WO2018133171A1 - 一种低压油路进油供给结构 - Google Patents
一种低压油路进油供给结构 Download PDFInfo
- Publication number
- WO2018133171A1 WO2018133171A1 PCT/CN2017/074964 CN2017074964W WO2018133171A1 WO 2018133171 A1 WO2018133171 A1 WO 2018133171A1 CN 2017074964 W CN2017074964 W CN 2017074964W WO 2018133171 A1 WO2018133171 A1 WO 2018133171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- tank
- inlet
- server
- spray
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/20—Indexing scheme relating to G06F1/20
- G06F2200/201—Cooling arrangements using cooling fluid
Definitions
- the invention relates to a method for supplying a cooling medium in a cooling system, in particular to a low-pressure oil path oil supply structure.
- the traditional cabinets use air-cooled heat dissipation, and the cooling capacity is limited. If the density of equipment in the cabinet increases, the internal temperature of the equipment will rise sharply and cannot be effectively cooled.
- the traditional cabinet is an open structure with low IP rating, local turbulence and heat dissipation, low heat dissipation efficiency and high energy consumption.
- servers in the cabinet are usually stacked from top to bottom. If the liquid supply interface provides different degrees of pressure loss in the process of providing circulating liquid to each layer of the server, the heat dissipation effect of each layer server is seriously affected due to different liquid supply amounts, different heat dissipation temperatures, and different heat dissipation efficiencies.
- the object of the present invention is to overcome the above problems existing in the prior art, and to provide a low-pressure oil passage oil supply structure for controlling a cooling liquid oil spraying process to achieve a better cooling effect.
- the low-pressure oil passage oil supply structure comprises an upper oil tank and an oil inlet device, wherein the upper oil tank is located higher than the oil passage;
- the oil inlet device comprises an oil inlet pipeline, an oil inlet tank and an oil inlet branch pipe;
- the upper end of the inlet tank is connected to the upper tank;
- the upper tank is provided with a float valve;
- the float valve adjusts the oil intake amount of the upper tank, and the side of the inlet tank is connected with the An oil inlet pipe;
- the other end of the oil inlet pipe is connected to the server casing spray oil passage;
- the pump pumps the cooling hydraulic oil from the main oil tank into the upper oil tank, and is diverted to the oil through the oil inlet tank Branch, server shell, cooling the server inside the server shell.
- the lower end of the oil inlet device is connected to the auxiliary oil tank; the auxiliary oil tank is connected to the main oil tank through a return oil pipeline.
- the inlet of the oil inlet tank and the oil inlet branch pipe are further provided with an oil inlet regulating valve; and the oil inlet regulating valve adjusts the oil inlet amount of the oil inlet branch pipe.
- a low-pressure oil passage oil supply structure further includes a liquid distributor; the liquid distributor includes a bottom plate provided with a oil drain hole; and the bottom plate is further provided with an overflow hole; The flow hole is facing the heating zone of the server.
- a low-pressure oil passage oil supply structure further includes a liquid distributor; each of the server casings is provided with a liquid dispenser; the liquid distributor includes a return oil chamber and a spray oil chamber a liquid inlet port and a return port; the oil inlet pipe is connected to the cloth liquid inlet; the oil return chamber is located above the spray oil chamber; and the cloth liquid is oiled
- the nozzle is located in the spray oil chamber; the bottom surface of the spray oil chamber is provided with a spray hole; the spray hole is facing the server; the oil return chamber is taken through the Cooling liquid oil in the server above the liquid dispenser; the oil return port is for discharging the cooled liquid oil in the oil return chamber.
- the liquid distributor further includes an overflow hole; the overflow hole is disposed on a bottom surface of the spray oil chamber; and the overflow hole is higher than a bottom surface of the spray oil chamber
- the oil return chamber is at an angle to the horizontal plane.
- the server casing includes an upper cover and a casing; the upper cover is fixed to the casing; the upper cover includes a coolant inlet pipe, at least one spray pressure chamber, and at least one spray a casing and a casing cover, wherein the casing comprises a casing body and a coolant outlet pipe; the shower casing is provided on an inner surface of the casing casing, and the coolant inlet pipe is connected to the casing
- the spray pressure chamber is provided with the spray hole on each of the spray pressure chambers; the spray hole is facing the heat generating chip area of the server.
- the tank body is provided with a flow channel, and the coolant outlet pipe is in communication with the flow channel;
- the server casing further includes a sealing member, and the upper cover is sealed and installed with the casing through the sealing member.
- a low-pressure oil passage oil supply structure further includes an oil inlet switch valve; the oil inlet switch valve is installed at a connection between the server casing and the oil inlet pipe, the liquid distributor and The oil inlet branch pipe connection; the oil inlet switch valve comprises a switch valve oil inlet port, a valve core, a valve body, a switch, a telescopic oil outlet; the valve inlet port is connected to the oil inlet The switch controls the valve core and the telescopic oil outlet.
- the cooling liquid oil is an insulating liquid oil, and includes at least one of natural mineral oil, silicone oil, vegetable oil, transformer oil, and heat transfer oil;
- the server casing has a cooling liquid oil; the cooling The liquid oil occupies 0%-50% of the space of the server casing.
- the device adopts standardized module design, which not only meets the requirements of use, but also meets the installation and assembly requirements. In actual use, it can meet all cabinet server usage;
- the device adopts standardized module design, which has considerable advantages for mass production and maintenance;
- Cooling liquid oil is in a flowing state throughout the process, and no oil gathering occurs to form a local high temperature phenomenon
- the system uses a full gravity flow design, the pump only needs to pump the liquid to a high place, not only does not need to spend extra pump work to provide pressurized liquid to the nozzle of each server. It is not necessary to consume pump work in pipelines and elbows, which greatly saves pump work and reduces the cost of the pump, which is energy-saving and economical;
- FIG. 1 is a schematic view showing the principle of a low pressure oil passage oil supply structure of the present invention
- FIG. 2 is a schematic view showing another principle of the low pressure oil passage oil supply structure of the present invention.
- Figure 3 is a schematic view of a cloth dispenser and a server cloth
- Figure 4 is a schematic view showing the planar structure of the liquid dispenser
- Figure 5 is a schematic view showing the internal structure of the oil inlet and outlet valve of the present invention.
- Figure 6 is a plan view of the oil inlet and outlet valve of the present invention.
- Figure 7 is a schematic overall view of the oil separation device
- Figure 8 is a schematic diagram 1 of the internal structure of the oil separation device
- Figure 9 is a plan view showing the internal structure of the oil separation device.
- Figure 10 is a schematic diagram 2 of the internal structure of the oil separation device
- Figure 11 is a schematic structural view of the oil separation unit
- Figure 12 is a schematic diagram of the principle of the oil separator
- Figure 13 is a schematic view showing the structure of the pressure relief pipe
- Figure 14 is a schematic structural view of a server insertion box of the present invention.
- Figure 15 is a schematic view of the interior of the server box of the present invention 1;
- Figure 16 is a schematic view of the interior of the server box of the present invention 2.
