WO2018132953A1 - 传输上行数据的方法、终端设备和网络设备 - Google Patents

传输上行数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018132953A1
WO2018132953A1 PCT/CN2017/071458 CN2017071458W WO2018132953A1 WO 2018132953 A1 WO2018132953 A1 WO 2018132953A1 CN 2017071458 W CN2017071458 W CN 2017071458W WO 2018132953 A1 WO2018132953 A1 WO 2018132953A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
aul
subframe
terminal device
domain resource
Prior art date
Application number
PCT/CN2017/071458
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/071458 priority Critical patent/WO2018132953A1/zh
Publication of WO2018132953A1 publication Critical patent/WO2018132953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more particularly to a method for transmitting uplink data, a terminal device and a network device.
  • the uplink transmission of the long-term evolution (Long Team, LTE) system is performed by the base station, and the base station instructs the terminal device to send the physical uplink shared channel (Physical Uplink) in the corresponding uplink subframe by using the uplink grant (UL grant) included in the downlink control channel. Shared Channel, PUSCH).
  • Physical Uplink shared channel Physical Uplink
  • UL grant uplink grant
  • PUSCH Physical Uplink Shared Channel
  • an Enhanced Licensed-Assisted Access is introduced to support uplink transmission of unlicensed spectrum.
  • the UE needs to pass the Listen-Before-Talk (LBT) channel access mechanism to confirm that the channel is idle before transmitting.
  • LBT Listen-Before-Talk
  • the terminal may adopt Grant free uplink transmission, or Autonomous UL (AUL) transmission, and the AUL resource configuration may adopt semi-persistent scheduling of the LTE system (Semi-Persistent) Scheduling, SPS) mechanism.
  • AUL Autonomous UL
  • SPS semi-persistent scheduling of the LTE system
  • the AUL resource is periodic
  • the terminal is allowed to transmit only one subframe each time after preempting the channel, and then the channel occupation is abandoned. If the uplink data is to be sent again, the LBT needs to be executed again. Preempting the channel leads to inefficient use of the channel. Therefore, a method for transmitting uplink data is needed, which can improve the channel usage efficiency.
  • the embodiment of the present application provides a method, a terminal device, and a network device for transmitting uplink data, which can improve channel usage efficiency.
  • the first aspect provides a method for transmitting uplink data, including: receiving, by a terminal device, first control information and second control information sent by a network device, where the first control information indicates an autonomous uplink AUL period, and the second control information indicates An AUL subframe set for AUL transmission in each AUL period, the AUL period is a period of time domain resources used for AUL transmission; the terminal device determines AUL according to the first control information and the second control information A domain resource, the AUL time domain resource is in a period of the AUL period, and the AUL subframe set is included in each AUL period; the terminal device sends uplink data on some or all resources in the AUL time domain resource.
  • the terminal device may receive the first control information and the second control information that are sent by the network device, and determine an AUL time domain resource according to the first control information and the second control information, where the AUL time domain resource is periodic, and
  • the AUL subframe includes an AUL subframe set, where the AUL subframe set includes at least one subframe, so that the terminal device can send data on one or more subframes in each AUL period, that is, the terminal device can continuously occupy multiple subframes. Uplink transmission is performed, thereby improving channel use efficiency.
  • the network device may send the first control information by using a broadcast message, or may send the first control information to the terminal device by using a dedicated channel of the terminal device, and similarly, the network device may send the broadcast message by using a broadcast message.
  • the second control information, or the second control information may also be sent to the terminal device through a dedicated channel of the terminal device.
  • the first control information is sent by the network device to the In the terminal device, the first control signaling is RRC signaling or dynamic signaling in the PDCCH, and the second control information is sent by the network device to the terminal device by using the second control signaling, the second control signaling It is dynamic signaling in RRC signaling or PDCCH.
  • the first control signaling and the second control signaling may be the same control signaling, or may be different control signaling, if the same control signaling, the first control information and the second control information Can be located in different indication domains of the same control signaling.
  • the AUL subframe set includes at least two subframes.
  • the terminal device can occupy at least two subframes to transmit uplink data, thereby improving channel usage efficiency.
  • the AUL subframe set includes at least one uplink burst, and each uplink burst in the at least one uplink burst includes at least one temporally consecutive subframe.
  • the AUL subframe set of each AUL period in the embodiment of the present application may also be in an uplink burst, and the adjacent two uplink bursts may be temporally continuous or may be discontinuous in time.
  • each upstream burst is continuous in time.
  • the method further includes:
  • the terminal device sends uplink data on some or all resources in the AUL time domain resource, including:
  • the uplink data is sent from the start time corresponding to the subframe.
  • the terminal device can also determine the start time of the subframe included in each AUL period, so that the terminal device can transmit the uplink data between the subframes in each AUL period in the process of periodically transmitting the uplink data.
  • the gap is reserved, so that the multiplex terminal can access the channel in the reserved space, thereby avoiding the problem that the multiplex terminal intercepts and fails due to the continuous occupation of the channel after the access of a terminal device to the channel by the SPS scheduling.
  • the third control information indicates a start time of each subframe included in each AUL period, or the third control information indicates in the AUL subframe set in each AUL period. The starting moment of each subframe.
  • the third control information may indicate the start time of each subframe within each AUL period, and may also indicate the start time of each subframe in the AUL subframe set.
  • the AUL subframe set may include a partial subframe or all subframes in each AUL period, and when the AUL subframe set includes all subframes in the AUL period, each subframe included in each AUL period
  • the starting time is also the starting time of each of the AUL subframe sets in each AUL period.
  • the third control information indicates a start time of a first subframe in each uplink burst in the AUL subframe set.
  • the third control information may also be used to indicate the start time of the first subframe in each uplink burst, which may also be understood as The starting moment of an upstream burst.
  • the method further includes:
  • the terminal device sends uplink data on some or all resources in the AUL time domain resource, including:
  • the terminal device When transmitting the uplink data in any one of the at least one subframe, the terminal device stops transmitting the uplink data at the end time corresponding to the any one of the subframes.
  • the terminal device can also determine the end time of the subframe included in each AUL period, so that the terminal device can pre-transmit between the subframes of the uplink data in each AUL period in the process of periodically transmitting the uplink data.
  • the gap is left, so that the multiplex terminal can access the channel in the reserved space, thereby avoiding the problem that the multiplex terminal intercepts the failure of the multiplex terminal after the terminal device accesses the channel after the SPS is scheduled to access the channel.
  • the fourth control information indicates an end time of each subframe included in each AUL period, or the fourth control information indicates each of the AUL subframe sets in each AUL period. The end time of each subframe.
  • the fourth control information may indicate an end time of each subframe within each AUL period, and may also indicate an end time of each subframe in the AUL subframe set.
  • the AUL subframe set may include a partial subframe or all subframes in each AUL period, and when the AUL subframe set includes all subframes in the AUL period, each subframe included in each AUL period
  • the end time is the end time of each of the AUL subframe sets in each AUL period.
  • the fourth control information indicates an end time of a last one of each uplink burst in the AUL subframe set.
  • the fourth control information may also be used to indicate the end time of the last subframe in each uplink burst, which may also be understood as each uplink. The end of the burst.
  • the method further includes:
  • the terminal device Receiving, by the terminal device, at least one control signaling sent by the network device, where the at least one signaling includes the third control information, where each control signaling in the at least one signaling is used to carry the first in each uplink burst The start time of one subframe, the control signaling is dynamic signaling in the RRC signaling or the physical downlink control channel PDCCH.
  • the at least one control signaling may send the third control information to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be in the PDCCH.
  • Dynamic signaling carried in the SPS UL grant may be sent to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the method further includes:
  • each control signaling is dynamic signaling in RRC signaling or PDCCH.
  • the at least one control signaling may send the fourth control information to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be in the PDCCH.
  • Dynamic signaling carried in the SPS UL grant may be used to send the fourth control information to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the method before the terminal device sends the uplink data on some or all of the resources in the AUL time domain resource, the method further includes: the terminal device performs channel interception and detects that the channel is idle.
  • the method further includes: the terminal device receiving the fifth control information sent by the network device; the terminal device determining, according to the fifth control information, the first time domain resource; First Determining the AUL time domain resource by using the control information and the second control information, the method includes: the terminal device determining that the AUL time domain resource does not include the subframe in the first time domain resource.
  • control signaling or the downlink subframe where the fifth control information is located further includes sixth control information, where the sixth control information is used to indicate the second time domain resource, and the second The time domain resource includes at least one subframe, the at least one subframe is a subframe for the network device to schedule the second terminal device to send uplink data, and the second terminal device sends the uplink data before the at least one subframe Channel snooping can be performed using single-slot CCA.
  • the method further includes: the terminal device receiving the sixth control information sent by the network device; the terminal device determining the first time domain resource according to the fifth control information, including: The terminal device determines the first time domain resource according to the fifth control information and the sixth control information, where the first time domain resource includes the second time domain resource.
  • the embodiment of the present application also avoids transmitting AUL uplink transmission on the scheduling-based time domain resource outside the MCOT, thereby ensuring reliable scheduling-based uplink transmission. Sex.
  • only the added fifth control information is used to indicate the length of the time domain resource, and the first time domain resource start time can reuse the existing sixth control information, which saves signaling overhead.
  • the method further includes: receiving, by the terminal device, the seventh control information sent by the network device, where the seventh control information and the fifth control information are in the same downlink burst, the seventh The control information is used to indicate the end time of the downlink burst; the terminal device determines the first time domain resource according to the fifth control information, and the terminal device determines, according to the fifth control information and the seventh control information, the first The first time domain resource, the starting subframe of the first time domain resource is the first subframe after the downlink burst end time.
  • a second aspect provides a method for transmitting uplink data, including: the network device transmitting, to the terminal device, first control information and second control information, where the first control information indicates an AUL period, and the second control information indicates each AUL An AUL subframe set for AUL transmission in a period, the AUL period is a period of a time domain resource used for AUL transmission; the network device receives an uplink sent by the terminal equipment on some or all resources in the AUL time domain resource Data, the AUL time domain resource is in a period of the AUL period, and the AUL subframe set is included in each AUL period.
  • the network device may send the first control information and the second control information to the terminal device, where the first control information and the second control information may be used by the terminal device to determine an AUL time domain resource, where the AUL time domain resource is periodic, And including, in each AUL period, an AUL subframe set, where the AUL subframe set includes at least one subframe, so that the terminal device can send data on one or more subframes in each AUL period, that is, the terminal device can continuously occupy Multiple subframes are uplinked, which improves channel usage efficiency.
  • the network device may send the first control information by using a broadcast message, or may also pass the terminal.
  • the dedicated channel of the device sends the first control information to the terminal device.
  • the network device may send the second control information by using a broadcast message, or may send the first device to the terminal device through a dedicated channel of the terminal device. Two control information.
  • the first control information is sent by the network device to the terminal device by using the first control signaling, where the first control signaling is RRC signaling or dynamic signaling in the PDCCH.
  • the second control information is sent by the network device to the terminal device by using the second control signaling, where the second control signaling is RRC signaling or dynamic signaling in the PDCCH.
  • the first control signaling and the second control signaling may be the same control signaling, or may be different control signaling, if the same control signaling, the first control information and the second control information Can be located in different indication domains of the same control signaling.
  • the AUL subframe set includes at least two subframes.
  • the terminal device can occupy at least two subframes to transmit uplink data, thereby improving channel usage efficiency.
  • the AUL subframe set includes at least one uplink burst, and each uplink burst in the at least one uplink burst includes at least one temporally consecutive subframe.
  • the AUL subframe set of each AUL period in the embodiment of the present application may also be in an uplink burst, and the adjacent two uplink bursts may be temporally continuous or may be discontinuous in time.
  • each upstream burst is continuous in time.
  • the method further includes:
  • the network device sends, to the terminal device, third control information, where the third control information is used by the terminal device to determine a start time of each of the at least one subframe in the AUL subframe set.
  • the network device may further send the third control information to the terminal device, where the third control information may be used by the terminal device to determine a start time of the subframe included in each AUL period, so that the terminal device periodically sends the uplink data.
  • a gap may be reserved between the subframes in which uplink data is sent in each AUL period, so that the multiplex terminal can access the channel in the reserved space, thereby avoiding access of a terminal device under SPS scheduling. The continued occupation of the channel after the channel causes the multiplex terminal to fail to listen.
  • the third control information indicates a start time of each subframe included in each AUL period, or the third control information indicates the set of the AUL subframes in each AUL period. The starting time of each sub-frame.
  • the third control information may indicate the start time of each subframe within each AUL period, and may also indicate the start time of each subframe in the AUL subframe set.
  • the AUL subframe set may include a partial subframe or all subframes in each AUL period, and when the AUL subframe set includes all subframes in the AUL period, each subframe included in each AUL period
  • the starting time is also the starting time of each of the AUL subframe sets in each AUL period.
  • the third control information indicates a start time of a first subframe in each uplink burst in the AUL subframe set.
  • the third control information may also be used to indicate the start time of the first subframe in each uplink burst, which may also be understood as The starting moment of an upstream burst.
  • the method further includes:
  • the network device may further send fourth control information to the terminal device, where the fourth control information may be used by the terminal device to determine an end time of the subframe included in each AUL period, so that the terminal device periodically sends the uplink data.
  • a gap may be reserved between the subframes in which the uplink data is sent in each AUL period, so that the multiplex terminal can access the channel in the reserved space, thereby avoiding a terminal device accessing the channel under the SPS scheduling.
  • the continuous occupation of the channel causes the multiplex terminal to fail to listen.
  • the fourth control information indicates an end time of each subframe included in each AUL period, or the fourth control information indicates in the AUL subframe set in each AUL period. The end time of each subframe.
  • the fourth control information may indicate an end time of each subframe within each AUL period, and may also indicate an end time of each subframe in the AUL subframe set.
  • the AUL subframe set may include a partial subframe or all subframes in each AUL period, and when the AUL subframe set includes all subframes in the AUL period, each subframe included in each AUL period
  • the end time is the end time of each of the AUL subframe sets in each AUL period.
  • the fourth control information indicates an end time of a last subframe in each uplink burst in the AUL subframe set.
  • the fourth control information may also be used to indicate the end time of the last subframe in each uplink burst, which may also be understood as each uplink. The end of the burst.
  • the method further includes:
  • the network device sends at least one control signaling to the terminal device, where the at least one signaling includes the third control information, where each control signaling in the at least one signaling is used to carry the first in each uplink burst The start time of one subframe, the control signaling is dynamic signaling in the RRC signaling or the physical downlink control channel PDCCH.
  • the at least one control signaling may send the third control information to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be in the PDCCH.
  • Dynamic signaling carried in the SPS UL grant may be sent to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the method further includes:
  • the network device sends at least one control signaling to the terminal device, where the at least one signaling includes the fourth control information, and each control signaling in the at least one signaling is used to carry a last one of each uplink burst At the end time of one subframe, each control signaling is dynamic signaling in RRC signaling or PDCCH.
  • the at least one control signaling may send the third control information to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be in the PDCCH.
  • Dynamic signaling carried in the SPS UL grant may be sent to the terminal device for the high layer signaling, or the dynamic signaling carried in the PDCCH.
  • the network device receives the uplink data sent by the first terminal device on part or all of the resources in the AUL time domain resource, including:
  • the first terminal device performs channel sounding and detects that the channel is idle.
  • the method further includes:
  • the network device sends, to the first terminal device, fifth control information, where the fifth control information is used by the first terminal device to determine, according to the fifth control information, a first time domain resource, where the first Terminal equipment
  • the AUL time domain resource does not include a subframe in the first time domain resource.
  • control signaling or the downlink subframe where the fifth control information is located further includes sixth control information, where the sixth control information is used to indicate the second time domain resource
  • the second time domain resource includes at least one subframe, the at least one subframe is a subframe in which the network device schedules the second terminal device to send uplink data, and the second terminal device sends the uplink in the at least one subframe Before the data, channel snooping can be performed using a single-slot CCA.
  • the method further includes:
  • the network device sends the sixth control information to the first terminal device, where the fifth control information and the sixth control information are used by the first terminal device to determine the first time domain resource, where The first time domain resource includes the second time domain resource.
  • the method further includes:
  • the network device sends seventh control information to the first terminal device, where the seventh control information and the fifth control information are in the same downlink burst, and the seventh control information is used to indicate the downlink At the end of the sending, the fifth control information and the seventh control information are used by the first terminal device to determine the first time domain resource, where a starting subframe of the first time domain resource is The first subframe after the downlink burst end time. .
  • a terminal device which can include a unit that performs the method of the first aspect or any alternative implementation thereof.
  • a network device in a fourth aspect, can include means for performing the method of the second aspect or any alternative implementation thereof.
  • a terminal device can include a memory, a transceiver, and a processor, the memory is configured to store an instruction, the processor is configured to execute the instruction stored in the memory, and the instruction stored in the memory Execution of the processor enables the processor to perform the method of the first aspect, any possible implementation of the first aspect, based on the transceiver.
  • a network device can include a memory, a transceiver, and a processor, the memory for storing instructions for executing instructions stored in the memory, and instructions stored in the memory Execution of the processor enables the processor to perform the method of the second aspect, any possible implementation of the second aspect, based on the transceiver.
  • a computer readable storage medium storing a program causing a user equipment to perform any of the first to second aspects or any of the first to second aspects The method in the implementation.
  • the terminal device may receive the first control information and the second control information that are sent by the network device, and determine the AUL time domain resource according to the first control information and the second control information.
  • the AUL time domain resource is periodic, and includes an AUL subframe set in each AUL period, the AUL subframe set includes at least one subframe, so that the terminal device can be at least one subframe in each AUL period. Sending data on the top improves channel usage efficiency.
  • FIG. 1 is a schematic diagram of a communication system of a method and apparatus for transmitting uplink data applicable to an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a method of transmitting uplink data according to an embodiment of the present application.
  • FIG 3 is a diagram showing an example of an AUL time domain resource used by a method of transmitting uplink data according to an embodiment of the present application; intention.
  • FIG. 4 is a schematic diagram of an exemplary subframe included by a corresponding uplink burst by different control signaling.
  • 5A-5E are schematic diagrams of exemplary different start or end times.
  • FIG. 6 is a schematic diagram showing an initial timing of a corresponding uplink burst by different control signaling.
  • FIG. 7 is a schematic diagram showing an end timing of a corresponding uplink burst by different control signaling.
  • 8A-8B are schematic diagrams showing different frequency of appearance of voids corresponding to different AUL periods when an exemplary start time is reserved.
  • 9A-9B are schematic diagrams showing different frequency of appearance of voids corresponding to different AUL periods when an exemplary end time is reserved.
  • 10A-10E are schematic diagrams of exemplary AUL time domain resources for AUL uplink transmission.
  • FIG. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a network device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • Code division multiple access Code division multiple access
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long-term Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile A communication system
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a macro base station, a micro cell, a pico cell, a home base station, and a far Terminal radio head, relay station, access point, etc.
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user terminal.
  • UE User Equipment
  • terminal wireless communication device, user agent or user device.
  • the terminal device may be a site in a Wireless Local Area Networks (“WLAN”) (STAION, Referred to as "ST”), it can be a cellular phone, a cordless phone, a Session Initiation Protocol (“SIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal).
