WO2018133771A1 - 电子设备和通信方法 - Google Patents

电子设备和通信方法 Download PDF

Info

Publication number
WO2018133771A1
WO2018133771A1 PCT/CN2018/072817 CN2018072817W WO2018133771A1 WO 2018133771 A1 WO2018133771 A1 WO 2018133771A1 CN 2018072817 W CN2018072817 W CN 2018072817W WO 2018133771 A1 WO2018133771 A1 WO 2018133771A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
control device
interference
terminal device
spatial beam
Prior art date
Application number
PCT/CN2018/072817
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to CN201880006537.5A priority Critical patent/CN110168973B/zh
Priority to US16/341,071 priority patent/US10855426B2/en
Publication of WO2018133771A1 publication Critical patent/WO2018133771A1/zh
Priority to US16/952,109 priority patent/US20210160020A1/en
Priority to US17/893,194 priority patent/US11843557B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to electronic devices and communication methods, and more particularly, to electronic devices and communication methods for inter-cell interference coordination.
  • MIMO Multi-Input Multi-Output
  • a base station (as a control device and a communication node) has multiple antennas supporting MIMO technology.
  • Each base station antenna can form a spatial beam with narrow directivity to provide strong power coverage for a specific user equipment (UE) (also referred to as a terminal device) in the cell to resist large path loss in the high frequency band.
  • UE user equipment
  • the spatial beam with narrower directivity may also generate strong interference to UEs of other cells. Therefore, inter-cell interference coordination needs to be performed for an existing MIMO system.
  • CoMP Coordinated Multiple Point
  • CS/CB Coordinated Scheduling/Coordinated Beamforming
  • cooperative scheduling/cooperative beamforming requires sharing a large amount of control signals and/or data between cells within a CoMP set, for example, an interfering source cell and an interfered cell need to interact with each other to the interfering cell.
  • the channel information of the interfered user equipment may increase the signaling overhead or delay due to the increase of the number of antennas, thus affecting the CoMP technology's ability to solve inter-cell interference. Therefore, there is a need for a mechanism for performing interference coordination between cells more efficiently and more quickly.
  • an electronic device for a first terminal device side of a wireless communication system can include: a memory for storing computer instructions; and processing circuitry configured to execute the stored computer instructions for: obtaining configuration information of a reference signal of the second cell from the first control device of the first cell The first cell is adjacent to the second cell, and the first terminal device is located in the first cell.
  • the reference signal of the second cell is measured according to the configuration information to determine a spatial beam pair corresponding to the reference signal of the second cell. Interference of the first terminal device; and feeding back information of the spatial beam indicating interference to the first terminal device in the second cell to the first control device for performing interference coordination between the first cell and the second cell.
  • an electronic device for a first control device side of a wireless communication system can include: a memory for storing computer instructions; and processing circuitry configured to execute the stored computer instructions for: from a second cell adjacent to the first cell controlled by the first control device
  • the second control device acquires configuration information of the reference signal of the second cell, where the first terminal device located in the first cell determines, according to the configuration information, a spatial beam corresponding to the reference signal of the second cell to the first terminal device.
  • an electronic device for a second control device side of a wireless communication system can include: a memory for storing computer instructions; and processing circuitry configured to execute the stored computer instructions for: to a first cell adjacent to a second cell controlled by the second control device
  • the first control device notifies the configuration information of the reference signal of the second cell, where the first terminal device located in the first cell determines, according to the configuration information, the spatial beam corresponding to the reference signal of the second cell to the first terminal device Acquiring; acquiring, from the first control device, information indicating a spatial beam that causes interference to the first terminal device in the second cell; and performing, according to the acquired information indicating the spatial beam that generates the interference, performing the first cell and the second cell Interference coordination between.
  • an electronic device on a second terminal device side of a wireless communication system can include: a memory for storing computer instructions; and processing circuitry configured to execute the stored computer instructions for: obtaining, by the second control device of the second cell, the disabling of the second cell.
  • the first terminal device of a cell generates information of the interfered spatial beam, wherein the first cell is adjacent to the second cell, the second terminal device is located in the second cell, and the spatial beam indicating that the space beam is to be disabled is not fed back to the second control device Information such that the second control device disables the spatial beam.
  • a communication method for a wireless communication system may include: acquiring, by the first terminal device, the configuration information of the reference signal of the second cell from the first control device of the first cell, where the first cell is adjacent to the second cell, and the first terminal device is located in the first cell; The terminal device performs measurement on the reference signal of the second cell according to the configuration information to determine interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device; and the first terminal device sends feedback to the first control device. And indicating information about a spatial beam that interferes with the first terminal device in the second cell, for performing interference coordination between the first cell and the second cell.
  • a communication method for a wireless communication system may include: the first control device acquires configuration information of the reference signal of the second cell from the second control device of the second cell adjacent to the first cell controlled by the first control device, for the first cell Determining, by the first terminal device, the interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device according to the configuration information; the first control device acquiring, by the first terminal device, the first terminal device in the second cell Generating information of the spatial beam of the interference; and the first control device performs interference coordination between the first cell and the second cell based on the acquired information indicating the spatial beam that generates the interference.
  • a communication method for a wireless communication system may include: the second control device notifying the first control device of the first cell adjacent to the second cell controlled by the second control device of configuration information of the reference signal of the second cell, for the first cell Determining, by the first terminal device, the interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device according to the configuration information; and acquiring, by the second control device, the information indicating the spatial beam that generates the interference from the first control device And the second control device performs interference coordination between the first cell and the second cell based on the acquired information indicating the spatial beam that generates the interference.
  • a communication method for a wireless communication system may include: the second terminal device acquiring, from the second control device of the second cell, information for disabling the spatial beam in the second cell that causes interference to the first terminal device located in the first cell, where the first cell and the first cell The two cells are adjacent to each other, and the second terminal device is located in the second cell; and the second terminal device does not feed back information of the spatial beam to be disabled to the second control device, so that the second control device disables the spatial beam.
  • a computer readable storage medium comprising executable instructions that, when executed by an information processing apparatus, cause the information processing apparatus to perform a communication method according to the present disclosure.
  • interference generated by an interference source cell to a terminal device of a serving cell can be effectively and quickly reduced.
  • 1 is a schematic diagram showing inter-cell interference in a wireless communication system
  • FIG. 2 is a signaling diagram illustrating inter-cell interference coordination, in accordance with one embodiment of the present disclosure
  • FIG. 3 is a configuration block diagram showing an electronic device for a first terminal device side of a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart illustrating a first terminal device side communication method for a wireless communication system, according to an embodiment of the present disclosure
  • 5A and 5B are schematic diagrams showing occupancy of a reference signal on a resource block, according to an embodiment of the present disclosure
  • FIG. 6 is a configuration block diagram showing an electronic device on a first control device side of a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart illustrating a communication method on a first control device side of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 8 is a configuration block diagram showing an electronic device on a second control device side for a wireless communication system according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart illustrating a communication method on a second control device side of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 10 is a configuration block diagram showing an electronic device on a second terminal device side of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart illustrating a second terminal device side communication method of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB according to an embodiment of the present disclosure
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device according to an embodiment of the present disclosure.
  • a base station such as an evolved Node B (eNB) has multiple antennas that support MIMO technology.
  • MIMO technology enables base stations to utilize spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
  • Spatial multiplexing can be used to simultaneously transmit different data streams on the same frequency. These data streams can be transmitted to a single UE to increase the data rate (which can be classified as SU-MIMO technology) or to multiple UEs to increase the total system capacity (which can be classified as MU-MIMO technology). This is achieved by spatially precoding each data stream (ie, applying scaling and phase adjustment of the amplitude) and then transmitting each spatially precoded stream on the downlink (DL) through multiple transmit antennas. of.
  • the spatially precoded data streams arrive at the UE(s) with different spatial signatures, which enables each of the UE(s) to recover one or more data streams destined for the UE.
  • Beamforming can be used to concentrate the transmitted energy in one or more directions when channel conditions are less favorable. This can be achieved by spatially precoding the data for transmission over multiple antennas. In order to achieve good coverage at the cell edge, single stream beamforming transmissions can be used in conjunction with transmit diversity.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • DFT discrete Fourier transform
  • the radio protocol architecture for the user plane and the control plane in LTE Long Term Evolution
  • the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions.
  • the L1 layer will be referred to herein as the physical layer.
  • Layer 2 (L2 layer) is above the physical layer and is responsible for the link between the UE and the eNB above the physical layer.
  • the L2 layer includes a Medium Access Control (MAC) sublayer, a Radio Link Control (RLC) sublayer, and a Packet Data Convergence Protocol (PDCP) sublayer, which terminate at the eNB on the network side.
  • the UE may also have a number of upper layers above the L2 layer, including a network layer (eg, an IP layer) terminated at the PDN gateway on the network side, and terminated at the other end of the connection (eg, a remote UE, a server, etc.) ) the application layer.
  • a network layer eg, an IP layer
  • the PDCP sublayer provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by ciphering data packets, and provides handover support for UEs between eNBs.
  • the RLC sublayer provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • the MAC sublayer provides multiplexing between logical channels and transport channels.
  • the MAC sublayer is also responsible for allocating various radio resources (e.g., resource blocks) in one cell among the UEs.
  • the MAC sublayer is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and the eNB is substantially the same for the physical layer and the L2 layer, with the difference that there is no header compression function for the control plane.
  • the control plane also includes a Radio Resource Control (RRC) sublayer in Layer 3 (L3 layer).
  • RRC Radio Resource Control
  • L3 layer Layer 3
  • the RRC sublayer is responsible for obtaining radio resources (ie, radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
  • L1 layer ie, physical layer
  • signal processing functions include encoding and interleaving to facilitate forward error correction (FEC) of the UE and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shifting. Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM) mapping to the signal constellation.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shifting. Keying
  • M-QAM M Quadrature Amplitude Modulation
  • Each stream is then mapped to an OFDM subcarrier, multiplexed with reference signals (eg, pilots) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to generate a carry
  • the physical channel of the time domain OFDM symbol stream is spatially precoded to produce a plurality of spatial streams.
  • Channel estimation can be used to determine coding and modulation schemes as well as for spatial processing.
  • the channel estimate can be derived from reference signals and/or channel condition feedback transmitted by the UE.
  • Each spatial stream is then provided to a different antenna via a separate transmitter. Each transmitter modulates the RF carrier with its own spatial stream for transmission.
  • each receiver receives signals through its respective respective antenna.
  • Each receiver recovers the information modulated onto the radio frequency (RF) carrier and provides this information to the various signal processing functions of the L1 layer.
  • Spatial processing is performed on the information at the L1 layer to recover any spatial streams destined for the UE. If there are multiple spatial streams destined for the UE, they can be combined into a single OFDM symbol stream.
  • the OFDM symbol stream is then converted from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency domain signal includes a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, as well as the reference signal are recovered and demodulated by determining the signal constellation points most likely to be transmitted by the eNB. These soft decisions can be based on channel estimates. These soft decisions are then decoded and deinterleaved to recover the data and control signals originally transmitted by the eNB on the physical channel. These data and control signals are then
  • the downlink reference signal is a predefined signal occupying a specific resource element (RE) in a downlink time-frequency resource block (RB).
  • RE resource element
  • RB downlink time-frequency resource block
  • Cell-specific reference signal Generally refers to a shared reference signal that can be used by all UEs in a cell.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CSI Channel state information
  • the channel state information is used to indicate the channel state of the channel between the base station and the UE.
  • the channel state information may include a rank indicator (RI), a precoding matrix indicator (PMI), and a channel quality indicator (CQI).
  • the RI is information about the channel rank, which indicates the maximum number of layers that can carry different information in the same time-frequency resource.
  • the PMI is used to indicate an index of a specific precoding matrix in a codebook including a plurality of precoding matrices shared between a base station and a UE.
  • the CQI indicates the channel quality and can be used to help determine the corresponding modulation scheme and coding rate.
  • a CRI CSI-RS Resource Indicator
  • the UE measures each CSI-RS resource and feeds back the recommended spatial beam in the form of a CRI.
  • the UE may indicate to the base station by the feedback CRI that the UE receives the best quality CSI-RS beam.
  • Multiple CSI processes may be configured for the UE such that the UE performs CSI measurement and reporting for each CSI process.
  • FD-MIMO full-dimension MIMO
  • FD-MIMO technology can greatly improve system capacity by using a two-dimensional antenna array with, for example, up to 64 antenna ports at the eNB.
  • the benefits of using multiple antenna ports at the eNB may include small inter-cell interference and high beamforming gain.
  • the use of a two-dimensional antenna array allows for UE-specific beamforming in both the horizontal and vertical directions.
  • the number of transmit antennas at an eNB can be increased by, for example, 8 to 10 times compared to a conventional 8-antenna MIMO system. These additional transmit antennas can result in greater beamforming gain and introduce less interference to neighboring cells.
  • UE-specific beamforming can be performed only in the horizontal direction.
  • the shared vertical downtilt can be applied to multiple UEs.
  • UE-specific beamforming can be performed in both the horizontal direction and the vertical direction.
  • the eNB requires MIMO channel state information (CSI) for the full channel.
  • CSI channel state information
  • conventional beamforming/precoding methods rely on the availability of CSI for the entire transmit dimension (eg, instantaneous/statistical knowledge of the channel from each eNB transmit antenna to one or more UE receive antennas).
  • Such CSI is either fed back by the UE PMI/RI or by utilizing channel reciprocity.
  • CSI is primarily obtained at the eNB by utilizing bidirectional channel reciprocity.
  • FDD Frequency Division Duplex
  • CSI is typically measured and quantized at the UE and then fed back to the eNB via a dedicated uplink channel.
  • the size of the codebook used for CSI quantization increases as the number of transmit antennas at the eNB increases.
  • the PMI/RI report of the UE may be based on pilot-assisted estimation of the DL full channel.
  • the pilot (or shared reference signal) overhead and DL channel estimation complexity may be proportional to the number of eNB antennas. Therefore, the complexity of PMI/RI selection may increase as the number of eNB antennas increases.
  • the UE based on the known mechanism of cooperative scheduling/cooperative beamforming, the UE needs to report not only the PMI related to the serving cell to the eNB, but also the codebook of the neighboring cell that may be interfered in advance and report the PMI of the interfering cell.
  • the wireless communication system 1000 includes base stations 1002, 1004 and terminal devices 1010, 1012, 1014, 1016, 1018.
  • the terminal devices 1010, 1012, and 1014 are located in the cell 1006, controlled by the base station 1002, and the terminal devices 1016 and 1018 are located in the cell 1008, controlled by the base station 1004, and the cell 1006 is adjacent to the cell 1008.
  • the base station described in the present specification may be implemented as any type of eNB or other type of base station or the like (refer to "application example regarding base station” described later), and the base station is sometimes referred to as a control device hereinafter; the present disclosure
  • the terminal device described in the specification can be implemented as a mobile terminal or an in-vehicle terminal or the like (see “Application example regarding the terminal device” described later), and the terminal device is sometimes referred to as a UE.
  • the base stations 1002, 1004 can simultaneously schedule a plurality of terminal devices on the same time-frequency resource block to implement space division multiplexing of the modulation symbol streams of the plurality of terminal devices on the same time-frequency resource.
  • terminal devices 1010, 1012, and 1014 in cell 1006 may be in the same time-frequency resource and in different spatial beams (as shown by three beams 1020, 1022, and 1024 transmitted by base station 1002 of FIG. 1).
  • the devices are co-scheduled, and the terminal devices 1016 and 1018 in the cell 1008 can be co-scheduled on the same time-frequency resource and on different spatial beams (as shown by the two beams 1026 and 1028 transmitted by the base station 1004 of FIG. 1).
  • the spatial beam 1024 of the cell 1006 can provide strong power coverage to the terminal device 1014 located at the edge of the cell 1006, but the terminal device 1014 is also strongly received by the spatial beam 1026 from the cell 1008. Interference, and thus inter-cell interference coordination is required to reduce the interference generated by the spatial beam of the cell 1008 to the terminal device 1014 located at the edge of the cell 1006.
  • the cell 1006 in which the terminal device 1014 is located is also referred to as a serving cell, and the base station 1002 is referred to as a serving base station.
  • the cell 1008 adjacent to the cell 1006 is referred to as an aggressor cell, and the base station 1004 is referred to as a base station 1004. Interference source base station.
  • the inter-cell interference coordination shown in FIG. 2 can be applied, for example, to the wireless communication system 1000 shown in FIG. 1.
  • the serving base station shown in FIG. 2 may correspond to, for example, the base station 1002 shown in FIG. 1
  • the UE of the serving cell shown in FIG. 2 may correspond, for example, to the terminal devices 1010, 1012, and 1014 shown in FIG. 1.
  • One or more of the interference source base stations shown in FIG. 2 may correspond to the base station 1004 shown in FIG. 1, for example, the UE of the interference source cell shown in FIG. 2 may correspond to the terminal device 1016 shown in FIG. 1, for example. And one or more of 1018.
  • the UE of the serving cell measures the reference signal transmitted by the interference source cell through the spatial beam to determine the spatial beam of the interference source cell to the UE of the serving cell.
  • Steps S2000 to S2004 shown in FIG. 2 show an exemplary implementation manner of measuring a reference signal of an interference source cell by a UE of a serving cell, which will be specifically described below.
  • step S2000 the interference source base station notifies the serving base station of the configuration information of the reference signal of the interference source cell.
  • the interference source base station may notify the serving base station of the configuration information of the reference signal transmitted by the spatial beam of the interference source cell through the communication link between the base stations.
  • the communication link between the base stations may be, for example, an X2 interface that is primarily used to carry handover and interference related information between cells.
  • the interfering source base station can notify the serving base station of the configuration information via a load indication message on the X2 interface.
  • the load indication process is used to transfer load and interference coordination information between base stations of intra-frequency neighboring cells and between base stations of inter-frequency neighboring cells.
  • the interference source base station notifies the serving base station of the configuration information in the case of receiving a request from the serving base station.
  • the reference signal of the interference source cell may be a dedicated reference signal.
  • the reference signal of the interference source cell may be implemented using a beamformed CSI-RS (eg, Class B CSI in the current LTE standard, hereinafter also referred to as BF-CSI-RS).
  • CSI-RS eg, Class B CSI in the current LTE standard, hereinafter also referred to as BF-CSI-RS.
  • the configuration information of the reference signal of the interference source cell may include information indicating a location of a resource element (RE) carrying the reference signal in a resource block (RB).
  • the configuration information of the reference signal of the interference source cell may include indicating each BF-CSI corresponding to each spatial beam of the interference source cell. Information about the location of the RS in the RB.
  • the configuration information of the reference signal of the interference source cell may include the BF-CSI-RS of the interference source cell by the UE of the interference source cell.
  • the CRI may indicate a spatial beam with a large power coverage in the interference source cell, and thus Indicates a spatial beam in the interferer cell that may cause significant interference to the serving cell.
