JP6779143B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP6779143B2
JP6779143B2 JP2017009087A JP2017009087A JP6779143B2 JP 6779143 B2 JP6779143 B2 JP 6779143B2 JP 2017009087 A JP2017009087 A JP 2017009087A JP 2017009087 A JP2017009087 A JP 2017009087A JP 6779143 B2 JP6779143 B2 JP 6779143B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection hole
valve
valve body
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017009087A
Other languages
Japanese (ja)
Other versions
JP2018119401A (en
Inventor
一樹 吉村
一樹 吉村
石井 英二
英二 石井
義人 安川
義人 安川
威生 三宅
威生 三宅
清隆 小倉
清隆 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017009087A priority Critical patent/JP6779143B2/en
Priority to PCT/JP2017/046874 priority patent/WO2018135263A1/en
Publication of JP2018119401A publication Critical patent/JP2018119401A/en
Application granted granted Critical
Publication of JP6779143B2 publication Critical patent/JP6779143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁であって、弁体が弁座面と当接することで燃料の漏洩を防止し、弁体が弁座面から離れることによって噴射を行なう、燃料噴射弁に関する。 The present invention is a fuel injection valve used in an internal combustion engine such as a gasoline engine. When the valve body comes into contact with the valve seat surface, fuel leakage is prevented, and when the valve body separates from the valve seat surface, injection is performed. Regarding the fuel injection valve to be performed.

自動車用エンジンに用いられる燃料噴射弁において、燃料噴射弁の先端に、噴射中に飛散する燃料液滴や、噴射後に発生する粗大な燃料液滴が付着すると、不完全燃焼によってデポジットが発生し、噴霧性能の変化や、未燃粒子状物質の発生要因となることが課題となっている。 In a fuel injection valve used in an automobile engine, if fuel droplets scattered during injection or coarse fuel droplets generated after injection adhere to the tip of the fuel injection valve, a deposit is generated due to incomplete combustion. Problems such as changes in spraying performance and factors that generate unburned particulate matter have become issues.

これに対して、特許文献1では、噴霧と燃料噴射孔開口部の外壁面を遠ざけるような外壁面の形状とすることで、外壁面への燃料付着を抑制し、デポジットの生成を抑制する技術が開示されている。 On the other hand, in Patent Document 1, a technique of suppressing fuel adhesion to the outer wall surface and suppressing the generation of deposit by forming the outer wall surface so as to keep the outer wall surface of the spray and the fuel injection hole opening away from each other. Is disclosed.

特許第5696901号公報Japanese Patent No. 5696901

上記従来技術においては、燃料噴射弁先端への燃料付着を回避する壁面形状に関する技術が公開されている。一方で、燃料噴射弁先端に付着する燃料量を低減するために最適な噴霧の形成方法については考慮されていない。 In the above-mentioned conventional technique, a technique relating to a wall surface shape for avoiding fuel adhesion to the tip of a fuel injection valve is disclosed. On the other hand, no consideration has been given to the optimum spray forming method for reducing the amount of fuel adhering to the tip of the fuel injection valve.

そこで、本発明の目的は、燃料噴射弁の先端へ燃料が付着する量を低減する噴霧形成が可能な、燃料噴射弁を提供することである。 Therefore, an object of the present invention is to provide a fuel injection valve capable of forming a spray that reduces the amount of fuel adhering to the tip of the fuel injection valve.

上記目的を達成するために、本発明は弁体と、前記弁体が着座する弁座面が形成されるシート部材と、前記弁体と前記弁座面とが当接する当接部よりも下流側に形成され、弁体軸と噴孔軸との成す角度が第一の角度θaとなる第一噴孔と、前記弁体軸と噴孔軸との成す角度が前記第一の角度θaよりも小さい第二の角度θbとなる第二噴孔と、を備えた燃料噴射弁において、前記当接部の下流側において、前記シート部材と前記弁体との間に流路面積が大きくなる流路拡大構造が形成され、前記流路拡大構造は、前記第一噴孔の下流側端部と重なるとともに、前記第二噴孔の上流側端部と重なるように形成される。 In order to achieve the above object, the present invention presents the present invention downstream of the valve body, the seat member on which the valve seat surface on which the valve body is seated is formed, and the contact portion where the valve body and the valve seat surface abut. The first injection hole formed on the side and the angle formed by the valve body axis and the injection hole axis is the first angle θa, and the angle formed by the valve body axis and the injection hole axis is from the first angle θa. In a fuel injection valve provided with a second injection hole having a small second angle θb, a flow in which the flow path area increases between the seat member and the valve body on the downstream side of the contact portion. A path expansion structure is formed, and the flow path expansion structure is formed so as to overlap the downstream end of the first injection hole and the upstream end of the second injection hole.

本発明によれば、噴霧の安定性を高めることで、燃料噴射弁先端に付着する燃料量を低減することが可能となる。上記した以外の本発明の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to reduce the amount of fuel adhering to the tip of the fuel injection valve by increasing the stability of spraying. The configuration, action, and effect of the present invention other than those described above will be described in detail in the following examples.

本発明の第1実施例に係る燃料噴射弁の実施例を示す断面図である。It is sectional drawing which shows the Example of the fuel injection valve which concerns on 1st Example of this invention. 本発明の第1実施例に係る燃料噴射弁の先端構造を示す断面図である。It is sectional drawing which shows the tip structure of the fuel injection valve which concerns on 1st Example of this invention. 本発明の第1実施例に係る燃料噴射孔の配置と燃料流れを説明するための図である。It is a figure for demonstrating the arrangement of the fuel injection hole and fuel flow which concerns on 1st Example of this invention. 本発明の第1実施例に係る噴孔傾斜角が大きい場合における、燃料噴射孔の形状と燃料流れを説明するための図である。It is a figure for demonstrating the shape of the fuel injection hole and the fuel flow in the case where the injection hole inclination angle which concerns on 1st Embodiment of this invention is large. 本発明の第1実施例に係る噴孔傾斜角が小さい場合における、燃料噴射孔の形状と燃料流れを説明するための図である。It is a figure for demonstrating the shape of the fuel injection hole and the fuel flow in the case where the injection hole inclination angle which concerns on 1st Embodiment of this invention is small. 本発明の第1実施例との比較のための本実施例を適用しない燃料噴射弁先端構造を説明するための図である。It is a figure for demonstrating the fuel injection valve tip structure which does not apply this Example for comparison with 1st Example of this invention. 本発明の第1実施例との比較のための本実施例を適用しない燃料噴射孔の配置を説明するための図である。It is a figure for demonstrating the arrangement of the fuel injection hole which does not apply this Example for comparison with 1st Example of this invention. 本発明の第2実施例に係る燃料噴射弁の先端構造を示す断面図である。It is sectional drawing which shows the tip structure of the fuel injection valve which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係る燃料噴射孔の配置と燃料流れを説明するための図である。It is a figure for demonstrating the arrangement of the fuel injection hole and the fuel flow which concerns on 2nd Embodiment of this invention.

