WO2013180402A1 - System for automatically docking vessel and method therefor - Google Patents

System for automatically docking vessel and method therefor Download PDF

Info

Publication number
WO2013180402A1
WO2013180402A1 PCT/KR2013/003929 KR2013003929W WO2013180402A1 WO 2013180402 A1 WO2013180402 A1 WO 2013180402A1 KR 2013003929 W KR2013003929 W KR 2013003929W WO 2013180402 A1 WO2013180402 A1 WO 2013180402A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
eyepiece
vessel
server
berthing
Prior art date
Application number
PCT/KR2013/003929
Other languages
French (fr)
Korean (ko)
Inventor
김석문
Original Assignee
Kim Sug-Moon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Sug-Moon filed Critical Kim Sug-Moon
Publication of WO2013180402A1 publication Critical patent/WO2013180402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/003Mooring or anchoring equipment, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C1/00Dry-docking of vessels or flying-boats
    • B63C1/02Floating docks
    • B63C1/04Floating docks self docking

Definitions

  • the present invention relates to a ship's automatic berthing system and method thereof, and more particularly, to reduce the cost consumed by reducing the human and physical resources required for ship berthing operations, as well as the position, mass, size, etc. of the ship
  • the present invention relates to a ship's automatic berthing system that can be automatically and safely docked in consideration of the vessel information.
  • a ship In general, a ship is a collective term for water transportation that carries people or goods and runs on water. These ships can be classified into merchant ships, special working ships, warships, and fishing vessels according to their purpose of use. Tankers for transporting liquids, cargoes for transporting solids, and carriers for transporting powder cargoes, depending on the condition of cargoes transported.
  • RO-RO Roll-On Roll-Off
  • LO-LO Lift-On Lift
  • the eyepiece One of the most difficult tasks in ship operation is the eyepiece. That is, in the case of a ship, the acceleration of the ship is a difficult task that requires considerable skill because the acceleration of the movement is smaller than that of a car traveling on the road, but it has a large inertia and is exposed to a poor external environment such as blue. In particular, when berthing a large vessel with a large inertial force, berthing may be achieved through a process of pushing and pulling the vessel to be docked with a few tug boats.
  • the cost of the ship's berthing work requires a lot of human and physical resources, the cost is inevitable, and there is a problem that the ship's berthing work may have difficulty in accordance with changes in the weather conditions of the sea.
  • the present invention was devised to solve the above-mentioned problems, and it is possible not only to reduce the cost consumed by reducing the human and physical resources required for the ship's berthing operation, but also considering the ship's information about the ship's position, mass, size, etc. It is an object of the present invention to provide an automatic berthing system and a method for berthing automatically and safely.
  • a ship automatic berthing system comprising: a ship information acquisition server for acquiring ship information including a position, mass, size, and direction of a ship to be docked; A plurality of guideline transmission devices installed at different locations and connecting the eyepiece target ship to each guideline when the eyepiece target ship approaches the set range based on the ship information acquired by the ship information acquisition server; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; And an induction line control server for controlling the length and tension of the induction line sent by each induction line transmission device according to the ship information acquired by the ship information acquisition server and the distance calculated by the calculation server. It is done.
  • the attitude measuring device for measuring the posture including at least one of the speed, inclination, direction of the ship to be docked; And a wireless communication device for wirelessly transmitting the posture information measured by the posture measuring device to the induction line control server.
  • the guide line control server controls the length and tension of each guide line based on the posture measured by the posture measuring device.
  • Induction line transmitting device the communication line for transmitting and receiving a signal to the induction line control server by wire or wireless; Cylindrical part; And a rotation control unit for winding or unwinding the induction line by rotating the cylindrical part in the forward or negative direction according to the signal transmitted and received through the communication unit.
  • the induction line transmitting device may further include a magnetic force generation unit mounted at the front end of each induction line and generating or blocking magnetic force based on a signal received from the induction line control server through the communication unit.
  • a ship automatic berthing system comprising: a ship information acquisition server for acquiring ship information including the position, mass, size, and direction of a ship to be docked; A plurality of unmanned propulsion devices that move to a corresponding position and adhere to the circumference of the eyepiece target ship when the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition server; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; And a propulsion device control server for wirelessly controlling the propulsion force and the direction of each unmanned propulsion device according to the ship information obtained by the ship information acquisition server and the distance calculated by the calculation server.
  • the above-mentioned vessel automatic eyepiece system may further include an eyepiece path setting server for setting the eyepiece path of the eyepiece object when the eyepiece object ship is located within the set area.
  • the propulsion system control server compares the position information currently obtained by the ship information acquisition server with the eyepiece path set by the eyepiece path setting server, and controls the propulsion and direction of each unmanned propulsion device according to the result of the comparison. do.
  • the above-mentioned vessel automatic berthing system is installed on the bottom of the ocean, a plurality of ultrasonic sensing devices for detecting each unmanned propulsion unit using ultrasonic signals transmitted at a set cycle; And a location determination server that receives a detection signal from each ultrasonic sensing device and determines a location of each unmanned propulsion device based on the received detection signal.
  • the thrust force and the direction of each unmanned propulsion device are controlled in response to the position of each unmanned propulsion device determined by the position determination server.
  • the attitude measuring device for measuring the posture including at least one of the speed, inclination, direction of the ship to be docked; And a wireless communication device for wirelessly transmitting the posture information measured by the posture measuring device to the induction line control server.
  • the propulsion device control server controls the driving force and direction of each unmanned propulsion device based on the posture measured by the attitude measuring device.
  • a ship automatic berthing system comprising: a ship information acquisition server for acquiring ship information including a position, mass, size, and direction of a ship to be docked; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; A plurality of drag devices installed in the eyepiece coast and attached to one side of the eyepiece object vessel to pull the eyepiece object vessel into the eyepiece coast; At least one pushing device installed in the eyepiece coast and pushing the eyepiece object in a direction opposite to the dragging device; And a control server controlling each drag device or push device based on the ship information currently acquired by the ship information acquisition server and the distance calculated by the calculation server.
  • the drag device includes a float floating on the sea; And a propellant for identifying the eyepiece target ship and for moving the float toward the identified eyepiece target ship.
  • the pushing device may be extended or shortened in the direction of the eyepiece to the eyepiece from the eyepiece coast.
  • a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Connecting the eyepiece target ship with the guidance line of each guideline transmitting device when the eyepiece target ship approaches the set range based on the vessel information acquired by the vessel information acquisition step; And controlling the length and tension of each guideline based on the vessel information obtained by the vessel information acquisition step.
  • the above-mentioned vessel auto-eyepiece method may further include measuring a posture including at least one of a speed, a tilt and a direction of the ship to be docked by using an attitude measuring device installed on the ship to be docked.
  • the guide line control step controls the length and tension of each guide line based on the posture measured by the posture measuring device.
  • the above-described vessel automatic berthing method may further include calculating a distance between the berthing target ship and the berthing coast based on the vessel information currently acquired by the vessel information acquisition step.
  • the guide line control step controls the length and tension of each guide line according to the calculated distance.
  • the automatic vessel docking method described above may further include controlling the generation or blocking of magnetic force for the magnetic force generator mounted at the tip of each induction line.
  • a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Moving the plurality of unmanned propulsion devices in close proximity to the eyepiece target ship if the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition step; And wirelessly controlling the propulsion force and the direction of each unmanned propulsion device based on the ship information obtained by the ship information acquisition step.
  • the above-described vessel automatic berthing method may include: setting an eyepiece path of a berthing target ship if the berthing target ship is located within a set area; And comparing the position information currently obtained by the vessel information obtaining step with the eyepiece path set by the eyepiece path setting step.
  • the unmanned propulsion device control step controls the driving force and direction of each unmanned propulsion device according to the comparison result.
  • the above-mentioned automatic vessel docking method includes receiving a response signal from a plurality of ultrasonic sensors installed at predetermined intervals on a bottom of an ocean; And calculating a position of each unmanned propulsion device based on a response signal received from each ultrasonic sensor.
  • the unmanned propulsion device control step controls the driving force and the direction of each unmanned propulsion device corresponding to the position of each unmanned propulsion device.
  • the above-mentioned vessel automatic berthing method includes calculating a distance between the berthing target ship and the berthing coast based on the vessel information acquired by the vessel information acquisition step; And measuring a posture including at least one of a speed, a tilt, and a direction of the ship to be docked by using the posture measuring device installed on the ship to be docked.
  • the unmanned propulsion device control step controls the driving force and direction of each unmanned propulsion device based on the calculated distance and the measured attitude.
  • a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Attached to one side of the eyepiece target vessel and pulling the eyepiece target vessel into the eyepiece coast; Calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition step; And controlling the ship to be pulled or pushed in the opposite direction based on the ship information currently acquired by the ship information acquisition step and the distance calculated by the distance calculation step.
  • the above-mentioned automatic docking method of the ship includes: identifying a ship to be docked; And moving the floating body floating on the sea toward the eyepiece target ship.
  • FIG. 1 is a view schematically showing a ship automatic berthing system according to an embodiment of the present invention.
  • Figure 2 is a view showing an installation example of the guide line delivery device shown in FIG.
  • FIG. 3 is a view for explaining the induction line transmission of the induction line transmission apparatus shown in FIG.
  • FIG. 4 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
  • FIG. 5 is a view for explaining the control of the unmanned propulsion device of FIG.
  • Figure 6 is a view for explaining the process of the automatic docking of the vessel automatic docking system shown in FIG.
  • FIG. 7 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
  • FIG. 8 is a view for explaining the drag device and the pusher shown in FIG.
  • FIG. 9 is a flow chart showing a vessel automatic docking method according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of a ship auto docking method according to another embodiment of the present invention.
  • FIG. 11 is a flow chart of a ship automatic docking method according to another embodiment of the present invention.
  • FIG. 1 is a view schematically showing a ship automatic berthing system according to an embodiment of the present invention.
  • the automatic vessel docking system is composed of the ship berthing guidance server 100, guide line delivery device 200 and the berthing target ship 300.
  • the ship berthing guidance server 100 includes a ship information acquisition server 110, operation server 120 and guideline control server 130.
  • the vessel information acquisition server 110, the operation server 120 and the guideline control server 130 are each composed of an independent server to operate in conjunction with each other, or any component in the ship docking server 100 It may be made of hardware forming a.
  • the vessel information acquisition server 110 acquires vessel information including the position, mass, size, and direction of the ship to be docked 300. That is, when the ship information acquisition server 110 receives the eyepiece request signal from the ship to be docked, and acquires the ship information about the current position, mass, size, direction of the ship. At this time, the ship information acquisition server 110 receives the ship information from the corresponding docking target ship 300, or the position, mass, size for the docking target ship 300 using a GPS (Global Positioning System), ultrasonic sensors, etc. The ship information can be measured about the direction of the ship.
  • GPS Global Positioning System
  • the operation server 120 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 110. At this time, the operation server 120 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 110 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention By receiving ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the current berthing vessel and the berthing coast.
  • the guide line control server 130 is the length of the guide line transmitted by the guide line transmission device 200 according to the ship information obtained by the ship information acquisition server 110 and the distance calculated by the operation server 120 and Control the tension
  • Guide line sending device 200 is provided with a plurality, each is installed in a different position as shown in Figure 2, the berthing target ship is set based on the vessel information obtained by the vessel information acquisition server 110 Approach within the range to connect the docking vessel to each guideline.
  • the induction line transmitting device 200 may include an induction line 210, a cylindrical unit 220, a communication unit 230, a rotation control unit 240 and a magnetic force generating unit 250.
  • each of the guide line delivery device 200 may be installed to face each other at a position (A) adjacent to the eyepiece target shore and a position (B) far away from the eyepiece target shore, as shown in FIG.
  • Induction line 210 is wound around the cylindrical portion (220).
  • the communication unit 230 may be connected to the induction line control server 130 by wire or wireless to transmit and receive a control signal, and to rotate the cylindrical portion 220 in the positive or negative direction on the shaft of the cylindrical portion 220.
  • Rotation control unit 240 is connected.
  • the rotation controller 240 may wind or unwind the induction line by rotating the cylindrical part 220 in the forward or negative direction according to a control signal received from the induction line control server 130 through the communication unit 230.
  • a magnetic force generator 250 is installed at the tip of the induction line 210 to generate or block magnetic force according to a control signal received from the induction line control server 130 through the communication unit 230.
  • the magnetic force generating unit 250 may be formed in the shape of a donut or hook.
  • each of the induction line transmitting apparatus 200 may locate each magnetic force generating unit 250 within a set range.
  • the guide line delivery device 200 (A) adjacent to the berthing coast may be in a released state, and the guide line delivery device 200 (B) far away from the berthing coast winds the guide line. Can be.
  • each guideline delivery device 200 connects each guideline 210 with the corresponding docking target ship 300.
  • the eyepiece 300 is provided with a connection line (not shown) for connecting with each of the induction line 210, the end of the connection line is provided with iron or magnetic material, the iron or magnetic material It may be implemented in a hook shape. That is, when the docking target ship 300 approaches within the set range and lowers the connection line, the induction line control server 130 controls to generate magnetic force in the magnetic force generating unit 250 of each induction line transmitting device 200. It transmits a signal, through which the induction line 210 and the connection line of the eyepiece target ship 300 of each induction line transmission device 200 can be connected.
  • the induction line control server 130 controls the tension and length of each induction line 210 to the eyepiece The ship 300 is drawn into the berth. That is, the induction line control server 130 controls the induction line 210 of the induction line transmission device 200 (A) adjacent to the eyepiece coast to be wound on the cylindrical portion 220, and guides the position far from the eyepiece coast. The induction line 210 of the line delivery device 200 (B) may be controlled to be released from the cylindrical portion 220 to drag the eyepiece target ship 300 into the eyepiece coast.
  • the eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320.
  • the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast.
  • the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the induction line control server 130.
  • the induction line control server 130 may correct the length and tension of each induction line 210 according to the attitude information of the eyepiece target ship received through the wireless communication device 320. For example, when the direction of the eyepiece target ship 300 is skewed or the inclination is inclined in any particular direction, the guideline control server 130 controls the length and tension of each guideline to dock the eyepiece target ship 300 ) Can correct the posture normally.