  • Digital Assistant (“PDA”) device handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, fifth-generation communication (fifth -generation, abbreviated as "5G”), a terminal device in a network or a terminal device in a publicly available Public Land Mobile Network (PLMN) network.
  • 5G fifth-generation communication
  • PLMN Public Land Mobile Network
  • the network device 110 may send downlink information on an unlicensed resource, or may send downlink information on an authorized resource.
  • the terminal device 120 may send uplink information on an unlicensed spectrum. The uplink information can be sent on the authorized resource.
  • FIG. 2 is a schematic interaction diagram of a method 200 for transmitting uplink data according to an embodiment of the present application, which may be applied to the wireless communication system 100 shown in FIG. 1, as shown in FIG.
  • the method 200 includes:
  • the network device sends first control information and second control information to the first terminal device.
  • the first control information indicates an AUL period, which is a period of a time domain resource used for autonomous uplink AUL transmission
  • the second control information indicates an AUL subframe set for AUL transmission in each AUL period
  • the first control information and the second control information are used by the first terminal device to determine an AUL time domain resource, where the AUL time domain resource is a time domain resource for AUL transmission, and the AUL time domain resource is a periodic time domain resource.
  • the period of the AUL time domain resource is an AUL period, and the AUL period may be determined according to the first control information, where each AUL period includes an AUL subframe set, and the AUL subframe set in each AUL period may be according to the second control information. It is determined that the AUL subframe set includes at least one subframe, that is, the AUL subframe set includes one or at least two subframes.
  • the network device may send the first control information by using a broadcast message, or may also send the first control information to the first terminal device by using a dedicated channel of the first terminal device, or may also be multicast. Transmitting the first control information to a group of users including the first terminal device.
  • the network device may send the second control information by using a broadcast message, or may send the second control information to the first terminal device by using a dedicated channel of the first terminal device, or may also be multicast. Transmitting the second control information to a group of users including the first terminal device.
  • the manner in which the network device sends the first control information and the second control information is not limited in this embodiment.
  • the network device may send the first control signaling to the first terminal device, where the first control signaling includes the first control information, that is, the network device carries the first control information by using the first control signaling.
  • the first control signaling may be a high-level signaling or a radio resource control (RRC) signaling, or may be a dynamic signaling carried in a physical downlink control channel (PDCCH).
  • RRC radio resource control
  • the dynamic signaling carried in the PDCCH may be dynamic signaling carried in an SPS uplink grant (UL grant) in the PDCCH.
  • the network device may send the second control signaling to the first terminal device, where the second control signaling includes the second control information, that is, the second control information is carried by the second control signaling.
  • the second control signaling may be the high layer signaling, or may be the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be dynamic signaling carried in the SPS UL grant in the PDCCH.
  • the first control signaling and the second control signaling may be the same control signaling, and the first control signaling and the second control signaling may be the same high layer signaling or the same SPS UL grant.
  • Different bearers in signaling The bit field respectively configures or indicates an AUL period and an AUL subframe set in each AUL period, and may also be different control signaling.
  • the first control signaling and the second control signaling may be different high layer signaling or different dynamic signaling carried in the PDCCH. One is for high layer signaling and the other is dynamic signaling carried in the PDCCH.
  • the first control information and the second control information may be located in the same control signaling (the dynamic information carried by the same high-layer signaling or the same PDCCH)
  • Different indication fields or bit fields of the signaling in particular, the same control signaling may include an AUL period indication field and an AUL subframe set indication field, respectively, for indicating the AUL period and the AUL subframe set.
  • the network device may configure a periodic uplink resource, that is, an AUL time domain resource, to the first terminal device, where the first terminal device may use part of the periodic time domain resource. Or all the uplink data is sent, so that the network device does not need to send the first control information and the second control information every time, and configure the time domain resource used by the first terminal device for uplink transmission, before the network device does not change the configuration.
  • the first terminal device can always use the AUL time domain resource determined by the first control information and the second control information to send uplink data, that is, the step 210 is performed only once, after which the first terminal device can always use the AUL time domain.
  • the resource sends the uplink data.
  • the network device may resend the first control information and the second control information, after the first terminal device receives the first control information and the second control information. Re-determining the AUL time domain resource according to the first control information and the second control information, and then using the new AUL time domain Source for upstream transmission.
  • the network device may further send SPS UL grant information to the first terminal device, where the first terminal device starts the AUL time domain resource when the SPS UL grant information is used to activate the SPS transmission or reactivate the SPS transmission. Send upstream data.
  • the network device can also send the SPS UL grant information to the first terminal device, when the SPS UL grant information is used to deactivate the SPS transmission, the first terminal device stops sending uplink data on the AUL time domain resource.
  • the first terminal device determines an AUL time domain resource according to the first control information and the second control information.
  • the first terminal device may determine an AUL period according to the first control information, and determine, according to the second control information, an AUL subframe set for uplink transmission in each AUL period.
  • the AUL subframe set includes at least one subframe.
  • the multiple subframes may be temporally continuous or temporally discontinuous.
  • the positions of the time domain resources occupied by the subframes in the AUL subframe set in each AUL period are the same.
  • the AUL time domain resource is composed of these periodic AUL subframe sets. As shown in FIG.
  • the AUL period is 6 ms (6 subframes), and each AUL period includes an AUL subframe set composed of the first 4 subframes, and these periodically generated AUL subframe sets constitute an AUL time domain resource, that is, ⁇ #n+2,#n+3,#n+4,#n+5,#n+8,#n+9,#n+10,#n+11,#n+14,#n+15, #n+16,#n+17,... ⁇ .
  • the AUL subframe set in each AUL period includes at least two subframes
  • the network device implements the first terminal device to preempt the channel by configuring or indicating a plurality of consecutive subframes as the AUL subframe set in each AUL period. After continuous transmission.
  • the AUL subframe set in each AUL period is composed of subframes included in the AUL period, and does not include subframes beyond the range of the AUL period, for example, for the first one shown in FIG.
  • the AUL period, including the subframes in #n+2 ⁇ #n+7, does not include subframes earlier than #n+2 or later than #n+7.
  • the AUL subframe set in each AUL period includes at least one subframe, and any one of the at least one subframe may be a complete subframe or a partial subframe, where the complete subframe Indicating the first terminal
  • the device may use all (14) uplink OFDM symbols included in the subframe to send uplink data
  • the partial subframe indicates that the first terminal device can only use a part of the uplink time domain resources included in the subframe to send uplink data, and the subframe is another.
  • Some uplink time domain resources do not send uplink data.
  • some subframes are 13 symbols, that is, only the first terminal device is allowed to occupy 13 symbols to transmit uplink data, and the first symbol or the last symbol of the subframe is reserved.
  • a gap or only allows the transmission of upstream data from the middle of the first symbol, while preserving the first half of the first symbol to reserve a gap.
  • the first terminal device sends uplink data on some or all resources of the AUL time domain resource.
  • the uplink data may be sent on some or all of the resources in the AUL time domain resource, that is, the first terminal device may be in at least one subframe included in the AUL time domain resource.
  • the uplink data is sent, or the first terminal device may not send the uplink data in the subframe included in the AUL time domain resource.
  • the subframe may be skipped (Skip), and the uplink data is not sent.
  • the first terminal device may send uplink data in any one of the AUL periods in an AUL period, that is, skip the AUL period.
  • the first terminal device can occupy all the AUL time domain resources at most, that is, the AUL period is used, and the AUL is occupied in each AUL period. All subframes in the AUL subframe set in the period transmit uplink data. For example, for the AUL time domain resource shown in FIG. 3, the first terminal device may send uplink data in the first two subframes in each AUL subframe set, and may also occupy all of the AUL subframe set. The four sub-frames transmit uplink data or may also occupy one subframe in the AUL subframe set in one AUL period to transmit uplink data, and occupy at least two subframes in another AUL period to send uplink data. How a terminal device uses the subframes in each of the AUL subframe sets to transmit uplink data is not limited.
  • the AUL transmission mechanism is used, that is, the first terminal device does not need to send a scheduling request (SR, Scheduling Request) if there is an uplink service requirement.
  • SR Scheduling Request
  • the base station-based UL grant scheduling is not required, and the uplink data may be directly sent on the AUL time domain resource after the LBT is successfully executed.
  • the AUL subframe set in each AUL period includes at least one uplink burst, and each uplink burst in the at least one uplink burst includes at least one temporally consecutive subframe.
  • the AUL subframe set in each AUL period includes at least one uplink burst, and each uplink burst includes at least one temporally consecutive subframe, and is included in an uplink burst in the AUL subframe set.
  • the at least two uplink subframes are consecutive in time, and the time consecutively may be that the subframe numbers of the at least two uplink subframes are consecutive, and the subframe numbers are consecutive two subframes. There can be gaps or no gaps between them.
  • the two adjacent uplink bursts may be temporally continuous or non-continuous in time.
  • the network device may carry the second control information by using at least two control signalings, where each control signaling is used to carry an uplink burst.
  • the information of the subframe, in particular, each control instruction may include an uplink burst indication field, where the uplink burst indication field is used to indicate information of a subframe included in the corresponding uplink burst.
  • the AUL subframe set includes M (M is an integer greater than 1) uplink bursts, and the network device may carry information of subframes included in the M uplink bursts by using M SPS UL grants, the M SPS UL grants.
  • the PDCCH may be carried in the PDCCH of the same downlink subframe, and each SPS UL grant may include an uplink burst indication field, where the uplink burst indication field is used to indicate information about a subframe included in the corresponding uplink burst, for example, a sub-
  • the frame number, the subframe number is not an absolute subframe number, and the subframe number may be a sequence number in the uplink burst.
  • the subframe number may be a sequence number relative to the first subframe or the last subframe in the uplink burst, or may be a sequence number in the AUL period, for example, the subframe sequence number may be relative to the sequence number.
  • the sequence number of the first or last subframe in the AUL period As shown in FIG.
  • the AUL subframe set in each AUL period includes 2 uplink bursts (AUL uplink burst 1 and AUL uplink burst 2), and each uplink burst includes two temporally consecutive subframes.
  • the network device indicates, by using two SPS UL grants (SPS UL grant1 and SPS UL grant2), the subframe sequence numbers included in the two uplink bursts.
  • SPS UL grant1 may indicate that the uplink burst 1 includes The subframe number of the SPS UL grant2 is 0 and 1.
  • the uplink burst indication field of the SPS UL grant 2 may indicate that the subframe number included in the uplink burst 2 is 3 and 4.
  • the subframe sequence number is the subframe relative to the AUL in the AUL period.
  • the uplink burst indication field in each SPS UL grant may further indicate an initial subframe sequence number and a consecutive number of subframes of each uplink burst, so that the first terminal device may be configured according to each uplink burst.
  • the initial subframe number and the number of consecutive subframes determine a subframe number included in each uplink burst, where the initial subframe sequence number may be relative to the first one of the uplink burst or the AUL period The sequence number of the frame or the last subframe.
  • the method 200 may further include:
  • the 230 further includes:
  • the uplink data is sent from the start time corresponding to the any one of the subframes.
  • the third control information may indicate a start time of each of at least one of the AUL subframe sets. That is, the third control information may indicate a start time of a partial subframe in the AUL subframe set, and may also indicate a start time of each subframe in all subframes in the AUL subframe set.
  • the first terminal device may start transmitting from the start time corresponding to any one of the subframes.
  • the first terminal device may determine, according to the third control information, a start time of each of the at least one subframe in the AUL subframe set, that is, the network device may configure each AUL period by using the third control information.
  • the start time of some or all of the subframes in the AUL subframe set When the start time of a subframe is later than the start boundary of the subframe, the gap between the start boundary and the start time of the subframe is a reserved gap. Therefore, when the first terminal device sends the uplink data in any one of the at least one subframe, the uplink data may be sent from the start time corresponding to the any subframe.
  • the start time of at least one subframe in the AUL subframe set indicated by the third control information is also periodic, and the at least one subframe of the first terminal device in each period Upstream data will be sent at the corresponding starting time, or the first terminal device reserves the gap periodically.
  • the method 200 may further include:
  • the 230 further includes:
  • the first terminal device When transmitting the uplink data in any one of the at least one subframe, the first terminal device stops transmitting the uplink data at the end time corresponding to the any one of the subframes.
  • the fourth control information may indicate an end time of at least one subframe included in the AUL subframe set in each AUL period.
  • the uplink data is stopped at the end time corresponding to any one of the subframes.
  • the first terminal device may also determine an end time of each of the at least one subframe in the AUL subframe set according to the fourth control information, that is, the network device may configure each AUL by using the fourth control information.
  • the end time of a certain subframe is earlier than the end boundary of the subframe, the end time is reserved between the end boundaries of the subframe. Gap. Therefore, when the first terminal device sends the uplink data in any one of the at least one subframe, the uplink data may be stopped at the end time corresponding to the any subframe.
  • the end time of at least one subframe in the AUL subframe set indicated by the fourth control information is also periodic, and the first terminal device is in the at least one subframe in each period.
  • the uplink data is stopped at the corresponding end time, or the first terminal device reserves the gap periodically.
  • the network device sets the start time of the at least one subframe in the AUL subframe set later than the start boundary of the at least one subframe, or configures the end time of the at least one subframe in the AUL subframe set to be earlier.
  • the multiplex terminal can perform channel monitoring in the reserved gap, thereby being able to monitor the channel idle. Therefore, the problem that the multiplex terminal intercepts the failure of the multiplex terminal after the terminal device accesses the channel after the SPS is scheduled to access the channel is avoided.
  • the first terminal device if the first terminal device sends the uplink data in the first subframe of the at least one subframe, the first terminal device starts to send the uplink data at the start time corresponding to the first subframe, where the first subframe
  • the start time of the frame may be the start boundary of the first subframe, or may be the middle position of the first subframe (position later than the start boundary of the first subframe), and may be located at the first
  • the starting boundary of a symbol in a sub-frame may also be located in the middle of a symbol in the first sub-frame. If the start time of the first subframe is the start boundary of the first subframe, the start time of the first subframe may also be considered as the first symbol or the symbol 0 of the first subframe.
  • a start boundary (referred to as symbol 0), for example, as shown in FIG. 5A, the first terminal device starts transmitting data from the symbol 0 of the first subframe, and the oblique grid line region is an area for transmitting uplink data; the first The start time of the subframe may also be 25us after the start boundary of the symbol 0 of the first subframe. For example, as shown in FIG. 5B, the first terminal device is after the start boundary of the symbol 0 of the first subframe.
  • the data is transmitted at 25us, and the oblique grid line area is the area for transmitting data; the starting time of the first subframe may also be 25us+time advancement after the start boundary of the first subframe symbol 0 (Timing Advance, At TA) (referred to as 25us+TA), for example, as shown in FIG.
  • the first terminal device starts transmitting data from 25us+TA after the start boundary of the symbol 0 of the first subframe, and the oblique grid line region Shown as an area for transmitting data; the start time of the first subframe may also be the second of the first subframe Symbol or symbols of a beginning boundary (referred to as a symbol), for example, as shown in FIG 5D, the terminal device starts to transmit the first symbol of the first subframe starting boundary 1 Data, the oblique grid line area is the area where data is sent.
  • the uplink data is stopped at the end time corresponding to the second subframe, and the first terminal device stops on the second subframe.
  • the end time of the sending data may be the end boundary of the second subframe, or may be located at an intermediate position of the second subframe (before the end boundary of the second subframe), and may be located in the second subframe.
  • the end boundary of the symbol may also be located in the middle of a symbol in the second subframe. If the end time at which the first terminal device stops transmitting data in the second subframe is the end boundary of the second subframe, the end time corresponding to the second subframe may be considered as the last symbol of the second subframe.
  • the end time corresponding to the second subframe may also be the second last symbol of the second subframe or the end boundary of the symbol 12
  • the end time of the transmission data, the oblique grid line area is the area in which the data is transmitted.
  • the location where the gap occurs is also periodic, that is, the location of the time domain resource occupied by the gap in each AUL period in each AUL period is Similarly, the gap in each AUL period can be one or more.
  • the gap between two adjacent subframes may be a gap at the end of the previous subframe in the adjacent subframe, or may be a gap at the beginning of the latter subframe in the adjacent subframe, or It is also possible to reserve a gap at the end of the previous subframe and reserve a gap at the beginning of the latter subframe.
  • the network device may send the third control information by using a broadcast message, or may also send the third control information to the first terminal device by using a dedicated channel of the first terminal device, or may also be multicast. Transmitting the third control information to a group of users including the first terminal device.
  • the network device may send the fourth control information by using a broadcast message, or may send the fourth control information to the first terminal device by using a dedicated channel of the first terminal device, or may also be multicast. Transmitting the fourth control information to a group of users including the first terminal device.
  • the manner in which the network device sends the third control information and the fourth control information is not limited in this embodiment.
  • the network device may send the third control information to the first terminal device by using the high layer signaling or the dynamic signaling carried in the PDCCH.
  • the dynamic signaling carried in the PDCCH may be in the PDCCH.
  • the third control information may be carried in the same control signaling as the first control information (or the second control information), or may be carried by different control signaling, when the third control information and the first control information (or the second When the control information is carried by the same control signaling, the third control information and the first control information (or the second control information) may be located in different indication domains in the same control signaling.
  • the network device may send the third control information and the first control information, or the third, to the first terminal device by using the same control signaling (for example, high-layer signaling or dynamic signaling carried in the SPS UL grant).
  • Control information and second control information, or third control information, first control information, and second control information may be carried in different indication domains of the same control signaling, for example, the network device sends the dynamic signaling carried in the SPS UL grant.
  • First control information and third control information the first control information and the third control information may be located in different indication domains (including a first control information indication domain and a third control information indication domain) in the SPS UL grant, where the A control information indication field and the third control information indication field respectively indicate a start time of each of at least one of the AUL period and the AUL subframe set.
  • the network device may send the first end to the first end by using high layer signaling or dynamic signaling carried in the PDCCH.
  • the terminal device sends the fourth control information.
  • the dynamic signaling carried in the PDCCH may be dynamic signaling carried in the SPS UL grant in the PDCCH.
  • the fourth control information may be included in the same dynamic signaling (for example, dynamic signaling carried in the SPS UL grant) and other control information (the first control information or the second controller or the third control information).
  • the same dynamic signaling includes at least two control information
  • the at least two control information may be located in at least two indication domains in the same dynamic signaling, where the at least two indication domains respectively indicate corresponding control information.
  • the fourth control information may be included in the same high-layer signaling (for example, RRC signaling) as other high-level signaling, and other control information (the first control information or the second controller or the third control information).
  • the at least two control information may be located in at least two indication fields in the same high layer signaling, and the at least two indication fields respectively indicate corresponding control information.
  • the network device may carry the fourth control information and other control information (the first control information or the second controller or the third control information) by using different high layer signaling or different dynamic signaling, or may also be
  • the other control information is carried by the high-level signaling bearer, and the fourth control information is carried by the first RRC signaling.
  • the first control information is carried by the second RRC signaling.
  • the fourth control information is passed through the SPS UL.
  • the bearer is carried, and the first control information is carried by the RRC signaling.