以下、本発明に係る実施例を説明する。本実施例の燃料噴射弁は、弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、を有し、少なくとも2つ以上の前記燃料噴射孔の中心軸(噴孔軸)が、前記弁体の中心軸(弁体軸)に対して、異なる角度(噴孔傾斜角度)で傾いて設けられている。そして燃料噴射弁は噴孔傾斜角度が大きい燃料噴射孔では流入側開口部の弁体軸側に、前記噴孔角度が小さい燃料噴射孔では流入側開口部の反弁体軸側に、圧力損失を低減するような流路拡大構造を持つように構成される。以下、詳細を説明する。 Hereinafter, examples according to the present invention will be described. The fuel injection valve of this embodiment is formed on the downstream side of the valve body, the valve seat surface that comes into contact with the valve body and seats fuel, and the position where the valve seat surface and the valve body come into contact with each other. It has a fuel injection hole, and at least two or more central axes of the fuel injection holes (injection hole axes) have different angles (injection hole inclination angles) with respect to the central axis (valve body axis) of the valve body. ) Is tilted. The fuel injection valve has a pressure loss on the valve body shaft side of the inflow side opening in the fuel injection hole having a large injection hole inclination angle, and on the anti-valve shaft side of the inflow side opening in the fuel injection hole having a small injection hole angle. It is configured to have a flow path expansion structure that reduces the number of fuels. The details will be described below.

本発明の第1の実施例に係る燃料噴射弁について、図1から図7を用いて以下説明する。 The fuel injection valve according to the first embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

図1は、本発明に係わる燃料噴射弁の例として、電磁式燃料噴射弁の例を示す断面図である。図2は、本発明に係る燃料噴射弁の先端構造の実施例を示す断面図である。図3は、本実施例に係る燃料噴射弁の燃料噴射孔の配置と燃料流れを説明するための図である。図4及び図5は、本実施例に係る燃料噴射孔の形状と燃料流れを説明するための図である。図6は、本実施例との比較のための本実施例を適用しない燃料噴射弁先端構造を説明するための図である。図7は、本実施例との比較のための本実施例を適用しない燃料噴射孔の配置を説明するための図である。図1に示した電磁式燃料噴射弁100は、筒内直接噴射式のガソリンエンジン向けの電磁式燃料噴射弁の例であるが、本発明の効果は、ポート噴射式のガソリンエンジン向けの電磁式燃料噴射弁や、ピエゾ素子や磁歪素子で駆動される燃料噴射弁においても有効である。 FIG. 1 is a cross-sectional view showing an example of an electromagnetic fuel injection valve as an example of a fuel injection valve according to the present invention. FIG. 2 is a cross-sectional view showing an embodiment of the tip structure of the fuel injection valve according to the present invention. FIG. 3 is a diagram for explaining the arrangement of fuel injection holes and the fuel flow of the fuel injection valve according to the present embodiment. 4 and 5 are diagrams for explaining the shape of the fuel injection hole and the fuel flow according to the present embodiment. FIG. 6 is a diagram for explaining a fuel injection valve tip structure to which the present embodiment is not applied for comparison with the present embodiment. FIG. 7 is a diagram for explaining the arrangement of fuel injection holes to which this embodiment is not applied for comparison with this embodiment. The electromagnetic fuel injection valve 100 shown in FIG. 1 is an example of an electromagnetic fuel injection valve for an in-cylinder direct injection type gasoline engine, but the effect of the present invention is an electromagnetic type for a port injection type gasoline engine. It is also effective in a fuel injection valve and a fuel injection valve driven by a piezo element or a magnetic strain element.

[噴射弁基本動作説明]
図1において、燃料は燃料供給口112から供給され、燃料噴射弁の内部に供給される。図1に示す電磁式燃料噴射弁100は、通常時閉型の電磁駆動式であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢されてシート部材102に押し付けられ、燃料がシールされるようになっている。弁体101は燃料噴射弁100の軸方向に変位可能である。このとき、エンジンの筒内に直接、燃料を噴射する筒内噴射型燃料噴射弁では、供給される燃料圧力がおよそ1MPaから50MPaの範囲である。
[Explanation of basic operation of injection valve]
In FIG. 1, fuel is supplied from the fuel supply port 112 and is supplied to the inside of the fuel injection valve. The electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is designed to be sealed. The valve body 101 can be displaced in the axial direction of the fuel injection valve 100. At this time, in the in-cylinder injection type fuel injection valve that injects fuel directly into the cylinder of the engine, the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.

図2は燃料噴射弁の先端を拡大した断面図である。ノズル体104は、弁体101の外周側に配置され、燃料の流路を形成する部材である。ノズル体104にはシート部材102の外周部が下流方向からの溶接ビームにより溶接で接合される。なお、このシート部材102のノズル体104への固定方法は溶接に限ったものではなく、ネジ止めや圧入であっても良い。シート部材102の弁体101との対向面には、円錐形状の弁座面203が形成される。 FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve. The nozzle body 104 is a member arranged on the outer peripheral side of the valve body 101 and forming a fuel flow path. The outer peripheral portion of the sheet member 102 is joined to the nozzle body 104 by welding with a welding beam from the downstream direction. The method of fixing the sheet member 102 to the nozzle body 104 is not limited to welding, and may be screwed or press-fitted. A conical valve seat surface 203 is formed on the surface of the seat member 102 facing the valve body 101.

