JP2012097642A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2012097642A
JP2012097642A JP2010245215A JP2010245215A JP2012097642A JP 2012097642 A JP2012097642 A JP 2012097642A JP 2010245215 A JP2010245215 A JP 2010245215A JP 2010245215 A JP2010245215 A JP 2010245215A JP 2012097642 A JP2012097642 A JP 2012097642A
Authority
JP
Japan
Prior art keywords
injection
hole
holes
nozzle
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245215A
Other languages
Japanese (ja)
Other versions
JP5134063B2 (en
Inventor
Kyosuke Watanabe
恭輔 渡辺
Naoya Hashii
直也 橋居
Takeshi Munezane
毅 宗実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010245215A priority Critical patent/JP5134063B2/en
Priority to US13/049,605 priority patent/US8919674B2/en
Priority to DE201110103421 priority patent/DE102011103421A1/en
Publication of JP2012097642A publication Critical patent/JP2012097642A/en
Application granted granted Critical
Publication of JP5134063B2 publication Critical patent/JP5134063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • F02M61/186Multi-layered orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve that promotes formation of thin membranes of fuel within injection holes and promotes atomization of spray is obtained.SOLUTION: Holes provided in an injection hole plate 11 are combined injection holes 16 formed by partially overlapping two or more single injection holes 15a, 15b, 15c from an upstream side to a downstream side of the injection hole plate 11, each of the single injection holes is a circular hole, the single injection hole has an injection hole angle α defined by a tilt angle of a center axis line connecting an entrance part center and an exit part center relative to a plate thickness direction of the injection hole plate 11, areas of exit parts 16b are larger than areas of entrance parts 16a in the combined injection holes 16, and the combined injection holes 16 are formed by press working.

Description

この発明は主に内燃機関の燃料供給系に使用される燃料噴射弁に関し、特に、弁座の下流側に設けられている噴孔プレートに係るものである。   The present invention mainly relates to a fuel injection valve used in a fuel supply system of an internal combustion engine, and particularly relates to an injection hole plate provided on the downstream side of a valve seat.

近年、自動車などの排出ガス規制が強化される中、燃料噴射弁から噴射される燃料噴霧噴射方向の自由度及び微粒化の向上が求められており、特に燃料噴霧の微粒化についてはこれまで既に各種の検討がなされている。   In recent years, as exhaust gas regulations for automobiles and the like have been strengthened, improvement in the degree of freedom and atomization of the direction of fuel spray injected from the fuel injection valve has been demanded. Various studies have been made.

従来の燃料噴射弁おいては、弁部材と弁座の燃料下流側に複数の噴孔を形成した薄板の噴孔プレートを配置し、各噴孔から燃料を噴射する燃料噴射弁が知られている。このような燃料噴射弁においては、一般的には噴孔が入口から出口まで同一径となっており、このような同一径の噴孔に燃料が流入すると、燃料は噴孔内周面に沿って広がらず液柱となって噴射される。このような液柱となった燃料は微粒化されにくく、内燃機関での燃焼を悪化させてしまう。   In a conventional fuel injection valve, there is known a fuel injection valve in which a thin injection hole plate having a plurality of injection holes formed on a fuel downstream side of a valve member and a valve seat is disposed and fuel is injected from each injection hole. Yes. In such a fuel injection valve, generally, the nozzle hole has the same diameter from the inlet to the outlet, and when the fuel flows into the nozzle hole of the same diameter, the fuel moves along the inner peripheral surface of the nozzle hole. It is sprayed as a liquid column without spreading. The fuel that has become such a liquid column is not easily atomized, and deteriorates combustion in the internal combustion engine.

それに対して、例えば特開2001−317431号公報に示されるように、十分に噴孔内で拡げられた液膜を得るために、噴孔にテーパをつけることが考えられる。噴孔の出口側が拡がる円錐形状とすることによって、噴霧が噴孔の内壁面に沿って十分に広がり、燃料が薄膜化して噴射されることが期待できるとしている。   On the other hand, it is conceivable to taper the nozzle hole in order to obtain a liquid film sufficiently expanded in the nozzle hole as disclosed in, for example, JP-A-2001-317431. By adopting a conical shape in which the outlet side of the nozzle hole expands, it can be expected that the spray spreads sufficiently along the inner wall surface of the nozzle hole and the fuel is injected in a thin film.

また、例えば特開2006−2720号公報に示されるように、燃料流入口を楕円形状や複数個の円形とし、前記流入口と滑らかに連通された帯状の流出口から燃料を噴射することで、流出口から均一な液膜状の噴霧を噴射でき、燃料の微粒化を促進できるとしている。   Further, as shown in, for example, Japanese Patent Application Laid-Open No. 2006-2720, the fuel inlet has an elliptical shape or a plurality of circular shapes, and fuel is injected from a strip-like outlet smoothly communicated with the inlet, It is said that a uniform liquid film-like spray can be injected from the outlet and promote atomization of fuel.

また、例えば特開平8−200187号公報に示されるように、噴孔形状が、真直な細長状で、両端が円弧状となる長径と短径を持つ小判型の噴孔とし、短径を小さくすることで燃料噴霧を微粒化できるとしている。また、前記小判型の噴孔の変形例として、円形状である三つの噴孔を直線上に重ねて一つの噴孔を形成しているものもある。   Further, as shown in, for example, Japanese Patent Application Laid-Open No. Hei 8-200187, the nozzle hole shape is a straight and elongated shape, and an oval nozzle hole having a major axis and a minor axis each having an arc shape at both ends, and the minor axis is reduced. By doing so, the fuel spray can be atomized. Further, as a modification of the oval type nozzle hole, there is one in which one nozzle hole is formed by overlapping three circular nozzle holes on a straight line.

特開2001−317431号公報(段落0019、図4)JP 2001-317431 A (paragraph 0019, FIG. 4) 特開2006−2720号公報(段落0061、図9、図11)JP 2006-2720 A (paragraph 0061, FIG. 9, FIG. 11) 特開平8−200187号公報(段落0021、図1、図5)Japanese Patent Laid-Open No. 8-200177 (paragraph 0021, FIGS. 1 and 5)

しかし、噴孔プレートに、特許文献1に示されるようなテーパ状の噴孔を形成する場合、加工上噴孔入口面積がばらつきやすくなるため、流量や噴霧がばらつくという問題があり、また、その製造、及び寸法管理上非常に煩雑な工程が必要となるため、燃料噴射弁の生産性の悪化、コストの増大を招くという問題がある。   However, when a tapered nozzle hole as shown in Patent Document 1 is formed on the nozzle hole plate, the area of the nozzle hole inlet on the processing tends to vary, so there is a problem that the flow rate and spraying vary, Since a very complicated process is required for manufacturing and dimensional control, there is a problem that productivity of the fuel injection valve is deteriorated and cost is increased.

また、特許文献2や特許文献3に示されるような噴孔では、燃料を噴孔内に充満させながら、流路形状に沿った形状の噴霧を噴射する構造となっており、高温負圧下で噴孔上流側で減圧沸騰により発生した燃料中の気泡が、噴孔出口で詰まり、温度や雰囲気圧等の変化に伴う流量特性(静的流量・動的流量)の変化が大きい問題点がある。   In addition, the nozzle holes as shown in Patent Document 2 and Patent Document 3 have a structure in which spray having a shape along the flow path shape is injected while fuel is filled in the nozzle hole. Bubbles in fuel generated by boiling under reduced pressure on the upstream side of the nozzle hole are clogged at the nozzle hole outlet, and there is a problem that the flow characteristics (static flow and dynamic flow) change greatly due to changes in temperature, atmospheric pressure, etc. .

この発明に係わる燃料噴射弁は、前記の問題を解決し、製造を容易にし、噴孔内での燃料の薄膜化を進め、噴霧の微粒化の促進を図り、流量特性の変化を小さくしようとするものである。   The fuel injection valve according to the present invention solves the above-mentioned problems, facilitates manufacture, promotes thinning of the fuel in the nozzle hole, promotes atomization of the spray, and attempts to reduce the change in flow characteristics. To do.

