WO2018135873A1 - 스마트폰 센서를 이용한 휠체어 전복예방장치 - Google Patents

스마트폰 센서를 이용한 휠체어 전복예방장치 Download PDF

Info

Publication number
WO2018135873A1
WO2018135873A1 PCT/KR2018/000837 KR2018000837W WO2018135873A1 WO 2018135873 A1 WO2018135873 A1 WO 2018135873A1 KR 2018000837 W KR2018000837 W KR 2018000837W WO 2018135873 A1 WO2018135873 A1 WO 2018135873A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheelchair
smartphone
gravity
acceleration
slope
Prior art date
Application number
PCT/KR2018/000837
Other languages
English (en)
French (fr)
Inventor
제양규
Original Assignee
피플리안주식회사
제양규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피플리안주식회사, 제양규 filed Critical 피플리안주식회사
Publication of WO2018135873A1 publication Critical patent/WO2018135873A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/70General characteristics of devices with special adaptations, e.g. for safety or comfort
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • Wheelchair rollover is a fatal accident that can occur when a disabled person or an elderly person uses a wheelchair. Wheelchair rollover accidents occur when the disabled or elderly with poor agility, judgment, and control ability can not grasp the center of gravity when climbing or descending a slope larger than the allowable slope. Wheelchair rollover is only 13% of wheelchair accidents, but it can lead to fatal accidents. By using various sensors mounted on the smartphone to prevent the overturn of the wheelchair.
  • Smartphones used by many people are equipped with various expensive sensors to provide convenience and various functions of the smartphone. It is equipped with a variety of sensors such as gravitational acceleration sensor, line acceleration sensor, gyroscope, barometric center, proximity sensor, magnetic force sensor, compass and sound sensor, as well as signal processing device for each sensor. If you try to install various sensors and signal processing devices separately, very high cost is required.
  • This patent aims to prevent wheelchair overturning by utilizing gravity acceleration sensor, one of the most basic sensors in smartphone sensors.
  • the tilt of the wheelchair In order to detect the possibility of the wheelchair overturning, the tilt of the wheelchair must be detected in real time. Gravity accelerometers and signal processing devices are needed to detect wheelchair tilt. Sensors and signal processing devices capable of detecting wheelchair tilt should be very convenient and inexpensive. In addition, the measured gravity acceleration data must be able to be transmitted to the wheelchair control. In the wheelchair control device, the slope of the wheelchair is calculated using the received signal of gravity acceleration, and the possibility of overturning the wheelchair must be diagnosed in real time.
  • the wheelchair microcontroller unit must be built in the wheelchair to analyze the acceleration of gravity from the smartphone's app and calculate the wheelchair tilt in real time and instruct preventive measures.
  • Wheelchair rollover is one of the most fatal accidents when the wheelchair is used by the elderly and the disabled with poor judgment and agility.
  • expensive advanced sensors and signal processing devices are needed, and the sensors and signal processing devices built into smartphones used by many people are very inexpensive. Can be easily diagnosed and prevented.
  • the smartphone's built-in gravity accelerometer can measure inclinations in three directions and can measure and diagnose rollovers in various directions.
  • Smartphones are equipped with a variety of advanced sensors as well as gravity accelerometers, so if the smartphone and the wheelchair can interoperate with each other, the wheelchair can be easily intelligent at low cost. It also supports the use of smartphones in wheelchairs and provides power for smartphones.
  • Figure 1 shows a smartphone that can be easily attached and detached to a wheelchair.
  • Figure 2 shows the three-axis signal measured by the gravity accelerometer of a smartphone.
  • Figure 3 shows a wheelchair running on a slope.
  • Figure 4 shows the change in the center of gravity that occurs when a wheelchair is driving down a slope.
  • Figure 5 shows an app for transmitting a signal from a gravity accelerometer mounted on a smartphone, and a wheelchair microcontroller device that processes a measurement signal sent through the app and grasps the wheelchair inclination.
  • Figure 6 shows a conceptual diagram of a process of calculating the tilt of a wheelchair by transmitting a signal measured by a smartphone gravity accelerometer to a wheelchair microcontroller device.
  • Figure 7 shows a smartphone installed in a fixed orientation on a wheelchair.
  • Figure 8 shows a smartphone installed in an arbitrary direction on the wheelchair.
  • Fig. 9 is a conceptual diagram that analyzes the measurement signal sent from the smartphone gravity accelerometer, calculates the wheelchair slope according to the wheelchair movement distance, and predicts the slope of the slope in advance.
  • a gravity accelerometer built into a smartphone is used.
  • Smartphones are closely related to modern life, and many people use them.
  • Smartphones are equipped with a variety of advanced sensors in the smartphone to provide ease of use and various functions.
  • various advanced signal processing devices that can process various electrical signals from the sensor are also included. The good use of these sensors and signal processing devices can be very helpful for the intelligentization of wheelchairs. In particular, it can be used to diagnose and prevent wheelchair abalone conveniently and inexpensively.
  • Figure 1 shows a smartphone that can be easily attached and detached from a wheelchair. It is a great advantage to be able to easily attach and detach the smart phone equipped with various sensors and signal processing devices to the wheelchair when needed. Attaching a smartphone to a wheelchair has the advantage of using a smartphone while using a wheelchair, but it also has the advantage of using the very expensive advanced sensors and signal processing devices built into the smartphone.
  • overturning occurs mainly in the forward and backward direction of the wheelchair, that is, the pitching direction, and sometimes overturning occurs in the left or right direction of the wheelchair, that is, the rolling direction. Occasionally, rollover occurs in the combined direction of pitching and rolling.
  • Figure 2 shows the acceleration signal measured by the app installed on the smartphone.
  • the gravity accelerometer mounted on a smartphone measures gravity acceleration in three directions.
  • the direction of total gravity can be calculated by calculating the magnitude of gravity acceleration in three axes, so that any inclination, such as the pitching and rolling direction of the wheelchair, can be calculated simultaneously.
