WO2018131890A1 - Poly(lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using same - Google Patents

Poly(lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using same Download PDF

Info

Publication number
WO2018131890A1
WO2018131890A1 PCT/KR2018/000488 KR2018000488W WO2018131890A1 WO 2018131890 A1 WO2018131890 A1 WO 2018131890A1 KR 2018000488 W KR2018000488 W KR 2018000488W WO 2018131890 A1 WO2018131890 A1 WO 2018131890A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
cells
pancreatic islet
drug
plga
Prior art date
Application number
PCT/KR2018/000488
Other languages
French (fr)
Korean (ko)
Inventor
정지헌
응웬티엔티엡
팜탄텅
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority claimed from KR1020180003155A external-priority patent/KR102080689B1/en
Publication of WO2018131890A1 publication Critical patent/WO2018131890A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to poly (lactic-co-glycolic acid) microspheres coated with polydopamine, a method of cell surface modification using the microspheres, and a diabetes treatment using cells surface-modified with the microspheres.
  • Diabetes diabetes mellitus, DM is a disease characterized by hyperglycemic symptoms and complications caused by abnormal insulin secretion of pancreatic ⁇ -cells or abnormal receptors on insulin action organs or organs.
  • exercise therapy and diet are mainly performed along with insulin injection therapy, but there are limitations in the treatment such as inability to cure and the risk of complications still exists.
  • pancreas transplantation has the advantage that in vitro manipulation such as in vitro culture of isolated pancreatic islet cells is possible.
  • in vitro manipulation such as in vitro culture of isolated pancreatic islet cells is possible.
  • infinite pancreatic islet cells can be supplied using pigs, etc., and transplantation can be easily performed without complications due to a relatively simple procedure.
  • pancreatic islet cell transplantation requires minimizing pancreatic islet cell damage during the development and isolation of effective pancreatic islet cells, and cell damage caused by nonspecific inflammatory processes during transplantation and engraftment failure. Problems such as minimizing, overcoming cellular damage due to immune responses occurring after transplantation, and securing pancreatic islet cell sources should be addressed.
  • the initial inflammatory response after pancreatic islet cell transplantation causes functional incompatibility or destruction of pancreatic islet cells due to cell necrosis and apoptosis, and thus, pancreatic islet cells must be transplanted with a larger amount of pancreatic islet cells than are actually necessary. .
  • Macro encapsulation is a concept that uses a hydrogel structure for grafting of transplanted pancreatic islet cells. Although this method is very simple, a large amount of hydrogel causes hypoxia in transplanted cells due to a lack of blood vessel regeneration, and as a result, pancreatic islet cells transplanted subcutaneously exhibit blood glucose fluctuations.
  • pancreatic islet cells are small in size and can be transplanted to various sites such as portal and kidney capsules.
  • pancreatic islet cells are transplanted into the portal vein, the transplanted pancreatic islet cells are directly exposed to the blood, causing blood coagulation around the pancreatic islet cells due to activation of the blood coagulation system such as platelets and complement and rapidly destroying the pancreatic islet cells.
  • An instant blood mediated inflammatory reaction may occur.
  • pancreatic islet cell transplantation an efficient method for surface modification of pancreatic islet cells and a method for suppressing a nonspecific immune response are needed.
  • An object of the present invention is a microsphere coated with polydopamine and made of a poly (lactic-co-glycolic acid) (PLGA) polymer and encapsulating a drug or bioactive substance in the microsphere. It is to provide a microsphere characterized in that.
  • PLGA poly (lactic-co-glycolic acid)
  • Another object of the present invention is to provide a method for producing the microspheres and cell surface modification method using the microspheres.
  • Still another object of the present invention is to provide a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microspheres as an active ingredient.
  • the present invention is microspheres coated with polydopamine and made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or physiology in the microspheres It provides a microsphere characterized in that the active material is encapsulated.
  • PLGA poly (lactic-co-glycolic acid)
  • the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine It provides a method for producing a microsphere comprising a second step of reacting the solution and a third step of obtaining a PLGA microsphere coated with polydopamine by centrifuging the reacted reactant.
  • the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine
  • the second step of reacting the solution the third step of obtaining the PLGA microspheres coated with polydopamine by centrifugation of the reacted reactant and the cells of the polydopamine-coated PLGA microspheres are reacted to modify the surface of the cells. It provides a cell surface modification method comprising the fourth step.
  • the present invention provides a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microsphere as an active ingredient.
  • the present invention relates to a method for modifying a cell surface such as pancreatic islet cells using poly (lactic-co-glycolic acid) microspheres coated with polydopamine, which is simpler than a conventional cell surface modification method.
  • Targeted drug encapsulation is possible to prolong drug release around the microenvironment of the cell and deliver several types of drugs or bioactive agents, such as immunosuppressants or anticoagulants, to achieve multiple effects.
  • the cell surface modification method of the present invention having the above effect has the advantage of improving the transplantation rate of cells, and reduce the non-specific immune response can be utilized as a novel cellular drug delivery system.
  • Figure 1 (A) is a schematic diagram showing a method of surface modification of pancreatic islet cells using poly (lactic-co-glycolic acid) microspheres coated with polydopamine
  • Figure 1 (B) is a micro-dopamin coated micro Schematic representation of the binding mechanism between the quinone group of polydopamine in spear and the amine group of extracellular collagen matrix on the surface of pancreatic islets.
  • Figure 2 schematically shows the effect of pancreatic islet cell modification using PLGA microspheres coated with an immunosuppressant (FK506) and coated with polydopamine.
  • Figure 3 shows the characteristics of PLK microspheres loaded with FK506 (a) scanning electron microscopy (SEM) images, (b) X-ray powder diffraction analysis (XRD) spectra and (c) Fourier transform infrared spectroscopy (FT-IR) It was confirmed by spectrum.
  • SEM scanning electron microscopy
  • XRD X-ray powder diffraction analysis
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 4 shows the characteristics of polygapamine-coated PLGA microspheres in (ab) SEM images according to dopamine oxidation time (1 hour and 7 hours), and (c) in microspheres coated with polydopamine at 1 hour dopamine oxidation time.
  • FIG. 5 shows the relative fluorescence intensity of unmodified pancreatic islet cells and modified pancreatic islet cells in (a) fluorescence images, (b) confocal images, (c) pancreatic islet cells modified with pD-Cou / M, and (d) It was confirmed by SEM image.
  • Figure 6 shows the stability of microspheres over time on the surface of pancreatic islet cells by (a) SEM image and (b) confocal image.
  • FIG. 7 shows the survival and function of microspheres modified pancreatic islet cells (a) survival / kill assay, (b) CCK-8 assay, (c) western blot, (de) glucose stimulated insulin secretion (GSIS) assay and It is confirmed by the value of the stimulus index (SI).
  • IPGTT intraperitoneal glucose tolerance test
  • the inventors of the present invention have developed a method for surface modification of pancreatic islet cells using poly (lactic-co-glycolic acid) (PLGA) microspheres coated with polydopamine. It was confirmed that the quinone group interacted with the amine group of the extracellular collagen matrix surrounding the pancreatic islet cells, and that the pancreatic islet cells modified with the polygapamine coated PLGA microspheres showed no human toxicity.
  • the present invention has been completed.
  • the present invention is coated with polydopamine (polydopamine) and encapsulated microspheres made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or bioactive material in the microspheres It provides a microsphere characterized in that.
  • polydopamine polydopamine
  • encapsulated microspheres made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or bioactive material in the microspheres It provides a microsphere characterized in that.
  • the average diameter of the microspheres may be 1 to 1000 ⁇ m, but is not limited thereto.
