WO2018135715A1 - Underwater structure measurement system - Google Patents

Underwater structure measurement system Download PDF

Info

Publication number
WO2018135715A1
WO2018135715A1 PCT/KR2017/007876 KR2017007876W WO2018135715A1 WO 2018135715 A1 WO2018135715 A1 WO 2018135715A1 KR 2017007876 W KR2017007876 W KR 2017007876W WO 2018135715 A1 WO2018135715 A1 WO 2018135715A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
altitude
underwater structure
sonar
measuring
Prior art date
Application number
PCT/KR2017/007876
Other languages
French (fr)
Korean (ko)
Inventor
이정우
이종득
이효준
서진호
최영호
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Publication of WO2018135715A1 publication Critical patent/WO2018135715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/08Arrangement of ship-based loading or unloading equipment for cargo or passengers of winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B45/00Arrangements or adaptations of signalling or lighting devices
    • B63B45/08Arrangements or adaptations of signalling or lighting devices the devices being acoustic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining unbalance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only

Definitions

  • the present invention relates to an underwater structure measurement system. More specifically, the present invention relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of posture information and rapidly controlling and maintaining the underwater altitude during shape measurement.
  • FIG. 3 schematically shows a conventional underwater structure measurement system.
  • an underwater sonar sensor 100 in order to measure an underwater structure, an underwater sonar sensor 100, an altitude sensor, and a depth sensor 40 for measuring a horizontal surface shape of an underwater structure under a pole 15 are provided.
  • AHRS, IMU additional sensor
  • the sonar sensor 100 for measuring the horizontal shape of the underwater structure is mounted on the pole 15 of a fixed length, fixed to the vessel 10 for the measurement in the vertical direction of the underwater structure After unfastening the part by adjusting the depth of the pole (15) by manual or automatic device, there is an inconvenience to be fixed again and to perform the measurement. If the pole 15 and the vessel 10 are not properly fixed, the above-described error increases, so it is necessary to fix the pole after adjusting the depth of the pole.
  • the ship 10 since the ship 10 keeps shaking at sea and the height of the water surface 1 is constantly changing according to the waves, the ship 10 can only maintain the depth (distance from the water surface) of the underwater sonar sensor 100, and the bottom of the sea where the underwater structure is settled ( The altitude from 2) is constantly changing, making it difficult to accurately measure the shape of underwater structures.
  • the depth and altitude measurement values and the structure shape measurement values by the sonar are simultaneously recorded and corrected and matched through post-processing.
  • interpolation is performed. There was discomfort.
  • the present invention relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of attitude information and rapidly controlling and maintaining the underwater altitude during shape measurement.
  • Underwater structure measuring system one end is connected to the lifting rope fixed to the vessel, the other end of the lifting rope, the winch winding or unwinding the lifting rope, sonar coupled to the bottom of the winch
  • a sensor coupled to a lower portion of the sonar sensor, including an altitude sensor for measuring altitude from the sea bottom, and a control unit connected to the altitude sensor and the winch, wherein the control unit is based on the altitude data measured by the altitude sensor;
  • the winch is operated to maintain the altitude at the target altitude.
  • it may further include a depth sensor coupled to the bottom of the sonar sensor, for measuring the depth from the sea level.
  • the sonar sensor may further include a posture measuring sensor coupled to a lower portion of the sonar sensor to measure a posture of the sonar sensor.
  • the apparatus may further include a watertight housing accommodating the altitude sensor, the water depth sensor, and the attitude measuring sensor, wherein the watertight housing may be configured to have a mass within a first mass range.
  • the underwater structure measuring system relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of attitude information and rapidly controlling and maintaining the underwater altitude during shape measurement.
  • FIG 1 schematically shows an underwater structure measuring system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically illustrating an underwater structure measuring system according to an exemplary embodiment of the present invention.
  • FIG. 3 schematically shows a conventional underwater structure measurement system.
  • FIG. 1 schematically shows an underwater structure measuring system according to an embodiment of the present invention
  • Figure 2 is a block diagram schematically showing an underwater structure measuring system according to an embodiment of the present invention.
  • the underwater structure measuring system according to an embodiment of the present invention, the lifting rope 20, sonar sensor 100, winch 200, the control unit 300, the sensor unit 410, 420 430, and the watertight housing 400.
  • the lifting rope 20 is one end is fixed through the fixing portion 11 at one end of the vessel 10, the other end is inserted into the water.
  • a portion of the other end of the lifting rope 20 is wound on the winch 200, and may be wound or unwound by the operation of the winch 200.
  • the lifting rope 20 is preferably excellent in strength and corrosion resistance and can be freely deformed.