  • the induction line control server 130 When the berthing target ship 300 is the berthing coast is completed, the induction line control server 130 generates a magnetic force in the magnetic force generating unit 250 of each induction line transmission device 200. At this time, the induction line control server 130 is a magnetic force generation of the induction line transmission device 200 (B) far from the eyepiece generator 250 and the eyepiece coast of the induction line transmission device 200 (A) adjacent to the berthing coast.
  • the guide line delivery device 200 (A) When the guide line 210 of the guide line delivery device 200 (B) far away from the eyepiece coast is wound while the part 250 is in close contact, the guide line delivery device 200 (A) The induction line 210 is pulled while being released, and the induction line control server 130 may block and control the magnetic force of the magnetic force generating unit 250 when each induction line 210 is positioned within a set range.
  • FIG. 4 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
  • the ship's automatic berthing system may include a berthing target ship 300, a ship's berth induction server 400, an unmanned propulsion device 500, and an ultrasonic sensing device 600.
  • the eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320.
  • the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast.
  • the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430.
  • the ship berthing guidance server 400 includes a ship information acquisition server 410, operation server 420, propulsion device control server 430, eyepiece path setting server 440 and position determination server 450.
  • the ship information acquisition server 410, operation server 420, propulsion device control server 430, eyepiece path setting server 440 and position determination server 450 are each formed as independent servers and interworked It may be made of hardware that operates or constitutes an integral component in the ship's eyepiece guided server 400.
  • the vessel information acquisition server 410 acquires vessel information including the position, mass, size, and direction of the vessel to be docked 300. That is, the ship information acquisition server 410 acquires ship information on the current position, mass, size, direction of travel, etc. for the ship to be docked when the eyepiece request signal is received from the ship to be docked. At this time, the vessel information acquisition server 410 receives vessel information from the corresponding berth 300, or position, mass, size for the berth 300 by using a GPS (Global Positioning System), ultrasonic sensors, etc. The ship information can be measured about the direction of the ship.
  • GPS Global Positioning System
  • the calculation server 420 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 410.
  • the operation server 420 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 410 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention
  • ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the corresponding berthing vessel and the berthing coast at the current position.
  • the propulsion device control server 430 controls the propulsion force and direction of the plurality of unmanned propulsion devices 500 according to the ship information obtained by the ship information acquisition server 410 and the distance calculated by the calculation server 420. To this end, the propulsion device control server 430 transmits and receives data wirelessly with the unmanned propulsion device (500).
  • the eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object vessel 300 is located within the set area.
  • the propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440, each unmanned in accordance with the comparison result
  • the driving force and direction of the propulsion device 500 can be controlled.
  • a plurality of ultrasonic sensing devices 600 may be installed on the bottom or sea surface of the ocean at set intervals as shown in FIG. 5, and each ultrasonic sensing device 600 transmits ultrasonic signals at set cycles and correspondingly. By transmitting the received detection signal to the position determination server 450. At this time, each ultrasonic sensing device 600 stores a unique identifier and location information, and transmits the ultrasonic signal to the vertical upper surface and receives the reflection signal for the transmitted to the position determination server 450.
  • the position determination server 450 receives a detection signal corresponding to an ultrasonic signal from each ultrasonic sensing device 600 installed in the form of a buoy on the sea bottom or the sea surface, and the sensing signals received from the plurality of ultrasonic sensing devices 600. Based on the position of the unmanned propulsion device 500 can be determined. That is, the position of the unmanned propulsion device 500 may be determined based on the relative strength of the detection signal of each ultrasonic sensing device 600.
  • the propulsion device control server 430 corresponds to the position of each unmanned propulsion device 500 determined by the position determination server 450, the distance between the berthing target ship 300 and the unmanned propulsion device 500, It is possible to calculate the direction, etc., thereby controlling the driving force and direction of each unmanned propulsion device (500).
  • the unmanned propulsion device 500 is a small ship whose direction and propulsion force are controlled in accordance with a control signal wirelessly received from the propulsion control server 430, the size and the propulsion force of the ship to be docked 300, the size, etc. It can be set to various kinds.
  • FIG. 6 is a view for explaining an automatic berthing process of the automatic ship berthing system shown in FIG.
  • the propulsion device control server 430 may wirelessly control the plurality of unmanned propulsion devices 500 to be in close contact with the berth target ship 300.
  • the eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object vessel 300 is located within the set area.
  • the propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440, each unmanned in accordance with the comparison result Controls the propulsion and direction of the propulsion device (500). For example, assuming that the eyepiece path set by the eyepiece path setting server 440 is P1-> P2-> P3-> P4, the propulsion device control server 430 is the propulsion force of the unmanned propulsion device 500 at a specific position.
  • the propulsion device control server 430 may correct the propulsion and direction of each unmanned propulsion device 500 based on the attitude information of the eyepiece sung ship 300 received through the wireless communication device 320.
  • FIG. 7 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
  • the ship's automatic berthing system may include a berthing target ship 300, the ship berthing guidance server 700 and the drag and push device (800).
  • the eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320.
  • the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast.
  • the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430.
  • the ship berth induction server 700 includes a ship information acquisition server 710, a calculation server 720 and a control server 730.
  • the ship information acquisition server 710, the operation server 720 and the control server 730 are each made of an independent server to operate in conjunction with each other, or to form any component in the ship docking guide server 700 It may be made in hardware.
  • the vessel information acquisition server 710 acquires vessel information including the position, mass, size, and direction of the vessel to be docked 300. That is, the ship information acquisition server 710 acquires ship information about the current position, mass, size, direction of travel, etc., when the eyepiece request signal is received from the ship to be docked. At this time, the ship information acquisition server 710 receives the ship information from the corresponding docking target ship 300, or the ship about the position, mass, size, direction, etc. for the docking target ship 300 using GPS, ultrasonic sensors, etc. Information can be measured.
  • the calculation server 720 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 710. At this time, the operation server 720 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 710 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention By receiving ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the corresponding berthing vessel and the berthing coast at the current position.
  • the control server 730 is the respective draw device 810 of the drag and push device 800 based on the ship information currently obtained by the ship information acquisition server 710 and the distance calculated by the operation server 720 or The pusher 820 is controlled.
  • the drag device 810 constituting the drag and push device 800 is installed on the berthing coast, is attached to one side of the berthing target ship 300 to pull the berthing target ship 300 to the berthing coast.
  • the pushing device 820 is installed in the eyepiece coast, and pushes the eyepiece target ship 300 in a direction opposite to the direction in which the drag device 810 is dragged.
  • FIG. 8 is a view for explaining a drag device and a push device shown in FIG.
  • the drag device 810 may be made of a flexible material such as a rope, and a floating body 812 floating on the sea is installed at a tip thereof.
  • the floating body 812 is formed with a propellant 814 for identifying the eyepiece 300 and moving the floating body 812 toward the identified eyepiece 300.
  • the propellant 814 recognizes a specific position as an identification value based on the ship information acquired by the ship information acquisition server 710 and moves the floating body 812, or the side of the berthing target ship 300.
  • the floating body 812 may be moved to a position of a corresponding transmission sensor by recognizing a signal of a specific frequency transmitted by a transmission sensor (not shown) installed in the unit, and tracking the position of the recognized frequency signal.
  • identification and movement of the eyepiece 300 by the propellant 814 is not limited to the described method, and various known object recognition methods may be used.
  • a rope such as a rope constituting the drag device 810 is preferably implemented so that its length extends in the moving direction of the floating body 812.
  • the drag device 810 connected to the floating body 812 is connected to the eyepiece 300.
  • the drag device 810 may be implemented to be automatically connected to a specific position of the eyepiece 300 by the magnetism. In this case, it is preferable that the drag device 810 is connected to a plurality of positions, such as the stern, the tail, the center of the eyepiece 300.
  • the control server 730 may control the drag device 810 connected to one side of the docking target ship 300 to pull the docking target ship 300 to the docking coast. At this time, the control server 730 may control the progress direction of the eyepiece target ship 300 by adjusting the pulling force of each drag device 810 differently.
  • the control server 730 may control the length of the pusher 820 to push the eyepiece target ship 300 in the opposite direction to the eyepiece coast.
  • the pusher 820 may be extended or shortened in length, and preferably at the tip thereof has a contact surface made of a soft material to prevent breakage of the contact portion of the berthing target ship 300.
  • the pushing device 820 is preferably provided in plurality in the eyepiece coastline, or is provided to be movable in the left and right directions along the eyepiece coastline.
  • FIG. 9 is a flow chart of a ship auto docking method according to an embodiment of the present invention.
  • the vessel information acquisition server 110 obtains vessel information including the position, mass, size, direction of the berth target ship (S102). That is, the ship information acquisition server 110 obtains the ship information on the current position, mass, size, direction of travel for the corresponding docking vessel when the eyepiece request signal is received from the docking target vessel.
  • the induction line control server 130 may generate or block control the magnetic force of the magnetic force generating unit 250 installed at the tip of each induction line 210 to position each induction line 210 within a set range; S104), by generating or blocking control of the magnetic force for the magnetic force generating unit 250 of each induction line 210, it is possible to connect each induction line to the eyepiece target ship 300 (S106).
  • the induction line control server 130 controls the length and tension of each induction line 210 to attract the eyepiece target ship 300 to the eyepiece (S108).
  • the calculation server 120 calculates the distance between the berthing target ship and the berthing coast based on the ship information acquired by the ship information acquisition server 110 (S110). At this time, the operation server 120 after receiving the eyepiece request signal from the docking target ship 300, in the process of automatically docking the corresponding docking target ship 300 by measuring the variation of the vessel information such as position, direction, etc. periodically The change in distance between the ship to be docked and the coast of the eyepiece may be calculated.
  • the posture measuring device 310 measures a posture including at least one of the speed, the inclination, and the direction of the eyepiece target ship 300 in the process of the eyepiece object 300 being automatically docked into the eyepiece (S112).
  • the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the induction line control server 130.
  • the induction line control server 130 is not normal (S114) (for example, the direction or the slope is inclined or the speed is not the attitude of the docking target ship 300 received through the wireless communication device 320) If outside the set range), the length and tension of each induction line 210 can be corrected (S116).
  • This process may be repeatedly performed until the distance between the eyepiece target ship and the eyepiece coast calculated by the calculation server 120 becomes less than or equal to the set value (S118).
  • FIG. 10 is a flow chart of a ship automatic docking method according to another embodiment of the present invention.
  • the ship information acquisition server 410 obtains ship information including the position, mass, size, and direction of the ship to be docked (S202). That is, the ship information acquisition server 410 acquires ship information on the current position, mass, size, direction of travel, etc. for the ship to be docked when the eyepiece request signal is received from the ship to be docked.
  • the propulsion device control server 430 wirelessly controls the plurality of unmanned propulsion device 500 to closely adhere to the circumference of the eyepiece target ship 300 (S204).
  • the eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object ship 300 is located within the set area (S206).
  • the plurality of unmanned propulsion devices 500 are in close contact with the circumference of the berthing target ship 300
  • the eyepiece path setting server 440 is described as setting the berth path of the berthing target ship 300
  • the plurality of unmanned propulsion devices 500 may be controlled to move in close contact with the eyepiece target ship 300 after setting the eyepiece path by the eyepiece path setting server 440.
  • the propulsion device control server 430 controls the propulsion force and direction of the plurality of unmanned propulsion devices 500 according to the ship information obtained by the ship information acquisition server 410 and the distance calculated by the operation server 420 ( S208).
  • the position determination server 450 receives a detection signal corresponding to an ultrasonic signal from each ultrasonic sensing device 600, and determines the position of each unmanned propulsion device 500 based on the received detection signal (S210). .
  • the propulsion device control server 430 may control the propulsion force and the direction of each unmanned propulsion device 500 in response to the position of each unmanned propulsion device 500 determined by the position determination server 450. .
  • the calculation server 420 calculates the distance between the berthing target ship and the berthing coast based on the ship information acquired by the ship information acquisition server 410 (S212). At this time, the operation server 420 periodically receives the eyepiece request signal from the eyepiece target ship 300, and then periodically measures the variation of ship information such as position and direction in the process of automatically docking the corresponding eyepiece target ship 300. The change in distance between the ship to be docked and the coast of the eyepiece may be calculated.
  • the propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440 (S214), and the eyepiece target according to the comparison result.
  • the ship 300 is out of the set path (S216)
  • the driving force and the direction of each unmanned propulsion device 500 is corrected and controlled (S218).
  • the posture measuring device 310 measures a posture including at least one of the speed, the inclination, and the direction of the eyepiece target ship 300 in the process of automatically docking the eyepiece target vessel 300 into the eyepiece (S220).
  • the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430.
  • the propulsion device control server 430 may correct the direction and propulsion of each unmanned propulsion device (500) (S218).
  • This process may be repeatedly performed until the distance between the eyepiece target ship and the eyepiece coast calculated by the calculation server 420 becomes less than or equal to the set value (S224).
  • FIG. 11 is a flowchart illustrating a ship automatic docking method according to another embodiment of the present invention.
  • the ship information acquisition server 710 acquires ship information including the position, mass, size, and direction of the ship to be docked (S302).
  • the propellant 814 recognizes the docking target ship 300 (S304). At this time, based on the vessel information obtained by the vessel information acquisition server 710 recognizes a specific position as an identification value to move the floating body 812, or the transmission sensor pre-installed on the side of the berth target ship 300 A signal of a specific frequency transmitted by (not shown) can be recognized. At this time, the propellant 814 moves the floating body 812 to the position of the corresponding transmission sensor by tracking the position of the recognized frequency signal (S306).
  • the control server 730 is one of the eyepiece 300
  • the drag device 810 connected to the side is controlled to pull the berth target ship 300 into the berthing coast (S308).
  • the control server 730 may control the progress direction of the eyepiece target ship 300 by adjusting the pulling force of each drag device 810 differently.
  • the calculation server 720 calculates the distance between the berthing target ship 300 and the berthing coast based on the ship information currently acquired by the ship information acquisition server 710 (S310). At this time, the operation server 720 may calculate the distance between each connection point and the eyepiece coast based on the direction of the eyepiece target ship 300, the length of each drag device 810, and the like.
  • the docking target ship 300 uses the predetermined docking route based on the distance between the docking target ship 300 and the docking coast calculated by the calculation server 720 and the ship information currently acquired by the ship information acquisition server 710. If it is determined that the deviation, the control server 730 may control the length of the pusher 820 to push a specific point of the berth target ship 300 in the opposite direction to the berthing coast (S312). At this time, the pulling device 810 may be controlled to control the pushing device 820 to change the direction of the docking target ship 300 and at the same time.

