene with l-octene, 3,3-dimethyl-l-pentene with l-hexene, isobutene with styrene and piperylene, etc.
  • the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about 80% and preferably about 95 on a weight basis, of units derived from aliphatic mono-olefins. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
  • the chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have molecular weights of from about 700 up to about 100,000 or even higher.
  • the preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000.
  • the acylating agent has a molecular weight in excess of about 10,000, the esters also possess viscosity index improving qualities.
  • hydrocarbons containing activating polar substituents which are capable of activating the hydrocarbon molecule in respect to reaction with an ethylenically unsaturated acid reactant may be used in the above-illustrated reactions for preparing the acylating agents.
  • polar substituents include sulfide and disulfide linkages, and nitro, mercapto, carbonyl, and formyl radicals.
  • Examples of these polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
  • the acylating agents may also be prepared by halogenating a high molecular weight hydrocarbon such as the above described olefin polymers to produce a polyhalogenated product, converting the poly-halogenated product to a poly-nitrile, and then hydrolyzing the polynitrile. They may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent.
  • Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polar-substituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-1,3,5- tricarboxylic acid prepared by dehydration of citric acid.
  • Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene.
  • Another convenient method for preparing mono-carboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reatcion of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
  • Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in 3,340,281.
  • the mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about C., preferably in the presence of a dehydration agent, e.g. acetic anhydride.
  • a dehydration agent e.g. acetic anhydride.
  • Cyclic anhydrides are usually obtained from polycarboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
  • the acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
  • the esters of this invention are those prepared from acylating agents of the type described above with monohydroxy and polyhydroxy aromatic compounds.
  • the aromatic nucleus of the aromatic compound should be a benzene ring or an aromatic condensed hydrocarbon ring such as naphthalene.
  • Monohydroxy and polyhydroxy phenols and naphthols are preferred hydroxy aromatic compounds.
  • These hydroxy-substituted aromatic compounds may contain other substituents in addition to the hydroxy substitutents such as halo, alkyl, alkenyl, alkoxy, nitro, and the like.
  • the hydroxy aromatic compound will contain one to four hydroxy groups.
  • aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, p-chlorophenol, pnitrophenol, beta-naphthol, alpha-naphthol, cresols, resorcinol, catechol, carvacrol, thymol, eugenol, p,p'-dihydroxybiphenyl, hydroquinone, pyrogallol, phloroglucinol, hexylresorcinol, orcin, guaiacol, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4 methylene bis phenol, alpha decylbeta naphthol, polyisobutene (molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehy
  • Phenol and aliphatic hydrocarbon substituted phenols e.g., alkylated phenols, having up to three aliphatic hydrocarbon substituents are especially preferred.
  • Each of the aliphatic hydrocarbon substituents may contain or more carbon atoms but usually will have from one to twenty carbon atoms.
  • Alkyl and alkenyl groups are the preferred aliphatic hydrocarbon substituents.
  • the esters of the invention can be prepared from monoor polycarboxylic acid acylating agents
  • the esters may be monoesters, polyesters, or acidic esters.
  • an acidic or monoester can be produced or both carboxyl groups may each react with a hydroxy group to produce a diester.
  • a polyhydric aromatic compound when used in the preparation of the ester, it may be completely esterified or only partially esterified; i.e., it may retain nonesterified free hydroxyl radicals. Mixtures of these various esters are contemplated as being within the scope of this invention.
  • the esters may be prepared by any of several conventional methods. See, for example, R. D. Olfenhauer, The Direct Esterification of Phenols, Journal of Chemical Education, vol. 41, No. 1, p. 39 (1964), and the references cited therein.
  • a convenient method involves the reaction of a hydroxy aromatic compound with a carboxylic acid or anhydride.
  • the esterification is usually carried out at a temperature above about 100 C., preferably between 150 C. and 300 C.
  • a substantially inert liquid diluent may be used in the esterification to facilitate mixing, temperature control, the removal of water, etc. Any substantially inert organic liquid can be used as a diluent.
  • Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, diphenyl ether, chlorohexane, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent.
  • the following illustrates the reaction of a dicarboxylic acid acylating agent (substituted succinic anhydride) and a polyhydric aromatic compound.
  • a modification of the above illustrative process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid.
  • succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the hydroxy aromatic reactant.
  • succinic acids appear to be the substantial equivalent of their anhydrides in the process.
  • the esters may be obtained by the reaction of a lower molecular weight acrylating agent, e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc., with a hydroxy aromatic compound to form the corresponding esters and then reacting these esters with an olefin or a chlorinated hydrocarbon as illustrated above.
  • a lower molecular weight acrylating agent e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
  • a hydroxy aromatic compound e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
  • a hydroxy aromatic compound e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
  • the relative proportions of the acylating agent and the hydroxy aromatic compound depend in part, upon the type of the product desired and the number of carboxylic acid groups in the acylating agent and hydroxyl groups present in the hydroxy aromatic compound. For instance, the formation of a half ester of a succinic acid, i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole'of phenol for each mole of the substituted succinic acid reactant, whereas the formation of a diester of a succinic acid involves the use of two moles of phenol for each mole of the acid.
  • one mole of a hydroquinone may combine with two moles of a succinic acid to form an ester in which both hydroxyl radicals of hydroquinone are esterified with one of the two acid radicals of the succinic acid.
  • the maximum amount of acylating agent to be used with a polyhydric aromatic compound is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of about equi-molar amounts of the acylating agent and hydroxy aromatic compound have superior properties and are therefore preferred.
  • esters prepared from the reaction of at least stoichiometrically equivalent amounts of acylating agent and hydroxy aromatic compound i.e., about one hydroxy group for each carboxylic acylating group present in the reaction mixture, are especially preferred. It is sometimes desirable to employ an excess of the hydroxy aromatic compound in preparing the esters, e.g., about a 5%l00% by weight stoichiometric excess based on the stoichiometric amount required to produce a given desired ester.
  • esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
  • the amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
  • unreacted hydroxy aromatic compound can be removed, if desired, by conventional techniques. Usually removal is accomplished by distillation at reduced pressure. However, if the hydroxy aromatic compound is oil-soluble, it can be left in the reaction mixture without interfering with the dispersant capabilities of the esters. Moreover, if it is desired that the reaction mixture be substantially free from unreacted carboxyl groups for a particular application, this can be readily accomplished by post-treating the reaction mixture with an epoxide according to applicants copending application Ser. No. 712,606, filed Mar. 13, 1968, now abandoned for continuation Ser. No. 866,081 filed Oct. 3, 1969.
  • This epoxide post-treatment may also result in the reaction of unreacted hydroxy groups with epoxides to form hydroxyalkoxy substituents on the aromatic nucleus. If sufficient epoxide is employed, the aromatic nucleus having the unesterified hydroxy group will react with more than one epoxide. For example, three moles of propylene oxide, ethylene oxide, or a mixture thereof can react to produce a substituent of the formula where R is H or ---CH;.;.
  • the epoxide post-treatment improves the performance of the esters as sludge dispersants.
  • esters of the type contemplated by the present invention illustrate the preparation of esters of the type contemplated by the present invention. Unless otherwise indicated, the terms parts and percent refer to parts by weight and percent by weight, respectively, when used in these examples and elsewhere in the specification and claims.
  • EXAMPLE 1 The following acylating agents are prepared according to conventional processes as illustrated.
  • a polyisobutenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C.
  • the polyisobutenyl radical has an average molecular weight of about 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of about 500).
  • a polyisobutenyl-substituted succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1050 and a chlorine content of 4.3%) and maleic anhydride.
  • EXAMPLE 2 A mixture comprising 1028 parts of a polyisobutenylsubstituted succinic anhydride (average molecular Weightl028; prepared as in 1(A), 282 parts of phenol, 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is heated to reflux (153 C.) and maintained at this temperature for five hours. Thereafter, the mixture is cooled and 19 additional parts of toluenesulfonic acid esterification catalyst is added. Heating at reflux (153 154 C.) is continued for twenty-eight hours. The reaction mixture is then cooled to C. and 7.5 parts of sodium hydroxide dissolved in 24 parts of water is added.
  • a polyisobutenylsubstituted succinic anhydride average molecular Weightl028; prepared as in 1(A)
  • 282 parts of phenol 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is
  • the resulting reaction mixture is then stripped at 68 C. at 21 mm. (Hg) and then at 223 C. at 21 mm. (Hg).
  • the stripped product is then dissolved in 756 parts of mineral oil to produce an oil solution of the desired ester product. If desired, this oil solution can be filtered.
  • a polypropenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of about 4%) and maleic anhydride at 200 C.
  • the product has an acid number of 75.
  • a substituted succinic anhydride is prepared by treating maleic anhydride with a chlorinated copolymer of isobutylene and styrene.
  • the copolymer consists of 94 parts of isobutylene units and 6 parts of styrene units and has an average molecular Weight of 1200 and a chlorine content of 2.8% by weight.
  • the resulting succinic anhydride has an acid number of 40.
  • a polypropylene-sirbstituated succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and a molecular weight of 1200 Wih maleic anhydride.
  • a substituted succinic anhydride having an acid number of about 54 is prepared by reacting maleic anhydride with a chlorinated (1.95% by weight chlorine) copolymer of isobutylene and isoprene.
  • the copolymer consists of 99 parts by weight of isobutylene units and one part of isoprene units and has an average molecular weight of about 28,000.
  • a high molecular weight polyisobutenyl-substituted carboxylic acid is prepared by heating an equimolar mixture of a chlorinated polyisobutene having a molecular Weight of 1 000 and a chlorine content of 4.7% and methacrylic acid at 150 C.
  • the organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula n RD lH-CH 0 where each R is independently hydrogen or an aliphatic, cycloaliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every three carbon atoms.
  • the lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from two to eight carbon atoms are especially preferred for post-treating the esters.
  • arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, cylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides.
  • the epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
  • organic epoxides useful in the process of this invention are ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-3butane, 1,2-epoxypentane, 1,2-epoxyheptane, 1,2-epoxydodecane, 2,3-epoxybutane, 1,2-epoxy-5-hexane,
  • fatty acid radical has up 1 to about thirty aliphatic carbon atoms and the alcohol radical is derived from an aliphatic alcohol having u to about eight carbon atoms.
  • Ethylene oxide, propylene oxide and epichlorohydrin are particularly preferred for posttreating the esters.
  • the post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50250 C. Good results are achieved when the posttreatment is conducted at a temperature of about 70- 200 C.
  • the esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to facilitate thorough contact of the esters and epoxides.
  • Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent. In many instances, the esters are prepared as oil-solutions and these oilsolutions can be used in the post-treating process, the oil functioning as a diluent.
  • esters to be post-treated will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the acidic esters. This usually can be achieved by using esterification catalyst and a stoichiometric excess of hydroxy aromatic compound in preparing the esters.
  • An ester is considered substantially free from free carboxyl groups for purposes of this invention when not more than about of the number of carboxyl functions present are free carboxyl groups, i.e., COOH.
  • the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention.
  • the amount of epoxide employed may be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for posttreating the ester.
  • the esters and epoxides should be contacted in an amount such that the ratio of equivalents of hydroxy aromatic compound present in the ester to the equivalents of epoxide will be about 11005 to about 1:5 and preferably 1:0.l to about 1:2.
  • the equivalent weight of a hydroxy aromatic compound is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified.
  • the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule.
  • the ester to be treated contains one mole of resorcinol in the oxy moiety
  • the ester is deemed to contain two equivalents of hydroxy aromatic compound.
  • such an ester would be contacted with 0.1 to 10, preferably 0.2 to 4 equivalents of epoxide.
  • This equivalent ratio is offered merely as a guideline to define the elfective ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester.
  • EXAMPLE 11 An oil solution of an ester prepared according to Example 2 is contacted with propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound in the ester reaction product to epoxide (as explained above) is about 1:1. The mixture is heated for seventeen hours at -90 C. and then stripped at reduced pressure to remove any unreacted propylene oxide. The resulting mixture is then filtered producing an oil solution of the desired post-treated ester.
  • EXAMPLE 12 The ester product of Example 10 is post-treated with an equimolar mixture of ethylene oxide and propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound to alkylene oxide is 1:3. The temperature of the reaction mass is maintained at C. for four hours, stripped at reduced pressure, and filtered. The filtrate is an oil-solution of the desired posttreated ester.
  • esters By following the general procedures of Examples 11 and 12 and utilizing different esters, different epoxides, or different esters and epoxides, other post-treated esters of the type contemplated by the present invention are readily prepared.
  • esters and post-treated esters of this invention are useful for a wide variety of purposesas pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, hydrocarbon fuel additives, etc.
  • esters are as additives in lubricants, especially lubricating oils.
  • the lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at 100 F. to about 200 Saybolt Universal seconds at 210 F.
  • the concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight.
  • the optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected.
  • lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as or even more of the additive.
  • additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
  • the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
  • the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
  • a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
  • Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2- propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cycohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthyl-amine, and dodecylamine,
  • a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of Water and carbonating the mixture at an elevated temperature such as 60200 C.
  • the esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
  • Combinations of the esters of this invention with any of the above mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
  • the Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals.
  • the metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium.
  • the barium and zinc phosphorodithioates are especially preferred.
  • the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
  • Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, secbutyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
  • Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
  • Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
  • Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
  • Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
  • Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
  • the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
  • a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
  • mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
  • Another class of the phosphorothioate additives con templated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
  • the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
  • the epoxides may be alkylene oxides or arylalkylene oxides.
  • the arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-beta-naphthyl- 1,3-butylene oxide, m-dodecylstyrene oxide and p-chlorostyrene oxide.
  • the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms such as illustrated hereinbefore.
  • the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
  • the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
  • the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
  • the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
  • the lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
  • EXAMPLE B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
  • EXAMPLE F SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 7, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
  • EXAMPLE G SAE 30 mineral lubricating oil containing 5% of the product of Example 11, 0.1% of phosphorus as the zinc salt of a mixture of equi-molar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basis barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
  • EXAMPLE H SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 12, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
  • EXAMPLE I SAE 10 mineral lubricating oil containing 3% of the product of Example 6, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
  • Fuel compositions of the type contemplated by the present invention are illustrated by the following examples. Ordinarily the esters are used in amounts such that they will comprise from about 0.001% to about 5%, usually 0.01% to 2%, by weight of the final fuel. It is also contemplated that the fuels may contain other conventional additives such as deicers, smoke suppressants, lead scavengers, demulsifiers, lead appreciators, anti-rust agents, and the like.
  • a lubricating composition comprising a major amount of a lubricating oil and an amount, sufficient to impart detergency thereto, of at least one oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor polycarboxylic acid or anhydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chloroinated polyolefin containing at least about 50 aliphatic carbon atoms with an alpha, beta-unsaturated monoor dicarboxylic acid or anhydride.
  • a lubricating composition according to claim 1 wherein the acyl moiety of said ester is an acyl radical of a polyolefin-substituted succinic acid derived from the reaction of a polyolefin or chlorinated polyolefin with maleic acid or anhydride, the ester being a monoester, diester, or mixture of these.
  • a lubricating composition according to claim 2 wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol selected from the class consisting of phenols, alkylphenols, phenol ethers, and alkylene bis-phenols.
  • a lubricating composition according to claim 3 wherein the acyl moiety is an acyl radical of a succinic acid derived from the reaction of a polymerized l-monoolefin or a chlorinated polymerized l-monoolefin having an average molecular meight of about 700 to about 5000 with maleic anhydride or maleic acid.
  • a lubricating composition according to claim 2 wherein the aromatic hydroxy compound is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
  • a lubricating composition according to claim 5 wherein the acyl moiety is an acyl radical or a polyisobutenyl-substituted succinic acid.
  • a lubricating composition according to claim 1 wherein the acyl moiety is an acyl radical of a monocarboxylic acid having an average molecular weight of about 700 to about 5000 and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
  • a lubricating composition according to claim 1 wherein said at least one oil-soluble ester is an epoxidepost-treated ester prepared by reacting at least one ester with a terminal epoxide of the formula D P nn-(3H wherein one R. is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about 25 C.
  • a fuel composition comprising a major amount of a normally liquid petroleum distillate fuel and an amount, sufiicient to impart detergency thereto, of an oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor dicarboxylic acid or an- 17 v hydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chlorinated polyolefin having at least 50 aliphatic carbon atoms with an alpha, betaunsaturated monoor dicarboxylic acidor anhydride.
  • a fuel composition according to claim wherein the acyl moiety of the ester is an acyl radical of a polyisobutenyl-substituted succinic acid or anhydride derived from the reaction of polyisobutene or chlorinated polyisobutene having an average molecular Weight of about 700 to about 5000 with maleic acid or maleic anhydride and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Furan Compounds (AREA)

