WO2018133640A1 - 低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法 - Google Patents

低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法 Download PDF

Info

Publication number
WO2018133640A1
WO2018133640A1 PCT/CN2017/119375 CN2017119375W WO2018133640A1 WO 2018133640 A1 WO2018133640 A1 WO 2018133640A1 CN 2017119375 W CN2017119375 W CN 2017119375W WO 2018133640 A1 WO2018133640 A1 WO 2018133640A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
track
resistance
low
duct
Prior art date
Application number
PCT/CN2017/119375
Other languages
English (en)
French (fr)
Inventor
秦赵修
Original Assignee
秦赵修
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秦赵修 filed Critical 秦赵修
Publication of WO2018133640A1 publication Critical patent/WO2018133640A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/10Ground or aircraft-carrier-deck installations for launching aircraft using self-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits

Definitions

  • the invention relates to the field of launching spacecraft launch vehicle technology, in particular to a low wind resistance pipeline track, a simulated stratospheric low air resistance pipe with built-in track, a launch vehicle spacecraft launching system and a method for reducing the pipeline track resistance.
  • the prior art carriers that can be used to provide this capability are primarily heavy transport aircraft and rail transport systems.
  • the conveyor can reach a thin air area of more than 10,000 meters, but the transportation quality is small, the technology is complicated, and the risk factor is large; the known rail transportation system has a relatively low running speed, which is due to the high air density in the low altitude area and the transportation device is very It is difficult to achieve high-speed operation in such areas, so currently only the experimental commercial rail transport system can reach a maximum speed of about Mach 0.5.
  • Some conceptual single-drive rockets can usually reach more than 1 Mach, but the load is extremely low, the energy consumption is extremely high, and it is not practical. There is a technical problem that the rocket transport device cannot operate at high altitudes in high altitude areas at low altitudes.
  • the object of the present invention is to provide a low-resistance pipeline track, a simulated stratospheric low-resistance pipeline with a built-in track, a launch vehicle spacecraft launching system, and a method for reducing the resistance of the pipeline rail to alleviate the air in the prior art due to low altitude.
  • the density is large, and it is difficult for the transport device to achieve high-speed operation in such areas.
  • the rocket transport device cannot operate at high altitudes in high altitude areas at low altitudes.
  • the invention provides a low-resistance pipeline type track, comprising a roadbed and a plurality of pipe bodies fixed on the roadbed, wherein the plurality of pipe bodies are continuously fixed in sequence, and a plurality of the pipes are provided in the body
  • the track, the tracks in the two adjacent pipes are continuously connected, and the track is laid along the roadbed.
  • the pipe body includes a first fixing member and a second fixing member disposed at two ends thereof, a plurality of air ducts fixed between the two at equal intervals in the circumferential direction, and fixed on the inner wall of each of the air ducts
  • the plurality of heating units are adjacent to each other, and the plurality of the air ducts adjacent to the two pipeline bodies are respectively corresponding to each other.
  • a plurality of air blowing members are respectively connected to the plurality of air ducts, and a plurality of air outlets are respectively disposed on the plurality of air ducts at equal intervals in the axial direction, and airflows at the plurality of air outlets can meet each other. .
  • each of the air outlets on each of the air ducts corresponds to a position of each of the air outlets on each of the air ducts along an axial direction of the duct body.
  • each of the air ducts is at the same position in the axial direction, and an air outlet direction of each of the air outlets faces the air outlet adjacent to the circumferential direction thereof.
  • the airflow blown by each of the air outlets forms a wind curtain wrapped around the outer circumference of the duct body.
  • the heating unit comprises a heating tube, a transformer and a temperature sensor, and the heating tube is fixed on an inner wall of the air duct.
  • the transformer and the temperature sensor are both electrically connected to the heating tube.
  • the heating rod has a ring structure.
  • the plurality of heating tubes are plural, and the plurality of heating tubes are disposed at equal intervals along the axial direction of the air duct.
  • the track sequentially includes a descending speed increasing section, a horizontal acceleration section, a rising acceleration section, a simulated stratospheric section and a braking section along the paving direction of the roadbed.
  • the track further includes a transition section disposed at a final stage of the simulated stratosphere section along a laying direction of the subgrade, and a heating unit in the duct body at the transition section The number is decreasing.
  • the difference between the air density in the duct body and the outer air density at the transition section is less than 20%.
  • the roadbed includes a plurality of load-bearing seats laid on the ground along the terrain and a track surface laid on the plurality of load-bearing seats, the load-bearing seat is provided with a plurality of load-bearing plates, and the plurality of the load-bearing plates The plates are fixedly connected to each other by reinforcing bars.
  • the surface roughness of the load bearing plate is between 25 um and 75 um.
  • a reinforcement is further included, the reinforcement being configured to secure two adjacent pipe bodies.
  • the reinforcing member includes a C-shaped positioning member and a fastener configured to connect two adjacent pipe bodies, the fastener fixing the first one of the two adjacent pipe bodies The piece is connected to the second fixing member in the other.
  • the first fixing member and the second fixing member are respectively provided with connecting holes, and the fasteners sequentially pass through the connecting holes of the two and are screwed with the C-shaped positioning member, and the two adjacent two The pipe bodies are connected together.
  • first fixing members in one of the two adjacent pipe bodies are welded to the second fixing members in the other, and the two adjacent pipe bodies are connected together.
  • the air blowing member is a blower.
  • the outer surface of the first fixing member is circumferentially recessed to form a plurality of grooves
  • the outer surface of the second fixing member protrudes circumferentially outward to form a plurality of protrusions, and the protrusions
  • the grooves are matched.
  • the low wind resistance pipeline track comprises a roadbed and a plurality of pipe bodies fixed on the roadbed, wherein the plurality of pipe bodies are sequentially fixed, the pipe body comprises a first fixing member and a second fixing member disposed at both ends thereof, and further comprises a circumferential a plurality of air ducts fixed between the two at equal intervals and corresponding to the plurality of air ducts of the adjacent duct body are respectively connected, and the first fixing member, the second fixing member and the first fixing member are fixed at the same interval in the circumferential direction
  • the plurality of air ducts between the fixing member and the second fixing member together form a duct body like a cage structure, and the cage body like a cage covers the rail.
  • a plurality of heating units are respectively fixed on the inner walls of the plurality of air ducts, and the heating unit can heat the air inside the low wind resistance duct type rails to a certain temperature, and the characteristics of the air density decrease according to the temperature increase, The density of the air inside the low-resistance pipeline track will be reduced, ie the wind resistance will be reduced, thus providing better acceleration conditions for the large thrust jet engine or rocket-powered track block, thus providing a higher initial for the spacecraft it carries. speed.
  • a plurality of air blowing members are respectively connected to the plurality of air ducts, and a plurality of air outlets are respectively arranged on the plurality of air ducts at equal intervals in the axial direction, and the air outlets of the same position of any two adjacent air ducts are blown out.
  • the airflows are all biased toward each other, so that the airflow can be diplomatically exchanged in the pipe body, and the intersecting airflow can form a wind curtain, and the air curtain covers the outer surface of the low wind resistance pipeline track, wherein the air curtain does not hinder the heat expansion of the pipe body
  • the gas overflows, but can reduce the gas exchange between the air inside the low-resistance pipeline-type rail pipe body and the external air, thereby ensuring that the low air temperature inside the low-resistance pipeline-type rail pipe body is maintained at a preset level, and also maintains
  • the stability of the air density environment according to the air resistance formula: C is the air resistance coefficient, ⁇ is the air density, S is the windward area of the object, and V is the relative motion speed of the object and the air. It can be seen from this formula that decreasing the air density can reduce the air resistance.
  • the low wind resistance pipeline type rail forms a duct body like a cage structure through a first fixing member, a second fixing member and a plurality of air ducts which are fixed at equal intervals in the circumferential direction, and is utilized in a plurality of heating units disposed on the inner wall of the plurality of air ducts to realize an environment with low wind resistance inside the duct body, and at the same time, a wind curtain formed by airflows intersecting each other through the plurality of air outlets to reduce the interior of the low wind resistance pipeline rail.
  • the exchange of air with the outside air ensures the stability of the low wind resistance environment inside the low wind resistance pipeline track, which in turn enables the orbital block of the launch vehicle spacecraft or other spacecraft to finally provide a higher initial for the spacecraft.