Abstract

A system for automatically docking a vessel and a method therefor are disclosed. The system for automatically docking a vessel, according to the present invention, comprises: a vessel information acquisition server for acquiring vessel information including the location, mass, size and direction of a vessel being docked; a plurality of guiding line transmission devices for connecting guiding lines with the vessel being docked if the vessel being docked approaches within a set range on the basis of the vessel information acquired by the vessel information acquisition server; a computation server for computing the distance between the vessel being docked and the coast for docking on the basis of the vessel information acquisition server; and a guiding line control server for controlling the length and tension of the guiding line released by each of the plurality of guiding line transmission devices according to the vessel information acquired by the vessel information acquisition server and the distance computed by the computation server.

Description

선박 자동접안 시스템 및 그 방법Ship automatic berthing system and method
본 발명은 선박 자동접안 시스템 및 그 방법에 관한 것으로서, 보다 상세하게는, 선박 접안작업에 필요한 인적 자원 및 물적 자원을 절감하여 소모되는 비용을 줄일 수 있을 뿐만 아니라, 선박의 위치, 질량, 크기 등에 대한 선박정보를 고려하여 자동으로 안전하게 접안시킬 수 있는 선박 자동접안 시스템 및 그 방법에 관한 것이다.The present invention relates to a ship's automatic berthing system and method thereof, and more particularly, to reduce the cost consumed by reducing the human and physical resources required for ship berthing operations, as well as the position, mass, size, etc. of the ship The present invention relates to a ship's automatic berthing system that can be automatically and safely docked in consideration of the vessel information.
일반적으로 선박이란 사람이나 재화를 싣고 물 위를 운행하는 수상교통수단을 통칭한다. 이러한 선박은 사용목적에 따라 상선, 특수작업선, 군함, 어선 등으로 분류할 수 있으며, 수송하는 화물의 상태에 따라 액체를 수송하는 tanker, 고체를 수송하는 cargo, 분말상태의 화물을 수송하는 carrer 등으로 분류하기도 하고, 화물을 적재하는 방식에 따라 자동차와 같이 이동할 수 있는 화물을 운반하는 RO-RO(Roll-On Roll-Off)선, 포장된 화물을 운반하는 LO-LO(Lift-On Lift-Off)선, 들어올리기 어려운 거대한 철구조물을 수송하는 FOFO(Float-On Float-Off)선 등으로 분류하기도 한다.In general, a ship is a collective term for water transportation that carries people or goods and runs on water. These ships can be classified into merchant ships, special working ships, warships, and fishing vessels according to their purpose of use. Tankers for transporting liquids, cargoes for transporting solids, and carriers for transporting powder cargoes, depending on the condition of cargoes transported. RO-RO (Roll-On Roll-Off) line carrying cargo that can move like a car according to the way of loading cargo, and LO-LO (Lift-On Lift) carrying packed cargo It is also classified as an "off" line, or a float-on float-off line that transports large steel structures that are difficult to lift.
항구에 대형 선박이 화물을 일정 중량 이상 싣고 오는 경우, 해당 선박이 자체적으로 항구에 접안하기는 어렵다. 그 이유는 항구를 건설할 때 입지적으로 수심을 가장 먼저 고려하지만 부두 근처의 수심이 얕아지는 것을 피할 수는 없으며, 따라서 대형 화물선은 수심이 깊은 곳을 골라서 배를 끌어 해안 부두에 접안하여야 한다.If a large ship carries more than a certain amount of cargo at the port, it is difficult for the ship to dock on its own. The reason for this is that when constructing a port, the depth is considered first, but the depth of the water near the pier cannot be avoided. Therefore, a large cargo ship must select a deep water and pull the ship into the coastal pier.
선박 운항에 있어서 가장 어려운 작업 중의 하나가 접안이다. 즉, 선박의 경우, 도로를 주행하는 자동차에 비하여 운동가속도가 작은 반면, 큰 관성력을 가지며, 파랑 등의 열악한 외부 환경에 노출되어 있기 때문에, 선박의 접안은 상당한 숙련을 요하는 어려운 작업이다. 특히, 관성력이 큰 대형 선박을 접안하는 경우, 몇 척의 터그 보트(Tug Boat)로 접안대상 선박을 밀고 당기는 과정을 거쳐 접안이 이루어지기도 한다.One of the most difficult tasks in ship operation is the eyepiece. That is, in the case of a ship, the acceleration of the ship is a difficult task that requires considerable skill because the acceleration of the movement is smaller than that of a car traveling on the road, but it has a large inertia and is exposed to a poor external environment such as blue. In particular, when berthing a large vessel with a large inertial force, berthing may be achieved through a process of pushing and pulling the vessel to be docked with a few tug boats.
이와 같은 선박 접안작업을 위해서는 정박지의 해상지리에 밝은 파일럿이 승선하여야 하며, 해당 선박 및 지원팀과의 효율적인 팀워크(Team Work)가 갖추어져야만 안전하고 효율적인 접안작업이 이루어질 수 있다.For such ship berthing operations, bright pilots should be embarked on the nautical geography of the marina, and safe and efficient berthing work can be achieved only when effective team work with the vessel and support teams is in place.
그런데, 이와 같은 선박의 접안작업은 많은 인적 자원 및 물적 자원을 필요로 하기 때문에 그 비용이 상당할 수밖에 없으며, 또한 해양의 기상상황의 변화에 따라 선박 접안작업이 어려움을 겪을 수 있다는 문제점이 있다.However, the cost of the ship's berthing work requires a lot of human and physical resources, the cost is inevitable, and there is a problem that the ship's berthing work may have difficulty in accordance with changes in the weather conditions of the sea.
본 발명은 전술한 문제점을 해결하기 위하여 창안된 것으로서, 선박 접안작업에 필요한 인적 자원 및 물적 자원을 절감하여 소모되는 비용을 줄일 수 있을 뿐만 아니라, 선박의 위치, 질량, 크기 등에 대한 선박정보를 고려하여 자동으로 안전하게 접안시킬 수 있는 선박 자동접안 시스템 및 그 방법을 제공하는 것을 목적으로 한다.The present invention was devised to solve the above-mentioned problems, and it is possible not only to reduce the cost consumed by reducing the human and physical resources required for the ship's berthing operation, but also considering the ship's information about the ship's position, mass, size, etc. It is an object of the present invention to provide an automatic berthing system and a method for berthing automatically and safely.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 선박 자동접안 시스템은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버; 서로 다른 위치에 설치되며, 선박정보획득서버에 의해 획득한 선박정보에 기초하여 접안대상 선박이 설정된 범위 이내에 접근하면 접안대상 선박과 각각 유도라인을 연결하는 복수의 유도라인송출장치; 선박정보획득서버에 의해 현재 획득되는 선박정보에 기초하여 접안대상 선박과 접안해안 사이의 거리를 계산하는 연산서버; 및 선박정보획득서버에 의해 획득된 선박정보 및 연산서버에 의해 계산된 거리에 따라 각각의 유도라인송출장치에 의해 송출된 유도라인의 길이 및 장력을 제어하는 유도라인제어서버;를 포함하는 것을 특징으로 한다.In accordance with an aspect of the present invention, there is provided a ship automatic berthing system, comprising: a ship information acquisition server for acquiring ship information including a position, mass, size, and direction of a ship to be docked; A plurality of guideline transmission devices installed at different locations and connecting the eyepiece target ship to each guideline when the eyepiece target ship approaches the set range based on the ship information acquired by the ship information acquisition server; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; And an induction line control server for controlling the length and tension of the induction line sent by each induction line transmission device according to the ship information acquired by the ship information acquisition server and the distance calculated by the calculation server. It is done.
전술한 선박 자동접안 시스템은, 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 자세측정장치; 및 자세측정장치에 의해 측정된 자세정보를 유도라인제어서버에 무선으로 전송하는 무선통신장치;를 더 포함할 수 있다. 이 경우, 유도라인제어서버는 자세측정장치에 의해 측정된 자세에 기초하여 각각의 유도라인의 길이 및 장력을 제어한다.The above-mentioned vessel automatic eyepiece system, the attitude measuring device for measuring the posture including at least one of the speed, inclination, direction of the ship to be docked; And a wireless communication device for wirelessly transmitting the posture information measured by the posture measuring device to the induction line control server. In this case, the guide line control server controls the length and tension of each guide line based on the posture measured by the posture measuring device.
유도라인송출장치는, 유도라인제어서버와 유선 또는 무선으로 신호를 송수신하는 통신부; 원통부; 및 통신부를 통해 송수신되는 신호에 따라 원통부를 정방향 또는 부방향으로 회전시켜 유도라인을 감거나 푸는 회전제어부;를 포함한다.Induction line transmitting device, the communication line for transmitting and receiving a signal to the induction line control server by wire or wireless; Cylindrical part; And a rotation control unit for winding or unwinding the induction line by rotating the cylindrical part in the forward or negative direction according to the signal transmitted and received through the communication unit.
유도라인송출장치는, 각각의 유도라인의 선단에 장착되며, 통신부를 통해 유도라인제어서버로부터 수신되는 신호에 기초하여 자력을 발생 또는 차단하는 자력발생부;를 더 포함할 수 있다.The induction line transmitting device may further include a magnetic force generation unit mounted at the front end of each induction line and generating or blocking magnetic force based on a signal received from the induction line control server through the communication unit.
전술한 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 선박 자동접안 시스템은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버; 선박정보획득서버에 의해 획득한 선박정보에 기초하여 접안대상 선박이 설정된 영역 내에 위치하면 해당 위치로 이동하여 접안대상 선박의 둘레에 밀착하는 복수의 무인추진장치; 선박정보획득서버에 의해 현재 획득되는 선박정보에 기초하여 접안대상 선박과 접안해안 사이의 거리를 계산하는 연산서버; 및 선박정보획득서버에 의해 획득된 선박정보 및 연산서버에 의해 계산된 거리에 따라 각각의 무인추진장치의 추진력 및 방향을 무선으로 제어하는 추진장치제어서버;를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a ship automatic berthing system comprising: a ship information acquisition server for acquiring ship information including the position, mass, size, and direction of a ship to be docked; A plurality of unmanned propulsion devices that move to a corresponding position and adhere to the circumference of the eyepiece target ship when the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition server; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; And a propulsion device control server for wirelessly controlling the propulsion force and the direction of each unmanned propulsion device according to the ship information obtained by the ship information acquisition server and the distance calculated by the calculation server.
전술한 선박 자동접안 시스템은, 접안대상 선박이 설정된 영역 내에 위치하면, 접안대상 선박의 접안경로를 설정하는 접안경로설정서버;를 더 포함할 수 있다. 이 경우, 추진장치제어서버는 선박정보획득서버에 의해 현재에 획득되는 위치정보를 접안경로설정서버에 의해 설정된 접안경로와 비교하며, 비교된 결과에 따라 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-mentioned vessel automatic eyepiece system may further include an eyepiece path setting server for setting the eyepiece path of the eyepiece object when the eyepiece object ship is located within the set area. In this case, the propulsion system control server compares the position information currently obtained by the ship information acquisition server with the eyepiece path set by the eyepiece path setting server, and controls the propulsion and direction of each unmanned propulsion device according to the result of the comparison. do.
전술한 선박 자동접안 시스템은, 해양의 저면에 설정된 간격으로 설치되며, 설정된 주기로 발신되는 초음파신호를 이용하여 각각의 무인추진장치를 감지하는 복수의 초음파감지장치; 및 각각의 초음파감지장치로부터 감지신호를 수신하며, 수신된 감지신호에 기초하여 각각의 무인추진장치의 위치를 판단하는 위치판단서버;를 더 포함할 수 있다. 이 경우, 위치판단서버에 의해 판단된 각각의 무인추진장치의 위치에 대응하여 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-mentioned vessel automatic berthing system is installed on the bottom of the ocean, a plurality of ultrasonic sensing devices for detecting each unmanned propulsion unit using ultrasonic signals transmitted at a set cycle; And a location determination server that receives a detection signal from each ultrasonic sensing device and determines a location of each unmanned propulsion device based on the received detection signal. In this case, the thrust force and the direction of each unmanned propulsion device are controlled in response to the position of each unmanned propulsion device determined by the position determination server.
전술한 선박 자동접안 시스템은, 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 자세측정장치; 및 자세측정장치에 의해 측정된 자세정보를 유도라인제어서버에 무선으로 전송하는 무선통신장치;를 더 포함할 수 있다. 이 경우, 추진장치제어서버는 자세측정장치에 의해 측정된 자세에 기초하여 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-mentioned vessel automatic eyepiece system, the attitude measuring device for measuring the posture including at least one of the speed, inclination, direction of the ship to be docked; And a wireless communication device for wirelessly transmitting the posture information measured by the posture measuring device to the induction line control server. In this case, the propulsion device control server controls the driving force and direction of each unmanned propulsion device based on the posture measured by the attitude measuring device.
전술한 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따른 선박 자동접안 시스템은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버; 선박정보획득서버에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산하는 연산서버; 접안해안에 설치되며, 접안대상선박의 일 측면에 부착되어 접안대상선박을 접안해안으로 끌어당기는 복수의 끌기장치; 접안해안에 설치되며, 접안대상선박을 끌기장치와 반대방향으로 미는 적어도 하나의 밀기장치; 및 선박정보획득서버에 의해 현재 획득되는 선박정보 및 상기 연산서버에 의해 계산되는 거리에 기초하여 각각의 끌기장치 또는 밀기장치를 제어하는 제어서버;를 포함하는 것을 특징으로 한다.In accordance with still another aspect of the present invention, there is provided a ship automatic berthing system, comprising: a ship information acquisition server for acquiring ship information including a position, mass, size, and direction of a ship to be docked; A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server; A plurality of drag devices installed in the eyepiece coast and attached to one side of the eyepiece object vessel to pull the eyepiece object vessel into the eyepiece coast; At least one pushing device installed in the eyepiece coast and pushing the eyepiece object in a direction opposite to the dragging device; And a control server controlling each drag device or push device based on the ship information currently acquired by the ship information acquisition server and the distance calculated by the calculation server.
끌기장치는, 바다위에 부상하는 부유체; 및 접안대상선박을 식별하며, 부유체를 식별된 접안대상선박을 향해 진행시키는 추진체;를 포함할 수 있다.The drag device includes a float floating on the sea; And a propellant for identifying the eyepiece target ship and for moving the float toward the identified eyepiece target ship.
밀기장치는 접안해안으로부터 접안대상선박의 방향으로 길이가 연장되거나 축소될 수 있다.The pushing device may be extended or shortened in the direction of the eyepiece to the eyepiece from the eyepiece coast.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 선박 자동접안 방법은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계; 선박정보획득단계에 의해 획득한 선박정보에 기초하여 접안대상 선박이 설정된 범위 이내에 접근하면, 접안대상 선박과 각각의 유도라인송출장치의 유도라인을 연결하는 단계; 및 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 각각의 유도라인의 길이 및 장력을 제어하는 단계;를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Connecting the eyepiece target ship with the guidance line of each guideline transmitting device when the eyepiece target ship approaches the set range based on the vessel information acquired by the vessel information acquisition step; And controlling the length and tension of each guideline based on the vessel information obtained by the vessel information acquisition step.
전술한 선박 자동접안 방법은, 접안대상 선박에 설치된 자세측정장치를 이용하여 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 단계;를 더 포함할 수 있다. 이 경우, 유도라인 제어단계는, 자세측정장치에 의해 측정된 자세에 기초하여 각각의 유도라인의 길이 및 장력을 제어한다.The above-mentioned vessel auto-eyepiece method may further include measuring a posture including at least one of a speed, a tilt and a direction of the ship to be docked by using an attitude measuring device installed on the ship to be docked. In this case, the guide line control step controls the length and tension of each guide line based on the posture measured by the posture measuring device.
전술한 선박 자동접안 방법은, 선박정보획득단계에 의해 현재 획득되는 선박정보에 기초하여 접안대상 선박과 접안해안 사이의 거리를 계산하는 단계;를 더 포함할 수 있다. 이 경우, 유도라인 제어단계는, 계산된 거리에 따라 각각의 유도라인의 길이 및 장력을 제어한다.The above-described vessel automatic berthing method may further include calculating a distance between the berthing target ship and the berthing coast based on the vessel information currently acquired by the vessel information acquisition step. In this case, the guide line control step controls the length and tension of each guide line according to the calculated distance.
전술한 선박 자동접안 방법은, 각각의 유도라인의 선단에 장착된 자력발생부에 대한 자력의 발생 또는 차단을 제어하는 단계;를 더 포함할 수 있다.The automatic vessel docking method described above may further include controlling the generation or blocking of magnetic force for the magnetic force generator mounted at the tip of each induction line.
전술한 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 선박 자동접안 방법은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계; 선박정보획득단계에 의해 획득한 선박정보에 기초하여 접안대상 선박이 설정된 영역 내에 위치하면 복수의 무인추진장치를 이동시켜 접안대상 선박의 둘레에 밀착시키는 단계; 및 선박정보획득단계에 의해 획득된 선박정보에 기초하여 각각의 무인추진장치의 추진력 및 방향을 무선으로 제어하는 단계;를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Moving the plurality of unmanned propulsion devices in close proximity to the eyepiece target ship if the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition step; And wirelessly controlling the propulsion force and the direction of each unmanned propulsion device based on the ship information obtained by the ship information acquisition step.