この発明に係わる燃料噴射弁は、弁座を開閉する弁体を有し、前記弁体で前記弁座を開放することにより、燃料が前記弁体と弁座シート面の間を通過し、前記弁座下流側に装着された噴孔プレートに複数設けられた孔から噴射される燃料噴射弁において、前記噴孔プレートに設けられた前記孔は、二つ以上の単一噴孔を、前記噴孔プレート上流側から下流側までに亘り部分的に重ねて形成された合体噴孔であり、前記各単一噴孔は前記噴孔プレート上流側の入口部と下流側の出口部で同一径である円孔であり、前記単一噴孔の少なくとも一つは、入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角αを有し、前記合体噴孔を形成する前記各単一噴孔の前記中心軸線を弁座軸に直交する平面に投影させたときに、前記各単一噴孔の中心軸線同士が交差するように、交差角度βを有することで、前記合体噴孔における入口部の面積より出口部の面積が大きく、かつ前記合体噴孔は、プレス加工によって形成されたものである。   The fuel injection valve according to the present invention has a valve body that opens and closes a valve seat, and by opening the valve seat with the valve body, fuel passes between the valve body and a seat surface of the valve seat, In the fuel injection valve that is injected from a plurality of holes provided in the injection hole plate mounted on the downstream side of the valve seat, the hole provided in the injection hole plate includes two or more single injection holes. The combined injection holes are formed so as to overlap each other from the upstream side to the downstream side of the hole plate, and each single injection hole has the same diameter at the upstream side inlet portion and the downstream side outlet portion. At least one of the single nozzle holes has a nozzle hole angle α defined by an inclination angle of a central axis connecting the inlet center and the outlet center with respect to the nozzle plate thickness direction. And the central axis of each single nozzle hole forming the united nozzle hole is orthogonal to the valve seat axis By having an intersection angle β so that the central axes of each single nozzle hole intersect when projected onto a surface, the area of the outlet part is larger than the area of the inlet part in the coalesced nozzle hole, and The coalesced injection hole is formed by pressing.

この発明の燃料噴射弁によれば、合体噴孔は円孔である二つ以上の単一噴孔を、前記噴孔プレート上流側から下流側までに亘り部分的に重ねて形成されているので、製造が容易であり、合体噴孔内周面の面積が出口側へ向かう程大きくなっているため、合体噴孔内での燃料の薄膜化が進み、噴霧の微粒化の促進が図れる。また、形成する合体噴孔の形状により、微粒化を犠牲にすることなく様々な噴霧形状を実現することができる。また、たとえ、燃料の一部が減圧沸騰し、燃料内に気泡が発生しても、燃料が合体噴孔内入口から突入すると、合体噴孔内壁面に押し付けられ、薄い液膜となり、さらに、噴孔入口から出口まで同一径の噴孔と比較して、合体噴孔内周面の面積が出口側へ向かう程大きくなっているため、合体噴孔から気泡が抜けやすくなっており、雰囲気変化に伴う流量特性(静的流量・動的流量)の変化を小さくすることができる。   According to the fuel injection valve of the present invention, the united injection hole is formed by overlapping two or more single injection holes, which are circular holes, partially overlapping from the upstream side to the downstream side of the injection hole plate. The manufacturing is easy, and the area of the inner peripheral surface of the united injection hole is increased toward the outlet side. Therefore, the fuel thinning in the united injection hole proceeds and the atomization of the spray can be promoted. Moreover, various spray shapes can be realized without sacrificing atomization depending on the shape of the united nozzle hole to be formed. In addition, even if a part of the fuel boiled under reduced pressure and bubbles are generated in the fuel, when the fuel enters from the inlet of the coalesced injection hole, it is pressed against the inner wall surface of the coalesced injection hole to form a thin liquid film, Compared to the nozzle hole with the same diameter from the nozzle hole inlet to the outlet, the area of the inner peripheral surface of the combined nozzle hole increases toward the outlet side, so that bubbles can easily escape from the combined nozzle hole, and the atmosphere changes The change in the flow rate characteristics (static flow rate / dynamic flow rate) associated with can be reduced.

この発明の実施の形態1における燃料噴射弁の断面図である。It is sectional drawing of the fuel injection valve in Embodiment 1 of this invention. 実施の形態1の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 3 is a view showing an injection hole plate portion at a tip portion of the fuel injection valve of the first embodiment. 実施の形態2の燃料噴射弁の先端部における噴孔プレート部を示す図である。It is a figure which shows the nozzle hole plate part in the front-end | tip part of the fuel injection valve of Embodiment 2. FIG. 実施の形態2の燃料噴射弁における吸気ポート及び吸気バルブへの燃料噴射の様子を表した説明図である。FIG. 6 is an explanatory diagram showing a state of fuel injection to an intake port and an intake valve in a fuel injection valve of a second embodiment. 実施の形態3の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to a third embodiment. 実施の形態4の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to a fourth embodiment. 実施の形態5の燃料噴射弁の先端部における噴孔プレート部を示す図である。It is a figure which shows the nozzle hole plate part in the front-end | tip part of the fuel injection valve of Embodiment 5. FIG. 実施の形態6の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to a sixth embodiment. 実施の形態7の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to a seventh embodiment. 実施の形態8の燃料噴射弁の先端部における噴孔プレート部を示す図である。FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to an eighth embodiment.

実施の形態1.
図1はこの発明の実施の形態1の燃料噴射弁を示す断面図である。図において、燃料噴射弁1は、ソレノイド装置2、磁気回路のヨーク部分であるハウジング3、磁気回路の固定鉄心部分であるコア4、コイル5、磁気回路の可動鉄心部分であるアマチュア6、及び弁装置7を有している。弁装置7は弁体8,弁本体9と弁座10で構成されている。弁本体9はコア4の外径部に圧入後、溶接されている。アマチュア6は弁体8に圧入後、溶接されている。弁座10には噴孔プレート11が溶接部11aで弁座下流側に結合された状態で弁本体9に挿入後、溶接部11bで結合されている。噴孔プレート11には板厚方向に貫通する複数の孔12が設けられている。
Embodiment 1 FIG.
1 is a sectional view showing a fuel injection valve according to Embodiment 1 of the present invention. In the figure, a fuel injection valve 1 includes a solenoid device 2, a housing 3 that is a yoke part of a magnetic circuit, a core 4 that is a fixed core part of the magnetic circuit, a coil 5, an armature 6 that is a movable core part of the magnetic circuit, and a valve. A device 7 is included. The valve device 7 includes a valve body 8, a valve body 9 and a valve seat 10. The valve body 9 is welded after being press-fitted into the outer diameter portion of the core 4. The amateur 6 is welded after being pressed into the valve body 8. An injection hole plate 11 is joined to the valve seat 10 after being inserted into the valve body 9 in a state where it is joined to the downstream side of the valve seat by a welded portion 11a, and then joined by a welded portion 11b. The nozzle hole plate 11 is provided with a plurality of holes 12 penetrating in the plate thickness direction.

次に動作について説明する。エンジンの制御装置より燃料噴射弁1の駆動回路(図示せ
ず)に動作信号が送られると、燃料噴射弁1のコイル5に電流が通電され、アマチュア6
、コア4、ハウジング3、弁本体9、アマチュア6で構成される磁気回路に磁束が発生し、アマチュア6はコア4側へ吸引され、アマチュア6の上面6aがコア4の下面に当接する。アマチュア6と一体構造である弁体8が弁座シート面10aから離れて間隙が形成されると、燃料は弁体8の先端部(ボール)13に設けられた複数の溝13aから弁座シート面10aと弁体8の隙間を通って、複数の孔12からエンジン吸気管に噴射される。
Next, the operation will be described. When an operation signal is sent from the engine control device to a drive circuit (not shown) of the fuel injection valve 1, a current is passed through the coil 5 of the fuel injection valve 1, and the armature 6
Magnetic flux is generated in a magnetic circuit composed of the core 4, the housing 3, the valve body 9, and the armature 6, the armature 6 is attracted to the core 4 side, and the upper surface 6a of the armature 6 comes into contact with the lower surface of the core 4. When the valve body 8, which is an integral structure with the amateur 6, is separated from the valve seat surface 10 a and a gap is formed, the fuel is removed from the plurality of grooves 13 a provided at the tip (ball) 13 of the valve body 8. The air is injected from the plurality of holes 12 into the engine intake pipe through the gap between the surface 10a and the valve body 8.