  • the manner of carrying the first control information, the second control information, the third control information, and the fourth control information is not limited in this embodiment of the present application.
  • the network device may indicate, by means of a bit map, a start time (ie, third control information) of each subframe in at least one subframe in the AUL subframe set, where the start time of each subframe may be Corresponding to a bit field, the bit field may comprise at least one bit, by which different states are indicated, different states corresponding to different starting moments of each subframe.
  • the bit field corresponding to the start time of each subframe includes 2 bits, indicating four states: '00', '01', '10', and '11', and the start times of the four state indications are respectively symbols 0 (first symbol), 25us, 25us+TA, symbol 1 (second symbol).
  • the third control information requires a total of 2*K bits.
  • the bit field corresponding to the start time of each subframe includes 1 bit, indicating two states: '0' and '1'.
  • the start times of the two state indications are symbol 0 (first symbol) and symbol 1 (second symbol), respectively, if the second subframe subframe set of each AUL period includes K subframes,
  • the third control information requires a total of K bits.
  • the fourth control information may also be indicated by means of bit mapping.
  • the end time of each subframe corresponds to one bit field, and each bit field may include at least one bit.
  • the different states indicated by the bit field indicate different end times of the subframe.
  • the bit field corresponding to each subframe contains 1 bit, indicating two states: '0' and '1', respectively for indicating the end boundary of symbol 12 (the second last symbol), symbol 13 (the last symbol) End boundary, if K subframes are included in the AUL subframe set of each AUL period, and K is an integer greater than or equal to 1, the fourth control information requires a total of K bit indications.
  • the third control information indicates a starting moment of each of at least one of the AUL subframe sets.
  • the AUL subframe set may include one subframe or at least two subframes.
  • the third control information may indicate, by using one indication field, a sequence number of the subframe in the AUL subframe set that is later than a start boundary of the subframe, and further, The third control information may also indicate a specific starting time of the subframe (eg, 25 us or symbol 1 or 25 us + TA).
  • the fourth control information may indicate, by using one indication field, the sequence number of the subframe in the AUL subframe set whose end time is earlier than the end boundary of the subframe.
  • a specific end time in the subframe may also be indicated.
  • the third control information may be indicated by at least two indication fields, where each indication field is used to indicate that a start time in the AUL subframe set is later than a sub-frame start boundary. The sequence number of the frame. Further, each indicator field may also indicate a specific start time of the corresponding subframe.
  • the fourth control information may also be indicated by at least two indication fields, where each indication field is used to indicate a sequence number of a subframe in an AUL subframe set whose end time is earlier than a subframe end boundary, and further, each indication domain It is also possible to indicate a specific end time in the corresponding subframe.
  • the third control information may configure a start time corresponding to each uplink burst.
  • the third control information may be further used to indicate a start time of a first subframe in each of the at least one uplink burst, or the third control information may be used to indicate an AUL subframe set.
  • the starting moment of each upstream burst Similar to the above embodiment, the network device may indicate the start time of each uplink burst by means of a bitmap. Specifically, the network device configures or indicates the start of an uplink burst by using a specific bit field in the control signaling.
  • the start time of each uplink burst may correspond to a bit field, the bit field includes at least one bit, and different states are indicated by the bit field, and different states correspond to different starting moments of each uplink burst, Therefore, the embodiment of the present application may be configured to configure a start time corresponding to each uplink burst in a burst unit, thereby reducing a configuration of a corresponding start time for each subframe in the AUL subframe set. Signaling overhead.
  • the fourth control information may further indicate an end time of the first subframe in each uplink burst in the AUL subframe set, or the fourth control information may indicate each uplink in the AUL subframe set.
  • the end of the burst Similar to the indication method of the start time of each uplink burst, the end time of each uplink burst corresponds to one bit field, each bit field contains at least one bit, and the different status indication indicated by each bit field The different end moments of each upstream burst.
  • the second control information may indicate that the AUL period includes an uplink.
  • the fourth control information may indicate that the end time of the uplink burst is earlier than the end boundary of the last subframe of the uplink burst.
  • the following describes in detail how the network device indicates the start time and the end time for each uplink burst when the AUL subframe set in each AUL period includes at least two uplink bursts in conjunction with FIG. 6 and FIG.
  • the third control information may include a start time of each of the at least two uplink bursts, and a start moment of each of the at least two uplink bursts may also be It is carried by at least two control signalings, and each control signaling carries a starting moment of a corresponding uplink burst.
  • the AUL subframe set in each AUL period includes two uplink bursts, and the network device can use two SPS UL grants to respectively carry the start moments of the two uplink bursts.
  • each SPS UL grant can be used.
  • An indication field including a start time of an uplink burst where an indication field of a start time of the uplink burst is used to indicate a start time of a first subframe in the corresponding uplink burst
  • the third control information includes the These two indication fields in the two SPS UL grants.
  • the network device schedules two different uplink bursts (upstream burst 1 and uplink burst 2) for each AUL period through two SPS UL grants (including SPS UL grant1 and SPS UL grant2), each SPS.
  • the indication field of the start time of the uplink burst included in the UL grant indicates the start time of the corresponding uplink burst, where the indication field of the start time of the uplink burst of the SPS UL grant1 indicates the start of the uplink burst 1
  • the start time is the symbol 0
  • the uplink burst indication field of the SPS UL grant 2 indicates that the start time of the uplink burst 2 is the symbol 1, so that the first terminal device can be in each AUL week.
  • a gap is reserved in the middle of a series of consecutive AUL subframes, that is, a gap is reserved between two adjacent uplink bursts.
  • the fourth control information may indicate an end time of each uplink burst in the at least one uplink burst, and when the at least one uplink burst includes at least two uplink bursts, the fourth control information may pass at least The two control signaling bearers, that is, the end times of the at least two uplink bursts are carried by at least two control signalings, and each control signaling may carry an end time corresponding to an uplink burst.
  • the network device may schedule two different uplink bursts (uplink burst 1 and uplink burst 2) in each AUL period by using two SPS UL grants, and the second control information includes the two uplinks.
  • the end time of the burst, or the fourth control information includes two indication fields of the two SPS UL grants, and the end times of the two uplink bursts may be respectively included in the uplink bursts of the two SPS UL grants.
  • the end time indication field is that the end time of the uplink burst 1 is the symbol 13 and the start time of the uplink burst 2 is the symbol 12.
  • FIGS. 8A, 8B, 9A, and 9B are schematic diagrams showing the frequency of gap occurrence when the gap is reserved at the initial time
  • FIG. 9A and FIG. 9B are schematic diagrams showing the frequency of gap occurrence when the gap is reserved at the end time.
  • the network device controls the frequency of occurrence of the gap by configuring the length of the AUL period. For example, as shown in FIG. 8A, an AUL period has a length of 4 ms, and each AUL period includes an uplink burst with a length of 4 ms (4 subframes), and the third control information indicates that the start time of the uplink burst is symbol 1.
  • the first terminal device reserves the first symbol (symbol 0) of the uplink burst as a gap in the uplink burst in each AUL period, and if the first terminal device needs to send uplink data on the uplink burst, Then, the transmission starts from the symbol 1 of the first subframe of the uplink burst.
  • the period in which the gap occurs is 4 ms.
  • an AUL period length is 2 ms
  • each AUL period includes an uplink burst with a length of 2 ms (2 subframes)
  • the third control information indicates that the start time of the uplink burst is the symbol 1
  • the period in which the gap occurs is 2 ms. Therefore, compared with FIG. 8A, the gap occurs more frequently, so that more opportunities can be left for the multiplex terminal to perform the interception. Therefore, through the AUL period, You can control how often the gap appears.
  • the network device can also control the frequency of occurrence of the gap by configuring the length of the AUL period.
  • FIG. 9A is a schematic diagram showing the frequency of gap occurrence when the AUL period is 4 ms
  • FIG. 9B is a schematic diagram showing the frequency of gap when the AUL period is 2 ms. Comparing FIG. 9A with FIG. 9B, it can be seen that the gap frequency can be controlled by the AUL period, and if more frequent gaps need to be set, the AUL period can be reduced.
  • the third control information may also indicate the number of gaps in the AUL subframe set (or the number of subframes whose start time is later than the start boundary of the subframe), and gap The location may be determined according to the AUL subframe set or the number of subframes in the AUL period.
  • the number of gaps may be modulo the number of subframes in the AUL subframe set or the AUL period to obtain the subframe number of the reserved gap.
  • the fourth control information may also indicate the number of gaps in the AUL subframe set (or the number of subframes whose end time is earlier than the end of the subframe), and the position of the gap may be according to the AUL subframe set or the AUL period.
  • the number of subframes is determined.
  • the number of gaps may be modulo the number of subframes in the AUL subframe set or the AUL period to obtain the subframe number of the reserved gap.
  • the third control information may further indicate that each of the uplink bursts is included in each AUL period or within the AUL subframe set or each uplink burst included in each AUL subframe set.
  • the time interval between the subframes of the gap (the subframe whose start time is later than the start boundary of the subframe), and the time interval may also be regarded as the period of the gap, and the first terminal device is at the interval (the period) Then, a gap is reserved in the subframe, and no other subframes are reserved for gap.
  • the fourth control information may also indicate within each period or within the AUL subframe set or each AUL subframe set.
  • the time interval of the adjacent two reserved gap subframes (the subframe whose end time is earlier than the subframe end boundary), the time interval may also be regarded as the gap period of the gap, first
  • the terminal device reserves a gap in the subframe every time interval, and does not reserve a gap in other subframes (the subframe whose end time is equal to the end boundary of the subframe).
  • the third control information may further indicate that a pattern of the gap is reserved in each AUL period or in each of the uplink bursts included in the AUL subframe set or each AUL subframe set.
  • the pattern may also be regarded as a pattern of a subframe in which the gap is reserved.
  • the first terminal device reserves a gap on the subframe in which the gap needs to be reserved in the pattern, and the other subframes do not reserve the gap.
  • the network device may pre-define or configure the pattern set through high-level signaling, and the third control information may be used to indicate the sequence number of the pattern of the reserved gap in the pattern set.
  • the fourth control information may also indicate that a pattern of gaps is reserved within each period or within each AUL subframe set or within each uplink burst included in each AUL subframe set, or may be considered as The pattern of the subframe of the gap is reserved, and the first terminal device reserves a gap on the subframe in which the gap needs to be reserved in the pattern, and the other subframe does not reserve the gap.
  • the network device may pre-define or configure the pattern set through high-level signaling, and the third control information may be used to indicate the sequence number of the pattern of the reserved gap in the pattern set.
  • the method 200 may further include:
  • the first terminal device performs channel sounding and detects that the channel is idle.
  • the first terminal device can perform channel monitoring in two manners: the first method is a Clear Channel Assessment (CCA) based on a random backoff, and the specific process is: the first terminal device competes in 0 to 0.
  • a back-off counter N is randomly generated between the window length (CWS, Contention Window Size), and is listened to by the listening time slot (CCA slot). If the channel is idle during the listening time slot, it will be returned.
  • the back-off counter is decremented by 1, and when the channel is busy, the back-off counter is suspended, that is, the back-off counter N remains unchanged during the channel busy time until the channel is detected to be idle, and the sending node can be used when the back-off counter is reduced to 0. Immediately occupy the channel to send uplink data.
  • the reciprocal of the back-end counter before the first terminal device completes the resource to be occupied is called LBT listening success, otherwise it is called LBT listening failure.
  • the maximum length of time that the data can be continuously transmitted is the Maximum Channel Occupancy Time (MCOT).
  • MCOT Maximum Channel Occupancy Time
  • the LBT can be reconnected.
  • the second method is a single-slot CCA mode. The specific process is: the first terminal device performs a single-slot CCA interception with a length of 25 us. If the 25us CCA time slot detects that the channel is idle, the first terminal device can immediately connect.
  • the channel is transmitted to perform uplink data transmission; if the channel is busy in the 25us CCA time slot, the first terminal device abandons the transmission of data, and can wait for the next uplink data channel before performing the next single-slot CCA interception. For a random back-off CCA and a single-slot CCA, the first terminal device needs to immediately occupy the channel after detecting that the channel is idle, and starts to send uplink data on the AUL time domain resource.
  • the terminal device performs channel sounding on the unlicensed spectrum, and then sends the uplink data after detecting that the channel is idle, thereby avoiding interference to other infinite communication devices working on the same carrier. Enhanced transmission reliability.
  • the network device may also use a traditional scheduling-based uplink resource allocation mode, that is, the scheduling resource is indicated by the UL grant, and the AUL terminal device (for AUL transmission) After receiving the UL grant, the terminal device sends the uplink data on the radio resource indicated by the UL grant. In order to avoid interference on the uplink transmission scheduled by the UL grant, it is necessary to circumvent the uplink data on the scheduling-based time domain resource.
  • the network device may schedule another A terminal device sends uplink data in at least one subframe of the AUL subframe set in a certain AUL period, that is, the AUL time domain resource overlaps with the scheduled time domain resource, and the scheduled uplink transmission is performed in this case.
  • the priority should be higher than the AUL uplink transmission.
  • the AUL terminal device may not hear the uplink transmission sent by the scheduled terminal device, and may detect that the channel is idle and occupy overlapping uplinks. Frame, thereby causing interference to the uplink transmission of the scheduled terminal device.
  • the network device may indicate the MCOT through a common physical downlink control channel (CPDCCH, Common PDCCH), and the scheduled uplink resource may be in the MCOT (between the uplink start subframe of the MCOT and the end subframe of the MCOT) Time), but also outside the MCOT (subframe scheduled after the end subframe of the MCOT), when the scheduled uplink resource is in the MCOT, the scheduled terminal device can use the single-slot CCA for channel sensing, and When the scheduled uplink resource is outside the MCOT, the scheduled terminal device must use the CCA based on random backoff for channel sensing.
  • CPDCCH Physical downlink control channel
  • Common PDCCH Common Physical Downlink control channel
  • the method 200 may further include:
  • the first terminal device determines that the AUL time domain resource does not include a subframe in the first time domain resource.
  • the network device may send the fifth control information to the first terminal device, where the fifth control information indicates the first time domain resource, and the first terminal device (ie, the AUL terminal device) receives the first control information and the first After the second control information, the AUL time domain resource is further determined by using the received fifth control information.
  • the AUL time domain resource determined by the first terminal device does not include the subframe included in the first time domain resource.
  • the first terminal device avoids sending uplink data on the first time domain resource, or can also be understood as: when the periodic time domain resource and the first time domain resource determined by the first control information and the second control information are When overlapping, the first terminal device does not send uplink data on the overlapping uplink subframes.
  • the method for transmitting uplink data in the embodiment of the present application avoids interference on the scheduling-based uplink transmission by avoiding the AUL uplink transmission on the scheduling-based first time domain resource, and ensures reliable scheduling-based uplink transmission.
  • the fifth control information may indicate the first time domain resource by means of a bitmap. Specifically, the fifth control information may include multiple bits, and each bit indicates whether there is a scheduled time domain resource in one subframe.
  • the first time domain resource for example, the bit '1' indicates that the subframe is a scheduled subframe (belonging to the first time domain resource), and the first terminal device cannot send uplink data on the subframe; the bit bit 0' indicates that the subframe is not a scheduled subframe (not belonging to the first time domain resource), and the first terminal may send AUL uplink data on the subframe.
  • control signaling or the downlink subframe where the fifth control information is located further includes sixth control information, where the sixth control information is used to indicate the second time domain resource, and the second terminal device It may be any terminal device that is connected to the network device and is scheduled by the network device.
  • the method for transmitting uplink data in the embodiment of the present application avoids interference on the scheduling-based uplink transmission by avoiding the AUL uplink transmission on the scheduling-based first time domain resource, and ensures reliable scheduling-based uplink transmission. Sex.
  • the first terminal device determines the AUL time domain resource according to the fifth control information, but the fifth control information Different from the sixth control information sent by the network device for indicating the MCOT time domain resource (referred to as the second time domain resource).
  • the sixth control information and the fifth control information are in the same control signaling or the same downlink subframe.
  • the control signaling may be It is a CPDCCH, and the sixth control information and the fifth control information are located in two different bit fields in the CPDCCH.
  • the sixth control information and the fifth control information are carried in different control signaling, and when the different control signaling is located in the same downlink subframe, the two control information are respectively located in two different broadcast signalings. However, the two different broadcast signalings are all located in the PDCCH of the same downlink subframe.
  • the first terminal device may receive the sixth control information or may not receive the sixth control information.
  • the AUL period is 4 ms
  • the AUL subframe set in each AUL period is The first two subframes contained in the AUL period.
  • the network device includes a UL grant for scheduling the second terminal device in the PDCCH sent by the subframe #n+3, and schedules the second terminal device to send the uplink transmission ⁇ #n+7, #n+8, #n+9, #n+ 10, #n+11 ⁇ and ⁇ #n+13, #n+14, #n+15, #n+16, #n+17 ⁇ , where the uplink transmission ⁇ #n+7, #n+8,# n+9, #n+10, #n+11 ⁇
  • the second terminal device can perform a single-slot CCA access channel, and uplink transmission ⁇ #n+13, #n+ 14, #n+15, #n+16, #n+17 ⁇ Outside the MCOT, the second terminal device needs to perform a random backoff CCA access channel.
  • the network device can pass Sending the fifth control information to notify the range of the first time domain resource, so that the first terminal may determine that the AUL time domain resource does not include the subframe set ⁇ #n+8, #n+9 ⁇ included in the first time domain resource range, ⁇ #n+12, #n+13 ⁇ , ⁇ #n+16, #n+17 ⁇ .
  • the fifth control information may further indicate a start time of the first time domain resource and a duration of the first time domain resource.
  • the first time domain resource starts from a start time of the first time domain resource.
  • the duration is the duration of the first time domain resource.
  • the start time of the first time domain resource may be a subframe number, and the duration of the first time domain resource may be a start time of the first time domain resource or a downlink burst where the start subframe and the fifth control information are located.
  • the end time or the time interval or time offset between the end subframes, the first time domain resource start time is obtained by adding the time offset to the end time of the downlink burst. For example, as shown in FIG.
  • the fifth control information indicates that the first time domain resource start time is subframe #n+5 or indicates the time between the first time domain resource start subframe and the downlink burst end subframe.
  • the offset is 4 ms
  • the first terminal device may determine that the first time domain resource start time is the subframe #n+5; and the fifth control information may further indicate that the first time domain resource duration is 8 ms, therefore, the first terminal The device does not send uplink data between #n+5 and #n+12 (ie, subframes #n+5, #n+6, #n+9, #n+10 are not included in the AUL time domain resource).
  • the sixth control information may also indicate a start time of the second time domain resource and a duration of the second time domain resource.
  • the sixth control information may be a 5-bit control information uplink LAA configuration (UL configuration for LAA) included in the existing CPDCCH, where the downlink configuration is used to indicate that the scheduled uplink transmission is lower than the sixth control information.
  • the uplink time offset (UL offset) and the uplink duration of the single-slot CCA, the start time of the second time domain resource or the start subframe of the downlink burst carrying the sixth control information After the end of the subframe, the time interval between the end subframe and the end subframe is "UL offset", and the duration of the second time domain resource is "UL duration".