  • the purpose of speed can even directly reach the starting speed of the aero-engine blasting ramjet engine, which can save a lot of fuel and achieve the purpose of single-stage or full recovery and re-use of the spacecraft.
  • the present invention provides a launch vehicle spacecraft launch system having the above described low wind resistance ducted track.
  • the launch vehicle spacecraft launch system has the same advantages as the low wind resistance duct track described above and will not be described here.
  • the invention provides a simulated stratospheric low-resistance pipeline with a built-in rail, which is continuously constructed by a pipeline composed of a rail, a fixed frame, a duct, a blower, a left balance rail, a right balance rail and a heating device.
  • the roadbed is laid along the terrain, and the track is laid on the roadbed. It is divided into a descending speed increasing section, a horizontal acceleration section, a rising acceleration section, a simulated stratospheric section and a braking section, and the descending speed increasing section and the horizontal acceleration section are laid on a flat surface with low elevation.
  • the ascending acceleration section extends up the mountain slope to the top of the mountain, and the simulated stratosphere section and the braking section extend along the ridge.
  • the fixing frame is arranged across the track; the façades on both sides of the fixing frame are arranged at equal distances along the air duct interface, and the air duct is connected to the air duct interface of two adjacent fixed frames, and all the fixing frames and the air duct are sequentially connected to form a cage.
  • the pipe of the structure is covered at the end of the ascending acceleration section of the track and the simulated stratosphere, and the pipe is provided with an air heating device.
  • the two ends of the fixing frame are vertically fixed on both sides of the track, and the plane where the fixing frame is located is perpendicular to the ground plane.
  • the outer portions of the fixing frame and the air duct are covered with a heat-resistant layer.
  • the road section has a fixed frame
  • the left balance rail is fixed in the middle of the left inner side of the fixed frame
  • the right balance rail is fixed in the middle of the right inner side of the fixed frame
  • the road section without the fixed frame, the left balance rail and the right balance rail are respectively Bracket support.
  • a guide magnet is disposed on the right side surface of the left balance rail and the left side surface of the right balance rail.
  • the air in the simulated stratospheric pipeline is heated by 50-200 °C. Since the position of the simulated stratospheric pipeline is above 6500 meters, the air at this position is already very thin, and the air density is further reduced after heating, usually the temperature is usually Increasing the density of 10 °C by nearly 3%, so the air density inside the pipeline will be close to the air density of 10,000-12,000 meters, which will greatly reduce the air resistance of the track block, which can reach supersonic speed even 2 times, 3 times. The speed of sound gives the track block a high initial velocity and a certain height.
  • the invention also provides a method for reducing the resistance of a pipeline track, which is realized by using the low wind resistance pipeline track described above, comprising the following steps:
  • the method further includes the following steps:
  • the method for reducing the resistance of the pipeline track utilizes a low-resistance pipeline track to achieve a reduction in the internal resistance of the orbit, ensuring that the orbital block of the launch vehicle spacecraft or other spacecraft can provide a higher initial velocity for the spacecraft, saving fuel.
  • FIG. 1 is a schematic structural view of a low wind resistance duct type track according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural view of the air duct of Figure 1;
  • Figure 3 is a schematic structural view of the track of Figure 1;
  • Figure 4 is a schematic structural view of the reinforcing member of Figure 1;
  • FIG. 5 is a schematic structural view of the bearing seat of FIG. 1.
  • FIG. 5 is a schematic structural view of the bearing seat of FIG. 1.
  • Icons 1-subgrade; 2-pipe body; 3-track; 4-blower; 5--firmener; 6-topography; 11-bearing seat; 12-track surface; 111-bearing plate; 1111-anchor hole; First fixing member; 22-second fixing member; 23-air pipe; 24-heating unit; 231-air outlet; 241-heating pipe; 31-sliding speed increasing section; 32-horizontal acceleration section; 33-rising acceleration section ; 34 - simulated stratosphere; 35 - braking section; 51-C type positioning member; 52 - fasteners.
  • connection and “connected” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise explicitly defined and defined.
  • Ground connection it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two components.
  • intermediate medium which can be the internal connection of two components.
  • a low wind resistance pipeline type rail provided by the embodiment includes a roadbed 1 and a plurality of pipeline bodies 2 fixed on the roadbed 1 , and the plurality of pipeline bodies 2 are continuously fixed in sequence, and the roadbed 1 is laid.
  • the pipe body 2 includes a first fixing member 21 and a second fixing member 22 disposed at two ends thereof (the first fixing member 21 and the second fixing member 22 are also referred to as a fixing frame together), and are fixed at two equal intervals in the circumferential direction.
  • a plurality of air blowing members are respectively connected to the plurality of air ducts 23, and a plurality of air outlets 231 are respectively disposed on the plurality of air ducts 23 at equal intervals in the axial direction, and the airflows at the plurality of air outlets 231 can meet each other.
  • the low-resistance pipeline type rail includes a roadbed 1 and a plurality of pipe bodies 2 fixed on the roadbed 1.
  • the plurality of pipe bodies 2 are sequentially fixed, and the pipe body 2 includes first fixing members 21 and second fixings disposed at both ends thereof.
  • the member 22 further includes a plurality of air ducts 23 fixed between the two at equal intervals in the circumferential direction, and the plurality of air ducts 23 of the adjacent duct body 2 are respectively corresponding to each other, the first fixing member 21 and the second fixing member 22 and a plurality of air ducts 23 fixed between the first fixing member 21 and the second fixing member 22 at equal intervals in the circumferential direction to form a duct body 2 like a cage structure, and like a cage body 2 Covered on the track 3.
  • a plurality of heating units 24 are respectively fixed on the inner walls of the plurality of air ducts 23, and the heating unit 24 can heat the air inside the low-resistance duct type rails to a certain temperature, and the density decreases according to the temperature.
  • the characteristics of the air inside the low-resistance pipeline track will be reduced, that is, the wind resistance will be reduced, thus providing better acceleration conditions for the large thrust jet engine or rocket-powered track block, and thus providing spacecraft for its carrying spacecraft. Higher initial speed.
  • a plurality of air blowing members are respectively connected to the plurality of air ducts 23, and a plurality of air outlets 231 are respectively disposed on the plurality of air ducts 23 at equal intervals in the axial direction, and any two adjacent air outlets 231
  • the airflow can meet, so that the airflows at the plurality of air outlets 231 are merged together, and the intersecting airflow can form a wind curtain, and the air curtain covers the outer surface of the low wind resistance pipeline rail, wherein the air curtain does not obstruct the pipeline body 2
  • the heat-expanded gas overflows, but can reduce the gas exchange between the air inside the pipe body 2 of the low-resistance pipeline track and the external air, thereby ensuring a low air density environment inside the pipe body 2 of the low wind resistance pipeline track.
  • C is the air resistance coefficient
  • is the air density
  • S is the windward area of the object
  • V is the relative motion speed of the object and the air. It can be seen from this formula that decreasing the air density can reduce the air resistance.
  • the low wind resistance duct type rail forms a duct body 2 like a cage structure through a first fixing member 21, a second fixing member 22 and a plurality of air ducts 23 fixed at equal intervals in the circumferential direction.
  • a plurality of heating units 24 correspondingly disposed on the inner walls of the plurality of air ducts 23 to realize an environment with low wind resistance inside the duct body 2, and at the same time, through a plurality of air curtains 231, the air curtain formed by the airflows at the plurality of air outlets 231 Reducing the gas exchange between the air inside the low-resistance pipeline track and the external air, ensuring the stability of the low wind resistance environment inside the low wind resistance pipeline track, so that the orbital block of the launch vehicle spacecraft or other spacecraft can finally reach
  • the purpose of providing a high initial velocity for the spacecraft it can even directly reach the starting speed of the aero-engine blasting engine, which can save a lot of fuel and achieve the purpose of single-stage or full recovery and re-use
  • the roadbed 1 of the pipeline is laid on a mountain peak above 6000 meters above sea level.
  • the air in the pipe body 2 is heated by 50-200 ° C, because of the low wind resistance pipeline type
  • the position of the track is above 6000 meters. Therefore, the air at this position is very thin, and the air density inside the low-resistance pipeline track after reheating via the heating unit 24 is further reduced.
  • the density decreases every 10 °C increase in temperature. Nearly 3% therefore, the air density inside the low-resistance pipeline track after heating will be close to the high-altitude air density of 10,000-12000M, which will greatly reduce the air resistance of the orbital block of the launch vehicle spacecraft or other spacecraft. It can reach supersonic speeds and even speeds of 2 times to 3 times the speed of sound.