エンジンの制御装置より燃料噴射弁1の駆動回路に動作の停止信号が送られると、コネクタ51からコイル5への電流の通電が停止し、磁気回路中の磁束が減少して弁体8を閉弁方向に押している圧縮ばね14の弾性力により、弁体8と弁座シート面10aとの間の隙間は閉じた状態となり、燃料噴射が終了する。なお、弁体8の開閉動作時には、弁体8は、弁本体9の径方向内側方向に突出したガイド部9aと摺動し、また弁体8のボール13のガイド部13bは、弁座摺動部10bと摺動する。ガイド部13bは、弁座摺動部10bに対する弁体8の径方向の非同軸度(振れ)を規制する手段である。従って、クリアランスはなるべく小さく設定するのが好ましく、弁体8の耐久磨耗を許容限度内とするために、10μm以下(片側隙間5μm以下)としている。   When an operation stop signal is sent to the drive circuit of the fuel injection valve 1 from the engine control device, the current supply from the connector 51 to the coil 5 is stopped, the magnetic flux in the magnetic circuit is reduced, and the valve body 8 is closed. Due to the elastic force of the compression spring 14 being pushed in the valve direction, the gap between the valve body 8 and the valve seat surface 10a is closed, and fuel injection is completed. During the opening / closing operation of the valve body 8, the valve body 8 slides with a guide portion 9a protruding inward in the radial direction of the valve body 9, and the guide portion 13b of the ball 13 of the valve body 8 It slides with the moving part 10b. The guide portion 13b is a means for regulating the non-coaxiality (swing) in the radial direction of the valve body 8 with respect to the valve seat sliding portion 10b. Therefore, the clearance is preferably set as small as possible, and is set to 10 μm or less (one-side clearance of 5 μm or less) in order to keep the durable wear of the valve body 8 within an allowable limit.

図2は実施の形態1の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のa視の平面説明図、その(c)は(b)図のA部の立体説明図である。実施の形態1の燃料噴射弁1の噴孔プレート11における複数の孔12は、それぞれ次のように形成されている。図2(b)(c)に示すように、三つの単一噴孔15a,15b,15cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔16を形成している。単一噴孔15a,15b,15cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、三つの単一噴孔15a,15b,15cの内、真ん中の単一噴孔15bの噴孔径を他の二つの単一噴孔15a,15cのそれに対して大きくしており、かつ、単一噴孔15a,15b,15cは、それぞれ入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角αを有している。なお、単一噴孔15aと単一噴孔15cの墳孔径は同じである。   2A and 2B are diagrams showing an injection hole plate portion at a tip portion of the fuel injection valve of Embodiment 1, in which FIG. 2A is a cross-sectional view, and FIG. (C) is a three-dimensional explanatory drawing of the A section of (b) figure. The plurality of holes 12 in the injection hole plate 11 of the fuel injection valve 1 of Embodiment 1 are formed as follows. As shown in FIGS. 2B and 2C, the three single injection holes 15a, 15b, and 15c are partially divided from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11. Thus, the united nozzle hole 16 is formed. The single injection holes 15a, 15b, and 15c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, and the three single injection holes 15a, 15b, The diameter of the central single injection hole 15b is larger than that of the other two single injection holes 15a and 15c, and the single injection holes 15a, 15b and 15c It has a nozzle hole angle α defined by an inclination angle of a central axis connecting the center of the nozzle and the center of the outlet with respect to the nozzle hole plate thickness direction. The single nozzle hole 15a and the single nozzle hole 15c have the same hole diameter.

合体噴孔16における入口部の面積に対して、出口部の面積が大きくなるように、単一噴孔15a,15b,15cにおける前記中心軸線を弁座軸34に直交する平面に投影させたときに、各単一噴孔15a,15b,15cの中心軸線同士が交差するように、隣り合う単一噴孔間で所定の角度βを有している。単一噴孔15a,15b間の角度と単一噴孔15b,15c間の角度は同一である必要はなく、各単一噴孔15a,15b,15cの中心軸線同士が一点で交差する必要はない。   When the central axis of the single injection holes 15a, 15b, and 15c is projected onto a plane orthogonal to the valve seat axis 34 so that the area of the exit part is larger than the area of the inlet part of the combined injection hole 16 In addition, there is a predetermined angle β between adjacent single nozzle holes so that the central axes of the single nozzle holes 15a, 15b, 15c intersect each other. The angle between the single nozzle holes 15a, 15b and the angle between the single nozzle holes 15b, 15c need not be the same, and the central axes of the single nozzle holes 15a, 15b, 15c need to intersect at one point. Absent.

弁座シート面10aからの燃料流れの主流が、燃料噴射弁の弁座軸34の径方向外側から内側に向かって、合体噴孔16の入口部16aへ流入し、合体噴孔16の入口部16aでの流れの剥離により液膜が形成され、燃料が合体噴孔16内で弁座軸34方向に押し付けられ、合体噴孔16内の流れが合体噴孔16の曲率に沿った流れとなり、合体噴孔16の出口部16bから噴射されるよう構成されている。なお、実施の形態1では合体噴孔16を形成する全ての孔が前記噴孔角αを有しているが、合体噴孔16を形成する複数の単一噴孔の内、少なくとも一つが前記噴孔角αを有すればよい。   The main flow of the fuel flow from the valve seat surface 10a flows into the inlet 16a of the coalesced injection hole 16 from the radially outer side to the inner side of the valve seat shaft 34 of the fuel injection valve, and the inlet part of the coalesced injection hole 16 A liquid film is formed by the separation of the flow at 16a, the fuel is pressed in the direction of the valve seat shaft 34 in the united injection hole 16, and the flow in the united injection hole 16 becomes a flow along the curvature of the united injection hole 16. It is configured to be injected from the outlet portion 16 b of the united injection hole 16. In the first embodiment, all the holes forming the combined injection hole 16 have the injection hole angle α, but at least one of the plurality of single injection holes forming the combined injection hole 16 is the above-described one. It suffices to have a nozzle hole angle α.

合体噴孔16は、墳孔プレート11に単一噴孔15a,15b,15cをそれぞれプレス加工し、それらの単一噴孔15a,15b,15cの円孔が合わさって形成されている。あるいは、合体噴孔16の形状にプレス加工してもよい。いずれにしても、合体噴孔16は円孔をあわせて形成されるので、製造が容易である。   The united injection hole 16 is formed by pressing the single injection holes 15a, 15b, and 15c on the hole plate 11 and combining the circular holes of the single injection holes 15a, 15b, and 15c. Or you may press into the shape of the united injection hole 16. FIG. In any case, since the united injection hole 16 is formed by combining circular holes, manufacture is easy.

実施の形態1における燃料噴射弁は前記のように構成されており、噴孔入口から出口まで同一径の噴孔と比較して、合体噴孔内周面の面積が出口側へ向かう程大きくなっているため、合体噴孔内での燃料の薄膜化が出口部16bへ向かうにつれて促進され、噴霧の微粒化が可能となる。また、前記のように、合体噴孔内で燃料が充満せずに、合体噴孔内に押し付けられながら薄い液膜となって合体噴孔16の出口部16bから噴射されることから、合体噴孔16内で発生した気泡が抜けやすい構造となっており、雰囲気変化に伴う流量特性(静的流量・動的流量)の変化を小さくすることが可能である。   The fuel injection valve in the first embodiment is configured as described above, and the area of the inner peripheral surface of the combined injection hole becomes larger toward the outlet side than the injection hole having the same diameter from the injection hole inlet to the outlet. Therefore, the fuel thinning in the coalesced injection hole is promoted toward the outlet portion 16b, and atomization of the spray becomes possible. Further, as described above, since the fuel is not filled in the coalesced nozzle hole, the fuel is injected into the coalesced nozzle hole 16 as a thin liquid film while being pressed into the coalesced nozzle hole. It has a structure in which bubbles generated in the holes 16 are easily removed, and it is possible to reduce the change in flow rate characteristics (static flow rate / dynamic flow rate) accompanying the change in atmosphere.

