WO2018135263A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2018135263A1
WO2018135263A1 PCT/JP2017/046874 JP2017046874W WO2018135263A1 WO 2018135263 A1 WO2018135263 A1 WO 2018135263A1 JP 2017046874 W JP2017046874 W JP 2017046874W WO 2018135263 A1 WO2018135263 A1 WO 2018135263A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve body
valve
hole
injection hole
Prior art date
Application number
PCT/JP2017/046874
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 吉村
石井 英二
義人 安川
威生 三宅
清隆 小倉
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018135263A1 publication Critical patent/WO2018135263A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, in which a valve body comes into contact with a valve seat surface to prevent fuel leakage, and injection is performed when the valve body is separated from the valve seat surface. It relates to a fuel injection valve.
  • patent document 1 it is the technique which suppresses fuel adhesion to an outer wall surface and suppresses the production
  • an object of the present invention is to provide a fuel injection valve capable of spray formation that reduces the amount of fuel adhering to the tip of the fuel injection valve.
  • the present invention provides a valve body, a seat member on which a valve seat surface on which the valve body is seated, and a contact portion on which the valve body and the valve seat surface abut. And the angle formed between the valve body axis and the nozzle hole axis is greater than the first angle ⁇ a.
  • the flow passage area increases between the seat member and the valve body.
  • a channel expanding structure is formed, and the channel expanding structure is formed so as to overlap with the downstream end of the first nozzle hole and with the upstream end of the second nozzle hole.
  • the fuel injection valve of the present embodiment is formed downstream of the valve body, the valve seat surface that contacts the valve body and seats fuel, and the position where the valve seat surface and the valve body contact each other.
  • the fuel injection valve has a pressure loss on the valve body shaft side of the inflow side opening in the fuel injection hole having a large injection hole inclination angle, and on the counter valve body axis side of the inflow side opening in the fuel injection hole having a small injection hole angle. It is comprised so that it may have a flow path expansion structure which reduces this. Details will be described below.
  • FIG. 1 is a cross-sectional view showing an example of an electromagnetic fuel injection valve as an example of a fuel injection valve according to the present invention.
  • FIG. 2 is a sectional view showing an embodiment of a tip structure of a fuel injection valve according to the present invention.
  • FIG. 3 is a view for explaining the arrangement of the fuel injection holes and the fuel flow of the fuel injection valve according to the present embodiment.
  • 4 and 5 are diagrams for explaining the shape of the fuel injection hole and the fuel flow according to the present embodiment.
  • FIG. 6 is a view for explaining a fuel injection valve tip structure not applied with the present embodiment for comparison with the present embodiment.
  • FIG. 7 is a diagram for explaining the arrangement of the fuel injection holes to which the present embodiment is not applied for comparison with the present embodiment.
  • the effect of the present invention is an electromagnetic type for a port injection type gasoline engine. It is also effective in a fuel injection valve or a fuel injection valve driven by a piezo element or a magnetostrictive element.
  • FIG. 1 Fuel is supplied from a fuel supply port 112 and is supplied into the fuel injection valve.
  • the electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed. The valve body 101 can be displaced in the axial direction of the fuel injection valve 100. At this time, in the in-cylinder injection type fuel injection valve that injects fuel directly into the cylinder of the engine, the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.
  • FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve.
  • the nozzle body 104 is a member that is disposed on the outer peripheral side of the valve body 101 and forms a fuel flow path.
  • the outer peripheral portion of the sheet member 102 is joined to the nozzle body 104 by welding with a welding beam from the downstream direction.
  • the method for fixing the sheet member 102 to the nozzle body 104 is not limited to welding, and may be screwing or press fitting.
  • a conical valve seat surface 203 is formed on the surface of the seat member 102 facing the valve body 101.
  • a fuel injection hole 201 is provided at the tip of the sheet member 102. More specifically, the fuel injection hole 201 is provided in the seat member 102 on the downstream side of the contact portion (contact position) with the valve body 101.
  • the fuel injection hole 201 of this embodiment is formed by punching to form a substantially cylindrical fuel injection hole 201, and a counterbore 202 having a larger diameter than the fuel injection hole 201 is punched downstream of the fuel injection hole 201.
  • the length of the fuel injection hole 201 in the longitudinal direction is adjusted by being formed by processing.
  • 202 is referred to as a counterbore, but may be simply referred to as a dent or a hole forming portion.
  • the method of forming the fuel injection hole 201 by punching has been described, but the present invention is not limited to this, and may be formed by, for example, laser processing.
  • the valve body 101 is guided by the guide member 103 in the downstream portion, and is guided in the upstream portion by the valve body guide 105 configured separately from the guide portion 103.
  • the guide member 103 and the valve body guide 105 are also fixedly supported by the inner peripheral portion of the nozzle body 104.
  • the anchor 106 is configured separately and independently from the valve body 101, and the rod portion of the valve body 101 is inserted into a valve body insertion hole formed on the inner peripheral side. Further, a flange portion having an outer diameter larger than that of the rod portion is formed in the upstream portion of the valve body 101, and this flange portion contacts the valve body support portion of the anchor 106 when the valve is closed in a non-energized state. Thus, the anchor 106 is energized to form a gap between the anchor 106 and the core 107.
  • the anchor 106 is attracted toward the core 107 by the magnetic attraction force. At this time, the valve body support portion of the anchor 106 and the collar portion of the valve body 101 are engaged, and the valve body 101 is engaged. Is biased toward the core 107, so that the valve can be opened.
  • FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve.
  • Each fuel injection hole is provided with the injection hole shaft 211 having an injection hole inclination angle (for example, ⁇ a, ⁇ b) with respect to the valve body shaft 210 in accordance with the target position of the fuel spray.
  • ⁇ a has a large nozzle hole tilt angle
  • ⁇ b has a small nozzle hole tilt angle.
  • the injection hole inclination angle of each fuel injection hole is determined depending on the target spray shape.
  • the valve body 101 is provided with a flow path expanding structure 212 in the circumferential direction so as to be symmetric with respect to the valve body axis 210.
  • FIG. 3 is a view for explaining the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes.
  • the fuel injection hole 201a is arranged on the circumference of the radius Ra
  • the fuel injection hole 201b is arranged on the circumference of the radius Rb.
  • FIG. 4 and 5 are cross-sectional views in the vicinity of the fuel injection hole.
  • the length of the fuel injection hole 201 provided in the seat member 102 is adjusted by a counterbore 202 provided on the downstream side (outlet side) of the fuel injection hole.
  • the injection hole length of the fuel injection hole 201 is defined by the length of a line connecting the center of the inlet surface and the center of the outlet surface of the fuel injection hole 201.
  • FIG. 4 shows the vicinity of the fuel injection hole having the injection hole inclination angle ⁇ a, and the intersection with the valve body 101 when the line segment extends in the normal direction from the downstream end of the fuel injection hole 201a toward the valve body 101.
  • the distance La2 is larger than the distance La1 to the intersection with the valve body 101 when the line segment is extended in the direction of the line from the upstream end of the fuel injection hole 201a toward the valve body 101. It is configured.
  • FIG. 5 shows the vicinity of the fuel injection hole having the injection hole inclination angle ⁇ b, and the intersection with the valve body 101 when the line segment extends in the normal direction from the downstream end of the fuel injection hole 201b toward the valve body 101.
  • the distance Lb2 is smaller than the distance Lb1 to the intersection with the valve body 101 when the line segment extends in the normal direction from the upstream end of the fuel injection hole 201b toward the valve body 101.
  • the flow path expansion structure 212 is formed in the valve body 101 by cutting, for example.
  • the flow path expanding structure 212 may be formed on the sheet member (nozzle plate 102) instead of the valve body 101.
  • the valve body 101 is provided with a flow path expanding structure 212 in the vicinity of the inlet of the fuel injection hole 201.
  • the shape of the flow path expanding structure 212 is formed so that La1, La2, Lb1, and Lb2 shown in FIGS. 4 and 5 satisfy the condition of La1 ⁇ La2 or Lb1> Lb2.
  • the fuel injection holes are arranged on different circumferences, so that both the above conditions are satisfied in combination with the shape of the flow path expanding structure 212.
