WO2018133463A1 - 一种多通道超声波流量计 - Google Patents

一种多通道超声波流量计 Download PDF

Info

Publication number
WO2018133463A1
WO2018133463A1 PCT/CN2017/106149 CN2017106149W WO2018133463A1 WO 2018133463 A1 WO2018133463 A1 WO 2018133463A1 CN 2017106149 W CN2017106149 W CN 2017106149W WO 2018133463 A1 WO2018133463 A1 WO 2018133463A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
transducer
mounting
disposed
mounting hole
Prior art date
Application number
PCT/CN2017/106149
Other languages
English (en)
French (fr)
Inventor
方欣
李新兴
Original Assignee
李新兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李新兴 filed Critical 李新兴
Priority to US16/330,443 priority Critical patent/US10557733B2/en
Publication of WO2018133463A1 publication Critical patent/WO2018133463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the utility model belongs to the technical field of liquid fluid metering, in particular to a multi-channel ultrasonic flowmeter.
  • Ultrasonic flowmeters have been widely used in industrial flowmeters such as large diameter heat meters and large diameter water meters.
  • the installation structure of the large-caliber ultrasonic flowmeter transducer is constantly changing.
  • the installation of the previous pair of transducers at an angle to the flow direction of the flow meter fluid translates into a perpendicular to the direction of fluid flow.
  • the new large-diameter ultrasonic heat meter disclosed in Chinese patent CN 204330187U has a vertical fluid flow direction setting of the transducer mount. This structural change increases the distance between the connection between the two pairs of transducers and the fluid direction, improving the accuracy and range ratio of the flowmeter.
  • a multi-channel ultrasonic flowmeter is provided by a new type of transducer mounting positioning and sealing scheme.
  • a multi-channel ultrasonic flowmeter includes a transducer assembly and a pipe segment housing, wherein the two ends of the pipe segment housing are respectively provided with a flange, the flange is provided with a bolt hole, and the two ends of the pipe segment housing are close to the flange There are four third mounting holes in the room.
  • the transducer assembly includes a transducer and a fixing post, and two fixing holes are disposed in a middle portion of the fixing post, and two transducers are installed in the first mounting hole,
  • the transducer assembly further includes an annular pressing piece and an elastic ring.
  • the annular pressing piece forms a second protrusion symmetrically outward in a radial direction, and the first mounting hole is formed with a first mounting.
  • the first mounting hole defines a second annular groove and a second rectangular groove, the transmitting end of the transducer is provided with a boss, and the other end of the transducer is engaged with the first mounting surface, and the annular pressing piece is mounted.
  • a second protrusion is disposed in the second annular groove in the first mounting hole, and the elastic ring is installed in the second annular groove,
  • a first gasket is disposed between the first mounting surface and the transducer
  • the upper portion of the fixing column has a first cylindrical body, and the lower end of the fixing column is convexly formed in the axial direction to form a flat key-shaped protrusion, and the protrusion forms a first stepped surface with the fixed column body.
  • the third mounting hole includes a first circular hole and a key groove, the third mounting hole is a blind hole, the first circular hole is located at an upper portion of the third mounting hole, and a key groove is formed at a bottom end of the third mounting hole and forms a first Positioning the step surface, the key groove is adapted to the protrusion,
  • the third mounting hole is reamed to obtain a third circular hole, and a third positioning step surface is formed between the third circular hole and the first circular hole.
  • the multi-channel ultrasonic flowmeter further includes a second sealing ring, a polytetrafluoroethylene gasket and a pressure ring, and the pressure ring is screwed to the third circular hole and presses the polytetrafluoroethylene gasket against the fixed column through the butterfly spring piece
  • the utility model further comprises a circuit box disposed outside the pipe casing, wherein the circuit box is provided with an integrator, and the pipe casing has a wire hole and a wire hole, wherein the wire hole is a blind hole, and the wire hole is perpendicular to the pipe casing And communicating with the circuit box, the plurality of wire holes are connected to each other, and the four third mounting holes and the wire holes are respectively connected, and the upper portion of the fixing column is provided with a threading hole, and the threading hole is in communication with the first mounting hole.
  • a plastic cover is further disposed in the third circular hole and located above the pressure ring, and a fourth sealing ring is disposed between the plastic cover and the third circular hole, and the middle portion of the plastic cover protrudes downwardly.
  • the end of the cylinder has an external thread, and is screwed to the threaded hole on the fixing post.
  • the plastic cover is provided with a lead sealing hole, and the second section sealing hole is opened on the pipe section housing.
  • a pair of two pairs of transducers can be used to a group of multiple pairs of transducers; the more transducers, the more accurate the measured laminar flow .
  • a set of transducers can be used as a backup to improve the safety and reliability of the flowmeter.
  • the fixing column is provided with a key-shaped positioning protrusion and a key groove, and the fixing column is positioned accurately and does not rotate.
  • the sealing method is two-stage sealing.
  • the first stage is a silicone O-ring side seal
  • the second stage is a polytetrafluoroethylene gasket compression seal.
  • the unique feature is that the polytetrafluoroethylene pad only seals the transducer column and the mounting hole. A slit between the seams is located at the center of the width of the PTFE gasket.