Abstract

Additives for lubricating oils, hydrocarbon oils and power transmitting fluids are oil-soluble esters of hydrocarbon substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. Examples of the ester are the dimethyl ester of polyisobutene succinic anhydride, the polyisobutene succinic anhydride which has been esterified with polyethylene glycol and further reacted with barium oxide to produce a mixed ester-metal salt and the polyisobutene succinic anhydride which has been esterified with a styrene-allyl alcohol copolymer and then reacted with propylene oxide. Examples are given of the addition of these esters to SAE mineral lubricating oils which may also include the usual additives especially the metal phosphor dithioates and their epoxide adducts.ALSO:The invention comprises an oil-soluble ester of a hydrocarbon-substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. The ester may be prepared by reacting an alcohol or phenol with a hydrocarbon-substituted succinic anhydride or acid, preferably at 150 DEG to 300 DEG C. and in the presence of an esterification catalyst, by reacting an epoxide or a mixture of an epoxide and water with a hydrocarbon substituted succinic anhydride or acid or acid halide, by reacting maleic acid or anhydride with an alcohol and reacting the obtained mono- or di-ester of maleic acid with the polyolefin, and, finally by esterifying itaconic anhydride or acid and then reacting with the polyolefin. The preferred method is by reacting a polyhydric alcohol having 2-10 OH radicals with 0.5-10 moles of hydrocarbon-substituted succinic anhydride, the hydrocarbon being a polymer of a C2- 6 mono-olefin having a M.Wt. of 700-5000. The examples relate to the treatment of polyisobutene succinic anhydride and of the succinic anhydride of the copolymer of 90 isobutene and 10 piperylene. The esters may be used as lubricant addititives.