実施の形態2.
図3は実施の形態2の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のb視の平面説明図、その(c)は(b)図のB部の立体説明図、その(d)は(b)図のB部,C部の墳孔内の燃料の様子を示す説明図である。実施の形態2に係る燃料噴射弁1の噴孔プレート11における複数の孔12は、次のように形成されている。三つの単一噴孔17a,17b,17cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔18を形成している。
Embodiment 2. FIG.
FIG. 3 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to Embodiment 2, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory diagram of part B of FIG. (B), and (d) is an explanatory diagram showing the state of fuel in the fistulas of parts B and C of FIG. The plurality of holes 12 in the injection hole plate 11 of the fuel injection valve 1 according to Embodiment 2 are formed as follows. Three single injection holes 17a, 17b, and 17c are continuously overlapped from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11 to form a combined injection hole 18. .

単一噴孔17a,17b,17cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、三つの単一噴孔17a,17b,17cの墳孔径は互いに異なっている。(b)図のB部の場合は、単一噴孔の墳孔径が紙面の上から下にかけて順次小さくなり、C部では、単一噴孔17a,17b,17cの墳孔径が紙面の上から下にかけて順次大きくなっている。単一噴孔17a,17b,17cは、それぞれ入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角αを有している。しかし単一噴孔17a,17b,17cの前記噴孔角αが異なっていてもよい。なお、他の構成は実施の形態1と同様であり、合体噴孔18における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔18は円孔をあわせて形成されるので、製造が容易である。   The single injection holes 17a, 17b, and 17c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, and the three single injection holes 17a, 17b, The pore diameters of 17c are different from each other. (B) In the case of part B in the figure, the diameter of the single nozzle hole gradually decreases from the top to the bottom of the paper, and in part C, the diameter of the single nozzle holes 17a, 17b, and 17c from the top of the paper. It gradually increases toward the bottom. Each of the single injection holes 17a, 17b, and 17c has an injection hole angle α defined by an inclination angle of the central axis connecting the inlet center and the outlet center with respect to the injection hole plate thickness direction. However, the nozzle hole angles α of the single nozzle holes 17a, 17b, and 17c may be different. The other configuration is the same as that of the first embodiment. The area of the outlet is larger than the area of the inlet in the united injection hole 18, and the united injection hole 18 is formed by combining circular holes. Therefore, manufacture is easy.

図3に示すような異なる合体噴孔18(B部,C部)を形成することで、合体噴孔18内での燃料の拡がり方が均一ではなく{(d)図参照}、合体噴孔内での燃料の液膜厚さに差を持ちながら燃料が噴射される。前記のような異なる合体噴孔18を噴孔プレート11内に複数配置し、それら合体噴孔群により一つの集合噴霧を形成することで、一つの集合噴霧内での濃度分布やその形状において、様々なバリエーションが実現可能である。   By forming different coalesced injection holes 18 (B part, C part) as shown in FIG. 3, the way of spreading the fuel in the coalesced injection holes 18 is not uniform {see FIG. Fuel is injected while having a difference in the liquid film thickness of the fuel. By arranging a plurality of different coalesced injection holes 18 in the nozzle hole plate 11 and forming one collective spray by the coalesced nozzle hole group, in the concentration distribution and the shape in one collective spray, Various variations are possible.

一般的に、集合噴霧の稜線が形成する噴霧の角度(以下、噴霧角)と前記集合噴霧の粒径はトレードオフの関係になっており、噴霧角が大きいほど粒径は小さくなる。燃料噴射式の内燃機関においては、微粒化した燃料を供給することで速やかに着火が完了し、燃焼効率が高くなり、排気ガス、特に炭化水素HCの排出濃度を低減することから、燃焼効率を上げるためには燃料の微粒化が必要となる。   In general, the spray angle formed by the ridge line of the collective spray (hereinafter referred to as spray angle) and the particle size of the collective spray are in a trade-off relationship, and the larger the spray angle, the smaller the particle size. In a fuel-injection internal combustion engine, ignition is completed quickly by supplying atomized fuel, combustion efficiency is increased, and exhaust gas concentration, particularly hydrocarbon HC emission concentration is reduced. To increase the fuel, it is necessary to atomize the fuel.

従来の燃料噴射弁においては、集合噴霧内の粒径がほぼ一様な噴霧を、吸気バルブを狙って噴射しており、その際に噴霧の中心軸に対して外側の部分はある一定量吸気ポート内壁へ付着している。前記のような粒径がほぼ一様である集合噴霧を微粒化させるために、噴霧角を大きくすると、より吸気ポート内壁への付着が増え、内壁を伝い液膜となって遅れて気筒内に流入する燃料が増加することで、燃焼効率は下がり、結果として排ガス中における炭化水素HCの濃度は上昇し、またエンジン制御性も悪化する。   In a conventional fuel injection valve, a spray having a substantially uniform particle size in a collective spray is injected aiming at an intake valve, and at that time, a portion outside the center axis of the spray is a certain amount of intake air. Adhering to the inner wall of the port. In order to atomize the collective spray having a substantially uniform particle size as described above, if the spray angle is increased, the adhesion to the inner wall of the intake port is increased, and a liquid film is transmitted along the inner wall and delayed into the cylinder. As the amount of fuel flowing in increases, the combustion efficiency decreases. As a result, the concentration of hydrocarbon HC in the exhaust gas increases, and the engine controllability deteriorates.

図4は実施の形態2の燃料噴射弁における吸気ポート及び吸気バルブへの燃料噴射の様子を表した説明図で、その(a)は吸気ポート及び吸気バルブ部の断面説明図、その(b)は(a)図のC視の上面説明図である。実施の形態2では、従来例に対して、合体噴孔18内の燃料を不均一に液膜化することで、それら合体噴孔群からの噴射により形成された集合噴霧内の粒径分布に差を設け、図4に示すように、集合噴霧の外側を粒径の小さい部分19a、また外側を微粒化させるために、内側に微粒化を犠牲にした粒径の大きい部分19bを形成し、粒径の大きい部分19bを温度の高い吸気バルブ中央部20に当てることで速やかに気化させ、また外側の噴霧においては吸気ポート内壁21への付着を低減させることで、燃焼効率を上げることが可能である。   FIG. 4 is an explanatory view showing a state of fuel injection to the intake port and the intake valve in the fuel injection valve of the second embodiment, and (a) is a cross-sectional explanatory view of the intake port and the intake valve portion, (b) (A) It is the upper surface explanatory view of the C view of figure. In the second embodiment, the fuel in the coalesced injection holes 18 is formed into a liquid film in a non-uniform manner compared to the conventional example, so that the particle size distribution in the collective spray formed by the injection from the coalesced nozzle holes is obtained. As shown in FIG. 4, a portion 19 a having a small particle size is formed on the outside of the collective spray, and a portion 19 b having a large particle size at the sacrifice of atomization is formed on the inside in order to atomize the outside, as shown in FIG. Combustion efficiency can be improved by quickly evaporating by applying the large-diameter portion 19b to the high-temperature intake valve central portion 20 and reducing the adhesion to the intake port inner wall 21 in the outer spray. It is.

