WO2018132950A1 - 信号发射方法及装置、发射机、信号传输系统 - Google Patents

信号发射方法及装置、发射机、信号传输系统 Download PDF

Info

Publication number
WO2018132950A1
WO2018132950A1 PCT/CN2017/071437 CN2017071437W WO2018132950A1 WO 2018132950 A1 WO2018132950 A1 WO 2018132950A1 CN 2017071437 W CN2017071437 W CN 2017071437W WO 2018132950 A1 WO2018132950 A1 WO 2018132950A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
mzm
complex type
type signal
Prior art date
Application number
PCT/CN2017/071437
Other languages
English (en)
French (fr)
Inventor
张亮
张强
周恩波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17892294.4A priority Critical patent/EP3562067A4/en
Priority to CN201780083698.XA priority patent/CN110178321B/zh
Priority to PCT/CN2017/071437 priority patent/WO2018132950A1/zh
Publication of WO2018132950A1 publication Critical patent/WO2018132950A1/zh
Priority to US16/510,418 priority patent/US10944475B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators

Definitions

  • the present application relates to the field of communications, and in particular, to a signal transmitting method and apparatus, a transmitter, and a signal transmission system.
  • the transmitter held by the user 1 can generate a transmission signal and transmit the transmission signal to the receiver held by the user 2 through the optical fiber to realize the communication between the user 1 and the user 2.
  • the transmitter can generate a real type signal and transmit the generated real type signal to the receiver through the optical fiber.
  • the real type signal propagates in the optical fiber
  • the real type signal is converted into a complex type signal, so that the signal finally received by the receiver is a complex type signal
  • the real part signal of the complex type signal is related to the real type signal sent by the transmitter.
  • the imaginary part signal of the complex type signal is independent of the real type signal sent by the transmitter.
  • the receiver further needs to separately perform power detection on the real part signal and the imaginary part signal in the complex type signal, and further, according to the power detection result of the real part signal and the imaginary part signal The power detection result determines the power of the received complex type signal.
  • the imaginary part signal of the complex type signal is independent of the real type signal sent by the transmitter, and the receiver wastes energy for the power detection of the imaginary part signal of the complex type signal, and therefore, the receiver is in power detection.
  • the energy waste rate is large.
  • the present application provides a signal transmission method and device, a transmitter, and a signal transmission system.
  • the technical solution is as follows:
  • a signal transmission method for a signal transmitting apparatus, the method comprising:
  • the complex type signal is transmitted to the receiver through the optical fiber.
  • the real type signal is also subjected to phase rotation processing after the real type signal is generated, a complex type signal is obtained, so that the signal sent to the receiver through the optical fiber is a complex type signal.
  • the complex type signal does not change the signal type when transmitted in the optical fiber.
  • the real part signal and the imaginary part signal are related to the signal transmitted by the transmitter, so that the receiver receives the received signal.
  • the power detection of the partial signal and the imaginary part signal does not cause waste of energy, so the energy waste rate of the receiver in power detection is reduced.
  • the signal transmitting device includes: a serialized service data source, a phase rotator, and an electro-optic modulator.
  • the generating a real type signal includes:
  • Performing a phase rotation process on the real type signal to obtain a complex type signal including:
  • Transmitting, by the optical fiber, the complex type signal to a receiver including:
  • the complex type signal is transmitted to the receiver by the electro-optic modulator and the optical fiber.
  • the signal transmitting device further includes: a dispersion precompensator connected in series between the phase rotator and the electro-optic modulator, the dispersion precompensator comprising: a series fast Fourier transform FFT module , a dispersion pre-compensation module and a first fast inverse Fourier transform IFFT module,
  • the method further includes:
  • Transmitting the complex type signal to the receiver through the electro-optic modulator and the optical fiber including:
  • a first IFFT processed complex type signal is transmitted to the receiver by the electro-optic modulator and the optical fiber.
  • the service data source, the phase rotator and the dispersion precompensator in the present application may constitute a transmitting DSP unit, and the dispersion precompensator in the transmitting DSP unit is capable of performing chromatic dispersion precompensation on the signal that the transmitter needs to emit, for the signal to be The dispersion occurring in the fiber is compensated to ensure that the signal received by the receiver is more consistent with the signal received by the transmitter.
  • the electro-optic modulator comprises: a serial dual-output digital-to-analog converter DAC and a double-sideband modulation module, and the multi-type signal is transmitted to the receiver by the electro-optic modulator and the optical fiber, including:
  • the double-sided band complex type signal is transmitted to the receiver through the double sideband modulation module and the optical fiber.
  • the electro-optic modulator in the transmitter includes a dual-output DAC and a double-sideband modulation module, and the signal sent by the transmitter is a DSB signal, and the signal-to-noise ratio of the DSB signal is greater than the signal-to-noise ratio of the SSB signal sent by the transmitter in the related art. Therefore, the signal quality of the transmitter transmitted to the receiver in this application is better.
  • the double sideband modulation module in this application may be IQMZM or DDMZM.
  • the double-sideband modulation module is an orthogonal Mach-Zehnder modulator IQMZM
  • the IQMZM includes: a first Mach-Zehnder modulator MZM, a second MZM, and a third MZM
  • Two outputs of the dual output DAC are respectively connected in series with the first MZM and the second MZM, the first MZM is connected in parallel with the second MZM, and the first MZM and the second MZM Both are connected in series with the third MZM, and the third MZM is connected to the receiver through an optical fiber;
  • the offset amount of the bias end of the first MZM, the offset amount of the bias end of the second MZM, and the offset amount of the bias end of the third MZM are both
  • the double-sideband modulation module is a dual-drive Mach-Zehnder modulator DDMZM, and the DDMZM includes: a first phase modulator PM and a second PM,
  • Two outputs of the dual output DAC are connected in series with the first PM and the second PM, respectively, the first PM Connected in parallel with the second PM, and both connected to the receiver through an optical fiber;
  • the offset amount of the bias end of the first PM and the offset amount of the bias end of the second PM are both
  • At least one of a linear drive amplifier and an attenuator is connected in series between each of the output terminals and the series modulator. Processing the signal through a linear drive amplifier and attenuator improves the signal-to-noise ratio of the signal and improves signal quality.
  • the service data source includes: a pseudo-random sequence PRBS signal generating module, a mapping module, a serial-to-parallel conversion module, a zero-padding module, a p-point IFFT module, a cyclic prefix adding module, and a parallel-to-serial conversion module.
  • p is a q-th power of 2
  • the q is an integer greater than or equal to 1
  • the real-type signal is generated by the service data source, including:
  • the serial-to-parallel conversion module Performing serial-to-parallel conversion processing on the mapping signal by the serial-to-parallel conversion module to obtain 2m frequency domain signals, where the 2m frequency domain signals include: m positive frequency signals and m negative frequency signals, the m The positive frequency signal is conjugated with the m negative frequency signals one by one;
  • a signal transmitting apparatus comprising: a serialized service data source, a phase rotator, and an electro-optic modulator,
  • the service data source is used to generate a real type signal
  • the phase rotator is configured to perform phase rotation processing on the real type signal to obtain a complex type signal, and a value of a real part signal of the complex type signal is equal to a value of an imaginary part signal;
  • the electro-optic modulator is configured to transmit the complex type signal to a receiver over an optical fiber.
  • the signal transmitting device further includes: a dispersion precompensator connected in series between the phase rotator and the electro-optic modulator, the dispersion precompensator comprising: an FFT module connected in series, a dispersion pre-compensation module And the first IFFT module,
  • the FFT module is configured to perform FFT processing on the complex type signal
  • the chromatic dispersion pre-compensation module is configured to perform chromatic dispersion precompensation processing on the FFT processed complex type signal;
  • the first IFFT module is configured to perform a first IFFT processing on the complex type signal after the dispersion precompensation process
  • the electro-optic modulator is configured to transmit a first IFFT processed complex type signal to the receiver over an optical fiber.
  • the electro-optic modulator comprises: a serial dual output DAC and a double sideband modulation module.
  • the dual output DAC is configured to process the complex type signal to obtain a real part signal and an imaginary part signal of the complex type signal;
  • the dual output DAC is further configured to transmit the real signal and the imaginary part signal to the double sideband modulation module from two outputs of the dual output DAC, respectively;
  • the double-sideband modulation module is configured to perform modulation processing on the real part signal and the imaginary part signal to obtain a double sideband Complex signal
  • the double sideband modulation module is configured to transmit the double sideband complex type signal to the receiver through the optical fiber.
  • the double-sideband modulation module is an IQMZM
  • the IQMZM includes: a first MZM, a second MZM, and a third MZM
  • Two outputs of the dual output DAC are respectively connected in series with the first MZM and the second MZM, the first MZM is connected in parallel with the second MZM, and the first MZM and the second MZM Both are connected in series with the third MZM, and the third MZM is connected to the receiver through an optical fiber;
  • the offset amount of the bias end of the first MZM, the offset amount of the bias end of the second MZM, and the offset amount of the bias end of the third MZM are both
  • the double-sideband modulation module is a DDMZM
  • the DDMZM includes: a first PM and a second PM
  • Two outputs of the dual output DAC are respectively connected in series with the first PM and the second PM, and the first PM is connected in parallel with the second PM, and are connected to the receiver through an optical fiber;
  • the offset amount of the bias end of the first PM and the offset amount of the bias end of the second PM are both
  • At least one of a linear drive amplifier and an attenuator is connected in series between each of the output terminals and the series modulator.
  • the service data source includes: a serialized PRBS signal generating module, a mapping module, a serial-to-parallel conversion module, a zero-padding module, a p-point IFFT module, a cyclic prefix adding module, and a parallel-to-serial conversion module, where the p is 2 Qth power, q is an integer greater than or equal to 1,
  • the PRBS signal generating module is configured to generate 2m ⁇ n PRBS signals, where m and n are integers greater than or equal to 1;
  • the mapping module is configured to perform mapping processing on the 2m ⁇ n PRBS signals to obtain a mapping signal
  • the serial to parallel conversion module is configured to perform a serial-to-parallel conversion process on the mapping signal to obtain 2m frequency domain signals, where the 2m frequency domain signals include: m positive frequency signals and m negative frequency signals, where the m The positive frequency signals are conjugated with the m negative frequency signals one by one;
  • the zero padding module is configured to perform zero padding processing on the 2m frequency domain signals to obtain p frequency domain signals;
  • the p-point IFFT module is configured to perform p-point IFFT processing on the p frequency-domain signals to obtain p time-domain signals;
  • the cyclic prefix adding module is configured to add a cyclic prefix to the p time domain signals to obtain an anti-dispersion signal;
  • the parallel-to-serial conversion module is configured to perform parallel-to-serial conversion processing on the anti-dispersion signal to obtain the real number signal.
  • a transmitter in a third aspect, characterized in that the transmitter comprises the signal transmitting device of the second aspect.
  • a signal transmission system comprising: a transmitter, an optical fiber, and a receiver,
  • the transmitter is the transmitter of the third aspect.
  • the present application provides a signal transmission method and apparatus, and a signal transmission system.
  • the signal transmission method after generating a real type signal, the real type signal is also subjected to phase rotation processing to obtain a complex type.
  • the signal is such that the signal sent to the receiver through the optical fiber is a complex type signal.
  • the complex signal does not change when transmitted in the fiber.
  • Signal type, the complex type signal received by the receiver, the real part signal and the imaginary part signal are related to the signal transmitted by the transmitter, so that the receiver does not detect the power of the received real part signal and the imaginary part signal. This results in wasted energy, thus reducing the energy waste rate of the receiver during power detection.
  • FIG. 1 is a schematic structural diagram of a signal transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a receiver according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a receiving DSP unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a signal transmitting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another signal transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a double-sideband modulation module according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another double-sideband modulation module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a service data source according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a transmitter provided by a related art