Description

United States Patent 3,542,680 OIL-SOLUBLE CARBOXYLIC ACID PHENOL ESTERS AND LUBRICANTS AND FUELS CONTAINING THE SAME William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wickliffe, Ohio, a corporation of Ohio No Drawing. Continuation of application Ser. No.
722,152, Apr. 18, 1968, which is a'continuation-inpart of application Ser. No. 567,320, July 22, 1966, which in turn is a continuation of application Ser. N 0. 274,905, Apr. 23, 1963. This application Oct. 3, 1969, Ser. No. 866,081 The portion of the term of the patent subsequent to July 22, 1983, has been disclaimed Int. Cl. Cm 1/26 U.S. Cl. 25257 12 Claims ABSTRACT OF THE DISCLOSURE Esters of high molecular Weight carboxylic acids with hydroxy aromatic compounds such as phenols and naphthols. An exemplary group of esters are the mono esters, diesters, and mixtures thereof prepared from polyisobutenyl-substituted succinic acid or anhydride and monohydroxy or polyhydroxy phenols. The esters are especially useful as additives in fuels and lubricants.
This is a continuation of Ser. No. 722,152 filed Apr. 18, 1968 which is a continuation-in-part application of copending application Ser. No. 567,320 filed July 22, 1966, now U.S. Pat. 3,381,022, which, in turn, is a continuation of abandoned application Ser. No. 274,905, filed Apr. 23, 1963. g
This invention relates to novel compositions of matter and processes for preparing the same. In a more particular sense this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for use in internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature breakdown of the equipment which the oil lubricates.
It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it clings tenaciously to metal surfaces and is not removed by oil filters. If the engine is operated under conditions such that the crankcase lubricant temperature is continuously high the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge will be formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low the Water will accumulate and a substantial quantity of "ice the mayonnaisedike sludge will be deposited in the engine.
High operating temperatures are characteristic of an engine that is run consistently at a relatively high speed. However, where an automobile is used primarily for trips of short distance such as is characteristic of urban, hometo-Work use, a significant portion of the operation occurs before the engine has reached its optimum high temperature. An ideal environment thus obtains for the accumulation of Water in the lubricant. In this type of operation the problem of mayonnaise-like sludge has been especially troublesome. Its solution has been approached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation particularly those problems which are associated with crankcase lubricants in engines operated at low or intermittently high and low temperatures.
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are suitable for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as additives in lubricating compositions.
It is another object of this invention to provide compositions effective as detergents in lubricating compositions intended for use in engines operated at low or intermittently high and low temperatures.
It is another object of this invention to provide a process of preparing additives useful as additives in hydrocarbon oils and lubricating compositions.
It is another object of this invention to provide lubricating compositions.
It is further an object of this invention to provide fuel compositions.
These and other objects of this invention can be achieved by providing oil-soluble esters of substantially saturated monoor polycarboxylic acids and a hydroxy aromatic compound, said ester being characterized by the presence Within its structure of (A) a carboxylic acid moiety which is an acyl radical of a monoor polycarboxylic acid having at least about fifty aliphatic carbon atoms and (B) an oxy aromatic radical which is an oxy radical of a hydroxy aromatic compound. The lubricant and fuel compositions of the invention are achieved by incorporating at least one of these esters into a lubricant or fuel as explained more fully hereafter.
As will be appreciated by those skilled in the art,
'esters of carboxylic acids and hydroxy aromatic compounds can be represented generically by the formula where R is the residue of the acid group and R is the residue of the hydroxy aromatic compound. As used herein, acyl radical refers to the group 0 ll Bil-C- and oxy aromatic radical refers to O-R Of course, the exact nature of R and R depends on the particular acylating agent and hydroxy aromatic compound employed in making the ester. For example, where an alkenyl-substituted succinic acid acylating agent is employed, the acyl radical can be O alkenyl-OH-QI- alkcnyl-CH-lIi-OH CHz-fi-OH C1124"?- O Similarly, where the oxy aromatic radical is derived from a polyhydric phenol of the formula the oxy radical can be --0 (oH)1 z 0 2% 0H The acyl radical of the esters of this invention is derived from a monoor polycarboxylic acid. One particularly important characteristic of the acyl radical is its size. The radical should contain at least about fifty aliphatic carbon atoms. This limitation is based upon both oil-solubility considerations and the effectiveness of the compositions as additives in lubricants and fuels. Another important aspect of the acyl radical is that it preferably should be substantially saturated, i.e., at least about 95% of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
In addition, the acyl radical of the esters should be substantially free from oil-solubilizing pendant groups, that is, groups having more than about six aliphatic carbon atoms. Although, some such oil-solubilizing pendant groups may be present, they preferably will not exceed one such group for every twenty-five aliphatic carbon atoms in the principal hydrocarbon chain of the acyl radical.
The acyl radical may contain polar substitutents provided that the polar substitutents are not present in proporitons sufficiently large to alter significantly the hydrocarbon character of the radical. Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc. such polar substituents, if present, preferably Will not exceed by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
(Zarboxylic acid acylating agents suitable for preparing the esters are Well-known in the art and have been described in detail, for example, in U.S. Pats. 3,087,936; 3,163,603; 3,172,892; 3,189,544; 3,219,666; 3,272,746; 3,288,714; 3,306,907; 3,331,776; 3,340,281; 3,341,542; and 3,346,354. In the interest of brevity, these patents are incorporated herein for their disclosure of suitable monoand polycarboxylic acid acylating agents which 4 can be used for the preparation of the esters used as starting materials in the present invention.
As disclosed in the foregoing patents, there are several processes for preparing the acids. Generally, the process involves the reaction of (1) an ethylenically unsaturated carboxylic acid, acid halide, or anhydride with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about fifty aliphatic carbon atoms at a temperature within the range of about l00300 C. The chlorinated hydrocarbon or ethylenically unsaturated hydrocarbon reactant can, of course, contain polar substitutents, oil-solubilizing pendant groups, and be unsaturated within the general limitations explained hereinabove. It is these hydrocarbon reactants which provides most of the aliphatic carbon atoms present in the acyl moiety of the final products.
When preparing the carboxylic acid acylating agent according to one of these two processes, the carboxylic acid reactant usually corresponds to the formula R (COOH) where R is characterized by the presence of at least one ethylenically unsaturated carbon-tocarbon covalent bond and n is an integer from one to six and preferably one or two. The acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these. Ordinarily, the total number of carbon atoms in the acidic reactant will not exceed ten and generally will not exceed six. Preferably the acidic reactant will have at least one ethylenic linkage in an a,;8-position with respect to at least one carboxyl function. Exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhyride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, lO-decenonic acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
As is apparent from the foregoing discussion, the carboxylic acid acylating agents may contain cyclic and/or aromatic groups. However, the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
The substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention. These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about 300 C., preferably, 100200 C. The product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents. The product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired. The substituted succinic anhydrides may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
The ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefin polymers and the corresponding chlorinated products. The polymers and chlorinated polymers derived from mono-olefins having from two to about thirty carbon atoms are preferred.
The especially useful polymers are the polymers of 1- mono-olcfins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-l-heptene, 3-cyclohexyl 1 butene, and Z-methyl-S-propyhl-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. These are exemplified by 2-butene, 3-pentene, and 4- octcne.
The interpolymers of l-mono-olefins such as illustrated above with each other and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant. Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propane with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p-methyl-styrene, l-hexene with 1,3-hexadiene, l-octene with l-hexene, lheptene with l-pentene, 3-methyl-1-butene with l-octene, 3,3-dimethyl-l-pentene with l-hexene, isobutene with styrene and piperylene, etc.
For reasons of oil-solubility and stability, the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about 80% and preferably about 95 on a weight basis, of units derived from aliphatic mono-olefins. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
The chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have molecular weights of from about 700 up to about 100,000 or even higher. The preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000. When the acylating agent has a molecular weight in excess of about 10,000, the esters also possess viscosity index improving qualities.
In lieu of the high molecular weight hydrocarbons and chlorinated hydrocarbons discussed above, hydrocarbons containing activating polar substituents which are capable of activating the hydrocarbon molecule in respect to reaction with an ethylenically unsaturated acid reactant may be used in the above-illustrated reactions for preparing the acylating agents. Such polar substituents include sulfide and disulfide linkages, and nitro, mercapto, carbonyl, and formyl radicals. Examples of these polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
The acylating agents may also be prepared by halogenating a high molecular weight hydrocarbon such as the above described olefin polymers to produce a polyhalogenated product, converting the poly-halogenated product to a poly-nitrile, and then hydrolyzing the polynitrile. They may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent. Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polar-substituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-1,3,5- tricarboxylic acid prepared by dehydration of citric acid. Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene. Another convenient method for preparing mono-carboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reatcion of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in 3,340,281.
The mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about C., preferably in the presence of a dehydration agent, e.g. acetic anhydride. Cyclic anhydrides are usually obtained from polycarboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
The acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
The esters of this invention are those prepared from acylating agents of the type described above with monohydroxy and polyhydroxy aromatic compounds. The aromatic nucleus of the aromatic compound should be a benzene ring or an aromatic condensed hydrocarbon ring such as naphthalene. Monohydroxy and polyhydroxy phenols and naphthols are preferred hydroxy aromatic compounds. These hydroxy-substituted aromatic compounds may contain other substituents in addition to the hydroxy substitutents such as halo, alkyl, alkenyl, alkoxy, nitro, and the like. Usually, the hydroxy aromatic compound will contain one to four hydroxy groups. The aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, p-chlorophenol, pnitrophenol, beta-naphthol, alpha-naphthol, cresols, resorcinol, catechol, carvacrol, thymol, eugenol, p,p'-dihydroxybiphenyl, hydroquinone, pyrogallol, phloroglucinol, hexylresorcinol, orcin, guaiacol, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4 methylene bis phenol, alpha decylbeta naphthol, polyisobutene (molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with acetone, di(hydroxyphenyl)0xide, di(hydroxyphenyl)sulfide, di(hydroxyphenyl)disulfide, and 4-cyclohexylphenol. Phenol and aliphatic hydrocarbon substituted phenols, e.g., alkylated phenols, having up to three aliphatic hydrocarbon substituents are especially preferred. Each of the aliphatic hydrocarbon substituents may contain or more carbon atoms but usually will have from one to twenty carbon atoms. Alkyl and alkenyl groups are the preferred aliphatic hydrocarbon substituents.
As the esters of the invention can be prepared from monoor polycarboxylic acid acylating agents, the esters may be monoesters, polyesters, or acidic esters. For example, when the ester is prepared from a substituted succinic acid acylating agent, an acidic or monoester can be produced or both carboxyl groups may each react with a hydroxy group to produce a diester. Similarly, when a polyhydric aromatic compound is used in the preparation of the ester, it may be completely esterified or only partially esterified; i.e., it may retain nonesterified free hydroxyl radicals. Mixtures of these various esters are contemplated as being within the scope of this invention.
The esters may be prepared by any of several conventional methods. See, for example, R. D. Olfenhauer, The Direct Esterification of Phenols, Journal of Chemical Education, vol. 41, No. 1, p. 39 (1964), and the references cited therein. A convenient method involves the reaction of a hydroxy aromatic compound with a carboxylic acid or anhydride. The esterification is usually carried out at a temperature above about 100 C., preferably between 150 C. and 300 C.
The water formed as a by-product is removed by distillation as the esterification proceeds. A substantially inert liquid diluent may be used in the esterification to facilitate mixing, temperature control, the removal of water, etc. Any substantially inert organic liquid can be used as a diluent. Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, diphenyl ether, chlorohexane, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent.
The following illustrates the reaction of a dicarboxylic acid acylating agent (substituted succinic anhydride) and a polyhydric aromatic compound.
It will be readily appreciated that the above equations are only illustrative. Other products not represented by Formulas I, II, and III may be formed. Polymeric esters formed by the condensation of two or more molecules of each of the succinic acid reactant and the polyhydric alcohol reactant likewise may be formed. In most cases involving either a polycarboxylic acid acylating agent or a polyhydric aromatic compound, the product is a mixture of esters, the precise chemical composition and the relative proportions of which are difiicult to determine. Consequently, the products of these reactions are conveniently described in terms of the process by which they are formed.
A modification of the above illustrative process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid. However, succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the hydroxy aromatic reactant. In this regard, succinic acids appear to be the substantial equivalent of their anhydrides in the process.
Still other methods of preparing the esters of this invention are available. For instance, the esters may be obtained by the reaction of a lower molecular weight acrylating agent, e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc., with a hydroxy aromatic compound to form the corresponding esters and then reacting these esters with an olefin or a chlorinated hydrocarbon as illustrated above. The conditions, catalyst, etc., discussed above can be used in conducting the esterification reaction and in reacting the esters with the olefins and chlorinated olefins.
The relative proportions of the acylating agent and the hydroxy aromatic compound depend in part, upon the type of the product desired and the number of carboxylic acid groups in the acylating agent and hydroxyl groups present in the hydroxy aromatic compound. For instance, the formation of a half ester of a succinic acid, i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole'of phenol for each mole of the substituted succinic acid reactant, whereas the formation of a diester of a succinic acid involves the use of two moles of phenol for each mole of the acid. On the other hand, one mole of a hydroquinone may combine with two moles of a succinic acid to form an ester in which both hydroxyl radicals of hydroquinone are esterified with one of the two acid radicals of the succinic acid. Thus, the maximum amount of acylating agent to be used with a polyhydric aromatic compound is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of about equi-molar amounts of the acylating agent and hydroxy aromatic compound have superior properties and are therefore preferred. Those esters prepared from the reaction of at least stoichiometrically equivalent amounts of acylating agent and hydroxy aromatic compound, i.e., about one hydroxy group for each carboxylic acylating group present in the reaction mixture, are especially preferred. It is sometimes desirable to employ an excess of the hydroxy aromatic compound in preparing the esters, e.g., about a 5%l00% by weight stoichiometric excess based on the stoichiometric amount required to produce a given desired ester.
In most instances it is advantageous to carry out the esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst. The amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
Upon completion of the reaction, unreacted hydroxy aromatic compound can be removed, if desired, by conventional techniques. Usually removal is accomplished by distillation at reduced pressure. However, if the hydroxy aromatic compound is oil-soluble, it can be left in the reaction mixture without interfering with the dispersant capabilities of the esters. Moreover, if it is desired that the reaction mixture be substantially free from unreacted carboxyl groups for a particular application, this can be readily accomplished by post-treating the reaction mixture with an epoxide according to applicants copending application Ser. No. 712,606, filed Mar. 13, 1968, now abandoned for continuation Ser. No. 866,081 filed Oct. 3, 1969. This epoxide post-treatment may also result in the reaction of unreacted hydroxy groups with epoxides to form hydroxyalkoxy substituents on the aromatic nucleus. If sufficient epoxide is employed, the aromatic nucleus having the unesterified hydroxy group will react with more than one epoxide. For example, three moles of propylene oxide, ethylene oxide, or a mixture thereof can react to produce a substituent of the formula where R is H or ---CH;.;. The epoxide post-treatment improves the performance of the esters as sludge dispersants.
The following examples illustrate the preparation of esters of the type contemplated by the present invention. Unless otherwise indicated, the terms parts and percent refer to parts by weight and percent by weight, respectively, when used in these examples and elsewhere in the specification and claims.
EXAMPLE 1 The following acylating agents are prepared according to conventional processes as illustrated.
(A) A polyisobutenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C. The polyisobutenyl radical has an average molecular weight of about 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of about 500).
(B) A polyisobutenyl-substituted succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1050 and a chlorine content of 4.3%) and maleic anhydride.
EXAMPLE 2 A mixture comprising 1028 parts of a polyisobutenylsubstituted succinic anhydride (average molecular Weightl028; prepared as in 1(A), 282 parts of phenol, 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is heated to reflux (153 C.) and maintained at this temperature for five hours. Thereafter, the mixture is cooled and 19 additional parts of toluenesulfonic acid esterification catalyst is added. Heating at reflux (153 154 C.) is continued for twenty-eight hours. The reaction mixture is then cooled to C. and 7.5 parts of sodium hydroxide dissolved in 24 parts of water is added. The resulting reaction mixture is then stripped at 68 C. at 21 mm. (Hg) and then at 223 C. at 21 mm. (Hg). The stripped product is then dissolved in 756 parts of mineral oil to produce an oil solution of the desired ester product. If desired, this oil solution can be filtered.
Following the general procedure of Example 2, the following acylating agents and hydroxy aromatic compounds are reacted in the equivalent ratios indicated to produce additional ester products of the present invention.
TABLE Example Equivalent N0. Acylatmg agent (A) Hydroxy aromatic compound (B) ratio (AzB) Anhydn'de of 1(B) Alpha-naphthol 1. 1:1 Anhydride of 1(0) 4,4 -methylenc-bis-phenol 2:1
.. Anhydride of 1(D) di(hyd1oxyphenyl)oxide 1. 5:1
Anhydride of 1(E) Propene tetramer-substituted phen 1:1
7 Anhydride oi 1(F) Resorcinol 1:2 8 Acid of 1(G) 4-butylphen0l 1 1. 1 9 Anhydride of 1(H) Alpha-decyl-beta-naphthol 1:1 10 Acid oi 1(1) Resorcinol 1;2
(C) A polypropenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of about 4%) and maleic anhydride at 200 C. The product has an acid number of 75.
(D) A substituted succinic anhydride is prepared by treating maleic anhydride with a chlorinated copolymer of isobutylene and styrene. The copolymer consists of 94 parts of isobutylene units and 6 parts of styrene units and has an average molecular Weight of 1200 and a chlorine content of 2.8% by weight. The resulting succinic anhydride has an acid number of 40.
(E) A polypropylene-sirbstituated succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and a molecular weight of 1200 Wih maleic anhydride.
(F) A substituted succinic anhydride having an acid number of about 54 is prepared by reacting maleic anhydride with a chlorinated (1.95% by weight chlorine) copolymer of isobutylene and isoprene. The copolymer consists of 99 parts by weight of isobutylene units and one part of isoprene units and has an average molecular weight of about 28,000.
(G) A high molecular weight polyisobutenyl-substituted carboxylic acid is prepared by heating an equimolar mixture of a chlorinated polyisobutene having a molecular Weight of 1 000 and a chlorine content of 4.7% and methacrylic acid at 150 C.
(H) A polyisobutene having a molecular weight of 1000 and maleic anhydride heated at 150220 C. to
As mentioned above, it is sometimes desirable to posttreat the esters of this invention with epoxides. The posttreatment enhances the sludge-dispersing capabilities of the products in many environments, e.g., crankcase lubricants, etc.
The organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula n RD lH-CH 0 where each R is independently hydrogen or an aliphatic, cycloaliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every three carbon atoms. The lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from two to eight carbon atoms are especially preferred for post-treating the esters. The arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, cylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides. The epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
11 Specific examples of the organic epoxides useful in the process of this invention are ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-3butane, 1,2-epoxypentane, 1,2-epoxyheptane, 1,2-epoxydodecane, 2,3-epoxybutane, 1,2-epoxy-5-hexane,
methyl ester of 9,10-epoxy-stearic acid, and epoxidized fatty acid esters in which the fatty acid radical has up 1 to about thirty aliphatic carbon atoms and the alcohol radical is derived from an aliphatic alcohol having u to about eight carbon atoms. Ethylene oxide, propylene oxide and epichlorohydrin are particularly preferred for posttreating the esters.
The post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50250 C. Good results are achieved when the posttreatment is conducted at a temperature of about 70- 200 C. The esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to facilitate thorough contact of the esters and epoxides.
Any substantially inert organic liquid can be used as a diluent. Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent. In many instances, the esters are prepared as oil-solutions and these oilsolutions can be used in the post-treating process, the oil functioning as a diluent.
The precise means by which this process improves the dispersancy characteristics of the esters is not known. The epoxides are believed to react with nonesterified hydroxyl groups although they may also react with any free carboxyl groups present. In a preferred aspect of the invention, the esters to be post-treated will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the acidic esters. This usually can be achieved by using esterification catalyst and a stoichiometric excess of hydroxy aromatic compound in preparing the esters. An ester is considered substantially free from free carboxyl groups for purposes of this invention when not more than about of the number of carboxyl functions present are free carboxyl groups, i.e., COOH. Ordinarily the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention. When free carboxyl groups are present on esters to be post-treated, the amount of epoxide employed may be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for posttreating the ester.
The esters and epoxides should be contacted in an amount such that the ratio of equivalents of hydroxy aromatic compound present in the ester to the equivalents of epoxide will be about 11005 to about 1:5 and preferably 1:0.l to about 1:2. For purposes of using this ratio, the equivalent weight of a hydroxy aromatic compound is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified. Similarly, the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule. By way of example, if the ester to be treated contains one mole of resorcinol in the oxy moiety, the ester is deemed to contain two equivalents of hydroxy aromatic compound. According to the present process, such an ester would be contacted with 0.1 to 10, preferably 0.2 to 4 equivalents of epoxide. This equivalent ratio is offered merely as a guideline to define the elfective ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester. However, within this ratio, it is possible to determine the optimum ratio of ester and epoxide for any given ester or combination of esters and any given epoxide or combination of epoxides through routine evaluation.
The following examples illustrate the epoxide posttreatment of the esters of this invention.
EXAMPLE 11 An oil solution of an ester prepared according to Example 2 is contacted with propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound in the ester reaction product to epoxide (as explained above) is about 1:1. The mixture is heated for seventeen hours at -90 C. and then stripped at reduced pressure to remove any unreacted propylene oxide. The resulting mixture is then filtered producing an oil solution of the desired post-treated ester.
EXAMPLE 12 The ester product of Example 10 is post-treated with an equimolar mixture of ethylene oxide and propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound to alkylene oxide is 1:3. The temperature of the reaction mass is maintained at C. for four hours, stripped at reduced pressure, and filtered. The filtrate is an oil-solution of the desired posttreated ester.
By following the general procedures of Examples 11 and 12 and utilizing different esters, different epoxides, or different esters and epoxides, other post-treated esters of the type contemplated by the present invention are readily prepared.
The esters and post-treated esters of this invention are useful for a wide variety of purposesas pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, hydrocarbon fuel additives, etc.
A principal utility of the esters is as additives in lubricants, especially lubricating oils. The lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at 100 F. to about 200 Saybolt Universal seconds at 210 F.
The concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected. Thus, for example, lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as or even more of the additive.
This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
The ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2- propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cycohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthyl-amine, and dodecylamine, A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of Water and carbonating the mixture at an elevated temperature such as 60200 C.
The esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the esters of this invention with any of the above mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
The Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, secbutyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives con templated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-beta-naphthyl- 1,3-butylene oxide, m-dodecylstyrene oxide and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms such as illustrated hereinbefore.
The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight.
EXAMPLE A SAE 20 mineral lubricating oil containing 0.5% of the product of Example 2.
EXAMPLE B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
EXAMPLE C SAiE 10W-30 mineral lubricating oil containing 0.4% of the product of Example 3.
EXAMPLE D SAE 20W30 mineral lubricating oil containing of the product of Example 8.
EXAMPLE E SAE W-30 mineral lubricating oil containing 1.5% of the product of Example 4 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of npentyl alcohol.
EXAMPLE F SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 7, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
EXAMPLE G SAE 30 mineral lubricating oil containing 5% of the product of Example 11, 0.1% of phosphorus as the zinc salt of a mixture of equi-molar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basis barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
EXAMPLE H SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 12, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
EXAMPLE I SAE 10 mineral lubricating oil containing 3% of the product of Example 6, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
The above lubricating compositions are merely illustrative and the scope of the invention includes the use of all of the additives previously illustrated as well as others 'within the broad concept of this invention described herein.
Fuel compositions of the type contemplated by the present invention are illustrated by the following examples. Ordinarily the esters are used in amounts such that they will comprise from about 0.001% to about 5%, usually 0.01% to 2%, by weight of the final fuel. It is also contemplated that the fuels may contain other conventional additives such as deicers, smoke suppressants, lead scavengers, demulsifiers, lead appreciators, anti-rust agents, and the like.
EXAMPLE I Gasoline containing 0.015% of the esters produced according to Example 11.
16 EXAMPLE K Kerosene containing 0.05% of the ester produced according to Example 2.
EXAMPLE L Diesel fuel containing 0.5% of the ester produced according to Example 6.
EXAMPLE M No. 2 fuel oil for oil furnaces comprising 0.1% of the ester produced according to Example 3.
What is claimed is:
1. A lubricating composition comprising a major amount of a lubricating oil and an amount, sufficient to impart detergency thereto, of at least one oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor polycarboxylic acid or anhydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chloroinated polyolefin containing at least about 50 aliphatic carbon atoms with an alpha, beta-unsaturated monoor dicarboxylic acid or anhydride.
2. A lubricating composition according to claim 1 wherein the acyl moiety of said ester is an acyl radical of a polyolefin-substituted succinic acid derived from the reaction of a polyolefin or chlorinated polyolefin with maleic acid or anhydride, the ester being a monoester, diester, or mixture of these.
3. A lubricating composition according to claim 2 wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol selected from the class consisting of phenols, alkylphenols, phenol ethers, and alkylene bis-phenols.
4. A lubricating composition according to claim 3 wherein the acyl moiety is an acyl radical of a succinic acid derived from the reaction of a polymerized l-monoolefin or a chlorinated polymerized l-monoolefin having an average molecular meight of about 700 to about 5000 with maleic anhydride or maleic acid.
5. A lubricating composition according to claim 2 wherein the aromatic hydroxy compound is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
6. A lubricating composition according to claim 5 wherein the acyl moiety is an acyl radical or a polyisobutenyl-substituted succinic acid.
7. A lubricating composition according to claim 1 wherein the acyl moiety is an acyl radical of a monocarboxylic acid having an average molecular weight of about 700 to about 5000 and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
8. A lubricating composition according to claim 7 wherein the monohydroxy or polyhydroxy phenol is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
9. A lubricating composition according to claim 1 wherein said at least one oil-soluble ester is an epoxidepost-treated ester prepared by reacting at least one ester with a terminal epoxide of the formula D P nn-(3H wherein one R. is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about 25 C.
10. A fuel composition comprising a major amount of a normally liquid petroleum distillate fuel and an amount, sufiicient to impart detergency thereto, of an oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor dicarboxylic acid or an- 17 v hydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chlorinated polyolefin having at least 50 aliphatic carbon atoms with an alpha, betaunsaturated monoor dicarboxylic acidor anhydride.
11. A fuel composition according to claim wherein the acyl moiety of the ester is an acyl radical of a polyisobutenyl-substituted succinic acid or anhydride derived from the reaction of polyisobutene or chlorinated polyisobutene having an average molecular Weight of about 700 to about 5000 with maleic acid or maleic anhydride and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
12. A fuel composition according to claim 10 wherein at least one oil-soluble ester is an epoxide post-treated ester prepared by reacting said at least one ester with an epoxide of the formula 18 where one R is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about C. up to the decomposition temperature of the ester or epoxide in an equivalent ratio of ester to epoxide of 1:05 to 1:5.
References Cited PATRICK P. GARVIN, Primary Examiner W. H. CANNON, Assistant Examiner U8. 0]. X.R. 4462, 25256 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3 542 680 DATE I November 24, 1970 INVENTOR( I William M. LeSuer It is certified that error appears in the aboveidentified patent and that said Letters Patent are hereby corrected as shown bE|0WI At column 2, between lines 56 and 60, the formula Signed and Scaled thi:
A "as t:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (mnmlssiunvr nj'lau'nrs and Trudcmur
US866081A 1963-04-23 1969-10-03 Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same Expired - Lifetime US3542680A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US27490563A 1963-04-23 1963-04-23
US56705266A 1966-07-22 1966-07-22
US86608169A 1969-10-03 1969-10-03
US86608469A 1969-10-03 1969-10-03
US1133570A 1970-02-13 1970-02-13