  • the configuration information of the reference signal of the interference source cell may include the cell number of the interference source cell.
  • step S2002 the serving base station notifies the UE of the serving cell of the configuration information of the reference signal of the interference source cell.
  • the serving base station may configure multiple CSI-Process for the UE of the serving cell by using RRC signaling, where at least one CSI-Process
  • the UE is used to notify the UE of the serving cell of the configuration information of the BF-CSI-RS of the interference source cell, the format of the CSI measurement report, the resource occupied by the CSI measurement report, the trigger condition, and the like, and other CSI-Process can be used for the serving cell.
  • CSI report is used to notify the UE of the serving cell of the configuration information of the BF-CSI-RS of the interference source cell, the format of the CSI measurement report, the resource occupied by the CSI measurement report, the trigger condition, and the like, and other CSI-Process can be used for the serving cell.
  • the UE of the serving cell may report the CRI of the interference source cell to the serving base station in the specified subframe according to the CSI-Process pre-configured by the serving base station, and the serving base station may determine according to the sequence number of the subframe received by the serving base station. Knowing which CSI of the CSI-Process is, the cell number of the interference source cell corresponding to the CRI can be determined according to the configuration of the CSI-Process, that is, the UE reports the cell number of the interference source cell in an implicit manner.
  • a serving base station may provide an interference source to a UE of a serving cell by using a CSI-IM (CSI Interference Measurement) resource in RRC signaling of an RRC sublayer carried on a Physical Downlink Shared Channel (PDSCH).
  • CSI-IM CSI Interference Measurement
  • Configuration information of the BF-CSI-RS of the cell For example, the configuration of CSI-IM resources is as shown in Table 1 below.
  • the cell number of the interference source cell is carried by the "InterferenceCellId” variable
  • the CRI obtained by the UE of the interference source cell measuring the BF-CSI-RS of the interference source cell is carried by the "InterferenceCRI” variable.
  • Table 1 shows a case where the number of BF-CSI-RSs of the interference source cell is 8, and accordingly, the CRI may be represented by an integer between 0 and 7, or may be represented by a 3-bit bit string.
  • a similar design can be made when the number of BF-CSI-RSs of the interference source cell is other values.
  • Table 1 shows an example of a case where the configuration information of the interference source cell includes the cell number of the interference source cell and the CRI obtained by the UE of the interference source cell measuring the BF-CSI-RS of the interference source cell,
  • the configuration information of the reference signal of the interference source cell includes other information, similar configuration can also be performed by CSI-IM.
  • the UE of the serving cell may measure the reference signal of the interference source cell according to the obtained configuration information, to determine the interference of the spatial beam corresponding to the reference signal of the interference source cell to the UE of the serving cell.
  • the UE of the serving cell may measure the received signal power (eg, RSRP) or the signal to interference and noise ratio (SINR) of the reference signal of the interference source cell according to the obtained configuration information, and determine the interference source cell and its interference beam according to the measurement result.
  • RSRP received signal power
  • SINR signal to interference and noise ratio
  • steps S2000-S2004 are only one example of implementing the reference signal of the interference source cell measured by the UE of the serving cell, and the limitation is not limited by those skilled in the art. Measurement of the reference signal of the source cell.
  • step S2006 the UE of the serving cell feeds back information of the spatial beam indicating interference to the UE of the serving cell in the interference source cell to the serving base station.
  • the information indicating the interference generated spatial beam may include information indicating a spatial beam in the interference source cell that has the greatest interference to the UE of the serving cell.
  • the information indicating the interference generated spatial beam may include a CSI-RS resource indicator, ie, a CRI.
  • CRI is used to indicate a preferred BF-CSI-RS resource when the BF-CSI-RS of the current cell is measured by the UE (for example, the BF-of the interference source cell by the UE of the interference source cell described above) CRI obtained by CSI-RS measurement.
  • the BF-CSI-RS of the interference source cell is measured by the UE of the serving cell, and the corresponding CRI may be used to indicate the serving cell in the spatial beam corresponding to the BF-CSI-RS of the interference source cell.
  • the UE generates the most spatial beam of interference.
  • the information indicating the interfering spatial beam may also include the cell number of the interfering source cell.
  • the CRI of the spatial beam indicating the interference of the UE of the serving cell in the spatial beam of the interference source cell is measured by the UE of the serving cell to measure the BF-CSI-RS of the interference source cell, and is called the interference CRI.
  • the CRI indicating the BF-CSI-RS resource preferred in the local cell is obtained by being distinguished from the BF-CSI-RS measured by the UE to the local cell.
  • step S2008 the serving base station notifies the interference source base station of the information indicating the spatial beam that caused the interference.
  • the serving base station may notify the interference source base station of the information indicating the interference generated spatial beam through a communication link (for example, an X2 interface) between the base stations.
  • the serving base station may notify the interference source base station of the information indicating the interference generated spatial beam through a load indication message on the X2 interface.
  • the serving base station may provide the CSI report of the UE of the serving cell to the interference source base station in the X2 signaling, where the CSI report includes The interfering CRI measured by the UE of the serving cell.
  • the X2 signaling may be reported by the serving base station to the interfering source base station based on the request of the interfering source base station.
  • the request corresponds to a RESOURCE STATUS REQUEST message transmitted on the X2 interface
  • the CSI report containing the interfering CRI is encapsulated in a RESOURCE STATUS UPDATE message.
  • step S2010 the interference source base station notifies the UE of the interference source cell of the information indicating the spatial beam to be disabled.
  • the information indicating the spatial beam to be disabled includes information related to the interference CRI.
  • information indicating the spatial beam to be disabled will be described in detail with reference to Table 2 and Table 3.
  • step S2012 the UE of the interference source cell does not feed back information indicating the spatial beam to be disabled to the interference source base station. Therefore, the interference source base station no longer configures the spatial beam for the UE of the interference source cell, and the spatial beam is disabled, so that the interference of the spatial beam to the UE of the serving cell is suppressed.
  • the UE of the interference source cell does not feed back the interference CRI to the interference source base station, so that the interference source base station does not configure the BF-CSI-RS corresponding to the interference CRI for the UE of the interference source cell, thereby implementing the spatial beam disable.
  • steps S2008-S2012 described above are an exemplary implementation for performing interference coordination between the serving base station and the interference source base station, but the present disclosure is not limited to the above implementation manner, and inter-cell interference coordination according to the present disclosure will be further described below. Other implementations.
  • the inter-cell interference coordination according to an embodiment of the present disclosure shown in FIG. 2, due to the serving cell and interference
  • the configuration information of the reference signal of the interference source cell and the information of the spatial beam indicating the interference are shared between the source cells without sharing a large amount of control signals and/or data, so the communication link between the cells has a small delay
  • the signaling overhead is small, and the interference of the spatial beam between cells can be effectively and quickly suppressed.
  • the first terminal device may, for example, correspond to the UE of the serving cell shown in FIG. 2.
  • the first cell, the second cell, the first control device, the second control device, and the second terminal device which are described below, may respectively correspond to the serving cell, the interference source cell, the serving base station, and the serving base station shown in FIG. 2, respectively. Interference source base station and UE of the interference source cell.
  • FIG. 3 illustrates a configuration block diagram of an electronic device 3000 for a first terminal device side of a wireless communication system, according to an embodiment of the present disclosure.
  • electronic device 3000 can include, for example, memory 3010 and processing circuitry 3020.
  • the memory 3010 of the electronic device 3000 can store information generated by the processing circuit 3020 as well as programs and data for operation of the electronic device 3000.
  • the memory 3010 can be a volatile memory and/or a non-volatile memory.
  • memory 3010 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • Processing circuitry 3020 of electronic device 3000 provides various functions of electronic device 3000.
  • the processing circuit 3020 of the electronic device 3000 may include a configuration information acquiring unit 3022, a reference signal measuring unit 3024, and an indication interference information feedback unit 3026, which are respectively configured to perform the use shown in FIG. 4 described later. Steps S4000, S4002, and S4004 in the communication method of the electronic device on the first terminal device side of the wireless communication system.
  • Processing circuitry 3020 may refer to various implementations of digital circuitry, analog circuitry, or mixed signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • electronic device 3000 can be implemented at the chip level, or can be implemented at the device level by including other external components.
  • the electronic device 3000 can be implemented as a first terminal device as a complete machine, and can also include one or more antennas.
  • each of the above units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • FIG. 4 illustrates a flowchart of a first terminal device side communication method for a wireless communication system, according to an embodiment of the present disclosure. This communication method can be used, for example, for the electronic device 3000 as shown in FIG.
  • step S4000 the first terminal device acquires configuration information of a reference signal of the second cell from the first control device of the first cell, where the first cell is adjacent to the second cell, and the first terminal device Located in the first cell.
  • the reference signal of the second cell and the configuration information of the reference signal of the second cell may respectively correspond to the reference signal of the interference source cell and the configuration information of the reference signal of the interference source cell described with reference to FIG. 2, This will not be repeated here.
  • step S4002 the first terminal device measures the reference signal of the second cell according to the configuration information to determine interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device.
  • Step S4002 may correspond, for example, to step S2004 in FIG.
  • step S4004 the first terminal device feeds back information of the spatial beam indicating interference to the first terminal device in the second cell to the first control device, for performing interference coordination between the first cell and the second cell.
  • Step S4004 may correspond, for example, to step S2006 in FIG.
  • the reference signal of the second cell may be a BF-CSI-RS.
  • the reference signal of the second cell may be a non-zero power BF-CSI-RS, which is described in detail below with reference to FIGS. 5A and 5B.
  • FIG. 5A and 5B are diagrams showing the occupancy of a reference signal on a resource block, in accordance with one embodiment of the present disclosure. Specifically, FIG. 5A shows the occupancy of the reference signal of the first cell on the resource block, and FIG. 5B shows the occupancy of the reference signal of the second cell on the resource block.
  • resource elements C0 to C3 correspond to CRS ports 0 to 3, respectively
  • resource elements D7 to D14 correspond to DMRS ports 7 to 14, respectively
  • resource elements shown by horizontal hatching correspond to a zero power BF-CSI-RS (ZP BF-CSI-RS) port
  • ZP BF-CSI-RS zero power BF-CSI-RS
  • NZP BF-CSI-RS non-zero power BF-CSI-RS
  • zero-power BF-CSI-RS and non-zero-power BF-CSI-RS are respectively configured at positions of the same resource element, where The reference signal of the second cell measured by the first terminal device is a non-zero power BF-CSI-RS.
  • a zero-power BF-CSI-RS is configured at a position of a resource element corresponding to the non-zero-power BF-CSI-RS of the second cell, so that the first terminal device can
  • the interference generated by the spatial beam of the second cell is measured without being affected by the reference signal of the own cell (ie, the first cell).
  • information indicating the interference generated spatial beam may be fed back to the first control device through an uplink control channel or an uplink data channel.
  • the information indicating the spatial beam generating the interference may be fed back to the first control device through a Physical Uplink Control Channel (PUCCH).
  • the information indicating the spatial beam that caused the interference may be fed back to the first control device through the Physical Uplink Shared Channel (PUSCH) as part of the uplink data.
  • PUSCH Physical Uplink Shared Channel
  • the reference signal of the second cell is measured in a case where information indicating that interference coordination between the first cell and the second cell is to be performed is acquired from the first control device.
  • the first control device may, for example, correspond to the serving base station shown in FIG. 2.
  • the first cell, the second cell, the first terminal device, the second terminal device, and the second control device which are described below, may correspond to, for example, the serving cell, the interference source cell, and the serving cell shown in FIG. 2, respectively.
  • UE, UE of the interference source cell, and the interference source base station may correspond to, for example, the serving cell, the interference source cell, and the serving cell shown in FIG. 2, respectively.
  • FIG. 6 illustrates a configuration block diagram of an electronic device 6000 for a first control device side of a wireless communication system, according to an embodiment of the present disclosure.
  • electronic device 6000 can include, for example, memory 6010 and processing circuitry 6020.
  • the memory 6010 of the electronic device 6000 can store information generated by the processing circuit 6020 and programs and data operated by the electronic device 6000.
  • the memory 6010 can be a volatile memory and/or a non-volatile memory.
  • memory 6010 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • Processing circuitry 6020 of electronic device 6000 provides various functions of electronic device 6000.
  • the processing circuit 6020 of the electronic device 6000 may include a configuration information acquiring unit 6022, an indication interference information acquiring unit 6024, and an interference coordination unit 6026, respectively configured to perform the steps shown in FIG. 7 described later. Steps S7000, S7002, and S7004 in the communication method of the electronic device on the first control device side of the wireless communication system.
  • the processing circuit 6020 may further include an interference coordination notification unit 6028 configured to execute the communication method of the electronic device on the first control device side for the wireless communication system shown in FIG. 7 to be described later. Step S7006.
  • Processing circuitry 6020 may refer to various implementations of digital circuitry, analog circuitry, or mixed signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • electronic device 6000 can be implemented at the chip level, or can be implemented at the device level by including other external components.
  • the electronic device 6000 can be implemented as a first control device as a complete machine, and can also include one or more antennas.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • FIG. 7 illustrates a flowchart of a first control device side communication method for a wireless communication system, according to an embodiment of the present disclosure. This communication method can be used, for example, for the electronic device 6000 as shown in FIG. 6.
  • step S7000 the first control device acquires configuration information of the reference signal of the second cell from the second control device of the second cell adjacent to the first cell controlled by the first control device, to And determining, by the first terminal device located in the first cell, interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device according to the configuration information.
  • the first control device may acquire configuration information of the reference signal of the second cell from the second control device through a communication link (for example, an X2 interface) between the base stations.
  • a communication link for example, an X2 interface
  • the first control device can obtain the configuration information from the second control device via a load indication message on the X2 interface.
  • the reference signal of the second cell and the configuration information of the reference signal of the second cell may respectively correspond to the reference signal of the interference source cell and the configuration information of the reference signal of the interference source cell described with reference to FIG. 2, This will not be repeated here.
  • the first control device may configure a plurality of CSI-Process for the first terminal device, where at least A CSI-Process is used to notify the first terminal device of the configuration information of the BF-CSI-RS of the interference source cell, the format of the CSI measurement report, the resources occupied by the CSI measurement report, and the trigger condition.
  • the first control device may provide configuration information of the BF-CSI-RS of the interference source cell to the first terminal device by using the CSI-IM resource in the RRC signaling.
  • step S7002 the first control device acquires, from the first terminal device, information indicating a spatial beam that causes interference to the first terminal device in the second cell.
  • the information indicating the interference generated spatial beam may include information indicating a spatial beam having the greatest interference to the first terminal device in the second cell.
  • the information indicating the interference generated spatial beam may include the interference CRI and the cell number of the second cell.
  • step S7004 the first control device performs interference coordination between the first cell and the second cell based on the acquired information indicating the spatial beam that generates the interference.
  • performing interference coordination between the first cell and the second cell may include the first control device notifying the second control device of information indicating the interference generated spatial beam for the second control The device disables the spatial beam.
  • This processing may correspond, for example, to step S2008 in FIG.
  • performing interference coordination between the first cell and the second cell may include the first control device performing coordinated scheduling with the second control device such that the first control device and the second control device are absent Controlling signals and/or data transmission to the first terminal device on the same time-frequency resource, or causing the first control device and the second control device to control the first terminal device on the same time-frequency resource and different spatial beams Signal and / or data transmission.
  • the first control device notifies the second control device of information indicating that coordinated scheduling is to be performed to initiate coordinated scheduling of the first control device and the second control device.
  • the information indicating that the collaborative scheduling is to be performed can be delivered, for example, via the X2 interface.
  • the information indicating that the cooperative scheduling is to be performed may also be implemented by information indicating a spatial beam that the reference signal of the second cell generates interference to the first terminal device.
  • techniques such as cooperative scheduling/cooperative beamforming in CoMP technology may be used to perform coordinated scheduling of the first control device and the second control device.
  • interference coordination between the first cell and the second cell is performed if the service priority of the first control device is higher than the service priority of the second control device. In addition, in a case where the service priority of the first control device is lower than the service priority of the second control device, interference coordination between the first cell and the second cell is not performed.
  • the service priority of the control device described herein refers to the priority of the service provided by the control device to the terminal device.
  • the service priority of the first control device is SP 1 and the service priority of the second control device is SP 2 .
  • the priority given by the first control device to the first terminal device is higher than the priority provided by the second control device to the second terminal device, and then in the second cell pair
  • interference coordination between the first cell and the second cell is performed, so that interference received by the first terminal device controlled by the first control device is reduced. For example, as shown in FIG.
  • the spatial beam 1026 is disabled by performing interference coordination between the cell 1006 and the cell 1008, at which time the neighboring cell received by the terminal device 1014 in the cell 1006
  • the interference of the spatial beam 1026 of 1008 is reduced.
  • the power coverage of the spatial beam of the terminal device 1016 of the cell 1008 is also reduced.
  • the priority given by the second control device to the second terminal device is higher than the priority provided by the first control device to the first terminal device, and the second control device can ignore Information for performing interference coordination from the first control device, so that interference coordination between the first cell and the second cell is not performed to preferentially ensure the service provided by the second control device to the second terminal device.
  • the spatial beam 1026 is not disabled and may continue to be second by the spatial beam 1026.
  • the terminal device 1016 of the cell 1008 provides a service, thereby preferentially securing the service provided by the second control device to the second terminal device.
  • the service priority of the first control device and the second control device may be preset. In one embodiment, the information of the service priority may be communicated between the second control device and the second control device by controlling a communication link (X2 interface) between the devices.
  • Determining whether to perform interference coordination between the first cell and the second cell by comparing service priorities of the first control device and the second control device, and preferentially ensuring that the control device with higher service priority provides services to the terminal device .
  • the first control device acquires a plurality of pieces of information indicating the interference generated spatial beams from a predetermined number or more of the plurality of first terminal devices, performing the first cell and the second cell Interference coordination between.
  • the first control device acquires K interference CRIs respectively (where K is above a predetermined number M) from the K first terminal devices, indicating that the spatial beam in the second cell is different from the first terminal in the first cell.
  • the device causes strong interference.
  • interference coordination between the first cell and the second cell is performed to reduce or eliminate interference of the spatial beam in the second cell to the plurality of first terminal devices.
  • the predetermined number M can be preset in the first control device. In another embodiment, the predetermined number M may vary depending on channel conditions.
  • the communication method on the first control device side of the wireless communication system may further include step S7006.
  • step S7006 the first control device notifies the first terminal device of information indicating that interference coordination between the first cell and the second cell is to be performed.