  • FIG. 12 is a schematic diagram of a spectrum according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an SNR waveform according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of real-signal detection of a signal received by a receiver according to an embodiment of the present invention.
  • 15 is a schematic diagram of detecting an imaginary part signal of a signal received by a receiver according to an embodiment of the present invention.
  • 16 is a schematic diagram of real-body signal detection of a signal received by a receiver according to the related art
  • 17 is a schematic diagram of detecting an imaginary part signal of a signal received by a receiver according to the related art
  • FIG. 18 is a schematic diagram of another SNR waveform according to an embodiment of the present invention.
  • the signal transmission system 0 may include a transmitter 01, an optical fiber 02, and a receiver 03, and a transmitter 01 and a receiver.
  • 03 Establish a communication connection through fiber optics.
  • the transmitter 01 may include a signal transmitting device, and the structure of the signal transmitting device may refer to the structure shown in FIGS. 4 to 8.
  • An optical fiber amplifier can be disposed on the optical fiber 02, and the optical fiber amplifier can be used to amplify a signal on the optical fiber.
  • FIG. 2 is a schematic structural diagram of a receiver 03 according to an embodiment of the present invention.
  • the receiver 03 may include a filter 031 and a light receiving unit (English: Receiver optical sub assembly; ROSA for short).
  • 032 analog to digital converter (English: Analog to digital converter; abbreviation: ADC) 033 and received digital signal processing (English: Digital Signal Processing; referred to as: DSP) unit 034.
  • ADC Analog to digital converter
  • DSP Digital Signal Processing
  • FIG. 3 is a schematic structural diagram of a receiving DSP unit 034 according to an embodiment of the present invention.
  • the receiving DSP unit 034 may include: a resampling module 0341, a synchronization module 0342, and a nonlinear equalization in series.
  • NLE non linear equlization; abbreviation: NLE
  • module 0343 cyclic prefix deletion (English: Cyclic prefix removal; referred to as: CP Removing) module 0344, serial (English: Series / Parallel; referred to as: S / P) conversion module 0345, Fast Fourier Transform Algorithm (FFT) module 0346, 1-Tap Equlization module 0347, demapping (English: Demapping) module 0348, parallel string (English: Parallel /Series; abbreviation: P/S) conversion module 0349 and bit error rate (English: Bit Error Rate; BER) calculation module 0350.
  • FFT Fast Fourier Transform Algorithm
  • the function of the resampling module 0341 is to match the sampling rate of the analog to digital conversion unit and the receiving DSP unit; the function of the synchronization module 0342 is to find the starting point of the signal, so as to correctly process the signal; the function of the NLE module 0343 is to compensate the system.
  • Nonlinear noise the function of CP Removing module 0344 is to remove the cyclic prefix in the signal; the function of S/P conversion module 0345 is to convert the signal in series into a parallel signal; the function of FFT module 0346 is to convert the time domain signal into Frequency domain signal; 1-Tap Equlization module 0347 is to compensate the bandwidth effect of the system; Demapping module 0348 is to convert the symbol information into bit information; P/S conversion module 0349 is used to parallelize by parallel and serial conversion The signal is converted into a series signal; the function of the BER calculation module 0350 compares the bit signal received by the receiver with the bit signal sent by the transmitter to calculate the bit error rate.
  • FIG. 4 is a schematic structural diagram of a signal transmitting apparatus 1 according to an embodiment of the present invention.
  • the transmitter 01 in the signal transmission system 0 shown in FIG. 1 may include the signal transmitting apparatus 1, as shown in FIG.
  • the apparatus 1 may comprise a service data source 10, a phase rotator 11 and an electro-optic modulator 12 connected in series.
  • the service data source 10 is configured to generate a real type signal; the phase rotator 11 is configured to perform phase rotation processing on the real type signal generated by the service data source 10 to obtain a complex type signal, and it should be noted that the complex type signal is real.
  • the value of the portion signal is equal to the value of the imaginary part signal; the electro-optic modulator 12 is configured to transmit a complex type signal to the receiver through the optical fiber.
  • the signal transmitting apparatus performs phase rotation processing on the real type signal after generating the real type signal, and obtains a complex type signal, so that the signal sent to the receiver through the optical fiber is Complex type signal.
  • the complex type signal does not change the signal type when transmitted in the optical fiber.
  • the real part signal and the imaginary part signal are related to the signal transmitted by the transmitter, so that the receiver receives the received signal.
  • the power detection of the partial signal and the imaginary part signal does not cause waste of energy, so the energy waste rate of the receiver in power detection is reduced.
  • the real type signal generated by the service data source may be a four-level pulse amplitude modulation (English: Pulse amplitude modulation-4; abbreviation: PAM4) signal, or other modulation signals, such as an on-off key control (English: On-off Keying; abbreviation: OOK) signal, direct multi-tone technology (English: Direct multi-tone technology; referred to as: DMT) signal or carrierless amplitude phase modulation (English: Carriless amplitude phase modulation; referred to as: CAP) signal.
  • PAM4 Pulse amplitude modulation-4
  • OOK On-off Keying
  • DMT Direct multi-tone technology
  • CAP carrierless amplitude phase modulation
  • the phase rotator may include: a power dividing circuit, a phase converting circuit, and an adding circuit, wherein the power dividing circuit may divide a real type signal generated by the service data source into two real type signals, for example, the two The road real type signal includes a first real type signal and a second real type signal; the phase converting circuit may perform phase transformation processing on the first real type signal of the two real type signals to obtain an imaginary type signal; the adding circuit may The second real type signal is added to the imaginary type signal to obtain a complex type signal.
  • FIG. 5 is a schematic structural diagram of another signal transmitting apparatus 1 according to an embodiment of the present invention.
  • the information transmitting apparatus 1 may further include: a phase rotator 11 and an electro-optic unit.
  • Dispersion between modulators Precompensator 13 may include an FFT module 131, a dispersion precompensation module 132, and an Inverse Fast Fourier Transformation (IFFT) module 133 connected in series.
  • IFFT Inverse Fast Fourier Transformation
  • the FFT module 131 can be used to perform FFT processing on the complex type signal; the dispersion precompensation module 132 is configured to perform chromatic dispersion precompensation processing on the FFT processed complex type signal.
  • the dispersion precompensation module 132 can be a frequency domain.
  • the frequency domain multiplication circuit is configured to multiply the FFT-processed complex type signal and the inverse function of the frequency domain corresponding curve of the optical fiber to implement chromatic dispersion precompensation processing of the FFT processed complex type signal;
  • An IFFT module 133 is configured to perform a first IFFT processing on the complex pre-compensation processed complex type signal;
  • the electro-optical modulator is configured to transmit the first IFFT processed complex type signal to the receiver through the optical fiber.
  • the electro-optic modulator may include: a dual-output digital-to-analog converter (English: Digital to Analog Converter; DAC) 121 and a double-side modulation module (English: Double Sideband Modulation; DSB) 122.
  • DAC Digital to Analog Converter
  • DSB Double Sideband Modulation
  • the dual output DAC 121 can be used to process the complex type signal to obtain the real part signal and the imaginary part signal of the complex type signal; the dual output DAC 121 is also used to respectively output from the two outputs of the dual output DAC 121 (output side) D1 and the output terminal D2) transmit the real part signal and the imaginary part signal to the double sideband modulation module 122; the double sideband modulation module 122 is configured to modulate the received real part signal and the imaginary part signal to obtain a double sideband complex type signal The double sideband modulation module 122 is also operative to transmit a double-band complex type signal to the receiver through the optical fiber.
  • the double-sideband modulation module 122 in the embodiment of the present invention may have various forms, and two of them are exemplarily explained in detail below:
  • FIG. 6 is a schematic structural diagram of a double-sideband modulation module according to an embodiment of the present invention.
  • the double-sideband modulation module is an orthogonal Mach-Zehnder Modulator (English: IQ Mach-Zehnder Modulator) Abbreviation: IQMZM), for example, the IQMZM may include: a first Zernder Modulator (English: Zehnder Modulator; MZM for short) 1221, a second MZM 1222, and a third MZM 1223.
  • the two outputs of the dual output DAC are connected in series with the first MZM 1221 and the second MZM 1222, respectively.
  • the two outputs of the dual output DAC are respectively connected to the RF terminal RF1 of the first MZM 1221 and the RF terminal RF2 of the second MZM 1222. connection.
  • the first MZM 1221 is connected in parallel with the second MZM 1222, and both the first MZM 1221 and the second MZM 1222 are connected in series with the third MZM 1223, and the third MZM 1223 is connected to the receiver via an optical fiber.
  • the offset amount of the bias terminal Bais1 of the first MZM 1221, the offset amount of the bias terminal Bais2 of the second MZM, and the offset amount of the bias terminal Bais3 of the third MZM may both be
  • the third MZM can be composed of two phase modulators (English: Phase modu1ator; abbreviation: PM).
  • the electro-optic modulator shown in FIG. 5 may further include a light source 123 connected to the optical input end of the double-sideband modulation module 122. 5 and FIG. 6, the light source 123 can be connected to the light input end S1 of the first MZM 1221 and the light input end S2 of the second MZM, and the light signal emitted by the light source 123 can be input to the first MZM 1221 through the light input terminal S1.
  • the first MZM 1221 can load the RF signal input by the RF input terminal RF1 on the optical signal and transmit it to the optical input terminal S3 of the third MZM 1223, and the second MZM 1222 can
  • the RF signal input from the RF input terminal RF2 is loaded on the optical signal and transmitted to the optical input terminal S3 of the third MZM 1223.
  • the third MZM 1223 processes the received two RF signals loaded on the optical signal to obtain a double-sided band complex type. The signal is applied to the optical signal on the optical signal and transmitted to the receiver through the optical fiber.
  • FIG. 7 is a schematic structural diagram of another double-sideband modulation module according to an embodiment of the present invention, as shown in FIG. 7.
  • the double-band modulation module 122 can be a dual-driver Mach-Zehner modulator (English: Dual-driver Mach-Zehner modulator; DDMZM for short), and the DDMZM can include: a first PM 1224 and a second PM 1225.
  • DDMZM Dual-driver Mach-Zehner modulator
  • the two outputs of the dual output DAC are respectively connected in series with the first PM 1224 and the second PM 1225.
  • the two outputs of the dual output DAC are respectively connected to the RF terminal RF3 of the first PM 1224 and the RF terminal RF4 of the second PM 1224. connection.
  • the first PM 1224 is connected in parallel with the second PM 1225 and is connected to the receiver via an optical fiber.
  • the offset amount of the bias terminal Bais4 of the first PM 1224 and the offset amount of the bias terminal Bais5 of the second PM are both
  • the electro-optic modulator 12 shown in FIG. 5 may further include a light source 123 connected to the optical input end of the double-sideband modulation module 122. 5 and 7, the light source 123 can be connected to the light input end S4 of the first PM 1224 and the light input end S5 of the second PM 1225.
  • the light signal emitted by the light source 123 can be input to the first PM through the light input terminal S4. 1224, and inputting the second PM 1225 through the optical input terminal S5, the first PM 1224 can load the RF signal input from the RF input terminal RF3 on the optical signal and transmit the optical signal to the optical fiber, and the second PM 1225 can input the RF input RF input terminal RF4.
  • the signal is transmitted to the optical fiber on the optical signal, and the two RF signals received by the optical fiber can be aggregated into a double-band complex signal, and the double-band complex signal can be transmitted to the receiver through the optical fiber.
  • At least one of a linear drive amplifier and an attenuator may be connected in series between each output of the dual output DAC and a series modulator (such as MZM or PM).
  • a series modulator such as MZM or PM.
  • a linear drive amplifier 14 and an attenuator 15 are connected in series to each of the outputs connected to the double side modulation module 122. .
  • FIG. 8 is a schematic structural diagram of a service data source 10 according to an embodiment of the present invention.
  • the service data source 10 may include: a pseudo random sequence (Pseudorandom binary sequence; PRDB) signal generation module 101.
  • the mapping module 102 the serial-to-parallel conversion module 103, the zero-padding module 104, the p-point IFFT module 105, the cyclic prefix adding module 106, and the parallel-serial conversion module 107, wherein p can be a q-th power of 2, and q is greater than or equal to An integer of 1, optionally, p can be 512.
  • the PRBS signal generating module 101 can be used to generate 2m x n PRBS signals, both of which are integers greater than or equal to one.
  • the mapping module 102 can be configured to perform mapping processing on the 2m ⁇ n PRBS signals generated by the PRBS signal generating module to obtain a mapping signal.
  • the serial-to-parallel conversion module 103 may be configured to perform a serial-to-parallel conversion process on the mapping signal to obtain 2m frequency domain signals, where the 2m frequency domain signals may include: m positive frequency signals and m negative frequency signals, and the m The positive frequency signals are conjugated with m negative frequency signals one by one.
