WO2018134444A1 - Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes - Google Patents

Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes Download PDF

Info

Publication number
WO2018134444A1
WO2018134444A1 PCT/EP2018/051606 EP2018051606W WO2018134444A1 WO 2018134444 A1 WO2018134444 A1 WO 2018134444A1 EP 2018051606 W EP2018051606 W EP 2018051606W WO 2018134444 A1 WO2018134444 A1 WO 2018134444A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
pass
passes
ply
fluid
Prior art date
Application number
PCT/EP2018/051606
Other languages
English (en)
Inventor
Bastien Jovet
Bernard Aoun
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2018134444A1 publication Critical patent/WO2018134444A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to an evaporator, in particular for an air-conditioning installation of a motor vehicle.
  • the evaporators comprise, on the one hand, a core generally consisting of two layers of parallel pipes for the circulation of a refrigerant fluid and, on the other hand, means of distribution of the refrigerant fluid arranged at both ends of the sheets to ensure the distribution and collection of the refrigerant in the different pipes of each of the layers.
  • the pipes are made either from pairs of plates or contiguous tubes having a plurality of walls which define channels / passages for the circulation of the refrigerant, or from tubes joined at both ends by manifolds allowing the passage refrigerant from one tube to another.
  • the internal structure of the pipes defines different zones which each form a refrigerant circulation passage.
  • tube evaporators In the case of tube evaporators, they are internal partitions provided in the manifolds that define these passes.
  • the means of distribution are therefore designed to allow circulation refrigerant in several passes, with reversal of the flow direction of the refrigerant from one pass to the next.
  • each of the two layers of these evaporators has three or four passes.
  • a flow of air passes through the gaps between the fluid lines, and gives heat to the refrigerant which changes from the liquid state to the gaseous state.
  • the air flow thus cooled can in particular be used for the air conditioning of the passenger compartment of a vehicle.
  • Two-ply evaporators with several different fluid paths, so as to define in a part of each ply, and / or from one ply to another, a path of the fluid along U-shaped circuits and / or with flow crossed (that is to say in opposite directions), are well known to those skilled in the art and widely described in the prior art.
  • This improvement involves maximizing the temperature difference between the incident air and the cooled air after passing through the evaporator.
  • One of the aims of the invention is thus to design a two-ply evaporator defining for the refrigerant fluid a path that optimizes the different flow passages of the refrigerant fluid relative to each other and improves evaporation.
  • the invention proposes an evaporator, in particular for a motor vehicle air-conditioning circuit, comprising two plies extending in parallel planes, each ply being formed of a plurality of parallel conduits traversed by a refrigerant fluid so as to cooling a flow of incident air passing through the successive layers, the first layer and the second layer each comprising at least two fluid flow passes.
  • the first web comprises a first pass, called the coolant inlet passage in the evaporator, and a last pass, called coolant outlet flow of the evaporator, the inlet and outlet passages. outlet being adjacent and the first sheet being located on the side of the incident air stream to be cooled.
  • the heat transfer fluid outlet passage is located on an edge of the first ply in the direction of arrival of the air.
  • the first web of an evaporator according to the invention is located on the side of the incident air stream to be cooled and comprises the inlet and outlet passages of the refrigerant fluid.
  • the refrigerant enters the evaporator by the first ply and leaves it by the same ply, the fluid inlet and the fluid outlet being located on the side of the first ply.
  • the hottest passes are arranged on the side of the incident air flow and the coldest passes are disposed on the side of the outlet of the air flow of the evaporator.
  • the passes which are last traversed by the coolant that is to say the coldest passes, are arranged on the second layer.
  • This particular implementation of the inlet and outlet passes of the evaporator makes it possible to optimize the homogeneity of the temperature of the air cooled at the outlet of the evaporator.
  • Such a configuration also makes it possible to improve the heat exchange between the evaporator and the air flowing through it since the temperature difference between the air flow passing through the evaporator and the temperature of the refrigerant is maximized.
  • the fact of arranging the fluid outlet passage on one end of the first sheet makes it possible to implement a conventional phase of superheating of the refrigerant fluid so that the fluid evaporates completely before injection into the compressor.
  • an air conditioning circuit for example.
  • the evaporator comprises six passes.
  • said first and second sheets each comprise three passes of circulation of the refrigerant fluid.
  • said first sheet comprises successively said last output pass, said first pass and a second refrigerant circulation pass.
  • said second sheet comprises successively a fifth pass, a fourth pass and a third coolant circulation passage, arranged respectively vis-à-vis the last exit pass, the first pass and the second pass of the first tablecloth.
  • said last and fifth passes comprise between 20% and 40% of said ducts.
  • said last and fifth passes comprise 40% of said conduits.
  • the first, second, third and fourth passes therefore comprise 60% of the evaporator pipes.
  • said last and fifth passes comprise 30% of said conduits.
  • the first, second, third and fourth passes therefore comprise 70% of the evaporator pipes.
  • said last and fifth passes comprise 20% of said conduits.
  • the first, second, third and fourth passes therefore comprise 80% of the evaporator pipes.
  • the evaporator comprises eight passes.
  • said first and second plies each comprise four refrigerant circulation passes.
  • each pass of the evaporator comprises between thirty and fifty pipes.
  • the invention also relates to an automotive air conditioning circuit comprising at least one evaporator as described above.