  • the heating unit 24 includes a heating tube 241 , a transformer and a temperature sensor, and the heating tube 241 is fixed on the inner wall of the air duct 23 .
  • the transformer and the temperature sensor are electrically connected to the heating tube 241.
  • the temperature sensor can better detect the temperature of the heating pipe 241, and select the on-off of the heating unit 24 and the external power source through the real-time temperature detected by the temperature sensor, thereby reducing or even avoiding the continuous heating of the heating pipe 241.
  • the heating unit 24 is further provided with a transformer, and the power of the heating pipe 241 is adjusted by the transformer, so that the heating temperature of the heating unit 24 is better adjusted.
  • the temperature sensor and the transformer of the heating unit 24 preferably improve the utility and safety of the steam generating device.
  • the heating tube 241 is preferably a ring structure.
  • the track 3 sequentially includes a descending speed increasing section 31, a horizontal acceleration section 32, a rising acceleration section 33, a simulated stratospheric section 34, and a braking section 35 in the paving direction of the subgrade 1.
  • a transition section is provided at the end of the simulated stratosphere section 34, and the number of heating units 24 in the duct 23 at the transition section is decreased, so that the temperature in the duct body 2 is gradually lowered to make the air at the transition section
  • the density gradually increases, and finally the difference between the air density and the outer air density in the pipe body 2 of the low wind resistance pipeline track transition portion is controlled within 20% to avoid damage to the spacecraft caused by severe air density changes.
  • the roadbed 1 includes a plurality of load-bearing seats 11 laid on the ground along the topography 6 and a track surface 12 laid on the plurality of load-bearing seats 11, and the load-bearing seat 11 is provided with a plurality of The load-bearing plate 111 and the plurality of load-bearing plates 111 are fixedly connected by reinforcing bars.
  • the bearing plate 111 can improve the overall stress of the load-bearing seat 11, and reduce or even avoid the occurrence of torsional deformation of the roadbed 1.
  • the bearing plate 111 is provided with an anchoring hole 1111, and the reinforcing steel rod is inserted through the anchoring hole 1111 of the bearing plate 111.
  • the plurality of bearing plates 111 are fixedly connected by the reinforcing bar, and the anchoring hole 1111 can effectively maintain the reinforcing bar. It is ensured that the plurality of load-bearing plates 111 can be connected in sequence, so that the load-bearing plate 111 and the concrete form the entire load-bearing seat 11 through the concrete pouring, thereby ensuring the tensile and compressive strength of the structure.
  • the bearing plate 111 in the present embodiment has a roughness of 25 um to 75 um, thereby increasing the contact area of the surface of the bearing plate 111, so that the connection between the bearing plate 111 and the concrete can be better achieved.
  • a shearing force is generated between the bearing plate 111 and the reinforcing bar, and the anchoring hole 1111 on the bearing plate 111 is provided with a convex ring.
  • the protruding ring protrudes outward along the anchoring hole 1111, and is formed by one-time processing by punching.
  • the cross-sectional shape is a ring, which further increases the contact area between the reinforcing bar and the bearing plate 111, so that the bearing frame 11 is subjected to
  • the convex ring can absorb the partial shearing force between the bearing plate 111 and the reinforcing bar, thereby reducing the occurrence of concrete breakage between the bearing plate 111 and the reinforcing bar, thereby improving the entire roadbed 1 Structural strength.
  • the low-resistance pipeline track further includes a reinforcement 5, and the reinforcement 5 is used to Adjacent pipe bodies 2 are fixed.
  • the reinforcing member 5 includes a C-shaped positioning member 51 and a fastener 52 for connecting adjacent two pipe bodies 2, and the fastener 52 will be the first of the two adjacent pipe bodies 2
  • a fixing member 21 is connected to the second fixing member 22 of the other.
  • the first fixing member 21 and the second fixing member 22 are respectively provided with connecting holes, and the fasteners 52 sequentially pass through the connecting holes of the two and are screwed with the C-shaped positioning member 51 to connect the adjacent two pipe bodies 2 together. .
  • the joint of the pipe body 2 in order to improve the connection fastness between adjacent pipe bodies 2, the joint of the pipe body 2 can be welded.
  • the air blowing member is a blower.
  • the outer surface of the first fixing member 21 is circumferentially recessed to form a plurality of grooves, and the outer surface of the second fixing member 22
  • the plurality of protrusions are formed to protrude outwardly from the circumference, and the protrusions are matched with the grooves.
  • the embodiment also provides a method for reducing the resistance of the pipeline track, which is implemented by using the low wind resistance pipeline track, and includes the following steps:
  • the heating unit 24 is turned on, and the air ducts 23 are heated to realize heating of the respective duct bodies 2.
  • the method for reducing the resistance of the pipeline track utilizes a low-resistance pipeline track to achieve a reduction in the internal resistance of the orbit, ensuring that the orbital block of the launch vehicle spacecraft or other spacecraft can provide a higher initial velocity for the spacecraft, saving fuel.
  • step S10 the following steps may also be included:
  • Each blower 4 is turned on to form a wind curtain on the outer circumference of the duct body 2.
  • the embodiment provides a launch vehicle spacecraft launching system, and the launch vehicle spacecraft launching system has the low wind resistance pipeline track described in the first embodiment.
  • the launch vehicle spacecraft launch system has the same advantages as the low wind resistance duct track described above, and will not be described here.
  • the embodiment provides a simulated stratospheric low wind resistance pipeline with built-in rails, and the pipeline consisting of the rail 3, the fixed frame, the air duct 23, the air blower 4, the left balance rail, the right balance rail and the heating device is continuously constructed.
  • Cheng in which the roadbed 1 is laid along the terrain, and the track 3 is laid on the roadbed 1, which is divided into a descending speed increasing section 31, a horizontal acceleration section 32, a rising acceleration section 33, a simulated stratospheric section 34 and a braking section 35, and a descending speed increase.
  • Section 31 and horizontal acceleration section 32 are laid on a flat surface at a low elevation, and the ascending acceleration section 33 extends up the mountain slope to the top of the mountain, and the simulated stratosphere section 34 and the braking section 35 extend along the ridge.
  • the fixing frame is arranged across the track 3, and the façades of the fixing frame are arranged at equal distances along the air duct interface, and the air duct 23 is connected to the air duct interface of two adjacent fixing frames, and all the fixing frames and the air duct 23 are sequentially connected.
  • the duct forming the cage structure covers the end section of the ascending acceleration section 33 of the rail 3 and the simulated stratosphere section 34, and the duct has an air heating device built therein.
  • the two ends of the fixing frame are vertically fixed on both sides of the track 3, and the plane of the fixing frame is perpendicular to the ground plane.
  • the outer portions of the fixing frame and the air duct 23 are covered with a heat-resistant layer.
  • the low wind resistance pipeline track further includes a left balance rail (also referred to as a left support rail) and a right balance rail (also referred to as a right support rail), specifically, a left balance rail And the right balance rail are fixed inside the duct body 2, and the two are disposed on both sides of the rail 3. Also, both the left balance rail and the right balance rail are equal in length to the acceleration section of the rail 3.
  • the road section with fixed frame the left balance rail is fixed in the middle of the left inner side of the fixed frame, the right balance rail is fixed in the middle of the right inner side of the fixed frame; the road section without the fixed frame, the left balance rail and the right balance rail are respectively supported by the bracket.
  • a guide magnet is disposed on both the right side surface of the left balance rail and the left side surface of the right balance rail.
  • the simulated stratospheric low-resistance pipeline with built-in track simulates the air density along the high-speed section of the track into the stratospheric air density by means of physical heating and wind curtain shielding, thereby greatly reducing the wind resistance, and is a large thrust jet engine.
  • rocket-powered track blocks provide better acceleration conditions, giving them a higher initial speed and take-off height for rockets or other spacecraft, saving significant fuel and structural weight, and even directly reaching the scramjet of aerospace vehicles.
  • the starting speed of the engine reaches the goal of full recovery or reuse of the spacecraft.
  • the low wind resistance pipeline track, the launch vehicle spacecraft launching system and the method for reducing the pipeline track resistance provided by the embodiments of the invention reduce the running resistance of the rail thruster driven by the large thrust jet engine or the rocket, thereby providing the track block Better acceleration conditions allow the spacecraft to carry a higher initial velocity, effectively save fuel, and achieve the goal of single-stage or full recovery and reuse of the spacecraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Structures (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法,涉及运载火箭航天器发射技术领域,该低风阻管道式轨道包括路基(1)和固设在路基(1)上的多个管道本体(2),多个管道本体(2)依次连续固接,所述路基(1)上铺设有轨道(3),各所述管道本体(2)沿所述轨道(3)的铺设方向跨设在所述轨道(3)的上方,管道本体(2)包括设置在其两端的第一固定件(21)、第二固定件(22)、多个风管(23)和多个加热单元(24),且相邻两管道本体(2)的多个风管(23)分别对应相通,多个风管(23)上分别对应连通有多个鼓风件(4),且多个风管(23)上沿轴向等间距分别设有多个出风口(231),多个出风口(231)处的气流能够彼此交汇。低风阻管道式轨道具有能够使得火箭运输装置在低海拔地区向高海拔地区高速运行的特点。