  • the lifting rope 20 may be composed of a stranded wire in which a plurality of steel wires are twisted.
  • the sonar sensor 100 is an abbreviation of "sonar (sound navigation and ranging) sensor", and means a device that finds the direction and distance of the underwater target by sound waves, and is also called a sound detection device or sound detector.
  • the sonar sensor 100 may be implemented as a scanning sonar, and detects the presence, position, and properties of an underwater feature (object) by transmitting sound waves underwater and receiving a reflection signal for the transmitted sound waves. have.
  • the winch 200 is coupled to an upper portion of the sonar sensor 100, and operates to wind or unwind the lifting rope 20.
  • the sonar sensor 100 moves up and down in the water by the operation of the winch 200.
  • the controller 300 may be disposed inside the watertight housing 400 or may be disposed inside the vessel 10.
  • the control unit 300 is connected to the sonar sensor 100, the winch 200 and the sensor unit 410, 420, 430 by wire or wirelessly, the sonar sensor 100, the winch 200 and While controlling the operation of the sensor unit 410, 420, 430, the information measured by the sonar sensor 100 and the sensor unit 410, 420, 430 may be converged.
  • the sensor unit 410, 420, 430 may be disposed inside the watertight housing 400 coupled to the lower portion of the sonar sensor 100, the altitude sensor 410, the depth sensor 420 and the attitude measurement It consists of a sensor 430.
  • the watertight housing 400 is coupled to the lower portion of the sonar sensor 100, it may be set within the first mass range set to serve as a weight.
  • the first mass range may be set to a range of approximately 30kg to 100kg, greater than 30kg can be attenuated the shaking of the sonar sensor 100 due to the influence of the flow of the sea water or the wave or the movement of the vessel as much as possible, In order to withstand the tensile load of the lifting rope 20 is preferably set to 100kg or less.
  • the numerical range of the first mass is only one embodiment, and thus the present invention is not limited thereto.
  • the altitude sensor 410 may be accommodated in the watertight housing 400, and configured as a sound wave detector to measure an altitude from the sea bottom 2 in the water.
  • the altitude data measured by the altitude sensor 410 is transmitted to the controller 300 by wire or wirelessly.
  • the water depth sensor 420 may be accommodated in the watertight housing 400, and may be configured as a pressure sensor to measure the water depth from the water surface 1.
  • the depth data measured by the depth sensor 420 is transmitted to the controller 300 by wire or wirelessly.
  • the controller 300 compares the target altitude set at the designated position with the altitude data, compares the set target depth with the depth data, and determines the rotation direction and the amount of rotation of the winch 200. As a result, the altitude or depth of the sonar sensor 100 is always kept constant.
  • the number of remeasurement is reduced and the unmeasured portion is reduced. Can improve the working efficiency.
  • the posture measurement sensor 430 measures a posture including at least one of the speed, acceleration, rotational angular velocity, and inclination of the sonar sensor 100 moving by the flow of the sea water or the wave or the movement of the ship.
  • the attitude measuring sensor 430 may be implemented with a gyroscope.
  • the principle of the gyroscope is that when an inertial body vibrates or rotates in a constant direction in the first axis direction, when the inertia body receives an input of an angular velocity by rotation in a second axis direction perpendicular to the first axis direction, The rotational angular velocity is detected by detecting the Coriolis Force occurring in the orthogonal third axis direction, and the speed, acceleration, slope, and the like can be calculated based on the detected rotational angular velocity. At this time, balancing the force applied to the inertial body increases the accuracy of the angular velocity detection.
  • a structure using a force balancing method is preferable.
  • a type of gyroscope as described above, in addition to a gyroscope that measures angular velocity using a rotating mass, a vibrating gyroscope, a fiber optic gyroscope, a ring laser gyroscope, and the like. ), A dynamically turned gyroscope and the like can be used.
  • the sonar sensor 100 and the watertight housing 400 connected through the lifting rope 20 are dropped from the vessel 10.
  • the sonar sensor 100 and the watertight housing 400 before the movement of the vessel 10 can be moved with the vessel 10 in the water of course.
  • the winch 200 is operated to position the sonar sensor 100 at the target altitude and depth set by the controller 300.
  • the sonar sensor 100 After the sonar sensor 100 is located at the target altitude, the sonar sensor 100 transmits sound waves to the surroundings, and receives the reflected signal for the transmitted sound waves to detect the presence, position, and properties of the underwater feature (object).
  • the altitude or the depth of the sonar sensor 100 is changed, the sonar sensor 100 of the sonar sensor 100 measured in real time through the sensor unit 410, 420, 430 Based on altitude / depth / posture data, the set target value is maintained.
  • control unit 300 operates the winch 200 in the forward or reverse direction to maintain the altitude / depth / posture of the sonar sensor 100 at a set target value.
  • control unit 400 watertight housing

Abstract

The present invention relates to an underwater structure measurement system which can precisely measure the shape of an underwater structure by reducing an error in measurement of attitude information, and rapidly controlling and maintaining underwater altitude during the shape measurement.