  • the fuel injection valve of this embodiment includes the valve body 101, the seat member (nozzle plate 102) on which the valve seat surface 203 on which the valve body 101 is seated, the valve body 101 and the valve seat surface 203.
  • the first injection hole 201a is formed on the downstream side of the contact part to be contacted, and the angle between the valve body shaft 210 and the injection hole shaft 211a is the first angle ⁇ a, and the valve body shaft 210 and the injection hole shaft 211b.
  • a second injection hole 201b having a second angle ⁇ b smaller than the first angle ⁇ a.
  • a flow path expanding structure 212 is formed between the seat member (nozzle plate 102) and the valve body 101 so that the flow path area increases. And this flow-path expansion structure 212 overlaps with the downstream edge part (center side edge part in FIG. 3) of the 1st nozzle hole 201a, and the upstream edge part (side in the center in FIG. 3) of the 2nd nozzle hole 201b. It is formed so as to overlap with the end portion.
  • the above-described flow path expanding structure 212 is formed on the circumference when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the direction of the valve body shaft 210.
  • the flow path expanding structure 212 is formed on the circumference when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the valve body axial direction, and the upstream end of the first injection hole 201a (see FIG. 3 is formed in a region on the downstream side from the end portion on the side away from the center) and on the upstream side of the downstream end portion (the center side end portion in FIG. 3) of the second injection hole 201b.
  • the distance La2 to the intersection with the valve body 101 is the distance La1 from the upstream end (sheet side end in FIG. 4) to the intersection with the valve body 101 in the first injection hole normal direction. It is formed to be larger.
  • FIG. 4 shows the opened state, this relationship is the same when the valve is opened and when the valve is closed. Further, as shown in FIG.
  • the distance Lb2 to the intersection with the valve body 101 is the distance Lb1 from the upstream end (the seat side end in FIG. 5) of the second injection hole 201b to the intersection with the valve body 101 in the second injection hole normal direction. It is formed so as to be smaller.
  • FIG. 5 shows the opened state, this relationship is the same when the valve is opened and when the valve is closed.
  • a part of the flow path from the flow path expanding structure 212 to the tip of the sheet member (nozzle plate 102) is gradually reduced.
  • a gap is formed between the center of the valve body tip and the center of the sheet member that faces the center of the valve body tip in the valve body axial direction.
  • the arrangement diameter of the nozzle holes varies depending on the magnitude of the nozzle hole inclination angle ⁇ .
  • the arrangement diameter is a distance from the center to the center of the inlet surface when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the direction of the valve body axis 210 as shown in FIG. 3, and PCD (Pitch Circle Diameter You may call it.
  • the first nozzle hole 201a having ⁇ a having a large nozzle hole inclination angle ⁇ is formed with a flow path expanding structure 212 so that a large inflow area is formed on the sack side of the inlet of the nozzle hole. Further, as shown in FIG.
  • the second flow hole 201b of ⁇ b having a small nozzle hole inclination angle ⁇ is formed with a flow path expanding structure 212 so that a large inflow area is formed on the sheet side of the nozzle hole.
  • the flow path expanding structure 212 may be formed on either the valve body 101 or the sheet member (nozzle plate 102).
  • each fuel-injection hole on a different periphery like a present Example.
  • the channel expansion structure is not axially symmetric as in this embodiment, What is necessary is just to make it the shape according to the position of each fuel injection hole.
  • two or more nozzle holes having different nozzle hole inclination angles satisfy the condition of La1 ⁇ La2 or Lb1> Lb2, the effect of the invention in those nozzle holes can be exhibited.
  • the arrows 301a and 301b indicate the fuel flow.
  • the fuel is mainly from the center side (sack side) of the nozzle plate 102. Large amount of inflow.
  • the fuel injection hole 201a is provided with a flow passage enlargement structure 212 so that La1 ⁇ La2, so that the pressure loss in the flow passage on the La2 side is smaller than that on the La1 side.
  • the amount of fuel mainly flows from the outer peripheral side of the nozzle plate 102 is large with respect to the fuel injection holes arranged in a circumferential shape having a radius Rb typified by the fuel injection hole 201b.
  • the fuel injection hole 201b is provided with the flow passage expanding structure 212 so that Lb1> Lb2, so that the pressure loss is smaller in the flow path on the Lb1 side than on the Lb2 side.
  • the amount flowing from the outer peripheral side of the plate is relatively increased.
  • the reason for controlling the fuel flow in this way is to adjust the inflow direction of the fuel into the fuel injection hole according to the size of the injection hole inclination angle ( ⁇ a or ⁇ b), thereby reducing the separation at the time of inflow.
  • FIG. 6 and 7 are diagrams for explaining the structure of another structure and the flow of fuel for comparison with the present embodiment.
  • the other structure is not provided with a flow path expanding structure, and the flow path of the sac 206 is wide.
  • the fuel easily flows from the sack side toward the fuel injection holes 201c and 201d, and it is difficult to adjust the inflow direction to the fuel injection holes as in the present embodiment. Therefore, in this embodiment, the height of the flow path composed of the valve body 101 and the sack 205 is configured to be smaller than the maximum height of the flow path formed by the valve seat surface and the valve body at least in the flow path enlarged structure.
  • FIG. 7 shows the arrangement of fuel injection holes in another structure.
  • all the fuel injection holes are arranged on the same circumference, so that the ease of fuel flow into each fuel injection hole is substantially the same.
  • the flow path on the center side is wider than the outer peripheral side of the nozzle plate 102
  • the amount flowing into the fuel injection hole from the center side such as 301c and 301d increases, and when the nozzle hole inclination angle is small, the nozzle plate Separation easily occurs at the center side of 102. Therefore, in order to reduce the separation at all the fuel injection holes, it is necessary to control the direction in which the fuel easily flows into each fuel injection hole as in this embodiment.
  • FIG. 8 is a cross-sectional view showing the configuration of the tip of the fuel injection valve in the present embodiment, and components having the same numbers as those in FIG. 2 have the same or equivalent functions as those in the first embodiment.
  • FIG. 9 is a view for explaining the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes in the present embodiment, and has the same or equivalent function as in the first embodiment. .
  • the flow path expanding structure 213 is provided on the valve seat surface 203 of the seat member 102.
  • the relationship between the fuel injection hole shape and the valve body satisfies the condition of La1 ⁇ La2 or Lb1> Lb2 shown in the first embodiment.
  • the definitions of La1, La2, Lb1, and Lb2 are defined by the distance from the injection hole inlet end to the valve body, as in the first embodiment. Thereby, the effect of the flow path expanding structure 213 is the same as that of the first embodiment, and the direction in which the fuel flows into the fuel injection hole can be controlled.
  • This embodiment differs from the first embodiment in that it is not necessary to change the shape of the valve body, and not only the needle valve shown in the present embodiment but also a ball valve can be used.
  • the flow path expanding structure of the present embodiment is provided as a concentric recess as shown in FIG. 9, for example, even when the fuel injection holes are arranged on the same circumference, the injection hole inclination of each fuel injection hole
  • the flow direction into the fuel injection hole can be controlled by providing the flow path expanding structure so as to satisfy the condition of La1 ⁇ La2 or Lb1> Lb2 according to the angle.
  • Electromagnetic fuel injection valve 101 ... Valve body 102 ... Seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Anchor 107 ... Core 108 ... Coil 109 ... Yoke 110 ... Spring 111 ... Connector 112 ... Fuel supply Mouth 201a, 201b ... Fuel injection hole 202a, 202b ... Counterbore 203 ... Valve seat surface 205, 206 ... Sack 210 ... Center axis (valve body axis) 211a, 211b of fuel injection valve ... Center axis of fuel injection hole (injection axis) 212, 213... Channel expansion structures 301a, 301b, 301c, 301d, 301e, 301f... Fuel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Provided is a fuel injection valve capable of forming mist that reduces the amount of fuel sticking to the tip of the fuel injection valve. This fuel injection valve is provided with: a valve body; a seat member in which a valve seat surface on which the valve body sits is formed; a first spray hole formed downstream from a contact part where the valve body and the valve seat surface come in contact, the angle formed by a valve body axis and a spray hole axis being a first angle θa; and a second spray hole of which the angle formed by the valve body axis and a spray hole axis is a second angle θb that is smaller than the first angle θa. On the downstream side of the contact part, a flow channel enlarging structure where the flow channel area is greater is formed between the sheet member and the valve body, and the flow channel enlarging structure is formed so as to overlap a downstream-side end part of the first spray hole and overlap an upstream-side end part of the second spray hole.