  • the PTFE has a butterfly spring piece pressed on it. In the case of polytetrafluoroethylene, it can ensure long-term high temperature (up to 220 °C) and high pressure (up to 5 MPa) conditions without aging and life. Up to several decades.
  • the fixed column sealing structure is optimized, the structure is simple, the volume is small, the mounting hole is small, and the transducer fixing column can be disposed at a position closer to the flanges at both ends of the pipe section housing, and the pipe barrel shell of different lengths and a certain length In the case of the body, the maximum distance between the transducer connection and the fluid flow direction is obtained, which improves the metering accuracy and the range ratio of the flow meter.
  • the transducer is fixed by the above elastic wire ring compression type buckle, the overall structure is easy to install and disassemble, and the parts are well sealed.
  • FIG. 1 is a schematic structural view of a multi-channel ultrasonic flowmeter of the present invention
  • Figure 2 is a diagonal cross-sectional view of an embodiment of a multi-channel ultrasonic flow meter
  • Figure 3 is a partial enlarged view of the installation of the transducer assembly of Figure 2;
  • Figure 4 is a schematic view of a transducer assembly
  • Figure 5 is a partial enlarged view of the lower side of the transducer assembly
  • Figure 6 is a schematic view showing the cross section of the pipe section.
  • a multi-channel ultrasonic flow meter as shown in FIG. 1, includes transducer assemblies 21, 22, 23, 24 and a tube segment housing 10.
  • the transducer assemblies 21 and 22 are used in pairs, and the transducer assemblies 23 and 24 are used in pairs.
  • the two ends of the pipe casing 10 are respectively provided with a flange 4, and the flange 4 is provided with a bolt hole 41, and the flow rate is measured by bolt insertion.
  • Pipeline As shown in FIG. 2, four third mounting holes 9 are disposed at two ends of the pipe casing 1 near the flange 4, respectively located at the left and right ends of the pipe casing 10, and the third mounting hole 9 is used for mounting the positioning transducer assembly.
  • the third mounting hole 9 is disposed perpendicular to the pipe section housing 1. To increase the turndown ratio, the third mounting hole 9 is as close as possible to the flange.
  • the transducer assembly as shown in FIG. 4, includes a transducer 7 and a fixed post 1 .
  • the first mounting hole 103 is defined in the middle of the fixing post 1 , and the transducer 7 is mounted in the first mounting hole 103 .
  • transducer 7 Through four transducer assemblies, there are two transducers 7 in each transducer assembly, forming four ultrasounds Wave channel, on the one hand, can compare the fluid flow through 4 channels, and through algorithmic trade-off and calculation, get more accurate flow measurement value and improve the accuracy of the flow meter; on the other hand, it can be reserved.
  • the transducer 7 prevents the need for a pair of flowmeters that cannot be operated normally, and improves the reliability of the flowmeter.
  • a set of transducers can be used as a backup to improve the safety and reliability of the flowmeter.
  • the transducer assembly further includes a ring pressing piece 6 and a wire elastic ring 601.
  • the second protrusion 61 is formed radially outward from the left and right sides of the annular pressure piece 6.
  • a first mounting surface 205 is formed in the first mounting hole 103, and a second annular groove 132 and a second rectangular groove 131 are formed, wherein the second rectangular groove 131 should have a size greater than or equal to the second protrusion 61.
  • the elastic ring 601 is a ring which has a larger outer diameter than the second annular groove 132 in a natural state, and is mounted in the second annular groove 132 in a compressed state.
  • the transmitting end of the transducer 7 is provided with a boss having a cylindrical diameter smaller than or equal to the diameter of the inner hole of the annular pressing piece 6.
  • the other end of the transducer 7 is attached to the first mounting surface 205 for accurate positioning in the direction of the transducer axis.
  • the ring pressing piece 6 is first placed on the emitting end boss of the transducer 7, and the second protrusion 61 is aligned into the second rectangular groove 131, and then rotated by 90 degrees so that The second protrusion 61 is placed in the second annular groove 132, and then the elastic ring 601 is inserted into the second annular groove 132.
  • the elastic ring 601 presses the second protrusion 61 to press the ring press 6 and the transducer. 7 is pressed and fixed on the first mounting surface 205.
  • the seal at the transducer 7 prevents liquid from leaking through the gap between the transducer 7 and the first mounting hole 103, and the first sealing surface 8 is disposed between the first mounting surface 205 and the transducer 7
  • a gasket 8 can be commonly used as a silica gel pad, and is compressed in a compressed state by an annular pressing piece 6 and an elastic ring 601. The greater the pipe pressure, the better the sealing effect.
  • the first fixed column 1 has a cylindrical body 109, the first cylinder 109 is located at an upper portion of the fixed column 1, and a lower end of the fixing post 1 is axially convexly formed with a key-shaped protrusion 105, and the key-shaped protrusion 105 and the body of the fixed column 1 are A first stepped surface 106 is formed.
  • the third mounting hole 9 includes a first circular hole 901 and a key groove 902 , and the third mounting hole 9 is a blind hole, wherein the first circular hole 901 is located at an upper portion of the third mounting hole 9 .
  • a key groove 902 is defined at a bottom end of the third mounting hole 9 and a second positioning step surface 903 is formed.
  • the key groove 902 is matched with the key protrusion 105, and the maximum length dimension of the key groove 902 is smaller than the diameter of the first circular hole 901.