電磁式燃料噴射弁100が閉弁状態にあるときには、弁体101の先端部がシート部材102の弁座面203と当接することによって燃料のシールを保つようになっている。シート部材102の先端には燃料噴射孔201が設けられる。より具体的には、シート部材102には、弁体101との当接部(当接位置)よりも下流側において、燃料噴射孔201が設けられる。本実施例の燃料噴射孔201は打ち抜き加工により、ほぼ円筒形状の燃料噴射孔201が形成され、そして、燃料噴射孔201よりも下流側において、燃料噴射孔201よりも大径のザグリ202が打ち抜き加工により形成されることによって燃料噴射孔201の長手方向の長さが調整される。以下においては、202をザグリと呼ぶが、単に凹み部と呼んでも良いし、孔形成部と呼んでも良い。本実施例では打ち抜き加工により燃料噴射孔201を形成する方法を説明したが、本発明はこれに限定される訳では無く、たとえばレーザ加工により形成しても良い。 When the electromagnetic fuel injection valve 100 is in the closed state, the tip end portion of the valve body 101 comes into contact with the valve seat surface 203 of the seat member 102 to keep the fuel sealed. A fuel injection hole 201 is provided at the tip of the seat member 102. More specifically, the seat member 102 is provided with the fuel injection hole 201 on the downstream side of the contact portion (contact position) with the valve body 101. The fuel injection hole 201 of this embodiment is punched to form a fuel injection hole 201 having a substantially cylindrical shape, and a counterbore 202 having a diameter larger than that of the fuel injection hole 201 is punched on the downstream side of the fuel injection hole 201. The length of the fuel injection hole 201 in the longitudinal direction is adjusted by being formed by processing. In the following, 202 is referred to as a counterbore, but it may be simply referred to as a recessed portion or a hole forming portion. In the present embodiment, the method of forming the fuel injection hole 201 by punching has been described, but the present invention is not limited to this, and may be formed by, for example, laser machining.

図1に示したコネクタ111を介してコイル108に通電されると、電磁弁の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー106に磁束密度が生じる。そして、コア107とアンカー106の間には非通電時において空隙が形成されており、コア107にアンカー106が吸引されるような磁気吸引力が生じる。アンカー106には下流方向に向かってスプリング110の付勢力と前述の燃料圧力による付勢力がかかっているが、通電による磁気吸引力がこれらの付勢力よりも大きくなると、アンカー106がコア107に向かって移動する。 When the coil 108 is energized via the connector 111 shown in FIG. 1, a magnetic flux density is generated in the core (fixed core) 107, the yoke 109, and the anchor 106 that form the magnetic circuit of the solenoid valve. Then, a gap is formed between the core 107 and the anchor 106 when the power is not applied, and a magnetic attraction force is generated so that the anchor 106 is attracted to the core 107. The urging force of the spring 110 and the urging force due to the fuel pressure described above are applied to the anchor 106 in the downstream direction, but when the magnetic attraction force due to energization becomes larger than these urging forces, the anchor 106 heads toward the core 107. And move.

弁体101は下流部においてガイド部材103にガイドされ、上流部においてガイド部103とは別体で構成された弁体ガイド105にガイドされる。なお、ガイド部材103、弁体ガイド105もノズル体104の内周部により固定支持される。アンカー106は弁体101とは別体で独立して構成され、内周側に形成された弁体挿入穴に弁体101のロッド部が挿入される。また弁体101の上流部にはロッド部よりも外径の大きいつば部が形成されており、非通電状態の閉弁時においては、このつば部がアンカー106の弁体支持部に接触することで、アンカー106を付勢し、アンカー106とコア107との空隙を形成する。 The valve body 101 is guided by the guide member 103 in the downstream portion, and is guided by the valve body guide 105 formed separately from the guide portion 103 in the upstream portion. The guide member 103 and the valve body guide 105 are also fixedly supported by the inner peripheral portion of the nozzle body 104. The anchor 106 is formed separately from the valve body 101 and is configured independently, and the rod portion of the valve body 101 is inserted into the valve body insertion hole formed on the inner peripheral side. Further, a brim portion having an outer diameter larger than that of the rod portion is formed in the upstream portion of the valve body 101, and this brim portion comes into contact with the valve body support portion of the anchor 106 when the valve is closed in a non-energized state. The anchor 106 is urged to form a gap between the anchor 106 and the core 107.

一方で、コイル108に通電されると磁気吸引力によりアンカー106がコア107の側に吸引され、このときアンカー106の弁体支持部と弁体101のつば部が係合して、弁体101をコア107の側に付勢するため、開弁状態とすることができる。 On the other hand, when the coil 108 is energized, the anchor 106 is attracted to the core 107 side by the magnetic attraction force, and at this time, the valve body support portion of the anchor 106 and the brim portion of the valve body 101 engage with each other, and the valve body 101 Is urged to the side of the core 107, so that the valve can be opened.

開弁状態となると、弁座面203と弁体101の当接部に隙間(ストローク)を生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換されて燃料噴射孔201に至り、図示していないが、エンジンの筒内に向かって噴射される。 When the valve is opened, a gap (stroke) is formed between the valve seat surface 203 and the valve body 101, and fuel injection is started. When the injection of fuel is started, the energy given as the fuel pressure is converted into kinetic energy to reach the fuel injection hole 201, which is injected into the cylinder of the engine (not shown).

[実施例の構成と特徴]
本実施例の構成について図2から図5を用いて説明する。
図2は、燃料噴射弁の先端を拡大した断面図である。各燃料噴射孔は、燃料噴霧の狙い位置に応じて、噴孔軸211が弁体軸210に対して噴孔傾斜角(例えばθa、θb)を持って設けられる。図では噴孔傾斜角が大きいものをθa、噴孔傾斜角が小さいものをθbとしている。実際の設計において、各燃料噴射孔の噴孔傾斜角は狙いの噴霧形状に依存して決定される。弁体101には流路拡大構造212が弁体軸210に対して軸対称となるように、周方向に設けられている。
[Structure and Features of Examples]
The configuration of this embodiment will be described with reference to FIGS. 2 to 5.
FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve. Each fuel injection hole is provided with the injection hole shaft 211 having an injection hole inclination angle (for example, θa, θb) with respect to the valve body shaft 210 according to the target position of the fuel spray. In the figure, the one having a large injection hole inclination angle is θa, and the one having a small injection hole inclination angle is θb. In the actual design, the injection hole inclination angle of each fuel injection hole is determined depending on the target spray shape. The valve body 101 is provided with a flow path expanding structure 212 in the circumferential direction so as to be axisymmetric with respect to the valve body shaft 210.