Publications (1)

Publication Number Publication Date
US3542680A true US3542680A (en) 1970-11-24

Family

ID=27533439

Family Applications (4)

Application Number Title Priority Date Filing Date
US567052A Expired - Lifetime US3522179A (en) 1963-04-23 1966-07-22 Lubricating composition containing esters of hydrocarbon-substituted succinic acid
US866084A Expired - Lifetime US3579450A (en) 1963-04-23 1969-10-03 Lubricants and fuels containing epoxide treated esters
US866081A Expired - Lifetime US3542680A (en) 1963-04-23 1969-10-03 Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
US11335A Expired - Lifetime US3632510A (en) 1963-04-23 1970-02-13 Mixed ester-metal salts and lubricants and fuels containing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US567052A Expired - Lifetime US3522179A (en) 1963-04-23 1966-07-22 Lubricating composition containing esters of hydrocarbon-substituted succinic acid
US866084A Expired - Lifetime US3579450A (en) 1963-04-23 1969-10-03 Lubricants and fuels containing epoxide treated esters

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11335A Expired - Lifetime US3632510A (en) 1963-04-23 1970-02-13 Mixed ester-metal salts and lubricants and fuels containing the same

Country Status (3)

Country Link
US (4) US3522179A (en)
DE (1) DE1271877B (en)
GB (1) GB1055337A (en)