  • the first control device may notify the first terminal device whether to perform interference coordination through RRC signaling.
  • the second control device may, for example, correspond to the interference source base station shown in FIG. 2.
  • the first cell, the second cell, the first terminal device, the second terminal device, and the first control device which are described below, may correspond to, for example, the serving cell, the interference source cell, and the serving cell shown in FIG. 2, respectively.
  • UE, UE of the interference source cell, and serving base station may correspond to, for example, the serving cell, the interference source cell, and the serving cell shown in FIG. 2, respectively.
  • FIG. 8 illustrates a configuration block diagram of an electronic device 8000 for a second control device side of a wireless communication system, according to an embodiment of the present disclosure.
  • electronic device 8000 can include, for example, memory 8010 and processing circuitry 8020.
  • the memory 8010 of the electronic device 8000 can store information generated by the processing circuit 8020 and programs and data operated by the electronic device 8000.
  • the memory 8010 can be a volatile memory and/or a non-volatile memory.
  • memory 8010 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • Processing circuitry 8020 of electronic device 8000 provides various functions of electronic device 8000.
  • the processing circuit 8020 of the electronic device 8000 may include a configuration information notification unit 8022, an indication interference information acquisition unit 8024, and an interference coordination unit 8026, respectively configured to perform the steps shown in FIG. 9 described later. Steps S9000, S9002, and S9004 in the communication method of the electronic device on the second control device side of the wireless communication system.
  • Processing circuitry 8020 may refer to various implementations of digital circuitry, analog circuitry, or mixed signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • electronic device 8000 can be implemented at the chip level, or can be implemented at the device level by including other external components.
  • the electronic device 8000 can be implemented as a second control device as a complete machine, and can also include one or more antennas.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • FIG. 9 illustrates a flowchart of a second control device side communication method for a wireless communication system, according to an embodiment of the present disclosure.
  • This communication method can be used, for example, for the electronic device 8000 as shown in FIG.
  • step S9000 the second control device notifies the first control device of the first cell adjacent to the second cell controlled by the second control device of the configuration information of the reference signal of the second cell, to And determining, by the first terminal device located in the first cell, interference of the spatial beam corresponding to the reference signal of the second cell to the first terminal device according to the configuration information.
  • Step S9000 may correspond, for example, to step S2000 in FIG.
  • the reference signal of the second cell and the configuration information of the reference signal of the second cell may respectively correspond to the reference signal of the interference source cell and the configuration information of the reference signal of the interference source cell described with reference to FIG. 2, This will not be repeated here.
  • step S9002 the second control device acquires, from the first control device, information indicating a spatial beam in the second cell that causes interference to the first terminal device.
  • the exchange of information between the first control device and the second control device in steps S9000 and S9002 can be achieved by a communication link (e.g., an X2 interface) between the base stations.
  • a communication link e.g., an X2 interface
  • step S9004 the second control device performs interference coordination between the first cell and the second cell based on the acquired information indicating the spatial beam that generates the interference.
  • the information indicating the interference generated spatial beam may include the interference CRI and the cell number of the second cell.
  • performing interference coordination between the first cell and the second cell may include the second control device disabling at least one of the interference-generated spatial beams.
  • the second control device notifies one or more second terminal devices in the second cell of information indicating the spatial beam to be disabled, such that the one or more second terminal devices do not go to the second
  • the control device feeds back information indicating the spatial beam.
  • the second control device notifies the second terminal device in the second cell that the priority is lower than the predetermined threshold, the information indicating the spatial beam to be disabled, so that the second terminal whose priority is lower than the predetermined threshold
  • the device does not feed back information to the second control device indicating the spatial beam to be disabled, thereby disabling the spatial beam.
  • the second control device does not notify the second terminal device whose priority is higher than the predetermined threshold, the information indicating the spatial beam to be disabled, and the second terminal devices with high priority may continue to feed back the second beam to the second control device.
  • the information enables priority to ensure good power coverage of these second terminal devices.
  • the base station 1004 when the priority of the terminal device 1016 is below a predetermined threshold, the base station 1004 notifies the terminal device 1016 of information indicating the spatial beam 1026 to be disabled to disable the spatial beam 1026, thereby reducing inter-cell interference. .
  • the base station 1004 does not notify the terminal device 1016 of the information indicating the spatial beam 1026 to be disabled, and the terminal device 1016 performs measurement and feedback of the normal reference signal, so that the spatial beam 1026 can be made. Without being disabled, it is possible to continue to provide good power coverage to the terminal device 1016.
  • the predetermined threshold may be configured in advance by the second terminal device for the second terminal device.
  • the information indicating the spatial beam to be disabled may be represented by a bit string whose number of bits coincides with the number of spatial beams of the second cell.
  • the first bit string of N bits may be used to indicate the information indicating the spatial beam to be disabled, and the interference CRI indicating the spatial beam of the second cell may be used, for example.
  • the first bit string "00000010” indicates that there is only one interference CRI "001"
  • the first bit string "001001100” indicates that there are three interference CRIs "010", "011”, and "101”.
  • the representation of the first bit string can support the superposition of multiple interfering CRI representations.
  • information indicating each spatial beam to be disabled may be represented by a second bit string having a bit number of bits of log 2 N bits.
  • the second control device includes the second information by indicating high-level dedicated signaling (such as RRC signaling of the RRC sublayer) carried on the physical downlink shared channel (PDSCH), indicating the spatial beam to be disabled.
  • the terminal device performs reconfiguration to notify the second terminal device of the information indicating the spatial beam.
  • This configuration is called a semi-static configuration.
  • the semi-static configuration mode is configured on the PDSCH. Therefore, the PDSCH rich resources can be used to carry more information, but the layer-by-layer decoding is required, and the configuration period is long.
  • the semi-static configuration manner described above can be implemented by designing the antenna in the RRC signaling as shown in Table 4 below.
  • the information indicating the spatial beam to be disabled (for example, information indicating interference CRI) is carried by the "CRISubsetRestriction" variable, and N1TxAntenna, N2TxAntenna, N4TxAntenna, N8TxAntenna, N12TxAntenna, N16TxAntenna, N20TxAntenna, N24TxAntenna, N28TxAntenna, N32TxAntenna respectively represent antennas
  • the number of ports is 1, 2, 4, 8, 12, 16, 20, 24, 28, 32.
  • the cell may be virtual sectorized by CRI, and one CRI may correspond to one virtual sector in the cell, where there may be 1, 2, 4, 8, 12, 16, 20, 24, 28 or 32 antenna ports.
  • N 8-bit bit string
  • the first bit string or a 3-bit bit string (for example, corresponding to the second bit string shown in Table 3) represents "CRISubsetRestriction".
  • the number of antenna ports in Table 4 is merely illustrative and not limiting, and a similar design may be made when the number of antenna ports is other values depending on the actual situation.
  • a similar design can be made to the "CRISubsetRestriction" variable when the number of spatial beams N is other values.
  • the second control device re-repairs the second terminal device by including information indicating a spatial beam to be disabled in information (for example, downlink control information (DCI)) carried on the physical downlink control channel (PDCCH) And configured to notify the second terminal device of information indicating the spatial beam.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the dynamic configuration mode is configured through the PDCCH, so the configuration period is short and time-sensitive, but the resources that can be utilized are limited compared with the semi-static configuration.
  • resources may also be added to the existing DCI, so that information indicating the spatial beam to be disabled can be included in the DCI and notified to the second terminal device.
  • the improved dynamic configuration mode can be implemented in combination with the semi-static configuration and the dynamic configuration manner described above.
  • the second control device notifies the second terminal device of the information indicating the spatial beam to be disabled by the higher layer dedicated signaling carried on the PDSCH (such as RRC signaling of the RRC sublayer), and the control carried over the PDCCH Information, such as Downlink Control Information (DCI), informs the second terminal device whether to disable the spatial beam.
  • the higher layer dedicated signaling carried on the PDSCH such as RRC signaling of the RRC sublayer
  • DCI Downlink Control Information
  • the second control device transmits RRC signaling including information indicating the spatial beam to be disabled at time T1.
  • the RRC signaling is rich in resources and can be used to carry information indicating the spatial beam to be disabled.
  • the second terminal device does not feed back to the second control device the spatial beam indicating that the space beam is to be disabled according to the previously received RRC signaling including the information indicating the spatial beam to be disabled.
  • the time interval between T2 and T3 can be very short, thus achieving configuration flexibility.
  • the rich resources on the PDSCH are used to carry the information of the spatial beam indicating that the resource is to be disabled, and the short configuration period of the control information on the PDCCH is used to carry less occupied resources.
  • the information indicating whether to disable the spatial beam can ensure the flexibility of the configuration when the requirements of the configuration resources are met.
  • the spatial beam can be disabled and deactivated by MAC layer signaling (MAC Control Element) in conjunction with a disable timer.
  • MAC Control Element MAC Control Element
  • the disabling and de-activating of each spatial beam may be controlled with a third bit string of bit numbers consistent with the number of spatial beams of the second cell and a disable timer corresponding to each spatial beam.
  • a third bit string of 8 bits is set in the MAC control element, wherein each bit indicates whether to disable a corresponding one of the eight spatial beams.
  • the 3rd, 6th, and 7th bits in the third bit string "001001100" being "1" means that the 3rd, 6th, and 7th spatial beams are disabled, and the remaining bits being "0" means that the remaining spatial beams are not disabled.
  • the second control device configures, for the second terminal device, a disable timer corresponding to each of the 8 spatial beams of the second cell by, for example, RRC signaling.
  • the second terminal device corresponds to the 3rd, 6th, and 7th spatial beams.
  • the timer is disabled to start timing.
  • the timing of the disable timer is reached, the 3rd, 6th, and 7th spatial beams are deactivated. At this time, the second terminal device resumes normal spatial beam feedback without performing disabling processing.
  • the disable timer started internally by the second control device can play a role in balancing inter-cell interference. In addition, it is automatically deactivated during the timing of the arrival of the disable timer, so that no special signaling is required to inform the deactivation.
  • performing interference coordination between the first cell and the second cell may include the second control device performing coordinated scheduling with the first control device such that the first control device and the second control device are not in the same Performing control signals and/or data transmission on the first terminal device on the time-frequency resource, or causing the first control device and the second control device to perform control signals on the first terminal device on the same time-frequency resource and on different spatial beams. And / or data transmission.
  • the second control device acquires information indicating that collaborative scheduling is to be performed from the first device to initiate coordinated scheduling with the first control device.
  • the information indicating that the collaborative scheduling is to be performed can be delivered, for example, via the X2 interface.
  • the information indicating that the cooperative scheduling is to be performed may also be implemented by information indicating a spatial beam that the reference signal of the second cell generates interference to the first terminal device.
  • techniques such as cooperative scheduling/cooperative beamforming in CoMP technology may be used to perform coordinated scheduling of the first control device and the second control device.
  • interference coordination between the first cell and the second cell is performed if the service priority of the first control device is higher than the service priority of the second control device. In addition, in a case where the service priority of the first control device is lower than the service priority of the second control device, interference coordination between the first cell and the second cell is not performed.
  • the communication method on the first control device side for the wireless communication system according to the embodiment of the present disclosure has been described above to describe whether or not to perform by comparing the service priority of the first control device with the service priority of the second control device Specific examples of interference coordination are not described here.
  • the second control device acquires a predetermined number or more of information indicating the interference-inducing reference signal from the first control device, performing between the first cell and the second cell Interference coordination.
  • the second control device acquires K interference CRIs from the first control device (where K is above a predetermined number M), it indicates that the spatial beams in the second cell are caused by multiple first terminal devices in the first cell. A strong interference is performed. At this time, interference coordination between the first cell and the second cell is performed to reduce or eliminate interference of the spatial beam in the second cell to the plurality of first terminal devices.
  • the predetermined number M can be preset in the first control device. In another embodiment, the predetermined number M may vary depending on channel conditions.
  • the second terminal device may, for example, correspond to the UE of the interference source cell shown in FIG. 2.
  • the first cell, the second cell, the first control device, the second control device, and the first terminal device which are described below, may respectively correspond to the serving cell, the interference source cell, the serving base station, and the serving base station shown in FIG. 2, respectively.
  • the interference source base station and the UE of the serving cell may correspond to the serving cell, the interference source cell, the serving base station, and the serving base station shown in FIG. 2, respectively.
  • FIG. 10 illustrates a configuration block diagram of an electronic device 10000 for a second terminal device side of a wireless communication system, according to an embodiment of the present disclosure.
  • electronic device 10000 can include, for example, memory 10010 and processing circuitry 10020.
  • the memory 10010 of the electronic device 10000 can store information generated by the processing circuit 10020 and programs and data operated by the electronic device 10000.
  • the memory 10010 can be a volatile memory and/or a non-volatile memory.
  • memory 10010 can include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the processing circuit 10020 of the electronic device 10000 provides various functions of the electronic device 10000.
  • the processing circuit 10020 of the electronic device 10000 may include an instruction disable information acquisition unit 10022 and an information feedback unit 10024, respectively configured to perform the second for the wireless communication system shown in FIG. 11 described later. Steps S11000 and S11002 in the communication method of the electronic device on the terminal device side.
  • Processing circuit 10020 may refer to various implementations of digital circuitry, analog circuitry, or mixed signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • electronic device 10000 can be implemented at the chip level, or can be implemented at the device level by including other external components.
  • the electronic device 10000 can be implemented as a second terminal device as a complete device, and can also include one or more antennas.
  • each of the above units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • FIG. 11 illustrates a flowchart of a second terminal device side communication method for a wireless communication system, according to an embodiment of the present disclosure. This communication method can be used, for example, for the electronic device 10000 as shown in FIG.
  • step S11000 the second terminal device acquires, from the second control device of the second cell, information for disabling the spatial beam in the second cell that causes interference to the first terminal device located in the first cell, where The first cell is adjacent to the second cell, and the second terminal device is located in the second cell.
  • the information indicating that the spatial beam that interferes with the first terminal device located in the first cell in the second cell is disabled may be, for example, the first bit string or the second bit shown in Table 2 or Table 3. String to achieve.
  • step S11002 the second terminal device does not feed back information of the spatial beam to be disabled to the second control device, so that the second control device disables the spatial beam.
  • Step S11002 may correspond, for example, to step S2012 in FIG.
  • the second terminal device measures the reference signal corresponding to the spatial beam other than the spatial beam to be disabled, and feeds back the measurement result to the second control device, so that the information indicating the spatial beam to be disabled is not It is fed back to the second control device.
  • the second terminal device measures the reference signal corresponding to all the spatial beams, and when the measured spatial beam intensity to be disabled is the strongest, reports the information indicating the spatial beam with the strongest intensity, without reporting the indication strength.
  • the strongest information of the spatial beam to be disabled such that information indicating the spatial beam to be disabled is not fed back to the second control device.
  • the information indicating the spatial beam to be disabled is not fed back to the second control device.
  • the second terminal device may ignore the acquired information indicating that the spatial beam is disabled, and perform measurement and feedback of the normal reference signal, thereby not performing the disabling process.
  • the second terminal device may also reject the signaling configuration performed by the second control device for disabling the spatial beam (for example, The semi-static configuration, dynamic configuration, and improved dynamic configuration described in this document are not disabled.
  • the predetermined threshold may be configured in advance by the second terminal device for the second terminal device.
  • the above embodiment mainly performs spatial precoding of a baseband for a CSI reference signal based on the architecture of the current LTE-A communication system and describes it by multiple antenna transmissions.
  • the beamforming method of radio frequency can be used instead of the above-mentioned baseband spatial precoding, so that the emission energy of the reference signal used for measuring spatial beam interference in the present disclosure is concentrated in one or In a plurality of directions, the receiving device performs measurement, reporting, and sharing and coordination between the control devices based on the above embodiment.
  • the signaling between the base stations used in the foregoing embodiments is implemented as Xn signaling, and the base station is implemented as a next-generation communication node B such as gNodeB deployed with a large-scale antenna.
  • the reference signal for measuring spatial beam interference is still implemented as a CSI-RS or other specially designed reference signal.
  • the gNodeB transmits a radio frequency beamformed reference signal for reception in different directions by adjusting the phase and amplitude of phase shifters of the plurality of antennas connected to the at least one radio frequency link (RF Chain). End device measurement.
  • RF Chain radio frequency link
  • the technology of the present disclosure can be applied to various products.
  • the base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB, or a next generation communication node B such as a gNodeB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the terminal device may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
  • the terminal device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 12 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 12 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 12 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 13 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • one or more components included in the processing circuit 6020 described with reference to FIG. 6 and the processing circuit 8020 described with reference to FIG. 8 may be implemented in the wireless communication interface 912. .
  • at least a portion of these components can also be implemented by controller 821 and controller 851.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 14 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 14 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 14 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • one or more components included in the processing circuit 4020 described with reference to FIG. 4 and the processing circuit 10020 described with reference to FIG. 10 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may also be implemented by processor 901 or auxiliary controller 919.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 15 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 15 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 15 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • one or more components included in the processing circuit 4020 described with reference to FIG. 4 and the processing circuit 10020 described with reference to FIG. 10 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may also be implemented by processor 921.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present disclosure is embodied as a system, apparatus, method, or computer readable medium as a computer program product. Accordingly, the present disclosure may be embodied in various forms, such as a complete hardware embodiment, a complete software embodiment (including firmware, resident software, microprogram code, etc.), or as an implementation of software and hardware, The following will be referred to as "circuit,” “module,” or “system.” Furthermore, the present disclosure may also be embodied in any tangible media form as a computer program product having computer usable program code stored thereon.
  • each block of the flowchart or block diagram can represent a module, a segment, or a portion of program code that comprises one or more executable instructions to implement the specified logical function.
  • the functions described in the blocks may not be performed in the order illustrated.
  • the blocks in which the two figures are connected may in fact be executed simultaneously, or in some cases, in the reverse order of the icons, depending on the function involved.
  • blocks of each block diagram and/or flowchart, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a system based on a dedicated hardware, or by a combination of dedicated hardware and computer instructions. To perform specific functions or operations.