  • the uplink transmission may be started through the single-slot CCA listening channel.
  • the scheduled second terminal device and the first terminal device configured with the AUL resource may be the same terminal device (that is, the same terminal device is configured to send the UL grant-free AUL data message on the AUL time domain resource.
  • the information may also be sent by the UL grant to schedule the data information based on the scheduling, or may be two different terminal devices.
  • the method further includes:
  • Determining, by the first terminal device, the first time domain resource according to the fifth control information including:
  • the first terminal device determines the first time domain resource according to the fifth control information and the sixth control information, where the first time domain resource includes the second time domain resource.
  • the fifth control information may only indicate the duration information of the first time domain resource.
  • the first terminal device may jointly determine the first time domain according to the fifth control information and the received sixth control information.
  • Resources The first time domain resource includes a second time domain resource, or the time domain range of the first time domain resource includes a time domain range of the second time domain resource, so that the first terminal device not only needs to circumvent the second time domain resource.
  • the uplink data is sent, and the uplink data is also sent within a time range in which the first time domain resource exceeds the second time domain resource.
  • the first time domain resource may be jointly determined according to the start time of the second time domain resource indicated in the sixth control information, where the duration information of the first time domain resource is the duration of the first time domain resource, and the first The time domain resource starts from the start time of the second time domain resource, and the duration is the duration of the first time domain resource.
  • the fifth control information indicates that the first time domain resource duration is 8 ms
  • the sixth control information indicates that the start time of the second time domain resource is subframe #n+5, and the start of the first time domain resource The time is equal to the start time of the second time domain resource. Therefore, the first terminal device does not send the AUL uplink transmission between #n+5 and #n+12 (the subframe is not included in the AUL time domain resource #n+5 , #n+6, #n+9, #n+10).
  • the first time domain resource may be jointly determined by combining the start time of the second time domain resource indicated by the sixth control information with the duration of the second time domain resource, where the duration information of the first time domain resource is the second time
  • the end time that is, the duration information of the first time domain resource is the duration of the first time domain resource minus the duration of the second time domain resource (ie, the duration of the first time domain resource compared to the second time domain resource extension),
  • the first time domain resource starts from the start time of the second time domain resource, and the duration is the second time domain resource duration plus the first time domain resource duration.
  • the fifth control information indicates that the duration of the first time domain resource is 4 ms compared to the second time domain resource extension
  • the sixth control information indicates that the start time of the second time domain resource is subframe #n+
  • the second time domain resource has a duration of 4 ms, and the start time of the first time domain resource is equal to the start time of the second time domain resource. Therefore, the first terminal device determines that the first time domain resource start time is a child.
  • Frame #n+5 the duration is 8ms, and no uplink data is sent between #n+5 and #n+12 (subframes are not included in the AUL time domain resource #n+5, #n+6, #n+ 9, #n+10).
  • the method for transmitting uplink data in the embodiment of the present application can avoid arranging AUL uplink transmission on the second time domain resource in the MCOT, and can also avoid transmitting the AUL uplink transmission on the scheduling-based time domain resource outside the MCOT.
  • the reliability of scheduling-based uplink transmission is guaranteed.
  • only the added fifth control information is used to indicate the length of the time domain resource, and the first time domain resource start time can reuse the existing sixth control information, which saves signaling overhead.
  • the method 200 may further include:
  • the seventh control information that is sent by the network device, where the seventh control information is in the same downlink burst as the fifth control information, where the seventh control information is used to indicate an end time of the downlink burst;
  • Determining, by the first terminal device, the first time domain resource according to the fifth control information including:
  • the fifth control information may only indicate duration information of the first time domain resource.
  • the first The terminal device may jointly determine the first time domain resource according to the fifth control information and the received seventh control information, and specifically, may combine the end time of the downlink burst indicated by the seventh control information with the second time domain resource.
  • the duration of the first time domain resource is determined by the duration, where the duration information of the first time domain resource is the duration of the first time domain resource, and the first time domain resource starts from the first subframe after the end of the downlink burst (first time)
  • the start time of the domain resource is the end boundary of the last subframe of the downlink burst or the start boundary of the first subframe after the downlink burst ends
  • the duration is the duration of the first time domain resource, for example
  • the seventh control information may be a LAA subframe configuration (LAA) configuration of the 4-bit control information included in the existing CPDCCH, and is used to indicate which subframe is the end subframe of the downlink burst and the symbol occupied by the end subframe.
  • LAA LAA subframe configuration
  • the number of the first subframe of the first time domain resource is the first subframe after the end subframe.
  • the fifth control information indicates that the first time domain resource duration is 12 ms
  • the seventh control information indicates that the end subframe of the downlink burst is the subframe #n
  • the start subframe of the first time domain resource is the downlink.
  • the first subframe after the burst ends the subframe #n+1 therefore, the first device terminal device determines that the first time domain resource start time is the subframe #n+1, and the duration is 12 ms, at #n+ No uplink data is sent between 1 and #n+12 (ie, sub-frames are not included in the AUL time domain resource #n+1, #n+2, #n+5, #n+6, #n+9,# n+10).
  • the method for transmitting uplink data in the embodiment of the present application avoids interference on the scheduling-based uplink transmission by avoiding the AUL uplink transmission on the scheduling-based first time domain resource, and ensures reliable scheduling-based uplink transmission. Sex.
  • only the added fifth control information is used to indicate the length of the time domain resource, and the first time domain resource start time can reuse the existing seventh control information, which saves signaling overhead.
  • the sixth control information and the seventh control information may be broadcast information.
  • the fifth control information may be broadcast information or group based information.
  • the broadcast information is valid for all active user indications in the cell, and the multicast information is valid for a group of activated user indications in the cell, the set of activated users including at least one active user.
  • the fifth control information and the sixth control information may be carried in different control signaling.
  • the sixth control information is carried in a specific bit field in the CPDCCH, and the fifth control information may be located in a bit field in another broadcast channel different from the CPDCCH or a bit field in the multicast channel.
  • the fifth control information is valid for a group of users in the cell when the fifth control information is carried in the multicast channel.
  • the group of users is an AUL user configured by the base station. Further, the group of users includes all AUL users.
  • the fifth control information and the sixth control information may be two different bit fields in the same control signaling.
  • the fifth control information and the sixth control information are embodied as two different bit fields in the CPDCCH, respectively indicating different contents.
  • the fifth control information and the seventh control information may be carried in different control signaling, or may be carried in two different bit fields in the same control signaling, similar to the fifth control information and the sixth control.
  • the manner in which information is carried is not repeated here for the sake of brevity.
  • FIG. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 11, the terminal device 400 includes:
  • the transceiver unit 410 is configured to receive first control information and second control information that are sent by the network device, where the first control information indicates an autonomous uplink AUL period, and the second control information indicates an AUL transmission in each AUL period.
  • a set of AUL subframes, the AUL period being a period of time domain resources for AUL transmission;
  • the processing unit 420 is configured to determine, according to the first control information and the second control information, an AUL time domain resource, where the AUL time domain resource is in a period of an AUL period, where the AUL period is included in the AUL period.
  • the transceiver unit 410 is configured to send uplink data on some or all resources in the AUL time domain resource.
  • the terminal device 400 may correspond to a first terminal device in the method 200 for transmitting uplink data according to an embodiment of the present application, and the terminal device 400 may include a first terminal device for performing the method 200 of FIG.
  • the unit of the method may be respectively configured to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein again for brevity.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application. As shown in FIG. 12, the network device 500 includes:
  • the sending unit 510 is configured to send first control information and second control information to the terminal device, where the first control information and the second control information are used by the terminal device to determine an autonomous uplink AUL time domain resource, where the AUL is The time domain resource is in a period of an AUL period, the AUL subframe set for AUL transmission is included in each AUL period, the first control information indicates the AUL period, and the second control information indicates each AUL period An AUL subframe set for AUL transmission, the AUL period being a period of time domain resources for AUL transmission;