実施の形態3.
図5は実施の形態3の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のd視の平面説明図、その(c)は(b)図のD部の立体説明図である。実施の形態3に係る燃料噴射弁1の噴孔プレート11における複数の孔12は、それぞれ次のように形成されている。図5(b)(c)に示すように、三つの単一噴孔23a,23b,23cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔22を形成している。単一噴孔23a,23b,23cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)である。合体噴孔22における入口部22aの面積が、この合体噴孔22を形成する三つの単一噴孔23a,23b,23cの内の最大墳孔径の単一噴孔23bの入口部の面積と同一となるように形成されている。従って、他の二つの単一噴孔23a,23cの墳孔径は、単一噴孔23bの墳孔径以下である。
Embodiment 3 FIG.
FIG. 5 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to Embodiment 3, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory drawing of the D section of (b) figure. The plurality of holes 12 in the injection hole plate 11 of the fuel injection valve 1 according to Embodiment 3 are formed as follows. As shown in FIGS. 5B and 5C, the three single injection holes 23a, 23b, and 23c are partially divided from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11. Thus, the united nozzle hole 22 is formed. The single nozzle holes 23a, 23b, and 23c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the nozzle plate 11, respectively. The area of the inlet portion 22a in the combined nozzle hole 22 is the same as the area of the inlet portion of the single nozzle hole 23b having the largest bore diameter among the three single nozzle holes 23a, 23b, 23c forming the combined nozzle hole 22. It is formed to become. Therefore, the diameters of the other two single nozzle holes 23a and 23c are equal to or smaller than the diameter of the single nozzle hole 23b.

その他の構成は実施の形態1と同様であり、単一噴孔23a,23b,23cは、それぞれ入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角αを有しており、合体噴孔22における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔22は円孔をあわせて形成されるので、製造が容易である。なお、単一噴孔23a,23b,23cにおいて、前記噴孔角αは互い異なっていてもよい。   Other configurations are the same as those of the first embodiment, and the single injection holes 23a, 23b, and 23c are defined by inclination angles of the central axis connecting the inlet center and the outlet center with respect to the injection hole plate thickness direction. Since the area of the exit portion is larger than the area of the entrance portion in the merged nozzle hole 22 and the merged nozzle hole 22 is formed by combining the circular holes, Easy to manufacture. In the single nozzle holes 23a, 23b, and 23c, the nozzle hole angles α may be different from each other.

なお、
実施の形態3によっても実施の形態1と同様に、燃料噴霧の微粒化を促進でき、合体噴孔22における入口部22aの面積を、三つの単一噴孔23a,23b,23cの内の最大墳孔径の単一噴孔23bの入口部の面積と同一にすることで、その他の単一噴孔23a,23cの加工位置バラツキによる流量バラツキを抑制することができる。
In addition,
Also in the third embodiment, as in the first embodiment, atomization of the fuel spray can be promoted, and the area of the inlet portion 22a in the combined injection hole 22 is set to the maximum of the three single injection holes 23a, 23b, and 23c. By making it the same as the area of the inlet portion of the single nozzle hole 23b having the hole diameter, it is possible to suppress the flow rate variation due to the processing position variation of the other single nozzle holes 23a and 23c.

実施の形態4.
図6は実施の形態4の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のe視の平面説明図、その(c)は(b)図のE部の立体説明図である。実施の形態4に係る燃料噴射弁1の噴孔プレート11における複数の孔12は、それぞれ次のように形成されている。図6(b)(c)に示すように、三つの単一噴孔25a,25b,25cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔24を形成している。単一噴孔25a,25b,25cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)である。三つの単一噴孔23a,23b,23cの径がすべて同一であり、また実施の形態1で説明した噴孔角αが三つの単一噴孔23a,23b,23cとも同一であるが、異なっていてもよい。
Embodiment 4 FIG.
6A and 6B are views showing an injection hole plate portion at a tip portion of a fuel injection valve according to Embodiment 4, in which FIG. 6A is a cross-sectional view, and FIG. 6B is an explanatory plan view of FIG. (C) is a three-dimensional explanatory drawing of the E section of (b) figure. The plurality of holes 12 in the injection hole plate 11 of the fuel injection valve 1 according to Embodiment 4 are formed as follows. As shown in FIGS. 6B and 6C, the three single injection holes 25a, 25b, and 25c are continuously divided from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11. Thus, a united nozzle hole 24 is formed. The single injection holes 25a, 25b, and 25c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, respectively. The diameters of the three single injection holes 23a, 23b, and 23c are all the same, and the injection hole angle α described in the first embodiment is the same as that of the three single injection holes 23a, 23b, and 23c. It may be.

その他の構成は実施の形態1と同様であり、合体噴孔24における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔24は円孔をあわせて形成されるので、製造が容易である。さらに、単一噴孔25a,25b,25cの入口部の配置を重ねており、合体噴孔24における入口部の面積は、単一噴孔の入口部の面積と一致している。   Other configurations are the same as those of the first embodiment, and the area of the outlet portion is larger than the area of the inlet portion in the united injection hole 24, and the united injection hole 24 is formed by combining the circular holes. Easy to manufacture. Furthermore, the arrangement | positioning of the inlet part of single injection hole 25a, 25b, 25c is piled up, and the area of the inlet part in the united injection hole 24 corresponds with the area of the inlet part of a single injection hole.

図6に示すような合体噴孔24を形成することで、実施の形態1と同様に燃料噴霧の微粒化を促進できる。また単一噴孔25a,25b,25cをプレス加工により製造する場合は、噴孔径が同一で、さらに噴孔角αを同一とすれば、製造の際に噴孔形成用のパンチを幾種類も用意する必要がなく、他の実施の形態より安価に製造可能である。   By forming the coalesced injection hole 24 as shown in FIG. 6, atomization of the fuel spray can be promoted as in the first embodiment. Further, when the single injection holes 25a, 25b, and 25c are manufactured by press working, if the injection hole diameter is the same and the injection hole angle α is the same, various types of injection hole forming punches are produced during the manufacture. There is no need to prepare, and it can be manufactured at a lower cost than other embodiments.

実施の形態5.
図7は実施の形態5の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のf視の平面説明図、その(c)は(b)図のF部の立体説明図、その(d)は(b)図のF部,G部の墳孔内の燃料の様子を示す説明図である。実施の形態5に係る燃料噴射弁1の噴孔プレート11における複数の孔12は、次のように形成されている。二つの単一噴孔27a,27bを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔26を形成している。
Embodiment 5 FIG.
FIG. 7 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to a fifth embodiment, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory view of the F part of FIG. (B), and (d) is an explanatory view showing the state of fuel in the fistulas of the F part and G part of FIG. The plurality of holes 12 in the injection hole plate 11 of the fuel injection valve 1 according to Embodiment 5 are formed as follows. Two single injection holes 27a and 27b are continuously overlapped from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11 to form a combined injection hole 26.

単一噴孔27a,27bはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、単一噴孔27a,27bの墳孔径は同じである。単一噴孔27a,27bは、それぞれ、入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角α1,α2を有しており、噴孔角α1と噴孔角α2は異なっている。なお、他の構成は実施の形態1と同様であり、合体噴孔26における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔26は円孔をあわせて形成されるので、製造が容易である。さらに、単一噴孔27a,27bの入口部の配置を重ねており、合体噴孔26における入口部の面積は、単一噴孔の入口部の面積と一致している。なお、単一噴孔27a,27bの墳孔径は必ずしも同じでなくてもよい。   The single injection holes 27a and 27b are circular holes (cylindrical holes) having the same diameter from the upstream inlet to the downstream outlet of the injection hole plate 11, and the single injection holes 27a and 27b have the same hole diameter. It is. The single nozzle holes 27a and 27b respectively have nozzle hole angles α1 and α2 defined by inclination angles of the central axis connecting the inlet center and the outlet center with respect to the nozzle plate thickness direction, The nozzle hole angle α1 and the nozzle hole angle α2 are different. The other configuration is the same as that of the first embodiment, and the area of the outlet is larger than the area of the inlet in the united injection hole 26, and the united injection hole 26 is formed by combining circular holes. Therefore, manufacture is easy. Furthermore, the arrangement | positioning of the inlet part of the single injection holes 27a and 27b is piled up, and the area of the inlet part in the united injection hole 26 corresponds with the area of the inlet part of a single injection hole. The diameters of the single nozzle holes 27a and 27b are not necessarily the same.