Abstract

本公开涉及电子设备和通信方法。用于无线通信系统的第一终端设备侧的电子设备包括:存储器,用于存储计算机指令;以及处理电路,被配置为执行所存储的计算机指令以用于:从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区;根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;以及向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。

Description

电子设备和通信方法
相关申请的交叉引用
本申请要求于2017年1月18日递交的中国专利申请第201710033252.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及电子设备和通信方法,更具体地,本公开涉及用于小区间干扰协调的电子设备和通信方法。
背景技术
在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)的不断演进过程中,可以利用多输入多输出(Multi-Input Multi-Output,MIMO)技术来提升系统容量,以满足不断增长的业务量需求。
在MIMO系统中,基站(作为一种控制设备与通信节点)具有支持MIMO技术的多个天线。每个基站天线可以形成具有较窄的指向性的空间波束,以对小区中特定的用户设备(UE)(也可称为终端设备)提供较强的功率覆盖来对抗高频段较大的路径损耗。然而,该具有较窄的指向性的空间波束也可能对其它小区的UE产生较强的干扰。因此,需要针对现有的MIMO系统进行小区间的干扰协调。
可以利用CoMP(Coordinated Multiple Point—协同多点)技术来进行小区间的干扰协调。例如,利用CoMP技术中的协同调度/协同波束赋形(Coordinated Scheduling/Coordinated Beamforming,CS/CB),CoMP集合内的多个基站可以协同地确定用户调度/波束赋形,从而实现小区间的干扰协调。
然而,协同调度/协同波束赋形尤其是协同波束赋形需要在CoMP集合内的小区之间共享大量的控制信号和/或数据,例如干扰源小区与被干扰小区之间需要交互干扰源小区到被干扰用户设备的信道信息,随着天线数量的增多,这可能会带来较大的信令开销或时延,从而影响了CoMP技术对于小区间干扰的解决能力。因此,需要更高效更快速地进行小区间的干扰协调的机制。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用于无线通信系统的第一终端设备侧的电子设备。该电子设备可以包括:存储器,用于存储计算机指令;以及处理电路,被配置为执行所存储的计算机指令以用于:从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区;根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;以及向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。
根据本公开的另一方面,提供了一种用于无线通信系统的第一控制设备侧的电子设备。该电子设备可以包括:存储器,用于存储计算机指令;以及处理电路,被配置为执行所存储的计算机指令以用于:从与由第一控制设备控制的第一小区相邻的第二小区的第二控制设备获取第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;从第一终端设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的又一方面,提供了一种用于无线通信系统的第二控制设备侧的电子设备。该电子设备可以包括:存储器,用于存储计算机指令;以及处理电路,被配置为执行所存储的计算机指令以用于:向与由第二控制设备控制的第二小区相邻的第一小区的第一控制设备通知第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;从第一控制设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的又一方面,提供了一种用于无线通信系统的第二终端设备侧的电子设备。该电子设备可以包括:存储器,用于存储计算机指令;以及处理电路,被配置为执行所存储的计算机指令以用于:从第二小区的第二控制设备获取指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息,其中,第一小区与第二小区相邻,第二终端设备位于第二小区;以及不向第二控制设备反馈指示要禁用的空间波束的信息,以使得第二控制设备禁用该空间波束。
根据本公开的又一方面,提供了一种用于无线通信系统的通信方法。该方法可以包括:第一终端设备从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区;第一终端设备根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;以及第一终端设备向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。
根据本公开的又一方面,提供了一种用于无线通信系统的通信方法。该方法可以包括:第一控制设备从与由第一控制设备控制的第一小区相邻的第二小区的第二控制设备获取第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;第一控制设备从第一终端设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及第一控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的又一方面,提供了一种用于无线通信系统的通信方法。该方法可以包括:第二控制设备向与由第二控制设备控制的第二小区相邻的第一小区的第一控制设备通知第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;第二控制设备从第一控制设备获取指示所述产生干扰的空间波束的信息;以及第二控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的又一方面,提供了一种用于无线通信系统的通信方法。该方法可以包括:第二终端设备从第二小区的第二控制设备获取指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息,其中,第一小区与第二小区相邻,第二终端设备位于第二小区;以及第二终端设备不向第二控制设备反馈指示要禁用的空间波束的信息,以使得第二控制设备禁用该空间波束。
根据本公开的又一方面,提供了一种计算机可读存储介质,包括可执行指令,当所述可执行指令由信息处理装置执行时,使所述信息处理装置执行根据本公开的通信方法。
根据本公开的一个或多个实施例,可以有效地快速地减少干扰源小区对服务小区(被干扰小区)的终端设备产生的干扰。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本 公开的原理。
参照附图,根据下面的详细描述,可以更清楚地理解本公开,其中:
图1是示出无线通信系统中的小区间干扰的示意图;
图2是示出根据本公开的一个实施例的小区间干扰协调的信令图;
图3是示出根据本公开的实施例的用于无线通信系统的第一终端设备侧的电子设备的配置框图;
图4是示出根据本公开的实施例的用于无线通信系统的第一终端设备侧的通信方法的流程图;
图5A和图5B是示出根据本公开的一个实施例的参考信号在资源块上的占用情况的示意图;
图6是示出根据本公开的实施例的用于无线通信系统的第一控制设备侧的电子设备的配置框图;
图7是示出根据本公开的实施例的无线通信系统的第一控制设备侧的通信方法的流程图;
图8是示出根据本公开的实施例的用于无线通信系统的第二控制设备侧的电子设备的配置框图;
图9是示出根据本公开的实施例的无线通信系统的第二控制设备侧的通信方法的流程图;
图10是示出根据本公开的实施例的用于无线通信系统的第二终端设备侧的电子设备的配置框图;
图11是示出根据本公开的实施例的无线通信系统的第二终端设备侧的通信方法的流程图;
图12是示出根据本公开的实施例的eNB的示意性配置的第一示例的框图;
图13是示出根据本公开的实施例的eNB的示意性配置的第二示例的框图;
图14是示出根据本公开的实施例的智能电话的示意性配置的示例的框图;以及
图15是示出根据本公开的实施例的汽车导航设备的示意性配置的示例的框图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为便于更好地理解根据本公开的技术方案,下面简单介绍一些本公开所使用的概念。
基站例如演进型节点B(eNB)具有支持MIMO技术的多个天线。MIMO技术的使用使得基站能够利用空域来支持空间复用、波束赋形和发射分集。空间复用可被用于在相同频率上同时传送不同的数据流。这些数据流可被传送给单个UE以提高数据率(可归为SU-MIMO技术)或传送给多个UE以增加系统总容量(可归为MU-MIMO技术)。这是藉由对每一数据流进行空间预编码(即,应用振幅的比例缩放和相位调整)并且随后通过多个发射天线在下行链路(DL)上传送每一经空间预编码的流来达成的。经空间预编码的数据流带有不同空间签名地抵达(诸)UE处,这使得(诸)UE中每个UE能够恢复以该UE为目的地的一个或多个数据流。在上行链路(UL)上,每个UE传送经空间预编码的数据流,这使得基站能够标识每个经空间预编码的数据流的源。
空间复用一般在信道状况良好时使用。在信道状况不那么有利时,可使用波束赋形来将发射能量集中在一个或多个方向上。这可以通过对数据进行空间预编码以供通过多个天线传输来达成。为了在蜂窝小区边缘处达成良好覆盖,单流波束赋形传输可结合发射分集来使用。
在以下详细描述中,将参照在DL上支持正交频分复用(OFDM)的MIMO系统来描述接入网的各种方面。OFDM是将数据调制到OFDM码元(Symbol)内的数个副载波上的扩频技 术。这些副载波以精确频率分隔开。该分隔提供使得接收机能够从这些副载波恢复数据的“正交性”。在时域中,可向每个OFDM码元添加保护区间(例如,循环前缀)以对抗OFDM码元间干扰。UL可以使用经离散傅里叶变换(DFT)扩展的OFDM信号形式的单载波频分多址(SC-FDMA)来补偿高峰均功率比(PAPR)。
接下来解说LTE(长期演进)中用于用户面和控制面的无线电协议架构。用于UE和eNB的无线电协议架构被示为具有三层:层1、层2和层3。层1(L1层)是最低层并实现各种物理层信号处理功能。L1层将在本文中被称为物理层。层2(L2层)在物理层之上并且负责UE与eNB之间在物理层之上的链路。
在用户面中,L2层包括媒体接入控制(MAC)子层、无线电链路控制(RLC)子层、以及分组数据汇聚协议(PDCP)子层,它们在网络侧上终接于eNB处。UE在L2层之上还可具有若干个上层,包括在网络侧终接于PDN网关处的网络层(例如,IP层)、以及终接于连接的另一端(例如,远端UE、服务器等)的应用层。
PDCP子层提供不同无线电承载与逻辑信道之间的复用。PDCP子层还提供对上层数据分组的报头压缩以减少无线电传输开销,通过将数据分组暗码化来提供安全性,以及提供对UE在各eNB之间的切换支持。RLC子层提供对上层数据分组的分段和重装、对丢失数据分组的重传、以及对数据分组的重排序以补偿因混合自动重传请求(HARQ)而引起的脱序接收。MAC子层提供逻辑信道与传输信道之间的复用。MAC子层还负责在各UE间分配一个蜂窝小区中的各种无线电资源(例如,资源块)。MAC子层还负责HARQ操作。
在控制面中,用于UE和eNB的无线电协议架构对于物理层和L2层而言基本相同,区别在于对控制面而言没有头部压缩功能。控制面还包括层3(L3层)中的无线电资源控制(RRC)子层。RRC子层负责获得无线电资源(即,无线电承载)以及负责使用eNB与UE之间的RRC信令来配置各下层。
简要介绍基站侧实现L1层(即,物理层)的各种信号处理功能。这些信号处理功能包括编码和交织以促成UE的前向纠错(FEC)以及基于各种调制方案(例如,二进制相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))向信号星座进行的映射。随后,经编码和调制的码元被拆分成并行流。每个流随后被映射到OFDM副载波、在时域和/或频域中与参考信号(例如,导频)复用、并且随后使用快速傅里叶逆变换(IFFT)组合到一起以产生携带时域OFDM码元流的物理信道。该OFDM流被空间预编码以产生多个空间流。信道估计可被用来确定编码和调制方案以及用于空间处理。该信道估计可以从由UE传送的参考信号和/或信道状况反馈推导出来。每个空间流随后经由分开的发射机被提供给不同的天线。每个发射机用各自的空间流来调制RF载波以供传输。
在UE处,每个接收机通过其各自相应的天线来接收信号。每个接收机恢复出调制到射频(RF)载波上的信息并将该信息提供给L1层的各种信号处理功能。在L1层对该信息执行空间处理以恢复出以UE为目的地的任何空间流。如果有多个空间流以UE为目的地,那么它们可被组合成单个OFDM码元流。随后使用快速傅里叶变换(FFT)将该OFDM码元流从时域转换到频域。该频域信号对该OFDM信号的每个副载波包括单独的OFDM码元流。通过确定最有可能由eNB传送了的信号星座点来恢复和解调每个副载波上的码元、以及参考信号。这些软判决可以基于信道估计。这些软判决随后被解码和解交织以恢复出原始由eNB在物理信道上传送的数据和控制信号。这些数据和控制信号随后被提供给更高层处理。
下面介绍一些与下行参考信号和信道状态信息等有关的术语。
下行参考信号
下行参考信号是在下行时频资源块(RB)中占用特定的资源元素(RE)的预先定义的信号。在LTE下行链路中,包括如下几种不同类型的参考信号:
小区专用参考信号(CRS):通常指共用的参考信号,小区中所有UE都可以使用。
解调参考信号(DMRS):针对专门用户,嵌入在数据中。
信道状态信息参考信号(CSI-RS):用于估计信道状态信息,从而辅助基站的资源调度、预编码工作。
信道状态信息(CSI)
信道状态信息用来指示基站与UE之间的信道的信道状态。信道状态信息可以包括秩指示符(RI)、预编码矩阵指示符(PMI)和信道质量指示符(CQI)。
RI是关于信道秩的信息,信道秩指示可以在相同的时频资源中承载不同的信息的层的最大数目。
PMI用于指示基站与UE之间共享的包括多个预编码矩阵的码本中的特定的预编码矩阵的索引。
CQI指示信道质量,可以用来帮助确定对应的调制方案和编码速率。
此外,CRI(CSI-RS资源指示符)用于指示偏好的CSI-RS资源,UE测量每一CSI-RS资源并以CRI的形式反馈推荐的空间波束。UE可通过反馈CRI向基站指示UE接收质量最好的CSI-RS波束。
CSI过程(CSI-Process)
可以为UE配置多个CSI过程,从而UE针对每个CSI过程进行CSI的测量和报告。
接下来简单介绍全维度MIMO(FD-MIMO)技术。
FD-MIMO技术可通过在eNB处使用具有例如高达64个天线端口的二维天线阵列来极大地改善系统容量。在eNB处使用多个天线端口的益处可包括小的蜂窝小区间干扰以及高波束赋形增益。使用二维天线阵列允许在水平和垂直方向两者上进行因UE而异的波束赋形。
在FD-MIMO系统中,与传统的8天线MIMO系统相比,eNB处的发射天线的数目可被增加例如8到10倍。这些额外发射天线可带来更大的波束赋形增益并向邻蜂窝小区引入较少的干扰。
具有一维天线阵列的传统MIMO技术中,因UE而异的波束赋形可仅在水平方向上被执行。共用垂直下倾角可被应用于多个UE。
具有二维天线阵列的FD-MIMO技术中,因UE而异的波束赋形可在水平方向和垂直方向两者上被执行。
在传统线性预编码中,eNB需要关于全信道的MIMO信道状态信息(CSI)。例如,传统的波束赋形/预编码方法依赖于整个发射维度的CSI的可用性(例如,需要从每个eNB发射天线到一个或多个UE接收天线的信道的瞬时/统计知识)。
此种CSI或由UE PMI/RI反馈或通过利用信道互易性来获得。在TDD(时分双工)系统中,CSI主要在eNB处通过利用双向信道互易性来获取。在FDD(频分双工)系统中,CSI通常在UE处被测量和量化并且随后经由专用上行链路信道反馈给eNB。一般来说,用于CSI量化的码本的大小随eNB处的发射天线的数目增加而增加。
UE的PMI/RI报告可以基于DL全信道的导频辅助式估计。导频(或共用参考信号)开销和DL信道估计复杂性可与eNB天线的数目成比例。因此,PMI/RI选择的复杂性可随eNB天线的数目增加而增加。而若基于已知的协同调度/协同波束赋形的机制,UE不仅需要将服务小区有关的PMI报告给eNB,还需要提前获知可能发生干扰的邻小区的码本并报告干扰小区的PMI。
下面结合图1简单介绍无线通信系统中的小区间干扰。如图1所示,无线通信系统1000包括基站1002、1004以及终端设备1010、1012、1014、1016、1018。终端设备1010、1012和1014位于小区1006内,受基站1002控制,终端设备1016和1018位于小区1008内,受基站1004控制,小区1006与小区1008相邻。
应当理解,本公开说明书中所描述的基站可以被实现为任何类型的eNB或其它类型的基站等(参见后述“关于基站的应用示例”),以下有时也将基站称为控制设备;本公开的 说明书中所描述的终端设备可以被实现为移动终端或车载终端等(参见后述“关于终端设备的应用示例”),以下有时也将终端设备称为UE。
在无线通信系统1000中,基站1002、1004可以在相同的时频资源块上同时调度多个终端设备,以实现多个终端设备的调制符号流在相同时频资源上的空分复用。例如,如图1所示,小区1006中的终端设备1010、1012和1014可以在相同的时频资源以及不同的空间波束(如图1的基站1002发射的三个波束1020、1022和1024所示)上被共同调度,小区1008中的终端设备1016和1018可以在相同的时频资源以及不同的空间波束(如图1的基站1004发射的两个波束1026和1028所示)上被共同调度。另外,如图1所示,小区1006的空间波束1024可以对位于小区1006边缘的终端设备1014提供较强的功率覆盖,但该终端设备1014同时会受到来自小区1008的空间波束1026的较强的干扰,从而需要进行小区间干扰协调,以减少小区1008的空间波束对位于小区1006边缘的终端设备1014产生的干扰。
在后文中,也将终端设备1014所在的小区1006称为服务小区,将基站1002称为服务基站,将与小区1006相邻的小区1008称为干扰源小区(aggressor cell),将基站1004称为干扰源基站。
下面将参照图2描述根据本公开的一个实施例的小区间干扰协调的信令图。
图2所示的小区间干扰协调例如可以应用于图1所示的无线通信系统1000中。另外,图2中所示的服务基站例如可以对应于图1所示的基站1002,图2中所示的服务小区的UE例如可以对应于图1中所示的终端设备1010、1012和1014中的一个或多个,图2中所示的干扰源基站例如可以对应于图1所示的基站1004,图2中所示的干扰源小区的UE例如可以对应于图1所示的终端设备1016和1018中的一个或多个。
在本公开的实施例中,为了进行小区间的干扰协调,由服务小区的UE对干扰源小区的通过空间波束发送的参考信号进行测量,以确定干扰源小区的空间波束对服务小区的UE产生的干扰。图2所示的步骤S2000~S2004示出了由服务小区的UE测量干扰源小区的参考信号的一种示例性实现方式,以下进行具体说明。
如图2所示,在步骤S2000中,干扰源基站向服务基站通知干扰源小区的参考信号的配置信息。
根据本公开的一个实施例,干扰源基站可以通过基站之间的通信链路向服务基站通知干扰源小区的通过空间波束发送的参考信号的配置信息。基站之间的通信链路例如可以是主要用于承载小区间的切换和干扰相关的信息的X2接口。在一个示例中,干扰源基站可以通过X2接口上的负载指示(load indication)消息向服务基站通知该配置信息。负载指 示过程用于在控制频内(intra-frequency)相邻小区的基站之间以及在控制频间(inter-frequency)相邻小区的基站之间传递负载和干扰协同信息。
根据本公开的一个实施例,在接收到来自服务基站的请求的情况下,干扰源基站向服务基站通知该配置信息。
根据本公开的一个实施例,干扰源小区的参考信号可以是专门的参考信号。根据本公开的另一个实施例,干扰源小区的参考信号可以利用波束赋形的CSI-RS(例如目前LTE标准中的Class B CSI,以下也称为BF-CSI-RS)来实现。
根据本公开的一个实施例,干扰源小区的参考信号的配置信息可以包括指示承载该参考信号的资源元素(RE)在资源块(RB)中的位置的信息。在一个实施例中,在干扰源小区的参考信号是BF-CSI-RS的情况下,干扰源小区的参考信号的配置信息可以包括指示与干扰源小区的各空间波束对应的各BF-CSI-RS在RB中的位置的信息。在一个实施例中,在干扰源小区的参考信号是BF-CSI-RS的情况下,干扰源小区的参考信号的配置信息可以包括由干扰源小区的UE对干扰源小区的BF-CSI-RS进行测量(例如测量BF-CSI-RS的接收信号功率(例如RSRP)或者信干噪比(SINR))而得到的CRI,该CRI可以指示干扰源小区中功率覆盖较大的空间波束,进而可以指示干扰源小区中可能对服务小区产生较大干扰的空间波束。另外,干扰源小区的参考信号的配置信息可以包括干扰源小区的小区编号。
在步骤S2002中,服务基站向服务小区的UE通知干扰源小区的参考信号的配置信息。
根据本公开的一个实施例,在干扰源小区的参考信号是BF-CSI-RS的情况下,服务基站可以通过RRC信令为服务小区的UE配置多个CSI-Process,其中至少一个CSI-Process用来向服务小区的UE通知干扰源小区的BF-CSI-RS的配置信息、CSI测量报告的格式、CSI测量报告所占的资源、触发条件等,而其它CSI-Process可以用于服务小区的CSI报告。在本实施例中,服务小区的UE可以根据服务基站预先配置的CSI-Process在指定的子帧向服务基站报告干扰源小区的CRI,服务基站根据其收到的报告的子帧序号即可确知是哪一个CSI-Process的CRI,从而能够根据该CSI-Process的配置来确定该CRI对应的干扰源小区的小区编号,即UE以隐式的方式报告干扰源小区的小区编号。