Description

燃料噴射弁Fuel injection valve
 本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁であって、弁体が弁座面と当接することで燃料の漏洩を防止し、弁体が弁座面から離れることによって噴射を行なう、燃料噴射弁に関する。 The present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, in which a valve body comes into contact with a valve seat surface to prevent fuel leakage, and injection is performed when the valve body is separated from the valve seat surface. It relates to a fuel injection valve.
 自動車用エンジンに用いられる燃料噴射弁において、燃料噴射弁の先端に、噴射中に飛散する燃料液滴や、噴射後に発生する粗大な燃料液滴が付着すると、不完全燃焼によってデポジットが発生し、噴霧性能の変化や、未燃粒子状物質の発生要因となることが課題となっている。 In fuel injection valves used in automobile engines, deposits are generated due to incomplete combustion when fuel droplets scattered during injection or coarse fuel droplets generated after injection adhere to the tip of the fuel injection valve. Changes in spray performance and generation of unburned particulate matter are issues.
 これに対して、特許文献1では、噴霧と燃料噴射孔開口部の外壁面を遠ざけるような外壁面の形状とすることで、外壁面への燃料付着を抑制し、デポジットの生成を抑制する技術が開示されている。 On the other hand, in patent document 1, it is the technique which suppresses fuel adhesion to an outer wall surface and suppresses the production | generation of a deposit by setting it as the shape of an outer wall surface which keeps the outer wall surface of spray and a fuel injection hole opening part away. Is disclosed.
特許第5696901号公報Japanese Patent No. 5696901
 上記従来技術においては、燃料噴射弁先端への燃料付着を回避する壁面形状に関する技術が公開されている。一方で、燃料噴射弁先端に付着する燃料量を低減するために最適な噴霧の形成方法については考慮されていない。 In the above prior art, a technique relating to a wall shape for avoiding fuel adhesion to the tip of the fuel injection valve is disclosed. On the other hand, an optimum spray formation method for reducing the amount of fuel adhering to the tip of the fuel injection valve is not considered.
 そこで、本発明の目的は、燃料噴射弁の先端へ燃料が付着する量を低減する噴霧形成が可能な、燃料噴射弁を提供することである。 Therefore, an object of the present invention is to provide a fuel injection valve capable of spray formation that reduces the amount of fuel adhering to the tip of the fuel injection valve.
 上記目的を達成するために、本発明は弁体と、前記弁体が着座する弁座面が形成されるシート部材と、前記弁体と前記弁座面とが当接する当接部よりも下流側に形成され、弁体軸と噴孔軸との成す角度が第一の角度θaとなる第一噴孔と、前記弁体軸と噴孔軸との成す角度が前記第一の角度θaよりも小さい第二の角度θbとなる第二噴孔と、を備えた燃料噴射弁において、前記当接部の下流側において、前記シート部材と前記弁体との間に流路面積が大きくなる流路拡大構造が形成され、前記流路拡大構造は、前記第一噴孔の下流側端部と重なるとともに、前記第二噴孔の上流側端部と重なるように形成される。 In order to achieve the above object, the present invention provides a valve body, a seat member on which a valve seat surface on which the valve body is seated, and a contact portion on which the valve body and the valve seat surface abut. And the angle formed between the valve body axis and the nozzle hole axis is greater than the first angle θa. In the fuel injection valve having a second injection hole having a small second angle θb, on the downstream side of the abutting portion, the flow passage area increases between the seat member and the valve body. A channel expanding structure is formed, and the channel expanding structure is formed so as to overlap with the downstream end of the first nozzle hole and with the upstream end of the second nozzle hole.
 本発明によれば、噴霧の安定性を高めることで、燃料噴射弁先端に付着する燃料量を低減することが可能となる。上記した以外の本発明の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to reduce the amount of fuel adhering to the tip of the fuel injection valve by increasing the spray stability. The configuration, operation, and effects of the present invention other than those described above will be described in detail in the following examples.
本発明の第1実施例に係る燃料噴射弁の実施例を示す断面図である。It is sectional drawing which shows the Example of the fuel injection valve which concerns on 1st Example of this invention. 本発明の第1実施例に係る燃料噴射弁の先端構造を示す断面図である。It is sectional drawing which shows the front-end | tip structure of the fuel injection valve which concerns on 1st Example of this invention. 本発明の第1実施例に係る燃料噴射孔の配置と燃料流れを説明するための図である。It is a figure for demonstrating arrangement | positioning of the fuel injection hole and fuel flow which concern on 1st Example of this invention. 本発明の第1実施例に係る噴孔傾斜角が大きい場合における、燃料噴射孔の形状と燃料流れを説明するための図である。It is a figure for demonstrating the shape of a fuel injection hole, and a fuel flow in case the injection hole inclination angle which concerns on 1st Example of this invention is large. 本発明の第1実施例に係る噴孔傾斜角が小さい場合における、燃料噴射孔の形状と燃料流れを説明するための図である。It is a figure for demonstrating the shape of a fuel injection hole, and a fuel flow in case the injection hole inclination angle which concerns on 1st Example of this invention is small. 本発明の第1実施例との比較のための本実施例を適用しない燃料噴射弁先端構造を説明するための図である。It is a figure for demonstrating the fuel injection valve front-end | tip structure which does not apply the present Example for the comparison with 1st Example of this invention. 本発明の第1実施例との比較のための本実施例を適用しない燃料噴射孔の配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the fuel-injection hole which does not apply the present Example for the comparison with 1st Example of this invention. 本発明の第2実施例に係る燃料噴射弁の先端構造を示す断面図である。It is sectional drawing which shows the front-end | tip structure of the fuel injection valve which concerns on 2nd Example of this invention. 本発明の第2実施例に係る燃料噴射孔の配置と燃料流れを説明するための図である。It is a figure for demonstrating arrangement | positioning of a fuel injection hole and fuel flow which concern on 2nd Example of this invention.
 以下、本発明に係る実施例を説明する。本実施例の燃料噴射弁は、弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、を有し、少なくとも2つ以上の前記燃料噴射孔の中心軸(噴孔軸)が、前記弁体の中心軸(弁体軸)に対して、異なる角度(噴孔傾斜角度)で傾いて設けられている。そして燃料噴射弁は噴孔傾斜角度が大きい燃料噴射孔では流入側開口部の弁体軸側に、前記噴孔角度が小さい燃料噴射孔では流入側開口部の反弁体軸側に、圧力損失を低減するような流路拡大構造を持つように構成される。以下、詳細を説明する。 Hereinafter, examples according to the present invention will be described. The fuel injection valve of the present embodiment is formed downstream of the valve body, the valve seat surface that contacts the valve body and seats fuel, and the position where the valve seat surface and the valve body contact each other. A central axis (injection hole axis) of at least two or more of the fuel injection holes with respect to a central axis (valve element axis) of the valve element (inclination angle of the injection hole) ). The fuel injection valve has a pressure loss on the valve body shaft side of the inflow side opening in the fuel injection hole having a large injection hole inclination angle, and on the counter valve body axis side of the inflow side opening in the fuel injection hole having a small injection hole angle. It is comprised so that it may have a flow path expansion structure which reduces this. Details will be described below.
 本発明の第1の実施例に係る燃料噴射弁について、図1から図7を用いて以下説明する。 The fuel injection valve according to the first embodiment of the present invention will be described below with reference to FIGS.
 図1は、本発明に係わる燃料噴射弁の例として、電磁式燃料噴射弁の例を示す断面図である。図2は、本発明に係る燃料噴射弁の先端構造の実施例を示す断面図である。図3は、本実施例に係る燃料噴射弁の燃料噴射孔の配置と燃料流れを説明するための図である。
図4及び図5は、本実施例に係る燃料噴射孔の形状と燃料流れを説明するための図である。図6は、本実施例との比較のための本実施例を適用しない燃料噴射弁先端構造を説明するための図である。図7は、本実施例との比較のための本実施例を適用しない燃料噴射孔の配置を説明するための図である。図1に示した電磁式燃料噴射弁100は、筒内直接噴射式のガソリンエンジン向けの電磁式燃料噴射弁の例であるが、本発明の効果は、ポート噴射式のガソリンエンジン向けの電磁式燃料噴射弁や、ピエゾ素子や磁歪素子で駆動される燃料噴射弁においても有効である。
FIG. 1 is a cross-sectional view showing an example of an electromagnetic fuel injection valve as an example of a fuel injection valve according to the present invention. FIG. 2 is a sectional view showing an embodiment of a tip structure of a fuel injection valve according to the present invention. FIG. 3 is a view for explaining the arrangement of the fuel injection holes and the fuel flow of the fuel injection valve according to the present embodiment.