  • the first circular hole 901 is engaged with the first cylinder 109, and at the same time, the key protrusion 105 and the key groove 902 are matched to limit the direction of the fixing column 1 around the axis.
  • the rotational degree of rotation of the fixed post 1 is constrained by positioning the key projections 105. This positioning method has high precision, the fixed post 1 does not generate rotational displacement, and the transmission and reception of signals between the transducers 7 are stable.
  • the fixing post 1 is axially positioned, the third mounting hole 9 is reamed to obtain a third circular hole 905, and a third positioning step surface 908 is formed between the third circular hole 905 and the first circular hole 901.
  • the first step surface 106 is in contact with the second positioning step surface 903 of the third mounting hole 9 as an axial position, and at the same time, the upper end surface of the fixing post 1 and the third positioning step surface 908 are opposite.
  • the flushing is performed by pressing the pressure ring 11 screwed to the third circular hole 905 to restrict the vertical movement of the fixing column 1 in the axial direction.
  • the multi-channel ultrasonic flowmeter further includes a second sealing ring 12, a polytetrafluoroethylene gasket 14, a butterfly spring piece 13, and a pressure ring 11, the pressure ring 11
  • the third circular hole 905 is screwed and the polytetrafluoroethylene gasket 14 and the butterfly spring piece 13 are pressed against the upper end surface of the fixed column 1 and the third positioning step surface 908, and the butterfly spring gasket 13 is located at the polytetrafluoroethylene.
  • an annular groove 904 is defined in the first circular hole 901
  • the second sealing ring 12 is disposed in the annular groove 904 .
  • the unique feature is that the polytetrafluoroethylene gasket 14 seals the annular slit formed between the transducer fixing post 1 and the first circular hole 901, and the annular slit is located at the center of the width of the polytetrafluoroethylene gasket 14.
  • the PTFE spacer 14 has a butterfly spring piece 13 pressed thereon, and in the case of polytetrafluoroethylene, it can ensure long-term high temperature in the alternating environment of hot and cold (maximum 220 ° C), high pressure (up to 5 MPa) working conditions without aging, life expectancy can reach several decades.
  • the sealing structure is compact, and the outer circumference of the upper portion of the fixing column 1 is smaller than that of the prior art, so the third mounting hole 9 is also small, so that the transducer assembly can be placed close to the flange 4 to a maximum extent. Under the length of the pipe section casing, the maximum distance between the transducer connection and the fluid flow direction is obtained, which increases the metering accuracy and the range ratio of the flowmeter.
  • the wiring of the transducer 7 is as shown in Fig. 2.
  • the circuit case 5 is disposed outside the pipe segment housing 10, and a controller is disposed in the circuit case 5.
  • a wire hole 101 and a wire hole 100 are defined in the pipe casing 1 , and the wire hole 101 is a blind hole.
  • the wire hole 101 is perpendicular to the pipe casing 1 and communicates with the circuit box 5 , and the wire hole 100 is four.
  • the four third mounting holes 9 and the wire holes 101 are respectively connected.
  • a threading hole 104 is defined in an upper portion of the fixing post 1 , and the threading hole 104 communicates with the first mounting hole 103 .
  • the electric wire of the transducer 7 is introduced into the threading hole 104 through the first mounting hole 103, and finally taken out from the upper end of the fixing post 1.
  • the electric wire drawn from above the fixed post 1 enters the third mounting hole 9, and enters the wire hole 101 via the wire hole 100, and is connected to the controller in the circuit case 5.
  • the multi-channel ultrasonic flowmeter further includes a plastic cover 16 disposed in the third circular hole 905 and located above the pressure ring 11, the plastic cover 16 and the third circular hole 905.
  • a fourth seal ring 17 is provided between them.
  • the intermediate portion of the plastic cover 16 protrudes downward to form a cylinder.
  • the end of the cylinder has an external thread and is screwed to the threaded hole in the fixing post 1.
  • the plastic cover 16 is provided with a sealing hole 161.
  • a second lead sealing hole 111 is defined in the pipe segment housing 10.
  • the plastic cover 16 can be removed first, then the pressure ring 11 is removed, and then the removed plastic cover 16 is loaded, due to the plastic cover 16 and fixed.
  • the post 1 is threaded and can be removed by pulling the plastic cover 16 for easy disassembly.
  • the fixed column 1 is disposed in the pipe section 10, which has a certain influence on the water flow.
  • the position of the fixed column 1 needs to be kept at a certain distance from the center of the pipe section 10.
  • the pipe section 10 is shown.
  • a diameter of 50 mm, the contour line of the fixed column 1 in the inner hole of the pipe section 10 and the straight line parallel to the contour line and tangential to the inner hole of the side pipe section 10 of the fixed column 1 should be less than 8 mm, otherwise, the fixed column 1 is opposed to the water flow.
  • the resulting turbulence will fluctuate, affecting the accuracy of the time difference calculation of the transducer to emit ultrasound.
  • Other specifications with a diameter greater than 50 mm must also meet this limit in principle, but for the large diameter pipe section 10, the fixed column 1 is relatively easy to avoid the flange mounting hole, meeting the requirement of less than 8 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种多通道超声波流量计,包括换能器组件(21,22,23,24)和管段壳体(10),管段壳体(10)两端靠近法兰(4)处设置有四个第三安装孔(9),换能器组件(21,22,23,24)设置于第三安装孔(9)中,换能器组件(21,22,23,24)包括换能器(7)和固定柱(1),固定柱(1)上部具有第一圆柱体(109),固定柱(1)下端沿轴向凸起形成平键形凸起(105),通过限制定位平键形凸起(105)来限制固定柱(1)的绕轴线方向的旋转,同时固定柱(1)的轴线也定位准确,并分别对换能器(7)和固定柱(1)进行密封防止液体外泄,该多通道超声波流量计提出了完整的换能器(7)的固定安装、定位和密封的方案,结构紧凑,安装方便,密封良好。