  • FIG. 1 is a schematic representation, seen from above, of the configuration of the coolant circulation passes in an evaporator according to a first embodiment of the invention
  • Figure 2 is a perspective view of the evaporator of Figure 1 showing the configuration and direction of fluid flow in the passes;
  • FIG. 3 is a diagrammatic representation, seen from above, of the configuration of the circulation passages of the refrigerant fluid in an evaporator according to a second embodiment of the invention
  • Figure 4 is a perspective view of the evaporator of Figure 3 showing the configuration and direction of fluid flow in the passes; and FIG. 5 shows the pressure and temperature variation curves of the refrigerant flowing in an evaporator.
  • the various embodiments according to the present invention are particularly designed to optimize the pressure drops experienced by the refrigerant during the various passes of circulation in the evaporator, thus leading to better control of the evaporation process and to a better homogeneity of the temperature of the cooled air leaving the evaporator, in particular.
  • the embodiments described below relate to a plate type evaporator.
  • Figures 1 and 2 illustrate an evaporator 1, according to a first embodiment, comprising an evaporator core 10 consisting of two adjacent plies 11, 12 extending in parallel planes.
  • the first ply 11 of the evaporator 1 is located on the side of the inlet of the incident air flow, or hot air, 9A to be cooled while the second ply 12 is located behind the first ply 11, that is to say on the side of the outlet of the air flow, called the cooled air flow 9B, of the evaporator 1.
  • Each ply 11, 12 is formed of a plurality of parallel pipes 13 traversed by a cooling fluid so as to cool the air flow 9A successively passing through the first 11 and second 12 plies.
  • An inlet port and a coolant outlet port are disposed on a side face of the evaporator 1.
  • the plates are configured so as to define fluid distribution means at both ends (upper and lower) of the plies, which ensure the distribution and collection of the refrigerant in the various lines 13 of the plies 11, 12, in defining between the distributing means a circulation of the fluid in a given direction for each pipe.
  • the plates have orifices at the upper end, the orifices being flanged to form an inlet manifold space connected to the inlet port and an outlet manifold connected to the outlet port when the plates are stacked.
  • the evaporator core 10 is divided into six zones, or passes, which are here distributed uniformly between the two layers 11, 12.
  • first ply 11 and the second ply 12 each comprise three passes.
  • the first ply 11 is divided into three zones in the direction of the length of the evaporator 1, defining three flow passes of the refrigerant fluid.
  • the first pass called the coolant inlet passage, and the sixth pass, said coolant outlet passage or last pass, 106 of the evaporator 1
  • the first pass called the coolant inlet passage
  • the sixth pass said coolant outlet passage or last pass, 106 of the evaporator 1
  • the invention proposes to arrange these input passes
  • a second pass 102 is disposed adjacent to the inlet passage 101 of the fluid, on the other edge of the first ply 11 (on the right in FIG. 1).
  • the entry pass 101 is thus disposed in the middle of the first ply 11, between the exit pass 106 and a second pass 102.
  • the second ply 12 is also divided into three zones in the direction of the length of the evaporator 1, defining three coolant circulation passes.
  • This second layer successively presents (from right to left in FIG. 1) a third pass 103, a fourth pass 104 and a fifth pass 105.
  • the third pass 103 is located on an edge of the second ply 12 (on the right in FIG. 1) and is opposite the second pass 102 of the first ply 11.
  • the fifth pass 105 is located on the other edge of second ply 12 (on the left in FIG. 1) and is opposite the outlet passage 106 of the fluid of the first ply 11.
  • the fourth pass 104 which is opposite the inlet passage 101 of the fluid, is disposed in the middle of the second ply 12, between the fifth pass 105 and the third pass 103.
  • the evaporator 1 therefore comprises six successive passes 101, 102, 103, 104, 105, 106 which define a refrigerant circulation circuit between the inlet 131 and the outlet 132 of the fluid of the evaporator 1, with an inversion of the flow direction of the fluid at each successive pass, as shown in Figure 2.
  • the flow direction of the adjacent passes (the passes 103 and 105, for example) to a given pass (the pass 104) is reversed relative to the flow direction of the fluid of this pass (the pass 104).
  • the flow of fluid is down while for all adjacent passes (the passes 106, 102 and 104) to this first pass 101, the flow of fluid is upward.
  • This characteristic is applicable for all passes of the evaporator 1.
  • This particular configuration of the passes of the evaporator 1 proves to be optimal so as to maximize the temperature difference between the incident air flow 9A and the cooled air flow 9B after passing through the evaporator 1, that to preserve a good homogeneity of temperature between the different regions (right / left, up / down) of the evaporator 1.
  • the inventors have observed that the temperature of the refrigerant decreases as it circulates in the evaporator, because of the reduction of the pressure (or loss of charge) of the fluid between the inlet and the outlet of the fluid in the evaporator.
  • the coldest fluid circulation passes are therefore those which are last in the circulation circuit.
  • the fifth pass 105 which is the coldest pass since located at the end of the fluid circulation circuit, is disposed against the hottest pass, in this case the last exit pass 106, on the second layer 12 of the evaporator 1.
  • the invention therefore proposes a configuration in which the hottest passes (namely the passes 101, 102 and 106) are arranged on the first sheet 11 and the coldest passes (namely the passes 103, 104 and 105) on the second ply 12 of the evaporator 1, so as to maximize the temperature difference between the incident air flow 9A and the cooled air flow 9B after passing through the evaporator 1.
  • this configuration of the passes in the evaporator 1 makes it possible to balance the temperature of the passes arranged opposite each other (the pass 106 with the pass 105, the pass 101 with the pass 104, the pass 102 with the pass 103) in order to maintain good temperature homogeneity between the different regions of the evaporator 1.