Cited By (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755169A (en) * 1970-10-13 1973-08-28 Lubrizol Corp High molecular weight carboxylic acid acylating agents and the process for preparing the same
US4108783A (en) * 1974-04-09 1978-08-22 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4108784A (en) * 1974-04-09 1978-08-22 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4176077A (en) * 1974-04-09 1979-11-27 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as lubricant additives
US4179449A (en) * 1974-04-09 1979-12-18 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4194886A (en) * 1974-04-09 1980-03-25 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel additives
US4205960A (en) * 1974-04-09 1980-06-03 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4219431A (en) * 1976-07-28 1980-08-26 Mobil Oil Corporation Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives
US4285824A (en) * 1979-01-22 1981-08-25 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4343740A (en) * 1980-02-22 1982-08-10 The Lubrizol Corporation Hydroxylalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4571269A (en) * 1981-03-31 1986-02-18 Phillips Petroleum Company Asphalt compositions
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4723965A (en) * 1985-01-31 1988-02-09 Nippon Oil Co., Ltd. Motor gasoline compositions
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
WO2006094011A2 (en) 2005-03-01 2006-09-08 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
WO2006128796A2 (en) * 2005-05-30 2006-12-07 Basf Aktiengesellschaft Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers
WO2006128795A2 (en) * 2005-05-30 2006-12-07 Basf Aktiengesellschaft Use of amphiphilic block copolymers for producing polymer blends
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
WO2010099136A1 (en) 2009-02-26 2010-09-02 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
WO2011022266A2 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022245A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022317A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
US20110065612A1 (en) * 2008-06-09 2011-03-17 Stokes Kristoffer K Low interfacial tension surfactants for petroleum applications
EP2302023A2 (en) 2002-10-04 2011-03-30 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
WO2011075401A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing a nitrile compound
WO2011075403A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011081835A1 (en) 2009-12-14 2011-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011084657A1 (en) 2009-12-17 2011-07-14 The Lubrizol Corporation Lubricating composition containing an aromatic compound
EP2371933A1 (en) 2006-02-06 2011-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
WO2011143051A1 (en) 2010-05-12 2011-11-17 The Lubrizol Corporation Tartaric acid derivatives in hths fluids
WO2011146467A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011146692A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012030590A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012030616A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2012047949A1 (en) 2010-10-06 2012-04-12 The Lubrizol Corporation Lubricating oil composition with anti-mist additive
US20120117861A1 (en) * 2010-11-12 2012-05-17 Baker Hughes Incorporated Fuel Additives for Enhanced Lubricity and Anti-Corrosion Properties
WO2012078572A1 (en) 2010-12-10 2012-06-14 The Lubrizol Corporation Lubricant composition containing viscosity index improver
WO2012087775A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing a detergent
WO2012087773A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing an antiwear agent
US8227383B2 (en) 2008-06-09 2012-07-24 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2012106170A1 (en) 2011-01-31 2012-08-09 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
WO2012112648A2 (en) 2011-02-16 2012-08-23 The Lubrizol Corporation Method of lubricating a driveline device
WO2012122202A1 (en) 2011-03-10 2012-09-13 The Lubrizol Corporation Lubricating composition containing a thiocarbamate compound
WO2012141855A1 (en) 2011-04-15 2012-10-18 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
WO2012174075A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing an ester of an aromatic carboxylic acid
WO2012174184A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing a salt of a carboxylic acid
WO2012177529A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating compositions containing salts of hydrocarbyl substituted acylating agents
WO2012177549A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177537A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2013012987A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Overbased friction modifiers and methods of use thereof
WO2013013026A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
WO2013062924A2 (en) 2011-10-27 2013-05-02 The Lubrizol Corporation Lubricating composition containing an esterified polymer
WO2013066585A1 (en) 2011-10-31 2013-05-10 The Lubrizol Corporation Ashless friction modifiers for lubricating compositions
WO2013070376A2 (en) 2011-11-11 2013-05-16 Vanderbilt Chemicals, Llc Lubricant composition
EP2610332A1 (en) 2011-12-30 2013-07-03 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2013101882A1 (en) 2011-12-29 2013-07-04 The Lubrizol Corporation Limited slip friction modifiers for differentials
WO2013122898A2 (en) 2012-02-16 2013-08-22 The Lubrizol Corporation Lubricant additive booster system
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
WO2014074197A1 (en) 2012-09-11 2014-05-15 The Lubrizol Corporation Lubricating composition containing an ashless tbn booster
US8742165B2 (en) 2009-12-10 2014-06-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2014088814A1 (en) 2012-12-07 2014-06-12 The Lubrizol Corporation Pyran dispersants
WO2014137580A1 (en) 2013-03-07 2014-09-12 The Lubrizol Corporation Limited slip friction modifiers for differentials
WO2014164087A1 (en) 2013-03-12 2014-10-09 The Lubrizol Corporation Lubricating composition containing lewis acid reaction product
WO2014193543A1 (en) 2013-05-30 2014-12-04 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
WO2015017172A1 (en) 2013-07-31 2015-02-05 The Lubrizol Corporation Method of lubricating a transmission which includes a synchronizer with a non-metallic surface
WO2015021129A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with cobalt
WO2015021135A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with copper
US8969612B2 (en) 2009-12-10 2015-03-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015106083A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138109A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138088A1 (en) 2014-03-11 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138108A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015171674A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Lubricant composition containing an antiwear agent
WO2015184301A2 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Coupled quaternary ammonium salts
WO2015184251A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Branched amine containing quaternary ammonium salts
WO2015184247A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight imide containing quaternary ammonium salts
WO2015184280A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
WO2015183908A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015184276A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
WO2015184254A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight amide/ester containing quaternary ammonium salts
WO2015183916A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
WO2015195614A1 (en) 2014-06-18 2015-12-23 The Lubrizol Corporation Motorcycle engine lubricant
WO2016033397A1 (en) 2014-08-28 2016-03-03 The Lubrizol Corporation Lubricating composition with seals compatibility
WO2016044262A1 (en) 2014-09-15 2016-03-24 The Lubrizol Corporation Dispersant viscosity modifiers with sulfonate functionality
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016090108A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016090065A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
WO2016099490A1 (en) 2014-12-17 2016-06-23 The Lubrizol Corporation Lubricating composition for lead and copper corrosion inhibition
WO2016138248A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
WO2016138227A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
WO2016144880A1 (en) 2015-03-09 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2016148708A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017031143A1 (en) 2015-08-20 2017-02-23 The Lubrizol Corporation Azole derivatives as lubricating additives
WO2017039855A2 (en) 2015-07-20 2017-03-09 The Lubrizol Corporation Zinc-free lubricating composition
WO2017083243A1 (en) 2015-11-11 2017-05-18 The Lubrizol Corporation Lubricating composition comprising thioether-substituted phenolic compound
WO2017096159A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails
WO2017096175A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails
WO2017147380A1 (en) 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017176546A1 (en) 2016-04-07 2017-10-12 The Lubrizol Corporation Mercaptoazole derivatives as lubricating additives
EP3255129A1 (en) 2016-06-06 2017-12-13 The Lubrizol Corporation Thiol-carboxylic adducts as lubricating additives
WO2017218662A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218657A2 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218654A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
EP3263678A1 (en) 2016-06-30 2018-01-03 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions
WO2018017913A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018048781A1 (en) 2016-09-12 2018-03-15 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
WO2018052692A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition and method of lubricating an internal combustion engine
WO2018053098A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound
WO2018125569A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition including n-alkylated dianiline
WO2018125567A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018136541A1 (en) 2017-01-17 2018-07-26 The Lubrizol Corporation Engine lubricant containing polyether compounds
WO2019005738A1 (en) 2017-06-27 2019-01-03 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
WO2019023219A1 (en) 2017-07-24 2019-01-31 Chemtool Incorporated Extreme pressure metal sulfonate grease
WO2019108588A1 (en) 2017-11-28 2019-06-06 The Lubrizol Corporation Lubricant compositions for high efficiency engines
WO2019112720A1 (en) 2017-12-04 2019-06-13 The Lubrizol Corporation Alkylphenol detergents
WO2019118117A1 (en) 2017-12-15 2019-06-20 The Lubrizol Corporation Alkylphenol detergents
WO2019246192A1 (en) 2018-06-22 2019-12-26 The Lubrizol Corporation Lubricating compositions for heavy duty diesel engines
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
WO2020102672A1 (en) 2018-11-16 2020-05-22 The Lubrizol Corporation Alkylbenzene sulfonate detergents
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2020263964A1 (en) 2019-06-24 2020-12-30 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
US10975323B2 (en) 2015-12-15 2021-04-13 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
WO2021127183A1 (en) 2019-12-18 2021-06-24 The Lubrizol Corporation Polymeric surfactant compound
EP3842508A1 (en) 2013-09-19 2021-06-30 The Lubrizol Corporation Use of lubricant compositions for direct injection engines
EP3878933A1 (en) 2013-09-19 2021-09-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2022212844A1 (en) 2021-04-01 2022-10-06 The Lubrizol Corporation Zinc free lubricating compositions and methods of using the same
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
WO2024030592A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same
WO2024030591A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts
WO2024158648A1 (en) 2023-01-24 2024-08-02 The Lubrizol Corporation Lubricating composition with phenolic antioxidant and low active sulfur
WO2024163826A1 (en) 2023-02-03 2024-08-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts
US12098345B2 (en) 2020-12-17 2024-09-24 The Lubrizol Corporation Polymeric surfactant compound