  • the zero padding module 104 can be used to perform zero padding on the 2m frequency domain signals obtained by the serial to parallel conversion module 103 to obtain p frequency domain signals.
  • the p-point IFFT module 105 can be used to perform p-point IFFT processing on the p frequency-domain signals obtained by the zero-padding module 104 to obtain p time-domain signals.
  • the cyclic prefix adding module 106 is configured to add a cyclic prefix to the p time domain signals to obtain an anti-dispersion signal.
  • the parallel-to-serial conversion module 107 can be used to perform parallel-to-serial conversion processing on the anti-dispersion signal to obtain a real-numbered signal.
  • the service data source, the phase rotator and the dispersion precompensator may constitute a transmitting DSP unit, and the signal transmitting device may include a transmitting DSP unit and an electro-optic modulator.
  • the signal transmitting apparatus performs phase rotation processing on the real type signal after generating the real type signal, and obtains a complex type signal, so that the signal sent to the receiver through the optical fiber is Complex type signal.
  • the complex type signal does not change the signal type when transmitted in the optical fiber.
  • the real part signal and the imaginary part signal are related to the signal transmitted by the transmitter, so that the receiver receives the received signal.
  • the power detection of the partial signal and the imaginary part signal does not cause waste of energy, so the receiver is reduced in power detection. Energy waste rate.
  • FIG. 9 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention.
  • the method for transmitting a signal may be used in the signal transmitting apparatus 1 shown in FIG.
  • Step 901 Generate a real type signal.
  • Step 902 Perform phase rotation processing on the real type signal to obtain a complex type signal, and the value of the real part signal of the complex type signal is equal to the value of the imaginary part signal.
  • Step 903 transmitting a complex type signal to the receiver through the optical fiber.
  • the signal transmitting device after generating the real type signal, performs phase rotation processing on the real type signal to obtain a complex type signal, and receives the signal through the optical fiber.
  • the signal sent by the machine is a complex type signal.
  • the complex type signal does not change the signal type when transmitted in the optical fiber.
  • the real part signal and the imaginary part signal are all related to the signal transmitted by the signal transmitting apparatus, so that the receiver receives the received signal.
  • the power detection of the real part signal and the imaginary part signal does not cause waste of energy, so the energy waste rate of the receiver in power detection is reduced.
  • FIG. 10 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention.
  • the signal transmitting method may be used in the signal transmitting apparatus 1 shown in FIG. 5.
  • the signal transmitting apparatus may include: a serialized service data source and a phase.
  • the rotator and the electro-optic modulator, the signal transmission method may include:
  • Step 1001 Generate a real type signal by using a service data source.
  • 2m ⁇ n PRBS signals may be first generated by the PRBS signal generating module, where both m and n may be integers greater than or equal to 1. Then, 2m ⁇ n PRBS signals can be mapped by the mapping module to obtain a mapping signal, and the mapping signal is serial-to-parallel converted by the serial-to-parallel conversion module to obtain 2m frequency domain signals, that is, 2m ⁇ n
  • the PRBS signals are converted into 2m parallel frequency domain signals by series.
  • the 2m frequency domain signals may include: m positive frequency signals and m negative frequency signals, and the m positive frequency signals are conjugated with the m negative frequency signals one by one.
  • the zero-padding module can perform zero-padding processing on the 2m frequency-domain signals to obtain p frequency-domain signals.
  • p is 512 as an example. In practical applications, p can also be used.
  • p is the qth power of 2, and q is an integer greater than or equal to 1. Then, the p frequency-domain signals obtained by the zero-padding process are subjected to p-point IFFT processing by the p-point IFFT module to obtain p time-domain signals.
  • the cyclic prefix adding module adds a cyclic prefix to the p time domain signals to obtain an anti-dispersion signal, and performs parallel-to-serial conversion processing on the dispersion signal by the parallel-to-serial conversion module to obtain a real number signal.
  • Step 1002 Perform phase rotation processing on the real type signal by the phase rotator to obtain a complex type signal.
  • the value of the real part signal of the complex type signal is equal to the value of the imaginary part signal.
  • the obtained complex type signal may be A+jA, wherein the complex type signal A+jA
  • the real part signal is A
  • the imaginary part signal of the complex type signal A+jA is A
  • j is an imaginary unit, that is, the real part signal (A) of the complex type signal A+jA is equal to the imaginary part signal (A).
  • Step 1003 Perform FFT processing on the complex type signal by using the FFT module.
  • the signal transmitting apparatus 1 may further include: a dispersion precompensator 13 connected in series between the phase rotator 11 and the electro-optic modulator 12, the dispersion precompensator 13 may include: an FFT in series Module 131, dispersion The pre-compensation module 132 and the first IFFT module 133.
  • the complex type signal A+jA obtained in step 1002 can be processed by the FFT module to obtain fft(A+jA).
  • Step 1004 Perform chromatic dispersion precompensation processing on the FFT processed complex type signal by using a dispersion pre-compensation module.
  • the FFT-processed complex type signal that is, fft(A+jA)
  • the dispersion pre-compensation module can be processed by the dispersion pre-compensation module to obtain fft(A+jA)*CD -1 .
  • the service data source, the phase rotator and the dispersion precompensator may constitute a transmitting DSP unit, and the chromatic dispersion precompensator in the transmitting DSP unit can perform chromatic dispersion precompensation on the signal that the transmitter needs to send, for The dispersion of the signal in the fiber is compensated to ensure that the signal received by the receiver is more consistent with the signal received by the transmitter.
  • Step 1005 Perform a first IFFT processing on the complex type signal after the dispersion pre-compensation process by using the first IFFT module.
  • step 1005 may be processed by the first IFFT module for complex-type signal dispersion pre-compensation process, i.e. fft (A + jA) * CD -1, to give ifft [fft (A + jA) * CD - 1 ].
  • Step 1006 The first IFFT processed complex type signal is transmitted to the receiver through the electro-optic modulator and the optical fiber.
  • the electro-optic modulator may include: a dual-output DAC and a double-side modulation module in series.
  • the complex signal may be processed by the dual output DAC to obtain a real signal of the complex signal and The imaginary part signal is then transmitted from the two outputs of the dual output DAC to the double sideband modulation module through the dual output DAC, and the real and imaginary signals are modulated by the double sideband modulation module Processing, obtaining a double-band complex type signal, and transmitting a double-band complex type signal to the receiver through the double-sideband modulation module and the optical fiber.
  • the double-sideband modulation module may be an IQMZM
  • the IQMZM includes: a first MZM, a second MZM, and a third MZM, and two outputs of the dual output DAC are respectively connected in series with the first MZM and the second MZM.
  • the first MZM is connected in parallel with the second MZM, and both are connected in series with the third MZM, and the third MZM is connected to the receiver through the optical fiber; optionally, the offset of the bias end of the first MZM and the offset of the second MZM
  • the offset of the terminal and the offset of the bias of the third MZM may be
  • the double-sideband modulation module may also be a DDMZM
  • the DDMZM includes: a first phase modulator PM and a second PM, and two outputs of the dual output DAC are respectively associated with the first PM and the second PM.
  • the first PM is connected in parallel with the second PM, and is connected to the receiver through the optical fiber; optionally, the offset of the biasing end of the first PM and the offset of the biasing end of the second PM are both
  • the signal E Rosa transmitted through the fiber to the receiver can be:
  • the receiver can perform power detection on the received signal, and the real part signal and the imaginary part signal of the complex type signal received by the receiver are both generated by the real data type generated by the service data source in step 1001.
  • Signal A is related, so the receiver does not waste energy when performing power detection on the received signal.
  • the optical power P detected by the receiver can be:
  • the transmitter 110 includes an electro-optic modulator 1101 and a transmitting DSP unit 1102 (the transmitting DSP unit 1102 and the transmitting in the present application).
  • the DSP unit is different.
  • the electro-optic modulator 1101 includes a dual output DAC and a single sideband modulation unit (English: Single Sideband Modulation; SSB for short), and the signal sent by the transmitter is an SSB signal.
  • the electro-optic modulator in the transmitter comprises a dual output DAC and a double sideband modulation module, and the signal emitted by the transmitter is a DSB signal.
  • FIG. 12 is a schematic diagram of an optical spectrum (English: Optical Spectra) according to an embodiment of the present invention.
  • the horizontal axis of the spectrum diagram is an optical frequency (English: Optical Frequency), and the unit is terahertz (English: Tera Hertz; referred to as THz), the vertical axis is optical power (English: Optical Power), the unit is: milli decibel (abbreviation: dBm).
  • the spectrum of the SSB signal can be divided into two sidebands (left side 1 and right side 1 respectively), and the spectrum of the DSB signal can also be divided into two sidebands (left side 2 and right side respectively).
  • Band 2 wherein the left and right bands of the DSB signal contain valid information, the right band of the SSB signal contains valid information, and the left band of the SSB signal (1 band on the left) contains only noise information and does not contain valid information.
  • FIG. 13 is a schematic diagram of an SNR waveform according to an embodiment of the present invention.
  • the horizontal axis of the waveform diagram may be the relative frequency (dimensionless) of the base carrier (English: subcarrier), and the vertical axis is the SNR (dimensionless) of the signal.
  • the SNR of the DSB signal is greater than the SNR of the SSB signal.
  • the transmitter first generates the real type signal A, and the signal E out output to the optical fiber after the dispersion compensation processing and the photoelectric modulation can be:
  • the signal sent through the fiber to the receiver can be expressed as:
  • the optical power P detected by the receiver can be:
  • the real part signal (1+A) is related to the signal A generated by the transmitter, and the imaginary part signal (1) is independent of the signal A generated by the transmitter.
  • the receiver wastes energy for the power detection of the imaginary part signal of the complex type signal, and therefore, the energy waste rate of the receiver in power detection is large.
  • the power of the signal received by the receiver (2A) is lower.
  • the receiver since the real part signal (1+A) and the imaginary part signal (1+A) in the signal received by the receiver are both related to the signal A generated by the transmitter, the receiver receives The power of the signal is high, and the optical power 4A of the signal received by the receiver in the embodiment of the present invention is twice the optical power 2A of the signal received by the receiver in the related art.
  • FIG. 14 is a schematic diagram of real part signal detection of a signal received by a receiver according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram of detecting an imaginary part signal of a signal received by a receiver according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of detecting an imaginary part of a signal received by a receiver according to the related art.
  • the horizontal axes in FIGS. 14 , 15 , 16 , and 17 are relative time domains (dimensionless), and the unit is 10 4 , and the vertical axis is the amplitude of the signal, and the unit is volt.
  • the real part signal and the imaginary part signal of the complex type signal received by the receiver in the embodiment of the present invention all contain more effective information, and are all related to the real type signal generated by the transmitter.
  • the real part signal contains more effective information
  • the imaginary part signal only contains more noise information
  • the receiver receives The real part of the complex type signal is related to the real type signal generated by the transmitter, and the imaginary part signal is independent of the real type signal generated by the transmitter.
  • FIG. 18 is a schematic diagram of another SNR waveform according to an embodiment of the present invention.
  • the horizontal axis of the waveform diagram may be the relative frequency of the base carrier, and the vertical axis is the SNR of the signal.
  • the signal-to-noise ratio of the signal U received by the receiver in the embodiment of the present invention is greater than the signal-to-noise ratio of the signal V received by the receiver in the related art.
  • the signal transmitting device after generating the real type signal, performs phase rotation processing on the real type signal to obtain a complex type signal, and receives the signal through the optical fiber.
  • the signal sent by the machine is a complex type signal.
  • the complex type signal does not change the signal type when transmitted in the optical fiber.
  • the real part signal and the imaginary part signal are all related to the signal transmitted by the signal transmitting apparatus, so that the receiver receives the received signal.
  • the power detection of the real part signal and the imaginary part signal does not cause waste of energy, so the energy waste rate of the receiver in power detection is reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Discrete Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请公开了一种信号发射方法及装置、发射机、信号传输系统,属于通信领域。该方法包括:生成实数型信号;对实数型信号进行相位旋转处理,得到复数型信号,复数型信号的实部信号的值与虚部信号的值相等;向接收机发射复数型信号。本申请解决了接收机在功率检测时的能量浪费率较大的问题,减少了接收机在功率检测时的能量浪费率,本申请用于信号传输。