Description

低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法
相关申请的交叉引用
本申请要求于2017年01月21日提交中国专利局的申请号为201710068657.5、名称为“内置轨道的模拟平流层低风阻管道”及2017年11月16日提交中国专利局的申请号为2017111397808、名称为“低风阻管道式轨道及运载火箭航天器发射系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及运载火箭航天器发射技术领域,尤其涉及一种低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法。
背景技术
单级入轨或全回收重复使用的航天器是航天科技人员近百年来的梦想。英国宇航公司与罗尔斯.罗伊斯公司于20世纪80年代提出了一种HOTOL航天运输系统设计,后因为多种原因而停止。但其研究结论表明:水平起飞的航天器,当其初始速度较高时可以大幅度降低燃料消耗,同时节约结构重量。当运载车辆速度达到0.2马赫时可节省8.8%的推进剂(又被称为燃料),0.4马赫时可节省16.7%推进剂,速度更高时还可以进一步节省推进剂。
现有技术可用于提供这种能力的运载装置主要是重型运输机和轨道运输系统。运输机可以达到10000米以上的空气稀薄区域,但运输质量小,技术复杂,风险系数较大;目前已知的轨道运输系统运行速度都比较低,这是由于低海拔地区空气密度大,运输装置很难在这类的地区实现高速运行,所以目前只有实验性商用轨道运输系统的最大速度能达到0.5马赫左右。有些概念性的单人驾驶火箭滑车通常能达到1马赫以上,但载荷极低,能耗极高,无法实用,存在火箭运输装置无法在低海拔地区向高海拔地区高速运行的技术问题。
发明内容
本发明的目的在于提供一种低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法,以缓解现有技术中由于低海拔地区空气密度大,运输装置很难在这类的地区实现高速运行,存在火箭运输装置无法在低海拔地区向高海拔地区高速运行的技术问题。
本发明提供的一种低风阻管道式轨道,包括路基和固设在所述路基上的多个管道本体,多个所述管道本体依次连续固接,且多个所述管道本体内均设有轨道,相邻两所述管道本体内的所述轨道连续相接,所述轨道沿所述路基铺设。
所述管道本体包括设置在其两端的第一固定件与第二固定件、沿周向等间距固设在两者之间的多个风管和固设在每一所述风管的内壁上的多个加热单元,且相邻两所述管道本 体的多个所述风管分别对应相通。
多个所述风管上分别对应连通有多个鼓风件,且多个所述风管上沿轴向等间距分别设有多个出风口,多个所述出风口处的气流能够彼此交汇。
进一步的,每一所述管道本体中,沿所述管道本体的轴向,各所述风管上的各所述出风口与其余各所述风管上的各所述出风口位置对应。
进一步的,各所述风管在轴向相同位置处,各所述出风口的出风方向朝向与其周向相邻的所述出风口。
由所述管道本体的一端看向其另一端,各所述出风口吹出的气流形成包裹在所述管道本体外周的风幕。
进一步的,所述加热单元包括加热管、变压器和温度传感器,所述加热管固设于所述风管的内壁上。
所述变压器和所述温度传感器均与所述加热管电连接。
进一步的,所述加热棒为环形结构。
进一步的,每一所述风管中,所述加热管为多个,多个所述加热管沿所述风管的轴向等间隔设置。
进一步的,所述轨道沿所述路基铺设方向依次包括下滑增速段、水平加速段、上升加速段、模拟平流层段和制动段。
进一步的,所述轨道还包括过渡段,所述过渡段设置在所述模拟平流层段的末段,沿所述路基的铺设方向,所述过渡段处的所述管道本体中的加热单元的数量递减。
进一步的,所述过渡段处的所述管道本体内的空气密度与外空气密度的差值小于20%。
进一步的,所述路基包括沿地形铺设在地面上的多个承重座和铺设在多个所述承重座上的轨道面,所述承重座内设有多个承重板,且多个所述承重板通过钢筋彼此固定连接。
进一步的,所述承重板的表面粗糙度在25um-75um之间。
进一步的,还包括加固件,所述加固件配置成将两个相邻的所述管道本体固接。
进一步的,所述加固件包括C型定位件和配置成连接相邻两所述管道本体的紧固件,所述紧固件将相邻两所述管道本体一者中的所述第一固定件与另一者中的所述第二固定件相连。
所述第一固定件与所述第二固定件上均设有连接孔,所述紧固件依次穿过两者的所述连接孔并与所述C型定位件螺纹连接,将相邻两所述管道本体连接在一起。
进一步的,相邻两所述管道本体一者中的所述第一固定件与另一者中的所述第二固定件焊接,将相邻两所述管道本体连接在一起。
进一步的,所述鼓风件为鼓风机。
进一步的,所述第一固定件的外表面周向向内凹陷形成多个凹槽,所述第二固定件的外表面周向向外凸出形成多个凸起,所述凸起与所述凹槽相匹配。
本发明低风阻管道式轨道的有益效果为:
该低风阻管道式轨道包括路基和固设在路基上的多个管道本体,多个管道本体依次固接,管道本体包括设置在其两端的第一固定件与第二固定件,还包括沿周向等间距固设在两者之间的多个风管且相邻的管道本体的多个风管分别对应相通,第一固定件、第二固定件和沿周向等间距固设在第一固定件与第二固定件两者之间的多个风管共同形成宛如笼状结构的管道本体,并且宛如笼状的管道本体覆盖在轨道上。其中,多个风管内壁上分别对应固设有多个加热单元,加热单元能够将该低风阻管道式轨道内部的空气加热到一定温度,根据空气的密度随着温度升高而降低的特性,该低风阻管道式轨道内部空气的密度将降低,即风阻降低,从而为以大推力喷气发动机或火箭为动力的轨道滑车提供更好的加速条件,进而为其运载的航天器提供较高的初始速度。
同时,多个风管上分别对应连通有多个鼓风件,且多个风管上沿轴向等间距分别设有多个出风口,任意相邻的两个风管的同一位置出风口吹出的气流均偏向彼此,使气流能够在管道本体外交汇,并且交汇的气流能够形成风幕,风幕覆盖于该低风阻管道式轨道的外表面,其中,风幕不会阻碍管道本体内受热膨胀的气体溢出,但能够减少该低风阻管道式轨道管道本体内部的空气与外部的空气的气体交换,进而以保障该低风阻管道式轨道管道本体内部低空气温度维持在预设的水平,也保持了空气密度环境的稳定性,根据空气阻力公式:
Figure PCTCN2017119375-appb-000001
C为空气阻力系数,ρ为空气密度,S为物体迎风面积,V为物体与空气的相对运动速度。由此公式可见,使空气密度下降可以降低空气阻力。
本发明提供的低风阻管道式轨道通过第一固定件、第二固定件和沿周向等间距固设在两者之间的多个风管共同形成宛如笼状结构的管道本体,并利用在多个风管内壁上对应设置的多个加热单元以实现管道本体内部低风阻的环境,同时,再通过多个出风口处彼此交汇的气流形成的风幕,以减少该低风阻管道式轨道内部的空气与外部的空气的气体交换,保障了该低风阻管道式轨道内部低风阻环境的稳定性,进而使得运载火箭航天器或者其他航天器的轨道滑车最终可以达到为航天飞行器提供较高的初始速度的目的,甚至可以直接达到航空飞行器的超燃冲压发动机的启动速度,能够节省大量燃料,且能够达到航天器单级入轨或全回收、重复使用的目的。