Description

一种多通道超声波流量计 技术领域
本实用新型属于液体流体计量技术领域,具体涉及一种多通道超声波流量计。
背景技术
超声波流量计已经广泛地应用到大口径热量表及大口径水表等工业流量计量领域中。为了达到更为精准的流量计量,考虑流量计量的安全性和可靠性,大口径超声波流量计换能器的安装结构在不断发生变化。由先前一对换能器与流量计流体流动方向成一定角度的安装方式转变成垂直于流体流动方向的安装方式。例如,中国专利CN 204330187U公开的新型大口径超声波热量表,其换能器安装座采用的垂直流体流动方向的设置。这种结构的变化,增大两对换能器间的连线与流体方向投影距离,提高了流量计精度及量程比。在使用过程中,超声波流量计的维护、维修和更换困难,这就对其本身的可靠性要求很高,工程中常用的做法是尽量对称设置多对换能器备用,例如,中国专利CN 202770480U,公开的一种超声波流量传感器,可以对称设置两组换能器(每组两对),由于是对称设计,其中一组可作为备用,大大提高了流量计的可靠性。另外,上述两种密封方式都只能是采用硅胶侧密封或硅胶垫密封,实践证明,这类密封在长期供暖高热环境里,易产生老化、失去弹性而渗漏,其仪表使用寿命大打折扣。
实用新型内容
换能器的便捷安装、密封部件的耐久性和高度、角度定位精度至关重要,直接影响到计量的精度,换能器的密封也是精确计量持久性的前提保证,本实 用新型提出了完整的换能器安装定位和密封方案,提供了一种多通道超声波流量计。
一种多通道超声波流量计,包括换能器组件和管段壳体,所述管段壳体两端分别设置有法兰,所述法兰开设有螺栓孔,所述管段壳体两端靠近法兰处设置有四个第三安装孔,
所述换能器组件,包括换能器和固定柱,所述固定柱中部开设有两个第一安装孔,两个换能器安装于第一安装孔中,
所述换能器组件,还包括圆环压片和弹性环,所述圆环压片两侧对称的沿径向向外形成第二凸起,所述第一安装孔中形成有第一安装面,所述第一安装孔开设第二环形槽和第二矩形槽,换能器发射端设有凸台,换能器的另一端与第一安装面贴合,所述圆环压片安装于第一安装孔中第二凸起置于第二环形槽中,所述弹性环安装在第二环形槽中,
所述第一安装面与换能器之间设置有第一密封垫,
所述固定柱上部具有第一圆柱体,所述固定柱下端沿轴向凸起形成平键形凸起,所述凸起与固定柱本体之间形成第一台阶面。所述第三安装孔包括第一圆孔和键槽,所述第三安装孔为盲孔,所述第一圆孔位于第三安装孔的上部,在第三安装孔底端开设键槽并形成第二定位台阶面,所述键槽与凸起相适配,
所述第三安装孔上部进行扩孔加工得到第三圆孔,所述第三圆孔和第一圆孔之间形成第三定位台阶面,
多通道超声波流量计,还包括第二密封圈、聚四氟垫片和压环,所述压环与第三圆孔螺纹连接并通过蝶形弹簧片将聚四氟垫片压紧于固定柱的上端面和第三定位台阶面上,所述第一圆孔上开设环形槽,所述第二密封圈设置于环形 槽中,
还包括电路盒,设置于管段壳体的外部,电路盒中设置有积分仪,管段壳体上开设有线孔和走线孔,所述线孔为盲孔,所述线孔与管段壳体垂直并与电路盒连通,所述走线孔共四个,分别将四个第三安装孔和线孔连通,所述固定柱上部开设有穿线孔,所述穿线孔与第一安装孔连通。
在上述方案基础上,还包括塑料盖,其设置于第三圆孔中并位于压环上方,塑料盖与第三圆孔之间设置有第四密封圈,塑料盖中间部位向下凸出延伸形成一圆柱,圆柱末端具有外螺纹,与固定柱上的螺纹孔螺纹连接,塑料盖上开设有铅封孔,所述管段壳体上开设第二铅封孔。
本实用新型的有益效果:
1.形成两组多通道多对换能器,即根据不同口径的管段,可以从一组两对换能器到一组多对换能器;换能器越多,测量的层流越准确。并且,一组换能器可以作为备用,提高流量计的安全可靠性。
2.固定柱设置有键形定位凸起与键槽配合,固定柱定位准确,不会转动。