4 and 5 are diagrams for explaining the shape of the fuel injection hole and the fuel flow according to the present embodiment. FIG. 6 is a view for explaining a fuel injection valve tip structure not applied with the present embodiment for comparison with the present embodiment. FIG. 7 is a diagram for explaining the arrangement of the fuel injection holes to which the present embodiment is not applied for comparison with the present embodiment. The electromagnetic fuel injection valve 100 shown in FIG. 1 is an example of an electromagnetic fuel injection valve for a direct injection type gasoline engine, but the effect of the present invention is an electromagnetic type for a port injection type gasoline engine. It is also effective in a fuel injection valve or a fuel injection valve driven by a piezo element or a magnetostrictive element.
 [噴射弁基本動作説明]
 図1において、燃料は燃料供給口112から供給され、燃料噴射弁の内部に供給される。図1に示す電磁式燃料噴射弁100は、通常時閉型の電磁駆動式であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢されてシート部材102に押し付けられ、燃料がシールされるようになっている。弁体101は燃料噴射弁100の軸方向に変位可能である。このとき、エンジンの筒内に直接、燃料を噴射する筒内噴射型燃料噴射弁では、供給される燃料圧力がおよそ1MPaから50MPaの範囲である。
[Explanation of basic operation of injection valve]
In FIG. 1, fuel is supplied from a fuel supply port 112 and is supplied into the fuel injection valve. The electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed. The valve body 101 can be displaced in the axial direction of the fuel injection valve 100. At this time, in the in-cylinder injection type fuel injection valve that injects fuel directly into the cylinder of the engine, the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.
 図2は燃料噴射弁の先端を拡大した断面図である。ノズル体104は、弁体101の外周側に配置され、燃料の流路を形成する部材である。ノズル体104にはシート部材102の外周部が下流方向からの溶接ビームにより溶接で接合される。なお、このシート部材102のノズル体104への固定方法は溶接に限ったものではなく、ネジ止めや圧入であっても良い。シート部材102の弁体101との対向面には、円錐形状の弁座面203が形成される。 FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve. The nozzle body 104 is a member that is disposed on the outer peripheral side of the valve body 101 and forms a fuel flow path. The outer peripheral portion of the sheet member 102 is joined to the nozzle body 104 by welding with a welding beam from the downstream direction. The method for fixing the sheet member 102 to the nozzle body 104 is not limited to welding, and may be screwing or press fitting. A conical valve seat surface 203 is formed on the surface of the seat member 102 facing the valve body 101.
 電磁式燃料噴射弁100が閉弁状態にあるときには、弁体101の先端部がシート部材102の弁座面203と当接することによって燃料のシールを保つようになっている。シート部材102の先端には燃料噴射孔201が設けられる。より具体的には、シート部材102には、弁体101との当接部(当接位置)よりも下流側において、燃料噴射孔201が設けられる。本実施例の燃料噴射孔201は打ち抜き加工により、ほぼ円筒形状の燃料噴射孔201が形成され、そして、燃料噴射孔201よりも下流側において、燃料噴射孔201よりも大径のザグリ202が打ち抜き加工により形成されることによって燃料噴射孔201の長手方向の長さが調整される。以下においては、202をザグリと呼ぶが、単に凹み部と呼んでも良いし、孔形成部と呼んでも良い。本実施例では打ち抜き加工により燃料噴射孔201を形成する方法を説明したが、本発明はこれに限定される訳では無く、たとえばレーザ加工により形成しても良い。 When the electromagnetic fuel injection valve 100 is in the closed state, the tip of the valve body 101 is brought into contact with the valve seat surface 203 of the seat member 102 to keep the fuel seal. A fuel injection hole 201 is provided at the tip of the sheet member 102. More specifically, the fuel injection hole 201 is provided in the seat member 102 on the downstream side of the contact portion (contact position) with the valve body 101. The fuel injection hole 201 of this embodiment is formed by punching to form a substantially cylindrical fuel injection hole 201, and a counterbore 202 having a larger diameter than the fuel injection hole 201 is punched downstream of the fuel injection hole 201. The length of the fuel injection hole 201 in the longitudinal direction is adjusted by being formed by processing. In the following description, 202 is referred to as a counterbore, but may be simply referred to as a dent or a hole forming portion. In the present embodiment, the method of forming the fuel injection hole 201 by punching has been described, but the present invention is not limited to this, and may be formed by, for example, laser processing.
 図1に示したコネクタ111を介してコイル108に通電されると、電磁弁の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー106に磁束密度が生じる。そして、コア107とアンカー106の間には非通電時において空隙が形成されており、コア107にアンカー106が吸引されるような磁気吸引力が生じる。アンカー106には下流方向に向かってスプリング110の付勢力と前述の燃料圧力による付勢力がかかっているが、通電による磁気吸引力がこれらの付勢力よりも大きくなると、アンカー106がコア107に向かって移動する。 When the coil 108 is energized through the connector 111 shown in FIG. 1, magnetic flux density is generated in the core (fixed core) 107, the yoke 109, and the anchor 106 constituting the magnetic circuit of the electromagnetic valve. A gap is formed between the core 107 and the anchor 106 when no current is applied, and a magnetic attractive force that attracts the anchor 106 to the core 107 is generated. The urging force of the spring 110 and the urging force due to the above-described fuel pressure are applied to the anchor 106 in the downstream direction. However, when the magnetic attraction force by energization becomes larger than these urging forces, the anchor 106 moves toward the core 107. Move.
 弁体101は下流部においてガイド部材103にガイドされ、上流部においてガイド部103とは別体で構成された弁体ガイド105にガイドされる。なお、ガイド部材103、弁体ガイド105もノズル体104の内周部により固定支持される。アンカー106は弁体101とは別体で独立して構成され、内周側に形成された弁体挿入穴に弁体101のロッド部が挿入される。また弁体101の上流部にはロッド部よりも外径の大きいつば部が形成されており、非通電状態の閉弁時においては、このつば部がアンカー106の弁体支持部に接触することで、アンカー106を付勢し、アンカー106とコア107との空隙を形成する。 The valve body 101 is guided by the guide member 103 in the downstream portion, and is guided in the upstream portion by the valve body guide 105 configured separately from the guide portion 103. The guide member 103 and the valve body guide 105 are also fixedly supported by the inner peripheral portion of the nozzle body 104. The anchor 106 is configured separately and independently from the valve body 101, and the rod portion of the valve body 101 is inserted into a valve body insertion hole formed on the inner peripheral side. Further, a flange portion having an outer diameter larger than that of the rod portion is formed in the upstream portion of the valve body 101, and this flange portion contacts the valve body support portion of the anchor 106 when the valve is closed in a non-energized state. Thus, the anchor 106 is energized to form a gap between the anchor 106 and the core 107.
 一方で、コイル108に通電されると磁気吸引力によりアンカー106がコア107の側に吸引され、このときアンカー106の弁体支持部と弁体101のつば部が係合して、弁体101をコア107の側に付勢するため、開弁状態とすることができる。 On the other hand, when the coil 108 is energized, the anchor 106 is attracted toward the core 107 by the magnetic attraction force. At this time, the valve body support portion of the anchor 106 and the collar portion of the valve body 101 are engaged, and the valve body 101 is engaged. Is biased toward the core 107, so that the valve can be opened.
 開弁状態となると、弁座面203と弁体101の当接部に隙間(ストローク)を生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換されて燃料噴射孔201に至り、図示していないが、エンジンの筒内に向かって噴射される。 When the valve is opened, a gap (stroke) is generated at the contact portion between the valve seat surface 203 and the valve body 101, and fuel injection is started. When fuel injection is started, the energy given as the fuel pressure is converted into kinetic energy and reaches the fuel injection hole 201, which is injected into the cylinder of the engine (not shown).