  • the inversion of the fluid flow direction between two adjacent passes also makes it possible to homogenize the temperature within the evaporator 1.
  • first 11 ply and second ply 12 have identical dimensions.
  • the six zones, defining the six passes of the evaporator 1, are dimensioned so that the sixth pass 106 and fifth pass 105 comprise, between them, between 20% and 40% of the total ducts of the evaporator 1.
  • the zones defining the different passes of the evaporator 1 have dimensions such that the sixth pass 106 and the fifth pass 105 together comprise approximately 40% of the total ducts of the evaporator 1, that is, about 20% each.
  • the zones defining the different passes of the evaporator have dimensions such that the sixth and fifth passes 106, 105 together comprise about 20% of the total width of the evaporator.
  • the zones defining the different passes of the evaporator have dimensions such that the sixth and fifth passes 106, 105 together comprise about 30% of the total width of the evaporator 1.
  • each pass of the evaporator 1 comprises between thirty and fifty lines 13.
  • FIGS 3 and 4 illustrate an evaporator 100, according to a second embodiment of the invention.
  • the evaporator 100 comprises an evaporator core 10 consisting of two adjacent layers 11, 12 extending in parallel planes.
  • the first ply 11 of the evaporator 1 is located on the side of the inlet of the incident air flow 9A to be cooled, while the second ply 12 is located behind the first ply 11, that is to say on the side the output of the cooled air flow 9B of the evaporator 1.
  • Each ply 11, 12 is formed of a plurality of parallel pipes 13 traversed by a cooling fluid so as to cool the incident air flow 9A successively passing through the first 11 and second 12 plies.
  • the evaporator core 10 is divided into eight zones, or passes, which are here distributed uniformly between the two layers 11, 12.
  • each of the first ply 11 and second ply 12 comprises four passes.
  • the configuration of the eight passes of the evaporator 100 is substantially similar to that of the evaporator 1 described above.
  • the evaporator 100 thus comprises eight successive passes 111, 112, 113, 114, 115, 116, 117, 118 which define a refrigerant circulation circuit between the inlet 131 and the outlet 132 of the fluid of the evaporator 100, with a reversal of the fluid flow direction at each successive pass, as illustrated in FIG. 4.
  • the inlet 131 and the refrigerant outlet 132 are arranged in the first ply 11 of the evaporator 100.
  • the first ply 11 therefore comprises the first pass 111, called the fluid inlet passage, and the eighth pass 118, called the last pass or fluid outlet passage, of the evaporator 1.
  • the invention proposes to arrange these passes 111, 118 adjacent and to place the last pass 118 on an edge of the first ply 11 (left in Figure 3).
  • This particular configuration of the passes of the evaporator proves to be optimal so as to maximize the temperature difference between the incident air flow 9A and the cooled air flow 9B after passing through the evaporator 100, that to maintain a good temperature homogeneity between the different regions (right / left, up / down) of the evaporator 100.
  • the last pass 118 which must be superheated, is disposed on the first web 11 of the evaporator 100, this web 11 being oriented towards the side of the incident air flow 9A (hot air).
  • the seventh pass 117 which is the coldest pass since located at the end of the fluid circulation circuit, is disposed against the hottest pass, that is to say the eighth and last pass 118, on the second layer. 12 of the evaporator 100.
  • the fourth 114, fifth 115, and sixth 116 passes which are also considered cold passes for the same reasons as the seventh pass 117, are also disposed on the second lap 12, respectively against the third 113, second 112 and first 111 passes.
  • the invention therefore proposes a configuration in which the hottest passes (the passes 111, 112, 113 and 118 in this case) are arranged on the first sheet 11 and the coldest passes (the passes 114, 115, 116 and 117 in this case) on the second ply 12 of the evaporator 100, so as to maximize the temperature difference between the incident air flow 9A and the cooled air flow 9B after passing through the evaporator 100 .
  • this configuration of the passes in the evaporator 100 makes it possible to balance the temperature of the passes arranged opposite each other (the pass 117 with the pass 118, the pass 116 with the pass 111, the pass 115 with the pass 112, and the pass 114 with the pass 113) to maintain a good temperature homogeneity between the different regions of the evaporator 100.
  • the flow direction of the passes adjacent to a given pass is also reversed with respect to the flow direction of the fluid of this pass.
  • the flow of fluid is down while for all adjacent passes (the passes 118, 112 and 116) to this first pass 111, the flow of fluid is upward.
  • This characteristic is applicable to all other passes of the evaporator 100.
  • the reversal of the fluid flow direction between two adjacent passes also makes it possible to homogenize the temperature within the evaporator 100.
  • the two embodiments described above relate to two-ply evaporators with respectively three and four circulation passes per web.
  • the evaporator according to the invention can be implemented in housings
  • HVAC Heating, Ventilation and / or Air Conditioning
  • HVAC Heating, Ventilation and / or Air Conditioning
  • the plates or tubes can be stacked alternately with intermediate fins traversed by the air flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un évaporateur (1), notamment pour un circuit de climatisation de véhicule automobile, comprenant deux nappes (11, 12) s'étendant dans des plans parallèles, chaque nappe étant formée d'une pluralité de conduites (13) parallèles parcourues par un fluide réfrigérant de manière à refroidir un flux d'air d'incident (9A) traversant les nappes successives, la première nappe (11) et la deuxième nappe (12) comprenant chacune au moins deux passes de circulation du fluide. Selon l'invention, ladite première nappe (11) comprend une première passe (101), dite passe d'entrée du fluide réfrigérant dans l'évaporateur, et une dernière passe (106), dite passe de sortie du fluide réfrigérant de l'évaporateur, lesdites passes d'entrée et de sortie (101, 106) étant adjacentes, ladite première nappe (11) étant située du côté du flux d'air incident (9A) à refroidir. Ladite passe de sortie (106) du fluide caloporteur est située à une extrémité (sur un bord) de ladite première nappe (11).