- the reference numerals in the figure indicate: main oil tank 1, pump 2, radiator 3, oil separator 4, casing 41, oil inlet regulating valve 42, oil inlet valve body 421, connecting rod 422, floating body 423, oil inlet end 43 , oil separation unit 44, vent pipe 441, oil discharge port 442, oil amount regulator 443, flow deflector 444, bubble removal device 45, pressure relief pipe 46, pressure relief oil inlet 461, pressure relief oil Port 462, pressure relief hole 463, filter 5, oil inlet device 6, liquid distributor 7, oil return chamber 71, spray oil chamber 72, cloth liquid inlet port 73, oil return port 74, overflow hole 75, Spray hole 76, oil return device 8, oil inlet tank 9, server housing 10, upper cover 101, fastener 102, sealing member 103, housing 104, adapter plate 105, coolant inlet pipe 106, closed flow passage 107
- a low-pressure oil passage oil supply structure includes an upper oil tank and an oil inlet device 6, and the upper oil tank is positioned higher than the oil passage.
- the oil inlet device 6 includes an oil inlet pipeline, an oil inlet tank 9, and an oil inlet branch pipe 11; the upper end of the oil inlet tank 9 is connected to the upper oil tank; and the upper oil tank is provided with a float a valve; the float valve adjusts the oil intake amount of the upper tank, the inlet tank 9 side is connected to the oil inlet pipe 11; the other end of the oil inlet pipe 11 is connected to the server casing 10 to spray the oil passage;
- the pump pumps the cooling hydraulic oil from the main tank 1 to the station In the upper tank, the inlet tank 9 is branched to the inlet branch pipe 11 and the server casing 10 to cool the server in the server casing 10.
- a low pressure oil passage oil supply structure further includes a liquid distributor 7; each of the server casings 10 is provided with a liquid dispenser 7 as described above.
- the liquid dispenser 7 includes a bottom plate provided with an oil drain hole; the bottom plate is further provided with an overflow hole 75; the overflow hole 5 is opposite to the server.
- the liquid distributor 7 includes a return oil chamber 71, a spray oil chamber 72, a cloth liquid inlet port 73, and a return oil port 74; the oil return chamber 71 is described.
- the spray oil inlet 73 is located in the spray oil chamber 72; the bottom surface of the spray oil chamber 72 is provided with a spray hole 76;
- the spray hole 76 faces the server;
- the oil return chamber 71 receives the cooling liquid oil flowing through the server above the liquid dispenser 7;
- the oil return port 74 is used to discharge the back Cooling liquid oil in the oil chamber 71.
- the liquid dispenser 7 further includes an overflow hole 75; the overflow hole 75 is disposed on a lower bottom surface of the shower oil chamber 72; the overflow hole 75 is higher than the spray The bottom surface of the oil draining chamber 72; the oil returning chamber 71 is at an angle to the horizontal plane.
- the oil return port 74 faces the return tank of the oil return device 8, and the cooled liquid oil returning from the oil return port 74 flows into the main tank 1 through the return tank.
- the liquid distributor 7 corresponding to each layer of the server is provided with a plurality of overflow holes 75, and the height of the overflow holes 75 is 5-20 mm higher than that of the oil splashing plate to ensure the oil level depth in the spray oil chamber 72.
- the excess oil amount enters the server through the overflow hole 75; the overflow hole 75 is disposed at a relatively concentrated area of the heat-generating component to improve the heat dissipation efficiency of the server.
- the liquid dispenser 7 functions to process the cooling liquid oil after the oil is separated from the oil separator 4 according to the actual portion to be cooled, and generally fabricates the liquid distributor 7 separately from the server casing 10, and cloth.
- the liquid crystal 7 is mounted on the server casing 10 as shown in Figs. 3 and 4, and the server casing 10 is of an open structure.
- the server casing 10 is embodied as a server box; from the manufacturing process, the liquid function or overflow of the liquid distributor 7 is performed.
- the function is combined with the server box structure;
- the server box includes an upper cover 101 and a box 104;
- the upper cover 101 is fixed on the box 104;
- the upper cover 101 includes a coolant inlet pipe 106, At least one spray pressure chamber 108, at least one spray hole 109, and an upper cover housing 110
- the case 104 includes a case body 114 and a coolant outlet pipe 116; the inside of the upper cover case 110
- the spray pressure chamber 108 is disposed on the surface, the coolant inlet pipe 106 is connected to the spray pressure chamber 108, and each of the spray pressure chambers 108 is provided with the spray hole 109;
- the shower hole 109 faces the server heat generating chip area 112.
- the tank 104 is provided with a flow passage, the coolant outlet pipe 116 is in communication with the flow passage; the server insert box further includes a sealing member 103, and the upper cover 101 passes through the sealing member 103 and the The casing 104 is sealingly mounted; the inner surface of the casing casing 114 is further provided with a partition 113; the flow passage is located on the same side of the partition plate 113 as the server heating chip region 112; The server inserts the server into the heat-generating chip area 112 and the non-main heat-generating area by using the partition plate 113, that is, the liquid flow path in the server insert box is planned, further ensuring concentrated heat dissipation to the heat-generating area, and improving heat dissipation efficiency.
- an outer side of the case housing 114 may be provided with an adapter plate 105.
- the adapter board 105 is provided with various sockets or interfaces for connecting the storage device with other servers.
- the upper cover 101 further includes a closed flow path tube 107 through which the coolant inlet pipe 106 is connected to the shower pressure chamber 108.
- the use of the closed flow channel tube 107 ensures that the coolant inlet pipe 106 is better connected to the shower pressure chamber 108, and the spray pressure chamber 108 can be conveniently disposed within the upper cover housing 110. A reasonable arrangement on the surface.
- the server box further includes a fastener 102.
- the upper cover housing 110 is provided with a plurality of insertion holes 111 at the edge thereof, and the edge of the sealing member 103 is provided.
- a plurality of through holes corresponding to the insertion holes 111, and a plurality of mounting posts 115 are disposed at an edge of the case housing 114, and the mounting posts 115 correspond to the insertion holes 111 and the through holes
- the fastener 102 cooperates with the insertion hole 111, the through hole, and the mounting post 115, and the upper cover 101, the sealing member 103 and the case 104 are fixedly coupled together by the fastener 102.
- the fastener may be pin-connected or screwed to the mounting post 115, and a jack or a through hole is provided at an edge of the upper cover housing and the sealing member 103 without affecting the inner portion thereof.
- the layout of the key structures is also easy to disassemble and install.
- the coolant inlet pipe 106 is horizontally disposed on one side of the upper casing 110, and the coolant outlet pipe 116 is horizontally disposed on one side of the casing casing 114, the coolant inlet A tube 106 is located above the coolant outlet tube 116.
- the coolant outlet pipe 116 is located below the coolant inlet pipe 106, which facilitates the discharge of the coolant from the top to the bottom by gravity; the coolant inlet pipe 106 is located above the coolant outlet pipe 116.
- the coolant enters the tank without being obstructed by gravity.
- the coolant outlet pipe 116 is higher than the bottom of the tank casing 114.
- the residual amount of the coolant can be used to partially soak and cool the server, but the residual amount of the coolant should not pass the upper surface of the server, and the spray effect is not affected.
- the bottom surface of the inside of the box casing 114 forms an angle with the horizontal plane based on the principle of gravity.
- a gravity spray system as shown in FIG. 1 and FIG. 2, includes a main oil tank 1, a pump 2, a radiator 3, a data center cabinet, an oil inlet device 6, an oil return device 8, and a cooling liquid oil;
- the fuel tank 1, the pump 2, the radiator 3, and the data center cabinet are connected to form a closed oil passage through the oil inlet device 6 and the oil return device 8;
- the pump 2 pumps the cooling liquid oil from the main oil tank 1 through the
- the heat exchanger 3 exchanges heat into the oil separator 4 in the data center cabinet through a pipeline;
- the oil separator 4 is located at an upper portion of the data center cabinet; and the oil separator 4 is divided into oil
- the liquid dispenser 7 is sprayed to cool the server; the cooled liquid oil that has been cooled and processed is returned to the main tank 1 via the oil return device 8.