図3は燃料噴射孔の入口側から見た、シート部材102に設けられた燃料噴射孔の配置を説明する図である。燃料噴射孔201aは半径Raの円周上に配置されており、燃料噴射孔201bは半径Rbの円周上に配置されている。 FIG. 3 is a diagram illustrating the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes. The fuel injection hole 201a is arranged on the circumference of the radius Ra, and the fuel injection hole 201b is arranged on the circumference of the radius Rb.

図4および図5は、燃料噴射孔近傍の断面図である。シート部材102に設けられた燃料噴射孔201は、燃料噴射孔の下流側(出口側)に設けられたザグリ202により噴射孔長さが調整される。燃料噴射孔201の噴射孔長さは、燃料噴射孔201の入口面中心と出口面中心とを結ぶ線の長さで定義される。図4は噴孔傾斜角θaの燃料噴射孔近傍であり、燃料噴射孔201aの下流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離La2が、燃料噴射孔201aの上流側端部から弁体101に向かって方線方向に線分を伸ばした場合の前記弁体101との交点までの距離La1よりも、大きくなるように構成されている。
図5は噴孔傾斜角θbの燃料噴射孔近傍であり、燃料噴射孔201bの下流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離Lb2が、燃料噴射孔201bの上流側端部から弁体101に向かって法線方向に線分を伸ばした場合の前記弁体101との交点までの距離Lb1よりも、小さくなるように構成されている。なお、流路拡大構造212は、例えば切削加工によって弁体101に形成される。また流路拡大構造212は弁体101の代わりにシート部材(ノズルプレート102)に形成されても良い。
4 and 5 are cross-sectional views of the vicinity of the fuel injection hole. The length of the fuel injection hole 201 provided in the seat member 102 is adjusted by the counterbore 202 provided on the downstream side (outlet side) of the fuel injection hole. The length of the injection hole of the fuel injection hole 201 is defined by the length of the line connecting the center of the inlet surface and the center of the outlet surface of the fuel injection hole 201. FIG. 4 shows the vicinity of the fuel injection hole having the injection hole inclination angle θa, and the intersection with the valve body 101 when a line segment is extended in the normal direction from the downstream end of the fuel injection hole 201a toward the valve body 101. The distance La2 to is larger than the distance La1 to the intersection with the valve body 101 when the line segment is extended in the direction direction from the upstream end of the fuel injection hole 201a toward the valve body 101. It is configured in.
FIG. 5 shows the vicinity of the fuel injection hole having the injection hole inclination angle θb, and the intersection with the valve body 101 when a line segment is extended in the normal direction from the downstream end of the fuel injection hole 201b toward the valve body 101. The distance Lb2 to is smaller than the distance Lb1 to the intersection with the valve body 101 when the line segment is extended in the normal direction from the upstream end of the fuel injection hole 201b toward the valve body 101. It is configured in. The flow path expansion structure 212 is formed on the valve body 101 by, for example, cutting. Further, the flow path expansion structure 212 may be formed on the seat member (nozzle plate 102) instead of the valve body 101.

次に、本実施例の特徴を説明する。図2に示すように、弁体101には流路拡大構造212が燃料噴射孔201の入口の近傍に設けられている。このとき、図4、図5に示すLa1、La2、Lb1、Lb2が、La1<La2またはLb1>Lb2の条件を満たすように、流路拡大構造212の形状は形成される。本実施例では図3に示すように、燃料噴射孔を異なる円周上に配置することで、流路拡大構造212の形状と組み合わせて、上記の両条件を満たすようにしている。 Next, the features of this embodiment will be described. As shown in FIG. 2, the valve body 101 is provided with a flow path expansion structure 212 in the vicinity of the inlet of the fuel injection hole 201. At this time, the shape of the flow path expansion structure 212 is formed so that La1, La2, Lb1, and Lb2 shown in FIGS. 4 and 5 satisfy the condition of La1 <La2 or Lb1> Lb2. In this embodiment, as shown in FIG. 3, the fuel injection holes are arranged on different circumferences so as to satisfy both of the above conditions in combination with the shape of the flow path expansion structure 212.

このとき、流路拡大構造212と弁座面203によって構成される流路の高さは、流路拡大構造212からサック205にかけて次第にと小さくなるようにすると効果的である。 At this time, it is effective to gradually reduce the height of the flow path formed by the flow path expansion structure 212 and the valve seat surface 203 from the flow path expansion structure 212 to the sack 205.

以上の通り、本実施例の燃料噴射弁は弁体101と、弁体101が着座する弁座面203が形成されるシート部材(ノズルプレート102)と、弁体101と弁座面203とが当接する当接部よりも下流側に形成され、弁体軸210と噴孔軸211aとの成す角度が第一の角度θaとなる第一噴孔201aと、弁体軸210と噴孔軸211bとの成す角度が第一の角度θaよりも小さい第二の角度θbとなる第二噴孔201bと、を備えている。そして、燃料噴射弁は上記した当接部の下流側において、シート部材(ノズルプレート102)と弁体101との間に流路面積が大きくなる流路拡大構造212が形成される。そしてこの流路拡大構造212は第一噴孔201aの下流側端部(図3において中心側端部)と重なるとともに、第二噴孔201bの上流側端部(図3において中心と離れる側の端部)と重なるように形成される。 As described above, in the fuel injection valve of this embodiment, the valve body 101, the seat member (nozzle plate 102) on which the valve seat surface 203 on which the valve body 101 is seated is formed, and the valve body 101 and the valve seat surface 203 are formed. The first injection hole 201a, which is formed on the downstream side of the abutting portion and has the angle formed by the valve body shaft 210 and the injection hole shaft 211a as the first angle θa, and the valve body shaft 210 and the injection hole shaft 211b. It is provided with a second injection hole 201b whose second angle θb is smaller than the first angle θa. Then, on the downstream side of the contact portion of the fuel injection valve, a flow path expanding structure 212 having a large flow path area is formed between the seat member (nozzle plate 102) and the valve body 101. The flow path expansion structure 212 overlaps the downstream end of the first injection hole 201a (the central end in FIG. 3) and is located on the upstream end of the second injection hole 201b (on the side away from the center in FIG. 3). It is formed so as to overlap with the end).