Description

수중 구조물 측정 시스템Underwater Structure Measuring System
본 발명은 수중 구조물 측정 시스템에 관한 것이다. 보다 상세하게 본 발명은 자세정보의 측정 오차를 감소시키고 형상 측정 시의 수중 고도를 빠르게 제어하여 유지하도록 하여 정밀한 수중 구조물 형상을 측정하는 것이 가능한 수중 구조물 측정 시스템에 관한 것이다.The present invention relates to an underwater structure measurement system. More specifically, the present invention relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of posture information and rapidly controlling and maintaining the underwater altitude during shape measurement.
도 3은 종래의 수중 구조물 측정 시스템을 개략적으로 나타낸다.3 schematically shows a conventional underwater structure measurement system.
도 3을 참조하면, 종래에 수중 구조물을 측정하기 위해서는 장대(15) 밑에 수중 구조물의 수평면 형상을 측정하기 위한 수중소나센서(100)와 고도센서(Altimeter) 및 수심센서(Depthmeter)(40)를 장착하고 장대 위에 자세측정을 위한 부가 센서(AHRS, IMU)(30)를 장착하여, 부가 센서(30)가 장착된 부분을 수면 위의 선박에 고정시켜 측정을 하는 방식을 사용하고 있다.Referring to FIG. 3, in order to measure an underwater structure, an underwater sonar sensor 100, an altitude sensor, and a depth sensor 40 for measuring a horizontal surface shape of an underwater structure under a pole 15 are provided. Mounting and mounting the additional sensor (AHRS, IMU) 30 for the posture measurement on the pole, and using the method of fixing the part on which the additional sensor 30 is mounted to the vessel on the surface of the measurement.
이러한 방식은 수중소나센서(100)와 자세측정을 위한 부가센서(30) 간의 거리가 멀어, 자세측정 센서(30)의 측정 정밀도 이하의 선체에 흔들림이 고정된 장대(15)에 전달되면 그 움직임이 증폭되어 수중소나센서(100)의 자세가 변하게 된다.In this manner, the distance between the underwater sonar sensor 100 and the additional sensor 30 for attitude measurement is far, and the motion is transmitted to the pole 15 fixed to the hull below the measurement accuracy of the attitude sensor 30. This amplification changes the attitude of the underwater sonar sensor 100.
이로 인해 실제 수중소나센서(100)의 자세 변화와 자세측정 센서(30)의 측정 간의 오차가 발생하게 되고, 시간이 지남에 따라 오차가 누적된다.As a result, an error occurs between the actual posture change of the sonar sensor 100 and the measurement of the posture measurement sensor 30, and the error accumulates over time.
또한, 다른 문제점으로는 고정된 길이의 장대(15)에 수중 구조물의 수평면 형상 측정을 위한 수중소나센서(100)가 장착되어 있어, 수중 구조물의 수직 방향에 대해 측정을 위해서는 선박(10)에 고정된 부분을 풀어 수동 또는 자동장치에 의해 장대(15)의 깊이 조절을 한 후 다시 고정하고 측정을 수행하여야 하는 불편함이 있다. 장대(15)와 선박(10)의 고정이 제대로 되지 않으면 위에서 기술한 오차가 커지기 때문에 장대의 깊이 조절 후에는 반드시 고정하는 것이 필요하다.In addition, another problem is that the sonar sensor 100 for measuring the horizontal shape of the underwater structure is mounted on the pole 15 of a fixed length, fixed to the vessel 10 for the measurement in the vertical direction of the underwater structure After unfastening the part by adjusting the depth of the pole (15) by manual or automatic device, there is an inconvenience to be fixed again and to perform the measurement. If the pole 15 and the vessel 10 are not properly fixed, the above-described error increases, so it is necessary to fix the pole after adjusting the depth of the pole.
그러나 선박(10)은 해상에서 계속 흔들리고 파도에 따라 수면(1) 높이가 계속 변하고 있으므로 수중소나센서(100)의 수심(수면에서부터의 거리)만 유지할 수 있고, 수중 구조물이 착저해 있는 해저면(2)으로부터의 고도는 계속 변화하게 되어 정확한 수중 구조물 형상 측정이 어려운 점이 있다.However, since the ship 10 keeps shaking at sea and the height of the water surface 1 is constantly changing according to the waves, the ship 10 can only maintain the depth (distance from the water surface) of the underwater sonar sensor 100, and the bottom of the sea where the underwater structure is settled ( The altitude from 2) is constantly changing, making it difficult to accurately measure the shape of underwater structures.
이에 따라, 종래에는 수심과 고도 측정값과 수중 소나 의한 구조물 형상 측정값을 동시에 기록하여 후처리를 통해 보정 및 정합하는 방식을 사용하고 있으며, 미측정된 수평면이 발생하면 보간(interpolation)하도록 하고 있어 불편함이 있었다.Accordingly, conventionally, the depth and altitude measurement values and the structure shape measurement values by the sonar are simultaneously recorded and corrected and matched through post-processing. When an unmeasured horizontal plane occurs, interpolation is performed. There was discomfort.
본 발명은 자세정보의 측정 오차를 감소시키고 형상 측정 시의 수중 고도를 빠르게 제어하여 유지하도록 하여 정밀한 수중 구조물 형상을 측정하는 것이 가능한 수중 구조물 측정 시스템에 관한 것이다.The present invention relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of attitude information and rapidly controlling and maintaining the underwater altitude during shape measurement.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned are clearly to those skilled in the art from the following description. It can be understood.
본 발명의 일 실시예에 따른 수중 구조물 측정 시스템은 일단이 선박에 고정된 인양 로프, 상기 인양 로프의 타단에 연결되어, 상기 인양 로프를 권취 또는 권출하는 윈치, 상기 윈치의 하부에 결합된 소나 센서, 상기 소나 센서의 하부에 결합되며, 해저면에서부터의 고도를 측정하는 고도 센서 및 및 상기 고도 센서 및 상기 윈치에 연결된 제어부를 포함하고, 상기 제어부는 상기 고도 센서에서 측정된 고도 데이터를 기반으로 상기 윈치를 동작시켜, 상기 고도를 목표 고도로 유지시킨다.Underwater structure measuring system according to an embodiment of the present invention, one end is connected to the lifting rope fixed to the vessel, the other end of the lifting rope, the winch winding or unwinding the lifting rope, sonar coupled to the bottom of the winch A sensor, coupled to a lower portion of the sonar sensor, including an altitude sensor for measuring altitude from the sea bottom, and a control unit connected to the altitude sensor and the winch, wherein the control unit is based on the altitude data measured by the altitude sensor; The winch is operated to maintain the altitude at the target altitude.