Description

信号发射方法及装置、发射机、信号传输系统 技术领域
本申请涉及通信领域,特别涉及一种信号发射方法及装置、发射机、信号传输系统。
背景技术
随着时代的发展,通信技术越来越多的应用在人们的生活中。示例的,用户1持有的发射机能够生成传输信号,并将传输信号通过光纤传输至用户2持有的接收机,实现用户1与用户2的通信。
相关技术中,发射机可以生成实数型信号,并将生成的实数型信号通过光纤传输至接收机。实数型信号在光纤中传播时,实数型信号会转换为复数型信号,使得接收机最终接收到的信号为复数型信号,且复数型信号的实部信号与发射机发出的实数型信号相关,复数型信号的虚部信号与发射机发出的实数型信号无关。进一步的,接收机在接收到该复数型信号后,还需要分别对该复数型信号中的实部信号和虚部信号进行功率检测,进而根据该实部信号的功率检测结果以及虚部信号的功率检测结果,确定接收到的复数型信号的功率。
由于相关技术中,复数型信号的虚部信号与发射机发出的实数型信号无关,接收机对复数型信号的虚部信号的功率检测造成了能量的浪费,因此,接收机在功率检测时的能量浪费率较大。
发明内容
为了解决接收机在功率检测时的能量浪费率较大的问题,本申请提供了一种信号发射方法及装置、发射机、信号传输系统。所述技术方案如下:
第一方面,提供了一种信号发射方法,用于信号发射装置,所述方法包括:
生成实数型信号;
对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数型信号的实部信号的值与虚部信号的值相等;
通过光纤向接收机发射所述复数型信号。
由于在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,使得通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与发射机发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的能量浪费率。
可选的,所述信号发射装置包括:串联的业务数据源、相位旋转器和电光调制器,
所述生成实数型信号,包括:
通过所述业务数据源生成实数型信号;
所述对所述实数型信号进行相位旋转处理,得到复数型信号,包括:
通过所述相位旋转器对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数型信号的实部信号的值与虚部信号的值相等;
所述通过光纤向接收机发射所述复数型信号,包括:
通过所述电光调制器和光纤向接收机发射所述复数型信号。
可选的,所述信号发射装置还包括:串联在所述相位旋转器与所述电光调制器之间的色散预补偿器,所述色散预补偿器包括:串联的快速傅里叶变换FFT模块、色散预补偿模块和第一快速傅里叶逆变换IFFT模块,
在通过所述电光调制器和光纤向接收机发射所述复数型信号之前,所述方法还包括:
通过所述FFT模块对所述复数型信号进行FFT处理;
通过所述色散预补偿模块对FFT处理后的复数型信号进行色散预补偿处理;
通过所述第一IFFT模块对色散预补偿处理后的复数型信号进行第一IFFT处理;
通过所述电光调制器和光纤向接收机发射所述复数型信号,包括:
通过所述电光调制器和光纤向所述接收机发射第一IFFT处理后的复数型信号。
本申请中的业务数据源、相位旋转器和色散预补偿器可以组成发射DSP单元,该发射DSP单元中的色散预补偿器能够对发射机需要发出的信号进行色散预补偿,用于对信号在光纤中发生的色散进行补偿,保证接收机接收到的信号与发射机接收到的信号较为一致。
可选的,所述电光调制器包括:串联的双输出数模转换器DAC和双边带调制模块,通过所述电光调制器和光纤向接收机发射所述复数型信号,包括:
通过所述双输出DAC对所述复数型信号进行处理,得到所述复数型信号的实部信号和虚部信号;
通过所述双输出DAC分别从所述双输出DAC的两个输出端将所述实部信号和虚部信号发射至双边带调制模块;
通过所述双边带调制模块对所述实部信号和所述虚部信号进行调制处理,得到双边带复数型信号;
通过所述双边带调制模块和所述光纤向所述接收机发射所述双边带复数型信号。
也即,发射机中的电光调制器包括双输出DAC和双边带调制模块,该发射机发出的信号为DSB信号,DSB信号的信噪比大于相关技术中的发射机发出的SSB信号的信噪比,所以,本申请中发射机发射至接收机的信号质量较好。
本申请中的双边带调制模块可以为IQMZM或DDMZM。
可选的,所述双边带调制模块为正交马赫-曾德尔调制器IQMZM,所述IQMZM包括:第一马赫-曾德尔调制器MZM、第二MZM和第三MZM,
所述双输出DAC的两个输出端分别与所述第一MZM和所述第二MZM串联,所述第一MZM与所述第二MZM并联,且所述第一MZM与所述第二MZM均与所述第三MZM串联,所述第三MZM通过光纤与所述接收机相连接;
所述第一MZM的偏置端的偏置量、所述第二MZM的偏置端的偏置量以及所述第三MZM的偏置端的偏置量均为
Figure PCTCN2017071437-appb-000001
可选的,所述双边带调制模块为双驱动马赫-曾德尔调制器DDMZM,所述DDMZM包括:第一相位调制器PM和第二PM,
所述双输出DAC的两个输出端分别与所述第一PM和所述第二PM串联,所述第一PM 与所述第二PM并联,且均通过光纤与所述接收机相连接;
所述第一PM的偏置端的偏置量和所述第二PM的偏置端的偏置量均为
Figure PCTCN2017071437-appb-000002
可选的,每个所述输出端与串联的调制器之间,均串联有线性驱动放大器和衰减器中的至少一个。通过线性驱动放大器和衰减器对信号进行处理,能够提高信号的信噪比,从而提高信号质量。
可选的,所述业务数据源包括:串联的伪随机序列PRBS信号产生模块、映射模块、串并转换模块、补零模块、p点IFFT模块、循环前缀添加模块和并串转换模块,所述p为2的q次方,所述q为大于或等于1的整数,所述通过所述业务数据源生成实数型信号,包括:
通过所述PRBS信号产生模块生成2m×n个PRBS信号,所述m和n均为大于或等于1的整数;
通过所述映射模块将所述2m×n个PRBS信号进行映射处理,得到映射信号;
通过所述串并转换模块对所述映射信号进行串并转换处理,得到2m个频域信号,所述2m个频域信号包括:m个正频信号和m个负频信号,所述m个正频信号与所述m个负频信号一一共轭;
通过所述补零模块对所述2m个频域信号进行补零处理,得到p个频域信号;
通过所述p点IFFT模块对所述p个频域信号进行p点IFFT处理,得到p个时域信号;
通过所述循环前缀添加模块为所述p个时域信号添加循环前缀,得到抗色散信号;
通过所述并串转换模块对所述抗色散信号进行并串转换处理,得到所述实数信号。
第二方面,提供了一种信号发射装置,所述信号发射装置包括:串联的业务数据源、相位旋转器和电光调制器,
所述业务数据源用于生成实数型信号;
所述相位旋转器用于对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数型信号的实部信号的值与虚部信号的值相等;
所述电光调制器用于通过光纤向接收机发射所述复数型信号。
可选的,所述信号发射装置还包括:串联在所述相位旋转器与所述电光调制器之间的色散预补偿器,所述色散预补偿器包括:串联的FFT模块、色散预补偿模块和第一IFFT模块,
所述FFT模块用于对所述复数型信号进行FFT处理;
所述色散预补偿模块用于对FFT处理后的复数型信号进行色散预补偿处理;
所述第一IFFT模块用于对色散预补偿处理后的复数型信号进行第一IFFT处理;
所述电光调制器用于通过光纤向所述接收机发射第一IFFT处理后的复数型信号。
可选的,所述电光调制器包括:串联的双输出DAC和双边带调制模块,
所述双输出DAC用于对所述复数型信号进行处理,得到所述复数型信号的实部信号和虚部信号;
所述双输出DAC还用于分别从所述双输出DAC的两个输出端将所述实部信号和虚部信号发射至双边带调制模块;
所述双边带调制模块用于对所述实部信号和所述虚部信号进行调制处理,得到双边带 复数型信号;
所述双边带调制模块用于通过所述光纤向所述接收机发射所述双边带复数型信号。
可选的,所述双边带调制模块为IQMZM,所述IQMZM包括:第一MZM、第二MZM和第三MZM,
所述双输出DAC的两个输出端分别与所述第一MZM和所述第二MZM串联,所述第一MZM与所述第二MZM并联,且所述第一MZM与所述第二MZM均与所述第三MZM串联,所述第三MZM通过光纤与所述接收机相连接;
所述第一MZM的偏置端的偏置量、所述第二MZM的偏置端的偏置量以及所述第三MZM的偏置端的偏置量均为
Figure PCTCN2017071437-appb-000003
可选的,所述双边带调制模块为DDMZM,所述DDMZM包括:第一PM和第二PM,
所述双输出DAC的两个输出端分别与所述第一PM和所述第二PM串联,所述第一PM与所述第二PM并联,且均通过光纤与所述接收机相连接;
所述第一PM的偏置端的偏置量和所述第二PM的偏置端的偏置量均为
Figure PCTCN2017071437-appb-000004
可选的,每个所述输出端与串联的调制器之间,均串联有线性驱动放大器和衰减器中的至少一个。
可选的,所述业务数据源包括:串联的PRBS信号产生模块、映射模块、串并转换模块、补零模块、p点IFFT模块、循环前缀添加模块和并串转换模块,所述p为2的q次方,q为大于或等于1的整数,
所述PRBS信号产生模块用于生成2m×n个PRBS信号,所述m和n均为大于或等于1的整数;
所述映射模块用于将所述2m×n个PRBS信号进行映射处理,得到映射信号;
所述串并转换模块用于对所述映射信号进行串并转换处理,得到2m个频域信号,所述2m个频域信号包括:m个正频信号和m个负频信号,所述m个正频信号与所述m个负频信号一一共轭;
所述补零模块用于对所述2m个频域信号进行补零处理,得到p个频域信号;
所述p点IFFT模块用于对所述p个频域信号进行p点IFFT处理,得到p个时域信号;
所述循环前缀添加模块用于为所述p个时域信号添加循环前缀,得到抗色散信号;
所述并串转换模块用于对所述抗色散信号进行并串转换处理,得到所述实数信号。
第三方面,提供了一种发射机,其特征在于,所述发射机包括第二方面所述的信号发射装置。
第四方面,提供了一种信号传输系统,所述信号传输系统包括:发射机、光纤和接收机,
所述发射机为第三方面所述的发射机。
上述第二方面至第四方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
综上所述,本申请提供了一种信号发射方法及装置、信号传输系统,该信号发射方法中,在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,使得通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化 信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与发射机发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的能量浪费率。
附图说明
图1为本发明实施例提供的一种信号传输系统的结构示意图;
图2为本发明实施例提供的一种接收机的结构示意图;
图3为本发明实施例提供的一种接收DSP单元的结构示意图;
图4为本发明实施例提供的一种信号发射装置的结构示意图;
图5为本发明实施例提供的另一种信号发射装置的结构示意图;
图6为本发明实施例提供的一种双边带调制模块的结构示意图;
图7为本发明实施例提供的另一种双边带调制模块的结构示意图;
图8为本发明实施例提供的一种业务数据源的结构示意图;
图9为本发明实施例提供的一种信号发射方法的方法流程图;
图10为本发明实施例提供的一种信号发射方法的方法流程图;
图11为相关技术提供的一种发射机的结构示意图;
图12为本发明实施例提供的一种光谱示意图;