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639242A (en) * 1969-12-29 1972-02-01 Lubrizol Corp Lubricating oil or fuel containing sludge-dispersing additive
BE786032A (en) * 1971-07-08 1973-01-08 Rhone Progil NEW ADDITIVES FOR LUBRICATING OILS
US3936480A (en) * 1971-07-08 1976-02-03 Rhone-Progil Additives for improving the dispersing properties of lubricating oil
US3755173A (en) * 1971-08-05 1973-08-28 Chevron Res Alkenyl halolactone esters and acids and lubricants containing them
US3879308A (en) * 1973-05-14 1975-04-22 Lubrizol Corp Lubricants and fuels containing ester-containing compositions
US3910845A (en) * 1973-06-22 1975-10-07 Chevron Res Reaction products of formals, acetals and ketals with succinic acid or anhydride as lubricating oil and fuel additives
GB1483728A (en) * 1973-09-13 1977-08-24 Shell Int Research Process for the preparation of an ester of an alkyl-or alkenyl succinic acid and a polyvalent alcohol
GB1518171A (en) * 1974-05-30 1978-07-19 Mobil Oil Corp Amine salts of succinic half-esters as lubricant additive
US4147641A (en) * 1976-03-29 1979-04-03 Rohm And Haas Company Multipurpose hydrocarbon fuel and lubricating oil additive mixture
MX147153A (en) * 1975-10-14 1982-10-19 Lubrizol Corp IMPROVED PROCEDURE FOR OBTAINING AMINOPHENOLS
DE2702805C2 (en) * 1976-01-28 1994-09-29 Lubrizol Corp Additives for liquid lubricants and / or fuels
US4240916A (en) * 1976-07-09 1980-12-23 Exxon Research & Engineering Co. Pour point depressant additive for fuels and lubricants
US4240970A (en) * 1976-07-28 1980-12-23 Mobil Oil Corporation Reaction products of hydroxy aromatic or alkylphenylether compounds and alkenylsuccinic acid, anhydride, or ester
US4072618A (en) * 1976-08-27 1978-02-07 Mobil Oil Corporation Metal working lubricant
US4105571A (en) * 1977-08-22 1978-08-08 Exxon Research & Engineering Co. Lubricant composition
US4173540A (en) * 1977-10-03 1979-11-06 Exxon Research & Engineering Co. Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
DE2963798D1 (en) * 1978-03-23 1982-11-11 Ici Plc Surfactant compositions comprising a blend of two types of polyester and an emulsion of oil in water prepared therewith
US4159958A (en) * 1978-06-30 1979-07-03 Chevron Research Company Succinate dispersant combination
US4255160A (en) * 1979-03-09 1981-03-10 Standard Oil Company (Indiana) Flow improver for heavy petroleum products comprising alkenyl succinate diester
US4251380A (en) * 1979-06-28 1981-02-17 Texaco Inc. Quaternary ammonium diester salt composition and hydrocarbon oil containing same
US4306070A (en) * 1979-06-28 1981-12-15 Texaco Inc. Method for preparing quaternary ammonium salt of ester-lactone
US4253980A (en) * 1979-06-28 1981-03-03 Texaco Inc. Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same
GB2056482A (en) * 1979-08-13 1981-03-18 Exxon Research Engineering Co Lubricating oil compositions
US4237020A (en) * 1979-08-20 1980-12-02 Edwin Cooper, Inc. Lubricating and fuel compositions containing succinimide friction reducers
US4273663A (en) * 1979-11-13 1981-06-16 Texaco Inc. Quaternary ammonium diester salt composition and lubricating oil containing same
US4292186A (en) * 1979-12-04 1981-09-29 Mobil Oil Corporation Metal complexes of alkylsuccinic compounds as lubricant and fuel additives
CA1159436A (en) * 1980-11-10 1983-12-27 Harold Shaub Lubricant composition with improved friction reducing properties
US4505718A (en) * 1981-01-22 1985-03-19 The Lubrizol Corporation Organo transition metal salt/ashless detergent-dispersant combinations
US4440545A (en) * 1981-11-02 1984-04-03 Ethyl Corporation Gasohol having corrosion inhibiting properties
US4491527A (en) * 1982-04-26 1985-01-01 The Lubrizol Corporation Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants
US4481125A (en) * 1982-05-03 1984-11-06 E.F. Houghton & Co. Water-based hydraulic fluid
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4444565A (en) * 1982-12-20 1984-04-24 Union Oil Company Of California Method and fuel composition for control of octane requirement increase
US4612129A (en) 1985-01-31 1986-09-16 The Lubrizol Corporation Sulfur-containing compositions, and additive concentrates and lubricating oils containing same
IN172191B (en) 1985-03-14 1993-05-01 Lubrizol Corp
GB8515974D0 (en) * 1985-06-24 1985-07-24 Shell Int Research Gasoline composition
US4760170A (en) * 1985-07-01 1988-07-26 Exxon Research & Engineering Co. Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
US4863624A (en) * 1987-09-09 1989-09-05 Exxon Chemical Patents Inc. Dispersant additives mixtures for oleaginous compositions
US5118432A (en) * 1985-07-11 1992-06-02 Exxon Chemical Patents Inc. Dispersant additive mixtures for oleaginous compositions
CA1262721A (en) 1985-07-11 1989-11-07 Jacob Emert Oil soluble dispersant additives useful in oleaginous compositions
GB8521393D0 (en) * 1985-08-28 1985-10-02 Exxon Chemical Patents Inc Middle distillate compositions
US4661274A (en) * 1986-01-13 1987-04-28 Mobil Oil Corporation Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds
GB8611772D0 (en) * 1986-05-14 1986-06-25 Ici Plc Corrosion inhibitor compositions
US4866139A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterified dispersant additives useful in oleaginous compositions
US4954277A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same
US4954276A (en) * 1986-10-07 1990-09-04 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866140A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified adducts or reactants and oleaginous compositions containing same
US4866142A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4906394A (en) * 1986-10-07 1990-03-06 Exxon Chemical Patents Inc. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions
US4936866A (en) * 1986-10-07 1990-06-26 Exxon Chemical Patents Inc. Lactone modified polymeric amines useful as oil soluble dispersant additives
US4866135A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy
US4866141A (en) * 1986-10-07 1989-09-12 Exxon Chemical Patents Inc. Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same
US5032320A (en) * 1986-10-07 1991-07-16 Exxon Chemical Patents Inc. Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
CA1333596C (en) * 1986-10-16 1994-12-20 Robert Dean Lundberg High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions
US4751011A (en) * 1986-12-12 1988-06-14 Exxon Chemical Patents Inc. Hydrocarbon soluble complexes based on metal salts of polyolefinic dicarboxylic acids
CA1327088C (en) * 1986-12-12 1994-02-15 Malcolm Waddoups Oil soluble additives useful in oleaginous compositions
GB8710955D0 (en) * 1987-05-08 1987-06-10 Shell Int Research Gasoline composition
US4938880A (en) * 1987-05-26 1990-07-03 Exxon Chemical Patents Inc. Process for preparing stable oleaginous compositions
US4820432A (en) * 1987-07-24 1989-04-11 Exxon Chemical Patents Inc. Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
US4971711A (en) * 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5026495A (en) * 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5085788A (en) * 1987-11-19 1992-02-04 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5256325A (en) * 1988-02-29 1993-10-26 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5275748A (en) * 1988-02-29 1994-01-04 Exxon Chemical Patents Inc. Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5030369A (en) * 1988-02-29 1991-07-09 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US4957645A (en) * 1988-02-29 1990-09-18 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5124055A (en) * 1988-03-31 1992-06-23 Ethyl Petroleum Additives, Inc. Lubricating oil composition
US4943382A (en) * 1988-04-06 1990-07-24 Exxon Chemical Patents Inc. Lactone modified dispersant additives useful in oleaginous compositions
US4933098A (en) * 1988-04-06 1990-06-12 Exxon Chemical Patents Inc. Lactone modified viscosity modifiers useful in oleaginous compositions
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
US4952328A (en) * 1988-05-27 1990-08-28 The Lubrizol Corporation Lubricating oil compositions
US4981602A (en) * 1988-06-13 1991-01-01 The Lubrizol Corporation Lubricating oil compositions and concentrates
US4904401A (en) * 1988-06-13 1990-02-27 The Lubrizol Corporation Lubricating oil compositions
US4938881A (en) * 1988-08-01 1990-07-03 The Lubrizol Corporation Lubricating oil compositions and concentrates
US4957649A (en) * 1988-08-01 1990-09-18 The Lubrizol Corporation Lubricating oil compositions and concentrates
TW197468B (en) * 1988-09-08 1993-01-01 Lubrizol Corp
US5334329A (en) * 1988-10-07 1994-08-02 The Lubrizol Corporation Lubricant and functional fluid compositions exhibiting improved demulsibility
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
US5205947A (en) * 1988-11-07 1993-04-27 Exxon Chemical Patents Inc. Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products
US5254276A (en) * 1988-12-30 1993-10-19 Mobil Oil Corporation Diol phosphite adducts of olefins as multifunctional lubricants and additives for lubricants
CA2008258C (en) * 1989-01-30 2001-09-11 Jacob Emert Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US4941984A (en) * 1989-07-31 1990-07-17 The Lubrizol Corporation Lubricating oil compositions and methods for lubricating gasoline-fueled and/or alcohol-fueled, spark-ignited engines
US5160507A (en) * 1990-06-04 1992-11-03 Mobil Oil Corp. Multifunctional ester-type additives for liquid hydrocarbyl or hydrocarbyloxy fuel
CA2030481C (en) * 1990-06-20 1998-08-11 William B. Chamberlin, Iii Lubricating oil compositions for meoh-fueled diesel engines
CA2060226C (en) * 1990-07-30 1996-02-13 Yasuhisa Tajiri Rust-preventive lubricant composition for zinc-plated steel material
GB9027389D0 (en) * 1990-12-18 1991-02-06 Shell Int Research Gasoline composition
US5562864A (en) * 1991-04-19 1996-10-08 The Lubrizol Corporation Lubricating compositions and concentrates
US5490945A (en) * 1991-04-19 1996-02-13 The Lubrizol Corporation Lubricating compositions and concentrates
US5614480A (en) * 1991-04-19 1997-03-25 The Lubrizol Corporation Lubricating compositions and concentrates
TW205067B (en) 1991-05-30 1993-05-01 Lubrizol Corp
CA2090202A1 (en) * 1992-02-25 1993-08-26 Jeffrey A. Jones Method for improving anhydride-functionalized polymers and products
CA2091402A1 (en) * 1992-03-17 1993-09-18 Richard W. Jahnke Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5330662A (en) * 1992-03-17 1994-07-19 The Lubrizol Corporation Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
CA2091420A1 (en) * 1992-03-17 1993-09-18 Richard W. Jahnke Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
US5328620A (en) * 1992-12-21 1994-07-12 The Lubrizol Corporation Oil additive package useful in diesel engine and transmission lubricants
US6294506B1 (en) 1993-03-09 2001-09-25 Chevron Chemical Company Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates
US5356552A (en) * 1993-03-09 1994-10-18 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free lubricating oils having modified high molecular weight succinimides
TW291495B (en) 1994-08-03 1996-11-21 Lubrizol Corp
TW425425B (en) 1994-08-03 2001-03-11 Lubrizol Corp Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
GB2293389A (en) 1994-09-26 1996-03-27 Ethyl Petroleum Additives Ltd Mixed zinc salt lubricant additives
EP1028155A1 (en) * 1994-12-13 2000-08-16 Infineum USA L.P. Fuel oil compositions
US5814111A (en) * 1995-03-14 1998-09-29 Shell Oil Company Gasoline compositions
US5736492A (en) * 1995-09-08 1998-04-07 Shell Oil Company Alkenyl-substituted dicarboxylic derivatives
US5821205A (en) 1995-12-01 1998-10-13 Chevron Chemical Company Polyalkylene succinimides and post-treated derivatives thereof
DE69608401T2 (en) 1995-12-19 2001-01-11 Chevron Chemical Co. Llc, San Francisco Very long chain alkylphenyl polyoxyalkylene amines, and fuel compositions containing the same
US5637119A (en) 1995-12-29 1997-06-10 Chevron Chemical Company Substituted aromatic polyalkyl ethers and fuel compositions containing the same
BR9709272A (en) * 1996-05-31 1999-08-10 Ass Octel Compound fuel composition processes to increase the lubricating capacity of a liquid hydrocarbon fuel and to inhibit corrosion on a metal surface exposed to a liquid hydrocarbon fuel and additive composition
US5792729A (en) 1996-08-20 1998-08-11 Chevron Chemical Corporation Dispersant terpolymers
FR2762006B1 (en) * 1997-04-11 2003-09-12 Chevron Res & Tech USE OF HIGH MOLECULAR WEIGHT SURFACTANTS AS AGREEMENTS TO IMPROVE FILTERABILITY IN HYDRAULIC LUBRICANTS
WO1999002627A1 (en) 1997-07-08 1999-01-21 General Oil Company Slide way lubricant composition, method of making and method of using same
GB9720102D0 (en) * 1997-09-22 1997-11-19 Exxon Chemical Patents Inc Lubricity additives for fuel oil compositions
GB9818323D0 (en) * 1998-08-21 1998-10-14 Ass Octel Fuel additives
US6780209B1 (en) 2000-01-24 2004-08-24 The Lubrizol Corporation Partially dehydrated reaction product process for making same, and emulsion containing same
DE10125158A1 (en) * 2001-05-22 2002-12-05 Basf Ag Low and high molecular weight emulsifiers, in particular on bases of polyisobutylene, and mixtures thereof
US7012148B2 (en) * 2001-09-25 2006-03-14 Trustees Of Dartmouth College Compositions and methods for thionation during chemical synthesis reactions
DE10147650A1 (en) * 2001-09-27 2003-04-10 Basf Ag Hydrophilic emulsifiers based on polyisobutylene
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6573223B1 (en) 2002-03-04 2003-06-03 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
JP2004217797A (en) * 2003-01-15 2004-08-05 Ethyl Japan Kk Gear oil composition having long life and excellent thermal stability
US20050065043A1 (en) * 2003-09-23 2005-03-24 Henly Timothy J. Power transmission fluids having extended durability
US7695534B2 (en) * 2003-11-12 2010-04-13 Ecr Technologies, Inc. Chemical synthesis methods using electro-catalysis
CA2496100A1 (en) * 2004-03-10 2005-09-10 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure characteristics
US20060003905A1 (en) * 2004-07-02 2006-01-05 Devlin Cathy C Additives and lubricant formulations for improved corrosion protection
US20060025314A1 (en) * 2004-07-28 2006-02-02 Afton Chemical Corporation Power transmission fluids with enhanced extreme pressure and antiwear characteristics
US20060135375A1 (en) 2004-12-21 2006-06-22 Chevron Oronite Company Llc Anti-shudder additive composition and lubricating oil composition containing the same
US20060223716A1 (en) * 2005-04-04 2006-10-05 Milner Jeffrey L Tractor fluids
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
JP2007072390A (en) * 2005-09-09 2007-03-22 Fujifilm Corp Cellulose acylate film, and optical compensation film, polarizing plate, and liquid crystal display device using same
US20070111906A1 (en) * 2005-11-12 2007-05-17 Milner Jeffrey L Relatively low viscosity transmission fluids
SG170045A1 (en) 2006-02-27 2011-04-29 Basf Se Use of polynuclear phenolic compounds as stabilisers
US20070270317A1 (en) * 2006-05-19 2007-11-22 Milner Jeffrey L Power Transmission Fluids
EP2027235A1 (en) * 2006-05-23 2009-02-25 Ciba Holding Inc. Corrosion inhibiting composition for non-ferrous metals
US20080015127A1 (en) * 2006-07-14 2008-01-17 Loper John T Boundary friction reducing lubricating composition
US20080119377A1 (en) * 2006-11-22 2008-05-22 Devlin Mark T Lubricant compositions
SI2132284T1 (en) 2007-03-02 2011-05-31 Basf Se Additive formulation suited for anti-static finishing and improvement of the electrical conductivity of inanimate organic material
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
US20090011963A1 (en) * 2007-07-06 2009-01-08 Afton Chemical Corporation Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil
SG183026A1 (en) 2007-07-16 2012-08-30 Basf Se Synergistic mixture
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
US8703669B2 (en) * 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009001301A1 (en) 2008-03-11 2009-09-24 Volkswagen Ag Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication
DE102009012567B4 (en) 2008-03-11 2016-11-10 Afton Chemical Corp. Transmission oils with very little sulfur only for coupling and their use
US20100160193A1 (en) * 2008-12-22 2010-06-24 Chevron Oronite LLC Additive composition and method of making the same
US8859473B2 (en) * 2008-12-22 2014-10-14 Chevron Oronite Company Llc Post-treated additive composition and method of making the same
CA2752867C (en) 2009-02-18 2017-11-28 The Lubrizol Corporation Amine derivatives as friction modifiers in lubricants
US20100311620A1 (en) * 2009-06-05 2010-12-09 Clearwater International, Llc Winterizing agents for oil base polymer slurries and method for making and using same
US20130165355A1 (en) 2010-09-07 2013-06-27 The Lubrizol Corporation Hydroxychroman Derivatives As Engine Oil Antioxidants
US20140107001A1 (en) 2011-05-12 2014-04-17 The Lubrizol Corporation Aromatic Imides And Esters As Lubricant Additives
CN104220570A (en) 2012-02-17 2014-12-17 卢布里佐尔公司 Lubricating composition including esterified copolymer and low dispersant levels suitable for driveline applications
JP6117248B2 (en) 2012-02-17 2017-04-19 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Mixtures of olefin-ester copolymers with polyolefins as viscosity modifiers
WO2014047017A1 (en) 2012-09-24 2014-03-27 The Lubrizol Corporation Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer
US11629296B2 (en) * 2012-09-26 2023-04-18 Bl Technologies, Inc. Demulsifying compositions and methods of use
JP5213291B1 (en) * 2012-09-28 2013-06-19 竹本油脂株式会社 Synthetic fiber treatment agent, synthetic fiber treatment aqueous solution, synthetic fiber treatment method and synthetic fiber
US9765274B2 (en) 2012-12-20 2017-09-19 The Lubrizol Corporation Lubricant composition including 4-hydroxybenzamide friction modifier
EP2811007A1 (en) 2013-06-07 2014-12-10 Basf Se Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use
US20160130514A1 (en) 2013-06-07 2016-05-12 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
EP3052599B1 (en) 2013-09-30 2020-09-16 The Lubrizol Corporation Method of friction control
BR112016023961A2 (en) 2014-06-27 2017-08-15 Lubrizol Corp friction modifier mixtures to provide good friction performance to transmission fluids
JP6837000B2 (en) 2015-03-10 2021-03-03 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricating composition containing anti-wear agent / friction modifier
US10407640B2 (en) 2015-07-22 2019-09-10 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
EP3371271B1 (en) * 2015-11-02 2022-01-05 The Lubrizol Corporation Lubricant for water based drilling fluid
DE102016107522A1 (en) 2016-04-22 2017-10-26 Basf Se A fuel additive device, method for adding fuel and use of the same
CN109415649B (en) 2016-05-18 2022-11-08 路博润公司 Hydraulic fluid composition
CN109477021B (en) 2016-05-24 2021-10-26 路博润公司 Seal swell agents for lubricating compositions
EP3380592B1 (en) 2016-05-24 2019-09-04 The Lubrizol Corporation Seal swell agents for lubricating compositions
US11174449B2 (en) 2016-05-24 2021-11-16 The Lubrizol Corporation Seal swell agents for lubricating compositions
EP3504307B1 (en) 2016-08-29 2022-05-11 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
US20200017793A1 (en) 2016-09-21 2020-01-16 The Lubrizol Corporation Polyacrylate Antifoam Components With Improved Thermal Stability
US20200017794A1 (en) 2016-09-21 2020-01-16 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
SG11201901687SA (en) 2016-10-12 2019-03-28 Chevron Oronite Tech Bv Marine diesel lubricant oil compositions
CN109844078A (en) 2016-10-18 2019-06-04 雪佛龙奥伦耐技术有限责任公司 Marine diesel lubricant oil composite
CA3047549A1 (en) 2016-12-22 2018-06-28 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
US10479953B2 (en) * 2018-01-12 2019-11-19 Afton Chemical Corporation Emulsifier for use in lubricating oil
CA3094651A1 (en) 2018-03-21 2019-09-26 The Lubrizol Corporation Novel fluorinated polyacrylates antifoams in ultra-low viscosity (<5 cst) finished fluids
CA3126759A1 (en) 2019-01-17 2020-07-23 The Lubrizol Corporation Traction fluids
CN114790041A (en) 2021-01-26 2022-07-26 埃科莱布美国股份有限公司 Antifreezing dispersant and manufacturing process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2091627A (en) * 1934-06-08 1937-08-31 Rohm & Haas Composition of matter and process
US2444328A (en) * 1943-12-31 1948-06-29 Petrolite Corp Composition of matter
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US2993032A (en) * 1956-02-03 1961-07-18 California Research Corp Detergent copolymers
US3251906A (en) * 1962-11-13 1966-05-17 Rohm & Haas Preparation of detergent oil-additive graft copolymers by delayed addition of a lower alkyl acrylate to a partially polymerized long chain alkyl acrylate
US3485754A (en) * 1967-06-30 1969-12-23 Emery Industries Inc Lubricant composition and method of refining