  • the receiving unit 520 is configured to receive uplink data sent by the terminal device on some or all resources in the AUL time domain resource.
  • the network device 500 may correspond to a network device in the method 200 of transmitting uplink data according to an embodiment of the present application, and the network device 500 may include a unit for performing the method performed by the network device of the method 200 of FIG.
  • each unit in the network device 500 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein again for brevity.
  • FIG. 13 is a schematic block diagram of a terminal device 600 according to another embodiment of the present application.
  • the terminal device 600 includes a transceiver 610, a processor 620, and a memory 630.
  • the transceiver 610, the processor 620 and the memory 630 are used for storing instructions.
  • the processor 620 is configured to execute instructions stored in the memory 630 to control the transceiver 610 to send and receive signals or information.
  • the memory 630 may be configured in the processor 620 or may be independent of the processor 620.
  • the terminal device 600 may correspond to the first terminal device in the method 200 for transmitting uplink data according to an embodiment of the present application, and the terminal device 600 may include, for performing, performing, by the first terminal device in the method 200 in FIG.
  • the physical unit of the method In addition, the physical units in the terminal device 600 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein for brevity.
  • FIG. 14 is a schematic block diagram of a network device 800 in accordance with another embodiment of the present application.
  • the network device 800 includes a transceiver 810, a processor 820, and a memory 830.
  • the transceiver 810, the processor 820 and the memory 830 are used for storing instructions.
  • the processor 820 is configured to execute instructions stored in the memory 830 to control the transceiver 810 to send and receive signals or information.
  • the memory 830 may be configured in the processor 820 or may be independent of the processor 820.
  • the network device 800 may correspond to a network device in the method 200 of transmitting uplink data according to an embodiment of the present application, and the network device 800 may include a physical unit for performing a method performed by the network device in the method 200 of FIG. .
  • the physical units in the network device 800 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein again for brevity.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a central processing unit ("CPU"), and may be other general-purpose processors, digital signal processors ("DSP"), and application-specific integrated circuits ( Application Specific Integrated Circuit (“ASIC”), Field Programmable Gate Array (“FPGA”) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software in the decoding processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced SDRAM
  • DR RAM direct memory bus random access memory
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method for random access disclosed in the embodiments of the present application may be directly implemented as hardware processor execution completion, or performed by hardware and software combination in the processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG. 2.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输上行数据的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的第一控制信息和第二控制信息,该第一控制信息指示自主上行AUL周期,该第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,该AUL周期为用于AUL传输的时域资源的周期;该终端设备根据该第一控制信息和该第二控制信息,确定AUL时域资源,该AUL时域资源以AUL周期为周期,该每个AUL周期内包括该AUL子帧集合;该终端设备在该AUL时域资源中的部分或全部资源上发送上行数据,从而能够提高信道的使用效率。

Description

传输上行数据的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体的,涉及一种用于传输上行数据的方法,终端设备和网络设备。
背景技术
长期演进(Long Team,LTE)系统的上行传输由基站调度完成,基站通过在下行控制信道中包含的上行授权(UL grant)指示终端设备在对应的上行子帧上发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
为了扩展可使用带宽,引入增强授权辅助接入(eLAA,enhanced Licensed-Assisted Access)支持非授权频谱的上行传输。UE在被调度的上行传输之前需要通过先听后发(Listen-Before-Talk,LBT)信道接入机制,确认信道空闲才能发送。
为了更高效地利用上行资源,终端可以采用免调度许可(Grant free)上行传输,或者称为自主上行(Autonomous UL,AUL)传输,AUL的资源配置可以采用LTE系统的半持续调度(Semi-Persistent Scheduling,SPS)机制。
但是,虽然AUL资源是周期性的,在传统SPS传输中,只允许终端每次抢占到信道后每次都只发送1个子帧,之后放弃信道占用,若要再次发送上行数据,需要再次执行LBT抢占信道,导致信道的使用效率低,因此,需要一种传输上行数据的方法,能够提高信道的使用效率。
发明内容
本申请实施例提供一种传输上行数据的方法、终端设备和网络设备,能够提高信道的使用效率。
第一方面,提供了一种传输上行数据的方法,包括:终端设备接收网络设备发送的第一控制信息和第二控制信息,该第一控制信息指示自主上行AUL周期,该第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,该AUL周期为用于AUL传输的时域资源的周期;该终端设备根据该第一控制信息和该第二控制信息,确定AUL时域资源,该AUL时域资源以该AUL周期为周期,该每个AUL周期内包括该AUL子帧集合;该终端设备在该AUL时域资源中的部分或全部资源上发送上行数据。
因此,终端设备可以接收网络设备发送的第一控制信息和第二控制信息,根据该第一控制信息和第二控制信息确定AUL时域资源,该AUL时域资源为周期性的,并且在每个AUL周期中包含AUL子帧集合,该AUL子帧集合包括至少一个子帧,从而终端设备可以在每个AUL周期中的一个或多个子帧上发送数据,即终端设备可以连续占用多个子帧进行上行传输,从而提高了信道使用效率。
可选地,网络设备可以通过广播消息发送该第一控制信息,或者也可以通过该终端设备的专用信道,向该终端设备发送该第一控制信息,类似地,网络设备可以通过广播消息发送该第二控制信息,或者也可以通过该终端设备的专用信道,向该终端设备发送该第二控制信息。
在一种可能的实现方式中,该第一控制信息是网络设备通过第一控制信令发送给该 终端设备的,该第一控制信令为RRC信令或PDCCH中的动态信令,该第二控制信息是该网络设备通过第二控制信令发送给该终端设备的,该第二控制信令为RRC信令或PDCCH中的动态信令。
可选地,该第一控制信令和第二控制信令可以为同一控制信令,或者也可以为不同的控制信令,若为同一控制信令,该第一控制信息和第二控制信息可以位于同一控制信令的不同的指示域中。
在一些可能的实现方式中,该AUL子帧集合包括至少两个子帧。
因此,终端设备可以占用至少两个子帧发送上行数据,从而提高了信道的使用效率。
在一些可能的实现方式中,该AUL子帧集合包括至少一个上行突发,该至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
也就是说,本申请实施例的每个AUL周期的AUL子帧集合也可以是以上行突发为单位的,相邻两个上行突发可以是时间上连续的,也可以是时间上不连续的,每个上行突发内是时间上连续。
在一些可能的实现方式中,该方法还包括:
该终端设备接收该网络设备发送的第三控制信息;
该终端设备根据该第三控制信息,确定该AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
该终端设备在该AUL时域资源中的部分或全部资源上发送上行数据,包括:
该终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,从该任一个子帧对应的起始时刻开始发送上行数据。
因此,终端设备还可以确定每个AUL周期包含的子帧的起始时刻,从而终端设备在周期性地发送上行数据的过程中,可以在每个AUL周期中发送上行数据的这些子帧之间预留空隙,因此可以使得复用终端在预留的空隙接入信道,从而避免了SPS调度下某个终端设备接入信道后持续占用信道导致复用终端侦听失败的问题。
在一些可能的实现方式中,该第三控制信息指示该每个AUL周期包括的每个子帧的起始时刻,或该第三控制信息指示该每个AUL周期内的该AUL子帧集合中的每个子帧的起始时刻。
也就是说,第三控制信息可以指示每个AUL周期内的每个子帧的起始时刻,也可以指示AUL子帧集合中的每个子帧的起始时刻。该AUL子帧集合可以包括该每个AUL周期内的部分子帧或全部子帧,当该AUL子帧集合包括该AUL周期内的全部子帧时,该每个AUL周期包括的每个子帧的起始时刻也就是每个AUL周期内的该AUL子帧集合中的每个子帧的起始时刻。
在一些可能的实现方式中,该第三控制信息指示该AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
也就是说,当该AUL子帧集合包括至少一个上行突发时,该第三控制信息还可以用于指示每个上行突发中的第一个子帧的起始时刻,也可以理解为每个上行突发的起始时刻。
在一些可能的实现方式中,该方法还包括:
该终端设备接收该网络设备发送的第四控制信息;
该终端设备根据该第四控制信息,确定该AUL子帧集合中的至少一个子帧中的每个 子帧的结束时刻;
该终端设备在该AUL时域资源中的部分或全部资源上发送上行数据,包括:
该终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,在该任一个子帧对应的结束时刻停止发送上行数据。
因此,终端设备还可以确定每个AUL周期包含的子帧的结束时刻,从而终端设备在周期性地发送上行数据的过程中,可以在每个AUL周期中发送上行数据的这些子帧之间预留空隙,因此可以使得复用终端在预留的空隙接入信道,从而避免了SPS调度下某个终端设备接入信道后持续占用信道导致复用终端侦听失败的问题。
在一些可能的实现方式中,该第四控制信息指示该每个AUL周期包括的每个子帧的结束时刻,或该第四控制信息指示该每个AUL周期内的该AUL子帧集合中的每个子帧的结束时刻。
也就是说,第四控制信息可以指示每个AUL周期内的每个子帧的结束时刻,也可以指示AUL子帧集合中的每个子帧的结束时刻。该AUL子帧集合可以包括该每个AUL周期内的部分子帧或全部子帧,当该AUL子帧集合包括该AUL周期内的全部子帧时,该每个AUL周期包括的每个子帧的结束时刻也就是每个AUL周期内的该AUL子帧集合中的每个子帧的结束时刻。
在一些可能的实现方式中,该第四控制信息指示该AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
也就是说,当该AUL子帧集合包括至少一个上行突发时,该第四控制信息还可以用于指示每个上行突发中的最后一个子帧的结束时刻,也可以理解为每个上行突发的结束时刻。
在一种可能的实现方式中,该方法还包括:
该终端设备接收网络设备发送的至少一个控制信令,该至少一个信令包括该第三控制信息,该至少一个信令中的每个控制信令用于承载该每个上行突发中的第一个子帧的起始时刻,该每个控制信令为无线资源控制RRC信令或物理下行控制信道PDCCH中的动态信令。
可选地,该至少一个控制信令可以为高层信令,或PDCCH中承载的动态信令向该终端设备发送该第三控制信息,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
在一种可能的实现方式中,该方法还包括:
该终端设备接收网络设备发送的至少一个控制信令,该至少一个信令包括该第四控制信息,该至少一个信令中的每个控制信令用于承载该每个上行突发中的最后一个子帧的结束时刻,该每个控制信令为RRC信令或PDCCH中的动态信令。
可选地,该至少一个控制信令可以为高层信令,或PDCCH中承载的动态信令向该终端设备发送该第四控制信息,具体的,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
在一种可能的实现方式中,在该终端设备在该AUL时域资源中的部分或全部资源上发送上行数据之前,该方法还包括:该终端设备执行信道侦听并侦听到信道空闲。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的第五控制信息;该终端设备根据该第五控制信息,确定第一时域资源;该终端设备根据该第 一控制信息和该第二控制信息,确定AUL时域资源,包括:该终端设备确定该AUL时域资源不包括该第一时域资源中的子帧。
因此,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。
在一种可能的实现方式中,该第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,该第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
因此,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的该第六控制信息;该终端设备根据该第五控制信息,确定该第一时域资源,包括:该终端设备根据该第五控制信息和该第六控制信息确定该第一时域资源,该第一时域资源包含该第二时域资源。
因此,本申请实施例除了规避在MCOT内的第二时域资源上发送AUL上行传输,还规避在MCOT外的基于调度的时域资源上发送AUL上行传输,保证了基于调度的上行传输的可靠性。另外,只需要新增的第五控制信息用来指示时域资源长度,而第一时域资源起始时刻可以复用现有的第六控制信息,节省了信令开销。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的该第七控制信息,该第七控制信息与该第五控制信息在同一下行突发中,该第七控制信息用于指示该下行突发的结束时刻;该终端设备根据该第五控制信息确定该第一时域资源,包括:该终端设备根据该第五控制信息和该第七控制信息确定该第一时域资源,该第一时域资源的起始子帧为该下行突发结束时刻之后的第一个子帧。
因此,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。另外,只需要新增的第五控制信息用来指示时域资源长度,而第一时域资源起始时刻可以复用现有的第七控制信息,节省了信令开销。
第二方面,提供了一种传输上行数据的方法,包括:网络设备向终端设备发送第一控制信息和第二控制信息,该第一控制信息指示AUL周期,该第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,该AUL周期为用于AUL传输的时域资源的周期;该网络设备接收该终端设备在AUL时域资源中的部分或全部资源上发送的上行数据,该AUL时域资源以该AUL周期为周期,该每个AUL周期内包括该AUL子帧集合。
因此,网络设备可以向终端设备发送第一控制信息和第二控制信息,该第一控制信息和第二控制信息可以用于终端设备确定AUL时域资源,该AUL时域资源为周期性的,并且在每个AUL周期中包含AUL子帧集合,该AUL子帧集合包括至少一个子帧,从而终端设备可以在每个AUL周期中的一个或多个子帧上发送数据,即终端设备可以连续占用多个子帧进行上行传输,从而提高了信道使用效率。
可选地,网络设备可以通过广播消息发送该第一控制信息,或者也可以通过该终端 设备的专用信道,向该终端设备发送该第一控制信息,类似地,网络设备可以通过广播消息发送该第二控制信息,或者也可以通过该终端设备的专用信道,向该终端设备发送该第二控制信息。
在一种可能的实现方式中,该第一控制信息是网络设备通过第一控制信令发送给该终端设备的,该第一控制信令为RRC信令或PDCCH中的动态信令,该第二控制信息是该网络设备通过第二控制信令发送给该终端设备的,该第二控制信令为RRC信令或PDCCH中的动态信令。
可选地,该第一控制信令和第二控制信令可以为同一控制信令,或者也可以为不同的控制信令,若为同一控制信令,该第一控制信息和第二控制信息可以位于同一控制信令的不同的指示域中。
在一种可能的实现方式中,该AUL子帧集合包括至少两个子帧。
因此,终端设备可以占用至少两个子帧发送上行数据,从而提高了信道的使用效率。
在一种可能的实现方式中,该AUL子帧集合包括至少一个上行突发,该至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
也就是说,本申请实施例的每个AUL周期的AUL子帧集合也可以是以上行突发为单位的,相邻两个上行突发可以是时间上连续的,也可以是时间上不连续的,每个上行突发内是时间上连续。
在一种可能的实现方式中,该方法还包括:
该网络设备向该终端设备接发送第三控制信息,该第三控制信息用于该终端设备确定该AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻。
因此,网络设备还可以向终端设备发送第三控制信息,该第三控制信息可以用于终端设备确定每个AUL周期包含的子帧的起始时刻,从而终端设备在周期性地发送上行数据的过程中,可以在每个AUL周期中发送上行数据的这些子帧之间预留空隙,因此可以使得复用终端在预留的空隙接入信道,从而避免了SPS调度下某个终端设备接入信道后持续占用信道导致复用终端侦听失败的问题。
在一种可能的实现方式中,该第三控制信息指示该每个AUL周期包括的每个子帧的起始时刻,或该第三控制信息指示该每个AUL周期内的该AUL子帧集合中的每个子帧的起始时刻。
也就是说,第三控制信息可以指示每个AUL周期内的每个子帧的起始时刻,也可以指示AUL子帧集合中的每个子帧的起始时刻。该AUL子帧集合可以包括该每个AUL周期内的部分子帧或全部子帧,当该AUL子帧集合包括该AUL周期内的全部子帧时,该每个AUL周期包括的每个子帧的起始时刻也就是每个AUL周期内的该AUL子帧集合中的每个子帧的起始时刻。
在一种可能的实现方式中,该第三控制信息指示该AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
也就是说,当该AUL子帧集合包括至少一个上行突发时,该第三控制信息还可以用于指示每个上行突发中的第一个子帧的起始时刻,也可以理解为每个上行突发的起始时刻。
在一种可能的实现方式中,该方法还包括:
该网络设备接收该终端设备发送的第四控制信息,该控制信息用于该终端设备确定 该AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻。
因此,网络设备还可以向终端设备发送第四控制信息,该第四控制信息可以用于终端设备确定每个AUL周期包含的子帧的结束时刻,从而终端设备在周期性地发送上行数据的过程中,可以在每个AUL周期中发送上行数据的这些子帧之间预留空隙,因此可以使得复用终端在预留的空隙接入信道,从而避免了SPS调度下某个终端设备接入信道后持续占用信道导致复用终端侦听失败的问题。
在一种可能的实现方式中,该第四控制信息指示该每个AUL周期包括的每个子帧的结束时刻,或该第四控制信息指示该每个AUL周期内的该AUL子帧集合中的每个子帧的结束时刻。
也就是说,第四控制信息可以指示每个AUL周期内的每个子帧的结束时刻,也可以指示AUL子帧集合中的每个子帧的结束时刻。该AUL子帧集合可以包括该每个AUL周期内的部分子帧或全部子帧,当该AUL子帧集合包括该AUL周期内的全部子帧时,该每个AUL周期包括的每个子帧的结束时刻也就是每个AUL周期内的该AUL子帧集合中的每个子帧的结束时刻。
在一种可能的实现方式中,该第四控制信息指示该AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
也就是说,当该AUL子帧集合包括至少一个上行突发时,该第四控制信息还可以用于指示每个上行突发中的最后一个子帧的结束时刻,也可以理解为每个上行突发的结束时刻。
在一种可能的实现方式中,该方法还包括:
该网络设备向该终端设备发送至少一个控制信令,该至少一个信令包括该第三控制信息,该至少一个信令中的每个控制信令用于承载该每个上行突发中的第一个子帧的起始时刻,该每个控制信令为无线资源控制RRC信令或物理下行控制信道PDCCH中的动态信令。
可选地,该至少一个控制信令可以为高层信令,或PDCCH中承载的动态信令向该终端设备发送该第三控制信息,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
在一种可能的实现方式中,该方法还包括:
该网络设备向该终端设备发送至少一个控制信令,该至少一个信令包括该第四控制信息,该至少一个信令中的每个控制信令用于承载该每个上行突发中的最后一个子帧的结束时刻,该每个控制信令为RRC信令或PDCCH中的动态信令。
可选地,该至少一个控制信令可以为高层信令,或PDCCH中承载的动态信令向该终端设备发送该第三控制信息,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
在一种可能的实现方式中,所述网络设备接收所述第一终端设备在AUL时域资源中的部分或全部资源上发送的上行数据,包括:
所述第一终端设备执行信道侦听并侦听到信道空闲。
在一种可能的实现方式中,所述方法还包括:
所述网络设备向所述第一终端设备发送第五控制信息,所述第五控制信息用于所述第一终端设备根据所述第五控制信息,确定第一时域资源,所述第一终端设备确定的所 述AUL时域资源不包括所述第一时域资源中的子帧。
在一种可能的实现方式中,所述第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,所述第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
在一种可能的实现方式中,所述方法还包括:
所述网络设备向所述第一终端设备发送所述第六控制信息,所述第五控制信息和所述第六控制信息用于所述第一终端设备确定所述第一时域资源,所述第一时域资源包含所述第二时域资源。
在一种可能的实现方式中,所述方法还包括:
所述网络设备向所述第一终端设备发送第七控制信息,所述第七控制信息与所述第五控制信息在同一下行突发中,所述第七控制信息用于指示所述下行突发的结束时刻,所述第五控制信息和所述第七控制信息用于所述第一终端设备确定所述第一时域资源,所述第一时域资源的起始子帧为所述下行突发结束时刻之后的第一个子帧。。
第三方面,提供了一种终端设备,该终端设备可以包括执行第一方面或其任一种可选实现方式中的方法的单元。
第四方面,提供了一种网络设备,该网络设备可以包括执行第二方面或其任一种可选实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备可以包括存储器、收发器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器可以基于该收发器执行第一方面,第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备可以包括存储器、收发器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器可以基于该收发器执行第二方面,第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得用户设备执行第一至第二方面或第一至第二方面的任一种可能的实现方式中的方法。
基于上述技术方案,本申请实施例的传输上行数据的方法,终端设备可以接收网络设备发送的第一控制信息和第二控制信息,根据该第一控制信息和第二控制信息确定AUL时域资源,该AUL时域资源为周期性的,并且在每个AUL周期中包含AUL子帧集合,该AUL子帧集合包括至少一个子帧,从而终端设备可以在每个AUL周期中的至少一个子帧上发送数据从而提高了信道使用效率。
附图说明
图1是适用于本申请实施例的传输上行数据的方法和装置的通信系统的示意性图。
图2是根据本申请实施例的传输上行数据的方法的示意性交互图。
图3是根据本申请实施例的传输上行数据的方法使用的AUL时域资源的一例的示 意图。
图4是示例性的通过不同的控制信令指示对应的上行突发包括的子帧的示意图。
图5A~图5E是示例性的不同的起始时刻或结束时刻的示意图。
图6是示例性的通过不同的控制信令指示对应的上行突发的起始时刻示意图。
图7是示例性的通过不同的控制信令指示对应的上行突发的结束时刻示意图。
图8A~图8B是示例性的起始时刻预留空隙时,不同的AUL周期对应的不同的空隙出现频率的示意图。
图9A~图9B是示例性的结束时刻预留空隙时,不同的AUL周期对应的不同的空隙出现频率的示意图。
图10A~图10E是示例性的用于AUL上行传输的AUL时域资源的示意图。
图11是根据本申请一实施例的终端设备的示意性框图。
图12是根据本申请一实施例的网络设备的示意性框图。
图13是根据本申请另一实施例的终端设备的示意性框图。
图14是根据本申请另一实施例的网络设备的示意性框图。
具体实施方式
下面结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于可以工作在非授权频谱上的各种无线通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为宏基站、微小区、微微小区、家庭基站、远端射频头、中继站、接入点等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120也可以称为用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,简称“WLAN”)中的站点(STAION, 简称“ST”),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,简称“5G”)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)网络中的终端设备等。
在该无线通信系统100中,该网络设备110可以在非授权资源上发送下行信息,也可以在授权资源上发送下行信息,同样地,该终端设备120可以在非授权频谱上发送上行信息,也可以在授权资源上发送上行信息。
图2是从设备交互的角度描述的根据本申请实施例的传输上行数据的方法200的示意性交互图,该方法200可以应用于图1所示的无线通信系统100,如图2所示,该方法200包括:
210,网络设备向第一终端设备发送第一控制信息和第二控制信息;
其中,该第一控制信息指示AUL周期,该AUL周期为用于自主上行AUL传输的时域资源的周期,该第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,该第一控制信息和第二控制信息用于第一终端设备确定AUL时域资源,该AUL时域资源为用于AUL传输的时域资源,该AUL时域资源是周期性的时域资源,该AUL时域资源的周期为AUL周期,该AUL周期可以根据第一控制信息确定,每个AUL周期内包括AUL子帧集合,每个AUL周期内的该AUL子帧集合可以根据第二控制信息确定,该AUL子帧集合包括至少一个子帧,即AUL子帧集合包括一个或至少两个子帧。
应理解,网络设备可以通过广播消息发送该第一控制信息,或者也可以通过该第一终端设备的专用信道,向该第一终端设备发送该第一控制信息,或者也可以通过组播的方式,向包括该第一终端设备在内的一组用户的发送该第一控制信息。同样地,网络设备可以通过广播消息发送该第二控制信息,或者也可以通过该第一终端设备的专用信道,向该第一终端设备发送该第二控制信息,或者也可以通过组播的方式,向包括该第一终端设备在内的一组用户的发送该第二控制信息。本申请实施例对于网络设备发送该第一控制信息和第二控制信息的方式不做限定。
具体地,该网络设备可以向第一终端设备发送第一控制信令,该第一控制信令包括该第一控制信息,即该网络设备通过第一控制信令承载该第一控制信息。该第一控制信令可以为高层信令或者也可以称为无线资源控制(Radio Resource Control,RRC)信令,也可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的动态信令,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS上行授权(UpLink grant,UL grant)中承载的动态信令。
类似地,该网络设备可以向第一终端设备发送第二控制信令,该第二控制信令包括该第二控制信息,即该通过第二控制信令承载该第二控制信息。该第二控制信令可以为高层信令,也可以为PDCCH中承载的动态信令,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
可选地,该第一控制信令和第二控制信令可以为同一控制信令,该第一控制信令和第二控制信令可以是同一个高层信令或者同一个SPS UL grant,通过信令中承载的不同的 比特域分别配置或指示AUL周期和每个AUL周期内的AUL子帧集合,也可以为不同的控制信令。当该第一控制信令和第二控制信令为不同的控制信令时,该第一控制信令和第二控制信令可以为不同的高层信令或PDCCH中承载的不同的动态信令,或者一个为高层信令,另一个为PDCCH中承载的动态信令。当该第一控制信令和第二控制信令为同一控制信令时,该第一控制信息和第二控制信息可以位于该同一控制信令(同一高层信令或同一个PDCCH中承载的动态信令)的不同的指示域或者说比特域,具体地,该同一控制信令可以包括AUL周期指示域和AUL子帧集合指示域,分别用于指示该AUL周期和AUL子帧集合。
因此,本申请实施例的传输上行数据的方法,网络设备可以给第一终端设备配置周期性的上行资源,即AUL时域资源,第一终端设备可以使用该周期性的时域资源中的部分或全部发送上行数据,因此,不需要网络设备每次都发送该第一控制信息和第二控制信息,配置该第一终端设备用于上行传输的时域资源,在网络设备不更改该配置前,该第一终端设备可以一直使用该第一控制信息和第二控制信息确定的AUL时域资源发送上行数据,即该步骤210只执行一次,之后,第一终端设备可以一直使用该AUL时域资源发送上行数据,若网络设备需要更新该AUL时域资源,该网络设备可以重新发送该第一控制信息和第二控制信息,第一终端设备收到该第一控制信息和第二控制信息之后,根据该第一控制信息和第二控制信息重新确定AUL时域资源,之后可以使用新的AUL时域资源进行上行传输。
可选地,该网络设备还可以向第一终端设备发送SPS UL grant信息,当该SPS UL grant信息用于激活SPS传输或重激活SPS传输时,该第一终端设备开始在该AUL时域资源上发送上行数据。另外,当网络设备还可以向第一终端设备发送SPS UL grant信息,当该SPS UL grant信息用于去激活SPS传输时,则该第一终端设备停止在该AUL时域资源上发送上行数据。
220,第一终端设备根据第一控制信息和第二控制信息,确定AUL时域资源。
具体而言,该第一终端设备可以根据该第一控制信息确定AUL周期,根据该第二控制信息确定每个AUL周期内的用于上行传输的AUL子帧集合。该AUL子帧集合包括至少一个子帧,当该AUL子帧集合包括多个子帧时,该多个子帧可以是时间上连续的,也可以是时间上不连续的。对于任意两个AUL周期,该AUL子帧集合中的子帧在每个AUL周期内所占的时域资源的位置是相同的。AUL时域资源就是由这些周期性出现的AUL子帧集合组成的。如图3所示,AUL周期为6ms(6个子帧),每个AUL周期包含由前4个子帧构成的AUL子帧集合,这些周期性出现的AUL子帧集合构成AUL时域资源,即{#n+2,#n+3,#n+4,#n+5,#n+8,#n+9,#n+10,#n+11,#n+14,#n+15,#n+16,#n+17,…}。
进一步地,每个AUL周期内的AUL子帧集合包括至少两个子帧,网络设备通过在每个AUL周期内配置或指示连续的多个子帧作为AUL子帧集合,实现第一终端设备抢占到信道之后的连续传输。
应理解,每个AUL周期内的AUL子帧集合都是由该AUL周期内包括的子帧组成的,不包括超出该AUL周期范围内的子帧,例如,对于图3所示的第一个AUL周期,包括#n+2~#n+7中的子帧,不会包括早于#n+2或晚于#n+7的子帧。
还应理解,每个AUL周期内的AUL子帧集合中包含至少一个子帧,该至少一个子帧中的任意一个子帧可以是完整子帧,也可以是部分子帧,其中,完整子帧指示第一终端 设备可以占用该子帧包含的全部(14个)上行OFDM符号发送上行数据,部分子帧指示第一终端设备只能占用该子帧包含的一部分上行时域资源发送上行数据,而子帧的另一部分上行时域资源不发送上行数据,例如,部分子帧为13个符号,也就是只允许第一终端设备占用13个符号发送上行数据,而子帧的第一个符号或最后一个符号预留空隙(gap),或只允许从第一个符号的中间开始发送上行数据,而保留第一个符号的前半部分预留空隙。
230,第一终端设备在该AUL时域资源的部分或全部资源上发送上行数据。
具体地,第一终端设备确定AUL时域资源之后,可以在AUL时域资源中的部分或全部资源上发送上行数据,即第一终端设备可以在该AUL时域资源包含的至少一个子帧上发送上行数据,或者第一终端设备在该AUL时域资源包含的子帧上也可以不发送上行数据。例如,第一终端设备没有上行业务时,或者在AUL时域资源中的某个子帧之前执行LBT失败,可以跳过(Skip)该子帧不发送上行数据。或者第一终端设备在一个AUL周期中可以不占用该AUL周期中的任一个子帧发送上行数据,也就是说跳过该AUL周期。当第一终端设备有上行业务需要发送且信道抢占成功时,该第一终端设备最多可以占用全部的AUL时域资源,也就是说以AUL周期为周期,在每个AUL周期内最多占用该AUL周期内的AUL子帧集合中的全部子帧发送上行数据。例如,对于图3所示的AUL时域资源,该第一终端设备可以在每个AUL子帧集合中的前两个子帧上发送上行数据,也可以占用该每个AUL子帧集合中的全部四个子帧发送上行数据或者也可以占用某一个AUL周期内的AUL子帧集合中的一个子帧发送上行数据,占用另一个AUL周期内的至少两个子帧发送上行数据,本申请实施例对第一终端设备如何使用该每个AUL子帧集合中的子帧发送上行数据不做限定。
应理解,第一终端设备在AUL时域资源上发送上行数据时,使用AUL传输机制,也就是说第一终端设备如果有了上行业务需求,不需要发送调度请求(SR,Scheduling Request),也不需要基于基站的UL grant调度,而可以在执行LBT成功之后,直接在AUL时域资源上发送上行数据。
可选地,作为一种实施例,每个AUL周期内的AUL子帧集合包括至少一个上行突发,该至少一个上行突发中的每个上行突发包含至少一个时间上连续的子帧。
具体而言,每个AUL周期内的AUL子帧集合包括至少一个上行突发,每个上行突发包括至少一个时间上连续的子帧,当该AUL子帧集合中的一个上行突发中包含至少两个上行子帧时,该至少两个上行子帧时间上是连续的,时间上连续具体可以是该至少两个上行子帧的子帧号是连续的,子帧号连续的两个子帧之间可以有gap,也可以没有gap。相邻的两个上行突发之间可以是时间上连续的,也可以是时间上不连续的。
可选地,当AUL子帧集合包含至少两个上行突发时,网络设备可以通过至少两个控制信令承载该第二控制信息,每个控制信令用于承载一个上行突发中包含的子帧的信息,具体地,每个控制指令可以包括一个上行突发指示域,该上行突发指示域用于指示对应的上行突发包括的子帧的信息。例如,AUL子帧集合包括M(M是大于1的整数)个上行突发,网络设备可以通过M个SPS UL grant承载该M个上行突发包括的子帧的信息,该M个SPS UL grant可以承载于同一下行子帧的PDCCH中,每个SPS UL grant中可以包含一个上行突发指示域,该上行突发指示域用于指示对应的上行突发包含的子帧的信息,例如,子帧序号,该子帧序号不是绝对的子帧序号,该子帧序号可以为该上行突发内的序号, 例如,该子帧序号可以是相对于该上行突发中的第一个子帧或最后一个子帧的序号,或者也可以为AUL周期内的序号,例如,该子帧序号可以是相对于该AUL周期中的第一个子帧或最后一个子帧的序号。如图4所示,每个AUL周期内的AUL子帧集合包含2个上行突发(AUL上行突发1和AUL上行突发2),每个上行突发包含两个时间上连续的子帧,网络设备通过2个SPS UL grant(SPS UL grant1和SPS UL grant2)分别指示两个上行突发包括的子帧序号,例如,SPS UL grant1的上行突发指示域可以指示该上行突发1包括的子帧序号为0和1,SPS UL grant2的上行突发指示域可以指示该上行突发2包括的子帧序号为3和4,上述子帧序号为子帧在AUL周期内相对于该AUL周期内的第一个子帧的序号,因此,该每个AUL周期内的上行突发1包括该周期内的第一个子帧和第二个子帧,上行突发2包括该周期内的第三个子帧和第四个子帧。可选地,该每个SPS UL grant中的上行突发指示域还可以指示每个上行突发的初始子帧序号和连续的子帧数目,从而第一终端设备可以根据该每个上行突发的初始子帧序号以及连续的子帧数目,确定每个上行突发包含的子帧序号,其中该初始子帧序号可以是相对于该上行突发内或该AUL周期内中的第一个子帧或最后一个子帧的序号。
可选地,作为一个实施例,该方法200还可以包括:
该第一终端设备接收该网络设备发送的第三控制信息;
该第一终端设备根据该第三控制信息,确定该AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
此情况下,该230进一步包括:
该第一终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,从该任一个子帧对应的起始时刻开始发送上行数据。
具体而言,该第三控制信息可以指示AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻。即该第三控制信息可以指示该AUL子帧集合中的部分子帧的起始时刻,也可以指示该AUL子帧集合中的全部子帧中的每个子帧的起始时刻。在每个AUL周期中,第一终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,可以从该任一个子帧对应的起始时刻开始发送。
也就是说,第一终端设备可以根据第三控制信息,确定AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻,即网络设备可以通过第三控制信息配置每个AUL周期内的AUL子帧集合中部分或全部子帧的起始时刻。当某个子帧的起始时刻晚于该子帧的起始边界时,该子帧的起始边界到起始时刻之间为预留的gap。从而第一终端设备在该至少一个子帧中的任一子帧上发送上行数据时,则可以从该任一子帧对应的起始时刻开始发送上行数据。由于AUL子帧集合是周期性的,因此第三控制信息指示的AUL子帧集合中至少一个子帧的起始时刻也是周期性的,第一终端设备在每个周期内的该至少一个子帧上都会在对应的起始时刻开始发送上行数据,或者说第一终端设备预留gap是周期性的。
可选地,作为一个实施例,该方法200还可以包括:
该第一终端设备接收基站发送的第四控制信息;
该第一终端设备根据该第四控制信息,确定该AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻;
此情况下,该230进一步包括:
该第一终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,在该任一个子帧对应的结束时刻停止发送上行数据。
具体而言,第四控制信息可以指示每个AUL周期内的AUL子帧集合中包含的至少一个子帧的结束时刻。在每个AUL周期中,第一终端设备在该至少一个子帧中的任一个子帧上发送上行数据时,在该任一个子帧对应的结束时刻停止发送上行数据
也就是说,该第一终端设备也可以根据第四控制信息,确定AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻,即网络设备可以通过第四控制信息配置每个AUL周期内的AUL子帧集合中部分或全部子帧的结束时刻,当某个子帧的结束时刻早于该子帧的结束边界时,则结束时刻到该子帧的结束边界之间为预留的gap。从而第一终端设备在该至少一个子帧中的任一子帧上发送上行数据时,则可以在该任一子帧对应的结束时刻停止发送上行数据。由于AUL子帧集合是周期性的,因此第四控制信息指示的AUL子帧集合中至少一个子帧的结束时刻也是周期性的,第一终端设备在每个周期内的该至少一个子帧上都会在对应的结束时刻停止发送上行数据,或者说第一终端设备预留gap是周期性的。
现有技术中,当多个终端设备进行频分复用(全称:Frequency Division Multiplexing,简称:FDM)时,若第一终端设备持续占用信道时,其发送的上行数据会导致与该第一终端设备进行FDM的其他终端设备(以下简称“复用终端”)监听到信道忙碌,从而导致复用终端侦听失败。此情况下,网络设备通过配置AUL子帧集合中的至少一个子帧的起始时刻晚于该至少一个子帧的起始边界,或配置AUL子帧集合中的至少一个子帧的结束时刻早于该至少一个子帧的结束边界,从而可以保证在该至少一个子帧的开头预留gap或结尾预留gap,从而复用终端可以在预留gap进行信道监听,从而能够监听到信道空闲,从而避免了SPS调度下某个终端设备接入信道后持续占用信道导致复用终端侦听失败的问题。
以下,结合图5A~图5E介绍每个AUL周期内的AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻和结束时刻。
应理解,若第一终端设备该至少一个子帧中的第一子帧上发送上行数据,则该第一终端设备在该第一子帧对应的起始时刻开始发送上行数据,该第一子帧的起始时刻可以是该第一子帧的起始边界,也可以是位于该第一子帧的中间位置(晚于该第一子帧的起始边界的位置),可以位于该第一子帧中某个符号的起始边界,也可以位于该第一子帧中某个符号的中间位置。若该第一子帧的起始时刻为该第一子帧的起始边界,该第一子帧的起始时刻也可以认为是该第一子帧中的第一个符号或者说符号0的起始边界(称之为符号0),例如图5A所示,该第一终端设备从该第一子帧的符号0开始发送数据,斜网格线区域为发送上行数据的区域;该第一子帧的起始时刻也可以是该第一子帧的符号0的起始边界之后25us处,例如图5B所示,该第一终端设备从该第一子帧的符号0的起始边界之后25us处开始发送数据,斜网格线区域为发送数据的区域;该第一子帧的起始时刻也可以是也该第一子帧符号0的起始边界之后25us+时间提前量(Timing Advance,TA)处(称之为25us+TA),例如图5C所示,该第一终端设备从该第一子帧的符号0的起始边界之后25us+TA处开始发送数据,斜网格线区域所示为发送数据的区域;该第一子帧的起始时刻也可以是该第一子帧的第二个符号或者说符号1的起始边界(称之为符号1),例如图5D所示,该第一终端设备从该第一子帧的符号1的起始边界开始发送 数据,斜网格线区域为发送数据的区域。
类似地,第一终端设备该至少一个子帧中的第二子帧上发送上行数据,则在该第二子帧对应的结束时刻停止发送上行数据,第一终端设备在第二子帧上停止发送数据的结束时刻可以是该第二子帧的结束边界,也可以是位于该第二子帧的中间位置(早于该第二子帧的结束边界),可以位于该第二子帧中某个符号的结束边界,也可以位于该第二子帧中某个符号的中间位置。若第一终端设备在第二子帧中停止发送数据的结束时刻为该第二子帧的结束边界,也可以认为该第二子帧对应的结束时刻为该第二子帧的最后一个符号的结束边界,例如图5A所示的最后一个符号或者说符号13的结束边界,该第二子帧对应的结束时刻也可以是该第二子帧的倒数第二个符号或者说符号12的结束边界,如图5E所示的发送数据的结束时刻,斜网格线区域为发送数据的区域。
因此,在本申请实施例中,由于AUL时域资源是周期性的,因此gap出现的位置也是周期性的,即每个AUL周期内每个AUL周期内gap所占的时域资源的位置是相同的,每个AUL周期内的gap可以是一个也可以是多个。
应理解,两个相邻子帧之间的gap可以是相邻子帧中的前一个子帧结尾预留gap,也可以是相邻子帧中的后一个子帧的开头预留gap,或者也可以前一个子帧结尾预留gap且后一个子帧的开头预留gap。
以下,详细介绍网络设备如何向第一终端设备发送该第三控制信息和第四控制信息。
应理解,网络设备可以通过广播消息发送该第三控制信息,或者也可以通过该第一终端设备的专用信道,向该第一终端设备发送该第三控制信息,或者也可以通过组播的方式,向包括该第一终端设备在内的一组用户的发送该第三控制信息。同样地,网络设备可以通过广播消息发送该第四控制信息,或者也可以通过该第一终端设备的专用信道,向该第一终端设备发送该第四控制信息,或者也可以通过组播的方式,向包括该第一终端设备在内的一组用户的发送该第四控制信息。本申请实施例对于网络设备发送该第三控制信息和第四控制信息的方式不做限定。
具体而言,该网络设备可以通过高层信令,或PDCCH中承载的动态信令向该第一终端设备发送该第三控制信息,具体地,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。该第三控制信息可以和第一控制信息(或第二控制信息)承载于同一控制信令,也可以通过不同的控制信令承载,当该第三控制信息和第一控制信息(或第二控制信息)通过同一控制信令承载时,该第三控制信息和第一控制信息(或第二控制信息)可以位于同一控制信令中不同的指示域。
也就是说,该网络设备可以通过同一控制信令(例如,高层信令或SPS UL grant中承载的动态信令)向第一终端设备发送该第三控制信息和第一控制信息,或第三控制信息和第二控制信息,或第三控制信息、第一控制信息和第二控制信息。当网络设备通过同一控制信令发送多个控制信息时,该多个控制信息可以承载于同一控制信令的不同的指示域,例如,该网络设备通过SPS UL grant中承载的动态信令发送该第一控制信息和第三控制信息,该第一控制信息和该第三控制信息可以位于SPS UL grant中不同的指示域(包括第一控制信息指示域和第三控制信息指示域),该第一控制信息指示域和该第三控制信息指示域分别指示AUL周期和AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻。
同样地,该网络设备可以通过高层信令,或PDCCH中承载的动态信令向该第一终 端设备发送该第四控制信息,具体的,该PDCCH中承载的动态信令可以是PDCCH中的SPS UL grant中承载的动态信令。
可选地,该第四控制信息可以和其他控制信息(第一控制信息或第二控制器或第三控制信息)包含于同一动态信令(例如,SPS UL grant中承载的动态信令)中,当同一动态信令包括至少两个控制信息时,该至少两个控制信息可以位于该同一动态信令中的至少两个指示域,该至少两个指示域分别指示对应的控制信息。
可选地,该第四控制信息可以和其他控制信息(第一控制信息或第二控制器或第三控制信息)包含于同一高层信令(例如,RRC信令)中,当同一高层信令包括至少两个控制信息时,该至少两个控制信息可以位于该同一高层信令中的至少两个指示域,该至少两个指示域分别指示对应的控制信息。
可选地,网络设备可以通过不同的高层信令或不同的动态信令承载该第四控制信息和其他控制信息(第一控制信息或第二控制器或第三控制信息),或者也可以一个通过高层信令承载,另一个通过动态信令承载,例如,第四控制信息通过第一RRC信令承载,第一控制信息通过第二RRC信令承载,再例如,第四控制信息通过SPS UL grant1承载,第一控制信息通过RRC信令承载等。本申请实施例对该第一控制信息、第二控制信息、第三控制信息和第四控制信息的承载方式不作限定。
以下,详细介绍网络设备如何指示该第三控制信息和第四控制信息。
具体的,网络设备可以通过比特映射(bitmap)的方式指示AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻(即第三控制信息),每个子帧的起始时刻可以对应一个比特域,该比特域可以包括至少一个比特位,通过该比特域指示不同状态,不同状态对应该每个子帧的不同的起始时刻。例如每个子帧的起始时刻对应的比特域包含2个比特,指示四个状态:’00’、’01’、’10’和’11’,该四个状态指示的起始时刻分别为符号0(第一个符号)、25us、25us+TA、符号1(第二个符号),此时,如果每个AUL周期的AUL子帧集合中的至少一个子帧中包含K个子帧,K是大于等于1的整数,则第三控制信息共需要2*K个比特,再例如,每个子帧的起始时刻对应的比特域包含1个比特,指示两个状态:’0’和’1’,该两个状态指示的起始时刻分别为符号0(第一个符号)、符号1(第二个符号),如果每个AUL周期的第二子帧子帧集合中包含K个子帧,则第三控制信息共需要K个比特。