또한, 상기 소나 센서의 하부에 결합되며, 해수면에서부터의 수심을 측정하는 수심 센서를 더 포함할 수 있다.In addition, it may further include a depth sensor coupled to the bottom of the sonar sensor, for measuring the depth from the sea level.
또한, 상기 소나 센서의 하부에 결합되며, 상기 소나 센서의 자세를 측정하는 자세 측정 센서를 더 포함할 수 있다.The sonar sensor may further include a posture measuring sensor coupled to a lower portion of the sonar sensor to measure a posture of the sonar sensor.
또한, 상기 고도 센서, 상기 수심 센서 및 상기 자세 측정 센서를 수용하는 수밀 하우징을 더 포함하고, 상기 수밀 하우징은 제 1 질량 범위 내 질량으로 구성될 수 있다.The apparatus may further include a watertight housing accommodating the altitude sensor, the water depth sensor, and the attitude measuring sensor, wherein the watertight housing may be configured to have a mass within a first mass range.
본 발명에 따른 수중 구조물 측정 시스템은 자세정보의 측정 오차를 감소시키고 형상 측정 시의 수중 고도를 빠르게 제어하여 유지하도록 하여 정밀한 수중 구조물 형상을 측정하는 것이 가능한 수중 구조물 측정 시스템에 관한 것이다.The underwater structure measuring system according to the present invention relates to an underwater structure measuring system capable of measuring precisely the shape of an underwater structure by reducing the measurement error of attitude information and rapidly controlling and maintaining the underwater altitude during shape measurement.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effect obtained in the present invention is not limited to the above-mentioned effects, other effects that are not mentioned will be clearly understood by those skilled in the art from the following description. Could be.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the detailed description thereof, serve to further understand the technical spirit of the present invention. It should not be interpreted.
도 1은 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 개략적으로 나타낸다.1 schematically shows an underwater structure measuring system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 개략적으로 나타내는 블럭도이다. 2 is a block diagram schematically illustrating an underwater structure measuring system according to an exemplary embodiment of the present invention.
도 3은 종래의 수중 구조물 측정 시스템을 개략적으로 나타낸다.3 schematically shows a conventional underwater structure measurement system.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.
또한, 이하의 도면에서 각 구성은 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면 상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는" 는 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.In addition, in the following drawings, each configuration is exaggerated for convenience and clarity of description, the same reference numerals in the drawings refer to the same elements. As used herein, the term “and / or” includes any and all combinations of one or more of the listed items.
*본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
<수중 구조물 측정 시스템><Underwater Structure Measurement System>
우선, 도 1 및 도 2를 참조하여, 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 상세하게 설명한다.First, referring to Figures 1 and 2, the underwater structure measuring system according to an embodiment of the present invention will be described in detail.
도 1은 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 개략적으로 나타내며, 도 2는 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 개략적으로 나타내는 블럭도이다.1 schematically shows an underwater structure measuring system according to an embodiment of the present invention, Figure 2 is a block diagram schematically showing an underwater structure measuring system according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템은 인양 로프(20), 소나 센서(100), 윈치(200), 제어부(300), 센서부(410, 420, 430) 및 수밀 하우징(400)을 포함한다.1 and 2, the underwater structure measuring system according to an embodiment of the present invention, the lifting rope 20, sonar sensor 100, winch 200, the control unit 300, the sensor unit 410, 420 430, and the watertight housing 400.
상기 인양 로프(20)는 일단이 선박(10)의 일단에서 고정부(11)를 통해 고정되며, 타단이 수중으로 삽입된다.The lifting rope 20 is one end is fixed through the fixing portion 11 at one end of the vessel 10, the other end is inserted into the water.
상기 인양 로프(20)의 타단의 일부는 윈치(200)에 권취되어 있으며, 윈치(200)의 동작에서 의해 권취 또는 권출될 수 있다.A portion of the other end of the lifting rope 20 is wound on the winch 200, and may be wound or unwound by the operation of the winch 200.
이러한 인양 로프(20)는 강도와 내부식성이 우수하며 자유로이 변형할 수 있는 것이 바람직하며, 일 예로 다수의 강선이 꼬여 형성된 강연선으로 구성될 수 있다.The lifting rope 20 is preferably excellent in strength and corrosion resistance and can be freely deformed. For example, the lifting rope 20 may be composed of a stranded wire in which a plurality of steel wires are twisted.