図3に示すように、上記した流路拡大構造212は、シート部材(ノズルプレート102)、または弁体101を弁体軸210の方向に見て、円周上に形成される。また流路拡大構造212は、シート部材(ノズルプレート102)、または弁体101を弁体軸方向に見て、円周上に形成され、かつ、第一噴孔201aの上流側端部(図3において中心と離れる側の端部)よりも下流側かつ、第二噴孔201bの下流側端部(図3において中心側端部)よりも上流側の領域に形成される。 As shown in FIG. 3, the flow path expansion structure 212 described above is formed on the circumference of the seat member (nozzle plate 102) or the valve body 101 when viewed in the direction of the valve body shaft 210. Further, the flow path expansion structure 212 is formed on the circumference when the seat member (nozzle plate 102) or the valve body 101 is viewed in the valve body axial direction, and the upstream end portion of the first injection hole 201a (FIG. It is formed in a region downstream of the end portion on the side away from the center in No. 3) and upstream side of the downstream end portion (central side end portion in FIG. 3) of the second nozzle hole 201b.

また図4に示すように、第一噴孔201aの下流側端部(図4においてノズルプレート102の先端中心側端部)から第一噴孔入口面に直交する第一噴孔法線方向における弁体101との交点までの距離La2が、第一噴孔201aの上流側端部(図4においてシート側端部)から第一噴孔法線方向における弁体101との交点までの距離La1よりも大きくなるように形成される。なお、図4では開弁した状態を示しているが、この関係は開弁時も閉弁時も同様である。また図5に示すように、第二噴孔201bの下流側端部(図5においてノズルプレート102の先端中心側端部)から第二噴孔入口面に直交する第二噴孔法線方向における弁体101との交点までの距離Lb2が、第二噴孔201bの上流側端部(図5においてシート側端部)から第二噴孔法線方向における弁体101との交点までの距離Lb1よりも小さくなるように形成される。なお、図5では開弁した状態を示しているが、この関係は開弁時も閉弁時も同様である。 Further, as shown in FIG. 4, in the direction normal to the first injection hole orthogonal to the entrance surface of the first injection hole from the downstream end portion of the first injection hole 201a (the end on the tip center side of the nozzle plate 102 in FIG. 4). The distance La2 to the intersection with the valve body 101 is the distance La1 from the upstream end (seat side end in FIG. 4) of the first injection hole 201a to the intersection with the valve body 101 in the normal direction of the first injection hole. Is formed to be larger than. Although FIG. 4 shows a state in which the valve is opened, this relationship is the same when the valve is opened and when the valve is closed. Further, as shown in FIG. 5, in the direction normal to the second injection hole orthogonal to the entrance surface of the second injection hole from the downstream end portion of the second injection hole 201b (the end on the tip center side of the nozzle plate 102 in FIG. 5). The distance Lb2 to the intersection with the valve body 101 is the distance Lb1 from the upstream end (seat side end in FIG. 5) of the second injection hole 201b to the intersection with the valve body 101 in the normal direction of the second injection hole. Is formed to be smaller than. Although FIG. 5 shows a state in which the valve is opened, this relationship is the same when the valve is opened and when the valve is closed.

また図4、5に示すように、流路拡大構造212からシート部材(ノズルプレート102)の先端部に至るまでの流路の一部が徐々に小さくなるように形成される。図2に示すように、弁体先端部中心と弁体軸方向において弁体先端部中心に対向するシート部材先端部中心との間には隙間が形成される。閉弁時において、この隙間の距離が、流路拡大構造212における最大距離よりも小さくなるように形成されることが望ましい。 Further, as shown in FIGS. 4 and 5, a part of the flow path from the flow path expansion structure 212 to the tip end portion of the sheet member (nozzle plate 102) is formed so as to be gradually reduced. As shown in FIG. 2, a gap is formed between the center of the tip of the valve body and the center of the tip of the seat member facing the center of the tip of the valve body in the valve body axial direction. When the valve is closed, it is desirable that the distance of this gap is formed to be smaller than the maximum distance in the flow path expansion structure 212.

なお、本実施例において噴孔の配置径が噴孔傾斜角度θの大小によって異なる。配置径とは、図3のようにシート部材(ノズルプレート102)、または弁体101を弁体軸210の方向に見て、中心から入口面中心までの距離のことで、PCD(Pitch Circle Diameter)と呼んでも良い。図4に示すように噴孔傾斜角度θが大きいθaの第一噴孔201aは噴孔の入口のサック側において大きな流入面積が形成されるように流路拡大構造212が形成される。また図5に示すように、噴孔傾斜角度θが小さいθbの第二噴孔201bは噴孔のシート側において大きな流入面積が形成されるように流路拡大構造212が形成される。なお、流路拡大構造212は弁体101またはシート部材(ノズルプレート102)のいずれに形成されても良い。 In this embodiment, the arrangement diameter of the injection hole differs depending on the magnitude of the injection hole inclination angle θ. The arrangement diameter is the distance from the center to the center of the inlet surface when the seat member (nozzle plate 102) or the valve body 101 is viewed in the direction of the valve body shaft 210 as shown in FIG. 3, and is a PCD (Pitch Circle Diameter). ) May be called. As shown in FIG. 4, in the first injection hole 201a of θa having a large injection hole inclination angle θ, the flow path expansion structure 212 is formed so that a large inflow area is formed on the sack side of the entrance of the injection hole. Further, as shown in FIG. 5, the second injection hole 201b of θb having a small injection hole inclination angle θ is formed with a flow path expansion structure 212 so that a large inflow area is formed on the sheet side of the injection hole. The flow path expansion structure 212 may be formed on either the valve body 101 or the seat member (nozzle plate 102).

なお、本実施例のように各燃料噴射孔を異なる円周上に配置しても良い。逆に、全ての燃料噴射孔を同一円周上に配置する場合、上記のLa1<La2またはLb1>Lb2の条件を満たすには、流路拡大構造を本実施例のような軸対称ではなく、各燃料噴射孔の位置に応じた形状とすれば良い。また、噴孔傾斜角が異なる2つ以上の噴孔がLa1<La2またはLb1>Lb2の条件を満たしていれば、それらの噴孔における発明の効果は発揮できる。 In addition, each fuel injection hole may be arranged on a different circumference as in this embodiment. On the contrary, when all the fuel injection holes are arranged on the same circumference, in order to satisfy the above condition of La1 <La2 or Lb1> Lb2, the flow path expansion structure is not axisymmetric as in this embodiment. The shape may be adjusted according to the position of each fuel injection hole. Further, if two or more injection holes having different injection hole inclination angles satisfy the condition of La1 <La2 or Lb1> Lb2, the effect of the invention in those injection holes can be exhibited.