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962443A (en) * 1955-08-31 1960-11-29 Lubrizol Corp Steam turbine lubricant
US2933468A (en) * 1956-01-26 1960-04-19 Exxon Research Engineering Co Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof
US3045042A (en) * 1957-08-16 1962-07-17 Monsanto Chemicals Acid polyester succinates
GB1009197A (en) * 1961-08-30 1965-11-10 Lubrizol Corp Stable water-in-oil emulsion
US3269946A (en) * 1961-08-30 1966-08-30 Lubrizol Corp Stable water-in-oil emulsions
US3184474A (en) * 1962-09-05 1965-05-18 Exxon Research Engineering Co Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial
NL134315C (en) * 1962-10-04
US3197409A (en) * 1963-03-28 1965-07-27 California Research Corp Alkylene glycol ester reaction product
US3281356A (en) * 1963-05-17 1966-10-25 Lubrizol Corp Thermally stable water-in-oil emulsions
US3272746A (en) * 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2091627A (en) * 1934-06-08 1937-08-31 Rohm & Haas Composition of matter and process
US2444328A (en) * 1943-12-31 1948-06-29 Petrolite Corp Composition of matter
US2993032A (en) * 1956-02-03 1961-07-18 California Research Corp Detergent copolymers
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US3251906A (en) * 1962-11-13 1966-05-17 Rohm & Haas Preparation of detergent oil-additive graft copolymers by delayed addition of a lower alkyl acrylate to a partially polymerized long chain alkyl acrylate
US3485754A (en) * 1967-06-30 1969-12-23 Emery Industries Inc Lubricant composition and method of refining