  • the drug or bioactive material may be one or more selected from the group consisting of immunosuppressants, anticoagulants, anti-inflammatory agents, antioxidants and hormones, but is not limited thereto.
  • the drug or bioactive material may be provided in a form selected from the group consisting of chemicals, proteins, peptides, antibodies, genes, siRNA and microRNA, but is not limited thereto.
  • the immunosuppressive agent is Tacrolimus, Cyclosporin, Sirolimus, Everolimus, Ridaforolimus, Temsirolimus, Temsirolimus, Thysirolimus Umirolimus, Zotarolimus, Leflunomide, Methotrexate, Rituximab, Ruplizumab, Daclizumab, Daclizumab, Abatacept and It may be one or more selected from the group consisting of Bellatacept, but is not limited thereto.
  • the anticoagulant may include argatroban, coumarin, heparin, low molecular weight heparin, hirudin, dabigatran, Melagatran, Clopidogrel, Ticlopidine and Abxisimab (Abciximab) may be one or more selected from the group consisting of, but not limited to.
  • the anti-inflammatory agent is acetoaminephene, aspirin, ibuprofen, dicrofenac, indomethacin, pyroxicam, phenopropene, flubiprofen, ketoprofen, naproxen, supropene, roxofero It may be, but is not limited to, one or more selected from the group consisting of pens, synoxycamps and tenoxycamps.
  • the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine It provides a method for producing a microsphere comprising a second step of reacting the solution and a third step of obtaining a PLGA microsphere coated with polydopamine by centrifuging the reacted reactant.
  • the second step may include, but is not limited to, adding the polymer suspension of the PLGA microspheres and the dopamine solution in a volume ratio of 1: 1.5 to 3.
  • the second step may be carried out for 30 minutes to 2 hours at a condition of 15 to 40 °C, pH 8 to 9, but is not limited thereto.
  • the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine A second step of reacting the solution, a third step of obtaining the PLGA microspheres coated with polydopamine by centrifugation of the reacted reactants, and a reaction of the cells with the PLGA microspheres coated with polydopamine to modify the cell surface.
  • a cell surface modification method comprising the fourth step.
  • the fourth step of cells is not limited to specific cells, pancreatic islet cells, stem cells, hepatocytes, fibroblasts, lymphocytes, vascular endothelial cells, neurons, enamel cells, keratinocytes, adipocytes, osteoblasts
  • the fourth step may be repeated 2 to 5 times at 5 to 15 minutes at 15 to 40 °C, but is not limited thereto.
  • the present invention provides a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microsphere as an active ingredient.
  • the pharmaceutical composition may be transplanted in various ways depending on the site of transplantation, and may be transplanted to any site in the living body such as liver, kidney, stomach, abdominal cavity, testes, eye, and bone marrow subcutaneous.
  • An effective amount of the active ingredient of the pharmaceutical composition means an amount required for the treatment of the disease.
  • the type of disease, the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, weight, general health, sex and diet, sex and diet, time of administration, route of administration and composition of the patient may be adjusted according to various factors including, but not limited to, the rate of secretion, the duration of treatment, and the drug used concurrently.
  • Collagenase P was purchased from Roche (Roche diagnostic GmBH, Mainheim, Germany) and dichloromethane (DCM) was purchased from Junsei, Korea.
  • Fetal bovine albumin (FBS) and phosphate buffered saline (PBS) were purchased from Hyclone, and the live / dead cell viability / cytotoxicity assay kit Life Technologies, Oregon, USA and CCK-8 (cell counting kit-8) were purchased from Dojindo Laboratories, Japan.
  • PLGA microspheres were prepared using solvent-evaporation. Briefly, 40 mg PLGA was dissolved in 0.5 ml of dichloromethane, then 5 ml of 1% PVA was added and at 17,400 rpm using a homogenizer (homogenizer, T25 digital ULTRA-TURRAX ® , IKA-Werke GmbH & Co. KG). Homogenized for 5 minutes. Next, 10 ml of 1% PVA was added to the obtained emulsion to stabilize, and stirred for 4 hours to completely evaporate the solvent. Thereafter, microspheres were obtained by washing and centrifuging five times with deionized water, and the obtained microspheres were freeze-dried and stored at -20 ° C.
  • homogenizer homogenizer, T25 digital ULTRA-TURRAX ® , IKA-Werke GmbH & Co. KG. Homogenized for 5 minutes.
  • 10 ml of 1% PVA was added to the obtained emulsion to stabilize, and stir
  • FK506-encapsulated microspheres FK506-M
  • FK506-M FK506-encapsulated microspheres
  • FK506 was encapsulated in various dosages using various types of PLGA.
  • DLG 4A LA: GA 50:50, acid-terminated, Evonik
  • M (F3) and M (F4) were prepared for the purpose of extending the release time of FK506 using PLGA polymers with similar drug loading capacity as M (F1) (3.36 ⁇ 0.05% and 3.31 ⁇ 0.07%).
  • M (F1) 3.36 ⁇ 0.05% and 3.31 ⁇ 0.07%
  • PLGA microspheres were filled with 1.5% of coumarine-6, a fluorescent substance (Cou-M), and a confocal laser scanning microscope. It was analyzed using.
  • the PLGA microspheres were analyzed by a scanning electron microscope, and the average diameter was 1 to 8 ⁇ m, and the size of the microspheres was found to be well controlled when FK506 was enclosed. However, as can be seen from M (F2), it was observed that the high drug loading content darkens the particle surface and changes the surface roughness.
  • the characteristics of the polygapamine-coated PLGA microspheres were analyzed, and the dopamine reaction time was important among the variables affecting the properties.
  • the experiment was conducted for 1 to 7 hours while maintaining the final concentration of dopamine at 1 mg / ml. Was performed.
  • the increase in the reaction time increased the amount of unconjugated polydopamine nanoparticles, it was confirmed to have a particle size of 100 to 200 ⁇ m.
  • the nanoparticles are thought to interfere with the reaction between microspheres and pancreatic islet cells. Therefore, the problem can be solved by applying the reaction time to 1 hour.
  • FT-IR Fourier transform infrared
  • Nicolet Nexus 670 FT-IR spectrometer Thermo Fisher Scientific Inc., Waltham, Mass., USA
  • X-ray powder diffraction analysis (X-ray powder) using an X'Pert PRO MPD diffractometer (PANalytical, Almelo, the Netherlands) to analyze the phase state of the FK506 enclosed in PLGA microspheres diffraction, XRD).
  • the FK506 has a highly crystallized structure with sharp peaks from 10 ° to 30 °, whereas once enclosed into the microspheres it is molecularly dispersed without observing any peaks in the spectrum. Confirmed.
  • FT-IR confirmed the presence of polydopamine conjugated to the cell surface in the polysphere coated with polydopamine.
  • the polydopamine spectrum showed a broad peak in the range of 3500 to 3000 cm ⁇ 1 .
  • the stretching vibration of the hydroxyl group (-OH) was observed, whereas the spectrum of the microspheres coated with polydopamine confirmed that the stretching vibration of the hydroxyl group was not observed.
  • the spectra of polydopamine and polydopamine coated microspheres showed peaks in the 2400 to 2250 cm ⁇ 1 range. From the above results, it was confirmed that the polydopamine was physically bonded to the microspheres.
  • the tube was replaced with another 50 ml tube containing 5 ml of release medium to allow liquid to pass from both sides of the membrane, and was shaken using a shake incubator (SI-64, 150; Hanyang Scientific Equipment Co., Ltd, Republic of Korea) 37 Incubated at °C. After some time, the effluent solution in the ultracentrifuge tube was centrifuged to separate from the particles and concentrated to analyze the FK506 concentration. Experiments were performed by filling fresh tubes with tubes to maintain sink conditions for drug release.