3.密封方式为两级密封,第一级为硅胶O型圈侧密封,第二级为聚四氟垫圈压紧密封,其独特之处是聚四氟垫只密封换能器柱与安装孔之间的一条细缝,这条缝位于聚四氟垫圈宽度的中心。聚四氟上面有蝶形弹簧片压紧,就聚四氟而言,在冷热交替环境中,能保证长期处于高温(最高220℃)、高压(最高5MPa)工况而不会老化,寿命可达几十年。
4.固定柱密封结构优化,结构简单,体积小,安装孔较小,换能器固定柱可以设置在距离管段壳体两端法兰较近的位置,对不同口径的,一定长度的管段壳体情况下,获得最大的换能器间连线与流体流动方向投影的距离,提高了流量计的计量精度和量程比。
5.换能器采用上面弹性钢丝环压紧式卡扣固定,整体结构安装与拆卸简单、各部分密封良好。
附图说明
图1为本实用新型多通道超声波流量计结构示意图;
图2为多通道超声波流量计实施例的斜向剖视图;
图3为图2的换能器组件安装的局部放大视图;
图4为换能器组件的示意图;
图5为换能器组件下侧局部放大图;
图6为管段横截面结构示意图。
具体实施方式
下面结合本实用新型实施例中的附图,对本实用新型的技术方案做进一步说明。
一种多通道超声波流量计,如图1所示,包括换能器组件21、22、23、24和管段壳体10。其中换能器组件21和22配对使用,换能器组件23和24配对使用,管段壳体10两端分别设置有法兰4,法兰4开设有螺栓孔41,通过螺栓接入所要测量流量的管道。如图2所示,管段壳体1两端靠近法兰4处设置有四个第三安装孔9,分别位于管段壳体10左右两端,第三安装孔9用于安装定位换能器组件,第三安装孔9垂直于管段壳体1设置,为了提高量程比,第三安装孔9要尽可能地靠近法兰。
换能器组件,如图4所示,包括换能器7和固定柱1,所述固定柱1中部开设有两个第一安装孔103,换能器7安装于第一安装孔103中。
通过四个换能器组件,每个换能器组件中有两个换能器7,形成了4个超声 波声道,一方面,可以通过4个声道进行流体流量的对比测量,经过算法取舍和计算,得到更为准确的流量计量值,提高流量计的精度;另一方面,可以留有备用的换能器7,防止一对不能正常工作流量计就需要更换的情况,提高了流量计的可靠性。根据不同口径的管段,可以从一组两对换能器到一组多对换能器;换能器越多,测量的层流越准确。并且,一组换能器可以作为备用,提高流量计的安全可靠性。
换能器7的安装定位,如图3、4所示,为了方便将换能器7固定于第一安装孔103中,换能器组件,还包括圆环压片6和钢丝弹性环601。圆环压片6左右两侧对称的沿径向向外形成第二凸起61。第一安装孔103中形成有第一安装面205,并开设第二环形槽132和第二矩形槽131,其中第二矩形槽131的尺寸应大于等于第二凸起61。弹性环601,为圆环,其在自然状态下外径大于第二环形槽132,其安装在第二环形槽132中处于压缩状态。换能器7发射端设有凸台,凸台为圆柱形直径小于等于圆环压片6的内孔直径。换能器7的另一端与第一安装面205贴合,实现在换能器轴线方向准确定位。在安装的过程中,先将圆环压片6套在换能器7的发射端凸台上,并将第二凸起61对准放入第二矩形槽131中,然后旋转90度,使第二凸起61置于第二环形槽132中,然后再将弹性环601装入第二环形槽132中,弹性环601通过压紧第二凸起61将圆环压片6、换能器7压紧固定在第一安装面205上。
换能器7处的密封,防止液体经换能器7和第一安装孔103之间的间隙泄漏,所述第一安装面205与换能器7之间设置有第一密封垫8,第一密封垫8常用的可以是硅胶垫,通过环形压片6、弹性环601压紧处于压缩状态,管道压力越大,密封效果越好。
固定柱1绕轴线方向的转动的定位,如图3、4所示,固定柱1上具有第一 圆柱体109,所述第一圆柱体109位于固定柱1的上部,所述固定柱1下端沿轴向凸起形成键形凸起105,所述键形凸起105与固定柱1本体之间形成第一台阶面106。如图3所示,所述第三安装孔9包括第一圆孔901和键槽902,第三安装孔9为盲孔,其中第一圆孔901位于第三安装孔9的上部。在第三安装孔9底端开设键槽902并形成第二定位台阶面903,所述键槽902与键形凸起105相适配,键槽902最大长度尺寸小于第一圆孔901直径。固定柱1装入第三安装孔9中后,第一圆孔901与第一圆柱体109相配合,与此同时,键形凸起105和键槽902相配合,限制固定柱1绕轴线方向的转动。通过定位键形凸起105来约束固定柱1的旋转自由度,此种定位方式精度高,固定柱1不会产生旋转移位,换能器7之间的信号的发送和接收稳定。