本发明提供一种具有上述低风阻管道式轨道的运载火箭航天器发射系统。
本发明运载火箭航天器发射系统的有益效果为:
该运载火箭航天器发射系统与上述低风阻管道式轨道所具有的优势相同,在此不再赘 述。
本发明提供一种内置轨道的模拟平流层低风阻管道,由轨道、固定框、风管、鼓风机、左侧平衡轨道、右侧平衡轨道和加热装置等组成的管道连续构筑而成。
路基沿地形铺设,轨道铺设在路基上,分为下滑增速段、水平加速段、上升加速段、模拟平流层段和制动段,下滑增速段和水平加速段铺设在低海拔的平坦地面,上升加速段沿山体缓坡向上延伸至山顶,模拟平流层段和制动段沿山脊延伸。
固定框横跨轨道排列;固定框两侧立面沿其等距设置风管接口,风管连接在两相邻固定框的风管接口上,所有的固定框和风管均依次连接,形成笼状结构的管道,覆盖在轨道的上升加速段末段和模拟平流层段上,管道内置空气加热装置。
进一步的,固定框两端分别垂直固定在轨道两侧,固定框所在的平面垂直于地平面。
进一步的,固定框和风管的外部覆盖有耐热层。
进一步的,有固定框的路段,左侧平衡轨道固定在固定框左内侧中部,右侧平衡轨道固定在固定框右内侧中部;无固定框的路段,左侧平衡轨道和右侧平衡轨道分别由支架支撑。
进一步的,左侧平衡轨道的右侧面和右侧平衡轨道的左侧面均设置有导向磁铁。
本发明内置轨道的模拟平流层低风阻管道的有益效果为:
使用时,将模拟平流层管道内空气加热50-200℃,由于模拟平流层管道的位置在6500米以上的山峰上,该位置空气本来就非常稀薄,再加热后空气密度进一步降低,通常温度每升高10℃密度下降近3%,因此加热后管道内空气密度将和10000-12000米高空空气密度接近,使轨道滑车受到的空气阻力大幅度下降,可以达到超音速甚至达到2倍、3倍音速,赋予轨道滑车高初速和一定的高度。
本发明还提供一种降低管道式轨道阻力的方法,利用上述低风阻管道式轨道实现,包括如下步骤:
S10:开启各所述加热单元,对各所述风管加热,以实现对各所述管道本体的加热。
进一步的,所述步骤S10之后,还包括如下步骤:
S20:开启各所述鼓风件,以在所述管道本体的外周形成风幕。
本发明降低管道式轨道阻力的方法的有益效果为:
该降低管道式轨道阻力的方法利用低风阻管道式轨道,实现了对轨道内部阻力的降低,保证了运载火箭航天器或者其他航天器的轨道滑车能够为航天飞行器提供较高的初始速度,节约了燃料。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施 方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的低风阻管道式轨道的结构示意图;
图2为图1中的风管的结构示意图;
图3为图1中的轨道的结构示意图;
图4为图1中的加固件的结构示意图;
图5为图1中的承重座的结构示意图。
图标:1-路基;2-管道本体;3-轨道;4-鼓风机;5-加固件;6-地形;11-承重座;12-轨道面;111-承重板;1111-锚固孔;21-第一固定件;22-第二固定件;23-风管;24-加热单元;231-出风口;241-加热管;31-下滑增速段;32-水平加速段;33-上升加速段;34-模拟平流层段;35-制动段;51-C型定位件;52-紧固件。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
如图1所示,本实施例提供的一种低风阻管道式轨道,包括路基1和固设在路基1上的多个管道本体2,多个管道本体2依次连续固接,路基1上铺设有轨道3,各管道本体2沿轨道3的铺设方向跨设在轨道3的上方。
管道本体2包括设置在其两端的第一固定件21与第二固定件22(第一固定件21与第 二固定件22一起又被称为固定框)、沿周向等间距固设在两者之间的多个风管23和固设在每一风管23的内壁上的多个加热单元24(又被称为加热装置),且相邻两管道本体2的多个风管23分别对应相通。
多个风管23上分别对应连通有多个鼓风件,且多个风管23上沿轴向等间距分别设有多个出风口231,多个出风口231处的气流能够彼此交汇。
该低风阻管道式轨道包括路基1和固设在路基1上的多个管道本体2,多个管道本体2依次固接,管道本体2包括设置在其两端的第一固定件21与第二固定件22,还包括沿周向等间距固设在两者之间的多个风管23且相邻的管道本体2的多个风管23分别对应相通,第一固定件21、第二固定件22和沿周向等间距固设在第一固定件21与第二固定件22两者之间的多个风管23共同形成宛如笼状结构的管道本体2,并且宛如笼状的管道本体2覆盖在轨道3上。其中,多个风管23内壁上分别对应固设有多个加热单元24,加热单元24能够将该低风阻管道式轨道内部的空气加热到一定温度,根据空气的密度随着温度升高而降低的特性,该低风阻管道式轨道内部空气的密度将降低,即风阻降低,从而实现为以大推力喷气发动机或火箭为动力的轨道滑车提供更好的加速条件,进而为其运载的航天器提供较高的初始速度。
同时,多个风管23上分别对应连通有多个鼓风件,且多个风管23上沿轴向等间距分别设有多个出风口231,任意相邻的两个出风口231处的气流能够交汇,进而使多个出风口231处的气流交汇在一起,并且交汇的气流能够形成风幕,风幕覆盖于该低风阻管道式轨道的外表面,其中,风幕不会阻碍管道本体2内受热膨胀的气体溢出,但能够减少该低风阻管道式轨道的管道本体2内部的空气与外部的空气的气体交换,进而以保障该低风阻管道式轨道的管道本体2内部低空气密度环境的稳定性,根据空气阻力公式:
Figure PCTCN2017119375-appb-000002
C为空气阻力系数,ρ为空气密度,S为物体迎风面积,V为物体与空气的相对运动速度。由此公式可见,使空气密度下降可以降低空气阻力。
本发明提供的低风阻管道式轨道通过第一固定件21、第二固定件22和沿周向等间距固设在两者之间的多个风管23共同形成宛如笼状结构的管道本体2,并利用在多个风管23内壁上对应设置的多个加热单元24以实现管道本体2内部低风阻的环境,同时,再通过多个出风口231处彼此交汇的气流形成的风幕,以减少该低风阻管道式轨道内部的空气与外部的空气的气体交换,保障了该低风阻管道式轨道内部低风阻环境的稳定性,进而使得运载火箭航天器或者其他航天器的轨道滑车最终可以达到为航天飞行器提供较高的初始速度的目的,甚至可以直接达到航空飞行器的超燃冲压发动机的启动速度,能够节省大量燃料,且能够达到航天器单级入轨或全回收、重复使用的目的。
在本实施例中,该管道的路基1铺设在海拔6000米以上的山峰上,进行该低风阻管道 式轨道调试时,将管道本体2内的空气加热50-200℃,由于该低风阻管道式轨道的位置在6000米以上的山峰上,因此,该位置的空气非常稀薄,经由加热单元24再加热后的该低风阻管道式轨道内部的空气密度进一步降低,(温度每升高10℃密度下降近3%),因此,加热后该低风阻管道式轨道内部的空气密度将和10000-12000M的高空空气密度接近,进而使得运载火箭航天器或者其他航天器的轨道滑车受到的空气阻力大幅度下降,可以达到超音速甚至达到2倍-3倍音速的速度。