  • the data is automatically recorded in the smartphone memory, and the stored measurement data can be collected through the app. Collected measurement data is sent to the wheelchair via wire or wirelessly, such as Bluetooth.
  • Figure 3 shows the movement of the wheelchair as it moves up and down the slope.
  • the slope of the wheelchair becomes higher and higher so that the slope of the wheelchair and the slope are equal when the rear wheel starts to climb the slope.
  • the slope angle of the slope can be known in advance by calculating the angle of inclination between the distance moved and the distance moved. Therefore, the slope of the slope can be calculated before the rear wheel reaches the slope, so that the risk can be identified and the possibility of the wheelchair overturning can be diagnosed in advance.
  • Figure 4 shows the change in the inclination of the wheelchair after the front wheel of the wheelchair begins to climb the slope and the rear wheel reaches the slope. Even before the rear wheel reaches the slope and the wheelchair is completely inclined, the slope of the slope can be calculated and the risk of the slope can be grasped in advance to diagnose the possibility of overturning the wheelchair.
  • Figure 5 is the gravity acceleration data measured by the gravity accelerometer 110 built in the smartphone 100 is transmitted in real time to the wheelchair through the app 120 installed on the smartphone, the wheelchair through the gravity acceleration data transmitted to the wheelchair
  • the configuration of the present patent which consists of a microcontroller device 150 for calculating the inclination, is shown.
  • the smartphone 100 has a signal processing device is built together with the gravity accelerometer 110.
  • FIG. 6 shows a conceptual diagram of calculating the wheelchair inclination through gravity acceleration measured by the gravity accelerometer 110 of the smartphone 100 and comparing the wheelchair inclination with the allowed wheelchair in advance to diagnose the possibility of wheelchair overturning.
  • Gravity accelerometer 110 of the smart phone 100 is measured (200) is stored in the memory of the smart phone, the acceleration of the app 120 of the smart phone app collects 210 and transmits via wired or wireless communication (220) do.
  • the wheelchair microcontroller unit (MCU) 150 may calculate the acceleration direction of gravity using the received measurement signal 230 (240), and calculate the slope of the wheelchair (260) when compared with the wheelchair initial tilt (250). have. If the inclination of the wheelchair is greater than the allowed inclination 300 compared to the allowed inclination of the wheelchair, a warning may be issued and the operation of the wheelchair may be stopped 320.
  • the calculation of the initial gravity acceleration direction when the wheelchair is horizontal is very important for the wheelchair tilt calculation.
  • the wheelchair mounting direction of the smartphone and the condition of the wheelchair are important.
  • the first method is to mount the smartphone on the wheelchair in a specific fixed direction, as shown in Figure 7.
  • the smartphone is mounted in a specific fixed direction, the relative angle to when the wheelchair is horizontal can be known in advance, and the direction of the initial gravity acceleration can be calculated or input in advance.
  • the second method of calculating the initial gravity acceleration is to freely mount the smartphone in any direction as shown in Figure 8 for the user's convenience.
  • the user should set the direction of the initial gravity acceleration. For example, after installing a smartphone in a wheelchair, you should check whether the wheelchair is in a horizontal position or on an incline. To do this, when the smartphone is mounted on the wheelchair, the user is asked whether the current wheelchair is in a horizontal state. If the user answers that the current wheelchair is in a horizontal state, then the direction of gravity acceleration at that time is set as the direction of the initial gravity acceleration. If the wheelchair is not currently level, the rollover diagnostic and prevention devices are disabled until the wheelchair is level and the wheelchair is level. However, even after the initial gravity acceleration is set once, if the direction of the smartphone is changed during use, the direction of the initial gravity acceleration should be set again.
  • the third method of calculating the initial gravity acceleration is to orient the gravity acceleration that is measured most when the wheelchair is driving a certain distance as the direction of the initial gravity acceleration. This method is set up on the assumption that the wheelchair is traveling mostly on the horizontal plane. The error may occur when the wheelchair continues to climb and descend the slope, but the smartphone can be arbitrarily installed according to the user's convenience, and also has the advantage of automatically orienting the initial gravity acceleration.
  • Figure 9 shows a conceptual diagram for proactively diagnosing the possibility of wheelchair overturning if the wheelchair is equipped with a device capable of measuring the distance of the wheelchair. If there is a device that can measure the rotational speed or the rotation angle of the wheelchair wheel and can calculate the wheelchair travel distance (270), the slope of the running slope is calculated by calculating the change of the wheelchair tilt according to the travel distance without having to climb the slope. May be calculated in advance (280). The slope of the inclined surface may be calculated in advance, and if the slope of the inclined surface is larger than the inclined slope of the allowed surface (290), a warning may be issued or the wheelchair operation may be stopped (320).
  • the BLDC motor which is widely used in wheelchairs, is equipped with a hall sensor, so it is easy to calculate the rotation angle of the wheelchair wheel without a separate device.
  • a separate measuring sensor such as an encoder must be installed on the wheelchair wheel to measure the rotation angle of the wheelchair wheel.
  • Wheelchair rollover is a fatal accident that can occur when a disabled person or an elderly person uses a wheelchair. Wheelchair rollover is only 13% of wheelchair accidents, but it can lead to fatal accidents. It can be used to prevent fatal rollover by warning the rollover of the electric wheelchair in advance by using a gravity accelerometer built into the smartphone.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Animal Behavior & Ethology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Alarm Devices (AREA)
  • Telephone Function (AREA)