전술한 선박 자동접안 방법은, 접안대상 선박이 설정된 영역 내에 위치하면, 접안대상 선박의 접안경로를 설정하는 단계; 및 선박정보획득단계에 의해 현재에 획득되는 위치정보를 접안경로 설정단계에 의해 설정된 접안경로와 비교하는 단계;를 더 포함할 수 있다. 이 경우, 무인추진장치 제어단계는, 비교된 결과에 따라 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-described vessel automatic berthing method may include: setting an eyepiece path of a berthing target ship if the berthing target ship is located within a set area; And comparing the position information currently obtained by the vessel information obtaining step with the eyepiece path set by the eyepiece path setting step. In this case, the unmanned propulsion device control step controls the driving force and direction of each unmanned propulsion device according to the comparison result.
전술한 선박 자동접안 방법은, 해양의 저면에 소정 간격으로 설치된 복수의 초음파센서로부터 응답신호를 수신하는 단계; 및 각각의 초음파센서로부터 수신되는 응답신호에 기초하여 각각의 무인추진장치의 위치를 계산하는 단계;를 더 포함할 수 있다. 이 경우, 무인추진장치 제어단계는, 각각의 무인추진장치의 위치에 대응하여 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-mentioned automatic vessel docking method includes receiving a response signal from a plurality of ultrasonic sensors installed at predetermined intervals on a bottom of an ocean; And calculating a position of each unmanned propulsion device based on a response signal received from each ultrasonic sensor. In this case, the unmanned propulsion device control step controls the driving force and the direction of each unmanned propulsion device corresponding to the position of each unmanned propulsion device.
전술한 선박 자동접안 방법은, 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 접안대상 선박과 접안해안 사이의 거리를 계산하는 단계; 및 접안대상 선박에 설치된 자세측정장치를 이용하여 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 단계;를 더 포함할 수 있다. 이 경우, 무인추진장치 제어단계는, 계산된 거리 및 측정된 자세에 기초하여 각각의 무인추진장치의 추진력 및 방향을 제어한다.The above-mentioned vessel automatic berthing method includes calculating a distance between the berthing target ship and the berthing coast based on the vessel information acquired by the vessel information acquisition step; And measuring a posture including at least one of a speed, a tilt, and a direction of the ship to be docked by using the posture measuring device installed on the ship to be docked. In this case, the unmanned propulsion device control step controls the driving force and direction of each unmanned propulsion device based on the calculated distance and the measured attitude.
전술한 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따른 선박 자동접안 방법은, 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계; 접안대상선박의 일 측면에 부착되어 접안대상선박을 접안해안으로 끌어당기는 단계; 선박정보획득단계에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산하는 단계; 및 선박정보획득단계에 의해 현재 획득되는 선박정보 및 거리 계산단계에 의해 계산되는 거리에 기초하여 접안대상선박을 끌어당기거나 반대방향으로 밀도록 제어하는 단계;를 포함하는 것을 특징으로 한다.According to still another aspect of the present invention, there is provided a ship automatic docking method comprising: acquiring vessel information including a position, a mass, a size, and a direction of a ship to be docked; Attached to one side of the eyepiece target vessel and pulling the eyepiece target vessel into the eyepiece coast; Calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition step; And controlling the ship to be pulled or pushed in the opposite direction based on the ship information currently acquired by the ship information acquisition step and the distance calculated by the distance calculation step.
전술한 선박 자동접안 방법은, 접안대상선박을 식별하는 단계; 및 바다위에 부상하는 부유체를 접안대상선박을 향해 이동시키는 단계;를 더 포함할 수 있다.The above-mentioned automatic docking method of the ship includes: identifying a ship to be docked; And moving the floating body floating on the sea toward the eyepiece target ship.
도 1은 본 발명의 일 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면.1 is a view schematically showing a ship automatic berthing system according to an embodiment of the present invention.
도 2는 도 1에 도시한 유도라인송출장치의 설치 예를 나타낸 도면.Figure 2 is a view showing an installation example of the guide line delivery device shown in FIG.
도 3은 도 1에 도시한 유도라인송출장치의 유도라인 송출을 설명하기 위한 도면.3 is a view for explaining the induction line transmission of the induction line transmission apparatus shown in FIG.
도 4는 본 발명의 다른 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면.4 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
도 5는 도 4의 무인추진장치의 제어를 설명하기 위해 도시한 도면.5 is a view for explaining the control of the unmanned propulsion device of FIG.
도 6은 도 4에 도시한 선박 자동접안 시스템의 자동접안 과정을 설명하기 위한 도면.Figure 6 is a view for explaining the process of the automatic docking of the vessel automatic docking system shown in FIG.
도 7은 본 발명의 또 다른 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면.7 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
도 8은 도 7에 도시한 끌기장치 및 밀기장치를 설명하기 위한 도면.8 is a view for explaining the drag device and the pusher shown in FIG.
도 9는 본 발명의 일 실시예에 따른 선박 자동접안 방법을 나타낸 흐름도.9 is a flow chart showing a vessel automatic docking method according to an embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 선박 자동접안 방법의 흐름도.10 is a flow chart of a ship auto docking method according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 실시예에 따른 선박 자동접안 방법의 흐름도.11 is a flow chart of a ship automatic docking method according to another embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 실시예에 따른 선박 자동접안 시스템 및 그 방법을 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the vessel automatic berthing system and method according to an embodiment of the present invention.
도 1은 본 발명의 일 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면이다.1 is a view schematically showing a ship automatic berthing system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 선박 자동접안 시스템은 선박접안유도서버(100), 유도라인송출장치(200) 및 접안대상선박(300)으로 구성된다. 여기서, 선박접안유도서버(100)는 선박정보획득서버(110), 연산서버(120) 및 유도라인제어서버(130)를 포함한다. 이때, 선박정보획득서버(110), 연산서버(120) 및 유도라인제어서버(130)는 각각이 독립적인 서버로 이루어지며 상호 연동하여 동작하거나, 선박접안유도서버(100) 내의 일체의 구성요소를 이루는 하드웨어로 이루어질 수 있다.Referring to Figure 1, the automatic vessel docking system according to an embodiment of the present invention is composed of the ship berthing guidance server 100, guide line delivery device 200 and the berthing target ship 300. Here, the ship berthing guidance server 100 includes a ship information acquisition server 110, operation server 120 and guideline control server 130. At this time, the vessel information acquisition server 110, the operation server 120 and the guideline control server 130 are each composed of an independent server to operate in conjunction with each other, or any component in the ship docking server 100 It may be made of hardware forming a.
선박정보획득서버(110)는 접안대상선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다. 즉, 선박정보획득서버(110)는 접안대상선박으로부터 접안요청신호가 수신되면, 해당 접안대상선박에 대한 현재의 위치, 질량, 크기, 진행방향 등에 대한 선박정보를 획득한다. 이때, 선박정보획득서버(110)는 해당 접안대상선박(300)으로부터 선박정보를 수신하거나, GPS(Global Positioning System), 초음파센서 등을 이용하여 접안대상선박(300)에 대한 위치, 질량, 크기, 방향 등에 대한 선박정보를 측정할 수 있다.The vessel information acquisition server 110 acquires vessel information including the position, mass, size, and direction of the ship to be docked 300. That is, when the ship information acquisition server 110 receives the eyepiece request signal from the ship to be docked, and acquires the ship information about the current position, mass, size, direction of the ship. At this time, the ship information acquisition server 110 receives the ship information from the corresponding docking target ship 300, or the position, mass, size for the docking target ship 300 using a GPS (Global Positioning System), ultrasonic sensors, etc. The ship information can be measured about the direction of the ship.
연산서버(120)는 선박정보획득서버(110)에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산한다. 이때, 연산서버(120)는 접안대상선박(300)으로부터 접안요청신호가 수신된 후, 본 발명의 실시예에 따라 해당 접안대상선박(300)을 자동 접안하는 과정에서 선박정보획득서버(110)로부터 위치, 방향 등의 선박정보를 주기적으로 수신하여 현재의 접안대상선박과 접안해안 사이의 거리를 계산할 수 있다.The operation server 120 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 110. At this time, the operation server 120 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 110 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention By receiving ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the current berthing vessel and the berthing coast.
유도라인제어서버(130)는 선박정보획득서버(110)에 의해 획득된 선박정보 및 연산서버(120)에 의해 계산된 거리에 따라 유도라인송출장치(200)에 의해 송출되는 유도라인의 길이 및 장력을 제어한다.The guide line control server 130 is the length of the guide line transmitted by the guide line transmission device 200 according to the ship information obtained by the ship information acquisition server 110 and the distance calculated by the operation server 120 and Control the tension
유도라인송출장치(200)는 복수로 구비되며, 도 2에 도시한 바와 같이 각각이 서로 다른 위치에 설치되고, 선박정보획득서버(110)에 의해 획득한 선박정보에 기초하여 접안대상선박이 설정된 범위 이내에 접근하면 접안대상선박과 각각 유도라인을 연결한다. 이때, 유도라인송출장치(200)는 유도라인(210), 원통부(220), 통신부(230), 회전제어부(240) 및 자력발생부(250)를 포함할 수 있다.Guide line sending device 200 is provided with a plurality, each is installed in a different position as shown in Figure 2, the berthing target ship is set based on the vessel information obtained by the vessel information acquisition server 110 Approach within the range to connect the docking vessel to each guideline. In this case, the induction line transmitting device 200 may include an induction line 210, a cylindrical unit 220, a communication unit 230, a rotation control unit 240 and a magnetic force generating unit 250.
이때, 각각의 유도라인송출장치(200)는 도 3에 도시한 바와 같이, 접안대상 해안에 인접하는 위치(A)와 접안대상 해안으로부터 멀리 떨어진 위치(B)에 서로 대향하여 설치될 수 있다.At this time, each of the guide line delivery device 200 may be installed to face each other at a position (A) adjacent to the eyepiece target shore and a position (B) far away from the eyepiece target shore, as shown in FIG.
유도라인(210)은 원통부(220)에 권선된다. 이때, 통신부(230)는 유도라인제어서버(130)와 유선 또는 무선으로 연결되어 제어신호를 송수신할 수 있으며, 원통부(220)의 축에는 원통부(220)를 정방향 또는 부방향으로 회전시키는 회전제어부(240)가 연결되어 있다. 회전제어부(240)는 통신부(230)를 통해 유도라인제어서버(130)로부터 수신되는 제어신호에 따라 원통부(220)를 정방향 또는 부방향으로 회전시킴으로써 유도라인을 감거나 풀 수 있다. 또한, 유도라인(210)의 선단에는 통신부(230)를 통해 유도라인제어서버(130)로부터 수신되는 제어신호에 따라 자력을 발생시키거나 차단하는 자력발생부(250)가 설치된다. 이때, 자력발생부(250)는 도너츠 모양이나 갈고리 모양으로 형성될 수 있다. Induction line 210 is wound around the cylindrical portion (220). At this time, the communication unit 230 may be connected to the induction line control server 130 by wire or wireless to transmit and receive a control signal, and to rotate the cylindrical portion 220 in the positive or negative direction on the shaft of the cylindrical portion 220. Rotation control unit 240 is connected. The rotation controller 240 may wind or unwind the induction line by rotating the cylindrical part 220 in the forward or negative direction according to a control signal received from the induction line control server 130 through the communication unit 230. In addition, a magnetic force generator 250 is installed at the tip of the induction line 210 to generate or block magnetic force according to a control signal received from the induction line control server 130 through the communication unit 230. At this time, the magnetic force generating unit 250 may be formed in the shape of a donut or hook.
도 2 및 도 3을 참조하면, 각각의 유도라인송출장치(200)는 설정된 범위 내에 각각의 자력발생부(250)를 위치시킬 수 있다. 이 경우, 접안해안에 인접한 유도라인송출장치(200)(A)는 유도라인을 풀어놓은 상태일 수 있으며, 접안해안으로부터 멀리 떨어진 유도라인송출장치(200)(B)는 유도라인을 감아놓은 상태일 수 있다.2 and 3, each of the induction line transmitting apparatus 200 may locate each magnetic force generating unit 250 within a set range. In this case, the guide line delivery device 200 (A) adjacent to the berthing coast may be in a released state, and the guide line delivery device 200 (B) far away from the berthing coast winds the guide line. Can be.
접안대상선박(300)이 설정된 범위 이내에 접근하면, 각각의 유도라인송출장치(200)는 각각의 유도라인(210)을 해당 접안대상선박(300)과 연결시킨다. 이를 위해, 접안대상선박(300)은 각각의 유도라인(210)과 연결하기 위한 연결라인(도시하지 않음)을 구비하며, 해당 연결라인의 선단에는 철이나 자성체를 구비하고, 해당 철이나 자성체는 갈고리 형상으로 구현될 수 있다. 즉, 접안대상선박(300)이 설정된 범위 이내에 접근한 후 연결라인을 내리면, 유도라인제어서버(130)는 각각의 유도라인송출장치(200)의 자력발생부(250)에 자력을 발생시키는 제어신호를 송출하며, 이를 통해 각각의 유도라인송출장치(200)의 유도라인(210)과 접안대상선박(300)의 연결라인을 연결시킬 수 있다.When the docking target ship 300 approaches within the set range, each guideline delivery device 200 connects each guideline 210 with the corresponding docking target ship 300. To this end, the eyepiece 300 is provided with a connection line (not shown) for connecting with each of the induction line 210, the end of the connection line is provided with iron or magnetic material, the iron or magnetic material It may be implemented in a hook shape. That is, when the docking target ship 300 approaches within the set range and lowers the connection line, the induction line control server 130 controls to generate magnetic force in the magnetic force generating unit 250 of each induction line transmitting device 200. It transmits a signal, through which the induction line 210 and the connection line of the eyepiece target ship 300 of each induction line transmission device 200 can be connected.
접안대상선박(300)에 각각의 유도라인송출장치(200)의 유도라인(210)이 연결되면, 유도라인제어서버(130)는 각각의 유도라인(210)의 장력 및 길이를 제어하여 접안대상선박(300)을 접안해안으로 끌어들인다. 즉, 유도라인제어서버(130)는 접안해안에 인접한 유도라인송출장치(200)(A)의 유도라인(210)은 원통부(220)에 감기도록 제어하며, 접안해안으로부터 멀리 떨어진 위치의 유도라인송출장치(200)(B)의 유도라인(210)은 원통부(220)에서 풀리도록 제어하여 접안대상선박(300)을 접안해안으로 끌 수 있다.When the induction line 210 of each induction line transmission device 200 is connected to the eyepiece target ship 300, the induction line control server 130 controls the tension and length of each induction line 210 to the eyepiece The ship 300 is drawn into the berth. That is, the induction line control server 130 controls the induction line 210 of the induction line transmission device 200 (A) adjacent to the eyepiece coast to be wound on the cylindrical portion 220, and guides the position far from the eyepiece coast. The induction line 210 of the line delivery device 200 (B) may be controlled to be released from the cylindrical portion 220 to drag the eyepiece target ship 300 into the eyepiece coast.
한편, 접안대상선박(300)은 자세측정장치(310) 및 무선통신장치(320)를 구비할 수 있다. 여기서, 자세측정장치(310)는 접안대상선박(300)이 접안해안으로 자동 접안되는 과정에서 접안대상선박(300)의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정한다. 또한, 무선통신장치(320)는 자세측정장치(310)에 의해 측정된 접안대상선박(300)의 자세정보를 유도라인제어서버(130)에 무선으로 전송한다. 이 경우, 유도라인제어서버(130)는 무선통신장치(320)를 통해 수신한 접안대상선박의 자세정보에 따라 각각의 유도라인(210)의 길이 및 장력을 보정할 수 있다. 예를 들어, 접안대상선박(300)의 방향이 비뚤어지거나, 기울기가 어느 특정방향으로 기울어진 경우, 유도라인제어서버(130)는 각각의 유도라인의 길이 및 장력을 제어하여 접안대상선박(300)의 자세를 정상적으로 바로잡을 수 있다.Meanwhile, the eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320. Here, the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast. In addition, the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the induction line control server 130. In this case, the induction line control server 130 may correct the length and tension of each induction line 210 according to the attitude information of the eyepiece target ship received through the wireless communication device 320. For example, when the direction of the eyepiece target ship 300 is skewed or the inclination is inclined in any particular direction, the guideline control server 130 controls the length and tension of each guideline to dock the eyepiece target ship 300 ) Can correct the posture normally.
접안대상선박(300)이 접안해안에 접안 완료된 경우, 유도라인제어서버(130)는 각각의 유도라인송출장치(200)의 자력발생부(250)에 자력을 발생시킨다. 이때, 유도라인제어서버(130)는 접안해안에 인접한 유도라인송출장치(200)(A)의 자력발생부(250)와 접안해안으로부터 멀리 떨어진 유도라인송출장치(200)(B)의 자력발생부(250)를 밀착시킨 상태에서 접안해안으로부터 멀리 떨어진 유도라인송출장치(200)(B)의 유도라인(210)을 감으면 접안해안에 인접한 위치의 유도라인송출장치(200)(A)의 유도라인(210)은 풀리면서 끌려가게 되며, 유도라인제어서버(130)는 각각의 유도라인(210)이 설정된 범위 내에 위치되었을 때 자력발생부(250)의 자력을 차단 제어할 수 있다.When the berthing target ship 300 is the berthing coast is completed, the induction line control server 130 generates a magnetic force in the magnetic force generating unit 250 of each induction line transmission device 200. At this time, the induction line control server 130 is a magnetic force generation of the induction line transmission device 200 (B) far from the eyepiece generator 250 and the eyepiece coast of the induction line transmission device 200 (A) adjacent to the berthing coast. When the guide line 210 of the guide line delivery device 200 (B) far away from the eyepiece coast is wound while the part 250 is in close contact, the guide line delivery device 200 (A) The induction line 210 is pulled while being released, and the induction line control server 130 may block and control the magnetic force of the magnetic force generating unit 250 when each induction line 210 is positioned within a set range.