図7に示すような合体噴孔26を形成することで、実施の形態1と同様に燃料噴霧の微粒化を促進でき、また単一噴孔27a,27bをプレス加工により製造する場合は、噴孔径が同一であれば、製造の際に噴孔形成用のパンチを幾種類も用意する必要がなく、噴孔径が同一でない実施の形態より安価に製造可能である。図7に示すような合体噴孔26を形成することで、実施の形態2と同様に、合体噴孔内での液膜の広がり方が均一でなくなり、実施の形態2と同様の効果を得ることができる。   By forming the united injection hole 26 as shown in FIG. 7, atomization of the fuel spray can be promoted similarly to the first embodiment, and when the single injection holes 27a and 27b are manufactured by press working, If the hole diameters are the same, it is not necessary to prepare several kinds of punches for forming the nozzle holes at the time of manufacturing, and it can be manufactured at a lower cost than the embodiment in which the hole diameters are not the same. By forming the coalesced nozzle hole 26 as shown in FIG. 7, the liquid film spreads in the coalesced nozzle hole in a manner similar to the second embodiment, and the same effect as in the second embodiment is obtained. be able to.

実施の形態6.
図8は実施の形態6の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のg視の平面説明図、その(c)は(b)図のH部の立体説明図、その(d)は噴霧平均粒径(μm)と噴孔出口部での噴孔中心間距離ds(mm)との関係を示す特性図である。単一噴孔29a,29b,29cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔28を形成している。
Embodiment 6 FIG.
FIG. 8 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to Embodiment 6, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory diagram of the H part in (b), and (d) is a characteristic showing the relationship between the spray average particle diameter (μm) and the center-to-hole distance ds (mm) at the nozzle hole outlet. FIG. The single injection holes 29a, 29b, and 29c are partially overlapped continuously from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11 to form a combined injection hole 28.

単一噴孔29a,29b,29cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、単一噴孔29a,29b,29cの墳孔径Dは全て同じである。単一噴孔29a,29b,29cは、前述で定義される噴孔角αを有しており、噴孔角αは全て同じでも、互いに異なっていてもよい。なお、他の構成は実施の形態1と同様であり、合体噴孔28における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔28は円孔をあわせて形成されるので、製造が容易である。さらに、単一噴孔29a,29b,29cの入口部の配置を互いに重ねており、合体噴孔28における入口部の面積は、単一噴孔の入口部の面積と一致している。   The single injection holes 29a, 29b, and 29c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, and the single injection holes 29a, 29b, and 29c. The fistula diameters D are all the same. The single injection holes 29a, 29b, and 29c have the injection hole angle α defined above, and the injection hole angles α may all be the same or different from each other. The other configuration is the same as that of the first embodiment, and the area of the outlet portion is larger than the area of the inlet portion in the united injection hole 28, and the unitary injection hole 28 is formed by combining circular holes. Therefore, manufacture is easy. Furthermore, the arrangement of the inlet portions of the single injection holes 29a, 29b, and 29c is overlapped with each other, and the area of the inlet portion in the combined injection hole 28 coincides with the area of the inlet portion of the single injection hole.

実験によると、隣り合う単一噴孔29a,29bの出口部の中心間距離をds(mm)とすると、(d)図に示すように、噴霧平均粒径(μm)とdsの関係は、0<ds≦D/2のとき、合体噴孔28内での燃料の薄膜化が促進され、所望の噴霧粒径が得られることが分かる。また、ds>D/2とすると、各単一噴孔の交わる部分が合体噴孔内での燃料の広がりを阻害し、所望の噴霧粒径が得られないことが分かる。   According to the experiment, when the distance between the centers of the outlets of the adjacent single nozzle holes 29a and 29b is ds (mm), as shown in FIG. (D), the relationship between the spray average particle diameter (μm) and ds is It can be seen that when 0 <ds ≦ D / 2, thinning of the fuel in the coalesced injection hole 28 is promoted, and a desired spray particle size is obtained. Further, when ds> D / 2, it is understood that the portion where the single injection holes intersect inhibits the spread of the fuel in the combined injection holes, and a desired spray particle size cannot be obtained.

実施の形態7.
図9は実施の形態7の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のh視の平面説明図、その(c)は(b)図のI部の立体説明図、その(d)は噴霧平均粒径(μm)と噴孔出口部での噴孔中心間距離ds(mm)との関係を示す特性図である。単一噴孔31a,31b,31cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔30を形成している。
Embodiment 7 FIG.
FIG. 9 is a view showing an injection hole plate portion at the tip portion of the fuel injection valve of Embodiment 7, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory diagram of part I of FIG. (B), and (d) is a characteristic showing the relationship between the spray average particle size (μm) and the center-to-hole distance ds (mm) at the nozzle hole outlet. FIG. The single injection holes 31a, 31b, 31c are partially overlapped continuously from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11 to form a combined injection hole 30.

単一噴孔31a,31b,31cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、隣り合う単一噴孔31a,31b及び31b,31cの墳孔径は互いに異なっている。実施の形態7の場合は単一噴孔31a,31cの墳孔径は同じであるが、異なっていてもよい。単一噴孔31a,31b,31cは前述で定義される噴孔角αを有しており、噴孔角αは全て同じでも、互いに異なっていてもよい。なお、他の構成は実施の形態1と同様であり、合体噴孔30における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔30は円孔をあわせて形成されるので、製造が容易である。   The single injection holes 31a, 31b, and 31c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, and adjacent single injection holes 31a, 31b, and The pore diameters of 31b and 31c are different from each other. In the case of Embodiment 7, the diameters of the single nozzle holes 31a and 31c are the same, but may be different. The single injection holes 31a, 31b, 31c have the injection hole angle α defined above, and the injection hole angles α may all be the same or different from each other. The other configuration is the same as that of the first embodiment, and the area of the outlet is larger than the area of the inlet in the united injection hole 30, and the united injection hole 30 is formed by combining circular holes. Therefore, manufacture is easy.

実験によると、隣り合う単一噴孔31b,31cの内の墳孔径が大きい方31bの噴孔径をDとし、隣り合う単一噴孔31b,31cの出口部の中心間距離をds(mm)とすると、(d)図に示すように、噴霧平均粒径(μm)とdsの関係は、0<ds≦3D/4のとき、合体噴孔30内での燃料の薄膜化が促進され、所望の噴霧粒径が得られることが分かる。また、ds>3D/4とすると、各単一噴孔の交わる部分が合体噴孔内での燃料の広がりを阻害し、所望の噴霧粒径が得られないことが分かる。   According to the experiment, the diameter of the nozzle hole 31b having the larger fistula diameter among the adjacent single nozzle holes 31b and 31c is D, and the distance between the centers of the outlets of the adjacent single nozzle holes 31b and 31c is ds (mm). Then, as shown in FIG. (D), the relationship between the spray average particle size (μm) and ds is such that when 0 <ds ≦ 3D / 4, the thinning of the fuel in the coalesced injection hole 30 is promoted, It can be seen that the desired spray particle size is obtained. Further, when ds> 3D / 4, it can be seen that a portion where each single injection hole intersects inhibits the spread of fuel in the combined injection hole, and a desired spray particle size cannot be obtained.

実施の形態8.
図10は実施の形態8の燃料噴射弁の先端部における噴孔プレート部を示す図で、その(a)は断面図、その(b)は(a)図のj視の平面説明図、その(c)は(b)図のJ部の立体説明図である。単一噴孔35a,35b,35cを噴孔プレート11の上流側(上流面)から下流側(下流面)までに亘り連続して部分的に重ねて合体噴孔32を形成している。
Embodiment 8 FIG.
FIG. 10 is a view showing an injection hole plate portion at a tip portion of a fuel injection valve according to Embodiment 8, in which (a) is a cross-sectional view, (b) is a plane explanatory view of FIG. (C) is a three-dimensional explanatory drawing of the J section of (b) figure. The single injection holes 35a, 35b, and 35c are continuously overlapped from the upstream side (upstream surface) to the downstream side (downstream surface) of the injection hole plate 11 to form the combined injection hole 32.