Abstract

휠체어에 손쉽게 탈·부착할 수 있는 스마트폰에 내장된 중력가속도 센서를 이용하면 매우 저렴하고 편리하게 휠체어의 기울기를 실시간으로 측정할 수 있다. 이를 위해 측정된 중력가속도 데이터를 수집하여 유무선으로 전송할 수 있는 앱 개발이 필요하고, 보내온 중력가속도 데이터를 활용하여 휠체어 기울기를 실시간으로 계산할 수 있는 휠체어 마이크로 컨트롤러 장치가 필요하다. 휠체어의 기울기가 허용된 휠체어 기울기를 초과하였을 때 경고를 발생시키거나 휠체어 작동을 중단할 수 있는 휠체어 전복 진단 및 예방장치는 휠체어의 안전을 크게 향상시킬 수 있다. 많은 사람들이 사용하고 일반적으로 사용하고 있는 스마트폰을 이용함으로써 별도의 고가 센서나 장비를 별도로 구축할 필요가 없이 휠체어 전복 진단 및 예방장치를 저렴하게 구축 운영할 수 있고, 매우 편리하게 사용할 수 있다.

Description

스마트폰 센서를 이용한 휠체어 전복예방장치
장애인이나 고령자가 휠체어를 사용할 때 발생할 수 있는 치명적인 사고가 휠체어 전복사고이다. 민첩성, 판단력 및 조작능력 등이 떨어지는 장애인이나 고령자가 휠체어를 타고 허용되는 경사도보다 큰 경사를 올라가거나 내려올 때 무게중심을 잡지 못하여 휠체어 전복사고가 발생한다. 휠체어 전복은 휠체어 사고의 13%에 불과하지만 치명적인 사고로 이어질 수 있기 때문에 전복진단 및 예방이 매우 중요하다. 스마트폰에 장착된 각종 센서를 활용하여 휠체어의 전복을 예방하고자 한다.
많은 사람들이 사용하고 있는 스마트폰에는 스마트폰의 사용상의 편의와 다양한 기능을 제공하기 위하여 고가의 각종 센서들이 장착되어 있다. 중력가속도 센서, 선 가속도 센서, 자이로스코프, 기압 센터, 근접센서, 자력 측정센서, 나침반, 소리측정 센서 등 매우 다양한 센서가 장착되어 있을 뿐만 아니라, 각 센서를 위한 신호처리장치도 함께 장착되어 있다. 만약 각종 센서와 신호처리장치를 별도 설치하려고 하면 매우 큰 비용이 요구된다.
스마트폰에 내장된 각종 센서를 단순히 스마트폰의 기능을 위해서만 사용하지 않고 휠체어 활용에 적용한다면, 매우 저렴한 비용으로 다양한 기능을 발휘할 수 있다. 본 특허에서는 스마트폰 센서에서 가장 기본적인 센서 중의 하나인 중력 가속도 센서를 활용하여 휠체어의 전복을 예방하고자 한다.
휠체어의 전복 가능성을 탐지하기 위해서는 휠체어의 기울기를 실시간으로 탐지할 수 있어야 한다. 휠체어의 기울기를 탐지하기 위해서 중력가속도계 및 신호처리장치가 필요하다. 휠체어의 기울기를 탐지할 수 있는 센서 및 신호처리장치는 설치가 매우 편리해야 하고 또 저렴하여야 한다. 또 측정된 중력가속도 데이터를 휠체어 제어장치에 전송할 수 있어야 한다. 휠체어의 제어장치에서는 수신된 중력가속도의 신호를 이용하여 휠체어의 기울기를 계산하고 휠체어의 전복 가능성을 실시간으로 진단하여야 한다.
휠체어의 기울기를 탐지하기 위해서 매우 고가의 측정 장비가 요구된다면 그 효용성이 매우 떨어질 것이다. 저렴하고 편리할 뿐만 아니라 실시간으로 휠체어 기울기를 측정할 수 있도록 또 그 성능이 우수하여야 한다. 이를 위해 휠체어에 손쉽게 탈부착이 가능한 스마트폰에 내장된 중력가속도계를 이용한다. 스마트폰에는 고성능 센서뿐만 아니라 신호처리장치도 함께 내장되어 있다. 측정된 중력가속도 데이터를 실시간으로 수집하여 휠체어 제어장치로 전송할 수 있어야 한다. 이를 위해 스마트폰 메모리에 저장된 측정 데이터를 수집하여 유무선으로 전송할 수 있는 앱 개발이 필요하다. 스마트폰의 앱에서 보내온 중력가속도 데이터를 분석하여 휠체어 기울기를 실시간으로 계산하고 예방을 위한 조치를 지시할 수 있는 휠체어 마이크로 컨트롤러 장치(MCU)를 휠체어에 구축하여야 한다.