  • pancreatic islet cells were isolated using collagenase type P.
  • Pancreatic islet cells were composed of 10% fetal bovine serum (FBS, Gibco), 2 mM sodium bicarbonate, 11 mM glucose (Sigma), 6 mM HEPES and 1% penicillin / streptomycin, Invitrogen Co., Carlsbad, Calif.) was cultured in RPMI-1640 medium. Animal experiments were approved by the Institutional Review Board of Yeungnam University.
  • pancreatic islet cells were obtained by washing twice with HBSS (pH 8.0) and centrifuging for 1 minute at 1,000 rpm.
  • HBSS pH 8.0
  • the coating efficiency was evaluated by two culture methods. The first method is to incubate cells with microspheres three times continuously for 1 hour or 10 minutes in succession, and the second method is to remove unconjugated microspheres by washing with HBSS before the next incubation.
  • microsphere-conjugated pancreatic islet cells were cultured for 24 days and observed by scanning electron microscopy and confocal laser scanning microscopy.
  • the optimal conditions for conjugating microspheres to the pancreatic islet cell surface are as follows: (1) Microsphere coating step: 1 mg / ml dopamine, 1 hour oxidation time; (2) Conjugation of pancreatic islet cells: microsphere concentration 2 mg / ml, incubation time 10 minutes, repeated 3 times.
  • microspheres were observed on the surface of pancreatic islets until day 7. As observed in the SEM image, the microspheres disappeared from the surface of the pancreatic islets after 14 days, but were detected with high density in the confocal microscope laser scanning image.
  • pancreatic islet cells 150 IEQ
  • pD-M polydopamine coated microspheres
  • the instrument used an Agilent 1260 Infinity HPLC system (Agilent Technologies, Santa Clara, Calif.) And an API-400 mass spectrometer (AB SCIEX, Framingham, Mass.).
  • Chromatographic separations consisted of an Atlatis® dC18 column (2.1 x 150 mm, 3 ⁇ m; Water Corporations, Milford, Mass.) And a mobile phase consisting of acetonitrile (A) and an aqueous buffer containing 2 mM ammonium acetate and 0.1% formic acid (B). It was performed using. The gradient started at 90% A and changed from 2.5 minutes to 10.5 minutes to 5% A and from 10.5 to 16.0 minutes to 90%. The flow rate was set to 250 ⁇ l / min and the column temperature to 60 ° C. Electrospray ionization was performed in cation mode. Nitrogen was used as the sheath gas and auxiliary gas in the elecrospray source. Tandem mass spectrometry was performed in mulitple reaction monitoring (MRM) mode. Decelerating potential (DP), collision energy (CE) and collision cell exit potential (CXP) were 81, 29 and 22, respectively.
  • MRM mulitple reaction monitoring
  • pancreatic islet cells were analyzed using CCK-8 analysis. Briefly, 100 ⁇ l of pancreatic islet cells suspended in RPMI medium were placed in a 96 well plate (20 cells / well) and WST-8 [2- (2-methoxy-4-nitrophenyl) -3- ( 10 ⁇ l of 4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-etrazoium, monosodium salt] was treated. After 4 hours reaction, absorbance was measured at 450 nm and final data was analyzed by normalizing to the dsDNA content of each sample.
  • pancreatic islet cell viability was analyzed using a live / dead assay kit. Briefly, pancreatic islet cells are collected from the culture medium and washed, containing 0.67 ⁇ M of acridine orange (AO, Sigma) and 75 ⁇ M of propidium iodide PI (Sigma) in shaded condition. Reacted with HBSS for 10 minutes. Stained pancreatic islet cells were then observed under a fluorescence microscope. Acridine orange has cell permeability, so all nucleated cells are stained to give green fluorescence. PI only enters cells with dysfunctional cell membranes and stains dead and necrotic cells to show red fluorescence.
  • AO acridine orange
  • PI propidium iodide
  • FK506 is known to cause severe toxicity to many organs and cell types, including the pancreas.
  • conjugation processes that cause chemical and physical modifications can cause pancreatic islet cell dysfunction. Therefore, it was confirmed whether the FK506 delivery system affects the survival and function of pancreatic islet cells.
  • Experiments were performed using unmodified pancreatic islet cells (control), pancreatic islet cells modified with pD-M, pancreatic islet cells modified with pD-M (F1), and pancreatic islet cells modified with pD-M (F2). was performed.
  • pancreatic islet cells are alive in all groups, and referring to Figure 7b, the control group (100 ⁇ 11.55%) in CCK-8 analysis ),
  • the survival rate of pancreatic islet cells modified with pD-M, pancreatic islet cells modified with pD-M (F1) and pancreatic islet cells modified with pD-M (F2) were 103.22 ⁇ 7.32%, respectively. It was confirmed that it is 96.78 ⁇ 8.09% and 113.15 ⁇ 7.75%.
  • Bcl-2 and Bax expression levels of pancreatic islet cells did not show a significant difference between groups.
  • the modification of pancreatic islet cells using FK506-encapsulated, polydopamine-coated microspheres did not affect cell viability.
  • pancreatic islet cells modified with microspheres The function of pancreatic islet cells modified with microspheres was determined by the amount of insulin secreted from pancreatic islet cells using low glucose and high glucose Krebs-Ringer bicarbonate buffer (KRBB, pH 7.4) solution (Sigma, St. Louis, MO). Measured and evaluated. Briefly, pancreatic islet cells were washed twice and then pretreated with 1 ml of a low glucose KRBB solution at 2.8 mM concentration for 1 hour, followed by incubation with 1 ml of a new 2.8 mM low glucose KRBB solution for 2 hours, followed by 28 mM Incubated further with 1 ml of high glucose KRBB solution at 37 ° C for 2 hours.
  • KRBB low glucose and high glucose Krebs-Ringer bicarbonate buffer
  • Type 1 diabetes was induced by C57BL / 6 mice with a single intraperitoneal injection of streptozotocin (STZ) 200 mg / kg. After 3 days, mice with blood glucose levels of 350 mg / dl or more for 2 consecutive days were selected as diabetic mice. Mice were anesthetized by intraperitoneal injection of ketamine 80 mg / kg and xylazine 16 mg / kg, exposing the left kidney of the mouse to the lumbar incision and then using a 31 gauge needle to the bottom of the kidney. Made a small wound. The curved capillary was then inserted into the capsule and gently moved in all directions to create a pouch under the capsule containing the implant.
  • STZ streptozotocin
  • Microsphere-modified pancreatic islet cells or unmodified pancreatic islet cells (400 IEQ) included in cutdown tubing were transferred to Hamilton syringes (Hamilton company, Nevada, USA). It was injected into the bag. The wound was then cauterized carefully with low heat, then the kidneys were returned to the peritoneum and the incisions closed. Mice were allowed to consume water and feed autonomously during the experiment.
  • pancreatic islet cell transplantation After pancreatic islet cell transplantation, non-fasting blood glucose levels were measured in mouse tail veins using a handheld blood glucose meter (Contour TS, Bayer Healthcare LLC, IN, USA). Experiments were considered successful if blood glucose levels dropped below 200 mg / dl for two consecutive days, and transplanted pancreatic islet cells were considered to have rejected for two consecutive days above 200 mg / dl.
  • pD-M (F1) not only improved the graft survival rate, but also regulated blood glucose much better than pD-M (F2)
  • the content of FK506 in pD-M (F1) is pD- Only half of the FK506 content in M (F2) was 3.33 ⁇ 0.07% and 6.71 ⁇ 0.11%, respectively.