如图2所示,具体的,加热单元24包括加热管241、变压器和温度传感器,加热管241固设于风管23内壁上。
变压器、温度传感器均与加热管241电连接。
在本实施例中,温度传感器能够较好的检测加热管241的温度,通过温度传感器检测到的实时温度选择加热单元24与外接电源的通断,减少甚至避免因加热管241的持续加热而造成风管23变形的危险。同时加热单元24还设有变压器,通过变压器调节该加热管241的功率,从而较好的调节加热单元24的加热温度。加热单元24的温度传感器与变压器较好的提高了该蒸汽发生装置的实用性与安全性。
具体的,为能够提高该风管23的热传导面积,减少甚至避免加热管241热损失的情况,在本实施例中,加热管241优选为环形结构。
如图3所示,其中,在本实施例中,轨道3沿路基1铺设方向依次包括下滑增速段31、水平加速段32、上升加速段33、模拟平流层段34和制动段35。
在本实施例中,在模拟平流层段34的末段设置过渡段,过渡段处的风管23内加热单元24数量递减,从而使管道本体2内温度逐渐降低,以使过渡段处的空气密度逐渐增大,最终使得该低风阻管道式轨道过渡段部分的管道本体2内空气密度与外空气密度差控制在20%以内,以避免剧烈的空气密度变化损坏航天器。
如图1和图5所示,具体的,路基1包括沿地形6铺设在地面上的多个承重座11和铺设在多个承重座11上的轨道面12,承重座11内设有多个承重板111,且多个承重板111通过钢筋固定连接。
在本实施例中,承重板111能够提高承重座11的整体受力性,减少甚至避免路基1扭转变形情况的发生。其中,承重板111上设置有锚固孔1111,将钢筋穿设过承重板111上的锚固孔1111,多个承重板111通过钢筋固定连接,锚固孔1111能够有效地起到保持钢筋固定的作用,确保多个承重板111均能够依次连接,从而再通过混凝土浇筑使得承重板111与混凝土共同形成整个承重座11,保证结构的抗拉、抗压强度。
在本实施例中的承重板111具有25um-75um的粗糙度,因此增大了承重板111表面的接触面积,从而能够更好的实现承重板111与混凝土之间的连接。
在本实施中,为降低该承重座11受到与承重板111平行的力时,造成承重板111与钢筋之间产生剪切力的情况,承重板111上的锚固孔1111上设有凸起环,凸起环沿锚固孔1111向外凸出,通过冲压的方式一次性加工而成,其截面形状为一圆环,进一步增大钢筋与承重板111的接触面积,使得该承重座11在受到与承重板111平行的力时,凸起环能够吸收承重板111与钢筋之间的部分剪切力,减少了承重板111与钢筋之间的混凝土破碎的情况的发生,从而提高了整个路基1的结构强度。
如图1所示,具体的,在本实施例中,为了提高该低风阻管道式轨道的牢固性及稳定性,该低风阻管道式轨道还包括加固件5,加固件5用于将两个相邻的管道本体2相固接。
如图4所示,具体的,加固件5包括C型定位件51和用于连接相邻两管道本体2的紧固件52,紧固件52将相邻两管道本体2一者中的第一固定件21与另一者中的第二固定件22相连。
第一固定件21与第二固定件22上均设有连接孔,紧固件52依次穿过两者的连接孔并与C型定位件51螺纹连接,将相邻两管道本体2连接在一起。
在本实施例中,为了提高相邻管道本体2间的连接牢固性,管道本体2的连接处可以焊接。
其中,在本实施例中,鼓风件为鼓风4机。
其中,在本实施例中,为能够快速将两个管道本体2定位并连接在一起,第一固定件21的外表面周向向内凹陷形成多个凹槽,第二固定件22的外表面周向向外凸出形成多个凸起,凸起与凹槽相匹配,进行管道连接时,前面管道本体2的第二固定件22上凸起能够与位于后面且相邻管道本体2的第一固定件21上的凹槽相卡接。
本实施例还提供了一种降低管道式轨道阻力的方法,利用上述低风阻管道式轨道实现,包括如下步骤:
S10:开启加热单元24,对各风管23加热,以实现对各管道本体2的加热。
该降低管道式轨道阻力的方法利用低风阻管道式轨道,实现了对轨道内部阻力的降低,保证了运载火箭航天器或者其他航天器的轨道滑车能够为航天飞行器提供较高的初始速度,节约了燃料。
此外,在上述步骤S10之后,还可以包括如下步骤:
S20:开启各鼓风机4,以在管道本体2的外周形成风幕。
实施例二
本实施例提供一种运载火箭航天器发射系统,该运载火箭航天器发射系统具有上述实施例一所述的低风阻管道式轨道。
该运载火箭航天器发射系统与上述低风阻管道式轨道所具有的优势相同,在此不再赘述。
实施例三
本实施例提供了一种内置轨道的模拟平流层低风阻管道,由轨道3、固定框、风管23、鼓风机4、左侧平衡轨道、右侧平衡轨道和加热装置等组成的管道连续构筑而成,其中,路基1沿地形铺设,轨道3铺设在路基1上,分为下滑增速段31、水平加速段32、上升加速段33、模拟平流层段34和制动段35,下滑增速段31和水平加速段32铺设在低海拔的平坦地面,上升加速段33沿山体缓坡向上延伸至山顶,模拟平流层段34和制动段35沿山脊延伸。
固定框横跨轨道3排列,固定框两侧立面沿其等距设置风管接口,风管23连接在两相邻固定框的风管接口上,所有的固定框和风管23均依次连接,形成笼状结构的管道,覆盖在轨道3的上升加速段33末段和模拟平流层段34上,管道内置空气加热装置。
本实施例中,固定框两端分别垂直固定在轨道3两侧,固定框所在的平面垂直于地平面。
本实施例中,固定框和风管23的外部覆盖有耐热层。
本实施例中,该低风阻管道式轨道还包括左侧平衡轨道(又被称为左侧支撑轨道)和右侧平衡轨道(又被称为右侧支撑轨道),具体的,左侧平衡轨道和右侧平衡轨道均固设在管道本体2的内部,且二者分设在轨道3的两侧。并且,左侧平衡轨道和右侧平衡轨道均与轨道3的加速段等长。
有固定框的路段,左侧平衡轨道固定在固定框左内侧中部,右侧平衡轨道固定在固定框右内侧中部;无固定框的路段,左侧平衡轨道和右侧平衡轨道分别由支架支撑。
此外,左侧平衡轨道的右侧面和右侧平衡轨道的左侧面均设置有导向磁铁。
该内置轨道的模拟平流层低风阻管道,利用物理加温和风幕屏蔽的方式,将沿轨道高速段周边小环境模拟成平流层的空气密度,从而大幅度降低的风阻,为以大推力喷气发动机或火箭为动力的轨道滑车提供更好的加速条件,赋予其运载的火箭或其他航天器较高初始速度和起飞高度,从而节省大量燃料和结构重量,甚至可以直接达到空天飞行器的超燃冲压发动机的启动速度,达到航天器全回收或重复使用的目的。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行 等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
工业实用性
本发明实施例提供的低风阻管道式轨道、运载火箭航天器发射系统及降低管道式轨道阻力的方法,降低了以大推力喷气发动机或火箭为动力的轨道滑车的运行阻力,从而为轨道滑车提供了更好的加速条件,使其运载的航天器具有较高的初始速度,有效的节省了燃料,并能够达到航天器单级入轨或全回收、重复使用的目的。