판단력과 민첩성이 떨어지는 노약자나 장애인들이 휠체어를 사용할 때 가장 치명적인 사고 중의 하나가 휠체어 전복이다. 휠체어의 전복을 진단하고 예방하기 위해서는 고가의 고급 센서와 신호처리장치가 필요한데, 많은 사람들이 활용하고 있는 스마트폰에 내장된 센서와 신호처리장치를 활용하면 휠체어 운전 중에 발생할 수 있는 전복사고를 매우 저렴하고 손쉽게 진단하고 예방할 수 있다. 특히 스마트폰에 내장된 중력 가속도계는 3축 방향의 기울기를 측정할 수 있어 다양한 방향의 전복을 측정 및 진단할 수 있다. 스마트폰에는 중력가속도계 뿐만 아니라 다양한 고급 센서들이 기본적으로 장착되어 있어, 스마트폰과 휠체어가 서로 연동 될 수 있다면 저렴한 비용으로 휠체어를 손쉽게 지능화할 수 있다. 또 휠체어를 타면서 스마트폰을 활용할 수 있게 지원하고 스마트폰에 필요한 전원도 공급할 수 있다.
그림 1은 휠체어에 손쉽게 탈부착이 가능한 스마트폰의 모습을,
그림 2는 스마트폰의 중력가속도계에서 측정된 3축 신호의 모습을,
그림 3은 휠체어가 경사를 주행하는 모습을,
그림 4는 휠체어가 경사를 주행할 때 발생하는 무게 중심의 변화를,
그림 5는 스마트폰내 장착된 중력가속계에서 측정된 신호를 전송하기 위한 앱과 앱을 통해 보내온 측정신호를 처리하여 휠체어 기울기를 파악하는 휠체어 마이크로 컨트롤러 장치의 모습을,
그림 6은 스마트폰 중력가속도계에서 측정된 신호가 휠체어 마이크로 컨트롤러 장치에 전송되어져 휠체어의 기울기를 계산하는 과정의 개념도를,
그림 7은 휠체어에 고정된 방향으로 설치된 스마트폰의 모습을,
그림 8은 휠체어에 임의의 방향으로 설치된 스마트폰의 모습을,
그림 9는 스마트폰 중력가속도계에서 보내온 측정신호를 분석하여 휠체어 이동거리에 따라 휠체어 기울기를 계산하고 경사면의 기울기를 사전에 예측하는 개념도를
각각 나타내고 있다.
도 6
휠체어의 전복을 진단하기 위하여 스마트폰에 내장된 중력가속도계를 활용한다. 스마트폰은 현대인의 생활과 매우 밀접한 관계가 있어서 많은 사람들이 스마트폰을 사용하고 있다. 스마트폰은 사용의 편리성과 다양한 기능을 제공하기 위해서는 스마트폰 안에 다양한 고급 센서들이 장착되어 있다. 고급 센서뿐만 아니라 센서에서 나오는 각종 전기적 신호를 처리할 수 있는 각종 고급 신호처리장치도 함께 내장되어 있다. 이러한 센서와 신호처리장치를 잘 활용하면 휠체어의 지능화에 매우 큰 도움을 받을 수 있다. 특히 휠체어 전복을 편리하고 저렴하게 진단하고 예방하는데 사용할 수 있다.
그림 1은 휠체어에 손쉽게 탈부착이 가능한 스마트폰의 모습을 보여주고 있다. 각종 센서 및 신호처리장치가 내장된 스마트폰을 필요할 때 휠체어에 손쉽게 탈부착할 수 있다는 것은 매우 큰 장점이다. 휠체어에 스마트폰을 부착하면 휠체어를 사용하면서 스마트폰을 사용할 수 있는 장점도 있지만, 스마트폰에 내장된 매우 고가의 고급 센서와 신호처리장치를 그대로 활용할 수 있다는 장점도 있다. 그림 1에서 휠체어가 전복될 때 휠체어의 앞과 뒤 방향 즉 피칭방향으로 전복이 주로 발생하고, 휠체어의 좌측이나 우측 방향 즉 롤링방향으로 전복이 가끔 발생하기도 한다. 때로는 피칭과 롤링의 복합 방향으로 전복이 발생하기도 한다.