  • the level of FK506 released in pD-M (F2) was about three times higher than the FK506 level released in pD-M (F1).
  • the results indicate that high levels of FK506 released from pD-M (F2) may interfere with the survival and function of transplanted pancreatic islets.
  • FK506 released from pD-M (F1) was confirmed to be sufficient to protect the pancreatic islets cells from immune rejection without adversely affecting the pancreatic islets cells.
  • mice were allowed to ingest water freely, but fasted for 12 hours prior to intraperitoneal injection of glucose solution (2.0 g / kg) dissolved in saline. Blood glucose levels were measured and recorded at 0, 5, 10, 15, 20, 30, 45, 60, 90 and 120 minutes after injection. Normal mice and diabetic mice were used as controls.
  • IPGTT intraperitoneal glucose tolerance test
  • the blood glucose level of diabetic mice rapidly increased to 600 mg / dL or more after 10 minutes of high glucose administration, and maintained at 400 mg / dL or more at 120 minutes.
  • the pattern of change in blood glucose levels of normal mice and pancreatic islet cell recipients modified with pD-M (F1) was similar and increased to 15 minutes and gradually decreased to normal levels within 120 minutes.
  • pancreatic islet cells modified with pD-M (F1) and unmodified pancreatic islet cells do not show significant differences in function in vivo.
  • pancreatic islet cells modified with pD-M showed normal development by gaining weight, demonstrating the effect of the drug delivery system.

Abstract

The present invention relates to a method for modifying the surface of cells such as pancreatic islet cells by using poly(lactic-co-glycolic acid) microspheres coated with polydopamine. The present invention has a process simpler than that of conventional cell surface modification methods, enables the encapsulation of a large amount of a target drug so as to prolong drug release around the microenvironment of cells, and enables the simultaneous delivery of various types of drugs, such as immunosuppressants or anti-coagulants, or bioactive substances in order to achieve multiple effects. Therefore, the cell surface modification method, of the present invention, having the above effects, has advantages of improving cell transplantation rates and reducing nonspecific immune responses, thereby being usable as a novel cell pharmaceutical delivery system.

Description

폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) 마이크로스피어 및 이를 이용한 세포 표면 개질 방법Poly (lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using the same
본 발명은 폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) 마이크로스피어, 상기 마이크로스피어를 이용한 세포 표면 개질 방법 및 상기 마이크로스피어로 표면 개질된 세포를 이용한 당뇨병 치료에 관한 것이다.The present invention relates to poly (lactic-co-glycolic acid) microspheres coated with polydopamine, a method of cell surface modification using the microspheres, and a diabetes treatment using cells surface-modified with the microspheres.
당뇨병(diabetes mellitus, DM)은 췌장 β-세포의 인슐린 분비 이상이나 인슐린 작용기관 또는 장기의 수용체 이상 등으로 인한 고혈당 증상과 이에 따른 합병증을 특징으로 하는 질병이다. 당뇨병 치료를 위해 주로 인슐린 주사 요법과 함께 운동요법, 식이요법이 시행되고 있으나, 완치가 불가능하고 합병증 위험이 여전히 존재하는 등 치료에 한계가 있다.Diabetes (diabetes mellitus, DM) is a disease characterized by hyperglycemic symptoms and complications caused by abnormal insulin secretion of pancreatic β-cells or abnormal receptors on insulin action organs or organs. In order to treat diabetes, exercise therapy and diet are mainly performed along with insulin injection therapy, but there are limitations in the treatment such as inability to cure and the risk of complications still exists.
최근에는 췌장 이식 및 췌장 소도 세포 이식을 통한 당뇨병 치료가 시행되고 있는데, 췌장 이식의 경우 공여자의 절대 부족, 높은 수술 합병증, 지속적인 면역억제제 투여를 비롯한 이식 후 관리의 어려움 등의 문제점이 있다. 이에 비해, 췌장 소도 세포 이식은 분리한 췌장 소도 세포의 체외 배양 및 면역 조절 등의 시험관 내 조작이 가능하다는 장점이 있다. 또한, 이종 이식의 면역 반응이 극복될 경우 돼지 등을 이용한 무한한 췌장 소도 세포의 공급이 가능하고, 비교적 간편한 시술로 합병증 없이 쉽게 이식이 가능하다는 장점이 있다.Recently, diabetes treatment through pancreas transplantation and pancreatic islet cell transplantation has been carried out. In the case of pancreas transplantation, there are problems such as absolute shortage of donors, high surgical complications, and difficulty in post-transplantation management including continuous administration of immunosuppressive agents. In contrast, pancreatic islet cell transplantation has the advantage that in vitro manipulation such as in vitro culture of isolated pancreatic islet cells is possible. In addition, when the immune response of the xenotransplantation is overcome, infinite pancreatic islet cells can be supplied using pigs, etc., and transplantation can be easily performed without complications due to a relatively simple procedure.
그러나, 췌장 소도 세포 이식이 성공적으로 이루어지기 위해서는 효과적인 췌장 소도 세포의 분리법 개발 및 분리 과정에서 발생하는 췌장 소도 세포 손상의 최소화, 이식 과정에서 발생하는 비특이적 염증 과정에 의한 세포 손상과 이로 인한 생착 실패의 최소화, 이식 후 발생하는 면역 반응에 의한 세포 손상의 극복 및 췌장 소도 세포 공급원의 확보 등의 문제점이 선결되어야 한다. 특히, 췌장 소도 세포 이식 후 초기 염증 반응은 기능적인 부적합이나 세포 괴사 및 고사에 의한 췌장 소도 세포의 파괴를 초래하므로, 실제 필요한 췌장 소도 세포 보다 더 많은 양의 췌장 소도 세포를 이식해야만 하는 문제점이 있다.However, successful pancreatic islet cell transplantation requires minimizing pancreatic islet cell damage during the development and isolation of effective pancreatic islet cells, and cell damage caused by nonspecific inflammatory processes during transplantation and engraftment failure. Problems such as minimizing, overcoming cellular damage due to immune responses occurring after transplantation, and securing pancreatic islet cell sources should be addressed. In particular, the initial inflammatory response after pancreatic islet cell transplantation causes functional incompatibility or destruction of pancreatic islet cells due to cell necrosis and apoptosis, and thus, pancreatic islet cells must be transplanted with a larger amount of pancreatic islet cells than are actually necessary. .
마크로 캡슐화(macro encapsulation)는 이식된 췌장 소도 세포의 접목을 위해 하이드로겔(hydrogel) 구조를 이용하는 개념이다. 이 방법은 매우 간단함에도 불구하고 많은 양의 하이드로겔이 혈관 재생의 결핍으로 인해 이식된 세포에 저산소증 상태를 유발하여 그 결과, 피하로 이식된 췌장 소도 세포가 혈당 변동을 나타내는 문제점이 있다.Macro encapsulation is a concept that uses a hydrogel structure for grafting of transplanted pancreatic islet cells. Although this method is very simple, a large amount of hydrogel causes hypoxia in transplanted cells due to a lack of blood vessel regeneration, and as a result, pancreatic islet cells transplanted subcutaneously exhibit blood glucose fluctuations.