상기 소나 센서(100)는 "sonar(sound navigation and ranging) sensor"의 약어로, 음파에 의해 수중목표의 방위 및 거리를 알아내는 장비를 의미하며 음향탐지장비 혹은 음탐기로도 불리운다.The sonar sensor 100 is an abbreviation of "sonar (sound navigation and ranging) sensor", and means a device that finds the direction and distance of the underwater target by sound waves, and is also called a sound detection device or sound detector.
이러한 상기 소나 센서(100)는 스캐닝 소나로 구현될 수 있으며, 수중으로 음파를 발신하고, 발신된 음파에 대한 반사신호를 수신하여 수중 지형물(물체)의 존재, 위치, 성질 등을 탐지할 수 있다.The sonar sensor 100 may be implemented as a scanning sonar, and detects the presence, position, and properties of an underwater feature (object) by transmitting sound waves underwater and receiving a reflection signal for the transmitted sound waves. have.
상기 윈치(200)는 상기 소나 센서(100)의 상부에 결합되며, 상기 인양 로프(20)를 권취 또는 권출하도록 동작한다.The winch 200 is coupled to an upper portion of the sonar sensor 100, and operates to wind or unwind the lifting rope 20.
즉, 상기 윈치(200)의 동작으로 수중에서 소나 센서(100)가 상하로 위치 이동한다.That is, the sonar sensor 100 moves up and down in the water by the operation of the winch 200.
상기 제어부(300)는 상기 수밀 하우징(400)의 내부에 배치될 수 도 있으며, 상기 선박(10) 내부에 배치될 수 있다.The controller 300 may be disposed inside the watertight housing 400 or may be disposed inside the vessel 10.
이러한 상기 제어부(300)는 소나 센서(100), 윈치(200) 및 센서부(410, 420, 430)에 유선 또는 무선으로 통신적으로 연결되어 있으며, 소나 센서(100), 윈치(200) 및 센서부(410, 420, 430)의 동작을 제어함과 동시에 소나 센서(100) 및 센서부(410, 420, 430)에서 측정된 정보를 수렴할 수 있다.The control unit 300 is connected to the sonar sensor 100, the winch 200 and the sensor unit 410, 420, 430 by wire or wirelessly, the sonar sensor 100, the winch 200 and While controlling the operation of the sensor unit 410, 420, 430, the information measured by the sonar sensor 100 and the sensor unit 410, 420, 430 may be converged.
여기서, 상기 센서부(410, 420, 430)는 소나 센서(100)의 하부에 결합된 수밀 하우징(400)의 내부에 배치될 수 있으며, 고도 센서(410), 수심 센서(420) 및 자세 측정 센서(430)로 구성된다.Here, the sensor unit 410, 420, 430 may be disposed inside the watertight housing 400 coupled to the lower portion of the sonar sensor 100, the altitude sensor 410, the depth sensor 420 and the attitude measurement It consists of a sensor 430.
여기서, 상기 수밀 하우징(400)은 소나 센서(100)의 하부에 결합되며, 무게추 역할을 수행하도록 설정된 제 1 질량 범위 내에서 설정될 수 있다.Here, the watertight housing 400 is coupled to the lower portion of the sonar sensor 100, it may be set within the first mass range set to serve as a weight.
여기서, 제 1 질량 범위는 대략 30kg 내지 100kg의 범위로 설정될 수 있으며, 30kg보다 커 해수의 흐름이나 파랑 또는 선박의 움직임 등의 영향에 의한 소나 센서(100)의 흔들림을 최대한 감쇄할 수 있으며, 인양 로프(20)의 인장 하중을 버티기 위해 100kg 이하로 설정되는 것이 바람직하다. 다만, 상기 제 1 질량의 수치 범위는 하나의 실시예에 불과한 것으로, 이로써 본 발명이 한정되는 것은 아니다.Here, the first mass range may be set to a range of approximately 30kg to 100kg, greater than 30kg can be attenuated the shaking of the sonar sensor 100 due to the influence of the flow of the sea water or the wave or the movement of the vessel as much as possible, In order to withstand the tensile load of the lifting rope 20 is preferably set to 100kg or less. However, the numerical range of the first mass is only one embodiment, and thus the present invention is not limited thereto.
상기 고도 센서(410)는 상기 수밀 하우징(400)에 수용될 수 있으며, 음파 감지기로 구성되어, 수중의 해저면(2)에서부터의 고도를 측정한다.The altitude sensor 410 may be accommodated in the watertight housing 400, and configured as a sound wave detector to measure an altitude from the sea bottom 2 in the water.
상기 고도 센서(410)에서 측정된 고도 데이터는 상기 제어부(300)에 유선 또는 무선으로 전송된다.The altitude data measured by the altitude sensor 410 is transmitted to the controller 300 by wire or wirelessly.
상기 수심 센서(420)는 상기 수밀 하우징(400)에 수용될 수 있으며, 압력 센서로 구성되어, 수면(1)으로부터의 수심을 측정한다.The water depth sensor 420 may be accommodated in the watertight housing 400, and may be configured as a pressure sensor to measure the water depth from the water surface 1.
상기 수심 센서(420)에서 측정된 수심 데이터는 상기 제어부(300)에 유선 또는 무선으로 전송된다.The depth data measured by the depth sensor 420 is transmitted to the controller 300 by wire or wirelessly.
즉, 제어부(300)에서는 지정된 위치에서 설정된 목표 고도와 상기 고도 데이터를 비교하고, 설정된 목표 수심과 상기 수심 데이터를 비교하여, 상기 윈치(200)의 회전 방향과 회전 양을 결정한다. 이로써, 상기 소나 센서(100)의 고도 또는 수심을 항상 일정하게 유지한다.That is, the controller 300 compares the target altitude set at the designated position with the altitude data, compares the set target depth with the depth data, and determines the rotation direction and the amount of rotation of the winch 200. As a result, the altitude or depth of the sonar sensor 100 is always kept constant.
따라서, 해수의 흐름이나 파랑 또는 선박의 움직임 등의 영향을 받지 않고 목표 고도를 유지한 상태에서 소나 센서(100)를 통해 수중 지형물을 측정함으로써, 재측정 횟수를 줄이고 미 측정된 부분을 감소시켜 작업 효율을 향상 시킬 수 있다.Therefore, by measuring the underwater feature through the sonar sensor 100 while maintaining the target altitude without being affected by the flow of sea water or the wave or the movement of the vessel, the number of remeasurement is reduced and the unmeasured portion is reduced. Can improve the working efficiency.
상기 자세 측정 센서(430)는 해수의 흐름이나 파랑 또는 선박의 움직임 등에 의해 움직이는 소나 센서(100)의 속도, 가속도, 회전각속도, 기울기 중 적어도 하나를 포함하는 자세를 측정한다.The posture measurement sensor 430 measures a posture including at least one of the speed, acceleration, rotational angular velocity, and inclination of the sonar sensor 100 moving by the flow of the sea water or the wave or the movement of the ship.