그림 2는 스마트폰에 설치된 앱(App)을 통하여 측정된 중력가속도 신호를 보여주고 있다. 스마트폰에 장착된 중력가속도계는 중력가속도를 3축 방향으로 측정한다. 3축 방향의 중력가속도의 크기를 각각 계산하여 전체 중력의 방향을 계산해 낼 수 있어, 휠체어의 피칭 및 롤링 방향 등의 어떤 기울기도 동시에 계산해 낼 수 있다. 중력가속도가 측정되면 스마트폰 메모리에 자동으로 데이터가 기록되는데 앱을 통해서 저장된 측정 데이터를 수집할 수 있다. 수집된 측정 데이터는 유선을 통해서 혹은 블루투스와 같은 무선을 통해서 휠체어로 전송된다.
그림 3은 휠체어가 경사를 올라가거나 내려올 때 휠체어의 움직임을 보여주고 있다. 휠체어 앞바퀴가 경사를 오르기 시작하면서, 휠체어의 기울기는 점점 높아져서 뒷바퀴가 경사면에 올라가기 시작할 때 휠체어의 기울기와 경사면의 기울기가 같아진다. 휠체어 뒷바퀴가 경사면에 완전히 올라가지 않더라도 앞바퀴가 약간의 일정거리만 움직이면 움직인 거리와 움직인 거리 사이에 발생한 기울기의 각도를 계산하면 경사면의 기울기 각도를 미리 알 수 있다. 따라서 뒷바퀴가 경사면에 도달하기 이전에 경사면의 기울기를 계산하여, 위험을 파악하고 휠체어의 전복 가능성을 사전에 진단할 수 있다.
그림 4는 휠체어의 앞바퀴가 경사면을 오르기 시작한 후 뒷바퀴가 경사면에 도달하기까지의 휠체어 기울기의 변화를 보여주고 있다. 휠체어 뒷바퀴가 경사면에 도달하여 휠체어의 기울기가 완전히 기울어지기 이전이라도 경사면의 기울기를 계산하여 경사면의 위험을 사전에 파악하여 휠체어의 전복 가능성을 진단할 수 있음을 보여주고 있다.
그림 5는 스마트폰(100)에 내장된 중력가속도계(110)에서 측정된 중력가속도 데이터가 스마트폰에 설치된 앱(120)을 통하여 휠체어에 실시간으로 전송되고, 휠체어에 전송된 중력가속도 데이터를 통해 휠체어 기울기를 계산하는 마이크로 컨트롤러 장치(150)로 이루어진 본 특허의 구성을 보여주고 있다. 스마트폰(100)에는 중력가속도계(110)와 함께 신호처리장치가 함께 내장되어 있다.
그림 6은 스마트폰(100)의 중력가속도계(110)를 통해 측정된 중력가속도를 통해 휠체어 기울기를 계산하고, 허용된 휠체어 기울기와 비교하여, 휠체어 전복 가능성을 사전에 진단하는 개념도를 보여주고 있다. 스마트폰(100)의 중력가속도계(110)에서 측정(200)되어 스마트폰의 메모리에 저장되어 있는 중력가속도 신호를 스마트폰의 앱(120)이 수집(210)하여 유무선통신을 통해 전송(220)한다. 휠체어 마이크로 컨트롤러 장치(MCU)(150)는 수신된 측정신호(230)를 활용하여 중력가속도 방향을 계산(240)하여, 휠체어 초기 기울기(250)와 비교하면 휠체어의 기울기를 계산(260) 할 수 있다. 만약 휠체어의 기울기가 허용된 휠체어 기울기와 비교(300)하여 허용된 기울기보다 더 커지면(310) 경고를 발생하고 휠체어의 작동을 중지(320) 시킬 수 있다.