图13为本发明实施例提供的一种SNR波形示意图;
图14为本发明实施例提供的一种接收机接收到的信号的实部信号检测示意图;
图15为本发明实施例提供的一种接收机接收到的信号的虚部信号检测示意图;
图16为相关技术提供的一种接收机接收到的信号的实部信号检测示意图;
图17为相关技术提供的一种接收机接收到的信号的虚部信号检测示意图;
图18为本发明实施例提供的另一种SNR波形示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1为本发明实施例提供的一种信号传输系统0的结构示意图,如图1所示,该信号传输系统0可以包括发射机01、光纤02和接收机03,且发射机01与接收机03通过光纤建立通信连接。
其中,发射机01可以包括信号发射装置,该信号发射装置的结构可以参考图4至图8所示的结构。光纤02上可以设置有光纤放大器,该光纤放大器可以用于对光纤上的信号进行放大。
图2为本发明实施例提供的一种接收机03的结构示意图,如图2所示,接收机03可以包括串联的滤波器031、光接收单元(英文:Receiver optical sub assembly;简称:ROSA)032、模数转换单元(英文:Analog to digital convertor;简称:ADC)033和接收数字信号处理(英文:Digital Signal Processing;简称:DSP)单元034。
图3为本发明实施例提供的一种接收DSP单元034的结构示意图,如图3所示,该接收DSP单元034可以包括:依次串联的再取样模块0341、同步模块0342、非线性均衡(英 文:non linear equlization;简称:NLE)模块0343、循环前缀删除(英文:Cyclic prefix Removing;简称:CP Removing)模块0344、串并(英文:Series/Parallel;简称:S/P)转换模块0345、快速傅里叶变换(英文:Fast Fourier Transform Algorithm;简称:FFT)模块0346、一抽头均衡(英文:1-Tap Equlization)模块0347、解映射(英文:Demapping)模块0348、并串(英文:Parallel/Series;简称:P/S)转换模块0349和误码率(英文:Bit Error Rate;简称:BER)计算模块0350。
其中,再取样模块0341的作用是匹配模数转换单元和接收DSP单元的采样率;同步模块0342的作用是找到信号的起始点,从而进行正确的处理信号;NLE模块0343的作用是补偿系统的非线性噪声;CP Removing模块0344的作用是去掉信号中的循环前缀;S/P转换模块0345的作用是把串联的信号转化为并联信号;FFT模块0346的作用是通过FFT把时域信号转换为频域信号;1-Tap Equlization模块0347的作用是补偿系统的带宽影响;Demapping模块0348的作用是把符号的信息转化为比特信息;P/S转换模块0349的作用是通过并串转化把并联的信号转化为串联信号;BER计算模块0350的作用比较接收机接收到的比特信号和发射机发出的比特信号,计算出误码率。
图4为本发明实施例提供的一种信号发射装置1的结构示意图,图1所示的信号传输系统0中的发射机01可以包括该信号发射装置1,如图4所示,该信号发射装置1可以包括:串联在一起的业务数据源10、相位旋转器11和电光调制器12。
其中,业务数据源10用于生成实数型信号;相位旋转器11用于对业务数据源10生成的实数型信号进行相位旋转处理,得到复数型信号,需要说明的是,该复数型信号的实部信号的值与虚部信号的值相等;电光调制器12用于通过光纤向接收机发射复数型信号。
综上所述,由于本发明实施例提供的信号发射装置在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,使得通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与发射机发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的能量浪费率。
示例的,该业务数据源生成的实数型信号可以为四电平脉冲幅度调制(英文:Pulse amplitude modulation-4;简称:PAM4)信号,或者其他调制信号,如开关键控(英文:On-off keying;简称:OOK)信号、直接多载波技术(英文:Direct multi-tone technology;简称:DMT)信号或无载波幅度相位调制(英文:Carriless amplitude phase modulation;简称:CAP)信号。
可选的,该相位旋转器可以包括:功分电路、相位变换电路和加法电路,其中,功分电路可以将业务数据源产生的一路实数型信号分成两路实数型信号,示例的,该两路实数型信号包括第一实数型信号和第二实数型信号;相位变换电路可以将该两路实数型信号中的第一实数型信号做相位变换处理,得到虚数型信号;该加法电路可以将该第二实数型信号与该虚数型信号相加得到复数型信号。
图5为本发明实施例提供的另一种信号发射装置1的结构示意图,如图5所示,在图4的基础上,该信息发射装置1还可以包括:串联在相位旋转器11与电光调制器之间的色散 预补偿器13。色散预补偿器13可以包括:串联在一起的FFT模块131、色散预补偿模块132和第一快速傅里叶逆变换(英文:Inverse Fast Fourier Transformation;简称:IFFT)模块133。
示例的,FFT模块131可以用于对复数型信号进行FFT处理;色散预补偿模块132用于对FFT处理后的复数型信号进行色散预补偿处理,示例的,色散预补偿模块132可以为频域相乘电路,该频域相乘电路用于将FFT处理后的复数型信号和光纤的频域相应曲线的反函数相乘,以实现对FFT处理后的复数型信号的色散预补偿处理;第一IFFT模块133用于对色散预补偿处理后的复数型信号进行第一IFFT处理;电光调制器用于通过光纤向接收机发射第一IFFT处理后的复数型信号。
进一步的,电光调制器可以包括:串联在一起的双输出数模转换器(英文:Digital to analog converter;简称:DAC)121和双边带调制模块(英文:Double Sideband Modulation;简称:DSB)122。
其中,双输出DAC 121可以用于对复数型信号进行处理,得到复数型信号的实部信号和虚部信号;双输出DAC 121还用于分别从双输出DAC 121的两个输出端(输出端D1和输出端D2)将实部信号和虚部信号发射至双边带调制模块122;双边带调制模块122用于对接收到的实部信号和虚部信号进行调制处理,得到双边带复数型信号;双边带调制模块122还用于通过光纤向接收机发射双边带复数型信号。
本发明实施例中的双边带调制模块122可以具有多种形式,下面将示例性的对其中的两种形式进行详细讲解:
一方面,图6为本发明实施例提供的一种双边带调制模块的结构示意图,如图6所示,该双边带调制模块为正交马赫-曾德尔调制器(英文:IQ Mach-Zehnder Modulator;简称:IQMZM),示例的,该IQMZM可以包括:第一曾德尔调制器(英文:Zehnder Modulator;简称:MZM)1221、第二MZM 1222和第三MZM 1223。
双输出DAC的两个输出端分别与第一MZM 1221和第二MZM 1222串联,如双输出DAC的两个输出端分别与第一MZM 1221的射频端RF1以及第二MZM 1222的射频端RF2相连接。第一MZM 1221与第二MZM 1222并联,且第一MZM 1221和第二MZM 1222均与第三MZM 1223串联,第三MZM 1223通过光纤与接收机相连接。第一MZM 1221的偏置端Bais1的偏置量、第二MZM的偏置端Bais2的偏置量以及第三MZM的偏置端Bais3的偏置量均可以为
Figure PCTCN2017071437-appb-000005
示例的,该第三MZM可以由两个相位调制器(英文:Phase modu1ator;简称:PM)组成。
需要说明的是,图5所示的电光调制器还可以包括光源123,光源与该双边带调制模块122的光输入端相连接。请结合图5和图6,光源123可以与第一MZM 1221的光输入端S1以及第二MZM的光输入端S2相连接,光源123发出的光信号能够通过光输入端S1输入第一MZM 1221,以及通过光输入端S2输入第二MZM 1222,第一MZM 1221能够将射频输入端RF1输入的射频信号加载在光信号上传输至第三MZM 1223的光输入端S3,第二MZM 1222能够将射频输入端RF2输入的射频信号加载在光信号上传输至第三MZM 1223的光输入端S3,第三MZM 1223对接收到的加载在光信号上的两个射频信号进行处理得到双边带复数型信号,并将该双边带复数型信号加载在光信号上,通过光纤传输至接收机。
另一方面,图7为本发明实施例提供的另一种双边带调制模块的结构示意图,如图7 所示,该双边带调制模块122可以为双驱动马赫增德尔调制器(英文:Dual-driver Mach-Zehner modulator;简称:DDMZM),该DDMZM可以包括:第一PM 1224和第二PM 1225。
双输出DAC的两个输出端分别与第一PM 1224和第二PM 1225串联,如双输出DAC的两个输出端分别与第一PM 1224的射频端RF3以及第二PM 1224的射频端RF4相连接。第一PM 1224与第二PM 1225并联,且均通过光纤与接收机相连接。第一PM 1224的偏置端Bais4的偏置量和第二PM的偏置端Bais5的偏置量均为
Figure PCTCN2017071437-appb-000006
需要说明的是,图5所示的电光调制器12还可以包括光源123,光源与该双边带调制模块122的光输入端相连接。请结合图5和图7,光源123可以与第一PM 1224的光输入端S4以及第二PM 1225的光输入端S5相连接,光源123发出的光信号能够通过光输入端S4输入第一PM 1224,以及通过光输入端S5输入第二PM 1225,第一PM 1224能够将射频输入端RF3输入的射频信号加载在光信号上传输至光纤,第二PM 1225能够将射频输入端RF4输入的射频信号加载在光信号上传输至光纤,光纤接收到的两个射频信号能够汇聚成双边带复数型信号,且该双边带复数型信号可以通过光纤传输至接收机。
本发明实施例中,双输出DAC的每个输出端与串联的调制器(如MZM或PM)之间,均可以串联有线性驱动放大器和衰减器中的至少一个。请继续参考图5,该双输出DAC的两个输出端D1和输出端D2中,每个输出端与双边带调制模块122相连接的线路上均串联有一个线性驱动放大器14和一个衰减器15。
图8为本发明实施例提供的一种业务数据源10的结构示意图,如图8所示,业务数据源10可以包括:串联的伪随机序列(Pseudorandom binary sequence;简称:PRBS)信号产生模块101、映射模块102、串并转换模块103、补零模块104、p点IFFT模块105、循环前缀添加模块106和并串转换模块107,其中,p可以为2的q次方,q为大于或等于1的整数,可选的,p可以为512。
PRBS信号产生模块101可以用于生成2m×n个PRBS信号,m和n均为大于或等于1的整数。映射模块102可以用于将该PRBS信号产生模块生成的2m×n个PRBS信号进行映射处理,得到映射信号。串并转换模块103可以用于对映射信号进行串并转换处理,得到2m个频域信号,其中,该2m个频域信号可以包括:m个正频信号和m个负频信号,且该m个正频信号与m个负频信号一一共轭。补零模块104可以用于对串并转换模块103得到的2m个频域信号进行补零处理,得到p个频域信号。p点IFFT模块105可以用于对补零模块104得到的p个频域信号进行p点IFFT处理,得到p个时域信号。循环前缀添加模块106用于为该p个时域信号添加循环前缀,得到抗色散信号。并串转换模块107可以用于对该抗色散信号进行并串转换处理,从而得到实数信号。