固定柱1轴向的定位,所述第三安装孔9上部进行扩孔加工得到第三圆孔905,第三圆孔905和第一圆孔901之间形成第三定位台阶面908。固定柱1装入后,第一台阶面106与第三安装孔9的第二定位台阶面903相贴合,作为轴向位,同时,固定柱1的上端面和第三定位台阶面908相平齐,通过与第三圆孔905螺纹连接的压环11压紧,限制固定柱1沿轴线方向的上下移动。
固定柱1的密封,如图3、4所示,该多通道超声波流量计还包括第二密封圈12、聚四氟垫片14、蝶形弹簧片13和压环11,所述压环11与第三圆孔905螺纹连接并将聚四氟垫片14和蝶形弹簧片13压紧于固定柱1的上端面和第三定位台阶面908上,蝶形弹簧垫片13位于聚四氟垫片14上方,所述第一圆孔901上开设环形槽904,所述第二密封圈12设置于环形槽904中。其独特之处是聚四氟垫片14只密封换能器固定柱1与第一圆孔901贴合面之间形成的环形细缝,环形缝位于聚四氟垫片14宽度的中心。聚四氟垫片14上面有蝶形弹簧片13压紧,就聚四氟而言,在冷热交替环境中,能保证长期处于高温(最高 220℃)、高压(最高5MPa)工况而不会老化,寿命可达几十年。此种密封结构紧凑,相对于现有技术,固定柱1上部的外圆周长较小,所以第三安装孔9也较小,使得换能器组件能最大限度的靠近法兰4设置,在一定长度的管段壳体下,获得了最大的换能器间连线与流体流动方向投影的距离,增大了流量计的计量精度和量程比。
换能器7的走线,如图2所示,电路盒5设置于管段壳体10的外部,电路盒5中设置有控制器。管段壳体1上开设有线孔101和走线孔100,所述线孔101为盲孔,所述线孔101与管段壳体1垂直并与电路盒5连通,所述走线孔100共四个,分别将四个第三安装孔9和线孔101连通。如图4所示,固定柱1上部开设有穿线孔104,所述穿线孔104与第一安装孔103连通。换能器7的电线经第一安装孔103引入穿线孔104,最后由固定柱1上端引出。从固定柱1上方引出的电线进入第三安装孔9,经由走线孔100进入线孔101后与电路盒5中的控制器连接。
在上述技术方案基础上,如图3所示,多通道超声波流量计,还包括塑料盖16,其设置于第三圆孔905中并位于压环11上方,塑料盖16与第三圆孔905之间设置有第四密封圈17。塑料盖16中间部位向下凸出延伸形成一圆柱,圆柱末端具有外螺纹,与固定柱1上的螺纹孔螺纹连接,塑料盖16上开设有铅封孔161。管段壳体10上开设第二铅封孔111。在流量计的维护维修过程中,当需要拆卸换能器组件时,可先拆卸塑料盖16,然后拆卸压环11,此时再将卸下的塑料盖16装入,由于塑料盖16和固定柱1螺纹连接,可以通过牵引塑料盖16将二者一起取出,方便拆卸。
固定柱1设置在管段10中,会对水流产生一定的影响,固定柱1设置的位置需与管段10中心处保持一定的距离,根据实验测得,如图6所示,以管段10 直径50mm为例,固定柱1在管段10内孔中的轮廓线和与该轮廓线平行并与固定柱1侧管段10内孔相切的直线间距离应该小于8mm,否则,固定柱1对水流所形成的扰流会波动,影响换能器发出超声的时差计算精度。口径大于50mm的其他规格,原则上也要满足此限制,但对于大口径的管段10,固定柱1比较容易避开法兰安装孔,满足小于8mm的要求。
可理解的是,尽管已经示出和描述了本实用新型的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本实用新型的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本实用新型的范围由所附权利要求及其等同物限定。