- the gravity sprinkler system further includes a filter 5 and an auxiliary oil tank 13; the filter 5 is inserted into the closed oil passage; the oil inlet device 6 includes an oil inlet pipeline and a fuel inlet tank. 9.
- the other end of the oil inlet pipe 11 is connected to the server casing 10 or the liquid distributor 7; the inlet of the oil inlet tank 9 and the oil inlet pipe 11 is further provided with an oil inlet regulating valve 12;
- the oil return device 8 includes a return oil tank and a return oil pipeline; the auxiliary oil tank 13 is connected to the main oil tank 1 through a return oil pipeline; the oil return port 74 of the liquid distributor 7 is The return tank is connected.
- the position of the filter 5 is not limited, and it should be within the scope of the present invention to
- the data center cabinet includes a cabinet body, an oil separator 4, and a plurality of liquid distributors 7.
- the cabinet body includes a plurality of mounting brackets; the cabinet body is sequentially installed with a plurality of server housings 10 from high to low.
- a server is disposed in the server casing 10;
- a liquid distributor 7 is disposed above each of the server casings 10;
- the oil separator 4 is mounted above all of the liquid distributors 7;
- the oil separator 4 is connected to the liquid distributor 7 through the oil inlet device 6; the cooling liquid oil flows through the oil separator 4 to the liquid distributor 7, the cloth liquid
- the device 7 sprays the cooled liquid oil to the server for cooling.
- the cabinet body is made of a metal material; in particular, the flexible material can also be introduced into the manufacturing cabinet body.
- the data center cabinet further includes an oil inlet switch valve 16; the oil inlet switch valve 16 is mounted on the server casing 10 and the oil inlet device 6 The connection, the liquid distributor 7 is connected with the oil inlet device 6; the oil inlet and outlet valve 16 includes an opening and closing valve inlet 161, a valve core 162, a valve body 163, a switch 164, and a telescopic The oil port 165; the valve closing oil inlet 161 is connected to the oil inlet device 6; the switch 164 controls the valve core 162 and the telescopic oil outlet 165.
- the oil inlet switch valve controls the opening and closing of the cooling liquid oil entering the liquid distributor 7, and at the same time realizes the extension and contraction of the expansion and contraction oil outlet 165; during operation, the oil inlet and outlet valve 16 is in an open state, and the switching valve core 162 is advanced.
- the oil hole has a certain distance.
- the telescopic oil outlet 165 is also in an extended state, and the cooling liquid oil flows into the liquid distributor 7 through the oil inlet 161 and the telescopic oil outlet 165; when the server needs maintenance and repair, the rotating handle The switch 164 rotates the switch valve core 162 and moves toward the oil inlet 161 to close the oil inlet 161, and the telescopic oil inlet 165 retracts to close the liquid flow space, ensuring that the server is not affected by the liquid when it is taken out for maintenance.
- the oil separator 4 includes a casing 41, at least one oil inlet end 43 and a plurality of oil separation units 44.
- the plurality of oil separation units are mounted on the casing 41.
- the oil separation unit 44 includes an oil separation and oil discharge end 442; the cooling liquid oil enters the oil separator 4 from the oil separation oil inlet end 43 from the oil separation and oil discharge end 442. Flow to each cooling branch.
- the oil separation unit 44 further includes a vent pipe 441, a fuel amount adjuster 443, and a splitter baffle 444; the oil amount adjuster 443 is facing the said Oil outlet end 442, the oil regulator 443 control
- the oil-discharging and oil-receiving end 442 is configured to discharge oil; the splitter baffle 444 divides each of the oil-separating units 44 into independent units, and the split-flow deflector 444 divides the flowing oil to guide
- a plurality of separate passages are formed in the casing, and each passage corresponds to one oil distribution port, so that the amount of oil finally flowing into the oil distribution port is kept consistent, so that the oil amount regulator 443 of each oil separation unit 44 can independently control the respective points.
- the oil discharge pressure and the oil discharge amount of the oil unit 44; the vent pipe 441 is in communication with the oil separation and oil discharge end 442 for balancing the oil discharge pressure of the oil separation and oil discharge end 442.
- the oil amount adjuster 443 comprises a cone, an elastic member and a pressing rod; the pressing rod is fixedly mounted on one side of the casing 41; the cone is fixed to the pressing rod The lower end; the cone is opposite to the oil separation end 442; the elastic member adjusts the distance between the cone and the oil separation end 442.
- the height of the pressure bar will be adjusted so that the angle ⁇ between the oil discharge end 442 and the cone reaches a suitable angle, and the cooling liquid oil flows to the server along the space angle; as shown in FIG.
- the whole oil separator 4 is installed on the upper part of the whole cooling device, and the cooling liquid oil in the oil separator 4 enters the server to be cooled under the action of gravity, according to the difference in height between the oil discharge end 442 and the server to be cooled,
- the ⁇ is adjusted to ensure that the cooled liquid oil flowing out of the oil-separating and oil-receiving end 442 of each oil-dividing unit 44 flows at the same pressure and at the same pressure.
- the oil separator 4 further includes an oil inlet regulating valve 42; the oil inlet regulating valve 42 is connected to the oil inlet and oil inlet end 43 through a pipeline;
- the oil inlet regulating valve 42 includes an oil inlet valve body 421, a connecting rod 422, and a floating body 423.
- the floating body 423 is floated to drive the connecting rod 422 to move, and the oil inlet valve body 421 is closed.
- the oil separator 4 further includes a bubble removing device 45; the bubble removing device 45 is installed adjacent to the oil separating unit 44.
- the debuffering device 45 is a wire mesh or a perforated plate. The air bubbles mixed in the pumped cooling liquid oil cannot enter the oil separation unit 44 under the barrier of the screen or the perforated plate, and the cooling liquid oil flowing out from the oil separation end 442 of each oil separation unit 44 is ensured to be pure.
- the oil separator 4 further includes a pressure relief pipe 46; the pressure relief pipe 46 includes at least one pressure relief oil inlet 461, at least one pressure relief oil outlet 462, and a plurality of The pressure relief hole 463 is connected to the oil inlet regulating valve 42; the plurality of pressure relief holes 463 are located on the wall of the pressure relief pipe 46.
- the plurality of pressure relief holes 463 provided on the pressure relief pipe 46 prevent the pumped cooling liquid oil from being overpressured, causing unnecessary impact on the oil separator 4 and other piping and components, and damaging the equipment.
- the oil separator 4 further includes a respirator 47; the respirator 47 is mounted on the upper cover of the casing 41; the respirator 47 is used to communicate with the The internal air of the oil separator 4 and the outside air.
- the design of the respirator prevents the formation of a closed high pressure in the oil separator, damaging the piping and other equipment.
- the oil separator 4 is an embodiment specifically designed to combine the functions of the upper oil tank, the oil inlet tank 9, and the oil inlet regulating valve 12.
- the oil regulating valve 12 functions as the oil amount adjuster 443, but is not limited to the two, and may be used in combination to achieve the corresponding effect.
- a gravity spray cooling oil separation method comprising the following steps:
- the oil quantity is adjusted, the stock of the cooling liquid oil in the oil separator 4 is controlled by the oil inlet regulating valve 42, the position of the connecting rod 422 is adjusted, and the oil inlet regulating valve is closed when the floating body 423 is lifted. Position of 42;
- Pressure relief adjustment buffering the pumped cooling liquid oil pressure through a plurality of pressure relief holes 463 provided on the pressure relief pipe 46;
- Bubble treatment separating the bubbles in the cooled liquid oil through the small holes in the bubble removing device 45;
- the oil separation process adjusts the distance between the cone and the oil separation and oil discharge end 442 by adjusting the elastic member, and matches the difference in height between the oil separation and outlet end 442 and the equipment to be cooled.