최근, 췌장 소도 세포의 표면 변형의 우수성이 보고되고 있다. 매크로 및 마이크로 캡슐화와 비교하여 볼 때, 표면 개질된 췌장 소도 세포에서 산소 및 영양소의 수송이 극적으로 증가하였으며, 췌장 소도 세포는 크기 변화가 적어 문맥 및 신장 캡슐과 같이 다양한 부위로 이식 가능함이 확인되었다. 그러나, 간문맥으로 췌장 소도 세포를 이식하는 경우, 이식된 췌장 소도 세포가 혈액에 직접 노출되어 혈소판, 보체 등 혈액 응고 시스템의 활성화로 인해 췌장 소도 세포 주위에 혈액 응고가 일어나게 되고 췌장 소도 세포가 급격히 파괴되는 초급성 혈액 매개성 염증반응(instant blood mediated inflammatory reaction, IBMIR)이 발생할 수 있다. Recently, superiority of surface modification of pancreatic islets cells has been reported. Compared to macro- and micro-encapsulation, the transport of oxygen and nutrients in surface-modified pancreatic islet cells has dramatically increased, and pancreatic islet cells are small in size and can be transplanted to various sites such as portal and kidney capsules. . However, when the pancreatic islet cells are transplanted into the portal vein, the transplanted pancreatic islet cells are directly exposed to the blood, causing blood coagulation around the pancreatic islet cells due to activation of the blood coagulation system such as platelets and complement and rapidly destroying the pancreatic islet cells. An instant blood mediated inflammatory reaction (IBMIR) may occur.
따라서, 성공적인 췌장 소도 세포 이식을 위해서는 효율적인 췌장 소도 세포의 표면 개질 방법을 개발하고 비특이적 면역반응을 억제하는 방법이 필요한 실정이다.Therefore, for successful pancreatic islet cell transplantation, an efficient method for surface modification of pancreatic islet cells and a method for suppressing a nonspecific immune response are needed.
본 발명의 목적은 폴리도파민으로 코팅되며 폴리(락틱-코-글리콜산) (poly(lactic-co-glycolic acid), PLGA) 고분자로 이루어진 마이크로스피어 및 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시킨 것을 특징으로 하는 마이크로스피어를 제공하는 데에 있다.An object of the present invention is a microsphere coated with polydopamine and made of a poly (lactic-co-glycolic acid) (PLGA) polymer and encapsulating a drug or bioactive substance in the microsphere. It is to provide a microsphere characterized in that.
본 발명의 다른 목적은 상기 마이크로스피어의 제조방법 및 상기 마이크로스피어를 이용한 세포 표면 개질 방법을 제공하는 데에 있다.Another object of the present invention is to provide a method for producing the microspheres and cell surface modification method using the microspheres.
본 발명의 또 다른 목적은 상기 마이크로스피어로 표면이 개질된 세포를 유효성분으로 포함하는 당뇨병 치료용 약학 조성물을 제공하는 데에 있다.Still another object of the present invention is to provide a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microspheres as an active ingredient.
상기 목적을 달성하기 위하여, 본 발명은 폴리도파민으로 코팅되며 폴리(락틱-코-글리콜산) (poly(lactic-co-glycolic acid), PLGA) 고분자로 이루어진 마이크로스피어 및 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시킨 것을 특징으로 하는 마이크로스피어를 제공한다.In order to achieve the above object, the present invention is microspheres coated with polydopamine and made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or physiology in the microspheres It provides a microsphere characterized in that the active material is encapsulated.
또한, 본 발명은 PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계, 상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계 및 상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계를 포함하는 마이크로스피어의 제조방법을 제공한다. In addition, the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine It provides a method for producing a microsphere comprising a second step of reacting the solution and a third step of obtaining a PLGA microsphere coated with polydopamine by centrifuging the reacted reactant.
또한, 본 발명은 PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계, 상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계, 상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계 및 상기 폴리도파민으로 코팅된 PLGA 마이크로스피어와 세포를 반응시켜 세포의 표면을 개질하는 제 4단계를 포함하는 세포 표면 개질 방법을 제공한다.In addition, the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine The second step of reacting the solution, the third step of obtaining the PLGA microspheres coated with polydopamine by centrifugation of the reacted reactant and the cells of the polydopamine-coated PLGA microspheres are reacted to modify the surface of the cells. It provides a cell surface modification method comprising the fourth step.
또한, 본 발명은 상기 마이크로스피어로 표면이 개질된 세포를 유효성분으로 포함하는 당뇨병 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microsphere as an active ingredient.
본 발명은 폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) 마이크로스피어를 이용하여 췌장 소도 세포 등 세포 표면을 개질하는 방법에 관한 것으로, 종래 세포 표면 개질 방법 보다 공정이 간단하며, 많은 양의 표적 약물 봉입이 가능하여 세포의 미세 환경 주변으로 약물 방출을 연장시킬 수 있고, 다중 효과를 얻기 위해 면역억제제 또는 항혈액응고제와 같은 여러 유형의 약물 또는 생리활성물질을 함께 전달할 수 있다.The present invention relates to a method for modifying a cell surface such as pancreatic islet cells using poly (lactic-co-glycolic acid) microspheres coated with polydopamine, which is simpler than a conventional cell surface modification method. Targeted drug encapsulation is possible to prolong drug release around the microenvironment of the cell and deliver several types of drugs or bioactive agents, such as immunosuppressants or anticoagulants, to achieve multiple effects.
따라서, 상기와 같은 효과를 갖는 본 발명의 세포 표면 개질 방법은 세포의 이식률을 향상시키고, 비특이적 면역반응을 감소시키는 이점을 가지고 있어 새로운 세포 의약품 전달 시스템으로 활용될 수 있다.Therefore, the cell surface modification method of the present invention having the above effect has the advantage of improving the transplantation rate of cells, and reduce the non-specific immune response can be utilized as a novel cellular drug delivery system.
도 1(A)는 폴리도파민으로 코팅된 PLGA(poly(lactic-co-glycolic acid) 마이크로스피어를 이용한 췌장 소도 세포 표면 개질 방법을 모식도로 나타낸 것이며, 도 1(B)는 폴리도파민으로 코팅된 마이크로스피어에서 폴리도파민의 퀴논 그룹과 췌장 소도 세포 표면에서 세포 외 콜라겐 매트릭스의 아민 그룹과의 결합 메커니즘을 모식도로 나타낸 것이다.Figure 1 (A) is a schematic diagram showing a method of surface modification of pancreatic islet cells using poly (lactic-co-glycolic acid) microspheres coated with polydopamine, Figure 1 (B) is a micro-dopamin coated micro Schematic representation of the binding mechanism between the quinone group of polydopamine in spear and the amine group of extracellular collagen matrix on the surface of pancreatic islets.
도 2는 면역억제제(FK506)가 봉입되며 폴리도파민으로 코팅된 PLGA 마이크로스피어를 이용한 췌장 소도 세포 개질 효과를 모식도로 나타낸 것이다.Figure 2 schematically shows the effect of pancreatic islet cell modification using PLGA microspheres coated with an immunosuppressant (FK506) and coated with polydopamine.
도 3은 FK506이 봉입된 PLGA 마이크로스피어의 특성을 (a) 주사 전자 현미경(SEM) 이미지, (b) X-선 분말 회절 분석(XRD) 스펙트럼 및 (c) 푸리에 변환 적외선 분광학(FT-IR) 스펙트럼으로 확인한 것이다.Figure 3 shows the characteristics of PLK microspheres loaded with FK506 (a) scanning electron microscopy (SEM) images, (b) X-ray powder diffraction analysis (XRD) spectra and (c) Fourier transform infrared spectroscopy (FT-IR) It was confirmed by spectrum.
도 4는 폴리도파민으로 코팅된 PLGA 마이크로스피어의 특성을 (a-b) 도파민 산화 시간(1시간 및 7시간)에 따른 SEM 이미지, (c) 도파민 산화 시간 1시간째에 폴리도파민으로 코팅된 마이크로스피어에서 추출된 폴리도파민 캡슐의 TEM 이미지, (d) FT-IR 스펙트럼 및 (e) FK506의 시험관 내 방출로 확인한 것이다.4 shows the characteristics of polygapamine-coated PLGA microspheres in (ab) SEM images according to dopamine oxidation time (1 hour and 7 hours), and (c) in microspheres coated with polydopamine at 1 hour dopamine oxidation time. TEM images of the extracted polydopamine capsules, (d) FT-IR spectra and (e) in vitro release of FK506.