Claims (24)

  1. 一种低风阻管道式轨道,其特征在于,包括路基和固设在所述路基上的多个管道本体,多个所述管道本体依次连续固接,且多个所述管道本体内均设有轨道,相邻两所述管道本体内的所述轨道连续相接,所述轨道沿所述路基铺设;
    所述管道本体包括设置在其两端的第一固定件与第二固定件、沿周向等间距固设在两者之间的多个风管和固设在每一所述风管的内壁上的多个加热单元,且相邻两所述管道本体的多个所述风管分别对应相通;
    多个所述风管上分别对应连通有多个鼓风件,且多个所述风管上沿轴向等间距分别设有多个出风口,多个所述出风口处的气流能够彼此交汇。
  2. 根据权利要求1所述的低风阻管道式轨道,其特征在于,每一所述管道本体中,沿所述管道本体的轴向,各所述风管上的各所述出风口与其余各所述风管上的各所述出风口位置对应。
  3. 根据权利要求2所述的低风阻管道式轨道,其特征在于,各所述风管在轴向相同位置处,各所述出风口的出风方向朝向与其周向相邻的所述出风口;
    由所述管道本体的一端看向其另一端,各所述出风口吹出的气流形成包裹在所述管道本体外周的风幕。
  4. 根据权利要求1所述的低风阻管道式轨道,其特征在于,所述加热单元包括加热管、变压器和温度传感器,所述加热管固设于所述风管的内壁上;
    所述变压器和所述温度传感器均与所述加热管电连接;
    所述加热管至少为一个。
  5. 根据权利要求4所述的低风阻管道式轨道,其特征在于,所述加热管为环形结构。
  6. 根据权利要求5所述的低风阻管道式轨道,其特征在于,每一所述风管中,所述加热管为多个,多个所述加热管沿所述风管的轴向等间隔设置。
  7. 根据权利要求1所述的低风阻管道式轨道,其特征在于,所述轨道沿所述路基铺设方向依次包括下滑增速段、水平加速段、上升加速段、模拟平流层段和制动段。
  8. 根据权利要求7所述的低风阻管道式轨道,其特征在于,所述轨道还包括过渡段,所述过渡段设置在所述模拟平流层段的末段,沿所述路基的铺设方向,所述过渡段处的所述管道本体中的加热单元的数量递减。
  9. 根据权利要求8所述的低风阻管道式轨道,其特征在于,所述过渡段处的所述管道本体内的空气密度与外空气密度的差值小于20%。
  10. 根据权利要求7-9任一项所述的低风阻管道式轨道,其特征在于,所述路基包 括沿地形铺设在地面上的多个承重座和铺设在多个所述承重座上的轨道面,所述承重座内设有多个承重板,且多个所述承重板通过钢筋彼此固定连接。
  11. 根据权利要求10所述的低风阻管道式轨道,其特征在于,所述承重板的表面粗糙度在25um-75um之间。
  12. 根据权利要求1-11任一项所述的低风阻管道式轨道,其特征在于,还包括加固件,所述加固件配置成将两个相邻的所述管道本体固接。
  13. 根据权利要求12所述的低风阻管道式轨道,其特征在于,所述加固件包括C型定位件和配置成连接相邻两所述管道本体的紧固件,所述紧固件将相邻两所述管道本体一者中的所述第一固定件与另一者中的所述第二固定件相连;
    所述第一固定件与所述第二固定件上均设有连接孔,所述紧固件依次穿过两者的所述连接孔并与所述C型定位件螺纹连接,将相邻两所述管道本体连接在一起。
  14. 根据权利要求1-11任一项所述的低风阻管道式轨道,其特征在于,相邻两所述管道本体一者中的所述第一固定件与另一者中的所述第二固定件焊接,将相邻两所述管道本体连接在一起。
  15. 根据权利要求1-11任一项所述的低风阻管道式轨道,其特征在于,所述鼓风件为鼓风机。
  16. 根据权利要求1-11任一项所述的低风阻管道式轨道,其特征在于,所述第一固定件的外表面周向向内凹陷形成多个凹槽,所述第二固定件的外表面周向向外凸出形成多个凸起,所述凸起与所述凹槽相匹配。
  17. 内置轨道的模拟平流层低风阻管道,由轨道、固定框、风管、鼓风机、左侧平衡轨道、右侧平衡轨道和加热装置等组成的管道连续构筑而成,其特征在于:
    路基沿地形铺设,轨道铺设在路基上,分为下滑增速段、水平加速段、上升加速段、模拟平流层段和制动段,下滑增速段和水平加速段铺设在低海拔的平坦地面,上升加速段沿山体缓坡向上延伸至山顶,模拟平流层段和制动段沿山脊延伸;
    固定框横跨轨道排列;固定框两侧立面沿其等距设置风管接口,风管连接在两相邻固定框的风管接口上,所有的固定框和风管均依次连接,形成笼状结构的管道,覆盖在轨道的上升加速段末段和模拟平流层段上,管道内置空气加热装置。
  18. 根据权利要求17所述的内置轨道的模拟平流层低风阻管道,其特征在于,固定框两端分别垂直固定在轨道两侧,固定框所在的平面垂直于地平面。
  19. 根据权利要求18所述的低风阻管道式轨道,其特征在于,固定框和风管的外部覆盖有耐热层。
  20. 根据权利要求17-19任一项所述的低风阻管道式轨道,其特征在于,有固定框 的路段,左侧平衡轨道固定在固定框左内侧中部,右侧平衡轨道固定在固定框右内侧中部;无固定框的路段,左侧平衡轨道和右侧平衡轨道分别由支架支撑。
  21. 根据权利要求17-19任一项所述的低风阻管道式轨道,其特征在于,左侧平衡轨道的右侧面和右侧平衡轨道的左侧面均设置有导向磁铁。
  22. 一种运载火箭航天器发射系统,其特征在于,包括如权利要求1-16任一项所述低风阻管道式轨道。
  23. 一种降低管道式轨道阻力的方法,其特征在于,利用权利要求1-16任一项所述的低风阻管道式轨道实现,包括如下步骤:
    S10:开启所述加热单元,对各所述风管加热,以实现对各所述管道本体的加热。
  24. 根据权利要求23所述的降低管道式轨道阻力的方法,其特征在于,所述步骤S10之后,还包括如下步骤:
    S20:开启所述鼓风件,以在所述管道本体的外周形成风幕。
PCT/CN2017/119375 2017-01-21 2017-12-28 低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法 WO2018133640A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710068657 2017-01-21
CN201710068657.5 2017-01-21
CN201711139780.8 2017-11-16
CN201711139780.8A CN107856881A (zh) 2017-01-21 2017-11-16 低风阻管道式轨道及运载火箭航天器发射系统