- the cooling liquid oil is an insulating liquid oil, including at least one of natural mineral oil, silicone oil, vegetable oil, transformer oil, and heat transfer oil;
- the server casing 10 has a cooling liquid oil therein;
- the cooling liquid oil occupies 0%-50% of the space ratio of the server casing 10.
- the cooling liquid oil in the server casing 10 maintains a certain liquid level height, and the cooling liquid oil is in full contact with the main heating elements of the server. The heat is absorbed and collected through the return line, and the cooled liquid oil returned by each layer of the server is returned to the main tank 1.
- the invention provides a low-pressure oil passage oil supply structure, comprising an upper oil tank and an oil inlet device, wherein the upper oil tank position is higher than the oil passage;
- the oil inlet device comprises an oil inlet pipeline, an oil inlet tank and an oil inlet branch pipe; and an upper end of the oil inlet tank Connected to the upper tank;
- the upper tank is provided with a float valve; the float valve adjusts the oil volume of the upper tank, and the fuel tank is connected to the oil inlet pipe; the other end of the oil inlet pipe is connected to the oil supply pipe
- the engine casing sprays the oil circuit; it is diverted to the oil inlet pipe and the server casing through the oil inlet tank, and cools the server in the server casing.
- the invention solves the problem that the server in the cabinet is arranged in order from top to bottom, resulting in inconsistent oil distribution of the gravity oil separation oil passage, and adopting the liquid distributor to control the cooling liquid oil spraying process to achieve better cooling effect. .
- the invention has the advantages of ingenious design, reasonable structure and innovative method, and breaks through the traditional large-scale server cooling mode, and has strong practicability and convenient promotion.
- the invention adopts a liquid-cold spray system, and the specific oil of the cooled liquid oil is large, and is in direct contact with the heating element, and the heat transfer efficiency is high;
- the invention adopts standardized module design, which not only satisfies the requirements of use, but also satisfies the installation and assembly requirements. In actual use, it can meet all cabinet server usage;
- the invention adopts standardized module design and has considerable advantages for mass production and maintenance;
- the cooled liquid oil of the present invention is in a flowing state throughout the process, and no oil collecting occurs to form a local high temperature phenomenon;
- the system adopts a full gravity flow design, and the pump only needs to pump the liquid to a high place, and does not need to spend extra pump work to provide a pressurized liquid to the nozzle of each server. It also does not need to consume pump work in pipelines and elbows, which greatly saves pump work and reduces the cost of the pump, which is energy-saving and economical.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种低压油路进油供给结构,包括一上置油箱、进油装置(6),上置油箱位置高于油路;进油装置(6)包括进油管路、进油箱(9)、进油支管(11);进油箱(9)上端连接上置油箱;上置油箱内设有浮阀;浮阀调节上置油箱进油量,进油箱(9)一侧连接进油支管(11);进油支管(11)另一端连接服务器外壳(10)喷淋油路;泵(2)将冷却液压油从主油箱(1)中泵入至上置油箱内,经进油箱(9)分流至进油支管(11)、服务器外壳(10),冷却服务器外壳(10)内的服务器。其解决了机柜内服务器因由上而下依次排列带来的高度差,导致重力分油油路的油量分配不一致的问题,采用布液器控制冷却液态油喷淋过程,达到更佳的冷却效果。
Description
本发明涉及冷却系统中冷却介质的供给方法,具体涉及一种低压油路进油供给结构。
数据中心内使用的各类服务器、刀片机等,受大数据业务及市场的带动,其功率大幅度提升,排布密度越来越高;相应的,高热流密度下的散热问题备受关注,也成为数据中心建设及其运维工作的重点和技术瓶颈;间接或直接液冷散热模式由于其综合换热效率高,被认为是数据中心散热的必然趋势;特别的,鉴于热源直接接触吸热、液冷综合换热系数高、传热热阻非常小的优点,直接液冷散热模式从理论上分析是最有效的散热方式。
传统机柜大多采用风冷散热的方式,制冷量有限,如果机柜中设备的放置密度增加,设备的内部温度会急剧上升,不能有效的制冷。另外,传统机柜是开放结构,IP等级低,存在局部紊流和散热死角,散热效率低,能耗高。