[流れ、効果説明]
上記のように燃料噴射孔と弁体を構成したことによる作用効果を、図3から図5を用いて説明する。
[Flow, effect explanation]
The action and effect of configuring the fuel injection hole and the valve body as described above will be described with reference to FIGS. 3 to 5.

図3から図5の301a、301bの矢印は燃料流れを表している。図3に示すように、燃料噴射孔201aに代表される、半径Raの円周上に配置している燃料噴射孔に対しては、燃料は主にノズルプレート102の中心側(サック側)から流入する量が多い。図4に示すように、燃料噴射孔201aではLa1<La2となるように流路拡大構造212が設けられているため、La2側の流路では圧力損失がLa1側よりも小さいことから、ノズルプレートの外周側から流れてきた燃料が、直接燃料噴射孔に流れ込む量が少なくなり、ノズルプレート中心に到達して燃料流れ301aのようにサック側から燃料噴射孔に流れ込む量が増加するためである。よって相対的にサック側から燃料噴射孔に流れ込む量が多くなる。 The arrows 301a and 301b in FIGS. 3 to 5 represent the fuel flow. As shown in FIG. 3, with respect to the fuel injection holes arranged on the circumference of the radius Ra represented by the fuel injection holes 201a, the fuel is mainly from the center side (sack side) of the nozzle plate 102. There is a large amount of inflow. As shown in FIG. 4, since the flow path expansion structure 212 is provided in the fuel injection hole 201a so that La1 <La2, the pressure loss in the flow path on the La2 side is smaller than that on the La1 side. This is because the amount of fuel that has flowed from the outer peripheral side of the fuel directly flows into the fuel injection hole is reduced, and the amount that reaches the center of the nozzle plate and flows into the fuel injection hole from the sack side like the fuel flow 301a is increased. Therefore, the amount of water flowing into the fuel injection hole from the sack side is relatively large.

同様に、燃料噴射孔201bに代表される、半径Rbの円周状に配置している燃料噴射孔に対しては、燃料は主にノズルプレート102の外周側から流入する量が多い。図5に示すように、燃料噴射孔201bではLb1>Lb2となるように流路拡大構造212が設けられているため、Lb1側の流路では圧力損失がLb2側よりも小さいためであり、ノズルプレートの外周側から流れ込む量が相対的に多くなる。
このように燃料流れを制御する理由は、噴孔傾斜角(θaやθb)の大小に応じて、燃料の燃料噴射孔への流入方向を調整し、流入時のはく離を低減することである。はく離を低減することで、噴霧の揺らぎを低減し、噴霧中に発生する微小液滴の燃料噴射弁先端壁面への付着を低減することができる。したがって、排気性能を高めた内燃機関を実現する燃料噴射弁を提供できる。
Similarly, a large amount of fuel flows mainly from the outer peripheral side of the nozzle plate 102 into the fuel injection holes arranged in a circumferential shape having a radius Rb represented by the fuel injection holes 201b. As shown in FIG. 5, since the flow path expansion structure 212 is provided in the fuel injection hole 201b so that Lb1> Lb2, the pressure loss in the flow path on the Lb1 side is smaller than that on the Lb2 side. The amount of water flowing from the outer peripheral side of the plate is relatively large.
The reason for controlling the fuel flow in this way is to adjust the inflow direction of the fuel into the fuel injection hole according to the magnitude of the injection hole inclination angle (θa or θb) and reduce the peeling at the time of inflow. By reducing the peeling, the fluctuation of the spray can be reduced, and the adhesion of minute droplets generated during the spray to the wall surface of the fuel injection valve tip can be reduced. Therefore, it is possible to provide a fuel injection valve that realizes an internal combustion engine with improved exhaust performance.

[他の構造との比較]
図6と図7は、本実施例と比較するための、他の構造の構成と燃料の流れを説明する図である。図6に示すように、他の構造では流路拡大構造は設けておらず、またサック206の流路が広い。これにより、燃料はサック側から燃料噴射孔201c、201dに向かって流れやすくなり、本実施例のように燃料噴射孔への流入方向を調整することが難しい。よって本実施例では弁体101とサック205から成る流路高さは、少なくとも流路拡大構造において弁座面と弁体が成す流路の最大高さよりも小さくなるように構成されている。
[Comparison with other structures]
6 and 7 are diagrams for explaining the configuration of other structures and the flow of fuel for comparison with the present embodiment. As shown in FIG. 6, the other structure does not have a flow path expansion structure, and the flow path of the sack 206 is wide. As a result, the fuel easily flows from the sack side toward the fuel injection holes 201c and 201d, and it is difficult to adjust the inflow direction to the fuel injection holes as in the present embodiment. Therefore, in this embodiment, the height of the flow path composed of the valve body 101 and the sack 205 is configured to be smaller than the maximum height of the flow path formed by the valve seat surface and the valve body at least in the flow path expansion structure.

図7は他の構造における燃料噴射孔の配置を示している。他の構造では全ての燃料噴射孔が同じ円周上に配置されており、よって各燃料噴射孔に対する燃料の流れ込み易さも、ほぼ同じとなる。例えばノズルプレート102の外周側よりも中心側の流路が広くなっている場合、301cや301dのような中心側から燃料噴射孔へ流れ込む量が多くなり、噴孔傾斜角が小さい場合はノズルプレート102の中心側ではく離が生じやすくなる。よって、すべての燃料噴射孔ではく離を低減するためには、本実施例のように、各燃料噴射孔へ燃料が流れ込みやすい方向を制御する必要がある。 FIG. 7 shows the arrangement of fuel injection holes in other structures. In other structures, all fuel injection holes are arranged on the same circumference, so that the ease of fuel flow into each fuel injection hole is almost the same. For example, when the flow path on the center side is wider than the outer peripheral side of the nozzle plate 102, the amount of water flowing into the fuel injection hole from the center side such as 301c and 301d is large, and when the injection hole inclination angle is small, the nozzle plate Peeling is likely to occur on the center side of 102. Therefore, in order to reduce the peeling in all the fuel injection holes, it is necessary to control the direction in which the fuel easily flows into each fuel injection hole as in this embodiment.