휠체어가 수평상태에 있을 때의 초기 중력가속도 방향 계산은 휠체어 기울기 계산에 있어 매우 중요하다. 초기 중력가속도의 방향 계산에 있어 스마트폰의 휠체어 장착 방향과 휠체어의 상태가 중요하다. 초기 중력가속도의 방향을 계산하기 위해서는 여러 가지 방법들이 있다. 첫 번째 방법은 그림 7과 같이 사전에 고정된 특정한 방향으로 스마트폰을 휠체어에 장착하는 방법이다. 스마트폰이 고정된 특정한 방향으로 장착되었을 경우에는 휠체어가 수평으로 있을 때와의 상대적인 각도를 미리 알 수 있어, 초기 중력가속도의 방향을 사전에 계산 혹은 입력해 둘 수 있다.
초기 중력가속도를 계산하는 두 번째 방법은 그림 8과 같이 사용자의 편의에 따라 스마트폰을 자유롭게 임의의 방향으로 장착하는 방법이다. 이 경우에는 사용자가 초기 중력가속도의 방향을 설정해 주어야 한다. 예를 들면 휠체어에 스마트폰을 장착한 후 휠체어의 현재 상태가 수평 상태에 있는지, 아니면 경사면에 위에 있는지를 확인해 주어야 한다. 이를 위해서 스마트폰을 휠체어에 장착할 때 현재의 휠체어가 수평 상태에 있는지를 사용자에게 질문하는 것이다. 만약 사용자가 현재의 휠체어가 수평 상태에 있다고 답한다면 그 때의 중력 가속도의 방향이 초기 중력 가속도의 방향으로 설정되는 것이다. 만약 현재 휠체어가 수평 상태에 있지 않다고 답한다면 휠체어가 수평 상태에까지 가서 휠체어가 수평상태에 있다고 답할 때까지 전복진단 및 예방장치는 작동되지 않게 하는 방법이다. 그러나 초기 중력가속도가 한번 설정된 이후라고 하더라도 사용 중에 스마트폰의 방향이 바뀌게 되면 다시 초기 중력가속도의 방향을 설정해 주어야 한다.
초기 중력가속도를 계산하는 세 번째 방법은 휠체어가 일정 거리를 주행할 때 가장 많이 측정되는 중력 가속도의 방향을 초기 중력가속도의 방향으로 잡는 방법이다. 이 방법은 휠체어가 대부분을 수평면 위를 주행한다는 가정하에서 설정되는 방법이다. 휠체어가 경사면을 계속 오르고 내려가는 주행할 때에는 오차가 발생할 수는 있지만, 스마트폰을 사용자 편의에 따라 임의로 설치할 수 있고, 또 자동으로 초기 중력가속도의 방향을 잡을 수 있는 장점도 있다.
그림 9는 휠체어의 이동거리를 측정할 수 있는 장치가 휠체어에 장착되어 있을 경우에 휠체어 전복 가능성을 사전에 진단하는 개념도를 보여주고 있다. 휠체어 바퀴의 회전 속도 혹은 회전 각도를 측정할 수 있는 장치가 있어서 휠체어 이동거리를 계산(270)할 수 있다면, 경사면을 다 오르지 않고서도 이동거리에 따른 휠체어 기울기의 변화를 계산하여 주행 중인 경사면의 기울기를 미리 계산(280)할 수 있다. 경사면의 기울기를 미리 계산하여 경사면의 기울기가 허용된 경사면의 기울기보다 더 크면(290) 경고를 발생하거나 휠체어 작동을 중지(320) 시킬 수 있다. 예를 들면 휠체어에 많이 사용되고 있는 BLDC 모터에서는 홀센서가 설치되어 있기 때문에 별도의 장치가 없어도 휠체어 바퀴의 회전 각도를 쉽게 계산할 수 있다. 그러나 일반적인 DC 모터에서는 휠체어 바퀴에 엔코더 등의 별도의 측정센서를 설치하여야 휠체어 바퀴의 회전 각도를 측정할 수 있다.
장애인이나 고령자가 휠체어를 사용할 때 발생할 수 있는 치명적인 사고가 휠체어 전복사고이다. 휠체어 전복은 휠체어 사고의 13%에 불과하지만 치명적인 사고로 이어질 수 있기 때문에 전복진단 및 예방이 매우 중요하다. 스마트폰에 내장된 중력가속도계 등을 활용하여 전동휠체어의 전복을 사전에 경고하여 치명적인 전복사고를 막을 수 있는데 활용될 수 있다.