Claims (2)

  1. 一种多通道超声波流量计,其特征在于,包括换能器组件(21、22、23、24)和管段壳体(10),所述管段壳体(10)两端分别设置有法兰(4),所述法兰(4)开设有螺栓孔(41),所述管段壳体(1)两端靠近法兰(4)处设置有四个第三安装孔(9),
    所述换能器组件,包括换能器(7)和固定柱(1),所述固定柱(1)中部开设有两个第一安装孔(103),两个换能器(7)安装于第一安装孔(103)中,
    所述换能器组件,还包括圆环压片(6)和弹性环(601),所述圆环压片(6)两侧对称的沿径向向外形成第二凸起(61),所述第一安装孔(103)中形成有第一安装面(205),所述第一安装孔(103)开设第二环形槽(132)和第二矩形槽(131),换能器(7)发射端设有凸台,换能器(7)的另一端与第一安装面(205)贴合,所述圆环压片(6)安装于第一安装孔(103)中第二凸起(61)置于第二环形槽(132)中,所述弹性环(601)安装在第二环形槽(132)中,
    所述第一安装面(205)与换能器(7)之间设置有第一密封垫(8),
    所述固定柱(1)上部具有第一圆柱体(109),所述固定柱(1)下端沿轴向凸起形成平键形凸起(105),所述平键形凸起(105)与固定柱(1)本体之间形成第一台阶面(106),所述第三安装孔(9)包括第一圆孔(901)和键槽(902),所述第三安装孔(9)为盲孔,所述第一圆孔(901)位于第三安装孔(9)的上部,在第三安装孔(9)底端开设键槽(902)并形成第二定位台阶面(903),所述键槽(902)与凸起(105)相适配,
    所述第三安装孔(9)上部进行扩孔加工得到第三圆孔(905),所述第三圆孔(905)和第一圆孔(901)之间形成第三定位台阶面(908),
    多通道超声波流量计,还包括第二密封圈(12)、聚四氟垫片(14)、蝶形弹簧片(13)和压环(11),所述压环(11)与第三圆孔(905)螺纹连接并依次将聚四氟垫片 (14)和蝶形弹簧片(13)压紧于固定柱(1)的上端面和第三定位台阶面(908)上,所述第一圆孔(901)上开设环形槽(904),所述第二密封圈(12)设置于环形槽(904)中,
    还包括电路盒(5),设置于管段壳体(10)的外部,电路盒(5)中设置有积算仪,管段壳体(1)上开设有线孔(101)和走线孔(1()()),所述线孔(101)为盲孔,所述线孔(101)与管段壳体(1)垂直并与电路盒(5)连通,所述走线孔(1()())共四个,分别将四个第三安装孔(9)和线孔(101)连通,所述固定柱(1)上部开设有穿线孔(104),所述穿线孔(104)与第一安装孔(103)连通。
  2. 如权利要求1所述的多通道超声波流量计,还包括塑料盖(16),其设置于第三圆孔(905)中并位于压环(11)上方,塑料盖(16)与第三圆孔(905)之间设置有第四密封圈(17),塑料盖(16)中间部位向下凸出延伸形成一圆柱,圆柱末端具有外螺纹,与固定柱(1)上的螺纹孔螺纹连接,塑料盖(16)上开设有铅封孔(161),所述管段壳体(10)上开设第二铅封孔(111)。
PCT/CN2017/106149 2017-01-23 2017-10-13 一种多通道超声波流量计 WO2018133463A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/330,443 US10557733B2 (en) 2017-01-23 2017-10-13 Multi-channel ultrasonic flow meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720098989.3U CN206440316U (zh) 2017-01-23 2017-01-23 一种多通道超声波流量计
CN201720098989.3 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018133463A1 true WO2018133463A1 (zh) 2018-07-26

Family

ID=59636542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106149 WO2018133463A1 (zh) 2017-01-23 2017-10-13 一种多通道超声波流量计

Country Status (3)

Country Link
US (1) US10557733B2 (zh)
CN (1) CN206440316U (zh)
WO (1) WO2018133463A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111952A (zh) * 2021-11-22 2022-03-01 金卡智能集团股份有限公司 表头连接件及流量计

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206440316U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种多通道超声波流量计
US11287299B2 (en) 2019-07-02 2022-03-29 Itron Global Sarl Multi-material transducer enclosure
US11566928B2 (en) * 2019-08-15 2023-01-31 Spire Metering Technology LLC Ultrasonic flow meter having four separate transducer assemblies mounted within mounts in a flow cell
USD953180S1 (en) * 2020-06-11 2022-05-31 Dwyer Instruments, Inc. Differential pressure transmitter
CN113713941B (zh) * 2021-09-09 2024-07-02 北京东方金荣超声电器有限公司 用于样本处理的超声装置
CN114061677B (zh) * 2021-11-27 2024-09-20 觉隆传感技术(深圳)有限公司 一种立柱式换能器分层布局的多声道大口径超声波水表
CN117553869A (zh) * 2022-08-03 2024-02-13 金卡智能集团股份有限公司 超声波流量计
CN117168556A (zh) * 2023-09-18 2023-12-05 苏州东剑智能科技有限公司 一种大口径直通式多通道超声波流体测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793916B2 (ja) * 2005-11-18 2011-10-12 リコーエレメックス株式会社 超音波流量計のセンサ取付構造
CN202420578U (zh) * 2012-01-19 2012-09-05 唐山汇中仪表股份有限公司 一种多声路超声水表、热量表用测量管段
CN103868628A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN204313901U (zh) * 2015-01-05 2015-05-06 上海迪纳声科技股份有限公司 多声路超声水表、热量表用测量管段
CN205537791U (zh) * 2016-04-18 2016-08-31 汇中仪表股份有限公司 一种具有防冻功能的超声流量、热量计用测量传感器结构
CN206440316U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种多通道超声波流量计