Description

Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes
1. Domaine de l'invention
L'invention concerne un évaporateur, notamment pour une installation de climatisation de véhicule automobile.
Plus précisément, elle concerne les évaporateurs présentant deux nappes comprenant chacune une pluralité de conduites de circulation d'un fluide réfrigérant. 2. Art antérieur
Les évaporateurs comprennent, d'une part, un cœur généralement constitué de deux nappes de conduites parallèles pour la circulation d'un fluide réfrigérant et, d'autre part, des moyens de répartition du fluide réfrigérant disposés aux deux extrémités des nappes pour assurer la distribution et la collecte du fluide réfrigérant dans les différentes conduites de chacune des nappes.
Les conduites sont réalisées soit à partir de paires de plaques ou de tubes accolées présentant une pluralité de parois qui définissent des canaux/passages pour la circulation du fluide réfrigérant, soit à partir de tubes réunis à leurs deux extrémités par des boîtes collectrices permettant le passage du fluide réfrigérant d'un tube à un autre.
Dans le cas des évaporateurs à plaques, la structure interne des conduites définit différentes zones qui forment chacune une passe de circulation du fluide réfrigérant.
Dans le cas des évaporateurs à tubes, ce sont des cloisons internes prévues dans les boîtes collectrices qui définissent ces passes.
Les moyens de répartition (configuration des plaques ou cloisonnement interne des boîtes collectrices) sont donc conçus pour permettre une circulation du fluide réfrigérant en plusieurs passes, avec inversion du sens de circulation du fluide réfrigérant d'une passe à la suivante.
Classiquement, chacune des deux nappes de ces évaporateurs présente trois ou quatre passes.
Un flux d'air traverse les intervalles entre les conduites de fluide, et cède de la chaleur au fluide réfrigérant qui passe de l'état liquide à l'état gazeux.
Le flux d'air ainsi refroidi peut notamment être utilisé ensuite pour la climatisation de l'habitacle d'un véhicule.
Des évaporateurs à deux nappes avec plusieurs trajets de fluide différents, de manière à définir dans des parties de chaque nappe, et/ou d'une nappe à l'autre, un cheminement du fluide suivant des circuits en U et/ou avec des flux croisés (c'est-à-dire en sens opposés), sont bien connus de l'homme du métier et largement décrits dans l'art antérieur.
Le fonctionnement de ces évaporateurs est satisfaisant mais il est nécessaire d'améliorer encore l'échange thermique entre le fluide réfrigérant et l'air à refroidir.
Cette amélioration implique de maximiser l'écart de température entre l'air incident et l'air refroidi après traversée de l'évaporateur.
Il est en outre nécessaire de conserver une bonne homogénéité de température entre les différentes régions (droite/gauche, haut/bas) de l'évaporateur, ce qui implique de maîtriser le processus d'évaporation, notamment du point de vue de la répartition des pertes de charge au sein des diverses régions de l'évaporateur.
L'un des buts de l'invention est ainsi de concevoir un évaporateur à deux nappes définissant pour le fluide réfrigérant un trajet qui optimise les différentes passes de circulation du fluide réfrigérant les unes par rapport aux autres et améliore l'évaporation. 3. Résumé de l'invention
L'invention propose à cet effet un évaporateur, notamment pour un circuit de climatisation de véhicule automobile, comprenant deux nappes s'étendant dans des plans parallèles, chaque nappe étant formée d'une pluralité de conduites parallèles parcourues par un fluide réfrigérant de manière à refroidir un flux d'air incident traversant les nappes successives, la première nappe et la deuxième nappe comprenant chacune au moins deux passes de circulation du fluide.
Selon l'invention, la première nappe comprend une première passe, dite passe d'entrée du fluide réfrigérant dans l'évaporateur, et une dernière passe, dite passe de sortie du fluide réfrigérant de l'évaporateur, les passes d'entrée et de sortie étant adjacentes et la première nappe étant située du côté du flux d'air incident à refroidir.
Toujours selon l'invention, la passe de sortie du fluide caloporteur est située sur un bord de la première nappe selon le sens d'arrivée de l'air.
Ainsi, la première nappe d'un évaporateur selon l'invention est située du côté du flux d'air incident à refroidir et comprend les passes d'entrée et de sortie du fluide réfrigérant.
En d'autres termes, le fluide réfrigérant entre dans l'évaporateur par la première nappe et sort de celui-ci par cette même nappe, l'entrée du fluide et la sortie du fluide étant donc situées du côté de la première nappe.
Ainsi, les passes les plus chaudes sont disposées du côté du flux d'air incident et les passes les plus froides sont disposées du côté de la sortie du flux d'air de l'évaporateur.
Les passes qui sont parcourues en dernière par le fluide réfrigérant, c'est- à-dire les passes les plus froides, sont donc disposées sur la deuxième nappe. Cette mise en œuvre particulière des passes d'entrée et de sortie de l'évaporateur permet d'optimiser l'homogénéité de la température de l'air refroidi en sortie de l'évaporateur.
Une telle configuration permet, en outre, d'améliorer les échanges thermiques entre l'évaporateur et l'air qui le traverse puisque le différentiel de température entre le flux d'air traversant l'évaporateur et la température du fluide réfrigérant est maximisé.
Par ailleurs, le fait de disposer la passe de sortie de fluide sur une extrémité de la première nappe permet de mettre en œuvre une phase classique de surchauffe du fluide réfrigérant de manière à ce que le fluide s'évapore entièrement avant injection dans le compresseur d'un circuit de climatisation, par exemple.
Selon un aspect particulier de l'invention, l'évaporateur comprend six passes.
Selon un autre aspect particulier de l'invention, lesdites première et deuxième nappes comprennent chacune trois passes de circulation du fluide réfrigérant.
Selon encore un autre aspect particulier de l'invention, ladite première nappe comprend successivement ladite dernière passe de sortie, ladite première passe et une deuxième passe de circulation du fluide réfrigérant.
Selon un aspect particulier de l'invention, ladite deuxième nappe comprend successivement une cinquième passe, une quatrième passe et une troisième passe de circulation du fluide réfrigérant, disposées respectivement en vis-à-vis de la dernière passe de sortie, la première passe et la deuxième passe de la première nappe.
Selon un aspect particulier de l'invention, lesdites dernière et cinquième passes comprennent entre 20% et 40% desdites conduites.