 [実施例の構成と特徴]
 本実施例の構成について図2から図5を用いて説明する。 
 図2は、燃料噴射弁の先端を拡大した断面図である。各燃料噴射孔は、燃料噴霧の狙い位置に応じて、噴孔軸211が弁体軸210に対して噴孔傾斜角(例えばθa、θb)を持って設けられる。図では噴孔傾斜角が大きいものをθa、噴孔傾斜角が小さいものをθbとしている。実際の設計において、各燃料噴射孔の噴孔傾斜角は狙いの噴霧形状に依存して決定される。弁体101には流路拡大構造212が弁体軸210に対して軸対称となるように、周方向に設けられている。
[Configuration and Features of Example]
The configuration of this embodiment will be described with reference to FIGS.
FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve. Each fuel injection hole is provided with the injection hole shaft 211 having an injection hole inclination angle (for example, θa, θb) with respect to the valve body shaft 210 in accordance with the target position of the fuel spray. In the figure, θa has a large nozzle hole tilt angle and θb has a small nozzle hole tilt angle. In an actual design, the injection hole inclination angle of each fuel injection hole is determined depending on the target spray shape. The valve body 101 is provided with a flow path expanding structure 212 in the circumferential direction so as to be symmetric with respect to the valve body axis 210.
 図3は燃料噴射孔の入口側から見た、シート部材102に設けられた燃料噴射孔の配置を説明する図である。燃料噴射孔201aは半径Raの円周上に配置されており、燃料噴射孔201bは半径Rbの円周上に配置されている。 FIG. 3 is a view for explaining the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes. The fuel injection hole 201a is arranged on the circumference of the radius Ra, and the fuel injection hole 201b is arranged on the circumference of the radius Rb.
 図4および図5は、燃料噴射孔近傍の断面図である。シート部材102に設けられた燃料噴射孔201は、燃料噴射孔の下流側(出口側)に設けられたザグリ202により噴射孔長さが調整される。燃料噴射孔201の噴射孔長さは、燃料噴射孔201の入口面中心と出口面中心とを結ぶ線の長さで定義される。図4は噴孔傾斜角θaの燃料噴射孔近傍であり、燃料噴射孔201aの下流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離La2が、燃料噴射孔201aの上流側端部から弁体101に向かって方線方向に線分を伸ばした場合の前記弁体101との交点までの距離La1よりも、大きくなるように構成されている。
図5は噴孔傾斜角θbの燃料噴射孔近傍であり、燃料噴射孔201bの下流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離Lb2が、燃料噴射孔201bの上流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離Lb1よりも、小さくなるように構成されている。なお、流路拡大構造212は、例えば切削加工によって弁体101に形成される。また流路拡大構造212は弁体101の代わりにシート部材(ノズルプレート102)に形成されても良い。
4 and 5 are cross-sectional views in the vicinity of the fuel injection hole. The length of the fuel injection hole 201 provided in the seat member 102 is adjusted by a counterbore 202 provided on the downstream side (outlet side) of the fuel injection hole. The injection hole length of the fuel injection hole 201 is defined by the length of a line connecting the center of the inlet surface and the center of the outlet surface of the fuel injection hole 201. FIG. 4 shows the vicinity of the fuel injection hole having the injection hole inclination angle θa, and the intersection with the valve body 101 when the line segment extends in the normal direction from the downstream end of the fuel injection hole 201a toward the valve body 101. The distance La2 is larger than the distance La1 to the intersection with the valve body 101 when the line segment is extended in the direction of the line from the upstream end of the fuel injection hole 201a toward the valve body 101. It is configured.
FIG. 5 shows the vicinity of the fuel injection hole having the injection hole inclination angle θb, and the intersection with the valve body 101 when the line segment extends in the normal direction from the downstream end of the fuel injection hole 201b toward the valve body 101. The distance Lb2 is smaller than the distance Lb1 to the intersection with the valve body 101 when the line segment extends in the normal direction from the upstream end of the fuel injection hole 201b toward the valve body 101. It is configured. In addition, the flow path expansion structure 212 is formed in the valve body 101 by cutting, for example. The flow path expanding structure 212 may be formed on the sheet member (nozzle plate 102) instead of the valve body 101.
 次に、本実施例の特徴を説明する。図2に示すように、弁体101には流路拡大構造212が燃料噴射孔201の入口の近傍に設けられている。このとき、図4、図5に示すLa1、La2、Lb1、Lb2が、La1<La2またはLb1>Lb2の条件を満たすように、流路拡大構造212の形状は形成される。本実施例では図3に示すように、燃料噴射孔を異なる円周上に配置することで、流路拡大構造212の形状と組み合わせて、上記の両条件を満たすようにしている。 Next, features of this embodiment will be described. As shown in FIG. 2, the valve body 101 is provided with a flow path expanding structure 212 in the vicinity of the inlet of the fuel injection hole 201. At this time, the shape of the flow path expanding structure 212 is formed so that La1, La2, Lb1, and Lb2 shown in FIGS. 4 and 5 satisfy the condition of La1 <La2 or Lb1> Lb2. In this embodiment, as shown in FIG. 3, the fuel injection holes are arranged on different circumferences, so that both the above conditions are satisfied in combination with the shape of the flow path expanding structure 212.
 このとき、流路拡大構造212と弁座面203によって構成される流路の高さは、流路拡大構造212からサック205にかけて次第にと小さくなるようにすると効果的である。 At this time, it is effective that the height of the flow path constituted by the flow path expanding structure 212 and the valve seat surface 203 is gradually reduced from the flow path expanding structure 212 to the sack 205.
 以上の通り、本実施例の燃料噴射弁は弁体101と、弁体101が着座する弁座面203が形成されるシート部材(ノズルプレート102)と、弁体101と弁座面203とが当接する当接部よりも下流側に形成され、弁体軸210と噴孔軸211aとの成す角度が第一の角度θaとなる第一噴孔201aと、弁体軸210と噴孔軸211bとの成す角度が第一の角度θaよりも小さい第二の角度θbとなる第二噴孔201bと、を備えている。そして、燃料噴射弁は上記した当接部の下流側において、シート部材(ノズルプレート102)と弁体101との間に流路面積が大きくなる流路拡大構造212が形成される。
そしてこの流路拡大構造212は第一噴孔201aの下流側端部(図3において中心側端部)と重なるとともに、第二噴孔201bの上流側端部(図3において中心と離れる側の端部)と重なるように形成される。
As described above, the fuel injection valve of this embodiment includes the valve body 101, the seat member (nozzle plate 102) on which the valve seat surface 203 on which the valve body 101 is seated, the valve body 101 and the valve seat surface 203. The first injection hole 201a is formed on the downstream side of the contact part to be contacted, and the angle between the valve body shaft 210 and the injection hole shaft 211a is the first angle θa, and the valve body shaft 210 and the injection hole shaft 211b. And a second injection hole 201b having a second angle θb smaller than the first angle θa. In the fuel injection valve, on the downstream side of the abutting portion described above, a flow path expanding structure 212 is formed between the seat member (nozzle plate 102) and the valve body 101 so that the flow path area increases.
And this flow-path expansion structure 212 overlaps with the downstream edge part (center side edge part in FIG. 3) of the 1st nozzle hole 201a, and the upstream edge part (side in the center in FIG. 3) of the 2nd nozzle hole 201b. It is formed so as to overlap with the end portion.
 図3に示すように、上記した流路拡大構造212は、シート部材(ノズルプレート102)、または弁体101を弁体軸210の方向に見て、円周上に形成される。また流路拡大構造212は、シート部材(ノズルプレート102)、または弁体101を弁体軸方向に見て、円周上に形成され、かつ、第一噴孔201aの上流側端部(図3において中心と離れる側の端部)よりも下流側かつ、第二噴孔201bの下流側端部(図3において中心側端部)よりも上流側の領域に形成される。 As shown in FIG. 3, the above-described flow path expanding structure 212 is formed on the circumference when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the direction of the valve body shaft 210. The flow path expanding structure 212 is formed on the circumference when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the valve body axial direction, and the upstream end of the first injection hole 201a (see FIG. 3 is formed in a region on the downstream side from the end portion on the side away from the center) and on the upstream side of the downstream end portion (the center side end portion in FIG. 3) of the second injection hole 201b.