도 4는 본 발명의 다른 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면이다.4 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
도 4를 참조하면, 본 발명에 따른 선박 자동접안 시스템은 접안대상선박(300), 선박접안유도서버(400), 무인추진장치(500) 및 초음파감지장치(600)를 포함할 수 있다. Referring to FIG. 4, the ship's automatic berthing system according to the present invention may include a berthing target ship 300, a ship's berth induction server 400, an unmanned propulsion device 500, and an ultrasonic sensing device 600.
접안대상선박(300)은 자세측정장치(310) 및 무선통신장치(320)를 구비할 수 있다. 여기서, 자세측정장치(310)는 접안대상선박(300)이 접안해안으로 자동 접안되는 과정에서 접안대상선박(300)의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정한다. 또한, 무선통신장치(320)는 자세측정장치(310)에 의해 측정된 접안대상선박(300)의 자세정보를 추진장치제어서버(430)에 무선으로 전송한다.The eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320. Here, the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast. In addition, the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430.
선박접안유도서버(400)는 선박정보획득서버(410), 연산서버(420), 추진장치제어서버(430), 접안경로설정서버(440) 및 위치판단서버(450)를 포함한다. 이때, 선박정보획득서버(410), 연산서버(420), 추진장치제어서버(430), 접안경로설정서버(440) 및 위치판단서버(450)는 각각이 독립적인 서버로 이루어지며 상호 연동하여 동작하거나, 선박접안유도서버(400) 내의 일체의 구성요소를 이루는 하드웨어로 이루어질 수 있다.The ship berthing guidance server 400 includes a ship information acquisition server 410, operation server 420, propulsion device control server 430, eyepiece path setting server 440 and position determination server 450. At this time, the ship information acquisition server 410, operation server 420, propulsion device control server 430, eyepiece path setting server 440 and position determination server 450 are each formed as independent servers and interworked It may be made of hardware that operates or constitutes an integral component in the ship's eyepiece guided server 400.
선박정보획득서버(410)는 접안대상 선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다. 즉, 선박정보획득서버(410)는 접안대상선박으로부터 접안요청신호가 수신되면, 해당 접안대상선박에 대한 현재의 위치, 질량, 크기, 진행방향 등에 대한 선박정보를 획득한다. 이때, 선박정보획득서버(410)는 해당 접안대상선박(300)으로부터 선박정보를 수신하거나, GPS(Global Positioning System), 초음파센서 등을 이용하여 접안대상선박(300)에 대한 위치, 질량, 크기, 방향 등에 대한 선박정보를 측정할 수 있다.The vessel information acquisition server 410 acquires vessel information including the position, mass, size, and direction of the vessel to be docked 300. That is, the ship information acquisition server 410 acquires ship information on the current position, mass, size, direction of travel, etc. for the ship to be docked when the eyepiece request signal is received from the ship to be docked. At this time, the vessel information acquisition server 410 receives vessel information from the corresponding berth 300, or position, mass, size for the berth 300 by using a GPS (Global Positioning System), ultrasonic sensors, etc. The ship information can be measured about the direction of the ship.
연산서버(420)는 선박정보획득서버(410)에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산한다. 이때, 연산서버(420)는 접안대상선박(300)으로부터 접안요청신호가 수신된 후, 본 발명의 실시예에 따라 해당 접안대상선박(300)을 자동접안하는 과정에서 선박정보획득서버(410)로부터 위치, 방향 등의 선박정보를 주기적으로 수신하여 현재의 위치에서의 해당 접안대상선박과 접안해안 사이의 거리를 계산할 수 있다.The calculation server 420 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 410. At this time, the operation server 420 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 410 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention By receiving ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the corresponding berthing vessel and the berthing coast at the current position.
추진장치제어서버(430)는 선박정보획득서버(410)에 의해 획득한 선박정보 및 연산서버(420)에 의해 계산된 거리에 따라 복수의 무인추진장치(500)의 추진력 및 방향을 제어한다. 이를 위해 추진장치제어서버(430)는 무인추진장치(500)와 무선으로 데이터를 송수신한다.The propulsion device control server 430 controls the propulsion force and direction of the plurality of unmanned propulsion devices 500 according to the ship information obtained by the ship information acquisition server 410 and the distance calculated by the calculation server 420. To this end, the propulsion device control server 430 transmits and receives data wirelessly with the unmanned propulsion device (500).
접안경로설정서버(440)는 접안대상선박(300)이 설정된 영역 내에 위치하면, 접안대상선박(300)의 접안경로를 설정한다. 이때, 추진장치제어서버(430)는 선박정보획득서버(410)에 의해 현재에 획득되는 위치정보를 접안경로설정서버(440)에 의해 설정된 접안경로와 비교하며, 비교된 결과에 따라 각각의 무인추진장치(500)의 추진력 및 방향을 제어할 수 있다.The eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object vessel 300 is located within the set area. At this time, the propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440, each unmanned in accordance with the comparison result The driving force and direction of the propulsion device 500 can be controlled.
한편, 해양의 저면 또는 해수면에는 도 5에 도시한 바와 같이 설정된 간격으로 복수의 초음파감지장치(600)가 설치될 수 있으며, 각각의 초음파감지장치(600)는 설정된 주기로 초음파신호를 발신하고 그에 대응하여 수신된 감지신호를 위치판단서버(450)로 전송한다. 이때, 각각의 초음파감지장치(600)는 고유의 식별자 및 위치정보를 저장하고 있으며, 수직 상면으로 초음파신호를 송출하고 그에 대한 반사신호를 수신하여 위치판단서버(450)에 전송한다. Meanwhile, a plurality of ultrasonic sensing devices 600 may be installed on the bottom or sea surface of the ocean at set intervals as shown in FIG. 5, and each ultrasonic sensing device 600 transmits ultrasonic signals at set cycles and correspondingly. By transmitting the received detection signal to the position determination server 450. At this time, each ultrasonic sensing device 600 stores a unique identifier and location information, and transmits the ultrasonic signal to the vertical upper surface and receives the reflection signal for the transmitted to the position determination server 450.
위치판단서버(450)는 해저면 또는 해수면에 부표의 형태로 설치된 각각의 초음파감지장치(600)로부터 초음파신호에 대응하는 감지신호를 수신하며, 복수의 초음파감지장치(600)로부터 수신된 감지신호에 기초하여 무인추진장치(500)의 위치를 판단할 수 있다. 즉, 각각의 초음파감지장치(600)에 의한 감지신호의 상대적인 세기에 기초하여 무인추진장치(500)의 위치를 판단할 수 있다. 이때, 추진장치제어서버(430)는 위치판단서버(450)에 의해 판단된 각각의 무인추진장치(500)의 위치에 대응하여 접안대상선박(300)과 무인추진장치(500) 사이의 거리, 방향 등을 계산할 수 있으며, 그에 따라 각각의 무인추진장치(500)의 추진력 및 방향을 제어할 수 있다.The position determination server 450 receives a detection signal corresponding to an ultrasonic signal from each ultrasonic sensing device 600 installed in the form of a buoy on the sea bottom or the sea surface, and the sensing signals received from the plurality of ultrasonic sensing devices 600. Based on the position of the unmanned propulsion device 500 can be determined. That is, the position of the unmanned propulsion device 500 may be determined based on the relative strength of the detection signal of each ultrasonic sensing device 600. At this time, the propulsion device control server 430 corresponds to the position of each unmanned propulsion device 500 determined by the position determination server 450, the distance between the berthing target ship 300 and the unmanned propulsion device 500, It is possible to calculate the direction, etc., thereby controlling the driving force and direction of each unmanned propulsion device (500).
무인추진장치(500)는 추진장치제어서버(430)로부터 무선으로 수신되는 제어신호에 따라 방향 및 추진력이 제어되는 소형 선박으로서, 그 크기 및 추진력은 접안대상선박(300)의 질량, 크기 등에 따라 다양한 종류로 설정될 수 있다.The unmanned propulsion device 500 is a small ship whose direction and propulsion force are controlled in accordance with a control signal wirelessly received from the propulsion control server 430, the size and the propulsion force of the ship to be docked 300, the size, etc. It can be set to various kinds.
도 6은 도 4에 도시한 선박 자동접안 시스템의 자동접안 과정을 설명하기 위해 도시한 도면이다.FIG. 6 is a view for explaining an automatic berthing process of the automatic ship berthing system shown in FIG.
접안대상선박(300)으로부터 접안요청신호가 수신되면, 추진장치제어서버(430)는 복수의 무인추진장치(500)를 무선으로 제어하여 접안대상선박(300)의 둘레에 밀착시킬 수 있다. When the eyepiece request signal is received from the eyepiece target ship 300, the propulsion device control server 430 may wirelessly control the plurality of unmanned propulsion devices 500 to be in close contact with the berth target ship 300.
접안경로설정서버(440)는 접안대상선박(300)이 설정된 영역 내에 위치하면, 접안대상선박(300)의 접안경로를 설정한다. 이때, 추진장치제어서버(430)는 선박정보획득서버(410)에 의해 현재에 획득되는 위치정보를 접안경로설정서버(440)에 의해 설정된 접안경로와 비교하며, 비교된 결과에 따라 각각의 무인추진장치(500)의 추진력 및 방향을 제어한다. 예를 들어 접안경로설정서버(440)에 의해 설정된 접안경로가 P1 -> P2 -> P3 -> P4라고 가정하면, 추진장치제어서버(430)는 특정 위치에 있는 무인추진장치(500)의 추진력 및 방향을 제어함으로서 접안대상선박이 접안해안 쪽으로 밀리도록 하며, 선박정보획득서버(410)에 의해 현재에 획득되는 위치정보를 접안경로설정서버(440)에 의해 설정된 접안경로와 비교하여 설정된 경로를 벗어났는지의 여부를 검토하고, 그에 따라 각각의 무인추진장치(500)의 추진력 및 방향을 보정하여 제어할 수 있다.The eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object vessel 300 is located within the set area. At this time, the propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440, each unmanned in accordance with the comparison result Controls the propulsion and direction of the propulsion device (500). For example, assuming that the eyepiece path set by the eyepiece path setting server 440 is P1-> P2-> P3-> P4, the propulsion device control server 430 is the propulsion force of the unmanned propulsion device 500 at a specific position. And by controlling the direction of the berthing target ship to the berthing coast, and compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440 Examine whether or not the deviation, and accordingly can be controlled by correcting the driving force and direction of each unmanned propulsion device (500).
또한, 추진장치제어서버(430)는 무선통신장치(320)를 통해 수신되는 접안대성선박(300)의 자세정보에 기초하여 각각의 무인추진장치(500)의 추진력 및 방향을 보정할 수도 있다. In addition, the propulsion device control server 430 may correct the propulsion and direction of each unmanned propulsion device 500 based on the attitude information of the eyepiece sung ship 300 received through the wireless communication device 320.
도 7은 본 발명의 또 다른 실시예에 따른 선박 자동접안 시스템을 개략적으로 도시한 도면이다.7 is a view schematically showing a ship automatic berthing system according to another embodiment of the present invention.
도 7을 참조하면, 본 발명에 따른 선박 자동접안 시스템은 접안대상선박(300), 선박접안유도서버(700) 및 끌기및밀기장치(800)를 포함할 수 있다. Referring to FIG. 7, the ship's automatic berthing system according to the present invention may include a berthing target ship 300, the ship berthing guidance server 700 and the drag and push device (800).
접안대상선박(300)은 자세측정장치(310) 및 무선통신장치(320)를 구비할 수 있다. 여기서, 자세측정장치(310)는 접안대상선박(300)이 접안해안으로 자동 접안되는 과정에서 접안대상선박(300)의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정한다. 또한, 무선통신장치(320)는 자세측정장치(310)에 의해 측정된 접안대상선박(300)의 자세정보를 추진장치제어서버(430)에 무선으로 전송한다.The eyepiece target ship 300 may include a posture measuring device 310 and a wireless communication device 320. Here, the posture measuring device 310 measures the posture including at least one of the speed, the tilt, and the direction of the eyepiece target ship 300 in the process of the eyepiece 300 is automatically docked into the eyepiece coast. In addition, the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430.
선박접안유도서버(700)는 선박정보획득서버(710), 연산서버(720) 및 제어서버(730)를 포함한다. 이때, 선박정보획득서버(710), 연산서버(720) 및 제어서버(730)는 각각이 독립적인 서버로 이루어지며 상호 연동하여 동작하거나, 선박접안유도서버(700) 내의 일체의 구성요소를 이루는 하드웨어로 이루어질 수 있다.The ship berth induction server 700 includes a ship information acquisition server 710, a calculation server 720 and a control server 730. At this time, the ship information acquisition server 710, the operation server 720 and the control server 730 are each made of an independent server to operate in conjunction with each other, or to form any component in the ship docking guide server 700 It may be made in hardware.
선박정보획득서버(710)는 접안대상 선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다. 즉, 선박정보획득서버(710)는 접안대상선박으로부터 접안요청신호가 수신되면, 해당 접안대상선박에 대한 현재의 위치, 질량, 크기, 진행방향 등에 대한 선박정보를 획득한다. 이때, 선박정보획득서버(710)는 해당 접안대상선박(300)으로부터 선박정보를 수신하거나, GPS, 초음파센서 등을 이용하여 접안대상선박(300)에 대한 위치, 질량, 크기, 방향 등에 대한 선박정보를 측정할 수 있다.The vessel information acquisition server 710 acquires vessel information including the position, mass, size, and direction of the vessel to be docked 300. That is, the ship information acquisition server 710 acquires ship information about the current position, mass, size, direction of travel, etc., when the eyepiece request signal is received from the ship to be docked. At this time, the ship information acquisition server 710 receives the ship information from the corresponding docking target ship 300, or the ship about the position, mass, size, direction, etc. for the docking target ship 300 using GPS, ultrasonic sensors, etc. Information can be measured.
연산서버(720)는 선박정보획득서버(710)에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산한다. 이때, 연산서버(720)는 접안대상선박(300)으로부터 접안요청신호가 수신된 후, 본 발명의 실시예에 따라 해당 접안대상선박(300)을 자동 접안하는 과정에서 선박정보획득서버(710)로부터 위치, 방향 등의 선박정보를 주기적으로 수신하여 현재의 위치에서의 해당 접안대상선박과 접안해안 사이의 거리를 계산할 수 있다.The calculation server 720 calculates the distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server 710. At this time, the operation server 720 after receiving the eyepiece request signal from the docking target ship 300, the ship information acquisition server 710 in the process of automatically docking the corresponding docking target ship 300 according to an embodiment of the present invention By receiving ship information such as position and direction periodically from the ship, it is possible to calculate the distance between the corresponding berthing vessel and the berthing coast at the current position.
제어서버(730)는 선박정보획득서버(710)에 의해 현재 획득되는 선박정보 및 연산서버(720)에 의해 계산되는 거리에 기초하여 끌기및밀기장치(800)의 각각의 끌기장치(810) 또는 밀기장치(820)를 제어한다.The control server 730 is the respective draw device 810 of the drag and push device 800 based on the ship information currently obtained by the ship information acquisition server 710 and the distance calculated by the operation server 720 or The pusher 820 is controlled.
끌기및밀기장치(800)를 구성하는 끌기장치(810)는 접안해안에 설치되며, 접안대상선박(300)의 일 측면에 부착되어 접안대상선박(300)을 접안해안으로 끌어당긴다. 또한, 밀기장치(820)는 접안해안에 설치되며, 끌기장치(810)가 끄는 방향과 반대방향으로 접안대상선박(300)을 민다.The drag device 810 constituting the drag and push device 800 is installed on the berthing coast, is attached to one side of the berthing target ship 300 to pull the berthing target ship 300 to the berthing coast. In addition, the pushing device 820 is installed in the eyepiece coast, and pushes the eyepiece target ship 300 in a direction opposite to the direction in which the drag device 810 is dragged.
도 8은 도 7에 도시한 끌기장치 및 밀기장치를 설명하기 위해 도시한 도면이다.FIG. 8 is a view for explaining a drag device and a push device shown in FIG.
도 8을 참조하면, 끌기장치(810)는 로프와 같이 플렉시블(flexible)한 재질로 이루어질 수 있으며, 그 선단에는 바다위에 부상하는 부유체(812)가 설치된다. 또한, 부유체(812)에는 접안대상선박(300)을 식별하며 식별된 접안대상선박(300)을 향해 부유체(812)를 이동시키는 추진체(814)가 형성된다. 이때, 추진체(814)는 선박정보획득서버(710)에 의해 획득된 선박정보에 기초하여 특정의 위치를 식별값으로 인식하고 부유체(812)를 이동시키거나, 접안대상선박(300)의 측면에 기 설치된 송출센서(도시하지 않음)에 의해 송출되는 특정 주파수의 신호를 인식하고, 인식된 주파수 신호의 위치를 추적하여 해당 송출센서의 위치로 부유체(812)를 이동시킬 수 있다. 그러나, 추진체(814)에 의한 접안대상선박(300)의 식별 및 이동은 기재된 방법에 한정되는 것은 아니며, 공지된 다양한 대상인식방법이 이용될 수도 있다. 이 경우, 끌기장치(810)를 구성하는 로프와 같은 줄은 부유체(812)의 이동방향으로 그 길이가 연장되도록 구현되는 것이 바람직하다.Referring to FIG. 8, the drag device 810 may be made of a flexible material such as a rope, and a floating body 812 floating on the sea is installed at a tip thereof. In addition, the floating body 812 is formed with a propellant 814 for identifying the eyepiece 300 and moving the floating body 812 toward the identified eyepiece 300. At this time, the propellant 814 recognizes a specific position as an identification value based on the ship information acquired by the ship information acquisition server 710 and moves the floating body 812, or the side of the berthing target ship 300. The floating body 812 may be moved to a position of a corresponding transmission sensor by recognizing a signal of a specific frequency transmitted by a transmission sensor (not shown) installed in the unit, and tracking the position of the recognized frequency signal. However, identification and movement of the eyepiece 300 by the propellant 814 is not limited to the described method, and various known object recognition methods may be used. In this case, a rope such as a rope constituting the drag device 810 is preferably implemented so that its length extends in the moving direction of the floating body 812.
부유체(812)가 접안대상선박(300)의 일 측면으로 이동하면, 부유체(812)에 연결된 끌기장치(810)를 접안대상선박(300)과 연결한다. 이때, 끌기장치(810)는 접안대상선박(300)의 특정 위치에 자성을 통해 자동으로 연결되도록 구현될 수 있다. 이 경우, 접안대상선박(300)의 선미, 후미, 중앙부 등의 복수의 위치에 끌기장치(810)가 연결되는 것이 바람직하다.When the floating body 812 moves to one side of the eyepiece 300, the drag device 810 connected to the floating body 812 is connected to the eyepiece 300. At this time, the drag device 810 may be implemented to be automatically connected to a specific position of the eyepiece 300 by the magnetism. In this case, it is preferable that the drag device 810 is connected to a plurality of positions, such as the stern, the tail, the center of the eyepiece 300.