Selon un autre aspect de l'invention, lesdites dernière et cinquième passes comprennent 40% desdites conduites. Les première, deuxième, troisième et quatrième passes comprennent donc 60% des conduites de l'évaporateur.
Une telle répartition des conduites dans les passes de l'évaporateur permet de privilégier une performance optimale de l'évaporateur en terme de différence de température entre l'air incident et l'air sortant de l'évaporateur.
Selon encore un aspect de l'invention, lesdites dernière et cinquième passes comprennent 30% desdites conduites.
Les première, deuxième, troisième et quatrième passes comprennent donc 70% des conduites de l'évaporateur.
Une telle répartition des conduites dans les passes de l'évaporateur permet de privilégier une homogénéité optimale de la température de l'air en sortie de l'évaporateur.
Selon encore un autre aspect de l'invention, lesdites dernière et cinquième passes comprennent 20% desdites conduites.
Les première, deuxième, troisième et quatrième passes comprennent donc 80% des conduites de l'évaporateur.
Une telle répartition des conduites dans les passes de l'évaporateur permet d'obtenir un compromis optimal entre la performance de l'évaporateur et l'homogénéité de la température de l'air en sorite de l'évaporateur.
Selon un aspect de l'invention, l'évaporateur comprend huit passes.
Selon un autre aspect de l'invention, lesdites première et deuxième nappes comprennent chacune quatre passes de circulation du fluide réfrigérant.
Selon un aspect de l'invention, chaque passe de l'évaporateur comprend entre trente et cinquante conduites.
L'invention concerne également un circuit de climatisation automobile comprenant au moins un évaporateur tel que décrit précédemment.
4. Liste des figures
D'autres caractéristiques et avantages de tels évaporateurs selon l'invention apparaîtront plus clairement à la lecture de la description détaillée suivante de deux modes de réalisation particuliers de l'invention, donnés à titres de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
la figure 1 est une représentation schématique, vue du dessus, de la configuration des passes de circulation du fluide réfrigérant dans un évaporateur selon un premier mode de réalisation de l'invention ;
la figure 2 est une vue en perspective de l'évaporateur de la figure 1 montrant la configuration et le sens de circulation du fluide dans les passes ;
la figure 3 est une représentation schématique, vue du dessus, de la configuration des passes de circulation du fluide réfrigérant dans un évaporateur selon un deuxième mode de réalisation de l'invention ;
la figure 4 est une vue en perspective de l'évaporateur de la figure 3 montrant la configuration et le sens de circulation du fluide dans les passes ; et la figure 5 représente les courbes de variation de pression et de température du fluide réfrigérant circulant dans un évaporateur.
5. Description détaillée de l'invention
Sur les différentes figures, sauf indication contraire, les éléments identiques portent les mêmes numéros de référence et présentent les mêmes caractéristiques techniques et modes de fonctionnement.
Les différents modes de réalisation selon la présente l'invention sont conçus tout particulièrement pour optimiser les pertes de charge subies par le fluide réfrigérant au cours des différentes passes de circulation dans l'évaporateur, conduisant ainsi à une meilleure maîtrise du processus d'évaporation et à une meilleure homogénéité de la température de l'air refroidi en sortie de l'évaporateur, notamment.
Les exemples de réalisation décrits ci-après concernent un évaporateur du type à plaques.
5.1 Description d'un premier mode de réalisation Les figures 1 et 2 illustrent un évaporateur 1, selon un premier mode de réalisation, comprenant un cœur d'évaporateur 10 constitué de deux nappes 11, 12 adjacentes s'étendant dans des plans parallèles.
La première nappe 11 de l'évaporateur 1 est située du côté de l'entrée du flux d'air incident, ou air chaud, 9A à refroidir tandis que la deuxième nappe 12 est située derrière la première nappe 11, c'est-à-dire du côté de la sortie du flux d'air, appelé flux d'air refroidi 9B, de l'évaporateur 1.
Chaque nappe 11, 12 est formée d'une pluralité de conduites 13 parallèles parcourues par un fluide réfrigérant de manière à refroidir le flux d'air 9A traversant successivement les première 11 et deuxième 12 nappes.
Un port d'entrée et un port de sortie de fluide réfrigérant sont disposés sur une face latérale de l'évaporateur 1.
De façon connue, les plaques sont configurées de sorte à définir des moyens répartiteur de fluide aux deux extrémités (supérieure et inférieure) des nappes, qui assurent la distribution et la collecte du fluide réfrigérant dans les différentes conduites 13 des nappes 11, 12, en définissant entre les moyens répartiteurs une circulation du fluide dans un sens donné pour chaque conduite.
Les plaques présentent des orifices à l'extrémité supérieure, les orifices étant bordés de collerettes de sorte à former un espace collecteur d'entrée relié au port d'entrée et un espace collecteur de sortie relié au port de sortie lorsque les plaques sont empilées.
Comme le montre la figure 1, le cœur d'évaporateur 10 est divisé en six zones, ou passes, qui sont ici réparties uniformément entre les deux nappes 11, 12.
En d'autres termes, la première nappe 11 et la deuxième nappe 12 comprennent chacune trois passes.
Ainsi, la première nappe 11 est divisée en trois zones dans le sens de la longueur de l'évaporateur 1, définissant trois passes de circulation du fluide réfrigérant. Selon l'invention, la première passe, dite passe d'entrée du fluide réfrigérant, et la sixième passe, dite passe de sortie du fluide réfrigérant ou dernière passe, 106 de l'évaporateur 1, sont disposées dans la première nappe 11 de l'évaporateur 1
Plus précisément, l'invention propose de disposer ces passes d'entrée
101 et de sortie 106 de façon adjacente et de placer la passe de sortie 106 du fluide sur un bord de la première nappe 11 (à gauche sur la figure 1), et donc à proximité d'une face latérale de l'évaporateur.
Une deuxième passe 102 est disposée de façon adjacente à la passe d'entrée 101 du fluide, sur l'autre bord de la première nappe 11 (à droite sur la figure 1).
La passe d'entrée 101 est donc disposée au milieu de la première nappe 11, entre la passe de sortie 106 et une deuxième passe 102.
La deuxième nappe 12 est également divisée en trois zones dans le sens de la longueur de l'évaporateur 1, définissant trois passes de circulation du fluide réfrigérant.