现有技术不成熟,在工程化应用实践中,液冷的关键环节之一为供液系统,如何提高供液效率,同时降低供给循环系统的能耗,是解决工程应用的关键。一方面,散热系统要维持正常工作,供液系统需要配备液体泵提供泵功以及备压。散热系统中,泵结构及泵消耗将占据系统一大部分硬件配备和软件控制,如果能减少泵的用量,特别是高压泵的使用,将会大幅度提升此类散热系统的综合能效,同时降低工程成本和运维成本。如果此过程中泵的功率消耗过大,将增加散热系统的总功耗,从而降低散热系统效能(COP)以及数据中心总体PUE,降低节能环保效果。另一方面,机柜内的服务器通常从上至下层层累加摆放。如果供液接口为各层服务器提供循环液的过程中存在不同程度的压损,由于供液量不同、散热温度不同、散热效率不同,严重影响各层服务器的散热效果。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种低压油路进油供给结构,控制冷却液态油喷淋过程,达到更佳的冷却效果。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种低压油路进油供给结构,包括一上置油箱、进油装置,所述的上置油箱位置高于油路;所述的进油装置包括进油管路、进油箱、进油支管;所述的进油箱上端连接所述的上置油箱;所述的上置油箱内设有浮阀;所述的浮阀调节上置油箱进油量,所述的进油箱一侧连接所述的进油支管;所述的进油支管另一端连接服务器外壳喷淋油路;泵将冷却液压油从主油箱中泵入至所述的上置油箱内,经所述的进油箱分流至进油支管、服务器外壳,冷却服务器外壳内的服务器。
进一步的,所述的进油装置下端连接所述的辅助油箱;所述的辅助油箱与所述的主油箱通过回油管路连接。
进一步的,所述的进油箱与所述的进油支管的连接处还设有进油调节阀;所述的进油调节阀调节所述的进油支管进油量。
进一步的,一种低压油路进油供给结构还包括布液器;所述的布液器包括一设有淋油孔的底板;所述的底板上还设有溢流孔;所述的溢流孔正对服务器发热区。
进一步的,一种低压油路进油供给结构还包括布液器;每一所述的服务器外壳上方设有一所述的布液器;所述的布液器包括回油腔、喷淋油腔、布液进油口、回油口;所述的进油支管与所述布液进油口连接;所述的回油腔位于所述的喷淋油腔上方;所述的布液进油口位于所述的喷淋油腔内;所述的喷淋油腔下底面设有喷淋孔;所述的喷淋孔正对所述的服务器;所述的回油腔承接流经所述布液器上方的服务器中的冷却液态油;所述的回油口用于排出所述回油腔中的冷却液态油。
进一步的,所述的布液器还包括溢流孔;所述的溢流孔设于所述的喷淋油腔下底面;所述的溢流孔高于所述的喷淋油腔下底面;所述的回油腔与水平面呈一夹角。
进一步的,所述的服务器外壳包括上盖、箱体;所述上盖固定于所述箱体上;所述上盖包括冷却液进口管、至少1个喷淋压力腔、至少1个喷淋孔、上盖壳体,所述箱体包括箱体壳体、冷却液出口管;所述上盖壳体的内表面上设有所述喷淋压力腔,所述冷却液进口管连接所述喷淋压力腔,各所述喷淋压力腔上均设有所述喷淋孔;所述喷淋孔正对服务器发热芯片区域。
进一步的,所述的箱体内设有流道,所述冷却液出口管与流道相通;服务器外壳还包括密封件,所述上盖通过所述密封件与所述箱体密封安装。
进一步的,一种低压油路进油供给结构还包括进油开关阀;所述的进油开关阀安装于所述的服务器外壳与所述的进油支管连接处、所述的布液器与所述的进油支管连接处;所述的进油开关阀包括开关阀进油口、阀芯、阀体、开关、伸缩出油口;所述的关阀进油口连接所述的进油装置;所述的开关控制所述的阀芯、所述的伸缩出油口。
进一步的,所述的冷却液态油为绝缘液态油,包括天然矿物油、硅油、植物油、变压油、导热油中的至少一种;所述的服务器外壳内存有冷却液态油;所述的冷却液态油占用所述服务器外壳空间比例为0%-50%。
本发明的有益效果如下:
1.采用液冷喷淋系统,冷却液态油的比热大,且与发热元件直接接触,传热效率高;
2.该装置采用标准化模块设计,不仅满足了使用要求,还能满足安装、装配要求。在实际的使用中,能满足所有的机柜服务器使用;
3.该装置采用了标准化模块设计,对于量产,维护有相当大的优势;
4.从宏观的看,冷却液态油的整个流动性很好,全部是从上而下流动,能满足更快的传热;
5.冷却液态油在整个过程中,都是处于流动状态,不会出现集油而形成局部高温现象;
6.在实际的大型工程应用中,系统采用了全重力流动设计,泵只需将液体抽到高处,不仅不需支出额外的泵功来给每个服务器的喷头提供带压力的液体,也不用在管路和弯头处消耗泵功,这样极大的节省了泵功,降低了泵的成本,既节能又经济;
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明的一种低压油路进油供给结构原理示意图;
图2是本发明的另一种低压油路进油供给结构原理示意图;
图3是一种布液器与服务器布液示意图;
图4是一种布液器平面结构示意图;
图5是本发明的进油开关阀内部结构示意图;
图6是本发明的进油开关阀俯视图;
图7是分油装置整体示意图;
图8是分油装置内部结构示意图1;
图9是分油装置内部结构俯视图;
图10是分油装置内部结构示意图2;
图11是分油单元结构示意图;
图12是分油调节器原理示意图;
图13是泄压管结构示意图;
图14是本发明的服务器插箱结构示意图;
图15是本发明的服务器插箱内部示意图1;
图16是本发明的服务器插箱内部示意图2;
图中标号说明:主油箱1、泵2、散热器3、分油器4、盒体41、进油调节阀42、进油阀体421、连杆422、浮体423、分油进油端43、分油单元44、通气管441、分油出油端442、油量调节器443、分流导流板444、除气泡装置45、泄压管46、泄压进油口461、泄压出油口462、泄压孔463、过滤器5、进油装置6、布液器7、回油腔71、喷淋油腔72、布液进油口73、回油口74、溢流孔75、喷淋孔76、回油装置8、进油箱9、服务器外壳10、上盖101、紧固件102、密封件103、箱体104、转接板105、冷却液进口管106、封闭流道107、喷淋压力腔108、喷淋孔109、上盖壳体110、插孔111、发热芯片区域112;隔板113、箱体壳体114、安装柱115、冷却液出口管116、进油支管11、进油调节阀12、辅助油箱13、进油开关阀16、开关阀进油口161、阀芯162、阀体163、开关164、伸缩出油口165。
下面将参考附图并结合实施例,来详细说明本发明。
参照图1-16所示,一种低压油路进油供给结构,如图1、图2所示,包括一上置油箱、进油装置6,所述的上置油箱位置高于油路,其特征在于:所述的进油装置6包括进油管路、进油箱9、进油支管11;所述的进油箱9上端连接所述的上置油箱;所述的上置油箱内设有浮阀;所述的浮阀调节上置油箱进油量,所述的进油箱9一侧连接所述的进油支管11;所述的进油支管11另一端连接服务器外壳10喷淋油路;泵将冷却液压油从主油箱1中泵入至所
述的上置油箱内,经所述的进油箱9分流至进油支管11、服务器外壳10,冷却服务器外壳10内的服务器。所述的进油装置6下端连接所述的辅助油箱13;所述的辅助油箱13与所述的主油箱1通过回油管路连接。所述的进油箱9与所述的进油支管11的连接处还设有进油调节阀12;所述的进油调节阀12调节所述的进油支管11进油量。一种低压油路进油供给结构还包括布液器7;每一所述的服务器外壳10上方设有一所述的布液器7。如图1所示,在一实施例中,布液器7包括一设有淋油孔的底板;所述的底板上还设有溢流孔75;所述的溢流孔5正对服务器发热区,当服务器温度上升超过一定限温时,冷却液态油供给增加,没过溢流孔75,冷却液态油通过溢流孔75集中向服务器主要的发热区淋下,快速降低温度。
优选地,如图3、图4所示,所述的布液器7包括回油腔71、喷淋油腔72、布液进油口73、回油口74;所述的回油腔71位于所述的喷淋油腔72上方;所述的布液进油口73位于所述的喷淋油腔72内;所述的喷淋油腔72下底面设有喷淋孔76;所述的喷淋孔76正对所述的服务器;所述的回油腔71承接流经所述布液器7上方的服务器中的冷却液态油;所述的回油口74用于排出所述回油腔71中的冷却液态油。优选地,所述的布液器7还包括溢流孔75;所述的溢流孔75设于所述的喷淋油腔72下底面;所述的溢流孔75高于所述的喷淋油腔72下底面;所述的回油腔71与水平面呈一夹角。如图2所示,回油口74正对回油装置8的回油箱,从回油口74回流的冷却液态油经过回油箱流入主油箱1中。每层服务器对应的布液器7设置有若干个溢流孔75,溢流孔75高度高于淋油板5-20mm,保证喷淋油腔72内油位深度。当进油量大于淋油量时(如检修单层服务器时),多余的油量通过溢流孔75进入服务器;溢流孔75位置设置于发热元件相对集中的区域,提高服务器的散热效率。