여기서, 자세 측정 센서(430)는 자이로스코프로 구현될 수 있다. 자이로스코프의 원리는 제1축 방향으로 관성체가 일정하게 진동하거나 회전하는 관성체가 제1 축 방향에 대하여 직각인 제2축 방향에서의 회전에 의한 각속도의 입력을 받을 때, 그 두 개의 축에 대하여 직교하는 제3축 방향으로 발생하는 코리올리의 힘(Coriolis Force)을 검출함으로써 회전 각속도를 검출하며, 검출된 회전 각속도에 기초하여 속도, 가속도, 기울기 등을 산출할 수 있다. 이때, 관성체에 가해지는 힘을 평형시키면 각속도 검출의 정확성이 높아진다.Here, the attitude measuring sensor 430 may be implemented with a gyroscope. The principle of the gyroscope is that when an inertial body vibrates or rotates in a constant direction in the first axis direction, when the inertia body receives an input of an angular velocity by rotation in a second axis direction perpendicular to the first axis direction, The rotational angular velocity is detected by detecting the Coriolis Force occurring in the orthogonal third axis direction, and the speed, acceleration, slope, and the like can be calculated based on the detected rotational angular velocity. At this time, balancing the force applied to the inertial body increases the accuracy of the angular velocity detection.
특히, 신호의 선형성과 대역폭을 넓히려면 힘의 평형방법을 이용한 구조가 바람직하다. 자이로스코프의 종류로는, 전술한 바와 같이 회전체 질량을 이용하여 각속도를 측정하는 자이로스코프 이외에도 진동 자이로스코프(Vibrating Gyroscope), 광섬유 자이로스코프(Fiber Optic Gyroscope), 고리형 레이저 자이로스코프(Ring Laser Gyroscope), 동적 전환형 자이로스코프(Dynamically Turned Gyroscope) 등이 이용될 수 있다.In particular, in order to increase the linearity and bandwidth of a signal, a structure using a force balancing method is preferable. As a type of gyroscope, as described above, in addition to a gyroscope that measures angular velocity using a rotating mass, a vibrating gyroscope, a fiber optic gyroscope, a ring laser gyroscope, and the like. ), A dynamically turned gyroscope and the like can be used.
<수중 구조물 측정 방법><Method for Measuring Underwater Structures>
추가적, 도 1 및 도 2를 참조하여, 본 발명의 일 실시예에 따른 수중 구조물 측정 시스템을 이용한 수중 구조물 측정 방법에 대해 상세하게 설명한다.In addition, with reference to Figures 1 and 2, it will be described in detail for the method of measuring the underwater structure using the underwater structure measuring system according to an embodiment of the present invention.
우선, 선박(10)에 배치된 GPS(Global Positioning System)에 기초하여, 현재의 위치를 측위한 후, 선박(10)을 고정시킨다.First, based on GPS (Global Positioning System) arrange | positioned at the ship 10, after measuring the present position, the ship 10 is fixed.
이후, 선박(10)에서 인양 로프(20)를 통해 연결된 소나 센서(100) 및 수밀 하우징(400)을 투하한다. 여기서, 선박(10)이 이동 전 소나 센서(100) 및 수밀 하우징(400)이 수중에서 선박(10)과 함께 이동될 수 있음은 물론이다.Subsequently, the sonar sensor 100 and the watertight housing 400 connected through the lifting rope 20 are dropped from the vessel 10. Here, the sonar sensor 100 and the watertight housing 400 before the movement of the vessel 10 can be moved with the vessel 10 in the water of course.
이후, 제어부(300)에서 설정된 목표 고도 및 수심에 소나 센서(100)를 위치하기 위해, 윈치(200)을 동작한다.Thereafter, the winch 200 is operated to position the sonar sensor 100 at the target altitude and depth set by the controller 300.
상기 소나 센서(100)가 목표한 고도에 위치한 후, 주변으로 음파를 발신하고, 발신된 음파에 대한 반사신호를 수신하여 수중 지형물(물체)의 존재, 위치, 성질 등을 탐지한다.After the sonar sensor 100 is located at the target altitude, the sonar sensor 100 transmits sound waves to the surroundings, and receives the reflected signal for the transmitted sound waves to detect the presence, position, and properties of the underwater feature (object).
여기서, 해수의 흐름이나 파랑 또는 선박의 움직임 등이 발생하여, 소나 센서(100)의 고도 또는 수심이 변경된 경우, 센서부(410, 420, 430)를 통해 실시간으로 측정되는 소나 센서(100)의 고도/수심/자세 데이터를 기반으로, 설정된 목표 값이 유지되도록 한다.Here, when the flow of the seawater or the movement of the wave or the ship occurs, the altitude or the depth of the sonar sensor 100 is changed, the sonar sensor 100 of the sonar sensor 100 measured in real time through the sensor unit 410, 420, 430 Based on altitude / depth / posture data, the set target value is maintained.
여기서, 제어부(300)는 윈치(200)를 정방향 또는 역방향으로 동작시켜, 상기 소나 센서(100)의 고도/수심/자세를 설정된 목표 값으로 유지한다.Here, the control unit 300 operates the winch 200 in the forward or reverse direction to maintain the altitude / depth / posture of the sonar sensor 100 at a set target value.
이상에서 설명한 것은 본 발명에 따른 수중 구조물 측정 시스템을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is just one embodiment for implementing the underwater structure measuring system according to the present invention, the present invention is not limited to one embodiment, and the subject matter of the present invention as claimed in the following claims Without departing from the scope of the present invention, any person having ordinary skill in the art will have the technical spirit of the present invention to the extent that various modifications can be made.
[부호의 설명][Description of the code]
10: 선박 20: 인양 로프10: ship 20: lifting rope
100: 소나 센서 200: 윈치100: sonar sensor 200: winch
300: 제어부 400: 수밀 하우징300: control unit 400: watertight housing
410, 420, 430: 센서부410, 420, 430: sensor unit