제어서버(730)는 접안대상선박(300)의 일 측면에 연결된 끌기장치(810)를 제어하여 접안대상선박(300)을 접안해안으로 끌어당길 수 있다. 이때, 제어서버(730)는 각각의 끌기장치(810)의 끌어당기는 힘을 서로 다르게 조절하여 접안대상선박(300)의 진행방향을 제어할 수 있다. The control server 730 may control the drag device 810 connected to one side of the docking target ship 300 to pull the docking target ship 300 to the docking coast. At this time, the control server 730 may control the progress direction of the eyepiece target ship 300 by adjusting the pulling force of each drag device 810 differently.
한편, 접안해안의 일 방향에서 접안대상선박(300)을 끌어당기다 보면 접안대상선박(300)의 진행방향이 예정된 경로를 벗어날 수도 있다. 이 경우, 제어서버(730)는 밀기장치(820)의 길이를 제어하여 접안대상선박(300)을 접안해안과 반대방향으로 밀 수 있다. 이를 위해, 밀기장치(820)는 그 길이가 연장 또는 축소 가능하며, 그 선단에는 접안대상선박(300)의 접촉부위의 파손을 방지하기 위한 부드러운 재질의 접촉면을 갖는 것이 바람직하다. 또한, 밀기장치(820)는 접안해안선을 따라 복수개로 설치되거나, 접안해안선을 따라 좌우 방향으로 이동이 가능하게 설치되는 것이 바람직하다.On the other hand, if you pull the berthing target ship 300 in one direction of the berthing coast, the traveling direction of the berthing target ship 300 may deviate from the predetermined path. In this case, the control server 730 may control the length of the pusher 820 to push the eyepiece target ship 300 in the opposite direction to the eyepiece coast. To this end, the pusher 820 may be extended or shortened in length, and preferably at the tip thereof has a contact surface made of a soft material to prevent breakage of the contact portion of the berthing target ship 300. In addition, the pushing device 820 is preferably provided in plurality in the eyepiece coastline, or is provided to be movable in the left and right directions along the eyepiece coastline.
도 9는 본 발명의 일 실시예에 따른 선박 자동접안 방법의 흐름도이다.9 is a flow chart of a ship auto docking method according to an embodiment of the present invention.
도 1, 도 2, 도 3 및 도 9를 참조하면, 선박정보획득서버(110)는 접안대상선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다(S102). 즉, 선박정보획득서버(110)는 접안대상선박으로부터 접안요청신호가 수신되면, 해당 접안대상선박에 대한 현재의 위치, 질량, 크기, 진행방향에 대한 선박정보를 획득한다. 1, 2, 3 and 9, the vessel information acquisition server 110 obtains vessel information including the position, mass, size, direction of the berth target ship (S102). That is, the ship information acquisition server 110 obtains the ship information on the current position, mass, size, direction of travel for the corresponding docking vessel when the eyepiece request signal is received from the docking target vessel.
유도라인제어서버(130)는 각각의 유도라인(210)의 선단에 설치된 자력발생부(250)의 자력을 발생시키거나 차단제어하여 각각의 유도라인(210)을 설정된 범위 내에 위치시킬 수 있으며(S104), 또한 각각의 유도라인(210)의 자력발생부(250)에 대한 자력을 발생 또는 차단 제어하여 각각의 유도라인을 접안대상선박(300)에 연결할 수 있다(S106).The induction line control server 130 may generate or block control the magnetic force of the magnetic force generating unit 250 installed at the tip of each induction line 210 to position each induction line 210 within a set range; S104), by generating or blocking control of the magnetic force for the magnetic force generating unit 250 of each induction line 210, it is possible to connect each induction line to the eyepiece target ship 300 (S106).
유도라인제어서버(130)는 각각의 유도라인(210)의 길이 및 장력을 제어하여 접안대상선박(300)을 접안해안으로 끌어들인다(S108). The induction line control server 130 controls the length and tension of each induction line 210 to attract the eyepiece target ship 300 to the eyepiece (S108).
연산서버(120)는 선박정보획득서버(110)에 의해 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산한다(S110). 이때, 연산서버(120)는 접안대상선박(300)으로부터 접안요청신호가 수신된 후, 해당 접안대상선박(300)을 자동접안하는 과정에서 위치, 방향 등의 선박정보의 변이를 주기적으로 측정하여 해당 접안대상선박과 접안해안 사이의 거리의 변화를 계산할 수 있다.The calculation server 120 calculates the distance between the berthing target ship and the berthing coast based on the ship information acquired by the ship information acquisition server 110 (S110). At this time, the operation server 120 after receiving the eyepiece request signal from the docking target ship 300, in the process of automatically docking the corresponding docking target ship 300 by measuring the variation of the vessel information such as position, direction, etc. periodically The change in distance between the ship to be docked and the coast of the eyepiece may be calculated.
자세측정장치(310)는 접안대상선박(300)이 접안해안으로 자동 접안되는 과정에서 접안대상선박(300)의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정한다(S112). 또한, 무선통신장치(320)는 자세측정장치(310)에 의해 측정된 접안대상선박(300)의 자세정보를 유도라인제어서버(130)에 무선으로 전송한다. 이 경우, 유도라인제어서버(130)는 무선통신장치(320)를 통해 수신한 접안대상선박(300)의 자세가 정상이 아니면(S114)(예를 들어, 방향이나 기울기가 기울어져 있거나 속도가 설정된 범위를 벗어나는 경우 등), 각각의 유도라인(210)의 길이 및 장력을 보정할 수 있다(S116). The posture measuring device 310 measures a posture including at least one of the speed, the inclination, and the direction of the eyepiece target ship 300 in the process of the eyepiece object 300 being automatically docked into the eyepiece (S112). In addition, the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the induction line control server 130. In this case, the induction line control server 130 is not normal (S114) (for example, the direction or the slope is inclined or the speed is not the attitude of the docking target ship 300 received through the wireless communication device 320) If outside the set range), the length and tension of each induction line 210 can be corrected (S116).
이와 같은 과정은 연산서버(120)에 의해 계산된 접안대상선박과 접안해안 사이의 거리가 설정값 이하가 될 때까지 반복적으로 수행될 수 있다(S118).This process may be repeatedly performed until the distance between the eyepiece target ship and the eyepiece coast calculated by the calculation server 120 becomes less than or equal to the set value (S118).
도 10은 본 발명의 다른 실시예에 따른 선박 자동접안 방법의 흐름도이다.10 is a flow chart of a ship automatic docking method according to another embodiment of the present invention.
도 4, 도 5, 도 6 및 도 10을 선박정보획득서버(410)는 접안대상 선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다(S202). 즉, 선박정보획득서버(410)는 접안대상선박으로부터 접안요청신호가 수신되면, 해당 접안대상선박에 대한 현재의 위치, 질량, 크기, 진행방향 등에 대한 선박정보를 획득한다. 4, 5, 6, and 10, the ship information acquisition server 410 obtains ship information including the position, mass, size, and direction of the ship to be docked (S202). That is, the ship information acquisition server 410 acquires ship information on the current position, mass, size, direction of travel, etc. for the ship to be docked when the eyepiece request signal is received from the ship to be docked.
접안대상선박(300)으로부터 접안요청신호가 수신되면, 추진장치제어서버(430)는 복수의 무인추진장치(500)를 무선으로 제어하여 접안대상선박(300)의 둘레에 밀착시킨다(S204). When the eyepiece request signal is received from the eyepiece target ship 300, the propulsion device control server 430 wirelessly controls the plurality of unmanned propulsion device 500 to closely adhere to the circumference of the eyepiece target ship 300 (S204).
접안경로설정서버(440)는 접안대상선박(300)이 설정된 영역 내에 위치하면, 접안대상선박(300)의 접안경로를 설정한다(S206). 여기서, 도면에는 복수의 무인추진장치(500)가 접안대상선박(300)의 둘레에 밀착된 후에 접안경로설정서버(440)가 접안대상선박(300)의 접안경로를 설정하는 것으로 도시하여 설명하였지만, 복수의 무인추진장치(500)는 접안경로설정서버(440)에 의한 접안경로 설정 후에 접안대상선박(300)의 둘레로 이동하여 밀착하도록 제어될 수도 있다.The eyepiece path setting server 440 sets the eyepiece path of the eyepiece object ship 300 when the eyepiece object ship 300 is located within the set area (S206). Here, although the plurality of unmanned propulsion devices 500 are in close contact with the circumference of the berthing target ship 300, the eyepiece path setting server 440 is described as setting the berth path of the berthing target ship 300, The plurality of unmanned propulsion devices 500 may be controlled to move in close contact with the eyepiece target ship 300 after setting the eyepiece path by the eyepiece path setting server 440.
추진장치제어서버(430)는 선박정보획득서버(410)에 의해 획득한 선박정보 및 연산서버(420)에 의해 계산된 거리에 따라 복수의 무인추진장치(500)의 추진력 및 방향을 제어한다(S208). The propulsion device control server 430 controls the propulsion force and direction of the plurality of unmanned propulsion devices 500 according to the ship information obtained by the ship information acquisition server 410 and the distance calculated by the operation server 420 ( S208).
위치판단서버(450)는 각각의 초음파감지장치(600)로부터 초음파신호에 대응하는 감지신호를 수신하며, 수신된 감지신호에 기초하여 각각의 무인추진장치(500)의 위치를 판단한다(S210). 이때, 추진장치제어서버(430)는 위치판단서버(450)에 의해 판단된 각각의 무인추진장치(500)의 위치에 대응하여 각각의 무인추진장치(500)의 추진력 및 방향을 제어할 수 있다.The position determination server 450 receives a detection signal corresponding to an ultrasonic signal from each ultrasonic sensing device 600, and determines the position of each unmanned propulsion device 500 based on the received detection signal (S210). . In this case, the propulsion device control server 430 may control the propulsion force and the direction of each unmanned propulsion device 500 in response to the position of each unmanned propulsion device 500 determined by the position determination server 450. .
연산서버(420)는 선박정보획득서버(410)에 의해 획득되는 선박정보에 기초하여 접안대상선박과 접안해안 사이의 거리를 계산한다(S212). 이때, 연산서버(420)는 접안대상선박(300)으로부터 접안요청신호가 수신된 후, 해당 접안대상선박(300)을 자동접안하는 과정에서 위치, 방향 등의 선박정보의 변이를 주기적으로 측정하여 해당 접안대상선박과 접안해안 사이의 거리의 변화를 계산할 수 있다.The calculation server 420 calculates the distance between the berthing target ship and the berthing coast based on the ship information acquired by the ship information acquisition server 410 (S212). At this time, the operation server 420 periodically receives the eyepiece request signal from the eyepiece target ship 300, and then periodically measures the variation of ship information such as position and direction in the process of automatically docking the corresponding eyepiece target ship 300. The change in distance between the ship to be docked and the coast of the eyepiece may be calculated.
추진장치제어서버(430)는 선박정보획득서버(410)에 의해 현재에 획득되는 위치정보를 접안경로설정서버(440)에 의해 설정된 접안경로와 비교하며(S214), 비교된 결과에 따라 접안대상선박(300)이 설정된 경로를 벗어난 경우(S216)에는 각각의 무인추진장치(500)의 추진력 및 방향을 보정 제어한다(S218).The propulsion device control server 430 compares the position information currently obtained by the ship information acquisition server 410 with the eyepiece path set by the eyepiece path setting server 440 (S214), and the eyepiece target according to the comparison result. When the ship 300 is out of the set path (S216), the driving force and the direction of each unmanned propulsion device 500 is corrected and controlled (S218).
자세측정장치(310)는 접안대상선박(300)이 접안해안으로 자동 접안되는 과정에서 접안대상선박(300)의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정한다(S220). 또한, 무선통신장치(320)는 자세측정장치(310)에 의해 측정된 접안대상선박(300)의 자세정보를 추진장치제어서버(430)에 무선으로 전송한다. 이 경우, 또한, 무선통신장치(320)를 통해 수신한 접안대상선박(300)의 자세가 정상이 아니면(S222)(예를 들어, 방향이나 기울기가 기울어져 있거나 속도가 설정된 범위를 벗어나는 경우 등), 추진장치제어서버(430)는 각각의 무인추진장치(500)의 방향 및 추진력을 보정할 수 있다(S218).The posture measuring device 310 measures a posture including at least one of the speed, the inclination, and the direction of the eyepiece target ship 300 in the process of automatically docking the eyepiece target vessel 300 into the eyepiece (S220). In addition, the wireless communication device 320 wirelessly transmits the attitude information of the eyepiece target ship 300 measured by the attitude measuring device 310 to the propulsion device control server 430. In this case, if the attitude of the eyepiece target ship 300 received through the wireless communication device 320 is not normal (S222) (for example, the direction or the slope is inclined or the speed is out of the set range, etc.). ), The propulsion device control server 430 may correct the direction and propulsion of each unmanned propulsion device (500) (S218).
이와 같은 과정은 연산서버(420)에 의해 계산된 접안대상선박과 접안해안 사이의 거리가 설정값 이하가 될 때까지 반복적으로 수행될 수 있다(S224).This process may be repeatedly performed until the distance between the eyepiece target ship and the eyepiece coast calculated by the calculation server 420 becomes less than or equal to the set value (S224).
도 11은 본 발명의 또 다른 실시예에 따른 선박 자동접안 방법을 나타낸 흐름도이다. 11 is a flowchart illustrating a ship automatic docking method according to another embodiment of the present invention.
도 7, 도 8 및 도 11을 참조하면, 선박정보획득서버(710)는 접안대상 선박(300)의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득한다(S302). 7, 8 and 11, the ship information acquisition server 710 acquires ship information including the position, mass, size, and direction of the ship to be docked (S302).
추진체(814)는 접안대상선박(300)을 인식한다(S304). 이때, 선박정보획득서버(710)에 의해 획득된 선박정보에 기초하여 특정의 위치를 식별값으로 인식하고 부유체(812)를 이동시키거나, 접안대상선박(300)의 측면에 기 설치된 송출센서(도시하지 않음)에 의해 송출되는 특정 주파수의 신호를 인식할 수 있다. 이때, 추진체(814)는 인식된 주파수 신호의 위치를 추적하여 해당 송출센서의 위치로 부유체(812)를 이동시킨다(S306). The propellant 814 recognizes the docking target ship 300 (S304). At this time, based on the vessel information obtained by the vessel information acquisition server 710 recognizes a specific position as an identification value to move the floating body 812, or the transmission sensor pre-installed on the side of the berth target ship 300 A signal of a specific frequency transmitted by (not shown) can be recognized. At this time, the propellant 814 moves the floating body 812 to the position of the corresponding transmission sensor by tracking the position of the recognized frequency signal (S306).
접안대상선박(300)의 일 측면으로 부유체(812)가 이동하면 끌기장치(810)는 접안대상선박(300)의 측면에 연결되며, 제어서버(730)는 접안대상선박(300)의 일 측면에 연결된 끌기장치(810)를 제어하여 접안대상선박(300)을 접안해안으로 끌어당긴다(S308). 이때, 제어서버(730)는 각각의 끌기장치(810)의 끌어당기는 힘을 서로 다르게 조절하여 접안대상선박(300)의 진행방향을 제어할 수 있다. When the floating body 812 moves to one side of the eyepiece 300, the drag device 810 is connected to the side of the eyepiece 300, the control server 730 is one of the eyepiece 300 The drag device 810 connected to the side is controlled to pull the berth target ship 300 into the berthing coast (S308). At this time, the control server 730 may control the progress direction of the eyepiece target ship 300 by adjusting the pulling force of each drag device 810 differently.
한편, 접안해안의 일 방향에서 접안대상선박(300)을 끌어당기다 보면 접안대상선박(300)의 진행방향이 예정된 경로를 벗어날 수도 있다. 이 경우, 연산서버(720)는 선박정보획득서버(710)에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박(300)과 접안해안 사이의 거리를 계산한다(S310). 이때, 연산서버(720)는 접안대상선박(300)의 방향, 각각의 끌기장치(810)의 길이 등에 기초하여 각 연결지점과 접안해안 사이의 거리를 계산할 수도 있다.On the other hand, if you pull the berthing target ship 300 in one direction of the berthing coast, the traveling direction of the berthing target ship 300 may deviate from the predetermined path. In this case, the calculation server 720 calculates the distance between the berthing target ship 300 and the berthing coast based on the ship information currently acquired by the ship information acquisition server 710 (S310). At this time, the operation server 720 may calculate the distance between each connection point and the eyepiece coast based on the direction of the eyepiece target ship 300, the length of each drag device 810, and the like.
연산서버(720)에 의해 계산된 접안대상선박(300)과 접안해안 사이의 거리 및 선박정보획득서버(710)에 의해 현재 획득되는 선박정보에 기초하여 접안대상선박(300)이 예정된 접안경로를 벗어난 것으로 판단되면, 제어서버(730)는 밀기장치(820)의 길이를 제어하여 접안대상선박(300)의 특정 지점을 접안해안과 반대방향으로 밀 수 있다(S312). 이때, 접안대상선박(300)의 방향전환을 위하여 밀기장치(820)를 제어함과 동시에 다른 지점에 연결된 끌기장치(810)의 끌어당김을 제어할 수도 있다. The docking target ship 300 uses the predetermined docking route based on the distance between the docking target ship 300 and the docking coast calculated by the calculation server 720 and the ship information currently acquired by the ship information acquisition server 710. If it is determined that the deviation, the control server 730 may control the length of the pusher 820 to push a specific point of the berth target ship 300 in the opposite direction to the berthing coast (S312). At this time, the pulling device 810 may be controlled to control the pushing device 820 to change the direction of the docking target ship 300 and at the same time.
본 발명에 따르면, 선박 접안작업에 필요한 인적 자원 및 물적 자원을 절감시킴으로써 선박 접안작업으로 소모되는 비용을 줄일 수 있게 된다.According to the present invention, by reducing the human resources and physical resources required for ship docking work it is possible to reduce the cost consumed by the ship docking work.
또한, 본 발명에 따르면 선박의 위치, 질량, 크기 등에 대한 선박정보를 고려하여 선박을 안전하게 접안해안으로 끌어들임으로써 선박 접안시의 해안과의 충돌로 인한 선박의 파손을 방지할 수 있게 된다.In addition, according to the present invention it is possible to prevent the damage of the ship due to the collision with the shore at the time of ship docking by drawing the ship safely to the berth in consideration of the ship information on the position, mass, size, etc. of the ship.