Cette deuxième nappe présente successivement (de droite à gauche sur la figure 1) une troisième passe 103, une quatrième passe 104 et une cinquième passe 105.
La troisième passe 103 est située sur un bord de la deuxième nappe 12 (à droite sur la figure 1) et est en vis-à-vis de la deuxième passe 102 de la première nappe 11.
La cinquième passe 105 est située sur l'autre bord de deuxième nappe 12 (à gauche sur la figure 1) et est en vis-à-vis de la passe de sortie 106 du fluide de la première nappe 11.
La quatrième passe 104, qui se situe en vis-à-vis de la passe d'entrée 101 du fluide, est disposée au milieu de la deuxième nappe 12, entre la cinquième passe 105 et la troisième passe 103. L'évaporateur 1 comprend donc six passes successives 101, 102, 103, 104, 105, 106 qui définissent un circuit de circulation du fluide réfrigérant entre l'entrée 131 et la sortie 132 du fluide de l'évaporateur 1, avec une inversion du sens de circulation du fluide à chaque passe successive, comme illustré sur la figure 2.
Plus précisément, le sens de circulation des passes adjacentes (les passes 103 et 105, par exemple) à une passe donnée (la passe 104) est inversé par rapport au sens de circulation du fluide de cette passe (la passe 104).
Par exemple, pour la première passe 101, la circulation du fluide se fait vers le bas tandis que pour toutes les passes adjacentes (les passes 106, 102 et 104) à cette première passe 101, la circulation du fluide se fait vers le haut.
Cette caractéristique est applicable pour toutes les passes de l'évaporateur 1.
Cette configuration particulière des passes de l'évaporateur 1 s'avère être optimale tant pour maximiser l'écart de température entre le flux d'air incident 9A et le flux d'air refroidi 9B après traversée de l'évaporateur 1, que pour conserver une bonne homogénéité de température entre les différentes régions (droite/gauche, haut/bas) de l'évaporateur 1.
En effet, comme illustré sur la figures 5, les inventeurs ont observé que la température du fluide réfrigérant diminuait au fur et à mesure qu'il circulait dans l'évaporateur, du fait de la diminution de la pression (ou perte de charge) du fluide entre l'entrée et la sortie du fluide dans l'évaporateur.
Les passes de circulation de fluide les plus froides sont donc celles qui se situent en dernière dans le circuit de circulation.
Par ailleurs, il est connu de surchauffer la passe de sortie du fluide réfrigérant (comme illustré à droite de la deuxième courbe de la figure 5) afin que le fluide, en sortie de l'évaporateur, se présente uniquement sous phase gazeuse, avant injection dans le compresseur du circuit de climatisation, par exemple. Partant de ces constats, les inventeurs ont choisi de disposer la passe de sortie 106 de fluide, qui doit être surchauffée, sur la première nappe 11 de l'évaporateur 1, cette première nappe 11 étant en contact avec le flux d'air 9 incident (air chaud).
Les première 101 et deuxième 102 passes, qui sont aussi les plus chaudes puisque situées en début du circuit de circulation du fluide, sont également disposées sur la première nappe 11.
La cinquième passe 105, qui est la passe la plus froide puisque située en fin du circuit de circulation du fluide, est disposée contre la passe la plus chaude, en l'occurrence la dernière passe de sortie 106, sur la deuxième nappe 12 de l'évaporateur 1.
Les troisième passe 103 et quatrième passe 104 de la deuxième nappe
12, qui sont aussi considérées comme des passes froides pour les mêmes raisons que la cinquième passe 105, sont également disposées sur la deuxième nappe 12, respectivement contre (ou en vis-à-vis des) les deuxième passe 102 et première passe 101 de la première nappe 11.
L'invention propose donc une configuration dans laquelle les passes les plus chaudes (à savoir les passes 101, 102 et 106) sont disposées sur la première nappe 11 et les passes les plus froides (à savoir les passes 103, 104 et 105) sur la deuxième nappe 12 de l'évaporateur 1, de façon à maximiser l'écart de température entre le flux d'air incident 9A et le flux d'air refroidi 9B après traversée de l'évaporateur 1.
Par ailleurs, cette configuration des passes dans l'évaporateur 1 permet un équilibrage de la température des passes disposées en vis-à-vis (la passe 106 avec la passe 105, la passe 101 avec la passe 104, la passe 102 avec la passe 103) afin de conserver une bonne homogénéité de température entre les différentes régions de l'évaporateur 1. L'inversion du sens de circulation du fluide entre deux passes adjacentes (d'une même nappe et de deux nappes distinctes) permet également d'homogénéiser la température au sein de l'évaporateur 1.
Sur les figures 1 et 2, les première 11 nappe et deuxième nappe 12 présentent des dimensions identiques.
Les six zones, définissant les six passes de l'évaporateur 1, sont dimensionnées de telle sorte que les sixième passe 106 et cinquième passe 105 comprennent, à elles deux, entre 20% et 40% des conduites totales de l'évaporateur 1.
Plus précisément, sur la figure 1, les zones définissant les différentes passes de l'évaporateur 1 présentent des dimensions telles que les sixième passe 106 et cinquième passe 105 comprennent ensemble environ 40% des conduites totales de l'évaporateur 1, c'est-à-dire environ 20% chacune.
Environ 60% des conduites restantes sont comprises dans les première 101, deuxième 102, troisième 103 et quatrième 104 passes, soit environ 15% des conduites totales de l'évaporateur 1 par passe.
Cette répartition des conduites 13 de l'évaporateur 1 dans les différentes passes de ce dernier permet d'obtenir une performance thermique optimale de l'évaporateur 1
En d'autres termes, avec cette répartition, on privilégie l'optimisation de la différence entre la température de l'air incident 9A et la température de l'air refroidi 9B sortant de l'évaporateur 1.
Dans une variante (non illustrée), les zones définissant les différentes passes de l'évaporateur présentent des dimensions telles que les sixième et cinquième passes 106, 105 comprennent ensemble environ 20%de la largeur totale de l'évaporateur..
Les première 101, deuxième 102, troisième 103 et quatrième 104 passes comprennent donc environ 80% des conduites restantes, soit environ 40% chacune de la largeur totale de l'évaporateur 1. Cette répartition des conduites 13 de l'évaporateur 1 permet d'obtenir une homogénéité optimale de la température de l'air refroidi 9B en sortie de l'évaporateur 1.
En d'autres termes, avec cette répartition, on privilégie l'optimisation de l'homogénéité de la température de l'air refroidi 9B en sortie de l'évaporateur 1.