根据本公开的一个实施例,服务基站可以通过在物理下行共享信道(PDSCH)上承载的RRC子层的RRC信令中的CSI-IM(CSI干扰测量)资源来向服务小区的UE提供干扰源小区的BF-CSI-RS的配置信息。例如,CSI-IM资源的配置如以下表1所示。
[表1]
Figure PCTCN2018072817-appb-000001
Figure PCTCN2018072817-appb-000002
在表1中,由“InterferenceCellId”变量承载干扰源小区的小区编号,由“InterferenceCRI”变量承载由干扰源小区的UE对干扰源小区的BF-CSI-RS进行测量而得到的CRI。另外,表1示出了干扰源小区的BF-CSI-RS数量为8的情况,相应地,上述CRI可以由0~7之间的整数表示,也可以由3比特的比特串来表示。在干扰源小区的BF-CSI-RS数量为其它值时,可以进行类似的设计。
应当注意,表1示出的是干扰源小区的配置信息包括干扰源小区的小区编号和由干扰源小区的UE对干扰源小区的BF-CSI-RS进行测量而得到的CRI的情况的示例,在干扰源小区的参考信号的配置信息包括其它信息时,也可以通过CSI-IM来进行类似配置。
在步骤S2004中,服务小区的UE可以根据所获得的配置信息来测量干扰源小区的参考信号,以确定干扰源小区的参考信号所对应的空间波束对服务小区的UE的干扰。例如,服务小区的UE可以根据所获得的配置信息来测量干扰源小区的参考信号的接收信号功率(例如RSRP)或者信干噪比(SINR),并根据测量结果确定干扰源小区及其干扰波束。
应当理解,上述步骤S2000~S2004仅仅是实现由服务小区的UE测量干扰源小区的参考信号的一种示例而不是限制,本领域技术人员在本公开的教导下,能够采用其它方式来实现对干扰源小区的参考信号的测量。
为了进行服务小区与干扰源小区之间的干扰协调,在步骤S2006中,服务小区的UE向服务基站反馈指示干扰源小区中对服务小区的UE产生干扰的空间波束的信息。
根据本公开的一个实施例,指示该产生干扰的空间波束的信息可以包括指示干扰源小区中对服务小区的UE产生的干扰最大的空间波束的信息。在一个实施例中,在干扰源小区的参考信号是BF-CSI-RS的情况下,指示该产生干扰的空间波束的信息可以包括CSI-RS资源指示符,即CRI。在现有技术中,CRI用于在由UE测量本小区的BF-CSI-RS时指示偏好的BF-CSI-RS资源(例如上文中描述的由干扰源小区的UE对干扰源小区的BF-CSI-RS进行测量而得到的CRI)。在本公开的实施例中,由服务小区的UE测量干扰源小区的BF-CSI-RS,则相应的CRI可以用来指示与干扰源小区的BF-CSI-RS对应的空间波束中对服务小区的UE产生的干扰最大的空间波束。另外,指示该产生干扰的空间波束的信息还可 以包括干扰源小区的小区编号。
应当注意,在下文中,将由服务小区的UE测量干扰源小区的BF-CSI-RS而得到指示干扰源小区的空间波束中对服务小区的UE产生的干扰最大的空间波束的CRI称为干扰CRI,以区别于由UE对本小区的BF-CSI-RS进行测量而得到的指示本小区中偏好的BF-CSI-RS资源的CRI。
在步骤S2008中,服务基站向干扰源基站通知指示该产生干扰的空间波束的信息。
根据本公开的一个实施例,服务基站可以通过基站之间的通信链路(例如X2接口)向干扰源基站通知指示该产生干扰的空间波束的信息。在一个示例中,服务基站可以通过X2接口上的负载指示消息向干扰源基站通知指示该产生干扰的空间波束的信息。在另一个示例中,在干扰源小区的参考信号是BF-CSI-RS的情况下,服务基站可以在X2信令中将服务小区的UE的CSI报告提供给干扰源基站,该CSI报告中包含服务小区的UE测得的干扰CRI。在一些实施例中,该X2信令可以是在干扰源基站的请求的基础上由服务基站报告给干扰源基站的。例如,该请求对应于X2接口上传输的资源状态请求(RESOURCE STATUS REQUEST)消息,包含干扰CRI的CSI报告被封装于资源状态更新(RESOURCE STATUS UPDATE)消息中。
在步骤S2010中,干扰源基站向干扰源小区的UE通知指示要禁用的空间波束的信息。
根据本公开的一个实施例,指示要禁用的空间波束的信息包括与干扰CRI有关的信息。在下文中,将参照表2和表3来详细介绍指示要禁用的空间波束的信息。
在步骤S2012中,干扰源小区的UE不向干扰源基站反馈指示要禁用的空间波束的信息。从而,干扰源基站不再为干扰源小区的UE配置该空间波束,该空间波束被禁用,使得该空间波束对服务小区的UE的干扰得到了抑制。
在一个实施例中,干扰源小区的UE不向干扰源基站反馈干扰CRI,使得干扰源基站不为干扰源小区的UE配置该干扰CRI所对应的BF-CSI-RS,从而实现空间波束的禁用。
以上描述的步骤S2008~S2012是进行服务基站与干扰源基站之间的干扰协调的一种示例性实现方式,然而本公开不限于上述实现方式,将在下文中进一步描述根据本公开的小区间干扰协调的其它实现方式。
从上面参照图2的描述可知,与现有技术中的协同调度/协同波束赋形不同,在图2所示的根据本公开的一个实施例的小区间干扰协调中,由于在服务小区与干扰源小区之间仅共享干扰源小区的参考信号的配置信息以及指示产生干扰的空间波束的信息,而无需共享大量的控制信号和/或数据,因此小区之间的通信链路的时延较小、信令开销小,能够有效地快速地抑制小区间的空间波束的干扰。
下面参照图3和图4来说明根据本公开的实施例的用于无线通信系统的第一终端设备侧的电子设备及其通信方法。第一终端设备可以例如对应于图2中所示的服务小区的UE。另外,下文中所述的第一小区、第二小区、第一控制设备、第二控制设备以及第二终端设备可以例如分别对应于图2中所示的服务小区、干扰源小区、服务基站、干扰源基站以及干扰源小区的UE。
图3示出根据本公开的实施例的用于无线通信系统的第一终端设备侧的电子设备3000的配置框图。在一个实施例中,电子设备3000可以包括例如存储器3010和处理电路3020。
电子设备3000的存储器3010可以存储由处理电路3020产生的信息以及用于电子设备3000操作的程序和数据。存储器3010可以是易失性存储器和/或非易失性存储器。例如,存储器3010可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
电子设备3000的处理电路3020提供电子设备3000的各种功能。在本公开的实施例中,电子设备3000的处理电路3020可以包括配置信息获取单元3022、参考信号测量单元3024和指示干扰信息反馈单元3026,分别被配置为执行后述图4中所示的用于无线通信系统的第一终端设备侧的电子设备的通信方法中的步骤S4000、S4002、S4004。
处理电路3020可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
另外,电子设备3000可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。在一个实施例中,电子设备3000可以作为整机而实现为第一终端设备,并且还可以包括一根或多根天线。
应当理解,上述各个单元仅是根据其所实现的具体功能所划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
图4示出根据本公开的实施例的用于无线通信系统的第一终端设备侧的通信方法的流程图。该通信方法例如可以用于如图3所示的电子设备3000。
如图4所示,在步骤S4000中,第一终端设备从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区。
根据本公开的实施例,第二小区的参考信号以及第二小区的参考信号的配置信息可以分别对应于参照图2描述的干扰源小区的参考信号以及干扰源小区的参考信号的配置信息,在此不再赘述。
在步骤S4002中,第一终端设备根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰。步骤S4002可以例如对应于图2中的步骤S2004。
在步骤S4004中,第一终端设备向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。步骤S4004可以例如对应于图2中的步骤S2006。
如上文已经描述的,根据本公开的实施例的第二小区的参考信号可以是BF-CSI-RS。在一个实施例中,第二小区的参考信号可以是非零功率的BF-CSI-RS,以下参照图5A和图5B进行具体说明。
图5A和图5B示出了根据本公开的一个实施例的参考信号在资源块上的占用情况的示意图。具体地,图5A示出第一小区的参考信号在资源块上的占用情况,图5B示出第二小区的参考信号在资源块上的占用情况。在图5A和图5B所示的资源块中,资源元素C0~C3分别对应于CRS端口0~3,资源元素D7~D14分别对应于DMRS端口7~14,用横阴影线示出的资源元素对应于零功率的BF-CSI-RS(ZP BF-CSI-RS)端口,用竖阴影线示出的资源元素对应于非零功率的BF-CSI-RS(NZP BF-CSI-RS)端口。
如图5A和5B所示,在第一小区和第二小区的资源块中,在相同的资源元素的位置分别配置零功率的BF-CSI-RS和非零功率的BF-CSI-RS,其中由第一终端设备测量的第二小区的参考信号是非零功率的BF-CSI-RS。这样,在第一小区的资源块中,在与第二小区的非零功率的BF-CSI-RS对应的资源元素的位置配置的是零功率的BF-CSI-RS,从而第一终端设备可以在不受本小区(即第一小区)的参考信号的影响的情况下测量第二小区的空间波束所产生的干扰。
应当理解,根据本公开的参考信号在资源块上的占用情况不限于图5A和图5B所示的情况。本领域技术人员在本公开的教导下,能够根据实际应用情况进行类似的设计。
根据本公开的一个实施例,可以通过上行控制信道或上行数据信道向第一控制设备反馈指示所述产生干扰的空间波束的信息。在一个实施例中,可以通过物理上行控制信道(PUCCH)来向第一控制设备反馈指示产生干扰的空间波束的信息。在另一个实施例中,可以将指示产生干扰的空间波束的信息作为上行数据的一部分,通过物理上行共享信道(PUSCH)反馈给第一控制设备。
根据本公开的一个实施例,在从第一控制设备获取了用于指示要进行第一小区和第二小区之间的干扰协调的信息的情况下,对第二小区的参考信号进行测量。在一个实施例中,第一控制设备可以通过RRC信令向第一终端设备通知是否进行干扰协调。例如,可以在RRC信令中设置1比特的“CRISubsetRestrictionFlag1”变量,当“CRISubsetRestrictionFlag1=1”时指示要进行干扰协调,而当“CRISubsetRestrictionFlag1=0”时指示不进行干扰协调。
接下来,参照图6和图7来说明根据本公开的实施例的用于无线通信系统的第一控制设备侧的电子设备及其通信方法。第一控制设备可以例如对应于图2中所示的服务基站。另外,下文中所述的第一小区、第二小区、第一终端设备、第二终端设备以及第二控制设备可以例如分别对应于图2中所示的服务小区、干扰源小区、服务小区的UE、干扰源小区的UE以及干扰源基站。
图6示出根据本公开的实施例的用于无线通信系统的第一控制设备侧的电子设备6000的配置框图。在一个实施例中,电子设备6000可以包括例如存储器6010和处理电路6020。
电子设备6000的存储器6010可以存储由处理电路6020产生的信息以及电子设备6000操作的程序和数据。存储器6010可以是易失性存储器和/或非易失性存储器。例如,存储器6010可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
电子设备6000的处理电路6020提供电子设备6000的各种功能。在本公开的实施例中,电子设备6000的处理电路6020可以包括配置信息获取单元6022、指示干扰信息获取单元6024和干扰协调单元6026,分别被配置为执行后述图7中所示的用于无线通信系统的第一控制设备侧的电子设备的通信方法中的步骤S7000、S7002和S7004。
根据本公开的一个实施例,处理电路6020还可以包括干扰协调通知单元6028,被配置为执行后述图7中所示的用于无线通信系统的第一控制设备侧的电子设备的通信方法中的步骤S7006。
处理电路6020可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
另外,电子设备6000可以以芯片级来实现,或者也可以通过包括其它外部部件而以 设备级来实现。例如,电子设备6000可以作为整机实现为第一控制设备,并且还可以包括一根或多根天线。
应当理解,上述各个单元仅是根据其所实现的具体功能所划分的逻辑功能模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
图7示出根据本公开的实施例的用于无线通信系统的第一控制设备侧的通信方法的流程图。该通信方法例如可以用于如图6所示的电子设备6000。
如图7所示,在步骤S7000中,第一控制设备从与由第一控制设备控制的第一小区相邻的第二小区的第二控制设备获取第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰。
根据本公开的一个实施例,第一控制设备可以通过基站之间的通信链路(例如X2接口)从第二控制设备获取第二小区的参考信号的配置信息。在一个示例中,第一控制设备可以通过X2接口上的负载指示(load indication)消息从第二控制设备获取该配置信息。
根据本公开的实施例,第二小区的参考信号以及第二小区的参考信号的配置信息可以分别对应于参照图2描述的干扰源小区的参考信号以及干扰源小区的参考信号的配置信息,在此不再赘述。
如上文参照图2描述的,在一个实施例中,在第二小区的参考信号是BF-CSI-RS的情况下,第一控制设备可以为第一终端设备配置多个CSI-Process,其中至少一个CSI-Process用来向第一终端设备通知干扰源小区的BF-CSI-RS的配置信息、CSI测量报告的格式、CSI测量报告所占的资源、触发条件等。在一个实施例中,第一控制设备可以通过RRC信令中的CSI-IM资源来向第一终端设备提供干扰源小区的BF-CSI-RS的配置信息。
在步骤S7002中,第一控制设备从第一终端设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息。
根据本公开的一个实施例,指示该产生干扰的空间波束的信息可以包括指示第二小区中对第一终端设备产生的干扰最大的空间波束的信息。在一个实施例中,在第二小区的参考信号是BF-CSI-RS的情况下,指示该产生干扰的空间波束的信息可以包括干扰CRI和第二小区的小区编号。
在步骤S7004中,第一控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的一个实施例,进行第一小区和第二小区之间的干扰协调可以包括第一控制设备向第二控制设备通知指示所述产生干扰的空间波束的信息,以用于第二控制设备禁用该空间波束。该处理可以例如对应于图2中的步骤S2008。
根据本公开的另一个实施例,进行第一小区和第二小区之间的干扰协调可以包括第一控制设备进行与第二控制设备的协同调度,以使得第一控制设备和第二控制设备不在相同的时频资源上对第一终端设备进行控制信号和/或数据传输,或者使得第一控制设备和第二控制设备在相同的时频资源且不同的空间波束上对第一终端设备进行控制信号和/或数据传输。
在一个实施例中,第一控制设备向第二控制设备通知指示要进行协同调度的信息,以开始第一控制设备与第二控制设备的协同调度。该指示要进行协同调度的信息例如可以通过X2接口来传递。在一个实施例中,指示要进行协同调度的信息也可以由指示第二小区的参考信号对第一终端设备产生干扰的空间波束的信息来实现。在一个实施例中,可以采用CoMP技术中的协同调度/协同波束赋形等技术来进行第一控制设备与第二控制设备的协同调度。
在一个实施例中,在第一控制设备的服务优先级高于第二控制设备的服务优先级的情况下,进行第一小区和第二小区之间的干扰协调。另外,在第一控制设备的服务优先级低于第二控制设备的服务优先级的情况下,不进行第一小区和第二小区之间的干扰协调。应当理解,本文中所描述的控制设备的服务优先级是指由控制设备对终端设备提供服务的优先级。
例如,假设第一控制设备的服务优先级为SP 1,第二控制设备的服务优先级为SP 2。在SP 1≥SP 2的情况下,由第一控制设备对第一终端设备提供服务的优先级高于由第二控制设备对第二终端设备提供服务的优先级,则在第二小区对第一小区的第一终端设备产生干扰的情况下,进行第一小区和第二小区之间的干扰协调,以使得由第一控制设备控制的第一终端设备受到的干扰减小。例如,如图1所示,在SP 1≥SP 2的情况下,通过进行小区1006和小区1008之间的干扰协调来禁用空间波束1026,此时小区1006中的终端设备1014受到的相邻小区1008的空间波束1026的干扰减小。但是,相应地,小区1008的终端设备1016的空间波束的功率覆盖也减小。在SP 1<SP 2的情况下,由第二控制设备对第二终端设备提供服务的优先级高于由第一控制设备对第一终端设备提供服务的优先级,则第二控制设备可以忽略来自第一控制设备的用于进行干扰协调的信息,从而不进行第一小区和第二小区之间的干扰协调,以优先确保第二控制设备对第二终端设备提供的服务。例如,如图1所示,在SP 1<SP 2的情况下,不进行第一小区和第二小区之间的干扰协调,则空间波束1026不被禁用,可以继续由空间波束1026对第二小区1008的终端设备1016提供服务, 从而优先确保了第二控制设备对第二终端设备提供的服务。
在一个实施例中,第一控制设备和第二控制设备的服务优先级可以是预先设定的。在一个实施例中,可以通过控制设备之间的通信链路(X2接口)来在第二控制设备和第二控制设备之间传递服务优先级的信息。
通过比较第一控制设备与第二控制设备的服务优先级来确定是否执行第一小区和第二小区之间的干扰协调,可以优先确保服务优先级较高的控制设备对其终端设备提供的服务。
根据本公开的一个实施例,在第一控制设备从预定数目以上的多个第一终端设备获取了多个指示所述产生干扰的空间波束的信息的情况下,进行第一小区和第二小区之间的干扰协调。
例如,第一控制设备从K个第一终端设备分别获取了K个干扰CRI(其中K在预定数目M以上),则表明第二小区中的空间波束对第一小区中的多个第一终端设备都造成了较强的干扰,此时进行第一小区和第二小区之间的干扰协调,以减小或消除第二小区中的空间波束对多个第一终端设备的干扰。在一个实施例中,预定数目M可以在第一控制设备中预先设定。在另一个实施例中,预定数目M可以根据信道条件的不同而变化。
返回参考图7中的步骤S7006。根据本公开的一个实施例,可选地,用于无线通信系统的第一控制设备侧的通信方法还可以包括步骤S7006。
在步骤S7006中,第一控制设备向第一终端设备通知用于指示要进行第一小区和第二小区之间的干扰协调的信息。
根据本公开的一个实施例,第一控制设备可以通过RRC信令向第一终端设备通知是否进行干扰协调。例如,可以在RRC信令中设置1比特的“CRISubsetRestrictionFlag1”变量,当“CRISubsetRestrictionFlag1=1”时指示要进行干扰协调,而当“CRISubsetRestrictionFlag1=0时指示不进行干扰协调。
接下来,参照图8和图9来说明根据本公开的实施例的用于无线通信系统的第二控制设备侧的电子设备及其通信方法。第二控制设备可以例如对应于图2中所示的干扰源基站。另外,下文中所述的第一小区、第二小区、第一终端设备、第二终端设备以及第一控制设备可以例如分别对应于图2中所示的服务小区、干扰源小区、服务小区的UE、干扰源小区的UE以及服务基站。
图8示出根据本公开的实施例的用于无线通信系统的第二控制设备侧的电子设备8000的配置框图。在一个实施例中,电子设备8000可以包括例如存储器8010和处理电路8020。
电子设备8000的存储器8010可以存储由处理电路8020产生的信息以及电子设备8000操作的程序和数据。存储器8010可以是易失性存储器和/或非易失性存储器。例如,存储器8010可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
电子设备8000的处理电路8020提供电子设备8000的各种功能。在本公开的实施例中,电子设备8000的处理电路8020可以包括配置信息通知单元8022、指示干扰信息获取单元8024和干扰协调单元8026,分别被配置为执行后述图9中所示的用于无线通信系统的第二控制设备侧的电子设备的通信方法中的步骤S9000、S9002和S9004。
处理电路8020可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
另外,电子设备8000可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。例如,电子设备8000可以作为整机实现为第二控制设备,并且还可以包括一根或多根天线。
应当理解,上述各个单元仅是根据其所实现的具体功能所划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
图9示出根据本公开的实施例的用于无线通信系统的第二控制设备侧的通信方法的流程图。该通信方法例如可以用于如图8所示的电子设备8000。
如图9所示,在步骤S9000中,第二控制设备向与由第二控制设备控制的第二小区相邻的第一小区的第一控制设备通知第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰。步骤S9000可以例如对应于图2中的步骤S2000。
根据本公开的实施例,第二小区的参考信号以及第二小区的参考信号的配置信息可以分别对应于参照图2描述的干扰源小区的参考信号以及干扰源小区的参考信号的配置信息,在此不再赘述。
在步骤S9002中,第二控制设备从第一控制设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息。
如上文已经描述的,步骤S9000和S9002中第一控制设备和第二控制设备之间的信息 交换可以通过基站之间的通信链路(例如X2接口)来实现。
在步骤S9004中,第二控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
根据本公开的一个实施例,在第二小区的参考信号是BF-CSI-RS的情况下,指示该产生干扰的空间波束的信息可以包括干扰CRI和第二小区的小区编号。