本発明の第2の実施例に係わる燃料噴射弁について、図8と図9を用いて以下説明する。図8は本実施例における燃料噴射弁先端の構成を示す断面図であり、図2と同一の番号が割り当てられているものは、実施例1と同一もしくは同等の機能を有するものである。図9は本実施例における燃料噴射孔の入口側から見た、シート部材102に設けられた燃料噴射孔の配置を説明する図であり、実施例1と同一もしくは同等の機能を有するものである。 The fuel injection valve according to the second embodiment of the present invention will be described below with reference to FIGS. 8 and 9. FIG. 8 is a cross-sectional view showing the configuration of the fuel injection valve tip in the present embodiment, and those assigned the same numbers as those in FIG. 2 have the same or the same functions as those in the first embodiment. FIG. 9 is a diagram for explaining the arrangement of the fuel injection holes provided in the seat member 102 as viewed from the inlet side of the fuel injection holes in the present embodiment, and has the same or the same function as that of the first embodiment. ..

本実施例では、流路拡大構造213をシート部材102の弁座面203に設けている。このとき、本実施例における詳細な説明は省略するが、燃料噴射孔形状と弁体の関係が、実施例1で示したLa1<La2またはLb1>Lb2の条件を満たしていれば良い。La1、La2、Lb1、Lb2の定義は実施例1と同様に、噴孔入口端部から弁体までの距離で定義される。これにより流路拡大構造213の効果は実施例1と同一となり、燃料が燃料噴射孔に流れ込む方向を制御することが可能となる。 In this embodiment, the flow path expansion structure 213 is provided on the valve seat surface 203 of the seat member 102. At this time, although detailed description in this embodiment is omitted, it is sufficient that the relationship between the fuel injection hole shape and the valve body satisfies the condition of La1 <La2 or Lb1> Lb2 shown in Example 1. The definitions of La1, La2, Lb1, and Lb2 are defined by the distance from the injection hole inlet end to the valve body, as in the first embodiment. As a result, the effect of the flow path expansion structure 213 is the same as that of the first embodiment, and it is possible to control the direction in which the fuel flows into the fuel injection hole.

本実施例は実施例1と異なり、弁体の形状を特に変更する必要はなく、本実施例し示した針弁だけでなく、ボール弁にも対応可能となる。 Unlike the first embodiment, the shape of the valve body does not need to be changed in this embodiment, and not only the needle valve shown in the present embodiment but also the ball valve can be used.

本実施例の流路拡大構造は図9に示すように同心円状のくぼみとして設けているが、例えば燃料噴射孔が同一円周上に配置されている場合でも、各燃料噴射孔の噴孔傾斜角に応じてLa1<La2またはLb1>Lb2の条件を満たすように流路拡大構造を設けることで、燃料噴射孔への流れ込み方向を制御することができる。 The flow path expansion structure of this embodiment is provided as concentric recesses as shown in FIG. 9, but even when the fuel injection holes are arranged on the same circumference, the injection holes of each fuel injection hole are inclined. By providing the flow path expansion structure so as to satisfy the condition of La1 <La2 or Lb1> Lb2 according to the angle, the flow direction into the fuel injection hole can be controlled.

100…電磁式燃料噴射弁
101…弁体
102…シート部材
103…ガイド部材
104…ノズル体
105…弁体ガイド
106…アンカー
107…コア
108…コイル
109…ヨーク
110…スプリング
111…コネクタ
112…燃料供給口
201a、201b…燃料噴射孔
202a、202b…ザグリ
203…弁座面
205、206…サック
210…燃料噴射弁の中心軸(弁体軸)
211a、211b…燃料噴射孔の中心軸(噴孔軸)
212、213…流路拡大構造
301a、301b、301c、301d、301e、301f…燃料流れ
100 ... Electromagnetic fuel injection valve 101 ... Valve body 102 ... Seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Anchor 107 ... Core 108 ... Coil 109 ... Yoke 110 ... Spring 111 ... Connector 112 ... Fuel supply Ports 201a, 201b ... Fuel injection holes 202a, 202b ... Counterbore 203 ... Valve seat surface 205, 206 ... Sack 210 ... Central axis of fuel injection valve (valve body shaft)
211a, 211b ... Central axis of fuel injection hole (injection hole axis)
212, 213 ... Flow channel expansion structure 301a, 301b, 301c, 301d, 301e, 301f ... Fuel flow

Claims (9)