与第三控制信息的指示方法类似,该第四控制信息也可以通过比特映射的方式指示,具体的,每个子帧的结束时刻对应一个比特域,每个比特域可以包含至少一个比特位,通过该比特域指示的不同状态指示该子帧不同的结束时刻。例如,每个子帧对应的比特域包含1个比特,指示两个状态:’0’和’1’,分别用于指示符号12(倒数第二个符号)的结束边界、符号13(最后一个符号)的结束边界,如果每个AUL周期的AUL子帧集合中包含K个子帧,K是大于等于1的整数,则第四控制信息共需要K个比特指示。
应理解,该第三控制信息指示AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻。该AUL子帧集合可以包括一个子帧,也可以是至少两个子帧。具体的,该AUL子帧集合包括一个子帧时,第三控制信息可以通过一个指示域指示该AUL子帧集合中起始时刻晚于子帧的起始边界的子帧的序号,进一步地,该第三控制信息还可以指示该子帧的具体的起始时刻(例如25us或符号1或25us+TA)。类似地,该第四控制信息可以通过一个指示域指示该AUL子帧集合中结束时刻早于子帧的结束边界的子帧的序号,进 一步的,还可以指示该子帧中具体的结束时刻。该AUL子帧集合包括至少两个子帧时,第三控制信息可以通过至少两个指示域指示,每个指示域用于指示AUL子帧集合中起始时刻晚于子帧起始边界的一个子帧的序号,进一步地,每个指示域还可以指示该对应的子帧的具体的起始时刻。类似地,第四控制信息也可以通过至少两个指示域指示,每个指示域用于指示AUL子帧集合中结束时刻早于子帧结束边界的子帧的序号,进一步地,每个指示域还可以指示对应的子帧中具体的结束时刻。
可选地,作为另一实施例,当每个AUL周期内的AUL子帧集合可能包括至少一个上行突发时,该第三控制信息可以配置每个上行突发对应的起始时刻,此时该第三控制信息还可以用于指示该至少一个上行突发中的每个上行突发中的第一个子帧的起始时刻,或者说,第三控制信息可以用于指示AUL子帧集合中的每个上行突发的起始时刻。类似于上述实施例,网络设备可以通过bitmap的方式指示每个上行突发的起始时刻,具体的,网络设备通过控制信令中一个特定的比特域来配置或指示一个上行突发的起始时刻,每个上行突发的起始时刻可以对应一个比特域,该比特域中包含至少一个比特位,通过该比特域指示不同状态,不同状态对应该每个上行突发不同的起始时刻,因此,本申请实施例可以配置以实现突发为单位配置每个上行突发对应的起始时刻,从而能够减小对AUL子帧集合内的每个子帧都配置相应的起始时刻带来的信令开销。
可选地,该第四控制信息还可以指示AUL子帧集合中每个上行突发中的第一个子帧的结束时刻,或者说,第四控制信息可以指示AUL子帧集合中每个上行突发的结束时刻。与每个上行突发的起始时刻的指示方法类似,每个上行突发的结束时刻都对应一个比特域,每个比特域中包含至少一个比特位,通过每个比特域指示的不同状态指示该每个上行突发的不同的结束时刻。当AUL周期内的AUL子帧集合包含该AUL周期内的全部子帧时,为了能使终端在连续的一串子帧之间留gap,该第二控制信息可以指示该AUL周期内包含一个上行突发,该第四控制信息可以指示该上行突发的结束时刻早于上行突发最后一个子帧的结束边界。
以下结合图6和图7,详细介绍当每个AUL周期内的AUL子帧集合包括至少两个上行突发时,该网络设备如何指示针对每个上行突发的起始时刻和结束时刻。
可选地,该每个AUL周期内的AUL子帧集合包括至少两个上行突发时,相邻两个上行突发时间上不连续,每个上行突发内时间上连续,这样,相邻两个上行突发之间可以预留gap。此情况下,该第三控制信息可以包括该至少两个上行突发中的每个上行突发的起始时刻,该至少两个上行突发中的每个上行突发的起始时刻也可以由至少两个控制信令承载,每个控制信令承载对应的上行突发的起始时刻。例如,每个AUL周期内的AUL子帧集合包括两个上行突发,网络设备可以使用两个SPS UL grant分别承载这两个上行突发的起始时刻,具体的,每个SPS UL grant可以包含一个上行突发的起始时刻的指示域,该上行突发的起始时刻的指示域用于指示对应的上行突发中的第一个子帧的起始时刻,第三控制信息包括这两个SPS UL grant中的这两个指示域。例如图6,网络设备通过两个SPS UL grant(包括SPS UL grant1和SPS UL grant2)在每个AUL周期调度两个不同的上行突发(上行突发1和上行突发2),每个SPS UL grant中包含的上行突发的起始时刻的指示域分别指示对应的上行突发的起始时刻,其中,SPS UL grant1的上行突发的起始时刻的指示域指示上行突发1的起始时刻为符号0,SPS UL grant2的上行突发指示域指示上行突发2的起始时刻为符号1,这样第一终端设备可以在每个AUL周 期内一串连续的AUL子帧的中间预留gap,即在相邻两个上行突发之间预留gap。
类似地,该第四控制信息可以指示至少一个上行突发中的每个上行突发的结束时刻,当该至少一个上行突发包括至少两个上行突发时,该第四控制信息可以通过至少两个控制信令承载,即该至少两个上行突发的结束时刻通过至少两个控制信令承载,每个控制信令可以承载一个上行突发对应的结束时刻。例如图7所示,网络设备可以通过两个SPS UL grant在每个AUL周期调度两个不同的上行突发(上行突发1和上行突发2),第四控制信息中包含这两个上行突发的结束时刻,或者说,第四控制信息包括这两个SPS UL grant中的两个指示域,这两个上行突发的结束时刻可以分别包含于这两个SPS UL grant的上行突发的结束时刻指示域中,其中,上行突发1的结束时刻为符号13,上行突发2的起始时刻为符号12。从而第一终端设备可以在每个AUL周期内一串连续的AUL子帧的中间预留gap。
以下,结合图8A、图8B、图9A和图9B介绍网络设备通过AUL周期控制gap的出现频率。其中,图8A、图8B为起始时刻预留gap时,gap出现频率的示意图,图9A、图9B为结束时刻预留gap时,gap出现频率的示意图。
首先介绍每个上行突发的起始时刻预留gap时,网络设备通过配置AUL周期的长度控制gap出现的频度。例如图8A所示,一个AUL周期长度为4ms,每个AUL周期内包含一个上行突发,长度为4ms(4个子帧),该第三控制信息指示上行突发的起始时刻为符号1,那么第一终端设备在每个AUL周期中的上行突发中都预留上行突发的第一个符号(符号0)作为gap,若第一终端设备需要在该上行突发上发送上行数据,则从该上行突发的第一个子帧的符号1开始发送,此情况下,gap出现的周期为4ms。例如图8B所示,一个AUL周期长度为2ms,每个AUL周期内包含一个上行突发,长度为2ms(2个子帧),该第三控制信息指示上行突发的起始时刻为符号1,此情况下,gap出现的周期为2ms,因此,相比于图8A,gap出现的频度更高了,从而可以留有更多的机会给复用终端执行侦听,因此,通过AUL周期,可以控制gap出现的频度。
在每个上行突发的结束时刻预留gap时,网络设备也可以通过配置AUL周期的长度控制gap出现的频度。如图9A所示为AUL周期为4ms时,gap出现的频度的示意图,图9B所示为AUL周期为2ms时的gap的频度示意图。对比图9A和图9B,可以看出,通过AUL周期,可以控制gap频度,若需要设置更频繁的gap,可以减小AUL周期。
可选地,在本申请实施例中,该第三控制信息也可以指示AUL子帧集合中的gap的数目(或者说起始时刻晚于子帧的起始边界的子帧数目),而gap的位置可以根据AUL子帧集合或AUL周期内的子帧数目确定,例如,可以将gap数目对AUL子帧集合或AUL周期内的子帧数目求模得到预留gap的子帧序号。类似地,第四控制信息也可以指示AUL子帧集合中gap的数目(或者说结束时刻早于子帧结束边界的子帧的数目),而gap的位置可以根据AUL子帧集合或AUL周期内的子帧数目确定,例如,可以将gap数目对AUL子帧集合或AUL周期内的子帧数目求模得到预留gap的子帧序号。
可选地,在本申请实施例中,第三控制信息还可以指示每个AUL周期内或AUL子帧集合内或每个AUL子帧集合包含的每个上行突发内,相邻两个预留gap的子帧(起始时刻晚于子帧起始边界的子帧)之间的时间间隔,该时间间隔也可以认为是gap的周期,第一终端设备每隔该时间间隔(该周期)则在子帧中预留一个gap,其他子帧不预留gap。类似地,第四控制信息还可以指示每个周期内或AUL子帧集合内或每个AUL子帧集合 所包含的每个上行突发内,相邻两个预留gap的子帧(结束时刻早于子帧结束边界的子帧)的时间间隔,该时间间隔也可以认为是gap的周期,第一终端设备每隔该时间间隔则在子帧中预留一次gap,其他子帧不预留gap(结束时刻等于子帧结束边界的子帧)。
可选地,在本申请实施例中,第三控制信息还可以指示每个AUL周期内或AUL子帧集合内或每个AUL子帧集合包含的每个上行突发内,预留gap的图样(pattern)或者也可以认为是预留gap的子帧的图样,第一终端设备在该图样中需要预留gap的子帧上预留gap,其他子帧不预留gap。网络设备可以预定义或通过高层信令配置图样集合,第三控制信息可以用于指示预留gap的图样在图样集合中的序号。类似地,第四控制信息还可以指示每个周期内或AUL子帧集合内或每个AUL子帧集合所包含的每个上行突发内,预留gap的图样(pattern)或者也可以认为是预留gap的子帧的图样,第一终端设备在该图样中需要预留gap的子帧上预留gap,其他子帧不预留gap。网络设备可以预定义或通过高层信令配置图样集合,第三控制信息可以用于指示预留gap的图样在图样集合中的序号。
可选地,在该第一终端设备在该AUL时域资源中的部分或全部资源上发送上行数据之前,该方法200还可以包括:
该第一终端设备执行信道侦听并侦听到信道空闲。
具体而言,该第一终端设备可以采用两种方式执行信道监听:方式一是基于随机回退的信道空闲评估(Clear Channel Assessment,CCA),具体流程是:该第一终端设备在0~竞争窗长度(CWS,Contention Window Size)之间均匀随机生成一个回退计数器N,并且以侦听时隙(CCA slot)为粒度进行侦听,如果侦听时隙内检测到信道空闲,则将回退计数器减1,反之检测到信道忙碌,则将回退计数器挂起,即回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲,当回退计数器减为0时发送节点可以立即占用该信道发送上行数据。该第一终端设备在想要占用的资源之前完成回退计数器的倒数称之为LBT侦听成功,否则称之为LBT侦听失败。该第一终端设备在占用信道后,可以连续发送数据的最大时间长度为最大信道占用时间(Maximum Channel Occupancy Time,MCOT),持续占用信道达到该长度后需要释放信道,重新执行LBT后才能再次接入。方式二是单时隙CCA方式,具体流程为:第一终端设备执行一个长度为25us的单时隙的CCA侦听,如果25us CCA时隙检测到信道空闲,则该第一终端设备可以立即接入信道,进行上行数据的传输;如果25us CCA时隙内检测到信道忙碌,该第一终端设备放弃发送数据,而可以等待下一个上行数据信道之前再执行下一次的单时隙CCA侦听。对于随机回退的CCA和单时隙CCA,都需要该第一终端设备侦听到信道空闲之后立即占用信道,开始在AUL时域资源上发送上行数据。
因此,本申请实施例中,终端设备通过在非授权频谱上执行信道侦听,并在侦听到信道空闲之后再发送上行数据,避免了对工作在同一载波上的其他无限通信设备的干扰,增强了传输可靠性。
应理解,考虑到网络设备除了给该AUL终端设备配置AUL资源外,还可以使用传统的基于调度的上行资源分配方式,即通过UL grant指示基于调度的资源,当AUL终端设备(进行AUL传输的终端设备)接收到UL grant之后,在UL grant指示的无线资源上发送上行数据。为了避免对UL grant调度的上行传输造成干扰,需要规避在基于调度的时域资源上发送上行数据,例如由于AUL时域资源是周期性的,网络设备可能调度另 一个终端设备在某一个AUL周期内的AUL子帧集合中的至少一个子帧上发送上行数据,即AUL时域资源与被调度的时域资源发生了重叠,这种情况下被调度的上行传输优先级应该高于AUL上行传输,但是终端设备之间距离较远时,该AUL终端设备可能侦听不到被调度的终端设备发送的上行传输,可能侦听到信道空闲并占用重叠的上行子帧,从而对被调度的终端设备的上行传输造成干扰。
在现有系统中,网络设备可以通过公共物理下行控制信道(CPDCCH,Common PDCCH)指示MCOT,被调度的上行资源可以在MCOT内(从MCOT的上行起始子帧到MCOT的结束子帧之间的时间),也可以在MCOT外(MCOT的结束子帧之后被调度的子帧),被调度的上行资源在MCOT内时,被调度的终端设备可以采用单时隙CCA进行信道侦听,而被调度的上行资源在MCOT之外时,被调度的终端设备必须采用基于随机回退的CCA进行信道侦听。
此情况下,可选地,作为一个实施例,该方法200还可以包括:
该第一终端设备接收该网络设备发送的第五控制信息;
该第一终端设备根据该第五控制信息确定第一时域资源;
该第一终端设备根据该第一控制信息和该第二控制信息,确定AUL时域资源,包括:
该第一终端设备确定该AUL时域资源不包括该第一时域资源中的子帧。
具体而言,由于MCOT内包括基于调度的上行资源,因此第一终端设备在接收到CPDCCH之后,需要避免在MCOT内的AUL时域资源上发送AUL上行传输。但是,在MCOT之外也存在基于调度的上行资源,而当前并没有控制信息指示基于调度的上行资源。此情况下,网络设备可以向该第一终端设备发送第五控制信息,该第五控制信息指示第一时域资源,该第一终端设备(即AUL终端设备)接收到第一控制信息和第二控制信息后,还需要结合接收到的第五控制信息共同确定AUL时域资源,具体地,第一终端设备确定的AUL时域资源不包含第一时域资源中包括的子帧,换句话说,第一终端设备规避在第一时域资源上发送上行数据,或者也可以理解为,当由第一控制信息和第二控制信息确定的周期性的时域资源与第一时域资源有重叠时,第一终端设备不在重叠的上行子帧上发送上行数据。
因此,本申请实施例的传输上行数据的方法,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。应理解,第五控制信息可以通过bitmap的方式指示第一时域资源,具体的,第五控制信息可以包含多个比特位,每个比特位指示一个子帧上是否有被调度的时域资源,即第一时域资源,例如比特位‘1’时表示该子帧为被调度子帧(属于第一时域资源),第一终端设备不能在该子帧上发送上行数据;比特位‘0’时表示该子帧不是被调度子帧(不属于第一时域资源),第一终端可以在该子帧上发送AUL上行数据。
可选地,作为一个实施例,该第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,该第六控制信息用于指示第二时域资源,第二终端设备可以是接入该网络设备的终端设备中任意一个被网络设备调度的终端设备。
因此,本申请实施例的传输上行数据的方法,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。
应理解,第一终端设备根据第五控制信息确定AUL时域资源,但是该第五控制信息 不同于网络设备发送的用于指示MCOT时域资源(称为第二时域资源)的第六控制信息。其中,第六控制信息与第五控制信息在同一控制信令或同一下行子帧中,具体的,第六控制信息与第五控制信息可以承载在同一控制信令中时,该控制信令可以是CPDCCH,第六控制信息与第五控制信息位于CPDCCH中两个不同的比特域。第六控制信息与第五控制信息承载于不同的控制信令中,且该不同的控制信令位于在同一下行子帧中时,这两个控制信息分别位于两个不同的广播信令中,但这两个不同的广播信令都位于同一下行子帧的PDCCH中。第一终端设备可以接收第六控制信息,也可以不接收第六控制信息。
以下,结合例如图10A,介绍如何根据第一时域资源和第二时域资源,确定AUL时域资源,如图10A所示,AUL周期为4ms,每个AUL周期内的AUL子帧集合为该AUL周期内包含的前两个子帧。网络设备在子帧#n+3发送的PDCCH中包含调度第二终端设备的UL grant,调度第二终端设备发送上行传输{#n+7,#n+8,#n+9,#n+10,#n+11}和{#n+13,#n+14,#n+15,#n+16,#n+17},其中上行传输{#n+7,#n+8,#n+9,#n+10,#n+11}在MCOT内,为第二时域资源,第二终端设备可以执行单时隙CCA接入信道,上行传输{#n+13,#n+14,#n+15,#n+16,#n+17}在MCOT外,第二终端设备需要执行随机回退CCA接入信道。对于第一终端设备,为了避免对被调度的第二终端设备造成碰撞,需要规避在基于网络设备调度的上行时域资源,即第一时域资源范围内发送AUL上行传输,,网络设备可以通过发送第五控制信息通知第一时域资源的范围,从而第一终端可以确定AUL时域资源不包括第一时域资源范围内包含的子帧集合{#n+8,#n+9},{#n+12,#n+13},{#n+16,#n+17}。
可选地,该第五控制信息还可以指示第一时域资源的起始时刻和第一时域资源的时长,具体的,第一时域资源从该第一时域资源的起始时刻开始,持续时长为该第一时域资源的时长。该第一时域资源起始时刻可以为子帧序号,该第一时域资源的时长可以为该第一时域资源的起始时刻或者起始子帧与第五控制信息所在的下行突发的结束时刻或者结束子帧之间的时间间隔或者时间偏移,该第一时域资源起始时刻为该下行突发的结束时刻加上该时间偏移得到。例如,如图10B所示,第五控制信息指示第一时域资源起始时刻为子帧#n+5或者指示第一时域资源起始子帧与下行突发结束子帧之间的时间偏移为4ms,第一终端设备可以确定第一时域资源起始时刻为子帧#n+5;另外第五控制信息还可以指示第一时域资源时长为8ms,因此,该第一终端设备在#n+5到#n+12之间都不发送上行数据(即AUL时域资源中不包含子帧#n+5,#n+6,#n+9,#n+10)。
应理解,第六控制信息还可以指示第二时域资源的起始时刻和第二时域资源的时长。例如,第六控制信息可以为现有的CPDCCH中包含的5比特控制信息上行LAA配置(UL configuration for LAA),其中包含用于指示被调度的上行传输相比于第六控制信息所在的下行突发的上行时间偏移(UL offset),以及单时隙CCA的上行持续时长(UL duration),第二时域资源的起始时刻或者起始子帧在承载第六控制信息的下行突发的结束子帧之后,与该结束子帧之间的时间间隔为“UL offset”,第二时域资源的时长为“UL duration”。当第二终端设备被网络设备调度在“UL duration”中发送上行传输时,可以通过单时隙CCA侦听信道开始该上行传输。
应理解,被调度的第二终端设备和被配置AUL资源的第一终端设备可以是同一个终端设备(即同一个终端设备既被配置在AUL时域资源上发送免UL grant的AUL数据信 息,也可以被UL grant调度发送基于调度的数据信息),也可以是两个不同的终端设备。
可选地,作为一个实施例,该方法还包括:
该第一终端设备接收该网络设备发送的该第六控制信息;
该第一终端设备根据该第五控制信息确定该第一时域资源,包括:
该第一终端设备根据该第五控制信息和该第六控制信息确定该第一时域资源,该第一时域资源包含该第二时域资源。
具体而言,该第五控制信息可以仅指示第一时域资源的时长信息,此情况下,该第一终端设备可以根据第五控制信息和接收到的第六控制信息共同确定第一时域资源。其中,第一时域资源包括第二时域资源,或者说第一时域资源的时域范围包含第二时域资源的时域范围,这样第一终端设备不仅要规避在第二时域资源上发送上行数据,还要规避在第一时域资源超出第二时域资源的时间范围内发送上行数据。具体的,可以结合第六控制信息中指示的第二时域资源的起始时刻共同确定第一时域资源,其中,第一时域资源的时长信息为第一时域资源的时长,第一时域资源从第二时域资源的起始时刻开始,持续时长为第一时域资源的时长。如图10C所示,第五控制信息指示第一时域资源时长为8ms,第六控制信息指示第二时域资源的起始时刻为子帧#n+5,第一时域资源的起始时刻等于第二时域资源的起始时刻,因此,第一终端设备在#n+5到#n+12之间都不发送AUL上行传输(AUL时域资源中不包含子帧#n+5,#n+6,#n+9,#n+10)。
或者,可以结合第六控制信息中指示的第二时域资源的起始时刻和第二时域资源的时长共同确定第一时域资源,其中,第一时域资源的时长信息为第二时域资源的结束时刻或结束子帧与第一时域资源的起始时刻或起始子帧之间的时间间隔或时间偏移,第一时域资源的结束时刻晚于第二时域资源的结束时刻;也就是说,第一时域资源的时长信息为第一时域资源时长减去第二时域资源时长(即第一时域资源相比于第二时域资源扩展的时长),第一时域资源从第二时域资源的起始时刻开始,持续时长为第二时域资源时长加上第一时域资源时长。如图10D所示,第五控制信息指示第一时域资源相比于第二时域资源扩展的时长为4ms,第六控制信息指示第二时域资源的起始时刻为子帧#n+5,第二时域资源的时长为4ms,第一时域资源的起始时刻等于第二时域资源的起始时刻,因此,该第一终端设备确定第一时域资源起始时刻为子帧#n+5,时长为8ms,在#n+5到#n+12之间都不发送上行数据(AUL时域资源中不包含子帧#n+5,#n+6,#n+9,#n+10)。
因此,本申请实施例的传输上行数据的方法,除了可以规避在MCOT内的第二时域资源上发送AUL上行传输,还可以规避在MCOT外的基于调度的时域资源上发送AUL上行传输,保证了基于调度的上行传输的可靠性。另外,只需要新增的第五控制信息用来指示时域资源长度,而第一时域资源起始时刻可以复用现有的第六控制信息,节省了信令开销。
可选地,作为一个实施例,该方法200还可以包括:
该第一终端设备接收该网络设备发送的第七控制信息,该第七控制信息与该第五控制信息在同一下行突发中,该第七控制信息用于指示该下行突发的结束时刻;
该第一终端设备根据该第五控制信息确定该第一时域资源,包括:
该第一终端设备根据该第五控制信息和该第七控制信息确定该第一时域资源,该第一时域资源的起始子帧为该下行突发结束时刻之后的第一个子帧。
具体而言,该第五控制信息可以仅指示第一时域资源的时长信息,此情况下,该第 一终端设备可以根据第五控制信息和接收到的第七控制信息共同确定第一时域资源,具体的,可以结合第七控制信息中指示的下行突发的结束时刻和第二时域资源的时长共同确定第一时域资源,其中,第一时域资源的时长信息为第一时域资源时长,第一时域资源从该下行突发结束之后的第一个子帧开始(第一时域资源的起始时刻为该下行突发最后一个子帧的结束边界或者该下行突发结束之后的第一个子帧的起始边界),持续时长为第一时域资源时长,例如,第七控制信息可以是现有的CPDCCH中包含的4比特控制信息的LAA子帧配置(Subframe configuration for LAA),用于指示哪个子帧是下行突发的结束子帧以及结束子帧所占的符号数目,第一时域资源的起始子帧为该结束子帧之后的第一个子帧。如图10E所示,第五控制信息指示第一时域资源时长为12ms,第七控制信息指示下行突发的结束子帧为子帧#n,第一时域资源的起始子帧为下行突发结束子帧之后的第一个子帧#n+1,因此,该第一设备终端设备确定第一时域资源起始时刻为子帧#n+1,时长为12ms,在#n+1到#n+12之间都不发送上行数据(即AUL时域资源中不包含子帧#n+1,#n+2,#n+5,#n+6,#n+9,#n+10)。
因此,本申请实施例的传输上行数据的方法,通过规避在基于调度的第一时域资源上发送AUL上行传输,避免了对基于调度的上行传输的干扰,保证了基于调度的上行传输的可靠性。另外,只需要新增的第五控制信息用来指示时域资源长度,而第一时域资源起始时刻可以复用现有的第七控制信息,节省了信令开销。
应理解,第六控制信息和第七控制信息可以是广播信息。第五控制信息可以是广播信息,也可以是组播(Group based)信息。其中,广播信息对小区中所有激活用户指示生效,组播信息对小区中的一组激活用户指示生效,该一组激活用户包含至少一个激活用户。
可选的,第五控制信息和第六控制信息可以承载于不同的控制信令中。具体的,第六控制信息承载于CPDCCH中的特定比特域中,第五控制信息可以位于与CPDCCH不同的另一个广播信道中的比特域或者组播信道中的比特域。其中,第五控制信息承载在组播信道中时,对小区中的一组用户生效,该组用户为被基站配置的AUL用户,进一步的,该组用户包括所有AUL用户。
可选的,第五控制信息和第六控制信息可以是同一控制信令中的两个不同的比特域。具体的,第五控制信息和第六控制信息体现为CPDCCH中两个不同的比特域,分别指示不同的内容。
可选的,第五控制信息和第七控制信息可以承载在不同的控制信令中,也可以承载于同一控制信令中的两个不同的比特域,类似于第五控制信息和第六控制信息的承载方式,为了简洁,这里不再赘述。
上文结合图2至图10,详细描述了本申请的方法实施例,下文结合图11至图14,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11是根据本申请实施例的终端设备的示意性框图,如图11所示,该终端设备400包括:
收发单元410,用于接收网络设备发送的第一控制信息和第二控制信息,所述第一控制信息指示自主上行AUL周期,所述第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
处理单元420,用于根据所述第一控制信息和所述第二控制信息,确定AUL时域资源,所述AUL时域资源以AUL周期为周期,所述每个AUL周期内包括用于AUL传输的AUL子帧集合;
收发单元410,用于在所述AUL时域资源中的部分或全部资源上发送上行数据。
具体地,该终端设备400可对应于根据本申请实施例的传输上行数据的方法200中的第一终端设备,该终端设备400可以包括用于执行图2中方法200的第一终端设备执行的方法的单元。并且,该终端设备400中的各单元和上述其他操作和/或功能分别为了实现图2中方法200的相应流程,为了简洁,在此不再赘述。
图12是根据本申请实施例的网络设备的示意性框图,如图12所示,该网络设备500包括:
发送单元510,用于向终端设备发送第一控制信息和第二控制信息,所述第一控制信息和所述第二控制信息用于所述终端设备确定自主上行AUL时域资源,所述AUL时域资源以AUL周期为周期,所述每个AUL周期内包括用于AUL传输的AUL子帧集合,所述第一控制信息指示所述AUL周期,所述第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
接收单元520,用于接收所述终端设备在所述AUL时域资源中的部分或全部资源上发送的上行数据。
具体地,该网络设备500可对应于根据本申请实施例的传输上行数据的方法200中的网络设备,该网络设备500可以包括用于执行图2中方法200的网络设备执行的方法的单元。并且,该网络设备500中的各单元和上述其他操作和/或功能分别为了实现图2中方法200的相应流程,为了简洁,在此不再赘述。