Cited By (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755169A (en) * 1970-10-13 1973-08-28 Lubrizol Corp High molecular weight carboxylic acid acylating agents and the process for preparing the same
US4194886A (en) * 1974-04-09 1980-03-25 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel additives
US4108784A (en) * 1974-04-09 1978-08-22 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4163730A (en) * 1974-04-09 1979-08-07 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as lubricant additives
US4176077A (en) * 1974-04-09 1979-11-27 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as lubricant additives
US4179449A (en) * 1974-04-09 1979-12-18 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4108783A (en) * 1974-04-09 1978-08-22 The Lubrizol Corporation Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4205960A (en) * 1974-04-09 1980-06-03 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4219431A (en) * 1976-07-28 1980-08-26 Mobil Oil Corporation Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives
US4285824A (en) * 1979-01-22 1981-08-25 The Lubrizol Corporation Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4343740A (en) * 1980-02-22 1982-08-10 The Lubrizol Corporation Hydroxylalkyl hydroxy-aromatic condensation products as fuel and lubricant additives
US4617134A (en) * 1980-11-10 1986-10-14 Exxon Research And Engineering Company Method and lubricant composition for providing improved friction reduction
US4571269A (en) * 1981-03-31 1986-02-18 Phillips Petroleum Company Asphalt compositions
US4723965A (en) * 1985-01-31 1988-02-09 Nippon Oil Co., Ltd. Motor gasoline compositions
EP0558835A1 (en) 1992-01-30 1993-09-08 Albemarle Corporation Biodegradable lubricants and functional fluids
US5650536A (en) * 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
US5703256A (en) * 1992-12-17 1997-12-30 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5554310A (en) * 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5629394A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Direct synthesis by living cationic polymerization of nitrogen-containing polymers
US5629434A (en) * 1992-12-17 1997-05-13 Exxon Chemical Patents Inc Functionalization of polymers based on Koch chemistry and derivatives thereof
US6030930A (en) * 1992-12-17 2000-02-29 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US5643859A (en) * 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5646332A (en) * 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5717039A (en) * 1992-12-17 1998-02-10 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5663130A (en) * 1992-12-17 1997-09-02 Exxon Chemical Patents Inc Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5696064A (en) * 1992-12-17 1997-12-09 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5698722A (en) * 1992-12-17 1997-12-16 Exxon Chemical Patents Inc. Functionalization of polymers based on Koch chemistry and derivatives thereof
US5498809A (en) * 1992-12-17 1996-03-12 Exxon Chemical Patents Inc. Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5767046A (en) * 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
EP0713908A1 (en) 1994-11-22 1996-05-29 Ethyl Corporation Power transmission fluids
EP0778333A2 (en) 1995-11-09 1997-06-11 The Lubrizol Corporation Carboxylic compositions, derivatives, lubricants, fuels and concentrates
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6468948B1 (en) 1996-06-17 2002-10-22 Infineum Usa L.P. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
EP2302023A2 (en) 2002-10-04 2011-03-30 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2366762A1 (en) 2002-10-04 2011-09-21 R.T. Vanderbilt Company Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2436753A1 (en) 2002-10-04 2012-04-04 R.T. Vanderbilt Company Inc. Synergistic organoborate compositions and lubricating compositions containing same
EP2460870A1 (en) 2002-10-04 2012-06-06 R.T. Vanderbilt Company, Inc. Synergistic organoborate compositions and lubricating compositions containing same
US20070054813A1 (en) * 2003-09-25 2007-03-08 Chip Hewette Boron free automotive gear oil
US9267093B2 (en) 2003-11-10 2016-02-23 Afton Chemical Corporation Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
EP2230292A1 (en) 2003-11-10 2010-09-22 Afton Chemical Corporation Methods of lubricating transmissions
US20100279901A1 (en) * 2003-11-10 2010-11-04 Iyer Ramnath N Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
EP1568759A2 (en) 2004-02-27 2005-08-31 Afton Chemical Corporation Power transmission fluids
US7947636B2 (en) 2004-02-27 2011-05-24 Afton Chemical Corporation Power transmission fluids
WO2006094011A2 (en) 2005-03-01 2006-09-08 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
US8557752B2 (en) 2005-03-23 2013-10-15 Afton Chemical Corporation Lubricating compositions
WO2006128795A3 (en) * 2005-05-30 2007-04-12 Basf Ag Use of amphiphilic block copolymers for producing polymer blends
EP2159233A1 (en) * 2005-05-30 2010-03-03 Basf Se Process for the colouring of polymer compositions comprising polyolefins.
WO2006128796A3 (en) * 2005-05-30 2007-04-05 Basf Ag Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers
WO2006128795A2 (en) * 2005-05-30 2006-12-07 Basf Aktiengesellschaft Use of amphiphilic block copolymers for producing polymer blends
WO2006128796A2 (en) * 2005-05-30 2006-12-07 Basf Aktiengesellschaft Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers
US20080293886A1 (en) * 2005-05-30 2008-11-27 Basf Aktiengessellschaft Use Of Amphiphilic Block Copolymers For Producing Polymer Blends
US20090039543A1 (en) * 2005-05-30 2009-02-12 Basf Aktiengesellschaft Polymer Composition Comprising Polyolefins And Amphiphilic Block Copolymers And Optionally Other Polymers And/Or Fillers And Method For Dying Compositions Of That Type Or Printing Thereon
EP2371933A1 (en) 2006-02-06 2011-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
US7902133B2 (en) 2006-07-14 2011-03-08 Afton Chemical Corporation Lubricant composition
US20080015124A1 (en) * 2006-07-14 2008-01-17 Devlin Mark T Lubricant composition
US7879775B2 (en) 2006-07-14 2011-02-01 Afton Chemical Corporation Lubricant compositions
US7833953B2 (en) 2006-08-28 2010-11-16 Afton Chemical Corporation Lubricant composition
US20110065612A1 (en) * 2008-06-09 2011-03-17 Stokes Kristoffer K Low interfacial tension surfactants for petroleum applications
US8389456B2 (en) 2008-06-09 2013-03-05 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US8227383B2 (en) 2008-06-09 2012-07-24 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2010099136A1 (en) 2009-02-26 2010-09-02 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
EP2431448A1 (en) 2009-02-26 2012-03-21 The Lubrizol Corporation Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant
WO2011022317A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022266A2 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011022245A1 (en) 2009-08-18 2011-02-24 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2891700A1 (en) 2009-08-18 2015-07-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2891701A1 (en) 2009-08-18 2015-07-08 The Lubrizol Corporation Lubricating composition containing a corrosion inhibitor
US8969612B2 (en) 2009-12-10 2015-03-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
US8742165B2 (en) 2009-12-10 2014-06-03 Soane Energy, Llc Low interfacial tension surfactants for petroleum applications
WO2011081835A1 (en) 2009-12-14 2011-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011075403A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011075401A1 (en) 2009-12-14 2011-06-23 The Lubrizol Corporation Lubricating composition containing a nitrile compound
WO2011084657A1 (en) 2009-12-17 2011-07-14 The Lubrizol Corporation Lubricating composition containing an aromatic compound
WO2011143051A1 (en) 2010-05-12 2011-11-17 The Lubrizol Corporation Tartaric acid derivatives in hths fluids
WO2011146692A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2011146467A1 (en) 2010-05-20 2011-11-24 The Lubrizol Corporation Lubricating composition containing a dispersant
EP3184615A1 (en) 2010-08-31 2017-06-28 The Lubrizol Corporation Method of lubricating a driveline device
WO2012030616A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2012030590A1 (en) 2010-08-31 2012-03-08 The Lubrizol Corporation Lubricating composition containing an antiwear agent
EP2623582A1 (en) 2010-08-31 2013-08-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012047949A1 (en) 2010-10-06 2012-04-12 The Lubrizol Corporation Lubricating oil composition with anti-mist additive
US8557002B2 (en) * 2010-11-12 2013-10-15 Baker Hughes Incorporated Fuel additives for enhanced lubricity and anti-corrosion properties
US20120117861A1 (en) * 2010-11-12 2012-05-17 Baker Hughes Incorporated Fuel Additives for Enhanced Lubricity and Anti-Corrosion Properties
WO2012078572A1 (en) 2010-12-10 2012-06-14 The Lubrizol Corporation Lubricant composition containing viscosity index improver
WO2012087773A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2012087775A1 (en) 2010-12-21 2012-06-28 The Lubrizol Corporation Lubricating composition containing a detergent
WO2012106170A1 (en) 2011-01-31 2012-08-09 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
WO2012112648A2 (en) 2011-02-16 2012-08-23 The Lubrizol Corporation Method of lubricating a driveline device
WO2012122202A1 (en) 2011-03-10 2012-09-13 The Lubrizol Corporation Lubricating composition containing a thiocarbamate compound
WO2012141855A1 (en) 2011-04-15 2012-10-18 R.T. Vanderbilt Company, Inc. Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
WO2012174075A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing an ester of an aromatic carboxylic acid
WO2012174184A1 (en) 2011-06-15 2012-12-20 The Lubrizol Corporation Lubricating composition containing a salt of a carboxylic acid
WO2012177529A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating compositions containing salts of hydrocarbyl substituted acylating agents
WO2012177537A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2012177549A1 (en) 2011-06-21 2012-12-27 The Lubrizol Corporation Lubricating composition containing a dispersant
WO2013013026A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Carboxylic pyrrolidinones and methods of use thereof
WO2013012987A1 (en) 2011-07-21 2013-01-24 The Lubrizol Corporation Overbased friction modifiers and methods of use thereof
WO2013062924A2 (en) 2011-10-27 2013-05-02 The Lubrizol Corporation Lubricating composition containing an esterified polymer
WO2013066585A1 (en) 2011-10-31 2013-05-10 The Lubrizol Corporation Ashless friction modifiers for lubricating compositions
WO2013070376A2 (en) 2011-11-11 2013-05-16 Vanderbilt Chemicals, Llc Lubricant composition
WO2013101882A1 (en) 2011-12-29 2013-07-04 The Lubrizol Corporation Limited slip friction modifiers for differentials
EP3088498A1 (en) 2011-12-30 2016-11-02 The Lubrizol Corporation Use of star polymers
EP2610332A1 (en) 2011-12-30 2013-07-03 The Lubrizol Corporation Star polymer and lubricating composition thereof
WO2013122898A2 (en) 2012-02-16 2013-08-22 The Lubrizol Corporation Lubricant additive booster system
WO2014074197A1 (en) 2012-09-11 2014-05-15 The Lubrizol Corporation Lubricating composition containing an ashless tbn booster
WO2014088814A1 (en) 2012-12-07 2014-06-12 The Lubrizol Corporation Pyran dispersants
WO2014137580A1 (en) 2013-03-07 2014-09-12 The Lubrizol Corporation Limited slip friction modifiers for differentials
WO2014164087A1 (en) 2013-03-12 2014-10-09 The Lubrizol Corporation Lubricating composition containing lewis acid reaction product
WO2014193543A1 (en) 2013-05-30 2014-12-04 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
EP3556830A1 (en) 2013-05-30 2019-10-23 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
WO2015017172A1 (en) 2013-07-31 2015-02-05 The Lubrizol Corporation Method of lubricating a transmission which includes a synchronizer with a non-metallic surface
WO2015021129A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with cobalt
WO2015021135A1 (en) 2013-08-09 2015-02-12 The Lubrizol Corporation Reduced engine deposits from dispersant treated with copper
EP3878933A1 (en) 2013-09-19 2021-09-15 The Lubrizol Corporation Lubricant compositions for direct injection engines
EP3842508A1 (en) 2013-09-19 2021-06-30 The Lubrizol Corporation Use of lubricant compositions for direct injection engines
WO2015106083A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138088A1 (en) 2014-03-11 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138108A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015138109A1 (en) 2014-03-12 2015-09-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2015171674A1 (en) 2014-05-06 2015-11-12 The Lubrizol Corporation Lubricant composition containing an antiwear agent
EP3517593A1 (en) 2014-05-30 2019-07-31 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
EP3536766A1 (en) 2014-05-30 2019-09-11 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
WO2015184301A2 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Coupled quaternary ammonium salts
WO2015184254A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight amide/ester containing quaternary ammonium salts
WO2015184251A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Branched amine containing quaternary ammonium salts
WO2015183916A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
WO2015184247A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation High molecular weight imide containing quaternary ammonium salts
WO2015183908A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015184276A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Epoxide quaternized quaternary ammonium salts
EP3524663A1 (en) 2014-05-30 2019-08-14 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
EP3511396A1 (en) 2014-05-30 2019-07-17 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
EP3514220A1 (en) 2014-05-30 2019-07-24 The Lubrizol Corporation Low molecular weight amide/ester containing quaternary ammonium salts
WO2015184280A1 (en) 2014-05-30 2015-12-03 The Lubrizol Corporation Imidazole containing quaternary ammonium salts
EP3521404A1 (en) 2014-05-30 2019-08-07 The Lubrizol Corporation Low molecular weight imide containing quaternary ammonium salts
WO2015195614A1 (en) 2014-06-18 2015-12-23 The Lubrizol Corporation Motorcycle engine lubricant
WO2016033397A1 (en) 2014-08-28 2016-03-03 The Lubrizol Corporation Lubricating composition with seals compatibility
WO2016044262A1 (en) 2014-09-15 2016-03-24 The Lubrizol Corporation Dispersant viscosity modifiers with sulfonate functionality
WO2016077134A1 (en) 2014-11-12 2016-05-19 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2016090121A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016090065A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated hydrocarbyl phenol
WO2016090108A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
WO2016099490A1 (en) 2014-12-17 2016-06-23 The Lubrizol Corporation Lubricating composition for lead and copper corrosion inhibition
US10336963B2 (en) 2015-02-26 2019-07-02 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
WO2016138248A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic tetrahedral borate compounds for lubricating compositions
WO2016138227A1 (en) 2015-02-26 2016-09-01 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
WO2016144880A1 (en) 2015-03-09 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2016148708A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
US10577556B2 (en) 2015-06-12 2020-03-03 The Lubrizol Corporation Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions
WO2017039855A2 (en) 2015-07-20 2017-03-09 The Lubrizol Corporation Zinc-free lubricating composition
US10988702B2 (en) 2015-07-20 2021-04-27 The Lubrizol Corporation Zinc-free lubricating composition
US11518954B2 (en) 2015-07-20 2022-12-06 The Lubrizol Corporation Zinc-free lubricating composition
WO2017031143A1 (en) 2015-08-20 2017-02-23 The Lubrizol Corporation Azole derivatives as lubricating additives
WO2017083243A1 (en) 2015-11-11 2017-05-18 The Lubrizol Corporation Lubricating composition comprising thioether-substituted phenolic compound
WO2017096159A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails
WO2017096175A1 (en) 2015-12-02 2017-06-08 The Lubrizol Corporation Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails
US10975323B2 (en) 2015-12-15 2021-04-13 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
EP3778837A1 (en) 2016-02-24 2021-02-17 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017147380A1 (en) 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2017176546A1 (en) 2016-04-07 2017-10-12 The Lubrizol Corporation Mercaptoazole derivatives as lubricating additives
EP3255129A1 (en) 2016-06-06 2017-12-13 The Lubrizol Corporation Thiol-carboxylic adducts as lubricating additives
WO2017218654A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218664A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218662A1 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Lubricating compositions
WO2017218657A2 (en) 2016-06-17 2017-12-21 The Lubrizol Corporation Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives
EP3263678A1 (en) 2016-06-30 2018-01-03 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions
WO2018017449A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017454A1 (en) 2016-07-20 2018-01-25 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017911A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for lubricating compositions
WO2018017913A1 (en) 2016-07-22 2018-01-25 The Lubrizol Corporation Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions
WO2018048781A1 (en) 2016-09-12 2018-03-15 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
US11427780B2 (en) 2016-09-12 2022-08-30 The Lubrizol Corporation Total base number boosters for marine diesel engine lubricating compositions
WO2018052692A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition and method of lubricating an internal combustion engine
WO2018053098A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound
EP3851508A1 (en) 2016-09-14 2021-07-21 The Lubrizol Corporation Method of lubricating an internal combustion engine
US11162048B2 (en) 2016-12-27 2021-11-02 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018125569A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition including n-alkylated dianiline
WO2018125567A1 (en) 2016-12-27 2018-07-05 The Lubrizol Corporation Lubricating composition with alkylated naphthylamine
WO2018136541A1 (en) 2017-01-17 2018-07-26 The Lubrizol Corporation Engine lubricant containing polyether compounds
EP3896142A1 (en) 2017-06-27 2021-10-20 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
WO2019005738A1 (en) 2017-06-27 2019-01-03 The Lubrizol Corporation Lubricating composition for and method of lubricating an internal combustion engine
WO2019023219A1 (en) 2017-07-24 2019-01-31 Chemtool Incorporated Extreme pressure metal sulfonate grease
WO2019108588A1 (en) 2017-11-28 2019-06-06 The Lubrizol Corporation Lubricant compositions for high efficiency engines
WO2019112720A1 (en) 2017-12-04 2019-06-13 The Lubrizol Corporation Alkylphenol detergents
WO2019118117A1 (en) 2017-12-15 2019-06-20 The Lubrizol Corporation Alkylphenol detergents
WO2019246192A1 (en) 2018-06-22 2019-12-26 The Lubrizol Corporation Lubricating compositions for heavy duty diesel engines
US11702610B2 (en) 2018-06-22 2023-07-18 The Lubrizol Corporation Lubricating compositions
WO2020102672A1 (en) 2018-11-16 2020-05-22 The Lubrizol Corporation Alkylbenzene sulfonate detergents
WO2020263964A1 (en) 2019-06-24 2020-12-30 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
WO2021127183A1 (en) 2019-12-18 2021-06-24 The Lubrizol Corporation Polymeric surfactant compound
US12098345B2 (en) 2020-12-17 2024-09-24 The Lubrizol Corporation Polymeric surfactant compound
WO2022212844A1 (en) 2021-04-01 2022-10-06 The Lubrizol Corporation Zinc free lubricating compositions and methods of using the same
WO2024030592A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same
WO2024030591A1 (en) 2022-08-05 2024-02-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts
WO2024158648A1 (en) 2023-01-24 2024-08-02 The Lubrizol Corporation Lubricating composition with phenolic antioxidant and low active sulfur
WO2024163826A1 (en) 2023-02-03 2024-08-08 The Lubrizol Corporation Processes for producing reaction products including quaternary ammonium salts

Also Published As

Publication number Publication date
DE1271877B (en) 1968-07-04
US3632510A (en) 1972-01-04
US3522179A (en) 1970-07-28
GB1055337A (en) 1967-01-18
US3579450A (en) 1971-05-18

Similar Documents

Publication Publication Date Title
US3542680A (en) Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same
US3381022A (en) Polymerized olefin substituted succinic acid esters
US3533945A (en) Lubricating oil composition
US3403102A (en) Lubricant containing phosphorus acid esters
US3401185A (en) Metal salts of phosphorus acids and process
US3859318A (en) Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides
US4151173A (en) Acylated polyoxyalkylene polyamines
US4034038A (en) Boron-containing esters
US3876550A (en) Lubricant compositions
US3338832A (en) Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3346493A (en) Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product
US4328111A (en) Modified overbased sulfonates and phenates
US3281428A (en) Reaction product of certain acylated nitrogen containing intermediates and a boron compound
US4119550A (en) Sulfurized compositions
US3282955A (en) Reaction products of acylated nitrogen intermediates and a boron compound
US3639242A (en) Lubricating oil or fuel containing sludge-dispersing additive
EP0394359B1 (en) Mixtures of partial fatty acid esters of polyhydric alcohols and sulfurized compositions, and use as lubricant additives
US3489682A (en) Metal salt compositions
US3256185A (en) Lubricant containing acylated aminecarbon disulfide product
EP0199782B1 (en) Sulfurized compositions and lubricants
US4308154A (en) Mixed metal salts and lubricants and functional fluids containing them
US3562159A (en) Synthetic lubricants
JPS62502199A (en) Hydrogen sulfide stabilized oil-soluble sulfurized organic composition
US4036772A (en) Esters made from the reaction product of low molecular weight ethylenically unsaturated acylating agents and oxidized ethylene-propylene interpolymers
US3281359A (en) Neopentyl polyol derivatives and lubricating compositions