도 5는 비개질 췌장 소도 세포 및 개질된 췌장 소도 세포를 (a) 형광 이미지, (b) 공초점 이미지, (c) pD-Cou/M으로 개질된 췌장 소도 세포의 상대적인 형광 강도 및 (d) SEM 이미지로 확인한 것이다.5 shows the relative fluorescence intensity of unmodified pancreatic islet cells and modified pancreatic islet cells in (a) fluorescence images, (b) confocal images, (c) pancreatic islet cells modified with pD-Cou / M, and (d) It was confirmed by SEM image.
도 6은 췌장 소도 세포 표면에서 시간에 따른 마이크로스피어의 안정성을 (a) SEM 이미지 및 (b) 공초점 이미지로 확인한 것이다.Figure 6 shows the stability of microspheres over time on the surface of pancreatic islet cells by (a) SEM image and (b) confocal image.
도 7은 마이크로스피어로 개질된 췌장 소도 세포의 생존율 및 기능을 (a) 생존/사멸 분석, (b) CCK-8 분석, (c) 웨스턴 블랏, (d-e) 글루코스 자극 인슐린 분비(GSIS) 분석 및 자극 지수(SI) 값으로 확인한 것이다.7 shows the survival and function of microspheres modified pancreatic islet cells (a) survival / kill assay, (b) CCK-8 assay, (c) western blot, (de) glucose stimulated insulin secretion (GSIS) assay and It is confirmed by the value of the stimulus index (SI).
도 8은 이식된 췌장 소도 세포의 생체 내 효과를 (a) 대조군 췌장 소도 세포(n=5), (b) pD-M(506 미봉입)으로 개질된 췌장 소도 세포(n=7), (c) 대측성 신장 캡슐 하에 이식된 비개질 췌장 소도 세포 및 pD-M의 등가량(n=4), (d) pD-M(F1)으로 개질된 췌장 소도 세포(n=12), (e) pD-M(F2)으로 개질된 췌장 소도 세포(n=6), (f) pD-M(F3)으로 개질된 췌장 소도 세포(n=3) 및 (g) pD-M(F4)으로 개질된 췌장 소도 세포(n=3)로 이식된 당뇨병 C57BL/6 마우스의 비 공복 혈당 수치, (h) 각 군의 이식 생존율, (i) 당뇨병 마우스(▲, 빨간선, n=2), 정상 마우스(●, 검은선, n=1) 및 pD-M(F1)으로 개질된 췌장 소도 세포 수혜자(◆, 파란선, n=4)의 이식 후 20일째 복막 내 당 부하 검사(IPGTT)로 확인한 것이다.8 shows in vivo effects of transplanted pancreatic islet cells (a) pancreatic islet cells (n = 5), (b) pancreatic islet cells (n = 7) modified with pD-M (506 unpacked), ( c) equivalent amounts of unmodified pancreatic islet cells and pD-M transplanted under contralateral renal capsule (n = 4), (d) pancreatic islet cells modified with pD-M (F1) (n = 12), (e ) pancreatic islet cells modified with pD-M (F2) (n = 6), (f) pancreatic islet cells modified with pD-M (F3) (n = 3) and (g) with pD-M (F4) Non-fasting glucose levels in diabetic C57BL / 6 mice transplanted with modified pancreatic islet cells (n = 3), (h) graft survival in each group, (i) diabetic mice (▲, red line, n = 2), normal Confirmed by intraperitoneal glucose tolerance test (IPGTT) 20 days after transplantation of pancreatic islet cell recipients modified with mice (●, black line, n = 1) and pD-M (F1) (◆, blue line, n = 4) will be.
도 9는 (a) 대조군 췌장 소도 세포(n=5), (b) pD-M(FK506 미봉입)으로 개질된 췌장 소도 세포(n=7), (c) 대측성 신장 캡슐 하에 이식된 비개질 췌장 소도 세포 및 pD-M의 등가량(n=4), (d) pD-M(F1)으로 개질된 췌장 소도 세포(n=12), (e) pD-M(F2)으로 개질된 췌장 소도 세포(n=6), (f) pD-M(F3)으로 개질된 췌장 소도 세포(n=3) 및 (g) pD-M(F4)으로 개질된 췌장 소도 세포(n=3)로 이식된 마우스의 체중 변화를 백분율로 나타낸 것이다.FIG. 9 shows (a) control pancreatic islet cells (n = 5), (b) pancreatic islet cells modified with pD-M (unfilled FK506) (n = 7), (c) non transplanted under contralateral kidney capsule Equivalent amount of modified pancreatic islet cells and pD-M (n = 4), (d) pancreatic islet cells modified with pD-M (F1) (n = 12), (e) modified with pD-M (F2) Pancreatic islet cells (n = 6), (f) Pancreatic islet cells modified with pD-M (F3) (n = 3) and (g) Pancreatic islet cells modified with pD-M (F4) (n = 3) The percentage change in body weight of mice transplanted with.
본 발명의 발명자들은 폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) (poly(lactic-co-glycolic acid), PLGA) 마이크로스피어를 이용하여 췌장 소도 세포의 표면 개질 방법 개발하였으며, 폴리도파민의 퀴논(quinone) 그룹이 췌장 소도 세포를 둘러싸고 있는 세포 외 콜라겐 매트릭스의 아민 그룹과 상호작용하는 것을 확인하였고, 상기 폴리도파민으로 코팅된 PLGA 마이크로스피어로 개질된 췌장 소도 세포가 인체 독성을 나타내지 않는 것을 확인하며 본 발명을 완성하였다.The inventors of the present invention have developed a method for surface modification of pancreatic islet cells using poly (lactic-co-glycolic acid) (PLGA) microspheres coated with polydopamine. It was confirmed that the quinone group interacted with the amine group of the extracellular collagen matrix surrounding the pancreatic islet cells, and that the pancreatic islet cells modified with the polygapamine coated PLGA microspheres showed no human toxicity. The present invention has been completed.
본 발명은 폴리도파민(polydopamine)으로 코팅되며 폴리(락틱-코-글리콜산) (poly(lactic-co-glycolic acid), PLGA) 고분자로 이루어진 마이크로스피어 및 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시킨 것을 특징으로 하는 마이크로스피어를 제공한다.The present invention is coated with polydopamine (polydopamine) and encapsulated microspheres made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or bioactive material in the microspheres It provides a microsphere characterized in that.
바람직하게는, 상기 마이크로스피어의 평균 직경은 1 내지 1000 μm일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the average diameter of the microspheres may be 1 to 1000 μm, but is not limited thereto.
바람직하게는, 상기 약물 또는 생리활성물질은 면역억제제, 항혈액응고제, 항염증제, 항산화제 및 호르몬제로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the drug or bioactive material may be one or more selected from the group consisting of immunosuppressants, anticoagulants, anti-inflammatory agents, antioxidants and hormones, but is not limited thereto.
바람직하게는, 상기 약물 또는 생리활성물질은 화학 약품, 단백질, 펩타이드, 항체, 유전자, siRNA 및 microRNA로 이루어진 군에서 선택된 형태로 제공될 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the drug or bioactive material may be provided in a form selected from the group consisting of chemicals, proteins, peptides, antibodies, genes, siRNA and microRNA, but is not limited thereto.