Claims (6)

  1. 휠체어에 손쉽게 탈부착이 가능한 스마트폰(100)과, 휠체어에 장착된 스마트폰에 내장되어 있는 신호처리장치를 포함한 중력가속도계(110)와, 측정(200)되어 스마트폰 메모리에 저장되어 있는 중력가속도계 데이터를 수집(210)하여 유·무선으로 데이터를 전송(220)할 수 있는 스마트폰의 앱(120)과, 스마트폰 앱(120)으로부터 보내온 중력가속도 데이터를 수신(230)하여 중력가속도의 방향을 계산(240)한 후, 휠체어의 초기 중력가속도 방향(250)과 비교하여 현재의 휠체어의 기울기를 계산(260)하고, 휠체어의 기울기가 허용된 기울기 값을 넘었을 때(310) 경고를 발생시키거나 휠체어 작동을 중지(320)하는 등의 전복방지를 위한 조치를 지시할 수 있는 휠체어 마이크로 컨트롤러 장치(150) 등으로 구성된 휠체어 전복 진단 및 예방 시스템
  2. 청구항 1에서;
    초기 중력가속도의 방향(250)을 계산할 때 스마트폰을 휠체어에 고정된 특정한 방향으로 장착하여 초기 중력가속도의 방향을 사전에 알 수 있는 휠체어 전복 진단 및 예방시스템
  3. 청구항 1에서;
    초기 중력가속도의 방향(250)을 계산할 때 스마트폰을 휠체어에 임의의 방향으로 장착한 후 휠체어의 수평상태를 설정하여 초기 중력가속도의 방향을 알 수 있는 휠체어 전복 진단 및 예방시스템
  4. 휠체어에 손쉽게 탈부착이 가능한 스마트폰(100)과, 휠체어에 장착된 스마트폰에 내장되어 있는 신호처리장치를 포함한 중력가속도계(110)와, 측정(200)되어 스마트폰 메모리에 저장되어 있는 중력가속도계 데이터를 수집(210)하여 유·무선으로 데이터를 전송할 수 있는 스마트폰의 앱(120)과, 스마트 폰 앱(120)으로부터 보내온 중력가속도 데이터를 수신(230)하여 중력가속도의 방향을 계산(240)한 후, 휠체어의 초기 중력가속도 방향(250)과 비교하여 현재의 휠체어의 기울기를 계산(260)하고, 측정할 수 있는 휠체어 이동거리(270)동안 휠체어 기울기의 변화를 통해 경사면의 기울기를 사전에 계산(280)하여, 경사면의 기울기가 허용된 기울기 값을 넘었을 때(310) 경고를 발생시키거나 휠체어 작동을 중지(320)하는 등의 전복방지를 위한 조치를 지시할 수 있는 휠체어 마이크로 컨트롤러 장치(150) 등으로 구성된 휠체어 전복 진단 및 예방 시스템
  5. 청구항 4에서;
    초기 중력가속도의 방향(250)을 계산할 때 스마트폰을 휠체어에 고정된 특정한 방향으로 장착하여 초기 중력가속도의 방향을 사전에 알 수 있는 휠체어 전복 진단 및 예방시스템
  6. 청구항 4에서;
    초기 중력가속도의 방향(250)을 계산할 때 스마트폰을 휠체어에 임의의 방향으로 장착한 후 휠체어의 수평상태를 설정하여 초기 중력가속도의 방향을 알 수 있는 휠체어 전복 진단 및 예방시스템
PCT/KR2018/000837 2017-01-22 2018-01-18 스마트폰 센서를 이용한 휠체어 전복예방장치 WO2018135873A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0010108 2017-01-22
KR1020170010108A KR20180086551A (ko) 2017-01-22 2017-01-22 스마트폰 센서를 이용한 휠체어 전복예방장치