Claims (10)

  1. 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버;A ship information acquisition server for acquiring ship information including the position, mass, size, and direction of the ship to be docked;
    서로 다른 위치에 설치되며, 상기 선박정보획득서버에 의해 획득한 선박정보에 기초하여 상기 접안대상 선박이 설정된 범위 이내에 접근하면 상기 접안대상 선박과 각각 유도라인을 연결하는 복수의 유도라인송출장치;A plurality of guideline transmission devices installed at different locations and connecting the eyepiece target ship and the guidance line when the eyepiece target ship approaches within a set range based on the ship information acquired by the ship information acquisition server;
    상기 선박정보획득서버에 의해 현재에 획득되는 선박정보에 기초하여 상기 접안대상 선박과 접안해안 사이의 거리를 계산하는 연산서버; 및An operation server for calculating a distance between the ship to be docked and the coast to be docked based on ship information currently acquired by the ship information acquisition server; And
    상기 선박정보획득서버에 의해 획득된 선박정보 및 상기 연산서버에 의해 계산된 거리에 따라 각각의 상기 유도라인송출장치에 의해 송출된 유도라인의 길이 및 장력을 제어하는 유도라인제어서버;An induction line control server controlling the length and tension of the induction line sent by each of the induction line transmitting devices according to the ship information obtained by the vessel information acquisition server and the distance calculated by the calculation server;
    를 포함하며, 각각의 상기 유도라인송출장치는,Includes, each of the induction line sending device,
    상기 유도라인제어서버와 유선 또는 무선으로 신호를 송수신하는 통신부;A communication unit for transmitting and receiving a signal to or from the induction line control server by wire or wirelessly;
    원통부;Cylindrical part;
    상기 통신부를 통해 송수신되는 신호에 따라 상기 원통부를 정방향 또는 부방향으로 회전시켜 유도라인을 감거나 푸는 회전제어부; 및A rotation control unit for winding or unwinding the induction line by rotating the cylindrical part in a forward direction or a negative direction according to a signal transmitted and received through the communication unit; And
    각각의 유도라인의 선단에 장착되며, 상기 통신부를 통해 상기 유도라인제어서버로부터 수신되는 신호에 기초하여 자력을 발생 또는 차단하는 자력발생부;A magnetic force generation unit mounted at the front end of each induction line and generating or blocking magnetic force based on a signal received from the induction line control server through the communication unit;
    를 포함하고, Including,
    상기 유도라인제어서버는 상기 접안대상선박이 설정된 범위 이내에 접근하면 상기 자력발생부에 자력을 발생 또는 차단시키는 제어신호를 송출하여 상기 접안대상선박과 각각의 상기 유도라인송출장치의 유도라인의 연결을 제어하는 것을 특징으로 하는 선박 자동접안 시스템.The guidance line control server transmits a control signal for generating or blocking magnetic force to the magnetic force generating unit when the eyepiece target ship approaches the set range, thereby connecting the eyepiece target vessel to the guidance line of each of the guidance line delivery devices. Vessel automatic berthing system, characterized in that for controlling.
  2. 제1항에 있어서,The method of claim 1,
    상기 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 자세측정장치; 및A posture measuring device for measuring a posture including at least one of a speed, a tilt, and a direction of the ship to be docked; And
    상기 자세측정장치에 의해 측정된 자세정보를 상기 유도라인제어서버에 무선으로 전송하는 무선통신장치;A wireless communication device wirelessly transmitting posture information measured by the posture measuring device to the induction line control server;
    를 더 포함하며,More,
    상기 유도라인제어서버는 상기 자세측정장치에 의해 측정된 자세에 기초하여 각각의 유도라인의 길이 및 장력을 제어하는 것을 특징으로 하는 선박 자동접안 시스템.The guideline control server is a ship auto-berthing system, characterized in that for controlling the length and tension of each guideline based on the posture measured by the attitude measuring device.
  3. 접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버;A ship information acquisition server for acquiring ship information including the position, mass, size, and direction of the ship to be docked;
    상기 선박정보획득서버에 의해 획득한 선박정보에 기초하여 상기 접안대상 선박이 설정된 영역 내에 위치하면 해당 위치로 이동하여 상기 접안대상 선박의 둘레에 밀착하는 복수의 무인추진장치;A plurality of unmanned propulsion devices that move to a corresponding position and adhere to the circumference of the eyepiece target ship when the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition server;
    상기 선박정보획득서버에 의해 현재에 획득되는 선박정보에 기초하여 상기 접안대상 선박과 접안해안 사이의 거리를 계산하는 연산서버;A calculation server for calculating a distance between the ship to be docked and the coast to be docked on the basis of ship information currently acquired by the ship information acquisition server;
    상기 선박정보획득서버에 의해 획득된 선박정보 및 상기 연산서버에 의해 계산된 거리에 따라 각각의 상기 무인추진장치의 추진력 및 방향을 무선으로 제어하는 추진장치제어서버;A propulsion device control server for wirelessly controlling the propulsion force and direction of each unmanned propulsion device according to the ship information obtained by the ship information acquisition server and the distance calculated by the operation server;
    해양의 저면 또는 해수면에 설정된 간격으로 설치되며, 고유의 식별자 및 위치정보를 저장하고, 초음파신호를 송출하고 그에 대한 반사신호를 수신하는 복수의 초음파감지장치; 및A plurality of ultrasonic sensing devices installed on the bottom or sea surface of the ocean at a predetermined interval, storing unique identifiers and position information, transmitting ultrasonic signals and receiving reflection signals thereto; And
    각각의 상기 초음파감지장치에 의해 수신되는 반사신호에 기초하여 각각의 상기 무인추진장치의 위치를 판단하는 위치판단서버;A position determination server that determines a position of each unmanned propulsion device based on a reflection signal received by each ultrasonic sensing device;
    를 포함하며,Including;
    상기 추진장치제어서버는 상기 위치판단서버에 의해 판단되는 각각의 상기 무인추진장치의 위치에 대응하여 상기 접안대상선박과 각각의 상기 무인추진장치 사이의 거리 및 방향, 및 접안해안과 각각의 상기 무인추진장치 사이의 거리 및 방향을 계산하고, 그에 따라 각각의 상기 무인추진장치의 추진력 및 방향을 제어하는 것을 특징으로 하는 선박 자동접안 시스템.The propulsion device control server is a distance and direction between the berthing target ship and each of the unmanned propulsion device corresponding to the position of each of the unmanned propulsion device determined by the position determination server, and the eyepiece coast and each of the unmanned propulsion device. Computing the distance and direction between the propulsion device, and accordingly controls the propulsion and direction of each of the unmanned propulsion system.
  4. 제3항에 있어서,The method of claim 3,
    상기 접안대상 선박이 상기 설정된 영역 내에 위치하면, 상기 접안대상 선박의 접안경로를 설정하는 접안경로설정서버;An eyepiece path setting server for setting an eyepiece path of the eyepiece object when the eyepiece object ship is located in the set area;
    를 더 포함하며, More,
    상기 추진장치제어서버는 상기 선박정보획득서버에 의해 현재에 획득되는 위치정보를 상기 접안경로설정서버에 의해 설정된 접안경로와 비교하며, 비교된 결과에 따라 각각의 상기 무인추진장치의 추진력 및 방향을 제어하는 것을 특징으로 하는 선박 자동접안 시스템.The propulsion device control server compares the position information currently obtained by the vessel information acquisition server with the eyepiece path set by the eyepiece path setting server, and compares the propulsion force and direction of each of the unmanned propulsion devices according to the comparison result. Vessel automatic berthing system, characterized in that for controlling.
  5. 접안대상선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 선박정보획득서버;A ship information acquisition server for acquiring ship information including the position, mass, size, and direction of the ship to be docked;
    상기 선박정보획득서버에 의해 현재 획득되는 선박정보에 기초하여 상기 접안대상선박과 접안해안 사이의 거리를 계산하는 연산서버;A calculation server for calculating a distance between the berthing target ship and the berthing coast based on the ship information currently acquired by the ship information acquisition server;
    상기 접안해안에 설치되며, 상기 접안대상선박의 일 측면에 부착되어 상기 접안대상선박을 상기 접안해안으로 끌어당기는 복수의 끌기장치; A plurality of drag devices installed in the eyepiece coast and attached to one side of the eyepiece object vessel to pull the eyepiece object vessel to the eyepiece coast;
    상기 접안해안에 설치되며, 상기 접안대상선박을 상기 끌기장치와 반대방향으로 미는 적어도 하나의 밀기장치; 및At least one pushing device installed in the eyepiece coast and pushing the eyepiece target ship in a direction opposite to the drag device; And
    상기 선박정보획득서버에 의해 현재 획득되는 선박정보 및 상기 연산서버에 의해 계산되는 거리에 기초하여 각각의 상기 끌기장치 및 상기 밀기장치를 제어하는 제어서버;A control server for controlling each of the drag device and the push device based on the ship information currently acquired by the ship information acquisition server and the distance calculated by the calculation server;
    를 포함하며,Including;
    각각의 상기 끌기장치는 플렉시블(flexible)한 재질로 이루어지며, 그 선단에 바다위에 부상하는 부유체; 및 상기 접안대상선박을 식별하며 상기 제어서버의 제어에 의해 상기 부유체를 상기 접안대상선박의 상기 접안해안에 가장 가까운 측면의 설정된 위치를 향해 이동시키는 추진체;를 구비하고,Each of the drag device is made of a flexible material (floating), floating on the sea at its tip; And a propellant for identifying the eyepiece target ship and moving the floating body toward a set position of the side closest to the eyepiece coast of the eyepiece target vessel by the control of the control server.
    상기 밀기장치는 막대형상으로 이루어지며, 상기 제어서버의 제어에 의해 상기 접안해안에서 상기 접안대상선박의 방향으로 연장되거나 상기 접안해안의 방향으로 축소되는 것을 특징으로 하는 선박 자동접안 시스템.The pushing device is formed in the shape of a rod, the control of the control server, the ship's automatic berthing system, characterized in that it extends in the direction of the berth target ship in the eyepiece or reduced in the direction of the berthing coast.
  6. 선박 자동접안 시스템에 의해 실행되는 선박 자동접안 방법에 있어서,In the ship auto docking method performed by the ship auto docking system,
    접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계;Acquiring vessel information including the position, mass, size, and direction of the vessel to be docked;
    각각의 유도라인의 선단에 장착된 자력발생부에 대한 자력의 발생 또는 차단을 제어하는 단계;Controlling generation or interruption of magnetic force for the magnetic force generator mounted at the tip of each induction line;
    상기 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 상기 접안대상 선박이 설정된 범위 이내에 접근하면, 상기 자력발생부에 자력발생 제어신호를 송출하여 상기 접안대상선박과 각각의 상기 유도라인을 연결하는 단계;On the basis of the vessel information obtained by the vessel information acquisition step, when the docking target ship approaches within the set range, by sending a magnetic force generating control signal to the magnetic force generating section to connect the docking target vessel and each of the guideline step;
    상기 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 각각의 상기 유도라인의 길이 및 장력을 제어하는 단계; 및Controlling the length and tension of each of the guide lines based on the vessel information obtained by the vessel information acquisition step; And
    상기 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 상기 접안대상 선박과 접안해안 사이의 거리를 계산하는 단계;Calculating a distance between the ship to be docked and the coast to be docked on the basis of ship information obtained by the ship information acquisition step;
    를 포함하며, Including;
    상기 유도라인의 길이 및 장력을 제어하는 단계는 상기 거리계산단계에 의해 계산되는 거리에 따라 상기 유도라인의 길이 및 장력을 조절하는 것을 특징으로 하는 선박 자동접안 방법.The step of controlling the length and tension of the guide line is a ship auto docking method, characterized in that for adjusting the length and tension of the guide line according to the distance calculated by the distance calculation step.
  7. 제6항에 있어서,The method of claim 6,
    상기 접안대상 선박에 설치된 자세측정장치를 이용하여 상기 접안대상 선박의 속도, 기울기, 방향 중 적어도 하나를 포함하는 자세를 측정하는 단계;Measuring a posture including at least one of a speed, a tilt and a direction of the ship to be docked by using the attitude measuring device installed on the ship to be docked;
    를 더 포함하며, 상기 유도라인 제어단계는,Further comprising, the induction line control step,
    상기 자세측정장치에 의해 측정된 자세에 기초하여 각각의 상기 유도라인의 길이 및 장력을 제어하는 것을 특징으로 하는 선박 자동접안 방법.And the length and tension of each of the guide lines based on the posture measured by the posture measuring device.
  8. 선박 자동접안 시스템에 의해 실행되는 선박 자동접안 방법에 있어서,In the ship auto docking method performed by the ship auto docking system,
    접안대상 선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계;Acquiring vessel information including the position, mass, size, and direction of the vessel to be docked;
    상기 선박정보획득단계에 의해 획득한 선박정보에 기초하여 상기 접안대상 선박이 설정된 영역 내에 위치하면 복수의 무인추진장치를 이동시켜 상기 접안대상 선박의 둘레에 밀착시키는 단계;Moving the plurality of unmanned propulsion devices in close contact with the eyepiece target ship if the eyepiece target ship is located within a set area based on the vessel information acquired by the vessel information acquisition step;
    상기 선박정보획득단계에 의해 획득되는 선박정보에 기초하여 각각의 상기 무인추진장치의 추진력 및 방향을 무선으로 제어하는 단계; 및Wirelessly controlling propulsion and direction of each of the unmanned propulsion apparatus based on the vessel information obtained by the vessel information acquisition step; And
    해양의 저면 또는 해수면에 설정된 간격으로 복수의 초음파감지장치를 설치하며, 각각의 상기 초음파감지장치에 고유의 식별자 및 위치정보를 저장하고, 각각의 상기 초음파감지장치를 통해 초음파신호를 송출하고 그에 대한 반사신호를 수신하는 단계;Install a plurality of ultrasonic sensors at intervals set at the bottom of the ocean or at sea level, store unique identifiers and location information in each ultrasonic sensor, and transmit ultrasonic signals through the ultrasonic sensors. Receiving a reflected signal;
    를 포함하며,Including;
    상기 무인추진장치 제어단계는 각각의 상기 초음파감지장치에 의해 수신되는 반사신호에 기초하여 각각의 상기 무인추진장치의 위치를 판단하고, 판단되는 각각의 상기 무인추진장치의 위치에 대응하여 상기 접안대상선박과 각각의 상기 무인추진장치 사이의 거리 및 방향, 및 접안해안과 각각의 상기 무인추진장치 사이의 거리 및 방향을 계산하며, 그에 따라 각각의 상기 무인추진장치의 추진력 및 방향을 제어하는 것을 특징으로 하는 선박 자동접안 방법.The step of controlling the unmanned propulsion device determines the position of each unmanned propulsion device based on the reflection signal received by each ultrasonic sensing device, and corresponds to the position of the eyepiece corresponding to the determined position of each unmanned propulsion device. Calculate the distance and direction between the ship and each of the unmanned propulsion devices, and the distance and direction between the eyepiece coast and each of the unmanned propulsion devices, thereby controlling the propulsion and direction of each of the unmanned propulsion devices. Ship berthing method.
  9. 제8항에 있어서,The method of claim 8,
    상기 접안대상 선박이 상기 설정된 영역 내에 위치하면, 상기 접안대상 선박의 접안경로를 설정하는 단계; 및Setting an eyepiece path of the eyepiece target ship when the eyepiece target ship is located within the set area; And
    상기 선박정보획득단계에 의해 현재에 획득되는 위치정보를 상기 접안경로 설정단계에 의해 설정된 접안경로와 비교하는 단계;Comparing the position information currently obtained by the vessel information obtaining step with the eyepiece path set by the eyepiece path setting step;
    를 더 포함하며, 상기 무인추진장치 제어단계는,Further comprising, the unmanned propulsion device control step,
    비교된 결과에 따라 각각의 상기 무인추진장치의 추진력 및 방향을 제어하는 것을 특징으로 하는 선박 자동접안 방법.And a propulsion force and a direction of each unmanned propulsion device according to the comparison result.
  10. 선박 자동접안 시스템에 의해 실행되는 선박 자동접안 방법에 있어서,In the ship auto docking method performed by the ship auto docking system,
    접안대상선박의 위치, 질량, 크기, 방향을 포함하는 선박정보를 획득하는 단계;Acquiring vessel information including the position, mass, size, and direction of the eyepiece target ship;
    추진체가 상기 접안대상선박을 식별하는 단계;Identifying by the propellant the eyepiece vessel;
    상기 추진체가 바다위에 부상하는 부유체를 상기 접안대상선박을 향해 이동시키는 단계;Moving the propellant floating body floating on the sea toward the eyepiece target ship;
    복수의 끌기장치를 상기 접안대상선박의 일 측면에 부착한 후, 각각의 상기 끌기장치를 이용하여 상기 접안대상선박을 접안해안으로 끌어당기는 단계; Attaching a plurality of drag devices to one side of the eyepiece target vessel, and then using the respective dragging apparatus to pull the eyepiece target vessel into the eyepiece coast;
    상기 선박정보획득단계에 의해 현재 획득되는 선박정보에 기초하여 상기 접안대상선박과 접안해안 사이의 거리를 계산하는 단계; 및Calculating a distance between the berthing target ship and the berthing coast based on the vessel information currently acquired by the vessel information obtaining step; And
    상기 선박정보획득단계에 의해 획득되는 선박정보 및 상기 거리 계산단계에 의해 계산되는 거리에 기초하여 상기 끌기장치를 통해 상기 접안대상선박을 끌어당기며 상기 접안해안에 설치된 적어도 하나의 밀기장치를 이용하여 상기 접안대상선박을 반대방향으로 밀도록 제어하는 단계;By using the at least one pushing device installed in the berthing coast by pulling the berthing target ship through the drag device based on the vessel information obtained by the vessel information acquisition step and the distance calculated by the distance calculation step. Controlling the eyepiece to be pushed in the opposite direction;
    를 포함하며, Including;
    각각의 상기 끌기장치는 로프를 포함하는 플렉시블한 재질로 이루어지며, 그 선단에 상기 부유체 및 상기 추진체가 설치되고, 상기 추진체가 상기 부유체를 상기 접안대상선박의 상기 접안해안에 가장 가까운 측면의 설정된 위치를 향해 이동시키며,Each of the dragging devices is made of a flexible material including a rope, and the floating body and the propellant are installed at a tip thereof, and the propelling body of the side closest to the eyepiece coast of the ship to be docked. To the set position,
    상기 밀기장치는 막대형상으로 이루어지고, 상기 접안해안에서 상기 접안대상선박의 방향으로 연장되거나 상기 접안해안의 방향으로 축소되는 것을 특징으로 하는 선박 자동접안 방법.The pushing device is formed in the shape of a rod, the eyepiece docking method, characterized in that extending in the direction of the ship to be docked in the eyepiece or reduced in the direction of the eyepiece coast.
PCT/KR2013/003929 2012-05-29 2013-05-07 System for automatically docking vessel and method therefor WO2013180402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120056732A KR101208168B1 (en) 2012-05-29 2012-05-29 Auto system and method for bring a vessel alongside the pier
KR10-2012-0056732 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013180402A1 true WO2013180402A1 (en) 2013-12-05