Claims (4)

  1. 일단이 선박에 고정된 인양 로프;Lifting rope once fixed to the vessel;
    상기 인양 로프의 타단에 연결되어, 상기 인양 로프를 권취 또는 권출하는 윈치;A winch connected to the other end of the lifting rope to wind or unwind the lifting rope;
    상기 윈치의 하부에 결합된 소나 센서;A sonar sensor coupled to the bottom of the winch;
    상기 소나 센서의 하부에 결합되며, 해저면에서부터의 고도를 측정하는 고도 센서; 및An altitude sensor coupled to the bottom of the sonar sensor, the altitude sensor measuring altitude from a sea bottom; And
    상기 고도 센서 및 상기 윈치에 연결된 제어부를 포함하고,A control unit connected to the altitude sensor and the winch,
    상기 제어부는 상기 고도 센서에서 측정된 고도 데이터를 기반으로 상기 윈치를 동작시켜, 상기 고도를 목표 고도로 유지시키는 것을 특징으로 하는 수중 구조물 측정 시스템.The control unit operates the winch based on the altitude data measured by the altitude sensor, the underwater structure measuring system, characterized in that to maintain the altitude to the target altitude.
  2. 제 1항에 있어서,The method of claim 1,
    상기 소나 센서의 하부에 결합되며, 해수면에서부터의 수심을 측정하는 수심 센서를 더 포함하는 것을 특징으로 하는 수중 구조물 측정 시스템.Is coupled to the bottom of the sonar sensor, the underwater structure measuring system further comprises a depth sensor for measuring the depth from the sea level.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 소나 센서의 하부에 결합되며, 상기 소나 센서의 자세를 측정하는 자세 측정 센서를 더 포함하는 것을 특징으로 하는 수중 구조물 측정 시스템.It is coupled to the lower portion of the sonar sensor, the underwater structure measuring system further comprises a posture measuring sensor for measuring the attitude of the sonar sensor.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 고도 센서, 상기 수심 센서 및 상기 자세 측정 센서를 수용하는 수밀 하우징을 더 포함하고,Further comprising a watertight housing for receiving the altitude sensor, the depth sensor and the attitude measuring sensor,
    상기 수밀 하우징은 제 1 질량 범위 내 질량으로 구성되는 것을 특징으로 하는 수중 구조물 측정 시스템.And said watertight housing is comprised of mass within a first mass range.
PCT/KR2017/007876 2017-01-19 2017-07-21 Underwater structure measurement system WO2018135715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170009264 2017-01-19
KR10-2017-0009264 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135715A1 true WO2018135715A1 (en) 2018-07-26