単一噴孔35a,35b,35cはそれぞれ噴孔プレート11の上流側の入口部から下流側の出口部まで同一径の円孔(円柱孔)であり、単一噴孔35a,35b,35cの墳孔径は異なっても、同じであってもよい。単一噴孔35a,35b,35cは前述で定義される噴孔角αを有しており、噴孔角αは全て同じでも、互いに異なっていてもよい。なお、他の構成は実施の形態1と同様であり、合体噴孔32における入口部の面積に対して、出口部の面積が大きくなっており、合体噴孔30は円孔をあわせて形成されるので、製造が容易である。   The single injection holes 35a, 35b, and 35c are circular holes (cylindrical holes) having the same diameter from the upstream inlet portion to the downstream outlet portion of the injection hole plate 11, and the single injection holes 35a, 35b, and 35c. The fistula diameters may be different or the same. The single injection holes 35a, 35b, and 35c have the injection hole angle α defined above, and the injection hole angles α may all be the same or different from each other. The other configuration is the same as that of the first embodiment, and the area of the outlet is larger than the area of the inlet in the united injection hole 32, and the united injection hole 30 is formed by combining the circular holes. Therefore, manufacture is easy.

実施の形態8では、燃料通路を形成すると共に下流側に向けて縮径する弁座10のシート面10aの延長線と、噴孔プレート11の上流側平面11cが交差する仮想包絡線33の内側に、合体噴孔32の入口部を配置し、かつ合体噴孔32の出口部を、入口部に対して弁座軸34の径方向外側に配置している。   In the eighth embodiment, the inner side of the virtual envelope 33 where the extension line of the seat surface 10a of the valve seat 10 that forms the fuel passage and decreases in diameter toward the downstream side intersects the upstream plane 11c of the nozzle hole plate 11 intersects. In addition, the inlet part of the united injection hole 32 is arranged, and the outlet part of the united injection hole 32 is arranged on the radially outer side of the valve seat shaft 34 with respect to the inlet part.

図10に示すように、合体噴孔32の上流側からの燃料流れを形成することで、より弁座シート部10aからの燃料流れの主流が強化され、より合体噴孔32内での燃料が薄膜化し、微粒化が促進される。
なお、この発明は、実施の形態に示す例に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
As shown in FIG. 10, by forming the fuel flow from the upstream side of the united injection hole 32, the main flow of the fuel flow from the valve seat portion 10 a is further strengthened, and the fuel in the united injection hole 32 is more Thinning and atomization are promoted.
In addition, this invention is not limited to the example shown in embodiment, A various design change is possible in the range which does not deviate from the summary.

1 燃料噴射弁 2 ソレノイド装置
3 ハウジング 4 コア
5 コイル 6 アマチュア
6a アマチュア上面 7 弁装置
8 弁体 9 弁本体
9a ガイド部 10 弁座
10a 弁座シート面 10b 弁座摺動部
11 噴孔プレート 11a,11b 溶接部
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Solenoid apparatus 3 Housing 4 Core 5 Coil 6 Amateur 6a Amateur upper surface 7 Valve apparatus 8 Valve body 9 Valve main body 9a Guide part 10 Valve seat 10a Valve seat seat surface 10b Valve seat sliding part 11 Injection hole plate 11a, 11b Welded part

11c 噴孔プレート上流側平面 12 孔
13 弁体先端部 13a 溝
13b ガイド部 14 圧縮バネ
15a,15b,15c 単一噴孔 16 合体噴孔
16a 合体噴孔入口部 16b 合体噴孔出口部
17a,17b,17c 単一噴孔 18 合体墳孔
19a 集合噴霧内粒径小部分 19b 集合噴霧内粒径大部分
20 吸気バルブ中央部 21 吸気ポート内壁
11c Injection hole plate upstream side plane 12 hole 13 Valve element tip 13a groove 13b guide part 14 compression spring 15a, 15b, 15c single injection hole 16 combined injection hole 16a combined injection hole inlet part 16b combined injection hole outlet part 17a, 17b , 17c Single injection hole 18 Combined fistula 19a Small particle size in the collective spray 19b Large particle size in the collective spray 20 Intake valve central portion 21 Inlet port inner wall

22 合体噴孔 22a 合体噴孔入口部
23a、23b、23c 単一噴孔 24 合体噴孔
25a,25b,25c 単一噴孔 26 合体噴孔
27a,27b 単一墳孔 28 合体噴孔
29a,29b,29c 単一噴孔 30 合体噴孔
31a,31b,31c 単一噴孔 32 合体噴孔
33 仮想包絡線 34 弁座軸
35a,35b,35c 単一噴孔 51 コネクタ
22 united hole 22a united hole inlet 23a, 23b, 23c single unit hole 24 united unit hole 25a, 25b, 25c unitary unit hole 26 united unit hole 27a, 27b single unit hole 28 united unit hole 29a, 29b , 29c Single injection hole 30 Combined injection hole 31a, 31b, 31c Single injection hole 32 Combined injection hole 33 Virtual envelope 34 Valve seat shaft 35a, 35b, 35c Single injection hole 51 Connector

Claims (9)

弁座を開閉する弁体を有し、前記弁体で前記弁座を開放することにより、燃料が前記弁体と弁座シート面の間を通過し、前記弁座下流側に装着された噴孔プレートに複数設けられた孔から噴射される燃料噴射弁において、
前記噴孔プレートに設けられた前記孔は、二つ以上の単一噴孔を、前記噴孔プレート上流側から下流側までに亘り部分的に重ねて形成された合体噴孔であり、
前記各単一噴孔は前記噴孔プレート上流側の入口部と下流側の出口部で同一径である円孔であり、
前記単一噴孔の少なくとも一つは、入口部中心と出口部中心を結ぶ中心軸線の、前記噴孔プレート板厚方向に対する傾斜角度で定義される噴孔角αを有し、
前記合体噴孔を形成する前記各単一噴孔の前記中心軸線を弁座軸に直交する平面に投影させたときに、前記各単一噴孔の中心軸線同士が交差するように、交差角度βを有することで、前記合体噴孔における入口部の面積より出口部の面積が大きく、
かつ前記合体噴孔は、プレス加工によって形成されたことを特徴とする燃料噴射弁。
A valve body that opens and closes the valve seat, and by opening the valve seat with the valve body, the fuel passes between the valve body and the seat surface of the valve seat, and the jet mounted on the downstream side of the valve seat In the fuel injection valve that is injected from a plurality of holes provided in the hole plate,
The hole provided in the nozzle hole plate is a united nozzle hole formed by partially overlapping two or more single nozzle holes from the upstream side to the downstream side of the nozzle hole plate,
Each of the single nozzle holes is a circular hole having the same diameter at the inlet part on the upstream side and the outlet part on the downstream side of the nozzle hole plate,
At least one of the single nozzle holes has a nozzle hole angle α defined by an inclination angle of a central axis connecting the inlet center and the outlet center with respect to the nozzle plate thickness direction,
When projecting the central axis of each single nozzle hole forming the merged nozzle hole onto a plane perpendicular to the valve seat axis, the crossing angle is such that the central axes of the single nozzle holes intersect each other. By having β, the area of the outlet portion is larger than the area of the inlet portion in the coalesced injection hole,
The united injection hole is formed by press working.
前記合体噴孔は、それを形成する複数の前記単一噴孔の噴孔径が、異なっていることを特徴する請求項1記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the united nozzle holes have different diameters of the plurality of single nozzle holes forming the united nozzle holes. 前記合体噴孔における入口部の面積を、前記合体墳孔を形成する複数の前記単一噴孔の内の最大墳孔径の前記単一墳孔の入口部の面積と同一にしたことを特徴とした請求項1又は請求項2記載の燃料噴射弁。   The area of the inlet portion in the coalesced injection hole is made the same as the area of the inlet portion of the single fistula of the maximum fistula diameter among the plurality of single nozzle holes forming the coalesced fistula. The fuel injection valve according to claim 1 or 2. 前記合体噴孔は、それを形成する複数の前記単一噴孔の噴孔径が、全て同じであることを特徴する請求項1記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the united injection hole has the same diameter of the plurality of single injection holes forming the same. 複数の前記単一噴孔は、前記噴孔角αが全て同一であることを特徴とした請求項1〜請求項4のいずれか一項に記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 4, wherein the plurality of single injection holes have the same injection hole angle α. 複数の前記単一墳孔は、前記噴孔角αが異なっていることを特徴とした請求項1〜請求項4のいずれか一項に記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 4, wherein the plurality of single well holes have different injection hole angles α. 前記合体噴孔は、それを形成する複数の前記単一噴孔の噴孔径Dが全て同じである場合に、隣り合う前記単一噴孔の出口部の中心間距離をdsとすると、0<ds≦D/2となるように隣り合う前記単一噴孔を部分的に重ねて形成するようにしたことを特徴とする請求項1記載の燃料噴射弁。   When the nozzle hole diameters D of the plurality of single nozzle holes forming the same are all the same, the distance between the centers of the outlet portions of the adjacent single nozzle holes is ds. 2. The fuel injection valve according to claim 1, wherein the adjacent single injection holes are partially overlapped so as to satisfy ds ≦ D / 2. 前記合体噴孔は、それを形成する複数の前記単一噴孔の噴孔径が隣り合う前記単一墳孔で異なる場合に、隣り合う前記単一噴孔の内の墳孔径が大きい方の噴孔径をDとし、隣り合う前記単一噴孔の出口部の中心間距離をdsとすると、0<ds≦3D/4となるように隣り合う前記単一噴孔を部分的に重ねて形成するようにしたことを特徴とする請求項1〜請求項3のいずれか一項に記載の燃料噴射弁。   The unitary injection hole is an injection having a larger fistula diameter in the adjacent single injection holes when the injection hole diameters of the plurality of single injection holes forming the same are different in the adjacent single injection holes. When the hole diameter is D and the distance between the centers of the outlet portions of the adjacent single nozzle holes is ds, the adjacent single nozzle holes are partially overlapped so that 0 <ds ≦ 3D / 4. The fuel injection valve according to any one of claims 1 to 3, wherein the fuel injection valve is configured as described above. 前記合体噴孔の入口部は、燃料通路を形成すると共に下流側に向けて縮径する前記弁座の弁座シート面の延長線と、前記噴孔プレートの上流側平面が交差する仮想包絡線の内側に配置し、かつ前記合体噴孔の出口部を、前記入口部に対して前記弁座軸の径方向外側に配置したことを特徴とする請求項1〜請求項8のいずれか一項に記載の燃料噴射弁。   The inlet portion of the united injection hole is a virtual envelope in which an extension line of the valve seat surface of the valve seat that forms a fuel passage and is reduced in diameter toward the downstream side intersects with an upstream plane of the injection hole plate 9, and the outlet portion of the coalesced injection hole is disposed radially outside the valve seat shaft with respect to the inlet portion. The fuel injection valve described in 1.
JP2010245215A 2010-11-01 2010-11-01 Fuel injection valve Active JP5134063B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010245215A JP5134063B2 (en) 2010-11-01 2010-11-01 Fuel injection valve
US13/049,605 US8919674B2 (en) 2010-11-01 2011-03-16 Fuel injection valve
DE201110103421 DE102011103421A1 (en) 2010-11-01 2011-06-06 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245215A JP5134063B2 (en) 2010-11-01 2010-11-01 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2012097642A true JP2012097642A (en) 2012-05-24
JP5134063B2 JP5134063B2 (en) 2013-01-30