 また図4に示すように、第一噴孔201aの下流側端部(図4においてノズルプレート102の先端中心側端部)から第一噴孔入口面に直交する第一噴孔法線方向における弁体101との交点までの距離La2が、第一噴孔201aの上流側端部(図4においてシート側端部)から第一噴孔法線方向における弁体101との交点までの距離La1よりも大きくなるように形成される。なお、図4では開弁した状態を示しているが、この関係は開弁時も閉弁時も同様である。また図5に示すように、第二噴孔201bの下流側端部(図5においてノズルプレート102の先端中心側端部)から第二噴孔入口面に直交する第二噴孔法線方向における弁体101との交点までの距離Lb2が、第二噴孔201bの上流側端部(図5においてシート側端部)から第二噴孔法線方向における弁体101との交点までの距離Lb1よりも小さくなるように形成される。なお、図5では開弁した状態を示しているが、この関係は開弁時も閉弁時も同様である。 Also, as shown in FIG. 4, the first nozzle hole 201a in the first nozzle hole normal direction orthogonal to the first nozzle hole inlet surface from the downstream end part (the end center side end part of the nozzle plate 102 in FIG. 4). The distance La2 to the intersection with the valve body 101 is the distance La1 from the upstream end (sheet side end in FIG. 4) to the intersection with the valve body 101 in the first injection hole normal direction. It is formed to be larger. Although FIG. 4 shows the opened state, this relationship is the same when the valve is opened and when the valve is closed. Further, as shown in FIG. 5, in the second nozzle hole normal direction orthogonal to the second nozzle hole inlet surface from the downstream side end part of the second nozzle hole 201 b (the tip center side end part of the nozzle plate 102 in FIG. 5). The distance Lb2 to the intersection with the valve body 101 is the distance Lb1 from the upstream end (the seat side end in FIG. 5) of the second injection hole 201b to the intersection with the valve body 101 in the second injection hole normal direction. It is formed so as to be smaller. Although FIG. 5 shows the opened state, this relationship is the same when the valve is opened and when the valve is closed.
 また図4、5に示すように、流路拡大構造212からシート部材(ノズルプレート102)の先端部に至るまでの流路の一部が徐々に小さくなるように形成される。図2に示すように、弁体先端部中心と弁体軸方向において弁体先端部中心に対向するシート部材先端部中心との間には隙間が形成される。閉弁時において、この隙間の距離が、流路拡大構造212における最大距離よりも小さくなるように形成されることが望ましい。 As shown in FIGS. 4 and 5, a part of the flow path from the flow path expanding structure 212 to the tip of the sheet member (nozzle plate 102) is gradually reduced. As illustrated in FIG. 2, a gap is formed between the center of the valve body tip and the center of the sheet member that faces the center of the valve body tip in the valve body axial direction. When the valve is closed, it is desirable that the distance between the gaps be smaller than the maximum distance in the flow path expanding structure 212.
 なお、本実施例において噴孔の配置径が噴孔傾斜角度θの大小によって異なる。配置径とは、図3のようにシート部材(ノズルプレート102)、または弁体101を弁体軸210の方向に見て、中心から入口面中心までの距離のことで、PCD(Pitch Circle Diameter)と呼んでも良い。図4に示すように噴孔傾斜角度θが大きいθaの第一噴孔201aは噴孔の入口のサック側において大きな流入面積が形成されるように流路拡大構造212が形成される。また図5に示すように、噴孔傾斜角度θが小さいθbの第二噴孔201bは噴孔のシート側において大きな流入面積が形成されるように流路拡大構造212が形成される。なお、流路拡大構造212は弁体101またはシート部材(ノズルプレート102)のいずれに形成されても良い。 In the present embodiment, the arrangement diameter of the nozzle holes varies depending on the magnitude of the nozzle hole inclination angle θ. The arrangement diameter is a distance from the center to the center of the inlet surface when the sheet member (nozzle plate 102) or the valve body 101 is viewed in the direction of the valve body axis 210 as shown in FIG. 3, and PCD (Pitch Circle Diameter You may call it. As shown in FIG. 4, the first nozzle hole 201a having θa having a large nozzle hole inclination angle θ is formed with a flow path expanding structure 212 so that a large inflow area is formed on the sack side of the inlet of the nozzle hole. Further, as shown in FIG. 5, the second flow hole 201b of θb having a small nozzle hole inclination angle θ is formed with a flow path expanding structure 212 so that a large inflow area is formed on the sheet side of the nozzle hole. The flow path expanding structure 212 may be formed on either the valve body 101 or the sheet member (nozzle plate 102).
 なお、本実施例のように各燃料噴射孔を異なる円周上に配置しても良い。逆に、全ての燃料噴射孔を同一円周上に配置する場合、上記のLa1<La2またはLb1>Lb2の条件を満たすには、流路拡大構造を本実施例のような軸対称ではなく、各燃料噴射孔の位置に応じた形状とすれば良い。また、噴孔傾斜角が異なる2つ以上の噴孔がLa1<La2またはLb1>Lb2の条件を満たしていれば、それらの噴孔における発明の効果は発揮できる。 In addition, you may arrange | position each fuel-injection hole on a different periphery like a present Example. Conversely, when all the fuel injection holes are arranged on the same circumference, in order to satisfy the above condition of La1 <La2 or Lb1> Lb2, the channel expansion structure is not axially symmetric as in this embodiment, What is necessary is just to make it the shape according to the position of each fuel injection hole. Further, if two or more nozzle holes having different nozzle hole inclination angles satisfy the condition of La1 <La2 or Lb1> Lb2, the effect of the invention in those nozzle holes can be exhibited.
 [流れ、効果説明]
 上記のように燃料噴射孔と弁体を構成したことによる作用効果を、図3から図5を用いて説明する。
[Description of flow and effects]
The operation and effect obtained by configuring the fuel injection hole and the valve body as described above will be described with reference to FIGS.
 図3から図5の301a、301bの矢印は燃料流れを表している。図3に示すように、燃料噴射孔201aに代表される、半径Raの円周上に配置している燃料噴射孔に対しては、燃料は主にノズルプレート102の中心側(サック側)から流入する量が多い。図4に示すように、燃料噴射孔201aではLa1<La2となるように流路拡大構造212が設けられているため、La2側の流路では圧力損失がLa1側よりも小さいことから、ノズルプレートの外周側から流れてきた燃料が、直接燃料噴射孔に流れ込む量が少なくなり、ノズルプレート中心に到達して燃料流れ301aのようにサック側から燃料噴射孔に流れ込む量が増加するためである。よって相対的にサック側から燃料噴射孔に流れ込む量が多くなる。 3 to 5, the arrows 301a and 301b indicate the fuel flow. As shown in FIG. 3, for the fuel injection holes arranged on the circumference of the radius Ra represented by the fuel injection hole 201a, the fuel is mainly from the center side (sack side) of the nozzle plate 102. Large amount of inflow. As shown in FIG. 4, the fuel injection hole 201a is provided with a flow passage enlargement structure 212 so that La1 <La2, so that the pressure loss in the flow passage on the La2 side is smaller than that on the La1 side. This is because the amount of fuel flowing from the outer peripheral side of the gas directly flows into the fuel injection holes decreases, reaches the center of the nozzle plate, and increases in the amount of fuel flowing from the sack side into the fuel injection holes as in the fuel flow 301a. Therefore, the amount that flows into the fuel injection hole from the sack side relatively increases.
 同様に、燃料噴射孔201bに代表される、半径Rbの円周状に配置している燃料噴射孔に対しては、燃料は主にノズルプレート102の外周側から流入する量が多い。図5に示すように、燃料噴射孔201bではLb1>Lb2となるように流路拡大構造212が設けられているため、Lb1側の流路では圧力損失がLb2側よりも小さいためであり、ノズルプレートの外周側から流れ込む量が相対的に多くなる。
このように燃料流れを制御する理由は、噴孔傾斜角(θaやθb)の大小に応じて、燃料の燃料噴射孔への流入方向を調整し、流入時のはく離を低減することである。はく離を低減することで、噴霧の揺らぎを低減し、噴霧中に発生する微小液滴の燃料噴射弁先端壁面への付着を低減することができる。したがって、排気性能を高めた内燃機関を実現する燃料噴射弁を提供できる。
Similarly, the amount of fuel mainly flows from the outer peripheral side of the nozzle plate 102 is large with respect to the fuel injection holes arranged in a circumferential shape having a radius Rb typified by the fuel injection hole 201b. As shown in FIG. 5, the fuel injection hole 201b is provided with the flow passage expanding structure 212 so that Lb1> Lb2, so that the pressure loss is smaller in the flow path on the Lb1 side than on the Lb2 side. The amount flowing from the outer peripheral side of the plate is relatively increased.