바람직하게는, 상기 면역억제제는 타크로리무스(Tacrolimus), 시클로스포린(Cyclosporin), 시롤리무스(Sirolimus), 에베롤리무스(Everolimus), 리다포롤리무스(Ridaforolimus), 템시롤리무스(Temsirolimus), 유미롤리무스(Umirolimus), 조타롤리무스(Zotarolimus), 레프루노미드(Leflunomide), 메토트렉세이트(Methotrexate), 리툭시맙(Rituximab), 루플리주맙(Ruplizumab), 다클리주맙(Daclizumab), 아바타셉트(Abatacept) 및 벨라타셉트(Belatacept)로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the immunosuppressive agent is Tacrolimus, Cyclosporin, Sirolimus, Everolimus, Ridaforolimus, Temsirolimus, Temsirolimus, Thysirolimus Umirolimus, Zotarolimus, Leflunomide, Methotrexate, Rituximab, Ruplizumab, Daclizumab, Daclizumab, Abatacept and It may be one or more selected from the group consisting of Bellatacept, but is not limited thereto.
바람직하게는, 상기 항혈액응고제는 아르가트로반(Argatroban), 쿠마린(Cumarin), 헤파린(Heparin), 저분자량헤파린(Low molecular weight heparin), 히루딘(Hirudin), 다비가트란(Dabigatran), 멜라가트란(Melagatran), 클로피도그렐(Clopidogrel), 티클로피딘(Ticlopidine) 및 압시시맙(Abciximab)으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the anticoagulant may include argatroban, coumarin, heparin, low molecular weight heparin, hirudin, dabigatran, Melagatran, Clopidogrel, Ticlopidine and Abxisimab (Abciximab) may be one or more selected from the group consisting of, but not limited to.
바람직하게는, 상기 항염증제는 아세토아민펜, 아스피린, 이부프로펜, 디크로페낙, 인도메타신, 피록시캄, 페노프로펜, 플루비프로펜, 케토프로펜, 나프록센, 수프로펜, 록소프로펜, 시녹시캄 및 테녹시캄으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다. Preferably, the anti-inflammatory agent is acetoaminephene, aspirin, ibuprofen, dicrofenac, indomethacin, pyroxicam, phenopropene, flubiprofen, ketoprofen, naproxen, supropene, roxofero It may be, but is not limited to, one or more selected from the group consisting of pens, synoxycamps and tenoxycamps.
또한, 본 발명은 PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계, 상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계 및 상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계를 포함하는 마이크로스피어의 제조방법을 제공한다.In addition, the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine It provides a method for producing a microsphere comprising a second step of reacting the solution and a third step of obtaining a PLGA microsphere coated with polydopamine by centrifuging the reacted reactant.
바람직하게는, 상기 제 2단계는 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 1:1.5 내지 3의 부피비로 첨가하는 것일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the second step may include, but is not limited to, adding the polymer suspension of the PLGA microspheres and the dopamine solution in a volume ratio of 1: 1.5 to 3.
바람직하게는, 상기 제 2단계는 15 내지 40℃, pH 8 내지 9의 조건에서 30분 내지 2시간 동안 수행하는 것일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the second step may be carried out for 30 minutes to 2 hours at a condition of 15 to 40 ℃, pH 8 to 9, but is not limited thereto.
또한, 본 발명은 PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계, 상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계, 상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계 및 상기 폴리도파민으로 코팅된 PLGA 마이크로스피어와 세포를 반응시켜 세포 표면을 개질하는 제 4단계를 포함하는 세포 표면 개질 방법을 제공한다.In addition, the present invention is a first step of encapsulating a drug or bioactive material in the microspheres by stirring the PLGA microspheres and the drug or bioactive material, the polymer suspension of the PLGA microspheres containing the drug or bioactive material and dopamine A second step of reacting the solution, a third step of obtaining the PLGA microspheres coated with polydopamine by centrifugation of the reacted reactants, and a reaction of the cells with the PLGA microspheres coated with polydopamine to modify the cell surface. Provided is a cell surface modification method comprising the fourth step.
바람직하게는, 상기 제 4단계의 세포는 특정 세포에 제한되지 않으며, 췌장 소도 세포, 줄기세포, 간세포, 섬유아세포, 림프구, 혈관내피세포, 신경세포, 법랑아세포, 각질세포, 지방세포, 차골세포, 섬모세포, 대식세포, 수상세포, 뇌의 뉴런, 난세포, 신방근세포로 등 다양한 세포에서 선택할 수 있다.Preferably, the fourth step of cells is not limited to specific cells, pancreatic islet cells, stem cells, hepatocytes, fibroblasts, lymphocytes, vascular endothelial cells, neurons, enamel cells, keratinocytes, adipocytes, osteoblasts You can choose from a variety of cells, including ciliated cells, macrophages, dendritic cells, brain neurons, egg cells, and neomyocytes.
바람직하게는, 상기 제 4단계는 15 내지 40℃에서 5 내지 15분씩 2 내지 5회 반복 수행하는 것일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the fourth step may be repeated 2 to 5 times at 5 to 15 minutes at 15 to 40 ℃, but is not limited thereto.
또한, 본 발명은 상기 마이크로스피어로 표면이 개질된 세포를 유효성분으로 포함하는 당뇨병 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for treating diabetes comprising the cells whose surface is modified by the microsphere as an active ingredient.
상기 약학 조성물은 이식 부위에 따라 여러 경로로 이식이 가능하며, 간, 신장, 위, 복강, 고환, 안강, 골수 피하 등 생체 내 모든 부위에 이식이 가능하다. The pharmaceutical composition may be transplanted in various ways depending on the site of transplantation, and may be transplanted to any site in the living body such as liver, kidney, stomach, abdominal cavity, testes, eye, and bone marrow subcutaneous.
상기 약학 조성물의 유효성분의 유효량은 질환의 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있으나, 이에 제한되는 것은 아님을 명시한다.An effective amount of the active ingredient of the pharmaceutical composition means an amount required for the treatment of the disease. Thus, the type of disease, the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, weight, general health, sex and diet, sex and diet, time of administration, route of administration and composition of the patient. It is noted that it may be adjusted according to various factors including, but not limited to, the rate of secretion, the duration of treatment, and the drug used concurrently.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1 : 시약 준비 Example 1: Reagent Preparation
폴리(락틱-코-글리콜산)(poly(lactic-co-glycolic acid), PLGA, MW=38-54 kDa, 50:50 LA:GA)은 에보니크(Evonik Industries AG, Darmstadt, Germany)에서 구입하였으며, HBSS(Hank’s balanced salt solution), RPMI 1640 배지, Histopaque-1077, 폴리비닐알코올(poly(vinyl alcohol), PVA, MW=31-50 kDa) 및 도파민 하이드로클로라이드(dopamine hydrochloride)는 시그마-알드리치(Sigma-Aldrich, Korea)에서 구입하였다. 콜라게나제 P(collagenase P)는 로슈(Roche diagnostic GmBH, Mainheim, Germany)에서 구입하였으며, 디클로로메탄(dichloromethane, DCM)은 준세이(Junsei, Korea)에서 구입하였다. 우태아혈청(fetal bovine albumin, FBS) 및 인산완충식염수(phosphate buffer saline, PBS)는 하이클론(Hyclone)에서 구입하였으며, 세포 생존/세포 독성 분석 키트(live/dead cell viability/cytotoxicity assay kit)는 라이프 테크놀로지스(Life Technologies, Oregon, USA), CCK-8(cell counting kit-8)은 도진도(Dojindo Laboratories, Japan)에서 구입하였다. 면역억제제인 FK506은 한미약품(Seoul, Republic of Korea)에서 제공받았다. Poly (lactic-co-glycolic acid), PLGA, MW = 38-54 kDa, 50:50 LA: GA, is available from Evonik Industries AG, Darmstadt, Germany Hank's balanced salt solution (HBSS), RPMI 1640 medium, Histopaque-1077, poly (vinyl alcohol), PVA, MW = 31-50 kDa) and dopamine hydrochloride (dopamine hydrochloride) were sigma-aldrich ( Sigma-Aldrich, Korea). Collagenase P was purchased from Roche (Roche diagnostic GmBH, Mainheim, Germany) and dichloromethane (DCM) was purchased from Junsei, Korea. Fetal bovine albumin (FBS) and phosphate buffered saline (PBS) were purchased from Hyclone, and the live / dead cell viability / cytotoxicity assay kit Life Technologies, Oregon, USA and CCK-8 (cell counting kit-8) were purchased from Dojindo Laboratories, Japan. FK506, an immunosuppressant, was provided by Hanmi Pharmaceutical (Seoul, Republic of Korea).