Family

ID=62908340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007876 WO2018135715A1 (en) 2017-01-19 2017-07-21 Underwater structure measurement system

Country Status (1)

Country Link
WO (1) WO2018135715A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082033A (en) * 2018-12-11 2019-08-02 国家海洋局第一海洋研究所 Carrier gravity center measurement device waterborne and method under a kind of motion state
CN112977736A (en) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 Scientific investigation ship with acoustic evaluation system intelligent position correction equipment
CN112977728A (en) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 Intelligent position correction device for acoustic evaluation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157169B1 (en) * 2011-03-02 2012-06-20 한국해양연구원 Deployable undersea surveillance system
KR101283415B1 (en) * 2011-12-15 2013-07-08 한국해양과학기술원 Seabed survey system using multi-legged underwater robot with hybrid moving function of walking and swimming
JP2016516222A (en) * 2012-12-05 2016-06-02 エーエーアイ コーポレーション Fuzzy control of towed object
KR101666494B1 (en) * 2014-06-05 2016-10-14 대우조선해양 주식회사 Underwater towed sonar system using wire control
KR101695479B1 (en) * 2016-07-08 2017-01-12 한국광해관리공단 Three-dimensional shaping and quantify operating system and method in underground region

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157169B1 (en) * 2011-03-02 2012-06-20 한국해양연구원 Deployable undersea surveillance system
KR101283415B1 (en) * 2011-12-15 2013-07-08 한국해양과학기술원 Seabed survey system using multi-legged underwater robot with hybrid moving function of walking and swimming
JP2016516222A (en) * 2012-12-05 2016-06-02 エーエーアイ コーポレーション Fuzzy control of towed object
KR101666494B1 (en) * 2014-06-05 2016-10-14 대우조선해양 주식회사 Underwater towed sonar system using wire control
KR101695479B1 (en) * 2016-07-08 2017-01-12 한국광해관리공단 Three-dimensional shaping and quantify operating system and method in underground region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082033A (en) * 2018-12-11 2019-08-02 国家海洋局第一海洋研究所 Carrier gravity center measurement device waterborne and method under a kind of motion state
CN110082033B (en) * 2018-12-11 2020-12-22 自然资源部第一海洋研究所 Device and method for measuring gravity center of water carrier in motion state
CN112977736A (en) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 Scientific investigation ship with acoustic evaluation system intelligent position correction equipment
CN112977728A (en) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 Intelligent position correction device for acoustic evaluation system

Similar Documents

Publication Publication Date Title
WO2018135715A1 (en) Underwater structure measurement system
WO2018182098A1 (en) Underwater structure measuring system and underwater structure measuring method
KR101965846B1 (en) UUV Recovery Device and Control Method thereof
RU2419574C1 (en) Towed submarine apparatus
WO2016060417A1 (en) Fairing, and fatigue test apparatus and method using same
JP2007511441A5 (en)
WO2013180402A1 (en) System for automatically docking vessel and method therefor
WO2019210362A1 (en) Sensing device for a crane
CN104535169A (en) Noise measurement apparatus based on fiber optic hydrophone array and measurement method thereof
CN111398905B (en) AUV underwater recovery docking system based on multi-acoustic beacon guidance
WO2018221937A1 (en) Mooring device for vessel using spring bellows structure
CN114426079B (en) Towed ocean current observation auxiliary device and using method thereof
CN112113563A (en) Unmanned ship positioning system and unmanned ship positioning method
US5665909A (en) Free-fall, wire-guided hydrographic profiler
CN111504420A (en) Marine hydrological winch depth measurement system and method
JP5870395B2 (en) Sensor for detecting the swing angle of crane load
CN112977728A (en) Intelligent position correction device for acoustic evaluation system
CN204422057U (en) A kind of noise-measuring system based on Scale Fiber-Optic Hydrophone Array
KR101981627B1 (en) UUV Recovery Device and System using Active Pinger
KR102029149B1 (en) Floating Hydroacoustic-Network Switch
JP2019196624A (en) Underwater work support method and underwater work support system
KR102637125B1 (en) Apparatus and method for sensing the target using the gyro sensor
CN110668328A (en) Ship compensation crane precision testing method
JP2523353B2 (en) Fixed-point installation method for subsea station blocks
JP2001201346A (en) Surveying method and surveying device for object suspended in water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892369

Country of ref document: EP

Kind code of ref document: A1