应当理解,布液器7作用为将从分油器4中分油后的冷却液态油按照需冷却的实际部位在实际布液处理,一般的将布液器7与服务器外壳10分开制造,布液器7如图3、图4中结构安装于服务器外壳10上,服务器外壳10为敞开结构。
在另一实施例中,优选地,如图14-16所示,所述的服务器外壳10具体实施时为一服务器插箱;从制造工艺上,将布液器7的布液功能或溢流功能与服务器插箱结构进行结合;所述的服务器插箱包括上盖101、箱体104;所述上盖101固定于所述箱体104上;所述上盖101包括冷却液进口管106、至少1个喷淋压力腔108、至少1个喷淋孔109、上盖壳体110,所述箱体104包括箱体壳体114、冷却液出口管116;所述上盖壳体110的内表面上设有所述喷淋压力腔108,所述冷却液进口管106连接所述喷淋压力腔108,各所述喷淋压力腔108上均设有所述喷淋孔109;所述喷淋孔109正对服务器发热芯片区域112。优选地,所述的箱体104内设有流道,所述冷却液出口管116与流道相通;服务器插箱还包括密封件103,所述上盖101通过所述密封件103与所述箱体104密封安装;所述箱体壳体114的内表面上还设有隔板113;所述的流道与服务器发热芯片区域112位于所述的隔板113同侧;本实施例通过在服务器插箱中用隔板113将服务器分为发热芯片区域112和非主要发热区域,即对服务器插箱内液体流道进行了规划,进一步保证对发热区域集中散热,提高散热效率。优选地,如图14所示,所述箱体壳体114的外侧可设有转接板105。所述转接板105上设有各种插口或接口,用于连接存储设备与其他服务器。
优选地,如图15所示,所述上盖101还包括封闭流道管107,所述冷却液进口管106通过所述封闭流道管107连接所述喷淋压力腔108。所述封闭流道管107的使用可保证所述冷却液进口管106与所述喷淋压力腔108更好地连接,能方便所述喷淋压力腔108在所述上盖壳体110的内表面上合理的布置。
优选地,如图14-16所示,所述服务器插箱还包括紧固件102,所述上盖壳体110的边缘处设有若干插孔111,所述密封件103的边缘处设有若干通孔,所述通孔与所述插孔111相对应,所述箱体壳体114的边缘处设有若干安装柱115,所述安装柱115与所述插孔111、通孔相对应;所述紧固件102与所述插孔111、通孔、安装柱115相配合,所述上盖101、密封件103和箱体104通过所述紧固件102固定连接在一起。所述紧固件可与安装柱115销连接或者螺纹连接,在所述上盖壳体、所述密封件103的边缘处设有插孔或通孔不会影响其内
部关键结构的布置,而且也方便拆卸和安装。优选的,所述冷却液进口管106水平设置于所述上盖壳体110的一侧,所述冷却液出口管116水平设置于所述箱体壳体114的一侧,所述冷却液进口管106位于所述冷却液出口管116的上方。所述冷却液出口管116位于所述冷却液进口管106的下方,有利于冷却液利用重力的作用从上往下排出;所述冷却液进口管106位于所述冷却液出口管116的上方,冷却液进入箱体不会受到重力的阻碍。优选的,为了保证所述箱体104的底部具有少量的冷却液残留量,所述冷却液出口管116高于所述箱体壳体114的底部。所述冷却液残留量可用于使服务器部分浸泡、冷却,但所述冷却液残留量不应没过服务器的上表面,不会影响喷淋效果。优选的,为了使冷却液顺畅、快速地从所述服务器插箱中流出,基于重力的原理,所述箱体壳体114内侧的底面与水平面之间成一夹角。
一种重力喷淋系统,如图1、图2所示,包括主油箱1、泵2、散热器3、数据中心柜、进油装置6、回油装置8、冷却液态油;所述的主油箱1、泵2、散热器3、数据中心柜通过进油装置6、回油装置8连接成闭合油路;所述的泵2将冷却液态油从所述的主油箱1泵出,经过所述的散热器3交换热量通过管路进入所述的数据中心柜中的分油器4中;所述的分油器4位于所述的数据中心柜上部;所述的分油器4分油,所述的布液器7布液喷淋冷却所述的服务器;冷却处理完成的冷却液态油经所述的回油装置8回流至所述的主油箱1中。
优选地,所述的重力喷淋系统还包括过滤器5、辅助油箱13;所述的过滤器5接入所述的闭合油路中;所述的进油装置6包括进油管路、进油箱9、进油支管11;所述的进油箱9上端连接所述的分油器4,下端连接所述的辅助油箱13;所述的进油箱9一侧连接所述的进油支管11;所述的进油支管11另一端连接所述的服务器外壳10或所述的布液器7;所述的进油箱9与所述的进油支管11的连接处还设有进油调节阀12;所述的回油装置8包括回油箱、回油管路;所述的辅助油箱13与所述的主油箱1通过回油管路连接;所述的布液器7的回油口74与所述的回油箱连通。如图1、图2所示,过滤器5的位置不受限制,置于泵2之前或泵2之后或置于散热器3之后,都应当在本发明的保护范围内。
如图2所示,数据中心柜包括机柜本体、分油器4、若干布液器7;所述的机柜本体包括若干安装架;所述的机柜本体由高至低依次安装有若干服务器外壳10;所述的服务器外壳10内安放有服务器;每一所述的服务器外壳10上方设有一所述的布液器7;所述的分油器4安装于所有所述的布液器7上方;所述的分油器4与所述的布液器7通过进油装置6连接;冷却液态油通过所述的分油器4分油流至所述的布液器7,所述的布液器7喷淋冷却液态油至服务器上冷却。一般的,为保证机柜整体结构强度,机柜本体由金属材料制成;特殊的,柔性材料也可引入制造机柜本体。
优选地,如图5、图6所示,所述的数据中心机柜还包括进油开关阀16;所述的进油开关阀16安装于所述的服务器外壳10与所述的进油装置6连接处、所述的布液器7与所述的进油装置6连接处;所述的进油开关阀16包括开关阀进油口161、阀芯162、阀体163、开关164、伸缩出油口165;所述的关阀进油口161连接所述的进油装置6;所述的开关164控制所述的阀芯162、所述的伸缩出油口165。进油开关阀控制进布液器7的冷却液态油的开启与关闭,同时实现伸缩出油口165的伸出与收缩;工作时,进油开关阀16处于打开状态,开关阀芯162与进油孔有一定距离,此时伸缩出油口165也处于伸出状态,冷却液态油经进油口161与伸缩出油口165流入布液器7内;当服务器需要进行维护检修时,旋转手柄开关164,带动开关阀芯162旋转并向进油口161方向移动,封闭进油口161,同时伸缩进油口165收回,封闭液体流动空间,确保服务器抽出维修时不受液体影响。
如图7-10所示,所述的分油器4包括盒体41、至少一分油进油端43、若干分油单元44;所述的若干分油单元安装于所述的盒体41内;所述的分油单元44包括分油出油端442;冷却液态油从所述的分油进油端43进入所述的分油器4内,从所述的分油出油端442流向各冷却支路。
优选地,如图10-12所示,所述的分油单元44还包括通气管441、油量调节器443、分流导流板444;所述的油量调节器443正对所述的分油出油端442,所述的油量调节器443控
制所述的分油出油端442出油量;所述的分流导流板444将各所述的分油单元44分隔成独立单元,分流导流板444将流动的油进行分导,使壳体中形式多个单独的通道,每个通道对应一个分油口,使最终流进这个分油口的油量保持一致,使各分油单元44的油量调节器443能独立控制各分油单元44的出油压力与出油量;所述的通气管441与所述的分油出油端442连通,用来平衡分油出油端442的出油压力。优选地,所述的油量调节器443包括锥体、弹性件、压杆;所述的压杆固定安装于所述的盒体41一侧;所述的锥体固定于所述的压杆下端;所述的锥体正对所述的分油出油端442;所述的弹性件调节所述的锥体与所述的分油出油端442之间距离。如图12所示,将调节压杆的高度,使分油出油端442与锥体的夹角α达到合适的角度,冷却液态油顺着这个空间角度口流至服务器;如图2所示,整个分油器4安装于整套冷却设备的上部,分油器4中的冷却液态油在重力作用下进入待冷却服务器中,根据分油出油端442与待冷却服务器的高度差的不同,调整α,保证各分油单元44的分油出油端442流出的冷却液态油以相同速度相同压力流动。
优选地,如图9所示,所述的分油器4还包括进油调节阀42;所述的进油调节阀42通过管路与所述的分油进油端43连接;所述的进油调节阀42包括进油阀体421、连杆422、浮体423;所述的浮体423上浮,带动所述的连杆422运动,关闭所述的进油阀体421。
优选地,如图8所示,所述的分油器4还包括除气泡装置45;所述的除气泡装置45安装于邻近所述的分油单元44处。优选地,所述的除气泡装置45为一丝网或一多孔板。泵入的冷却液态油中混有的气泡在丝网或多孔板的阻隔下,无法进入到分油单元44中,确保各分油单元44的分油出油端442流出的冷却液态油纯净。