根据本公开的一个实施例,进行第一小区和第二小区之间的干扰协调可以包括第二控制设备禁用所述产生干扰的空间波束中的至少一个。
在一个实施例中,第二控制设备向第二小区中的一个或多个第二终端设备通知指示要禁用的空间波束的信息,以使得所述一个或多个第二终端设备不向第二控制设备反馈指示该空间波束的信息。
在一个实施例中,第二控制设备向第二小区中的优先级低于预定阈值的第二终端设备通知所述指示要禁用的空间波束的信息,使得优先级低于预定阈值的第二终端设备不向第二控制设备反馈指示要禁用的空间波束的信息,从而禁用该空间波束。另外,第二控制设备不向优先级高于预定阈值的第二终端设备通知指示要禁用的空间波束的信息,这些优先级高的第二终端设备可以继续向第二控制设备反馈指示该空间波束的信息,使得能够优先确保这些第二终端设备的良好的功率覆盖。
例如,如图1所示,当终端设备1016的优先级低于预定阈值时,基站1004向终端设备1016通知指示要禁用的空间波束1026的信息,以禁用空间波束1026,从而减小小区间干扰。当终端设备1016的优先级高于预定阈值时,基站1004不向终端设备1016通知指示要禁用的空间波束1026的信息,终端设备1016进行正常的参考信号的测量和反馈,从而可以使得空间波束1026不被禁用,能够继续对终端设备1016提供良好的功率覆盖。
在一个实施例中,预定阈值可以由第二终端设备预先对第二终端设备进行配置。
根据本公开的一个实施例,可以用比特位数与第二小区的空间波束的数量一致的比特串来表示所述指示要禁用的空间波束的信息。
例如,假设第二小区的空间波束的数量为N,则可以采用N比特的第一比特串来表示指示要禁用的空间波束的信息,此时指示第二小区的空间波束的干扰CRI例如可以用log 2N比特表示。如下的表2示出了N=8的情况下的第一比特串和干扰CRI的对应关系。
[表2]
干扰CRI 000 001 010 011 100 101 110 111
第一比特串 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000
根据表2的对应关系,例如,第一比特串“00000010”表示仅存在一个干扰CRI“001”,第一比特串“001001100”表示存在三个干扰CRI“010”、“011”和“101”。如上所述,第一比特串的表示方式可以支持多个干扰CRI表示的叠加。
根据本公开的另一个实施例,可以用比特位数为log 2N比特的第二比特串来表示指示要禁用的每个空间波束的信息。如下的表3示出了N=8的情况下的第二比特串和对应的干扰CRI的对应关系。
[表3]
干扰CRI 000 001 010 011 100 101 110 111
第二比特串 000 001 010 011 100 101 110 111
根据表3的对应关系,当只存在一个干扰CRI“001”时,可以用第二比特串“001”来表示。当存在两个干扰CRI“010”和“011”时,可以用第二比特串“010011”来表示。可见,在干扰CRI较少的情况下,利用表3所示的第二比特串的表示方法(3比特信息或6比特信息)能够比表2所示的第一比特串的表示方法(8比特信息)具有更少的信令开销。
接下来介绍根据本公开的实施例的第二控制设备向第二终端设备通知指示要禁用的空间波束的信息的方法。
在一个实施例中,第二控制设备通过在物理下行共享信道(PDSCH)上承载的高层专用信令(诸如RRC子层的RRC信令)中包含指示要禁用的空间波束的信息来对第二终端设备进行重新配置,以向第二终端设备通知指示该空间波束的信息。将这种配置方式称为半静态配置方式。半静态配置方式通过PDSCH进行配置,因此能够利用PDSCH的丰富资源来承载较多的信息,但是需要逐层进行解码,配置周期较长。
例如,可以对RRC信令中关于天线的配置进行如以下表4所示的设计来实现上述半静态配置方式。
[表4]
Figure PCTCN2018072817-appb-000003
在表4中,由“CRISubsetRestriction”变量承载指示要禁用的空间波束的信息(例如指示干扰CRI的信息),N1TxAntenna、N2TxAntenna、N4TxAntenna、N8TxAntenna、N12TxAntenna、N16TxAntenna、N20TxAntenna、N24TxAntenna、N28TxAntenna、N32TxAntenna分别表示天线端口的数量为1、2、4、8、12、16、20、24、28、32的情况。可以通过CRI对小区进行虚拟扇区化,一个CRI可以对应于小区中的一个虚拟扇区,在该虚拟扇区中可以有1、2、4、8、12、16、20、24、28或32个天线端口。
作为示例,表4示出了空间波束的数量N=8的情况,在天线端口数量为1、2、4、…、 32时,可以用8比特的比特串(例如对应于表2所示的第一比特串)或者3比特的比特串(例如对应于表3所示的第二比特串)来表示“CRISubsetRestriction”。
应当理解,表4中的天线端口的数量仅仅是示意性的而非限制,可以根据实际情况对天线端口的数量为其它值时进行类似的设计。另外,在空间波束的数量N为其它值时,也可以对“CRISubsetRestriction”变量进行类似的设计。
在一个实施例中,第二控制设备通过在物理下行控制信道(PDCCH)上承载的信息(例如下行控制信息(DCI))中包含指示要禁用的空间波束的信息来对第二终端设备进行重新配置,以向第二终端设备通知指示该空间波束的信息。将这种配置方式称为动态配置方式。动态配置方式通过PDCCH进行配置,因此配置周期短,时效性强,但是能够利用的资源与半静态配置方式相比是有限的。
另外,在动态配置方式中,也可以对现有的DCI增加资源,以使得指示要禁用的空间波束的信息能够被包含在DCI中而通知给第二终端设备。
在一个实施例中,可以结合上述半静态配置方式和动态配置方式来实现改进的动态配置方式。例如,第二控制设备通过在PDSCH上承载的高层专用信令(诸如RRC子层的RRC信令)来向第二终端设备通知指示要禁用的空间波束的信息,并且通过在PDCCH上承载的控制信息(例如下行控制信息(DCI))来通知第二终端设备是否进行空间波束的禁用。例如,可以在DCI中设置1比特的“CRISubRestrictionFlag2”变量来指示是否进行空间波束的禁用,当“CRISubRestrictionFlag2=1”时指示要进行空间波束的禁用,而当“CRISubRestrictionFlag2=0”时指示不进行空间波束的禁用。
作为上述改进的动态配置方式的一个例子,第二控制设备在T1时刻发送包括指示要禁用的空间波束的信息的RRC信令。RRC信令的资源丰富,可以用来承载指示要禁用的空间波束的信息。随后,在T2时刻发送包括“CRISubRestrictionFlag2=1”的DCI,在T3时刻发送包括“CRISubRestrictionFlag2=0”的DCI。第二终端设备在接收到包括“CRISubRestrictionFlag2=1”的DCI时,根据之前接收到的包括指示要禁用的空间波束的信息的RRC信令,不向第二控制设备反馈指示该要禁用的空间波束的信息,以实现该空间波束的禁用;在接收到包括“CRISubRestrictionFlag2=0”的DCI时,恢复正常的参考信号的测量和反馈而不进行禁用处理。T2与T3之间的时间间隔可以很短,从而实现了配置的灵活性。
在改进的动态配置方式中,利用PDSCH上的丰富资源来承载占用资源较多的指示要禁用的空间波束的信息,并且利用PDCCH上的控制信息的较短的配置周期来承载占用资源较少的指示是否进行空间波束的禁用的信息,能够在满足配置资源的需求的情况下保证配置 的灵活性。
在一个实施例中,可以通过MAC层信令(MAC控制元素)结合禁用定时器来进行空间波束的禁用和解禁用。
在一个实施例中,可以用比特位数与第二小区的空间波束的数量一致的第三比特串以及与每个空间波束对应的禁用定时器来控制每个空间波束的禁用和解禁用。
例如,假设第二小区的空间波束的数量N=8,在MAC控制元素中设置8比特的第三比特串,其中每1比特指示是否禁用8个空间波束中对应的1个空间波束。例如,第三比特串“001001100”中的第3、6、7比特为“1”表示禁用第3、6、7个空间波束,而其余比特为“0”表示不禁用其余的空间波束。另外,第二控制设备通过例如RRC信令为第二终端设备配置对应于第二小区的8个空间波束中的每一个的禁用定时器。例如,在第3、6、7个空间波束被禁用以使得第二终端设备不反馈指示这三个空间波束的信息的同时,第二终端设备中与第3、6、7个空间波束对应的禁用定时器开始计时,在到达该禁用定时器的定时期间时,第3、6、7个空间波束被解禁用,此时第二终端设备恢复正常的空间波束的反馈而不进行禁用处理。
通过上述MAC层信令与禁用定时器结合的方式,能够仅在特定的定时期间内禁用特定的空间波束。由于小区间强干扰的情况通常不会持续很久,第二控制设备内部启动的禁用定时器可以起到平衡小区间干扰的作用。另外,在到达禁用定时器的定时期间时自动解禁用,从而无需专门的信令来通知解禁用。
根据本公开的一个实施例,进行第一小区和第二小区之间的干扰协调可以包括第二控制设备进行与第一控制设备的协同调度,以使得第一控制设备和第二控制设备不在相同的时频资源上对第一终端设备进行控制信号和/或数据传输,或者使得第一控制设备和第二控制设备在相同的时频资源且不同的空间波束上对第一终端设备进行控制信号和/或数据传输。
在一个实施例中,第二控制设备从第一设备获取指示要进行协同调度的信息,以开始进行与第一控制设备的协同调度。该指示要进行协同调度的信息例如可以通过X2接口来传递。在一个实施例中,指示要进行协同调度的信息也可以由指示第二小区的参考信号对第一终端设备产生干扰的空间波束的信息来实现。在一个实施例中,可以采用CoMP技术中的协同调度/协同波束赋形等技术来进行第一控制设备与第二控制设备的协同调度。
在一个实施例中,在第一控制设备的服务优先级高于第二控制设备的服务优先级的情况下,进行第一小区和第二小区之间的干扰协调。另外,在第一控制设备的服务优先级低于第二控制设备的服务优先级的情况下,不进行第一小区和第二小区之间的干扰协调。
上文已经参照根据本公开的实施例的用于无线通信系统的第一控制设备侧的通信方法描述了通过比较第一控制设备的服务优先级与第二控制设备的服务优先级来确定是否执行干扰协调的具体示例,在此不再赘述。
根据本公开的一个实施例,在第二控制设备从第一控制设备获取了预定数目以上的多个指示所述产生干扰的参考信号的信息的情况下,进行第一小区和第二小区之间的干扰协调。
例如,第二控制设备从第一控制设备获取了K个干扰CRI(其中K在预定数目M以上),则表明第二小区中的空间波束对第一小区中的多个第一终端设备都造成了较强的干扰,此时进行第一小区和第二小区之间的干扰协调,以减小或消除第二小区中的空间波束对多个第一终端设备的干扰。在一个实施例中,预定数目M可以在第一控制设备中预先设定。在另一个实施例中,预定数目M可以根据信道条件的不同而变化。
接下来,参照图10和图11来说明根据本公开的实施例的用于无线通信系统的第二终端设备侧的电子设备及其通信方法。第二终端设备可以例如对应于图2中所示的干扰源小区的UE。另外,下文中所述的第一小区、第二小区、第一控制设备、第二控制设备以及第一终端设备可以例如分别对应于图2中所示的服务小区、干扰源小区、服务基站、干扰源基站以及服务小区的UE。
图10示出根据本公开的实施例的用于无线通信系统的第二终端设备侧的电子设备10000的配置框图。在一个实施例中,电子设备10000可以包括例如存储器10010和处理电路10020。
电子设备10000的存储器10010可以存储由处理电路10020产生的信息以及电子设备10000操作的程序和数据。存储器10010可以是易失性存储器和/或非易失性存储器。例如,存储器10010可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
电子设备10000的处理电路10020提供电子设备10000的各种功能。在本公开的实施例中,电子设备10000的处理电路10020可以包括指示禁用信息获取单元10022和信息反馈单元10024,分别被配置为执行后述图11中所示的用于无线通信系统的第二终端设备侧的电子设备的通信方法中的步骤S11000和S11002。
处理电路10020可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的 系统。
另外,电子设备10000可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。例如,电子设备10000可以作为整机实现为第二终端设备,并且还可以包括一根或多根天线。
应当理解,上述各个单元仅是根据其所实现的具体功能所划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
图11示出根据本公开的实施例的用于无线通信系统的第二终端设备侧的通信方法的流程图。该通信方法例如可以用于如图10所示的电子设备10000。
如图11所示,在步骤S11000中,第二终端设备从第二小区的第二控制设备获取指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息,其中,第一小区与第二小区相邻,第二终端设备位于第二小区。
根据本公开的一个实施例,指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息可以例如用表2或表3所示的第一比特串或第二比特串来实现。
在步骤S11002中,第二终端设备不向第二控制设备反馈指示要禁用的空间波束的信息,以使得第二控制设备禁用该空间波束。步骤S11002可以例如对应于图2中的步骤S2012。
在一个实施例中,第二终端设备对除了要禁用的空间波束以外的其它空间波束对应的参考信号进行测量,并向第二控制设备反馈测量结果,从而使得指示要禁用的空间波束的信息不被反馈到第二控制设备。
在一个实施例中,第二终端设备对所有空间波束对应的参考信号进行测量,当测量得到要禁用的空间波束强度最强时,上报指示强度次强的空间波束的信息,而不上报指示强度最强的该要禁用的空间波束的信息,从而使得指示要禁用的空间波束的信息不被反馈到第二控制设备。
根据本公开的一个实施例,在第二终端设备的优先级低于预定阈值的情况下,不向第二控制设备反馈所述指示要禁用的空间波束的信息。另外,在第二终端设备的优先级高于预定阈值的情况下,第二终端设备可以忽略所获取的指示禁用空间波束的信息,而进行正常的参考信号的测量和反馈,从而不进行禁用处理。在一个实施例中,在第二终端设备的优先级高于预定阈值的情况下,第二终端设备也可以拒绝由第二控制设备对其进行的用于禁用空间波束的信令配置(例如上文所述的半静态配置、动态配置以及改进的动态配置),从而不进行禁用处理。通过以上处理,在第二终端设备的优先级较高的情况下,能够优先确保该第二终端设备获得较好的功率覆盖。
在一个实施例中,预定阈值可以由第二终端设备预先对第二终端设备进行配置。
上述实施例主要基于当前LTE-A通信系统的架构对CSI参考信号进行基带的空间预编码并通过多个天线传输来进行描述。随着毫米波通信系统的应用和器件技术的发展,可使用射频的波束赋形方式来代替上述基带空间预编码,从而将本公开用于测量空间波束干扰的参考信号的发射能量集中在一个或多个方向上,由接收端设备基于上述实施例执行测量、报告并在控制设备之间共享、协调。在支持射频的波束赋形的一种通信系统中,上述实施例所使用的基站之间的信令实现为Xn信令,基站实现为部署有大规模天线的下一代通信节点B如gNodeB,用于测量空间波束干扰的参考信号仍实现为CSI-RS或者其他专门设计的参考信号。在更具体的示例中,gNodeB通过调整至少一个射频链路(RF Chain)上连接的多个天线的移相器的相位和幅度以在不同方向上发射经过射频波束赋形的参考信号以供接收端设备测量。
下面将介绍根据本公开的应用示例。
本公开内容的技术能够应用于各种产品。
例如,基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB,或者下一代通信节点B如gNodeB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其它类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图12所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图12示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其它eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图12所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图12所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图12示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图13所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图13示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图12描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图12描述的BB处理器826相同。如图13所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图13示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图13所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图13示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图12和图13所示的eNB 800和eNB 830中,参考图6描述的处理电路6020以 及参考图8描述的处理电路8020中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由控制器821和控制器851实现。
[关于终端设备的应用示例]
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图14所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图14示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图14所示,智能电话900可以包括多个天线916。虽然图14示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图14所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图14所示的智能电话900中,参考图4描述的处理电路4020以及参考图10描述的处理电路10020中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由处理器901或辅助控制器919实现。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括 诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图15所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图15示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图15所示,汽车导航设备920可以包括多个天线937。虽然图15示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图15所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图15示出的汽车导航设备920中,参考图4描述的处理电路4020以及参考图10描述的处理电路10020中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由处理器921实现。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
应当理解,本说明书中“实施例”或类似表达方式的引用是指结合该实施例所述的特定特征、结构、或特性系包括在本公开的至少一具体实施例中。因此,在本说明书中,“在 本公开的实施例中”及类似表达方式的用语的出现未必指相同的实施例。
本领域技术人员应当知道,本公开被实施为一系统、装置、方法或作为计算机程序产品的计算机可读媒体。因此,本公开可以实施为各种形式,例如完全的硬件实施例、完全的软件实施例(包括固件、常驻软件、微程序代码等),或者也可实施为软件与硬件的实施形式,在以下会被称为“电路”、“模块”或“系统”。此外,本公开也可以任何有形的媒体形式实施为计算机程序产品,其具有计算机可使用程序代码存储于其上。
本公开的相关叙述参照根据本公开具体实施例的系统、装置、方法及计算机程序产品的流程图和/或框图来进行说明。可以理解每一个流程图和/或框图中的每一个块,以及流程图和/或框图中的块的任何组合,可以使用计算机程序指令来实施。这些计算机程序指令可供通用型计算机或特殊计算机的处理器或其它可编程数据处理装置所组成的机器来执行,而指令经由计算机或其它可编程数据处理装置处理以便实施流程图和/或框图中所说明的功能或操作。
在附图中显示根据本公开各种实施例的系统、装置、方法及计算机程序产品可实施的架构、功能及操作的流程图及框图。因此,流程图或框图中的每个块可表示一模块、区段、或部分的程序代码,其包括一个或多个可执行指令,以实施指定的逻辑功能。另外应当注意,在某些其它的实施例中,块所述的功能可以不按图中所示的顺序进行。举例来说,两个图示相连接的块事实上也可以同时执行,或根据所涉及的功能在某些情况下也可以按图标相反的顺序执行。此外还需注意,每个框图和/或流程图的块,以及框图和/或流程图中块的组合,可藉由基于专用硬件的系统来实施,或者藉由专用硬件与计算机指令的组合,来执行特定的功能或操作。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (29)