Dans une autre variante (non illustrée), les zones définissant les différentes passes de l'évaporateur présentent des dimensions telles que les sixième et cinquième passes 106, 105 comprennent ensemble environ 30% de la largeur totale de l'évaporateur 1.
Les première 101, deuxième 102, troisième 103 et quatrième 104 passes comprennent donc environ 70% des conduites restantes, soit environ 35% chacune de la largeur totale de l'évaporateur 1.
Cette répartition des conduites 13 de l'évaporateur 1 dans les différentes passes de ce dernier permet d'obtenir un compromis optimal entre la performance thermique et l'homogénéité de la température de l'air refroidi 9B en sortie de l'évaporateur.
On note que, dans ce premier mode de réalisation, chaque passe de l'évaporateur 1 comprend entre trente et cinquante conduites 13. 5.2 Description d'un deuxième mode de réalisation
Les figures 3 et 4 illustrent un évaporateur 100, selon un deuxième mode de réalisation de l'invention.
De façon similaire au mode de réalisation décrit précédemment, l'évaporateur 100 comprend un cœur d'évaporateur 10 constitué de deux nappes 11, 12 adjacentes s'étendant dans des plans parallèles.
La première nappe 11 de l'évaporateur 1 est située du côté de l'entrée du flux d'air incident 9A à refroidir, tandis que la deuxième nappe 12 est située derrière la première nappe 11, c'est-à-dire du côté de la sortie du flux d'air refroidi 9B de l'évaporateur 1. Chaque nappe 11, 12 est formée d'une pluralité de conduites 13 parallèles parcourues par un fluide réfrigérant de manière à refroidir le flux d'air incident 9A traversant successivement les première 11 et deuxième 12 nappes.
Comme le montre la figure 3, le cœur d'évaporateur 10 est divisé en huit zones, ou passes, qui sont ici réparties uniformément entre les deux nappes 11, 12.
En d'autres termes, chacune des première nappe 11 et deuxième nappe 12 comprend quatre passes.
La configuration des huit passes de l'évaporateur 100 est sensiblement similaire à celle de l'évaporateur 1 décrit ci-dessus.
En effet, l'évaporateur 100 comprend donc huit passes successives 111, 112, 113, 114, 115, 116, 117, 118 qui définissent un circuit de circulation du fluide réfrigérant entre l'entrée 131 et la sortie 132 du fluide de l'évaporateur 100, avec une inversion du sens de circulation du fluide à chaque passe successive, comme illustré sur la figure 4.
Conformément à l'invention, l'entrée 131 et la sortie 132 de fluide réfrigérant sont disposées dans la première nappe 11 de l'évaporateur 100.
La première nappe 11 comprend donc la première passe 111, dite passe d'entrée du fluide, et la huitième passe 118, dite dernière passe ou passe de sortie du fluide, de l'évaporateur 1.
Plus précisément, l'invention propose de disposer ces passes 111, 118 de façon adjacente et de placer la dernière passe 118 sur un bord de la première nappe 11 (à gauche sur la figure 3).
Cette configuration particulière des passes de l'évaporateur s'avère être optimale tant pour maximiser l'écart de température entre le flux d'air incident 9A et le flux d'air refroidi 9B après traversée de l'évaporateur 100, que pour conserver une bonne homogénéité de température entre les différentes régions (droite/gauche, haut/bas) de l'évaporateur 100. En effet, la dernière passe 118, qui doit être surchauffée, est disposée sur la première nappe 11 de l'évaporateur 100, cette nappe 11 étant orientée du côté du flux d'air incident 9A (air chaud).
Les première 111, deuxième 112 et troisième 113 passes, qui sont aussi les plus chaudes puisque situées en début du circuit de circulation du fluide, sont également disposées sur la première nappe 11.
La septième passe 117, qui est la passe la plus froide puisque située en fin du circuit de circulation du fluide, est disposée contre la passe la plus chaude, c'est-à-dire la huitième et dernière passe 118, sur la deuxième nappe 12 de l'évaporateur 100.
Les quatrième 114, cinquième 115, et sixième 116 passes, qui sont aussi considérées comme des passes froides pour les mêmes raisons que la septième passe 117, sont également disposées sur la deuxième nappe 12, respectivement contre les troisième 113, deuxième 112 et première 111 passes.
L'invention propose donc une configuration dans laquelle les passes les plus chaudes (les passes 111, 112, 113 et 118 en l'occurrence) sont disposées sur la première nappe 11 et les passes les plus froides (les passes 114, 115, 116 et 117 en l'occurrence) sur la deuxième nappe 12 de l'évaporateur 100, de façon à maximiser l'écart de température entre le flux d'air incident 9A et le flux d'air refroidi 9B après traversée de l'évaporateur 100.
Par ailleurs, cette configuration des passes dans l'évaporateur 100 permet un équilibrage de la température des passes disposées en vis-à-vis (la passe 117 avec la passe 118, la passe 116 avec la passe 111, la passe 115 avec la passe 112, et la passe 114 avec la passe 113) afin de conserver une bonne homogénéité de température entre les différentes régions de l'évaporateur 100.
Dans ce deuxième mode de réalisation, le sens de circulation des passes adjacentes à une passe donnée est également inversé par rapport au sens de circulation du fluide de cette passe. Par exemple, pour la première passe 111, la circulation du fluide se fait vers le bas tandis que pour toutes les passes adjacentes (les passes 118, 112 et 116) à cette première passe 111, la circulation du fluide se fait vers le haut.
Cette caractéristique est applicable à toutes les autres passes de l'évaporateur 100.
L'inversion du sens de circulation du fluide entre deux passes adjacentes permet également d'homogénéiser la température au sein de l'évaporateur 100.
5.3 Autres aspects et variantes
Les deux modes de réalisations décrits précédemment concernent des évaporateurs à deux nappes avec respectivement trois et quatre passes de circulation par nappe.
On comprend bien évidemment que l'invention s'applique aussi à des évaporateurs présentant cinq, six ou un nombre plus important de passes par nappe, sans pour autant s'écarter du principe de l'invention.
On comprend aussi bien évidemment que l'invention est également applicable à des évaporateurs réalisés à partir de tubes réunis par des boîtes collectrices, plutôt qu'à partir de plaques, chaque tube correspondant à une conduite d'une nappe de l'évaporateur.
L'évaporateur selon l'invention peut être mis en œuvre dans des boîtiers
CVC (« Chauffage, Ventilation et/ou Climatisation ») ou HVAC (« Heating,
Ventilation and Air-Conditioning » en anglais) de véhicules automobiles.
Les plaques ou tubes peuvent être empilés en alternance avec des ailettes intercalaires traversées par le flux d'air.