本发明实施例中,业务数据源、相位旋转器和色散预补偿器可以组成发射DSP单元,该信号发射装置可以包括发射DSP单元和电光调制器。
综上所述,由于本发明实施例提供的信号发射装置在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,使得通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与发射机发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的 能量浪费率。
图9为本发明实施例提供的一种信号发射方法的方法流程图,该信号发射方法可以用于图4所示的信号发射装置1,该信号发射方法可以包括:
步骤901、生成实数型信号。
步骤902、对实数型信号进行相位旋转处理,得到复数型信号,复数型信号的实部信号的值与虚部信号的值相等。
步骤903、通过光纤向接收机发射复数型信号。
综上所述,由于本发明实施例提供的信号发射方法中,信号发射装置在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,并通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与信号发射装置发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的能量浪费率。
图10为本发明实施例提供的一种信号发射方法的方法流程图,该信号发射方法可以用于图5所示的信号发射装置1,该信号发射装置可以包括:串联的业务数据源、相位旋转器和电光调制器,该信号发射方法可以包括:
步骤1001、通过业务数据源生成实数型信号。
请参考图8,在步骤1001中,首先可以通过PRBS信号产生模块生成2m×n个PRBS信号,其中,m和n均可以为大于或等于1的整数。然后,可以通过映射模块将2m×n个PRBS信号进行映射处理,得到映射信号,并通过串并转换模块对映射信号进行串并转换处理,得到2m个频域信号,也即,将2m×n个PRBS信号由串联转化为2m个并联的频域信号。其中,该2m个频域信号可以包括:m个正频信号和m个负频信号,且m个正频信号与m个负频信号一一共轭。
进一步的,还可以通过补零模块对该2m个频域信号进行补零处理,得到p个频域信号,示例的,本发明实施例中以p为512为例,实际应用中,p还可以为其他数值,p为2的q次方,q为大于或等于1的整数。然后,通过p点IFFT模块对补零处理得到的p个频域信号进行p点IFFT处理,得到p个时域信号。通过循环前缀添加模块为该p个时域信号添加循环前缀,得到抗色散信号,以及通过并串转换模块对抗色散信号进行并串转换处理,得到实数信号。
步骤1002、通过相位旋转器对实数型信号进行相位旋转处理,得到复数型信号。
可选的,该复数型信号的实部信号的值与虚部信号的值相等。假设步骤1001中生成的实数型信号为A,那么在步骤1002中相位旋转器对该实数型信号A进行处理后,得到的复数型信号可以为A+jA,其中,复数型信号A+jA的实部信号为A,复数型信号A+jA的虚部信号为A,j为虚数单位,也即,复数型信号A+jA的实部信号(A)等于虚部信号(A)。
步骤1003、通过FFT模块对复数型信号进行FFT处理。
可选的,如图5所示,信号发射装置1还可以包括:串联在相位旋转器11与电光调制器12之间的色散预补偿器13,该色散预补偿器13可以包括:串联的FFT模块131、色散 预补偿模块132和第一IFFT模块133。在步骤1003中,可以由FFT模块对步骤1002中得到的复数型信号A+jA进行处理,得到fft(A+jA)。
步骤1004、通过色散预补偿模块对FFT处理后的复数型信号进行色散预补偿处理。
在对复数型信号进行FFT处理后,可以通过色散预补偿模块对FFT处理后的复数型信号,也即fft(A+jA),进行处理,得到fft(A+jA)*CD-1
随着通信技术的发展,长距离光通信从工作频率由2.5千赫兹(英文:GHz)、10GHz或40GHz一直发展到现在的100GHz或200GHz。近年来,随着移动互联网应用(如高清视频、三维直播、虚拟现实等)的迅猛发展,人们对短距离通信的速率也提出了更高的要求。在短距离应用中,通常采用直接检测技术接收信号,但是,在短距离传输信号时,仍然存在信号的色散问题,目前解决信号色散的主要方法有:色散补偿光纤、可调色散补偿模块、光域单边带滤波和电域DSP色散预补偿。随着DSP技术的发展,电域DSP色散预补偿的方法受到越来越多的青睐。
本发明实施例中,业务数据源、相位旋转器和色散预补偿器可以组成发射DSP单元,该发射DSP单元中的色散预补偿器能够对发射机需要发出的信号进行色散预补偿,用于对信号在光纤中发生的色散进行补偿,保证接收机接收到的信号与发射机接收到的信号较为一致。
步骤1005、通过第一IFFT模块对色散预补偿处理后的复数型信号进行第一IFFT处理。
在步骤1005中,可以由第一IFFT模块对色散预补偿处理后的复数型信号,也即fft(A+jA)*CD-1,进行处理,得到ifft[fft(A+jA)*CD-1]。
步骤1006、通过电光调制器和光纤向接收机发射第一IFFT处理后的复数型信号。
如图5所示,该电光调制器可以包括:串联的双输出DAC和双边带调制模块,在步骤1006中,可以通过双输出DAC对复数型信号进行处理,得到复数型信号的实部信号和虚部信号,然后通过双输出DAC分别从双输出DAC的两个输出端将实部信号和虚部信号发射至双边带调制模块,并通过双边带调制模块对实部信号和虚部信号进行调制处理,得到双边带复数型信号,并通过双边带调制模块和光纤向接收机发射双边带复数型信号。
一方面,如图6所示,双边带调制模块可以为IQMZM,IQMZM包括:第一MZM、第二MZM和第三MZM,双输出DAC的两个输出端分别与第一MZM和第二MZM串联,第一MZM与第二MZM并联,且均与第三MZM串联,第三MZM通过光纤与接收机相连接;可选的,第一MZM的偏置端的偏置量、第二MZM的偏置端的偏置量以及第三MZM的偏置端的偏置量均可以为
Figure PCTCN2017071437-appb-000007
另一方面,如图7所示,双边带调制模块也可以为DDMZM,DDMZM包括:第一相位调制器PM和第二PM,双输出DAC的两个输出端分别与第一PM和第二PM串联,第一PM与第二PM并联,且均通过光纤与接收机相连接;可选的,第一PM的偏置端的偏置量和第二PM的偏置端的偏置量均为
Figure PCTCN2017071437-appb-000008
示例的,步骤1005中生成的信号ifft[fft(A+jA)*CD-1]通过双输出DAC和双边带调制模块进行处理后,得到的双边带复数型信号Eout可以为 1+j+{ifft[fft(A+jA)*CD-1]}=1+j+(I+j*Q)=Eout
经过光纤传输至接收机的信号ERosa可以为:
1+j+{ifft[fft(A+jA)*CD-1*CD]}=1+j+A+j*A=ERosa
进一步的,接收机在接收到信号后,可以对接收到的信号进行功率检测,由于接收机接收到的复数型信号的实部信号和虚部信号均与步骤1001中业务数据源生成的实数型信号A相关,因此,接收机在对接收到的信号进行功率检测时,不会造成能量的浪费。
示例的,接收机检测到的光功率P可以为:
Figure PCTCN2017071437-appb-000009
图11为相关技术提供的一种发射机110的结构示意图,如图11所示相关技术中,发射机110包括电光调制器1101和发射DSP单元1102(该发射DSP单元1102与本申请中的发射DSP单元不同),电光调制器1101包括双输出DAC和单边带调制单元(英文:Single sidebandmodulation;简称:SSB),发射机发出的信号为SSB信号。本发明实施例中,发射机中的电光调制器包括双输出DAC和双边带调制模块,该发射机发出的信号为DSB信号。
图12为本发明实施例提供的一种光谱(英文:Optical Spectra)示意图,如图12所示,该光谱示意图的横轴为光频率(英文:Optical Frequency),其单位为太赫兹(英文:Tera Hertz;简称:THz),纵轴为光功率(英文:Optical Power),单位为:毫分贝(简称:dBm)。从图中可以看出,SSB信号的光谱可以分为两个边带(分别为左边带1和右边带1),DSB信号的光谱也可以分为两个边带(分别为左边带2和右边带2),其中,DSB信号的左边带和右边带均含有有效信息,SSB信号的右边带含有有效信息,而SSB信号的左边带(左边带1)仅仅含有噪声信息,而不含有有效信息。
SSB信号由于只有一个边带含有信息,所以,DSB信号与SSB信号相比,DSB信号所含的信息量较多,DSB信号的信噪比(英文:noise-signal ratio;简称:SNR)较高,也即,本发明实施例中的发射机发出的DSB信号的信噪比大于相关技术中的发射机发出的SSB信号的信噪比。图13为本发明实施例提供的一种SNR波形示意图,该波形示意图中的横轴可以为基载波(英文:subcarrier)的相对频率(无量纲),纵轴为信号的SNR(无量纲)。如图13所示,当基载波的相对频率相同时,该DSB信号的SNR大于SSB信号的SNR。
相关技术中,发射机首先生成实数型信号A,并经过色散补偿处理和光电调制后输出至光纤的信号Eout可以为:
1+j+{ifft[fft(A)*CD-1]}=1+j+(I+j*Q)=1+I+j(1+Q)=Eout
经过光纤发送至接收机的信号可以表示为:
ERosa=1+j+{ifft[fft(A)*CD-1*CD]}=1+j+A;
接收机检测到的光功率P可以为:
P=ERosa*E* Rosa=2*Re[(1+j)*A)]=2A;
也即,接收机接收到的复数型信号1+j+A中,实部信号(1+A)与发射机生成的信号A相关,而虚部信号(1)与发射机生成的信号A无关,接收机对复数型信号的虚部信号的功率检测造成了能量的浪费,因此,接收机在功率检测时的能量浪费率较大。且由于接收机接收到的信号中仅仅实部信号与发射机发出的信号相关,使得接收机接收到的信号的功率 (2A)较低。
而本发明实施例中,由于接收机接收到的信号中的实部信号(1+A)与虚部信号(1+A)均与发射机生成的信号A相关,因此,接收机接收到的信号的功率较高,且本发明实施例中的接收机接收到的信号的光功率4A为相关技术中接收机接收到的信号的光功率2A的两倍。
图14为本发明实施例提供的一种接收机接收到的信号的实部信号检测示意图,图15为本发明实施例提供的一种接收机接收到的信号的虚部信号检测示意图,图16为相关技术提供的一种接收机接收到的信号的实部信号检测示意图,图17为相关技术提供的一种接收机接收到的信号的虚部信号检测示意图。需要说明的是,图14、图15、图16和图17中的横轴为相对时域(无量纲),单位为104,纵轴为信号的振幅,单位为伏特。
如图14和图15所示,本发明实施例中接收机接收到的复数型信号的实部信号和虚部信号均含有较多的有效信息,均与发射机生成的实数型信号相关。如图16和图17所示,相关技术中的接收机接收到的复数型信号中,仅仅实部信号含有较多的有效信息,而虚部信号仅仅含有较多的噪声信息,接收机接收到的复数型信号的实部信号与发射机生成的实数型信号相关,而虚部信号与发射机生成的实数型信号无关。
进一步的,由于本发明实施例中接收机接收到的复数型信号的信息量较多,所以,本发明实施例中接收机接收到的复数型信号的信噪比较大。图18为本发明实施例提供的另一种SNR波形示意图,该波形示意图中的横轴可以为基载波的相对频率,纵轴为信号的SNR。如图18所示,当基载波的相对频率相同时,本发明实施例中接收机接收到的信号U的信噪比,大于相关技术中接收机接收到的信号V的信噪比。