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779710B2 (en) * 2007-06-15 2010-08-24 Daniel Measurement And Control, Inc. Cable cover for an ultrasonic flow meter
US7735380B2 (en) * 2008-07-09 2010-06-15 Daniel Measurement & Control, Inc. Method and system of coordination of measurement subsystems of a flow meter
US20100242590A1 (en) * 2009-03-27 2010-09-30 Daniel Measurement And Control, Inc. Flow Meter and Temperature Stabilizing Cover Therefor
US8186229B2 (en) * 2010-01-06 2012-05-29 Daniel Measurement And Control, Inc. Ultrasonic flow meter having a port cover assembly
EP2375224B1 (de) * 2010-03-18 2016-02-10 SICK Engineering GmbH Ultraschallmessvorrichtung und Verfahren zur Messung der Strömungsgeschwindigkeit eines Fluids
US8621936B2 (en) * 2011-10-24 2014-01-07 General Electric Company Flow cell for a flow meter
US8844347B2 (en) * 2012-02-29 2014-09-30 General Electric Company Sensor port insert apparatus
US9097568B2 (en) * 2012-05-02 2015-08-04 Daniel Measurement And Control, Inc. System and method for meter substitution for co-located flowmeters
US8974114B2 (en) * 2012-05-02 2015-03-10 Daniel Measurement And Control, Inc. Temperature verification for ultrasonic flow meters
WO2014014483A1 (en) * 2012-07-18 2014-01-23 Daniel Measurement And Control, Inc. Method for forming a welded seal
US9310237B2 (en) * 2012-09-07 2016-04-12 Daniel Measurement And Control, Inc. Ultrasonic flow metering using compensated computed temperature
US9140586B2 (en) * 2012-09-25 2015-09-22 General Electric Company Removable sensor port insert apparatus
US20140103274A1 (en) * 2012-10-15 2014-04-17 General Electric Company Apparatus and method for installing or removing a cable
US9134155B2 (en) * 2012-10-19 2015-09-15 Daniel Measurement And Control, Inc. Reynolds number based verification for ultrasonic flow metering systems
US9151649B2 (en) * 2012-10-19 2015-10-06 Daniel Measurement And Control, Inc. Ultrasonic flow metering system with an upstream pressure transducer
US9134154B2 (en) * 2012-10-19 2015-09-15 Daniel Measurement And Control, Inc. Percentage deviation based evaluation of velocity dependent characteristics in ultrasonic flow metering systems
US9134156B2 (en) * 2012-10-19 2015-09-15 Daniel Measurement And Control, Inc. Determination of reference values for ultrasonic flow metering systems
US9024767B2 (en) * 2012-10-19 2015-05-05 Daniel Measurement And Control, Inc. Condition monitoring with alarm confidence levels for flow metering systems
US9797760B2 (en) * 2012-10-19 2017-10-24 Daniel Measurement And Control, Inc. Quantitative analysis of flow profile characteristics for ultrasonic metering systems
US9068870B2 (en) * 2013-02-27 2015-06-30 Daniel Measurement And Control, Inc. Ultrasonic flow metering with laminar to turbulent transition flow control
US9151648B2 (en) * 2013-03-15 2015-10-06 Dieterich Standard, Inc. Process variable measurement using primary element connection platform
US9295923B2 (en) * 2014-03-20 2016-03-29 Daniel Measurement And Control, Inc. Transducer for ultrasonic flow meter
US9506790B2 (en) * 2015-03-24 2016-11-29 Daniel Measurement And Control, Inc. Transducer mini-horn array for ultrasonic flow meter
US10718645B2 (en) * 2017-10-27 2020-07-21 Daniel Measurement And Control, Inc. Adjustable transducer assemblies
US10809107B2 (en) * 2017-12-19 2020-10-20 Daniel Measurement And Control, Inc. Multi-fluid calibration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793916B2 (ja) * 2005-11-18 2011-10-12 リコーエレメックス株式会社 超音波流量計のセンサ取付構造
CN202420578U (zh) * 2012-01-19 2012-09-05 唐山汇中仪表股份有限公司 一种多声路超声水表、热量表用测量管段
CN103868628A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN204313901U (zh) * 2015-01-05 2015-05-06 上海迪纳声科技股份有限公司 多声路超声水表、热量表用测量管段
CN205537791U (zh) * 2016-04-18 2016-08-31 汇中仪表股份有限公司 一种具有防冻功能的超声流量、热量计用测量传感器结构
CN206440316U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种多通道超声波流量计

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111952A (zh) * 2021-11-22 2022-03-01 金卡智能集团股份有限公司 表头连接件及流量计

Also Published As

Publication number Publication date
US20190346299A1 (en) 2019-11-14
US10557733B2 (en) 2020-02-11
CN206440316U (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2018133463A1 (zh) 一种多通道超声波流量计
CN206469925U (zh) 一种多声道超声波流量计
CN104390786A (zh) 一种测量旋转条件下小孔流量系数的试验台
CN210036850U (zh) 一种新型气体流量计温压补偿装置
CN206146488U (zh) 一种大口径超声波流量计换能器组件及大口径超声波流量计
WO2015089899A1 (zh) 一种自转式流量计
CN105188166A (zh) 一种内外加热的加热管
CN201536084U (zh) 一种可设定流量和压差式的流量开关
CN211527513U (zh) 一种风流量测风设备
CN210293338U (zh) 一种超声波流量计整流装置
CN202255485U (zh) 高压差压流量测量孔板
CN209416423U (zh) 一种智能在线维修超声波流量计表体
CN203385453U (zh) 防腐型均衡流量计
CN208688594U (zh) 温压补偿型流量计
CN207163583U (zh) 温度计套管装置
CN207741801U (zh) 一种智能型靶式流量计
CN107515079A (zh) 一种球阀中球体与阀座密封性能的检测装置
CN206146489U (zh) 一种新型大口径超声波流量计换能器组件及大口径超声波流量计
CN117588598B (zh) 一种带流量压力温度监测调节的热网平衡控制阀
CN221173520U (zh) 一种超声精准计量装置
CN221764583U (zh) 一种便于拆装的涡街流量计
CN212988470U (zh) 一种耐腐蚀孔板流量计
CN205655856U (zh) 一种使用传感器采集管道介质参数的法兰集成装置
CN220602608U (zh) 一种流量传感器及供水设备
CN221123502U (zh) 一种电磁水表的取压结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892471

Country of ref document: EP

Kind code of ref document: A1