Publications (1)

Publication Number Publication Date
WO2018133640A1 true WO2018133640A1 (zh) 2018-07-26

Family

ID=59618252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119375 WO2018133640A1 (zh) 2017-01-21 2017-12-28 低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法

Country Status (2)

Country Link
CN (3) CN107054680A (zh)
WO (1) WO2018133640A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054680A (zh) * 2017-01-21 2017-08-18 秦赵修 内置轨道的模拟平流层低风阻管道

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186000A (ja) * 1992-01-09 1993-07-27 Nissan Motor Co Ltd 飛翔体の加速装置
CN1804220A (zh) * 2005-11-03 2006-07-19 王敏华 占地面积不大的坡形飞机滑行跑道及其使用方法
CN101234674A (zh) * 2007-09-12 2008-08-06 黄金伦 山顶发射机场
CN102267570A (zh) * 2011-05-05 2011-12-07 雷宏 利用飞行器自身重力势能使其俯冲加速实现起飞的方法
CN102556360A (zh) * 2012-02-06 2012-07-11 董兰田 两级运动平台完成两级火箭航天器升空的轨道加速飞机
AU2012101948B4 (en) * 2012-06-26 2016-07-14 John Scott A method of launching an object
CN107054680A (zh) * 2017-01-21 2017-08-18 秦赵修 内置轨道的模拟平流层低风阻管道

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881446A (en) * 1988-07-28 1989-11-21 Marks Alvin M Space train
US5224663A (en) * 1991-07-01 1993-07-06 Criswell David R Vehicle propulsion system with external propellant supply
JP2000203499A (ja) * 1999-01-14 2000-07-25 Hideo Masubuchi 低コストな人工衛星打ち上げ法
CN1111123C (zh) * 2000-04-04 2003-06-11 李岭群 管道真空永磁补偿式悬浮列车-高架路-站系统
RU2404090C1 (ru) * 2009-10-12 2010-11-20 Открытое Акционерное Общество "Государственный Ракетный Центр Имени Академика В.П. Макеева" Система запуска космической ракеты
KR101505444B1 (ko) * 2010-02-11 2015-03-30 호워드 엠. 친 로켓 탑승자용 우주복
CN204959587U (zh) * 2015-07-23 2016-01-13 温州隆盛市政建设有限公司 一种带顶棚结构的桥梁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186000A (ja) * 1992-01-09 1993-07-27 Nissan Motor Co Ltd 飛翔体の加速装置
CN1804220A (zh) * 2005-11-03 2006-07-19 王敏华 占地面积不大的坡形飞机滑行跑道及其使用方法
CN101234674A (zh) * 2007-09-12 2008-08-06 黄金伦 山顶发射机场
CN102267570A (zh) * 2011-05-05 2011-12-07 雷宏 利用飞行器自身重力势能使其俯冲加速实现起飞的方法
CN102556360A (zh) * 2012-02-06 2012-07-11 董兰田 两级运动平台完成两级火箭航天器升空的轨道加速飞机
AU2012101948B4 (en) * 2012-06-26 2016-07-14 John Scott A method of launching an object
CN107054680A (zh) * 2017-01-21 2017-08-18 秦赵修 内置轨道的模拟平流层低风阻管道

Also Published As

Publication number Publication date
CN207466994U (zh) 2018-06-08
CN107054680A (zh) 2017-08-18
CN107856881A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN108678871B (zh) 一种用于推力转向喷气发动机的喷管隔热结构
Perry et al. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system
US9567062B2 (en) Box wing with angled gas turbine engine cores
CN102251879A (zh) 差动式可调单边膨胀喷管
CN102218378B (zh) 超声速非均匀流喷管及其设计方法
CN102323961B (zh) 非对称超声速喷管及其设计方法
CN103970957A (zh) 一种弹性乘波体高超声速飞行器仿真方法
US20140263837A1 (en) Nacelle inlet thermal anti-ice spray duct
WO2018133640A1 (zh) 低风阻管道式轨道、内置轨道的模拟平流层低风阻管道、运载火箭航天器发射系统及降低管道式轨道阻力的方法
US9732700B2 (en) Methods and apparatus for passive thrust vectoring and plume deflection
RU2012132698A (ru) Способ перемещения грузов в атмосфере планет на скоростях выше первой космической и многорежимный сверхгиперзвуковой летательный аппарат с высокой интеграцией планера для его осуществления
US9470603B2 (en) Morphing ceramic composite components for hypersonic wind tunnel
CN103678774B (zh) 考虑进口参数非均匀的超声速推力喷管设计方法
US9546618B2 (en) Methods and apparatus for passive thrust vectoring and plume deflection
CN101466940B (zh) 发动机排放系统
Kojima et al. Conceptual study on heat resistant and cooling system of hypersonic airplanes
KR20210080494A (ko) 유체 조작을 위한 시스템 및 방법
CN109707532A (zh) 一种搭接式主动冷却结构
CN106314807B (zh) 一种吸气式超燃冲压发动机的推力架结构
WO2008076147A3 (en) Building made of hexagonal layers
CN103995956B (zh) 一种进气道结构布局设计方法
CN209956210U (zh) 后缘喷气式矢量推进变形翼
CN207989170U (zh) 利用气流换热增加推力的尾喷管
Taguchi et al. Conceptual study on hypersonic airplanes using pre-cooled turbojet
Kanda Study of an airframe-integrated scramjet engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892731

Country of ref document: EP

Kind code of ref document: A1