Family

ID=45935879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245215A Active JP5134063B2 (en) 2010-11-01 2010-11-01 Fuel injection valve

Country Status (3)

Country Link
US (1) US8919674B2 (en)
JP (1) JP5134063B2 (en)
DE (1) DE102011103421A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064766A1 (en) * 2012-10-23 2014-05-01 三菱電機株式会社 Fuel injection valve
JP2014208974A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Fuel injection valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5933720B2 (en) * 2012-08-09 2016-06-15 三菱電機株式会社 Fuel injection valve
JP6186130B2 (en) * 2013-02-04 2017-08-23 日立オートモティブシステムズ株式会社 Fuel injection valve and fuel injection valve manufacturing method
JP6044425B2 (en) * 2013-04-02 2016-12-14 トヨタ自動車株式会社 Fuel injection valve
JP2015094234A (en) 2013-11-08 2015-05-18 株式会社デンソー Fuel injection valve
JP6190917B1 (en) * 2016-05-09 2017-08-30 三菱電機株式会社 Fuel injection valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120076U (en) * 1985-01-17 1986-07-29
JPH0318662A (en) * 1989-05-29 1991-01-28 Aisan Ind Co Ltd Nozzle structure of electromagnetic fuel injection valve
JPH0763140A (en) * 1993-08-27 1995-03-07 Toyota Motor Corp Forming method for injection hole of fuel injection valve
JPH08200187A (en) * 1995-01-23 1996-08-06 Nippondenso Co Ltd Fuel injection valve
JP2001263205A (en) * 2000-03-17 2001-09-26 Denso Corp Fuel injection valve
JP2001317431A (en) * 2000-02-25 2001-11-16 Denso Corp Fluid injection nozzle
JP2006002720A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Fuel injection device and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183156B2 (en) * 1995-04-27 2001-07-03 株式会社デンソー Fluid injection nozzle
US5860600A (en) * 1996-10-01 1999-01-19 Todd Combustion Atomizer (low opacity)
US6854670B2 (en) * 2002-05-17 2005-02-15 Keihin Corporation Fuel injection valve
JP4324881B2 (en) * 2004-10-26 2009-09-02 株式会社デンソー Fuel injection valve
DE102005017420A1 (en) * 2005-04-15 2006-10-19 Robert Bosch Gmbh Fuel injector
JP5295319B2 (en) * 2011-06-24 2013-09-18 三菱電機株式会社 Fuel injection valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120076U (en) * 1985-01-17 1986-07-29
JPH0318662A (en) * 1989-05-29 1991-01-28 Aisan Ind Co Ltd Nozzle structure of electromagnetic fuel injection valve
JPH0763140A (en) * 1993-08-27 1995-03-07 Toyota Motor Corp Forming method for injection hole of fuel injection valve
JPH08200187A (en) * 1995-01-23 1996-08-06 Nippondenso Co Ltd Fuel injection valve
JP2001317431A (en) * 2000-02-25 2001-11-16 Denso Corp Fluid injection nozzle
JP2001263205A (en) * 2000-03-17 2001-09-26 Denso Corp Fuel injection valve
JP2006002720A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Fuel injection device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064766A1 (en) * 2012-10-23 2014-05-01 三菱電機株式会社 Fuel injection valve
CN104736835A (en) * 2012-10-23 2015-06-24 三菱电机株式会社 Fuel injection valve
JP5855270B2 (en) * 2012-10-23 2016-02-09 三菱電機株式会社 Fuel injection valve
US9371808B2 (en) 2012-10-23 2016-06-21 Mitsubishi Electric Corporation Fuel injection valve
JP2014208974A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Fuel injection valve

Also Published As

Publication number Publication date
DE102011103421A1 (en) 2012-05-03
JP5134063B2 (en) 2013-01-30
US20120104121A1 (en) 2012-05-03
US8919674B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
JP5134063B2 (en) Fuel injection valve
JP4808801B2 (en) Fuel injection valve
JP5933720B2 (en) Fuel injection valve
JP5855270B2 (en) Fuel injection valve
JP5295311B2 (en) Fuel injection valve
JP4592793B2 (en) Fuel injection valve
JP5295319B2 (en) Fuel injection valve
US20120325922A1 (en) Method of generating spray by fluid injection valve, fluid injection valve, and spray generation apparatus
JP2009197682A (en) Fuel injection valve
JP5185973B2 (en) Fuel injection valve
JP5893110B1 (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
US10344726B2 (en) Fuel injection valve
JP4053048B2 (en) Fuel injection valve
JP5748796B2 (en) Fuel injection valve
WO2021075041A1 (en) Fuel injection valve
KR101711316B1 (en) Fuel injection valve
JP5818939B1 (en) Fuel injection valve, spray generating device equipped with the fuel injection valve, and spark ignition internal combustion engine
JP5766317B1 (en) Fuel injection valve
JP2006138271A (en) Fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5134063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250