Family

ID=47906877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003929 WO2013180402A1 (en) 2012-05-29 2013-05-07 System for automatically docking vessel and method therefor

Country Status (2)

Country Link
KR (1) KR101208168B1 (en)
WO (1) WO2013180402A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350494A (en) * 2015-12-08 2016-02-24 上海杰桢海洋工程有限公司 Intelligent adsorption type large-tonnage ship docking system
WO2017167888A1 (en) * 2016-03-31 2017-10-05 A.P. Møller - Mærsk A/S A tugboat
CN109683608A (en) * 2018-12-05 2019-04-26 广州海荣实业有限公司 Control method, apparatus, system and the computer equipment of vessel berth
NL2019989B1 (en) * 2017-11-28 2019-06-05 European Intelligence B V Ship to ship or ship to shore mooring system and a method for mooring as well as a mooring vessel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620369B1 (en) 2016-02-01 2016-05-13 주식회사 마텍 System for docking of ship and method performing thereof
KR20190025140A (en) 2017-08-30 2019-03-11 주식회사 엘지엠 Control system for automatically bringing a vessel alongside the pier using dual outboard motor located in vessel stern and the method thereof
KR102012936B1 (en) * 2017-09-21 2019-08-21 한국해양과학기술원 Reliability improved topside deck mating guidance device and operation method thereof and installing method thereof
KR20210030005A (en) 2019-09-09 2021-03-17 현대중공업 주식회사 Berthing System for Ship
KR102352694B1 (en) * 2020-09-09 2022-01-17 정석기 Tugboat including an electromagnet with a flow structure
CN113628478B (en) * 2021-06-22 2022-06-03 宁波金涛船舶有限责任公司 Floating dock signal lamp indicating method and system, intelligent terminal and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100097586A (en) * 2009-02-26 2010-09-03 한국과학기술원 Berthing system, berthing equipment, and berthing method
KR20110059206A (en) * 2009-11-27 2011-06-02 김영복 Vessel docking guide system
KR20110065878A (en) * 2009-12-10 2011-06-16 주식회사 포인트 Remote mooring monitoring device
KR20110113029A (en) * 2010-04-08 2011-10-14 목포대학교산학협력단 A guidance system for docking of ship using position sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100097586A (en) * 2009-02-26 2010-09-03 한국과학기술원 Berthing system, berthing equipment, and berthing method
KR20110059206A (en) * 2009-11-27 2011-06-02 김영복 Vessel docking guide system
KR20110065878A (en) * 2009-12-10 2011-06-16 주식회사 포인트 Remote mooring monitoring device
KR20110113029A (en) * 2010-04-08 2011-10-14 목포대학교산학협력단 A guidance system for docking of ship using position sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350494A (en) * 2015-12-08 2016-02-24 上海杰桢海洋工程有限公司 Intelligent adsorption type large-tonnage ship docking system
CN105350494B (en) * 2015-12-08 2019-02-15 上海杰桢海洋工程有限公司 A kind of intelligence absorption type large-tonnage ships docking system
WO2017167888A1 (en) * 2016-03-31 2017-10-05 A.P. Møller - Mærsk A/S A tugboat
NL2019989B1 (en) * 2017-11-28 2019-06-05 European Intelligence B V Ship to ship or ship to shore mooring system and a method for mooring as well as a mooring vessel
WO2019108059A1 (en) 2017-11-28 2019-06-06 European Intelligence B.V. Ship to ship or ship to shore mooring system and a method for mooring as well as a mooring vessel
CN109683608A (en) * 2018-12-05 2019-04-26 广州海荣实业有限公司 Control method, apparatus, system and the computer equipment of vessel berth

Also Published As

Publication number Publication date
KR101208168B1 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
WO2013180402A1 (en) System for automatically docking vessel and method therefor
CN109285389B (en) Automatic berthing system and method for unmanned ship
ES2865195T3 (en) A procedure and system for operating one or more tugs
ES2857774T3 (en) A procedure and system for operating one or more tugs
DK179634B1 (en) A tugboat with a crane for handling a towing line
DK201670192A1 (en) A boat or ship with a collision prevention system
WO2018070586A1 (en) Drone for detecting school of fish
GB2388356A (en) Vessel navigation and docking system and method
US11952089B2 (en) Working method using autonomous underwater vehicle
WO2018026285A1 (en) Unmanned vehicle for rope transfer
KR20140077509A (en) Guidance system and method for docking of ship
CN109153434A (en) Towboat with overturn-preventing and lower sinking system
WO2020045798A1 (en) Transmitter for marine rescue and monitoring device for maritime distress rescue
CN102622913A (en) Guidance system for vessel harboring
CN108549372A (en) unmanned boat control method and control device
CN111315649A (en) Navigation support system for ship
JP2020055476A (en) Lifting and recovering method of plurality of underwater vehicles and lifting and recovering system for plurality of underwater vehicles
JP2003048594A (en) Intelligent buoy
DK179117B1 (en) Tugboat with crane or robot arm
WO2022239580A1 (en) Mooring system and mooring method
RU2809879C1 (en) Method of transporting ice formation
JPH06255574A (en) Radio-controlled alongside/off-pier support device for ship
CN214648929U (en) Sunken tube carrying and mounting integrated ship undocking control system
WO2023233742A1 (en) Vessel handling system and vessel handling method
CN116538382B (en) Inspection robot in water pipeline and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796883

Country of ref document: EP

Kind code of ref document: A1