The reason for controlling the fuel flow in this way is to adjust the inflow direction of the fuel into the fuel injection hole according to the size of the injection hole inclination angle (θa or θb), thereby reducing the separation at the time of inflow. By reducing the separation, the fluctuation of the spray can be reduced, and the adhesion of the fine liquid droplets generated during the spraying to the fuel injection valve tip wall surface can be reduced. Therefore, a fuel injection valve that realizes an internal combustion engine with improved exhaust performance can be provided.
  [他の構造との比較]
 図6と図7は、本実施例と比較するための、他の構造の構成と燃料の流れを説明する図である。図6に示すように、他の構造では流路拡大構造は設けておらず、またサック206の流路が広い。これにより、燃料はサック側から燃料噴射孔201c、201dに向かって流れやすくなり、本実施例のように燃料噴射孔への流入方向を調整することが難しい。よって本実施例では弁体101とサック205から成る流路高さは、少なくとも流路拡大構造において弁座面と弁体が成す流路の最大高さよりも小さくなるように構成されている。
[Comparison with other structures]
6 and 7 are diagrams for explaining the structure of another structure and the flow of fuel for comparison with the present embodiment. As shown in FIG. 6, the other structure is not provided with a flow path expanding structure, and the flow path of the sac 206 is wide. Thereby, the fuel easily flows from the sack side toward the fuel injection holes 201c and 201d, and it is difficult to adjust the inflow direction to the fuel injection holes as in the present embodiment. Therefore, in this embodiment, the height of the flow path composed of the valve body 101 and the sack 205 is configured to be smaller than the maximum height of the flow path formed by the valve seat surface and the valve body at least in the flow path enlarged structure.
 図7は他の構造における燃料噴射孔の配置を示している。他の構造では全ての燃料噴射孔が同じ円周上に配置されており、よって各燃料噴射孔に対する燃料の流れ込み易さも、ほぼ同じとなる。例えばノズルプレート102の外周側よりも中心側の流路が広くなっている場合、301cや301dのような中心側から燃料噴射孔へ流れ込む量が多くなり、噴孔傾斜角が小さい場合はノズルプレート102の中心側ではく離が生じやすくなる。よって、すべての燃料噴射孔ではく離を低減するためには、本実施例のように、各燃料噴射孔へ燃料が流れ込みやすい方向を制御する必要がある。 FIG. 7 shows the arrangement of fuel injection holes in another structure. In other structures, all the fuel injection holes are arranged on the same circumference, so that the ease of fuel flow into each fuel injection hole is substantially the same. For example, when the flow path on the center side is wider than the outer peripheral side of the nozzle plate 102, the amount flowing into the fuel injection hole from the center side such as 301c and 301d increases, and when the nozzle hole inclination angle is small, the nozzle plate Separation easily occurs at the center side of 102. Therefore, in order to reduce the separation at all the fuel injection holes, it is necessary to control the direction in which the fuel easily flows into each fuel injection hole as in this embodiment.
 本発明の第2の実施例に係わる燃料噴射弁について、図8と図9を用いて以下説明する。図8は本実施例における燃料噴射弁先端の構成を示す断面図であり、図2と同一の番号が割り当てられているものは、実施例1と同一もしくは同等の機能を有するものである。
図9は本実施例における燃料噴射孔の入口側から見た、シート部材102に設けられた燃料噴射孔の配置を説明する図であり、実施例1と同一もしくは同等の機能を有するものである。
A fuel injection valve according to a second embodiment of the present invention will be described below with reference to FIGS. FIG. 8 is a cross-sectional view showing the configuration of the tip of the fuel injection valve in the present embodiment, and components having the same numbers as those in FIG. 2 have the same or equivalent functions as those in the first embodiment.
FIG. 9 is a view for explaining the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes in the present embodiment, and has the same or equivalent function as in the first embodiment. .
 本実施例では、流路拡大構造213をシート部材102の弁座面203に設けている。
このとき、本実施例における詳細な説明は省略するが、燃料噴射孔形状と弁体の関係が、実施例1で示したLa1<La2またはLb1>Lb2の条件を満たしていれば良い。La1、La2、Lb1、Lb2の定義は実施例1と同様に、噴孔入口端部から弁体までの距離で定義される。これにより流路拡大構造213の効果は実施例1と同一となり、燃料が燃料噴射孔に流れ込む方向を制御することが可能となる。
In this embodiment, the flow path expanding structure 213 is provided on the valve seat surface 203 of the seat member 102.
At this time, although detailed description in the present embodiment is omitted, it is only necessary that the relationship between the fuel injection hole shape and the valve body satisfies the condition of La1 <La2 or Lb1> Lb2 shown in the first embodiment. The definitions of La1, La2, Lb1, and Lb2 are defined by the distance from the injection hole inlet end to the valve body, as in the first embodiment. Thereby, the effect of the flow path expanding structure 213 is the same as that of the first embodiment, and the direction in which the fuel flows into the fuel injection hole can be controlled.
 本実施例は実施例1と異なり、弁体の形状を特に変更する必要はなく、本実施例し示した針弁だけでなく、ボール弁にも対応可能となる。 This embodiment differs from the first embodiment in that it is not necessary to change the shape of the valve body, and not only the needle valve shown in the present embodiment but also a ball valve can be used.
 本実施例の流路拡大構造は図9に示すように同心円状のくぼみとして設けているが、例えば燃料噴射孔が同一円周上に配置されている場合でも、各燃料噴射孔の噴孔傾斜角に応じてLa1<La2またはLb1>Lb2の条件を満たすように流路拡大構造を設けることで、燃料噴射孔への流れ込み方向を制御することができる。 Although the flow path expanding structure of the present embodiment is provided as a concentric recess as shown in FIG. 9, for example, even when the fuel injection holes are arranged on the same circumference, the injection hole inclination of each fuel injection hole The flow direction into the fuel injection hole can be controlled by providing the flow path expanding structure so as to satisfy the condition of La1 <La2 or Lb1> Lb2 according to the angle.
100…電磁式燃料噴射弁101…弁体102…シート部材103…ガイド部材104…ノズル体105…弁体ガイド106…アンカー107…コア108…コイル109…ヨーク110…スプリング111…コネクタ112…燃料供給口201a、201b…燃料噴射孔202a、202b…ザグリ203…弁座面205、206…サック210…燃料噴射弁の中心軸(弁体軸)211a、211b…燃料噴射孔の中心軸(噴孔軸)212、213…流路拡大構造301a、301b、301c、301d、301e、301f…燃料流れ DESCRIPTION OF SYMBOLS 100 ... Electromagnetic fuel injection valve 101 ... Valve body 102 ... Seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Anchor 107 ... Core 108 ... Coil 109 ... Yoke 110 ... Spring 111 ... Connector 112 ... Fuel supply Mouth 201a, 201b ... Fuel injection hole 202a, 202b ... Counterbore 203 ... Valve seat surface 205, 206 ... Sack 210 ... Center axis (valve body axis) 211a, 211b of fuel injection valve ... Center axis of fuel injection hole (injection axis) ) 212, 213... Channel expansion structures 301a, 301b, 301c, 301d, 301e, 301f... Fuel flow

Claims (10)

  1.  弁体と、前記弁体が着座する弁座面が形成されるシート部材と、前記弁体と前記弁座面とが当接する当接部よりも下流側に形成され、弁体軸と噴孔軸との成す角度が第一の角度θaとなる第一噴孔と、前記弁体軸と噴孔軸との成す角度が前記第一の角度θaよりも小さい第二の角度θbとなる第二噴孔と、を備えた燃料噴射弁において、
     前記当接部の下流側において、前記シート部材と前記弁体との間に流路面積が大きくなる流路拡大構造が形成され、
     前記流路拡大構造は、前記第一噴孔の下流側端部と重なるとともに、前記第二噴孔の上流側端部と重なるように形成される燃料噴射弁。
    A valve body, a seat member on which a valve seat surface on which the valve body is seated, and a contact portion where the valve body and the valve seat surface are in contact with each other; A first nozzle hole whose angle with the shaft is a first angle θa, and a second angle θb whose angle between the valve body shaft and the nozzle hole axis is smaller than the first angle θa. A fuel injection valve having a nozzle hole,
    On the downstream side of the contact portion, a flow path expanding structure is formed between the seat member and the valve body, in which a flow path area increases.