  1. 一种用于无线通信系统的第一终端设备侧的电子设备,包括:
    存储器,用于存储计算机指令;以及
    处理电路,被配置为执行所存储的计算机指令以用于:
    从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区;
    根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;以及
    向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。
  2. 根据权利要求1所述的电子设备,其中,
    指示所述产生干扰的空间波束的信息包括指示第二小区中对第一终端设备产生的干扰最大的空间波束的信息。
  3. 根据权利要求1或2所述的电子设备,其中,
    所述参考信号是波束赋形的信道状态信息参考信号CSI-RS,指示所述产生干扰的空间波束的信息包括CSI-RS资源指示符和第二小区的小区编号。
  4. 根据权利要求3所述的电子设备,其中,
    所述参考信号是非零功率的波束赋形的CSI-RS。
  5. 根据权利要求1至4中的任一项所述的电子设备,其中,
    通过上行控制信道或上行数据信道向第一控制设备反馈指示所述产生干扰的空间波束的信息。
  6. 根据权利要求1至5中的任一项所述的电子设备,其中,
    在从第一控制设备获取了用于指示要进行第一小区和第二小区之间的干扰协调的信息的情况下,对第二小区的参考信号进行测量。
  7. 一种用于无线通信系统的第一控制设备侧的电子设备,包括:
    存储器,用于存储计算机指令;以及
    处理电路,被配置为执行所存储的计算机指令以用于:
    从与由第一控制设备控制的第一小区相邻的第二小区的第二控制设备获取第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;
    从第一终端设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及
    基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
  8. 根据权利要求7所述的电子设备,其中,
    所述参考信号是波束赋形的信道状态信息参考信号CSI-RS,指示所述产生干扰的空间波束的信息包括CSI-RS资源指示符和第二小区的小区编号。
  9. 根据权利要求7或8所述的电子设备,其中,进行第一小区和第二小区之间的干扰协调包括:
    第一控制设备向第二控制设备通知指示所述产生干扰的空间波束的信息,以用于第二控制设备禁用该空间波束。
  10. 根据权利要求7或8所述的电子设备,其中,进行第一小区和第二小区之间的干扰协调包括:
    第一控制设备进行与第二控制设备的协同调度,以使得第一控制设备和第二控制设备不在相同的时频资源上对第一终端设备进行控制信号和/或数据传输,或者使得第一控制设 备和第二控制设备在相同的时频资源且不同的空间波束上对第一终端设备进行控制信号和/或数据传输。
  11. 根据权利要求7或8所述的电子设备,其中,
    在第一控制设备的服务优先级高于第二控制设备的服务优先级的情况下,进行第一小区和第二小区之间的干扰协调。
  12. 根据权利要求7或8所述的电子设备,其中,
    在第一控制设备从预定数目以上的多个第一终端设备获取了预定数目以上的多个指示所述产生干扰的空间波束的信息的情况下,进行第一小区和第二小区之间的干扰协调。
  13. 根据权利要求7至12中的任一项所述的电子设备,其中,所述处理电路还被配置为执行所存储的计算机指令以用于:
    向第一终端设备通知用于指示要进行第一小区和第二小区之间的干扰协调的信息。
  14. 一种用于无线通信系统的第二控制设备侧的电子设备,包括:
    存储器,用于存储计算机指令;以及
    处理电路,被配置为执行所存储的计算机指令以用于:
    向与由第二控制设备控制的第二小区相邻的第一小区的第一控制设备通知第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;
    从第一控制设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及
    基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
  15. 根据权利要求14所述的电子设备,其中,
    所述参考信号是波束赋形的信道状态信息参考信号CSI-RS,指示所述产生干扰的空间 波束的信息包括CSI-RS资源指示符和第二小区的小区编号。
  16. 根据权利要求14或15所述的电子设备,其中,进行第一小区和第二小区之间的干扰协调包括:
    第二控制设备禁用所述产生干扰的空间波束中的至少一个。
  17. 根据权利要求16所述的电子设备,其中,第二控制设备禁用所述产生干扰的空间波束中的至少一个包括:
    第二控制设备向第二小区中的一个或多个第二终端设备通知指示要禁用的空间波束的信息,以使得所述一个或多个第二终端设备不向第二控制设备反馈指示该空间波束的信息。
  18. 根据权利要求17所述的电子设备,其中,
    用比特位数与第二小区的空间波束的数量一致的比特串来表示所述指示要禁用的空间波束的信息。
  19. 根据权利要求17或18所述的电子设备,其中,
    第二控制设备向第二小区中的优先级低于预定阈值的第二终端设备通知所述指示要禁用的空间波束的信息。
  20. 根据权利要求14或15所述的电子设备,其中,进行第一小区和第二小区之间的干扰协调包括:
    第二控制设备进行与第一控制设备的协同调度,以使得第一控制设备和第二控制设备不在相同的时频资源上对第一终端设备进行控制信号和/或数据传输,或者使得第一控制设备和第二控制设备在相同的时频资源且不同的空间波束上对第一终端设备进行控制信号和/或数据传输。
  21. 根据权利要求14或15所述的电子设备,其中,
    在第一控制设备的服务优先级高于第二控制设备的服务优先级的情况下,进行第一小 区和第二小区之间的干扰协调。
  22. 根据权利要求14或15所述的电子设备,其中,
    在第二控制设备从第一控制设备获取了预定数目以上的多个指示所述产生干扰的参考信号的信息的情况下,进行第一小区和第二小区之间的干扰协调。
  23. 一种用于无线通信系统的第二终端设备侧的电子设备,包括:
    存储器,用于存储计算机指令;以及
    处理电路,被配置为执行所存储的计算机指令以用于:
    从第二小区的第二控制设备获取指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息,其中,第一小区与第二小区相邻,第二终端设备位于第二小区;以及
    不向第二控制设备反馈指示要禁用的空间波束的信息,以使得第二控制设备禁用该空间波束。
  24. 根据权利要求23所述的电子设备,其中,
    在第二终端设备的优先级低于预定阈值的情况下,不向第二控制设备反馈所述指示要禁用的空间波束的信息。
  25. 一种用于无线通信系统的通信方法,包括:
    第一终端设备从第一小区的第一控制设备获取第二小区的参考信号的配置信息,其中第一小区与第二小区相邻,第一终端设备位于第一小区;
    第一终端设备根据所述配置信息对第二小区的参考信号进行测量,以确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;以及
    第一终端设备向第一控制设备反馈指示第二小区中对第一终端设备产生干扰的空间波束的信息,以用于进行第一小区和第二小区之间的干扰协调。
  26. 一种用于无线通信系统的通信方法,包括:
    第一控制设备从与由第一控制设备控制的第一小区相邻的第二小区的第二控制设备获取第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;
    第一控制设备从第一终端设备获取指示第二小区中对第一终端设备产生干扰的空间波束的信息;以及
    第一控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
  27. 一种用于无线通信系统的通信方法,包括:
    第二控制设备向与由第二控制设备控制的第二小区相邻的第一小区的第一控制设备通知第二小区的参考信号的配置信息,以用于位于第一小区的第一终端设备根据所述配置信息确定第二小区的参考信号所对应的空间波束对第一终端设备的干扰;
    第二控制设备从第一控制设备获取指示所述产生干扰的空间波束的信息;以及
    第二控制设备基于所获取的指示所述产生干扰的空间波束的信息,进行第一小区和第二小区之间的干扰协调。
  28. 一种用于无线通信系统的通信方法,包括:
    第二终端设备从第二小区的第二控制设备获取指示禁用第二小区中对位于第一小区的第一终端设备产生干扰的空间波束的信息,其中,第一小区与第二小区相邻,第二终端设备位于第二小区;以及
    第二终端设备不向第二控制设备反馈指示要禁用的空间波束的信息,以使得第二控制设备禁用该空间波束。
  29. 一种计算机可读存储介质,包括可执行指令,当所述可执行指令由信息处理装置执行时,使所述信息处理装置执行根据权利要求25至28中的任一项所述的通信方法。
PCT/CN2018/072817 2017-01-18 2018-01-16 电子设备和通信方法 WO2018133771A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880006537.5A CN110168973B (zh) 2017-01-18 2018-01-16 电子设备和通信方法
US16/341,071 US10855426B2 (en) 2017-01-18 2018-01-16 Electronic device and communication method
US16/952,109 US20210160020A1 (en) 2017-01-18 2020-11-19 Electronic device and communication method
US17/893,194 US11843557B2 (en) 2017-01-18 2022-08-23 Electronic device and communication method for inter-cell interference coordination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710033252.8A CN108337065A (zh) 2017-01-18 2017-01-18 电子设备和通信方法
CN201710033252.8 2017-01-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/341,071 A-371-Of-International US10855426B2 (en) 2017-01-18 2018-01-16 Electronic device and communication method
US16/952,109 Continuation US20210160020A1 (en) 2017-01-18 2020-11-19 Electronic device and communication method