综上所述,由于本发明实施例提供的信号发射方法中,信号发射装置在生成实数型信号后,还对该实数型信号进行了相位旋转处理,得到了复数型信号,并通过光纤向接收机发出的信号为复数型信号。且在光纤中传输时复数型信号不会变化信号类型,接收机接收到的复数型信号中,实部信号和虚部信号均与信号发射装置发射的信号相关,从而使得接收机对接收到的实部信号以及虚部信号的功率检测均不会造成能量的浪费,所以,减少了接收机在功率检测时的能量浪费率。
本发明实施例提供的信号发射方法实施例、信号发射装置实施例以及信号传输系统实施例可以互相参考,本发明实施例在此不做赘述。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种信号发射方法,其特征在于,用于信号发射装置,所述方法包括:
    生成实数型信号;
    对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数型信号的实部信号的值与虚部信号的值相等;
    通过光纤向接收机发射所述复数型信号。
  2. 根据权利要求1所述的方法,其特征在于,所述信号发射装置包括:串联的业务数据源、相位旋转器和电光调制器,
    所述生成实数型信号,包括:
    通过所述业务数据源生成实数型信号;
    所述对所述实数型信号进行相位旋转处理,得到复数型信号,包括:
    通过所述相位旋转器对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数型信号的实部信号的值与虚部信号的值相等;
    所述通过光纤向接收机发射所述复数型信号,包括:
    通过所述电光调制器和光纤向接收机发射所述复数型信号。
  3. 根据权利要求2所述的信号发射方法,其特征在于,
    所述信号发射装置还包括:串联在所述相位旋转器与所述电光调制器之间的色散预补偿器,所述色散预补偿器包括:串联的快速傅里叶变换FFT模块、色散预补偿模块和第一快速傅里叶逆变换IFFT模块,
    在通过所述电光调制器和光纤向接收机发射所述复数型信号之前,所述方法还包括:
    通过所述FFT模块对所述复数型信号进行FFT处理;
    通过所述色散预补偿模块对FFT处理后的复数型信号进行色散预补偿处理;
    通过所述第一IFFT模块对色散预补偿处理后的复数型信号进行第一IFFT处理;
    通过所述电光调制器和光纤向接收机发射所述复数型信号,包括:
    通过所述电光调制器和光纤向所述接收机发射第一IFFT处理后的复数型信号。
  4. 根据权利要求2所述的信号发射方法,其特征在于,所述电光调制器包括:串联的双输出数模转换器DAC和双边带调制模块,通过所述电光调制器和光纤向接收机发射所述复数型信号,包括:
    通过所述双输出DAC对所述复数型信号进行处理,得到所述复数型信号的实部信号和虚部信号;
    通过所述双输出DAC分别从所述双输出DAC的两个输出端将所述实部信号和虚部信号发射至双边带调制模块;
    通过所述双边带调制模块对所述实部信号和所述虚部信号进行调制处理,得到双边带复数型信号;
    通过所述双边带调制模块和所述光纤向所述接收机发射所述双边带复数型信号。
  5. 根据权利要求4所述的信号发射方法,其特征在于,所述双边带调制模块为正交马赫-曾德尔调制器IQMZM,所述IQMZM包括:第一马赫-曾德尔调制器MZM、第二MZM和第三MZM,
    所述双输出DAC的两个输出端分别与所述第一MZM和所述第二MZM串联,所述第一MZM与所述第二MZM并联,且所述第一MZM与所述第二MZM均与所述第三MZM串联,所述第三MZM通过光纤与所述接收机相连接;
    所述第一MZM的偏置端的偏置量、所述第二MZM的偏置端的偏置量以及所述第三MZM的偏置端的偏置量均为
    Figure PCTCN2017071437-appb-100001
  6. 根据权利要求4所述的信号发射方法,其特征在于,所述双边带调制模块为双驱动马赫-曾德尔调制器DDMZM,所述DDMZM包括:第一相位调制器PM和第二PM,
    所述双输出DAC的两个输出端分别与所述第一PM和所述第二PM串联,所述第一PM与所述第二PM并联,且均通过光纤与所述接收机相连接;
    所述第一PM的偏置端的偏置量和所述第二PM的偏置端的偏置量均为
    Figure PCTCN2017071437-appb-100002
  7. 根据权利要求5或6所述的信号发射方法,其特征在于,
    每个所述输出端与串联的调制器之间,均串联有线性驱动放大器和衰减器中的至少一个。
  8. 根据权利要求2所述的信号发射方法,其特征在于,所述业务数据源包括:串联的伪随机序列PRBS信号产生模块、映射模块、串并转换模块、补零模块、p点IFFT模块、循环前缀添加模块和并串转换模块,所述p为2的q次方,所述q为大于或等于1的整数,所述通过所述业务数据源生成实数型信号,包括:
    通过所述PRBS信号产生模块生成2m×n个PRBS信号,所述m和n均为大于或等于1的整数;
    通过所述映射模块将所述2m×n个PRBS信号进行映射处理,得到映射信号;
    通过所述串并转换模块对所述映射信号进行串并转换处理,得到2m个频域信号,所述2m个频域信号包括:m个正频信号和m个负频信号,所述m个正频信号与所述m个负频信号一一共轭;
    通过所述补零模块对所述2m个频域信号进行补零处理,得到p个频域信号;
    通过所述p点IFFT模块对所述p个频域信号进行p点IFFT处理,得到p个时域信号;
    通过所述循环前缀添加模块为所述p个时域信号添加循环前缀,得到抗色散信号;
    通过所述并串转换模块对所述抗色散信号进行并串转换处理,得到所述实数信号。
  9. 一种信号发射装置,其特征在于,所述信号发射装置包括:串联的业务数据源、相位旋转器和电光调制器,
    所述业务数据源用于生成实数型信号;
    所述相位旋转器用于对所述实数型信号进行相位旋转处理,得到复数型信号,所述复数 型信号的实部信号的值与虚部信号的值相等;
    所述电光调制器用于通过光纤向接收机发射所述复数型信号。
  10. 根据权利要求9所述的信号发射装置,其特征在于,
    所述信号发射装置还包括:串联在所述相位旋转器与所述电光调制器之间的色散预补偿器,所述色散预补偿器包括:串联的FFT模块、色散预补偿模块和第一IFFT模块,
    所述FFT模块用于对所述复数型信号进行FFT处理;
    所述色散预补偿模块用于对FFT处理后的复数型信号进行色散预补偿处理;
    所述第一IFFT模块用于对色散预补偿处理后的复数型信号进行第一IFFT处理;
    所述电光调制器用于通过光纤向所述接收机发射第一IFFT处理后的复数型信号。
  11. 根据权利要求9所述的信号发射装置,其特征在于,所述电光调制器包括:串联的双输出DAC和双边带调制模块,
    所述双输出DAC用于对所述复数型信号进行处理,得到所述复数型信号的实部信号和虚部信号;
    所述双输出DAC还用于分别从所述双输出DAC的两个输出端将所述实部信号和虚部信号发射至双边带调制模块;
    所述双边带调制模块用于对所述实部信号和所述虚部信号进行调制处理,得到双边带复数型信号;
    所述双边带调制模块用于通过所述光纤向所述接收机发射所述双边带复数型信号。
  12. 根据权利要求11所述的信号发射装置,其特征在于,所述双边带调制模块为IQMZM,所述IQMZM包括:第一MZM、第二MZM和第三MZM,
    所述双输出DAC的两个输出端分别与所述第一MZM和所述第二MZM串联,所述第一MZM与所述第二MZM并联,且所述第一MZM与所述第二MZM均与所述第三MZM串联,所述第三MZM通过光纤与所述接收机相连接;
    所述第一MZM的偏置端的偏置量、所述第二MZM的偏置端的偏置量以及所述第三MZM的偏置端的偏置量均为
    Figure PCTCN2017071437-appb-100003
  13. 根据权利要求11所述的信号发射装置,其特征在于,所述双边带调制模块为DDMZM,所述DDMZM包括:第一PM和第二PM,
    所述双输出DAC的两个输出端分别与所述第一PM和所述第二PM串联,所述第一PM与所述第二PM并联,且均通过光纤与所述接收机相连接;
    所述第一PM的偏置端的偏置量和所述第二PM的偏置端的偏置量均为
    Figure PCTCN2017071437-appb-100004
  14. 根据权利要求12或13所述的信号发射装置,其特征在于,
    每个所述输出端与串联的调制器之间,均串联有线性驱动放大器和衰减器中的至少一个。
  15. 根据权利要求9所述的信号发射装置,其特征在于,所述业务数据源包括:串联的PRBS信号产生模块、映射模块、串并转换模块、补零模块、p点IFFT模块、循环前缀添加模块和并串转换模块,所述p为2的q次方,q为大于或等于1的整数,
    所述PRBS信号产生模块用于生成2m×n个PRBS信号,所述m和n均为大于或等于1的整数;
    所述映射模块用于将所述2m×n个PRBS信号进行映射处理,得到映射信号;
    所述串并转换模块用于对所述映射信号进行串并转换处理,得到2m个频域信号,所述2m个频域信号包括:m个正频信号和m个负频信号,所述m个正频信号与所述m个负频信号一一共轭;
    所述补零模块用于对所述2m个频域信号进行补零处理,得到p个频域信号;
    所述p点IFFT模块用于对所述p个频域信号进行p点IFFT处理,得到p个时域信号;
    所述循环前缀添加模块用于为所述p个时域信号添加循环前缀,得到抗色散信号;
    所述并串转换模块用于对所述抗色散信号进行并串转换处理,得到所述实数信号。
  16. 一种发射机,其特征在于,所述发射机包括权利要求9至15任一所述的信号发射装置。
  17. 一种信号传输系统,其特征在于,所述信号传输系统包括:发射机、光纤和接收机,所述发射机包为权利要求16所述的发射机。
PCT/CN2017/071437 2017-01-17 2017-01-17 信号发射方法及装置、发射机、信号传输系统 WO2018132950A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17892294.4A EP3562067A4 (en) 2017-01-17 2017-01-17 SIGNAL TRANSMISSION METHOD AND DEVICE, TRANSMITTER AND SIGNAL TRANSMISSION SYSTEM
CN201780083698.XA CN110178321B (zh) 2017-01-17 2017-01-17 信号发射方法及装置、发射机、信号传输系统
PCT/CN2017/071437 WO2018132950A1 (zh) 2017-01-17 2017-01-17 信号发射方法及装置、发射机、信号传输系统
US16/510,418 US10944475B2 (en) 2017-01-17 2019-07-12 Signal transmitting method and apparatus, transmitter, and signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071437 WO2018132950A1 (zh) 2017-01-17 2017-01-17 信号发射方法及装置、发射机、信号传输系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/510,418 Continuation US10944475B2 (en) 2017-01-17 2019-07-12 Signal transmitting method and apparatus, transmitter, and signal transmission system