弁体と、前記弁体が着座する弁座面が形成されるシート部材と、前記弁体と前記弁座面とが当接する当接部よりも下流側に形成され、弁体軸と噴孔軸との成す角度が第一の角度θaとなる第一噴孔と、前記弁体軸と噴孔軸との成す角度が前記第一の角度θaよりも小さい第二の角度θbとなる第二噴孔と、を備えた燃料噴射弁において、
前記当接部の下流側において、前記シート部材と前記弁体との間に流路面積が大きくなる流路拡大構造が形成され、
前記流路拡大構造は、前記第一噴孔の下流側端部のみと重なるとともに、前記第二噴孔の上流側端部のみと重なるように形成される燃料噴射弁。
The valve body, the seat member on which the valve seat surface on which the valve body is seated are formed, and the valve body shaft and the injection hole are formed on the downstream side of the contact portion where the valve body and the valve seat surface come into contact with each other. The first injection hole formed by the angle formed by the shaft is the first angle θa, and the angle formed by the valve body shaft and the injection hole shaft is the second angle θb smaller than the first angle θa. In a fuel injection valve equipped with an injection hole,
On the downstream side of the contact portion, a flow path expanding structure in which the flow path area is increased is formed between the seat member and the valve body.
The flow channel expanding structure, the together first injection hole overlaps with only the downstream end of the second injection hole fuel injection valve is formed so as to overlap with only the upstream end of the.
請求項1に記載の燃料噴射弁において、前記流路拡大構造は、前記シート部材、または前記弁体を弁体軸方向に見て、円周上に形成される燃料噴射弁。 In the fuel injection valve according to claim 1, the flow path expansion structure is a fuel injection valve formed on the circumference of the seat member or the valve body when viewed in the valve body axial direction. 請求項1に記載の燃料噴射弁において、前記流路拡大構造は、前記シート部材、または前記弁体を弁体軸方向に見て、円周上に形成され、かつ、前記第一噴孔の上流側端部よりも下流側かつ、前記第二噴孔の下流側端部よりも上流側の領域に形成された燃料噴射弁。 In the fuel injection valve according to claim 1, the flow path expansion structure is formed on the circumference of the seat member or the valve body when viewed in the valve body axial direction, and is formed in the first injection hole. A fuel injection valve formed in a region downstream of the upstream end and upstream of the downstream end of the second injection hole. 請求項1に記載の燃料噴射弁において、前記第一噴孔の下流側端部から第一噴孔入口面に直交する第一噴孔法線方向における前記弁体との交点までの距離が、前記第一噴孔の上流側端部から前記第一噴孔法線方向における前記弁体との交点までの距離よりも大きくなるように形成された燃料噴射弁。 In the fuel injection valve according to claim 1, the distance from the downstream end of the first injection hole to the intersection with the valve body in the normal direction of the first injection hole orthogonal to the inlet surface of the first injection hole is determined. A fuel injection valve formed so as to be larger than the distance from the upstream end of the first injection hole to the intersection with the valve body in the normal direction of the first injection hole. 請求項1に記載の燃料噴射弁において、前記第二噴孔の下流側端部から第二噴孔入口面に直交する第二噴孔法線方向における前記弁体との交点までの距離が、前記第二噴孔の上流側端部から前記第二噴孔法線方向における前記弁体との交点までの距離よりも小さくなるように形成された燃料噴射弁。 In the fuel injection valve according to claim 1, the distance from the downstream end of the second injection hole to the intersection with the valve body in the normal direction of the second injection hole orthogonal to the inlet surface of the second injection hole is determined. A fuel injection valve formed so as to be smaller than the distance from the upstream end of the second injection hole to the intersection with the valve body in the normal direction of the second injection hole. 請求項1に記載の燃料噴射弁において、前記流路拡大構造から前記シート部材の先端部に至るまでの流路の一部が徐々に小さくなるように形成された燃料噴射弁。 The fuel injection valve according to claim 1, wherein a part of the flow path from the flow path expansion structure to the tip end portion of the seat member is gradually reduced. 請求項6に記載の燃料噴射弁において、弁体先端部中心と弁体軸方向において前記弁体先端部中心に対向するシート部材先端部中心との間の距離が、前記流路拡大構造における最大距離よりも小さくなるように形成された燃料噴射弁。 In the fuel injection valve according to claim 6, the distance between the center of the valve body tip and the center of the seat member tip facing the center of the valve tip in the valve body axial direction is the maximum in the flow path expansion structure. A fuel injection valve formed so as to be smaller than a distance. 請求項1に記載の燃料噴射弁において、前記流路拡大構造は切削加工により前記弁体に形成された燃料噴射弁。 In the fuel injection valve according to claim 1, the flow path expansion structure is a fuel injection valve formed on the valve body by cutting. 請求項1に記載の燃料噴射弁において、前記流路拡大構造は前記シート部材に形成された燃料噴射弁。 In the fuel injection valve according to claim 1, the flow path expansion structure is a fuel injection valve formed on the seat member.
JP2017009087A 2017-01-23 2017-01-23 Fuel injection valve Active JP6779143B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017009087A JP6779143B2 (en) 2017-01-23 2017-01-23 Fuel injection valve
PCT/JP2017/046874 WO2018135263A1 (en) 2017-01-23 2017-12-27 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009087A JP6779143B2 (en) 2017-01-23 2017-01-23 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2018119401A JP2018119401A (en) 2018-08-02
JP6779143B2 true JP6779143B2 (en) 2020-11-04

Family

ID=62909003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009087A Active JP6779143B2 (en) 2017-01-23 2017-01-23 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP6779143B2 (en)
WO (1) WO2018135263A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242294B2 (en) * 2018-12-28 2023-03-20 株式会社日立製作所 liquid injection valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147317U (en) * 1978-04-04 1979-10-13
JPS6049262U (en) * 1983-09-14 1985-04-06 日産自動車株式会社 Diesel engine fuel injection valve
JPS6248958A (en) * 1985-08-28 1987-03-03 Hino Motors Ltd Fuel injection nozzle
JPS63160369U (en) * 1987-04-10 1988-10-20
JPH0267459A (en) * 1988-08-31 1990-03-07 Nippon Denso Co Ltd Fuel injection nozzle
JPH0921321A (en) * 1995-07-05 1997-01-21 Toyota Autom Loom Works Ltd Fuel injection method for direct injection type diesel engine, piston and injection nozzle employed by the method

Also Published As

Publication number Publication date
WO2018135263A1 (en) 2018-07-26
JP2018119401A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US20010022170A1 (en) Fuel injection method of internal combustion engine and fuel injection apparatus of internal combustion engine
WO2010024057A1 (en) Fuel injection valve
US20090206181A1 (en) Fuel Injector
JP2008280981A (en) Fuel injection device and internal combustion engine mounting the same
JP2004353661A (en) Fuel injection valve and cylinder injection type internal combustion engine having it
JP6779143B2 (en) Fuel injection valve
JP6510940B2 (en) Fuel injection valve
JP6392689B2 (en) Fuel injection valve
JP6268185B2 (en) Fuel injection valve
JP5320116B2 (en) Fuel injection valve
WO2017212781A1 (en) Fuel injection device
JP6899756B2 (en) Fuel injection valve
JP2007107460A (en) Fuel injection device
JP6692220B2 (en) Fuel injection valve
WO2018155092A1 (en) Fuel injection device
JP6695476B2 (en) Fuel injector
JP2005325800A (en) Fluid injection valve
JP4297504B2 (en) Fuel injection valve
WO2018155091A1 (en) Fuel injection device
JP2020159253A (en) Fuel injection valve
WO2016170999A1 (en) Fuel injection device
JP6399910B2 (en) Fuel injection valve
WO2021240890A1 (en) Fuel injection valve
JP2015101978A (en) Fuel injection valve
JP6527763B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6779143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350