优选地,如图13所示,所述的分油器4还包括泄压管46;所述的泄压管46包括至少一泄压进油口461、至少一泄压出油口462、若干泄压孔463;所述的泄压进油口461连接所述的进油调节阀42;所述的若干泄压孔463位于泄压管46管壁上。泄压管46的上设置的若干泄压孔463防止泵入的冷却液态油压力过高,对分油器4中以及其他管路及元器件形成不必要的冲击,损坏设备。
优选地,如图7所示,所述的分油器4还包括呼吸器47;所述的呼吸器47安装于所述的盒体41的上盖;所述的呼吸器47用于连通所述的分油器4内部空气与外界空气。呼吸器的设计防止分油器中形成密闭高压,损坏管路及其他设备。
应当理解,分油器4为结合上置油箱、进油箱9、进油调节阀12三者功能具体设计的一实施方式,在本发明中,为区分各方案间联系与区别在此说明,进油调节阀12作用等同于油量调节器443,但不仅限于两者单独使用,也可组合使用,达到相应效果。
一种重力喷淋冷却的分油方法,包括以下步骤:
进油,将冷却液态油泵入分油器4内;
油量调节,通过所述的进油调节阀42控制分油器4内的冷却液态油的存量,调节所述的连杆422的位置,调整所述的浮体423浮起时关闭进油调节阀42的位置;
泄压调节,通过所述的泄压管46上设置的若干泄压孔463缓冲泵入的冷却液态油油压;
气泡处理,通过所述的除气泡装置45上的小孔,将冷却液态油中的气泡隔离;
分油处理,通过调整弹性件调节所述的调节所述的锥体与所述的分油出油端442之间距离,匹配分油出油端442与待冷却设备间不同高度差。
优选地,所述的冷却液态油为绝缘液态油,包括天然矿物油、硅油、植物油、变压油、导热油中的至少一种;所述的服务器外壳10内存有冷却液态油;所述的冷却液态油占用所述服务器外壳10空间比例为0%-50%,为达到更好的冷却效果,服务器外壳10内冷却液态油保持一定液位高度,冷却液态油与服务器主要发热元件充分接触并吸收热量,经回油管路汇集,每层服务器流回的冷却液态油重新回流至主油箱1中。
本发明提供一种低压油路进油供给结构,包括一上置油箱、进油装置,上置油箱位置高于油路;进油装置包括进油管路、进油箱、进油支管;进油箱上端连接上置油箱;上置油箱内设有浮阀;浮阀调节上置油箱进油量,进油箱一侧连接进油支管;进油支管另一端连接服
务器外壳喷淋油路;经进油箱分流至进油支管、服务器外壳,冷却服务器外壳内的服务器。本发明解决机柜内服务器因由上而下依次排列带来的高度差,导致重力分油油路的油量分配不一致的问题,采用布液器控制冷却液态油喷淋过程,达到更佳的冷却效果。本发明设计巧妙,结构合理,方法创新,突破传统的大型服务器冷却方式,同时实用性强,便于推广。
1.本发明采用液冷喷淋系统,冷却液态油的比热大,且与发热元件直接接触,传热效率高;
2.本发明采用标准化模块设计,不仅满足了使用要求,还能满足安装、装配要求。在实际的使用中,能满足所有的机柜服务器使用;
3.本发明采用标准化模块设计,对于量产,维护有相当大的优势;
4.本发明从宏观的看,冷却液态油的整个流动性很好,全部是从上而下流动,能满足更快的传热;
5.本发明的冷却液态油在整个过程中,都是处于流动状态,不会出现集油而形成局部高温现象;
6.本发明在实际的大型工程应用中,系统采用了全重力流动设计,泵只需将液体抽到高处,不仅不需支出额外的泵功来给每个服务器的喷头提供带压力的液体,也不用在管路和弯头处消耗泵功,这样极大的节省了泵功,降低了泵的成本,既节能又经济。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。
Claims (10)
- 一种低压油路进油供给结构,包括一上置油箱、进油装置(6),所述的上置油箱位置高于油路,其特征在于:所述的进油装置(6)包括进油管路、进油箱(9)、进油支管(11);所述的进油箱(9)上端连接所述的上置油箱;所述的上置油箱内设有浮阀;所述的浮阀调节上置油箱进油量,所述的进油箱(9)一侧连接所述的进油支管(11);所述的进油支管(11)另一端连接服务器外壳(10)喷淋油路;泵将冷却液压油从主油箱(1)中泵入至所述的上置油箱内,经所述的进油箱(9)分流至进油支管(11)、服务器外壳(10),冷却服务器外壳(10)内的服务器。
- 根据权利要求1所述的一种低压油路进油供给结构,其特征在于:所述的进油装置(6)下端连接所述的辅助油箱(13);所述的辅助油箱(13)与所述的主油箱(1)通过回油管路连接。
- 根据权利要求2所述的一种低压油路进油供给结构,其特征在于:所述的进油箱(9)与所述的进油支管(11)的连接处还设有进油调节阀(12);所述的进油调节阀(12)调节所述的进油支管(11)进油量。
- 根据权利要求1至3其中之一所述的一种低压油路进油供给结构,其特征在于:还包括布液器(7);所述的布液器(7)包括一设有淋油孔的底板;所述的底板上还设有溢流孔(75);所述的溢流孔(75)正对服务器发热区。
- 根据权利要求1至3其中之一所述的一种低压油路进油供给结构,其特征在于:还包括布液器(7);每一所述的服务器外壳(10)上方设有一所述的布液器(7);所述的布液器(7)包括回油腔(71)、喷淋油腔(72)、布液进油口(73)、回油口(74);所述的进油支管(11)与所述布液进油口(73)连接;所述的回油腔(71)位于所述的喷淋油腔(72)上方;所述的布液进油口(73)位于所述的喷淋油腔(72)内;所述的喷淋油腔(72)下底面设有喷淋孔(76);所述的喷淋孔(76)正对所述的服务器;所述的回油腔(71)承接流经所述布液器(7)上方的服务器中的冷却液态油;所述的回油口(74)用于排出所述回油腔(71)中的冷却液态油。
- 根据权利要求5所述的一种低压油路进油供给结构,其特征在于:所述的布液器(7)还包括溢流孔(75);所述的溢流孔(75)设于所述的喷淋油腔(72)下底面;所述的溢流孔(75)高于所述的喷淋油腔(72)下底面;所述的回油腔(71)与水平面呈一夹角。
- 根据权利要求1至3其中之一所述的一种低压油路进油供给结构,其特征在于:所述的服务器外壳(10)包括上盖(101)、箱体(104);所述上盖(101)固定于所述箱体(104)上;所述上盖(101)包括冷却液进口管(106)、至少1个喷淋压力腔(108)、至少1个喷淋孔(109)、上盖壳体(110),所述箱体(104)包括箱体壳体(114)、冷却液出口管(116);所述上盖壳体(110)的内表面上设有所述喷淋压力腔(108),所述冷却液进口管(106)连接所述喷淋压力腔(108),各所述喷淋压力腔(108)上均设有所述喷淋孔(109);所述喷淋孔(109)正对服务器发热芯片区域(112)。
- 根据权利要求7所述的一种低压油路进油供给结构,其特征在于:所述的箱体(104)内设有流道,所述冷却液出口管(116)与流道相通;服务器外壳(10)还包括密封件(103),所述上盖(101)通过所述密封件(103)与所述箱体(104)密封安装。
- 根据权利要求4或6或8所述的一种低压油路进油供给结构,其特征在于:还包括进油开关阀(16);所述的进油开关阀(16)安装于所述的服务器外壳 (10)与所述的进油支管(11)连接处、所述的布液器(7)与所述的进油支管(11)连接处;所述的进油开关阀(16)包括开关阀进油口(161)、阀芯(162)、阀体(163)、开关(164)、伸缩出油口(165);所述的关阀进油口(161)连接所述的进油装置(6);所述的开关(164)控制所述的阀芯(162)、所述的伸缩出油口(165)。
- 根据权利要求9所述的一种低压油路进油供给结构,其特征在于:所述的冷却液态油为绝缘液态油,包括天然矿物油、硅油、植物油、变压油、导热油中的至少一种;所述的服务器外壳(10)内存有冷却液态油;所述的冷却液态油占用所述服务器外壳(10)空间比例为0%-50%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710047028.4A CN106886267B (zh) | 2017-01-20 | 2017-01-20 | 一种低压油路进油供给结构 |
CN201710047028.4 | 2017-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018133171A1 true WO2018133171A1 (zh) | 2018-07-26 |
Family
ID=59176045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/074964 WO2018133171A1 (zh) | 2017-01-20 | 2017-02-27 | 一种低压油路进油供给结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106886267B (zh) |