Claims

REVENDICATIONS
1. Evaporateur (1, 100), notamment pour un circuit de climatisation de véhicule automobile, comprenant deux nappes (11, 12) s' étendant dans des plans parallèles, chaque nappe (11, 12) étant formée d'une pluralité de conduites (13) parallèles parcourues par un fluide réfrigérant de manière à refroidir un flux d'air incident (9A) traversant les nappes (11, 12) successives, la première nappe (11) et la deuxième nappe (12) comprenant chacune au moins deux passes de circulation du fluide,
caractérisé en ce que ladite première nappe (11) comprend une première passe (101, 111), dite passe d'entrée du fluide réfrigérant dans l'évaporateur (1), et une dernière passe (106, 118), dite passe de sortie du fluide réfrigérant de l'évaporateur (1), lesdites passes d'entrée (101, 111) et de sortie (106, 118) étant adjacentes, ladite première nappe (11) étant située du côté du flux d'air incident (9A) à refroidir,
et en ce que ladite passe de sortie (106, 118) du fluide caloporteur est située sur un bord de ladite première nappe (11).
2. Evaporateur (1) selon la revendication 1, caractérisé en ce qu'il comprend six passes.
3. Evaporateur (1) selon la revendication 2, caractérisé en ce que lesdites première et deuxième nappes (11, 12) comprennent chacune trois passes de circulation du fluide réfrigérant.
4. Evaporateur (1) selon la revendication 3, caractérisé en ce que ladite première nappe (11) comprend successivement ladite dernière passe de sortie (106), la première passe (101) et la deuxième passe (102) de circulation du fluide réfrigérant.
5. Evaporateur (1) selon la revendication 3 ou 4, caractérisé en ce que ladite deuxième nappe (12) comprend successivement la cinquième passe (105), la quatrième passe (104) et la troisième passe de circulation du fluide réfrigérant, disposées respectivement en vis-à-vis de la dernière passe de sortie (106), la première passe (101) et la deuxième passe (102) de la première nappe (11).
6. Evaporateur (1) selon la revendication 5, caractérisé en ce que lesdites dernière et cinquième passes (106, 105) comprennent 40% de la largeur totale (13) de l'évaporateur (1).
7. Evaporateur (100) selon la revendication 1, caractérisé en ce qu'il comprend huit passes.
8. Evaporateur (100) selon la revendication 9, caractérisé en ce que lesdites première et deuxième nappes (11, 12) comprennent chacune quatre passes de circulation du fluide réfrigérant.
9. Evaporateur (1, 100) selon l'une des revendications 1 à 8, caractérisé en ce que la totalité des passes de l'évaporateur (1) comprend entre trente et cinquante conduites (13).
10. Circuit de climatisation automobile comprenant au moins un évaporateur (1, 100) selon l'une des revendications 1 à 9.
PCT/EP2018/051606 2017-01-23 2018-01-23 Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes WO2018134444A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750526 2017-01-23
FR1750526A FR3062198B1 (fr) 2017-01-23 2017-01-23 Circuit de circulation d'un fluide refrigerant pour un evaporateur a deux nappes

Publications (1)

Publication Number Publication Date
WO2018134444A1 true WO2018134444A1 (fr) 2018-07-26

Family

ID=59152980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/051606 WO2018134444A1 (fr) 2017-01-23 2018-01-23 Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes

Country Status (2)

Country Link
FR (1) FR3062198B1 (fr)
WO (1) WO2018134444A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056074A1 (de) * 2000-11-07 2002-05-08 Behr Gmbh & Co Wärmeübertrager und Verfahren zur Herstellung eines Wärmeübertragers
EP1460363A2 (fr) * 2003-03-21 2004-09-22 Behr GmbH & Co. KG Echangeur de chaleur
US20140124183A1 (en) * 2012-11-05 2014-05-08 Soonchul HWANG Heat exchanger for an air conditioner and an air conditioner having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056074A1 (de) * 2000-11-07 2002-05-08 Behr Gmbh & Co Wärmeübertrager und Verfahren zur Herstellung eines Wärmeübertragers
EP1460363A2 (fr) * 2003-03-21 2004-09-22 Behr GmbH & Co. KG Echangeur de chaleur
US20140124183A1 (en) * 2012-11-05 2014-05-08 Soonchul HWANG Heat exchanger for an air conditioner and an air conditioner having the same

Also Published As

Publication number Publication date
FR3062198A1 (fr) 2018-07-27
FR3062198B1 (fr) 2020-05-01

Similar Documents

Publication Publication Date Title
EP1992891B1 (fr) Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
EP2208955B1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur.
EP2831527B1 (fr) Echangeur thermique, notamment pour vehicule
FR2912811A1 (fr) Echangeur de chaleur pour fluides a circulation en u
WO2009022020A1 (fr) Evaporateur à nappes multiples, en particulier pour un circuit de climatisation de véhicule automobile
WO2013014155A1 (fr) Plaque d'echangeur de chaleur
EP1762808A1 (fr) Elément de circuit à tubes plats, et échangeur de chaleur muni de tels éléments de circuit
FR2916835A1 (fr) Module d'echange de chaleur pour un circuit de climatisation
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
FR2805887A1 (fr) Echangeur de chaleur et installation de chauffage ou de climatisation de vehicule automobile le contenant
WO2018134444A1 (fr) Circuit de circulation d'un fluide réfrigérant pour un évaporateur à deux nappes
FR3067797A1 (fr) Evaporateur a deux nappes, notamment pour circuit de climatisation de vehicule automobile, comprenant des tubes en "u" et circuit de climatisation correspondant
EP3568656B1 (fr) Evaporateur, notamment pour circuit de climatisation de véhicule automobile, et circuit de climatisation correspondant
EP2809535B1 (fr) Ensemble comprenant un échangeur de chaleur et un support sur lequel ledit échangeur est monté
WO2019239054A1 (fr) Echangeur de chaleur de véhicule automobile
EP1546627B1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicles automobiles
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR3068118A1 (fr) Evaporateur, notamment pour circuit de climatisation de vehicule automobile, et circuit de climatisation correspondant
WO2023099315A1 (fr) Elements de perturbation avances pour l'amelioration de la performance des tubes
FR3126760A1 (fr) Echangeur de chaleur d’une boucle de fluide refrigerant.
EP3568654A1 (fr) Dispositif d'échange de chaleur et circuit de climatisation correspondant
FR2849173A1 (fr) Module d'echangeur de chaleur, notamment pour vehicule automobile, comportant une pluralite d'echangeurs de chaleur
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile
FR2917820A1 (fr) Bride de collecteur pour un echangeur de chaleur
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18708331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18708331

Country of ref document: EP

Kind code of ref document: A1