图13是根据本申请另一实施例的终端设备600的示意性框图。如图13所示,该终端设备600包括:收发器610、处理器620、存储器630。其中,其中,该收发器610、处理器620和存储器630通信连接,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制收发器610收发信号或信息。其中,存储器630可以配置于处理器620中,也可以独立于处理器620。
具体地,该终端设备600可对应于根据本申请实施例的传输上行数据的方法200中的第一终端设备,该终端设备600可以包括用于执行图2中方法200中第一终端设备执行的方法的实体单元。并且,该终端设备600中的各实体单元和上述其他操作和/或功能分别为了实现图2中方法200的相应流程,为了简洁,在此不再赘述。
图14是根据本申请另一实施例的网络设备800的示意性框图。如图14所示,该网络设备800包括:收发器810、处理器820、存储器830。其中,其中,该收发器810、处理器820和存储器830通信连接,该存储器830用于存储指令,该处理器820用于执行该存储器830存储的指令,以控制收发器810收发信号或信息。其中,存储器830可以配置于处理器820中,也可以独立于处理器820。
具体地,该网络设备800可对应于根据本申请实施例的传输上行数据的方法200中的网络设备,该网络设备800可以包括用于执行图2中方法200中网络设备执行的方法的实体单元。并且,该网络设备800中的各实体单元和上述其他操作和/或功能分别为了实现图2中方法200的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。 在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(Central Processing Unit,简称“CPU”)、该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC“)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的随机接入的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2所示实施例的方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施 过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种传输上行数据的方法,其特征在于,包括:
    第一终端设备接收网络设备发送的第一控制信息和第二控制信息,所述第一控制信息指示自主上行AUL周期,所述第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
    所述第一终端设备根据所述第一控制信息和所述第二控制信息,确定AUL时域资源,所述AUL时域资源以所述AUL周期为周期,所述每个AUL周期内包括所述AUL子帧集合;
    所述第一终端设备在所述AUL时域资源中的部分或全部资源上发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述AUL子帧集合包括至少两个子帧。
  3. 根据权利要求1或2所述的方法,其特征在于,所述AUL子帧集合包括至少一个上行突发,所述至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第三控制信息;
    所述第一终端设备根据所述第三控制信息,确定所述AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
    所述第一终端设备在所述AUL时域资源中的部分或全部资源上发送上行数据,包括:
    所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,从所述任一个子帧对应的起始时刻开始发送上行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第三控制信息指示所述每个AUL周期包括的每个子帧的起始时刻,或所述第三控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的起始时刻。
  6. 根据权利要求4所述的方法,其特征在于,所述第三控制信息指示所述AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第四控制信息;
    所述第一终端设备根据所述第四控制信息,确定所述AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻;
    所述第一终端设备在所述AUL时域资源中的部分或全部资源上发送上行数据,包括:
    所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,在所述任一个子帧对应的结束时刻停止发送上行数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第四控制信息指示所述每个AUL周期包括的每个子帧的结束时刻,或所述第四控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的结束时刻。
  9. 根据权利要求7所述的方法,其特征在于,所述第四控制信息指示所述AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在所述第一终端设备 在所述AUL时域资源中的部分或全部资源上发送上行数据之前,所述方法还包括:
    所述第一终端设备执行信道侦听并侦听到信道空闲。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第五控制信息;
    所述第一终端设备根据所述第五控制信息确定第一时域资源;
    所述第一终端设备根据所述第一控制信息和所述第二控制信息,确定AUL时域资源,包括:
    所述第一终端设备确定所述AUL时域资源不包括所述第一时域资源中的子帧。
  12. 根据权利要求11所述的方法,其特征在于,所述第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,所述第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的所述第六控制信息;
    所述第一终端设备根据所述第五控制信息确定所述第一时域资源,包括:
    所述第一终端设备根据所述第五控制信息和所述第六控制信息确定所述第一时域资源,所述第一时域资源包含所述第二时域资源。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第七控制信息,所述第七控制信息与所述第五控制信息在同一下行突发中,所述第七控制信息用于指示所述下行突发的结束时刻;
    所述第一终端设备根据所述第五控制信息确定所述第一时域资源,包括:
    所述第一终端设备根据所述第五控制信息和所述第七控制信息确定所述第一时域资源,所述第一时域资源的起始子帧为所述下行突发结束时刻之后的第一个子帧。
  15. 一种传输上行数据的方法,其特征在于,包括:
    网络设备向第一终端设备发送第一控制信息和第二控制信息,所述第一控制信息指示AUL周期,所述第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
    所述网络设备接收所述第一终端设备在AUL时域资源中的部分或全部资源上发送的上行数据,所述AUL时域资源以所述AUL周期为周期,所述每个AUL周期内包括所述AUL子帧集合。
  16. 根据权利要求15所述的方法,其特征在于,所述AUL子帧集合包括至少两个子帧。
  17. 根据权利要求15或16所述的方法,其特征在于,所述AUL子帧集合包括至少一个上行突发,所述至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第三控制信息,所述第三控制信息用于所述第一终端设备确定所述AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
    所述网络设备接收所述第一终端设备在所述AUL时域资源中的部分或全部资源上发送的上行数据,包括:
    所述网络设备接收所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,从所述任一个子帧对应的起始时刻发送的上行数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第三控制信息指示所述每个AUL周期包括的每个子帧的起始时刻,或所述第三控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的起始时刻。
  20. 根据权利要求18所述的方法,其特征在于,所述第三控制信息指示所述AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第四控制信息,所述控制信息用于所述第一终端设备确定所述AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻;
    所述网络设备接收所述第一终端设备在所述AUL时域资源中的部分或全部资源上发送的上行数据,包括:
    所述网络设备接收所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,在所述任一个子帧对应的结束时刻停止发送的上行数据。
  22. 根据权利要求21所述的方法,其特征在于,所述第四控制信息指示所述每个AUL周期包括的每个子帧的结束时刻,或所述第四控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的结束时刻。
  23. 根据权利要求21所述的方法,其特征在于,所述第四控制信息指示所述AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
  24. 根据权利要求15至23中任一项所述的方法,其特征在于,所述网络设备接收所述第一终端设备在AUL时域资源中的部分或全部资源上发送的上行数据,包括:
    所述网络设备接收所述第一终端设备执行信道侦听并侦听到信道空闲后,在所述AUL时域资源中的部分或全部资源上发送的上行数据。
  25. 根据权利要求15至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第五控制信息,所述第五控制信息用于所述第一终端设备根据所述第五控制信息,确定第一时域资源,所述第一终端设备确定的所述AUL时域资源不包括所述第一时域资源中的子帧。
  26. 根据权利要求25所述的方法,其特征在于,所述第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,所述第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送所述第六控制信息,所述第五控制信息和所述第六控制信息用于所述第一终端设备确定所述第一时域资源,所述第一时域资源包含所述第二时域资源。
  28. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第七控制信息,所述第七控制信息与所述第 五控制信息在同一下行突发中,所述第七控制信息用于指示所述下行突发的结束时刻,所述第五控制信息和所述第七控制信息用于所述第一终端设备确定所述第一时域资源,所述第一时域资源的起始子帧为所述下行突发结束时刻之后的第一个子帧。
  29. 一种终端设备,其特征在于,包括:
    收发单元,用于接收网络设备发送的第一控制信息和第二控制信息,所述第一控制信息指示自主上行AUL周期,所述第二控制信息指示每个AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
    处理单元,用于根据所述第一控制信息和所述第二控制信息,确定AUL时域资源,所述AUL时域资源以所述AUL周期为周期,所述每个AUL周期内包括所述AUL子帧集合;
    所述收发单元还用于:在所述AUL时域资源中的部分或全部资源上发送上行数据。
  30. 根据权利要求29所述的终端设备,其特征在于,所述AUL子帧集合包括至少两个子帧。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述AUL子帧集合包括至少一个上行突发,所述至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
  32. 根据权利要求29至31中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第三控制信息;
    所述处理单元还用于:
    根据所述第三控制信息,确定所述AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
    所述收发单元还用于:
    在所述至少一个子帧中的任一个子帧上发送上行数据时,从所述任一个子帧对应的起始时刻开始发送上行数据。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第三控制信息指示所述每个AUL周期包括的每个子帧的起始时刻,或所述第三控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的起始时刻。
  34. 根据权利要求32所述的终端设备,其特征在于,所述第三控制信息指示所述AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
  35. 根据权利要求29至34中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第四控制信息;
    所述处理单元还用于:
    根据所述第四控制信息,确定所述AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻;
    所述收发单元还用于:
    在所述至少一个子帧中的任一个子帧上发送上行数据时,在所述任一个子帧对应的结束时刻停止发送上行数据。
  36. 根据权利要求35所述的终端设备,其特征在于,所述第四控制信息指示所述每 个AUL周期包括的每个子帧的结束时刻,或所述第四控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的结束时刻。
  37. 根据权利要求35所述的终端设备,其特征在于,所述第四控制信息指示所述AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
  38. 根据权利要求29至37中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    执行信道侦听并侦听到信道空闲。
  39. 根据权利要求29至38中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第五控制信息;
    所述处理单元还用于:根据所述第五控制信息确定第一时域资源;
    确定所述AUL时域资源不包括所述第一时域资源中的子帧。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,所述第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
  41. 根据权利要求40所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的所述第六控制信息;
    所述处理单元还用于:根据所述第五控制信息和所述第六控制信息确定所述第一时域资源,所述第一时域资源包含所述第二时域资源。
  42. 根据权利要求39所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第七控制信息,所述第七控制信息与所述第五控制信息在同一下行突发中,所述第七控制信息用于指示所述下行突发的结束时刻;
    所述处理单元还用于:
    根据所述第五控制信息和所述第七控制信息确定所述第一时域资源,所述第一时域资源的起始子帧为所述下行突发结束时刻之后的第一个子帧。
  43. 一种网络设备,其特征在于,包括:
    发送单元,用于向第一终端设备发送第一控制信息和第二控制信息,所述第一控制信息指示AUL周期,所述第二控制信息指示每个所述AUL周期内的用于AUL传输的AUL子帧集合,所述AUL周期为用于AUL传输的时域资源的周期;
    接收单元,用于接收所述第一终端设备在AUL时域资源中的部分或全部资源上发送的上行数据,所述AUL时域资源以所述AUL周期为周期,所述每个AUL周期内包括所述AUL子帧集合。
  44. 根据权利要求43所述的网络设备,其特征在于,所述AUL子帧集合包括至少两个子帧。
  45. 根据权利要求43或44所述的网络设备,其特征在于,所述AUL子帧集合包括至少一个上行突发,所述至少一个上行突发中的每个上行突发包括至少一个时间上连续的子帧。
  46. 根据权利要求43至45中任一项所述的网络设备,其特征在于,所述发送单元 还用于:
    向所述第一终端设备发送第三控制信息,所述第三控制信息用于所述终端设备确定所述AUL子帧集合中的至少一个子帧中的每个子帧的起始时刻;
    所述接收单元还用于:
    接收所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,从所述任一个子帧对应的起始时刻发送的上行数据。
  47. 根据权利要求46所述的网络设备,其特征在于,所述第三控制信息指示所述每个AUL周期包括的每个子帧的起始时刻,或所述第三控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的起始时刻。
  48. 根据权利要求46所述的网络设备,其特征在于,所述第三控制信息指示所述AUL子帧集合中的每个上行突发中的第一个子帧的起始时刻。
  49. 根据权利要求43至48中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述第一终端设备发送第四控制信息,所述控制信息用于所述终端设备确定所述AUL子帧集合中的至少一个子帧中的每个子帧的结束时刻;
    所述接收单元还用于:
    接收所述第一终端设备在所述至少一个子帧中的任一个子帧上发送上行数据时,在所述任一个子帧对应的结束时刻停止发送的上行数据。
  50. 根据权利要求49所述的网络设备,其特征在于,所述第四控制信息指示所述每个AUL周期包括的每个子帧的结束时刻,或所述第四控制信息指示所述每个AUL周期内的所述AUL子帧集合中的每个子帧的结束时刻。
  51. 根据权利要求49所述的网络设备,其特征在于,所述第四控制信息指示所述AUL子帧集合中的每个上行突发中的最后一个子帧的结束时刻。
  52. 根据权利要求43至51中任一项所述的网络设备,其特征在于,所述接收单元还用于:
    接收所述第一终端设备执行信道侦听并侦听到信道空闲后,在所述AUL时域资源中的部分或全部资源上发送的上行数据。
  53. 根据权利要求43至52中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述第一终端设备发送第五控制信息,所述第五控制信息用于所述第一终端设备根据所述第五控制信息,确定第一时域资源,所述第一终端设备确定的所述AUL时域资源不包括所述第一时域资源中的子帧。
  54. 根据权利要求53所述的网络设备,其特征在于,所述第五控制信息所在的控制信令或下行子帧中,还包括第六控制信息,所述第六控制信息用于指示第二时域资源,所述第二时域资源包括至少一个子帧,所述至少一个子帧为所述网络设备调度第二终端设备发送上行数据的子帧,所述第二终端设备在所述至少一个子帧上发送上行数据之前,能够使用单时隙CCA进行信道侦听。
  55. 根据权利要求54所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送所述第六控制信息,所述第五控制信息和所述第六控制信息用于所述终端设备确定所述第一时域资源,所述第一时域资源包含所述第二时域资源。
  56. 根据权利要求53所述的网络设备,其特征在于,所述发送单元还用于:
    向所述第一终端设备发送第七控制信息,所述第七控制信息与所述第五控制信息在同一下行突发中,所述第七控制信息用于指示所述下行突发的结束时刻,所述第五控制信息和所述第七控制信息用于所述第一终端设备确定所述第一时域资源,所述第一时域资源的起始子帧为所述下行突发结束时刻之后的第一个子帧。
PCT/CN2017/071458 2017-01-17 2017-01-17 传输上行数据的方法、终端设备和网络设备 WO2018132953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071458 WO2018132953A1 (zh) 2017-01-17 2017-01-17 传输上行数据的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071458 WO2018132953A1 (zh) 2017-01-17 2017-01-17 传输上行数据的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018132953A1 true WO2018132953A1 (zh) 2018-07-26

Family

ID=62907722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071458 WO2018132953A1 (zh) 2017-01-17 2017-01-17 传输上行数据的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2018132953A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313399A (zh) * 2012-03-13 2013-09-18 上海贝尔股份有限公司 支持载波聚合的方法和用户设备
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的系统和方法
US20160352454A1 (en) * 2015-05-28 2016-12-01 Huawei Technologies Co., Ltd. Apparatus and Method for Link Adaptation in Uplink Grant-less Random Access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313399A (zh) * 2012-03-13 2013-09-18 上海贝尔股份有限公司 支持载波聚合的方法和用户设备
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的系统和方法
US20160352454A1 (en) * 2015-05-28 2016-12-01 Huawei Technologies Co., Ltd. Apparatus and Method for Link Adaptation in Uplink Grant-less Random Access

Similar Documents

Publication Publication Date Title
WO2020169071A1 (zh) 随机接入的方法和装置
JP7435689B2 (ja) 無線端末、基地局、無線端末における方法及び基地局における方法
JP6557423B6 (ja) 非免許帯域を支援する無線通信システムにおいて上りリンク信号を送信する方法及びそれを支援する装置
US10945275B2 (en) Scheduling in license assisted access
CN108012579B (zh) 用于管理共享频谱带上的参考信号的传输的技术
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
US9936394B2 (en) Method for processing data after unlicensed spectrum is released, and user equipment
US11197320B2 (en) Uplink transmission resource scheduling method and device, and uplink transmission method and device
JP6293873B2 (ja) アンライセンススペクトラムでのワイヤレスフィードバック通信
EP3424173B1 (en) Technique for multi-carrier transmission in a transmit opportunity interval
EP3375239B1 (en) Downlink prioritization in tdd based lbt systems
KR20240025056A (ko) 공유 무선 주파수 스펙트럼 대역에서의 업링크 상에서 통신하기 위한 기법들
US11026107B2 (en) Data transmission method and terminal device
WO2019128765A1 (zh) 一种信道侦听类型的指示方法及装置
JP6592199B2 (ja) アンライセンスド帯域のスケジューリング要求を多重するためのシステム及び方法
US11452126B2 (en) Communication method and communications apparatus
WO2019056370A1 (zh) 一种通信方法和装置
JP2023525134A (ja) 免許不要帯域におけるfbe動作のためのユーザ機器及び方法
AU2020251618A1 (en) Communications method and apparatus
WO2018132953A1 (zh) 传输上行数据的方法、终端设备和网络设备
WO2019085616A1 (zh) 一种发送调度请求的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893079

Country of ref document: EP

Kind code of ref document: A1