WO (1) | WO2018133171A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112533441A (zh) * | 2020-11-05 | 2021-03-19 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 一种应用于柔性直流输电换流阀的阀冷却系统与方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107690268B (zh) * | 2017-09-30 | 2023-11-28 | 深圳绿色云图科技有限公司 | 一种数据中心冷却系统以及数据中心 |
CN108024480B (zh) * | 2017-12-07 | 2024-04-30 | 广东西江数据科技有限公司 | 液冷式机柜、整机柜及整机柜服务器 |
CN115942697B (zh) * | 2022-11-29 | 2024-01-30 | 珠海科创储能科技有限公司 | 适用于浸没式液冷储能系统的温控系统及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3774677A (en) * | 1971-02-26 | 1973-11-27 | Ibm | Cooling system providing spray type condensation |
CN1225232A (zh) * | 1996-05-16 | 1999-08-04 | 雷泰昂E-体系股份有限公司 | 冷却发热构件的散热装置系统及其方法 |
US20010002541A1 (en) * | 1999-09-13 | 2001-06-07 | Patel Chandrakant D. | Spray cooling system |
CN101247712A (zh) * | 2007-02-16 | 2008-08-20 | 财团法人工业技术研究院 | 微液滴冷却装置 |
CN101465595A (zh) * | 2007-12-18 | 2009-06-24 | 通用汽车环球科技运作公司 | 液体冷却的逆变器组件 |
CN203279429U (zh) * | 2013-01-09 | 2013-11-06 | 中国科学院电工研究所 | 用于发热装置的喷淋式蒸发冷却循环系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI559843B (zh) * | 2008-04-21 | 2016-11-21 | 液體冷卻解決方案股份有限公司 | 用於電子裝置液體浸沒冷卻之陣列連接式殼體及機架系統 |
KR101457937B1 (ko) * | 2012-04-24 | 2014-11-07 | 이청종 | 서버용 유냉식 냉각장치 및 그 구동 방법 |
CN105025691B (zh) * | 2015-08-10 | 2018-03-06 | 苏州大景能源科技有限公司 | 一种利用液冷散热的电子装置、散热装置及其冷却方法 |
CN206574018U (zh) * | 2017-01-20 | 2017-10-20 | 广东合一新材料研究院有限公司 | 一种低压油路进油供给结构 |
-
2017
- 2017-01-20 CN CN201710047028.4A patent/CN106886267B/zh active Active
- 2017-02-27 WO PCT/CN2017/074964 patent/WO2018133171A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3774677A (en) * | 1971-02-26 | 1973-11-27 | Ibm | Cooling system providing spray type condensation |
CN1225232A (zh) * | 1996-05-16 | 1999-08-04 | 雷泰昂E-体系股份有限公司 | 冷却发热构件的散热装置系统及其方法 |
US20010002541A1 (en) * | 1999-09-13 | 2001-06-07 | Patel Chandrakant D. | Spray cooling system |
CN101247712A (zh) * | 2007-02-16 | 2008-08-20 | 财团法人工业技术研究院 | 微液滴冷却装置 |
CN101465595A (zh) * | 2007-12-18 | 2009-06-24 | 通用汽车环球科技运作公司 | 液体冷却的逆变器组件 |
CN203279429U (zh) * | 2013-01-09 | 2013-11-06 | 中国科学院电工研究所 | 用于发热装置的喷淋式蒸发冷却循环系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112533441A (zh) * | 2020-11-05 | 2021-03-19 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 一种应用于柔性直流输电换流阀的阀冷却系统与方法 |
CN112533441B (zh) * | 2020-11-05 | 2024-05-24 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 一种应用于柔性直流输电换流阀的阀冷却系统与方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106886267B (zh) | 2023-10-31 |
CN106886267A (zh) | 2017-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018133168A1 (zh) | 一种数据中心机柜及其重力喷淋系统 | |
WO2018133169A1 (zh) | 一种数据中心机柜及其压力喷淋系统 | |
WO2018133171A1 (zh) | 一种低压油路进油供给结构 | |
CN206674401U (zh) | 一种数据中心机柜及其重力喷淋系统 | |
CN108024480B (zh) | 液冷式机柜、整机柜及整机柜服务器 | |
CN109831900A (zh) | 一种液冷服务器机柜 | |
WO2017215161A1 (zh) | 一种用于计算机及数据中心散热的工质接触式冷却系统 | |
KR20130060694A (ko) | 냉각탑 | |
CN206574018U (zh) | 一种低压油路进油供给结构 | |
WO2018133170A1 (zh) | 一种基于重力淋油分油方法及其分油装置 | |
CN206674400U (zh) | 一种数据中心机柜及其压力喷淋系统 | |
CN206413346U (zh) | 一种基于重力淋油分油装置 | |
CN207317327U (zh) | 一种蒸发冷凝盘管及蒸发式冷凝器 | |
CN209914377U (zh) | 一种液冷服务器机柜 | |
CN209594124U (zh) | 一种应用于服务器的喷淋散热机架及喷淋系统 | |
CN206181693U (zh) | 一种液冷喷淋机柜及其液冷喷淋系统 | |
CN207369491U (zh) | 一种网络工程设备壳体 | |
CN207249592U (zh) | 一种新型水冷式计算机机箱 | |
CN220121229U (zh) | 一种集成式服务器冷却机构 | |
CN217465427U (zh) | 一种冷却塔 | |
CN109654091A (zh) | 一种液压设备用降温装置 | |
CN221380172U (zh) | 一种高防护性高低压成套开关设备 | |
CN219648971U (zh) | 一种激光设备用散热装置 | |
CN210773040U (zh) | 一种滴灌管冷却池降温装置 | |
CN218415477U (zh) | 一种散热配电柜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892080 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892080 Country of ref document: EP Kind code of ref document: A1 |