    The flow path expanding structure is a fuel injection valve formed so as to overlap with a downstream end portion of the first injection hole and to overlap with an upstream end portion of the second injection hole.
  2.  請求項1に記載の燃料噴射弁において、前記流路拡大構造は、前記シート部材、または前記弁体を弁体軸方向に見て、円周上に形成される燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein the flow path expanding structure is formed on a circumference when the seat member or the valve body is viewed in a valve body axial direction.
  3.  請求項1に記載の燃料噴射弁において、前記流路拡大構造は、前記シート部材、または前記弁体を弁体軸方向に見て、円周上に形成され、かつ、前記第一噴孔の上流側端部よりも下流側かつ、前記第二噴孔の下流側端部よりも上流側の領域に形成された燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein the flow path expanding structure is formed on a circumference when the seat member or the valve body is viewed in a valve body axial direction, and the first injection hole is formed. A fuel injection valve formed in a region downstream from the upstream end and upstream from the downstream end of the second injection hole.
  4.  請求項1に記載の燃料噴射弁において、前記第一噴孔の下流側端部から第一噴孔入口面に直交する第一噴孔法線方向における前記弁体との交点までの距離が、前記第一噴孔の上流側端部から前記第一噴孔法線方向における前記弁体との交点までの距離よりも大きくなるように形成された燃料噴射弁。 The fuel injection valve according to claim 1, wherein the distance from the downstream end portion of the first injection hole to the intersection with the valve body in the first injection hole normal direction orthogonal to the first injection hole inlet surface, The fuel injection valve formed so that it may become larger than the distance from the upstream edge part of said 1st nozzle hole to the intersection with the said valve body in the said 1st nozzle hole normal line direction.
  5.  請求項1に記載の燃料噴射弁において、前記第二噴孔の下流側端部から第二噴孔入口面に直交する第二噴孔法線方向における前記弁体との交点までの距離が、前記第二噴孔の上流側端部から前記第二噴孔法線方向における前記弁体との交点までの距離よりも小さくなるように形成された燃料噴射弁。 The fuel injection valve according to claim 1, wherein the distance from the downstream end portion of the second injection hole to the intersection with the valve body in the second injection hole normal direction orthogonal to the second injection hole inlet surface, A fuel injection valve formed to be smaller than a distance from an upstream end portion of the second injection hole to an intersection with the valve body in the second injection hole normal direction.
  6.  請求項1に記載の燃料噴射弁において、前記流路拡大構造から前記シート部材の先端部に至るまでの流路の一部が徐々に小さくなるように形成された燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein a part of the flow path from the flow path expanding structure to the tip of the seat member is gradually reduced.
  7.  請求項6に記載の燃料噴射弁において、弁体先端部中心と弁体軸方向において前記弁体先端部中心に対向するシート部材先端部中心との間の距離が、前記流路拡大構造における最大距離よりも小さくなるように形成された燃料噴射弁。 7. The fuel injection valve according to claim 6, wherein the distance between the center of the valve body tip and the center of the seat member facing the center of the valve body tip in the valve body axial direction is the maximum in the flow path expanding structure. A fuel injection valve formed to be smaller than the distance.
  8.  請求項1に記載の燃料噴射弁において、前記流路拡大構造は切削加工により前記弁体に形成された燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein the flow path expanding structure is formed on the valve body by cutting.
  9.  請求項1に記載の燃料噴射弁において、前記流路拡大構造は前記シート部材に形成された燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein the flow path expanding structure is formed on the seat member.
  10.  噴孔の配置径が噴孔傾斜角度θの大小によって異なり、噴孔傾斜角度θが大きいθaの第一噴孔は噴孔の入口のサック側において大きな流入面積が形成され、噴孔傾斜角度θが小さいθbの第二噴孔は噴孔のシート側において大きな流入面積が形成されるように前記弁体または弁座に流路拡大構造が形成された燃料噴射弁。 The arrangement diameter of the nozzle hole differs depending on the size of the nozzle hole tilt angle θ, and the first nozzle hole of θa having a large nozzle hole tilt angle θ has a large inflow area on the sack side of the inlet of the nozzle hole, and the nozzle hole tilt angle θ The second injection hole with a small θb is a fuel injection valve in which a flow passage expanding structure is formed in the valve body or the valve seat so that a large inflow area is formed on the seat side of the injection hole.
PCT/JP2017/046874 2017-01-23 2017-12-27 Fuel injection valve WO2018135263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009087A JP6779143B2 (en) 2017-01-23 2017-01-23 Fuel injection valve
JP2017-009087 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135263A1 true WO2018135263A1 (en) 2018-07-26

Family

ID=62909003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046874 WO2018135263A1 (en) 2017-01-23 2017-12-27 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP6779143B2 (en)
WO (1) WO2018135263A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242294B2 (en) * 2018-12-28 2023-03-20 株式会社日立製作所 liquid injection valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147317U (en) * 1978-04-04 1979-10-13
JPS6049262U (en) * 1983-09-14 1985-04-06 日産自動車株式会社 Diesel engine fuel injection valve
JPS6248958A (en) * 1985-08-28 1987-03-03 Hino Motors Ltd Fuel injection nozzle
JPS63160369U (en) * 1987-04-10 1988-10-20
JPH0267459A (en) * 1988-08-31 1990-03-07 Nippon Denso Co Ltd Fuel injection nozzle
JPH0921321A (en) * 1995-07-05 1997-01-21 Toyota Autom Loom Works Ltd Fuel injection method for direct injection type diesel engine, piston and injection nozzle employed by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147317U (en) * 1978-04-04 1979-10-13
JPS6049262U (en) * 1983-09-14 1985-04-06 日産自動車株式会社 Diesel engine fuel injection valve
JPS6248958A (en) * 1985-08-28 1987-03-03 Hino Motors Ltd Fuel injection nozzle
JPS63160369U (en) * 1987-04-10 1988-10-20
JPH0267459A (en) * 1988-08-31 1990-03-07 Nippon Denso Co Ltd Fuel injection nozzle
JPH0921321A (en) * 1995-07-05 1997-01-21 Toyota Autom Loom Works Ltd Fuel injection method for direct injection type diesel engine, piston and injection nozzle employed by the method

Also Published As

Publication number Publication date
JP6779143B2 (en) 2020-11-04
JP2018119401A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6186130B2 (en) Fuel injection valve and fuel injection valve manufacturing method
US20030085309A1 (en) Fuel injection valve
JP2012097642A (en) Fuel injection valve
WO2018135263A1 (en) Fuel injection valve
JP6392689B2 (en) Fuel injection valve
KR20040077933A (en) Fuel injection valve
JP5320116B2 (en) Fuel injection valve
WO2017126259A1 (en) Fuel injection valve
WO2019098025A1 (en) Fuel injection valve
US7334746B2 (en) Seat-lower guide combination
US9506437B2 (en) Injection valve
JP5748796B2 (en) Fuel injection valve
KR101711316B1 (en) Fuel injection valve
JP6692220B2 (en) Fuel injection valve
JP6399910B2 (en) Fuel injection valve
WO2018155092A1 (en) Fuel injection device
JP6695476B2 (en) Fuel injector
JP5258644B2 (en) Fuel injection valve
JP2013160213A (en) Fuel injection valve
WO2021059773A1 (en) Fuel injection valve, and internal combustion engine provided with fuel injection valve
JP6527763B2 (en) Fuel injection valve
JP2015101978A (en) Fuel injection valve
EP1856404B1 (en) Seat-lower guide combination
WO2016170999A1 (en) Fuel injection device
JP2006348756A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892746

Country of ref document: EP

Kind code of ref document: A1