Publications (1)

Publication Number Publication Date
WO2018132950A1 true WO2018132950A1 (zh) 2018-07-26

Family

ID=62907667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071437 WO2018132950A1 (zh) 2017-01-17 2017-01-17 信号发射方法及装置、发射机、信号传输系统

Country Status (4)

Country Link
US (1) US10944475B2 (zh)
EP (1) EP3562067A4 (zh)
CN (1) CN110178321B (zh)
WO (1) WO2018132950A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690026A (zh) * 2018-08-09 2021-04-20 Lg 电子株式会社 在无线通信系统中发送/接收信号的方法及支持其的设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131122B (zh) * 2019-12-31 2022-10-18 武汉邮电科学研究院有限公司 基于dmt调制和拍频检测的光传输系统均衡方法及装置
CN113595640B (zh) * 2020-04-30 2023-06-27 华为技术有限公司 一种信号处理方法及装置
CN112564816B (zh) * 2020-11-04 2022-03-08 中山大学 一种基于时域迭代的单边带信号恢复算法
CN112804007B (zh) * 2021-04-13 2021-08-31 网络通信与安全紫金山实验室 面向光载无线通信系统的双信号调制和解调方法及装置
CN115225086B (zh) * 2022-05-09 2023-03-14 成都动力比特科技有限公司 一种基于非均匀采样的模拟数字转换装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972161A (zh) * 2005-11-25 2007-05-30 阿尔卡特公司 用于dqpsk调制信号的光纤传输系统、发射机和接收机及方法
CN101622845A (zh) * 2007-01-05 2010-01-06 高通股份有限公司 用于活动式if架构的i/q校准
US20130077979A1 (en) * 2011-09-26 2013-03-28 Fujitsu Limited Nonlinear compensating apparatus and method and transmitter
CN103873424A (zh) * 2012-12-12 2014-06-18 中兴通讯股份有限公司 一种适用于正交频分多址无源光网络的系统、设备及调制解调方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896287A (en) * 1988-05-31 1990-01-23 General Electric Company Cordic complex multiplier
JPH0983588A (ja) * 1995-09-18 1997-03-28 Mitsubishi Electric Corp 復調器及び変復調システム及び復調方法
AU2002214922A1 (en) * 2000-08-31 2002-04-08 Huawei Technologies Co., Ltd. Method and apparatuses of 8psk modulation
US7263150B2 (en) * 2001-03-20 2007-08-28 Advantest Corp. Probability estimating apparatus and method for peak-to-peak clock skews
US6967976B2 (en) 2002-08-29 2005-11-22 Picarro, Inc. Laser with reflective etalon tuning element
JP4641233B2 (ja) * 2005-09-14 2011-03-02 ルネサスエレクトロニクス株式会社 復調装置及び復調方法
US9014574B2 (en) * 2011-03-02 2015-04-21 Nec Corporation Optical receiver, polarization demultiplexer, and optical receiving method
US8983309B2 (en) * 2012-02-13 2015-03-17 Ciena Corporation Constrained continuous phase modulation and demodulation in an optical communications system
KR20140093099A (ko) * 2013-01-17 2014-07-25 한국전자통신연구원 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
US9749047B2 (en) * 2014-04-23 2017-08-29 Industry-Academic Foundation, Yonsei University Optical network unit capable of reducing optical beat interference and method for controlling the same
JP6651697B2 (ja) * 2015-01-26 2020-02-19 株式会社ソシオネクスト 電子回路、電源回路、回路の特性測定方法、及び振幅及び位相特性の演算プログラム
CN105530054B (zh) * 2015-12-14 2018-03-20 武汉邮电科学研究院 基于ask和dbpsk的强度调制相干检测系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972161A (zh) * 2005-11-25 2007-05-30 阿尔卡特公司 用于dqpsk调制信号的光纤传输系统、发射机和接收机及方法
CN101622845A (zh) * 2007-01-05 2010-01-06 高通股份有限公司 用于活动式if架构的i/q校准
US20130077979A1 (en) * 2011-09-26 2013-03-28 Fujitsu Limited Nonlinear compensating apparatus and method and transmitter
CN103873424A (zh) * 2012-12-12 2014-06-18 中兴通讯股份有限公司 一种适用于正交频分多址无源光网络的系统、设备及调制解调方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562067A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690026A (zh) * 2018-08-09 2021-04-20 Lg 电子株式会社 在无线通信系统中发送/接收信号的方法及支持其的设备
CN112690026B (zh) * 2018-08-09 2023-08-25 Lg 电子株式会社 在无线通信系统中发送/接收信号的方法及支持其的设备

Also Published As

Publication number Publication date
US20190334620A1 (en) 2019-10-31
EP3562067A4 (en) 2019-12-25
CN110178321B (zh) 2021-05-18
CN110178321A (zh) 2019-08-27
EP3562067A1 (en) 2019-10-30
US10944475B2 (en) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2018132950A1 (zh) 信号发射方法及装置、发射机、信号传输系统
Bo et al. Toward practical Kramers-Kronig receiver: Resampling, performance, and implementation
Shi et al. Transmission performance comparison for 100-Gb/s PAM-4, CAP-16, and DFT-S OFDM with direct detection
Nguyen et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM
US20090067833A1 (en) Method and arrangement for transmitting an optical ofdm-signal
US9641374B2 (en) Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
Shi et al. 200-Gbps DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-volterra equalizer
Zhou et al. Transmission of 100-Gb/s DSB-DMT over 80-km SMF using 10-G class TTA and direct-detection
Peng et al. Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion
JP2010041706A (ja) 光直交周波数分割多重信号の位相変調方法及び装置
Nunes et al. Experimental validation of a constant-envelope OFDM system for optical direct-detection
Bo et al. Generation of broadband optical SSB signal using dual modulation of DML and EAM
WO2014155775A1 (ja) 信号処理装置、光通信システム、及び信号処理方法
CN111130650A (zh) 强度调制直接接收的光信号生成方法、接收方法及设备
Wang et al. Photonic filterless scheme to generate V-band OFDM vector mm-wave signal without precoding
Ouyang et al. Experimental demonstration of 112 Gbit/s orthogonal chirp-division multiplexing based on digital up-conversion for IM/DD systems with improved resilience to system impairments
Peng et al. Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques
Wang et al. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding
US11108468B2 (en) Optical transmitter, optical receiver and communication system
WO2017070949A1 (zh) 光通信系统中处理信号的装置和方法
Zhang et al. Performance improvement of optical OFDMA-PON using data clipping and additional phases
JP4864910B2 (ja) 光通信装置、システム及び光通信方法
Yu et al. Dispersion tolerant 66.7-Gb/s SEFDM IM/DD transmission over 77-km SSMF
Yang et al. Transmission of 64-Gb/s pilot-assisted PAM-4 signal over 1440-km SSMF with phase noise mitigation
Wang et al. FPGA-based layered/enhanced ACO-OFDM transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892294

Country of ref document: EP

Effective date: 20190723