Publications (1)

Publication Number Publication Date
WO2018135873A1 true WO2018135873A1 (ko) 2018-07-26

Family

ID=62909128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000837 WO2018135873A1 (ko) 2017-01-22 2018-01-18 스마트폰 센서를 이용한 휠체어 전복예방장치

Country Status (2)

Country Link
KR (1) KR20180086551A (ko)
WO (1) WO2018135873A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102279756B1 (ko) * 2019-05-14 2021-07-20 토도웍스 주식회사 휠체어의 전복 알림 방법, 시스템 및 프로그램
KR102443736B1 (ko) * 2019-07-01 2022-09-19 한국전자기술연구원 생체인식을 이용한 휠체어 모니터링 시스템 및 방법
KR102640096B1 (ko) * 2023-11-06 2024-02-22 김예준 전방 경사 위험도 판단 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166063B1 (ko) * 2010-07-20 2012-07-19 주식회사 브레인넷 장애인용 전동보장구 단말기 및 이를 이용한 전동보장구 제어방법
KR101301667B1 (ko) * 2010-07-13 2013-08-29 유민규 이동통신 단말기를 이용한 거리, 높이, 길이 측정 방법
KR101386197B1 (ko) * 2013-01-04 2014-04-17 한국산업기술대학교산학협력단 전동 휠체어 및 전동 보행 보조기의 전복 방지 장치
JP2015212885A (ja) * 2014-05-02 2015-11-26 富士通株式会社 車椅子使用判定システム、車椅子使用判定プログラムおよび車椅子使用判定方法
KR20150144014A (ko) * 2014-06-16 2015-12-24 서울대학교산학협력단 장애인용 스마트폰-휠체어 구동유닛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301667B1 (ko) * 2010-07-13 2013-08-29 유민규 이동통신 단말기를 이용한 거리, 높이, 길이 측정 방법
KR101166063B1 (ko) * 2010-07-20 2012-07-19 주식회사 브레인넷 장애인용 전동보장구 단말기 및 이를 이용한 전동보장구 제어방법
KR101386197B1 (ko) * 2013-01-04 2014-04-17 한국산업기술대학교산학협력단 전동 휠체어 및 전동 보행 보조기의 전복 방지 장치
JP2015212885A (ja) * 2014-05-02 2015-11-26 富士通株式会社 車椅子使用判定システム、車椅子使用判定プログラムおよび車椅子使用判定方法
KR20150144014A (ko) * 2014-06-16 2015-12-24 서울대학교산학협력단 장애인용 스마트폰-휠체어 구동유닛

Also Published As

Publication number Publication date
KR20180086551A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2018135873A1 (ko) 스마트폰 센서를 이용한 휠체어 전복예방장치
CN101702258B (zh) 一种人体摔倒自动检测报警系统的信息处理方法
CN207683428U (zh) 一种车内人员安全监控及报警装置
CN201387660Y (zh) 一种人体摔倒自动检测报警系统
CN105096543B (zh) 一种基于行车记录仪的车辆救援方法及系统
CN109887235B (zh) 一种施工作业区安全报警装置
CN106467059B (zh) 一种基于三轴加速度传感器的侧翻报警方法和装置
WO2017052126A1 (ko) 낙상 감지 장치 및 그 제어방법
WO2018151403A2 (ko) 엘리베이터 및 에스컬레이터의 소음진동 및 주행속도 측정시스템
EP2997898B1 (en) Electronic device, control program, control method, and system
CN202966241U (zh) 汽车车身姿态安防检测装置
CN107323377A (zh) 一种车载预警系统以及预警方法
CN109091151B (zh) 一种基于mimu的行人跌倒检测方法及装置
Chen et al. A wireless real-time fall detecting system based on barometer and accelerometer
CN109199800B (zh) 康复机器人及其摔倒检测与防护方法
JP2020527976A (ja) 登高補助および墜落制止システム
CN210466665U (zh) 用于高空作业的安全带挂钩检测系统
CN112568899A (zh) 一种人员姿态判断方法和系统
CN207817481U (zh) 防护车辆平衡器
WO2014199341A1 (en) Device and method for detecting wear of a fall protection device
CN210895812U (zh) 一种车辆监测装置
WO2017175720A1 (ja) 行動判定装置および行動判定方法
WO2016068513A1 (ko) 낙상 감지방법
CN203876698U (zh) 汽车意外事故求救系统
WO2018151582A1 (ko) 스마트폰 몸체 움직임을 이용한 휠체어 운전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741394

Country of ref document: EP

Kind code of ref document: A1