Publications (1)

Publication Number Publication Date
WO2018133771A1 true WO2018133771A1 (zh) 2018-07-26

Family

ID=62907748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072817 WO2018133771A1 (zh) 2017-01-18 2018-01-16 电子设备和通信方法

Country Status (3)

Country Link
US (3) US10855426B2 (zh)
CN (2) CN108337065A (zh)
WO (1) WO2018133771A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853751A (zh) * 2019-07-11 2021-12-28 索尼集团公司 电子设备、分布式单元设备、无线通信方法和存储介质
EP3879718A4 (en) * 2018-11-09 2022-08-03 ZTE Corporation INTER-CELL INTERFERENCE COORDINATION METHOD, BASE STATION, AND INFORMATION HOLDER

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366422B (zh) * 2017-01-26 2021-02-26 华为技术有限公司 小区间波束协调调度方法和相关设备
JP7017312B2 (ja) * 2017-02-20 2022-02-08 株式会社Nttドコモ 無線基地局、及び、無線通信方法
WO2018170863A1 (zh) * 2017-03-23 2018-09-27 华为技术有限公司 一种波束避让方法及基站
US20210250851A1 (en) * 2018-08-19 2021-08-12 Nokia Technologies Oy Methods, devices and computer readable medium for detecting cells in scenarios of carrier aggregation
CN110896550A (zh) * 2018-09-12 2020-03-20 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN110958636B (zh) * 2018-09-26 2022-03-29 维沃移动通信有限公司 Csi报告的上报方法、终端设备及网络设备
CN111245488A (zh) * 2018-11-28 2020-06-05 索尼公司 电子设备、通信方法和存储介质
CN111246516A (zh) * 2018-11-29 2020-06-05 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN111817755A (zh) * 2019-04-12 2020-10-23 索尼公司 基站设备、通信方法和存储介质
EP4176610A4 (en) * 2020-07-02 2024-04-03 Qualcomm Inc REPORT OF INTERFERENCE FROM NEIGHBORING CELLS DUE TO BEAM INTERFERENCE
CN114554520A (zh) * 2020-11-26 2022-05-27 维沃移动通信有限公司 干扰测量方法、装置、终端及网络侧设备
US20240072872A1 (en) * 2021-01-12 2024-02-29 Nippon Telegraph And Telephone Corporation Communication system, control method, and communication control device
US20230100009A1 (en) * 2021-01-14 2023-03-30 Apple Inc. Ongoing transmission protection and interference management
CN116318318A (zh) * 2021-12-21 2023-06-23 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688583A (zh) * 2011-07-22 2014-03-26 阿尔卡特朗讯 波束协调方法以及用于该方法的基站和用户终端
WO2015135139A1 (zh) * 2014-03-11 2015-09-17 华为技术有限公司 干扰协调方法及基站
WO2016013889A1 (ko) * 2014-07-25 2016-01-28 엘지전자 주식회사 무선 통신 시스템에서 셀 간 간섭 제거를 위한 방법 및 장치
CN106105300A (zh) * 2014-03-20 2016-11-09 株式会社Ntt都科摩 用户装置和基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594576B2 (en) * 2008-03-28 2013-11-26 Qualcomm Incorporated Short-term interference mitigation in an asynchronous wireless network
JP5581230B2 (ja) * 2011-01-07 2014-08-27 株式会社Nttドコモ 無線基地局装置及び無線通信方法
CN103369539B (zh) 2012-04-06 2016-10-05 华为技术有限公司 干扰协调的方法和装置
US10205568B2 (en) * 2014-10-17 2019-02-12 Lg Electronics Inc. Method and device for generating inter-cell information for cancelling inter-cell interference
JP2016220209A (ja) * 2015-05-22 2016-12-22 エイスーステック コンピューター インコーポレーテッドASUSTeK COMPUTER INC. 無線通信システムにおける基準信号送信を実行するための方法および装置
US10200894B2 (en) 2016-04-22 2019-02-05 City University Of Hong Kong Facilitating interference management in multi-cell and multi-user millimeter wave cellular networks
CN109150250B (zh) * 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688583A (zh) * 2011-07-22 2014-03-26 阿尔卡特朗讯 波束协调方法以及用于该方法的基站和用户终端
WO2015135139A1 (zh) * 2014-03-11 2015-09-17 华为技术有限公司 干扰协调方法及基站
CN106105300A (zh) * 2014-03-20 2016-11-09 株式会社Ntt都科摩 用户装置和基站
WO2016013889A1 (ko) * 2014-07-25 2016-01-28 엘지전자 주식회사 무선 통신 시스템에서 셀 간 간섭 제거를 위한 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879718A4 (en) * 2018-11-09 2022-08-03 ZTE Corporation INTER-CELL INTERFERENCE COORDINATION METHOD, BASE STATION, AND INFORMATION HOLDER
CN113853751A (zh) * 2019-07-11 2021-12-28 索尼集团公司 电子设备、分布式单元设备、无线通信方法和存储介质

Also Published As

Publication number Publication date
CN108337065A (zh) 2018-07-27
US10855426B2 (en) 2020-12-01
CN110168973B (zh) 2021-10-08
US20210160020A1 (en) 2021-05-27
US20220407640A1 (en) 2022-12-22
US20190238282A1 (en) 2019-08-01
CN110168973A (zh) 2019-08-23
US11843557B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US11843557B2 (en) Electronic device and communication method for inter-cell interference coordination
US11695451B2 (en) Electronic device, communication method and storage medium
US10804977B2 (en) Electronic device and communication method
CN103460618B (zh) 开环多输入多输出(mimo)的大延迟循环延迟分集(cdd)预编码方法及预编码器
JP2019531624A (ja) 次世代無線システムに対する空間変調
US20190394008A1 (en) INTER-POINT PARAMETER SIGNALING IN COORDINATED MULTI-POINT (CoMP) NETWORKS
US11101850B2 (en) Electronic device and communication method
WO2011087042A1 (ja) 無線基地局装置、移動端末装置及び無線通信方法
US20220173865A1 (en) Methods and Apparatus for Signaling Control Information
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US20220038970A1 (en) Electronic device, communication method and storage medium
KR102059983B1 (ko) Pucch를 통한 고도 pmi 보고
US10652066B2 (en) Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access
WO2018095122A1 (zh) 无线通信方法和无线通信设备
WO2019062736A1 (zh) 电子设备和通信方法
WO2018211821A1 (ja) 通信装置、基地局、方法及び記録媒体
CN107302421B (zh) 一种功率配置方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741672

Country of ref document: EP

Kind code of ref document: A1