실시예 2 : 폴리(락틱-코-글리콜산)(poly(lactic-co-glycolic acid, PLGA) 마이크로스피어 제조Example 2 Preparation of poly (lactic-co-glycolic acid, PLGA) microspheres
PLGA 마이크로스피어는 용매-증발법을 이용하여 제조하였다. 간략하게, PLGA 40 mg을 디클로로메탄 0.5 ml에 녹인 후, 1% PVA 5 ml을 첨가하고 균질기(homogenizer, T25 digital ULTRA-TURRAX®, IKA-Werke GmbH & Co. KG)를 이용하여 17,400 rpm에서 5분 동안 균질화시켰다. 다음으로, 얻어진 에멀젼에 1% PVA 10 ml을 첨가하여 안정화시키고, 4시간 동안 교반하여 용매를 완전히 증발시켰다. 이후, 탈이온수로 5회 세척 및 원심분리하여 마이크로스피어를 획득하고, 획득한 마이크로스피어는 동결 건조하여 -20℃에 보관하였다.PLGA microspheres were prepared using solvent-evaporation. Briefly, 40 mg PLGA was dissolved in 0.5 ml of dichloromethane, then 5 ml of 1% PVA was added and at 17,400 rpm using a homogenizer (homogenizer, T25 digital ULTRA-TURRAX ® , IKA-Werke GmbH & Co. KG). Homogenized for 5 minutes. Next, 10 ml of 1% PVA was added to the obtained emulsion to stabilize, and stirred for 4 hours to completely evaporate the solvent. Thereafter, microspheres were obtained by washing and centrifuging five times with deionized water, and the obtained microspheres were freeze-dried and stored at -20 ° C.
FK506이 봉입된 마이크로스피어(FK506-M)를 제조하기 위해, PLGA 마이크로스피어를 용해한 디클로로메탄 용액에 FK506을 첨가하고, 에멀젼 단계 전, 완벽하게 혼합하여 제형화 하였다. 제제에서 FK506의 이론적인 봉입 함량은 5% 및 10%였다.To prepare FK506-encapsulated microspheres (FK506-M), FK506 was added to a dichloromethane solution in which PLGA microspheres were dissolved, and formulated by mixing thoroughly before the emulsion step. The theoretical inclusion content of FK506 in the formulation was 5% and 10%.
생체 내 면역 거부 반응으로부터 이식된 췌장 소도 세포를 보호하는 데에 있어서 약물 방출량 및 약물 방출 시간이 영향을 미치는지 여부를 평가하기 위해, 다양한 유형의 PLGA를 사용하여 다양한 봉입량으로 FK506을 봉입하였다. 하기 표 1의 제제 M(F1)과 M(F2)을 참조하여 보면, DLG 4A(LA:GA 50:50, acid-terminated, Evonik)는 M(F2)에서 FK506에 대한 봉입 능력을 향상시켰다(3.33 ± 0.07% 및 6.71 ± 0.11%). 제제 M(F3) 및 M(F4)는 M(F1)과 유사한 약물 봉입 능력을 가지는 PLGA 고분자를 사용하여 FK506의 방출 시간을 연장시키려는 목적으로 제조되었다(3.36 ± 0.05% 및 3.31 ± 0.07%). 흥미롭게도, 하기 표 1과 같이, 모든 제제에서 FK506 캡슐화 효율이 미미하게 다른 것을 확인할 수 있었다.To assess whether drug release and drug release time influence the protection of transplanted pancreatic islet cells from in vivo immune rejection responses, FK506 was encapsulated in various dosages using various types of PLGA. Referring to Formulations M (F1) and M (F2) in Table 1 below, DLG 4A (LA: GA 50:50, acid-terminated, Evonik) improved the encapsulation capacity for FK506 at M (F2) ( 3.33 ± 0.07% and 6.71 ± 0.11%). Formulations M (F3) and M (F4) were prepared for the purpose of extending the release time of FK506 using PLGA polymers with similar drug loading capacity as M (F1) (3.36 ± 0.05% and 3.31 ± 0.07%). Interestingly, as shown in Table 1, it was confirmed that the FK506 encapsulation efficiency is slightly different in all formulations.
FormulationFormulation PLGA typePLGA type Initial ratio between FK506 and PLGA (w/w)Initial ratio between FK506 and PLGA (w / w) LC (%)LC (%) EE (%)EE (%)
M (F1)M (F1) DLG 4A (50:50, acid terminated)DLG 4A (50:50, acid terminated) 5:955:95 3.33 ± 0.073.33 ± 0.07 66.55 ± 1.3066.55 ± 1.30
M (F2)M (F2) DLG 4A (50:50, acid terminated)DLG 4A (50:50, acid terminated) 10:9010:90 6.71 ± 0.116.71 ± 0.11 67.06 ± 1.1267.06 ± 1.12
M (F3)M (F3) PLGA 756S (75:25, 76-115kDa, ester terminated)PLGA 756S (75:25, 76-115kDa, ester terminated) 5:955:95 3.36 ± 0.053.36 ± 0.05 67.14 ± 1.0467.14 ± 1.04
M (F4)M (F4) PLGA 858S (85:15, 190-240kDa, ester terminated)PLGA 858S (85:15, 190-240kDa, ester terminated) 5:955:95 3.31 ± 0.073.31 ± 0.07 66.27 ± 1.4966.27 ± 1.49
또한, 췌장 소도 세포 표면에서 마이크로스피어의 접합 효율을 분석하기 위해, PLGA 마이크로스피어에 형광물질인 쿠마린-6(coumarine-6)를 1.5% 함량으로 봉입하였으며(Cou-M), 공초점 레이저 스캐닝 현미경을 이용하여 분석하였다.In addition, in order to analyze the splicing efficiency of microspheres on the surface of pancreatic islets, PLGA microspheres were filled with 1.5% of coumarine-6, a fluorescent substance (Cou-M), and a confocal laser scanning microscope. It was analyzed using.
실시예 3 : 폴리도파민으로 코팅된 PLGA 마이크로스피어 제조Example 3 Preparation of PLGA Microspheres Coated with Polydopamine
폴리도파민으로 코팅된 PLGA 마이크로스피어(polydopamine coated microspheres, pD-Ms)는 알칼리성 완충액(bicarbonate, pH=8.5, 10 mM)을 이용하여 상온에서 제조하였다. 간략하게, 도파민 하이드로클로라이드를 10 mM 중탄산염 완충액(pH 8.5)에 용해하고, PLGA 마이크로스피어 현탁액을 첨가한 후, 일정 시간 동안 일정 속도로 교반하였다. 반응 혼합물에서 도파민 하이드로클로라이드의 농도는 1 mg/ml이었으며, 마이크로스피어의 농도는 0.5 mg/ml이었다. 상기 과정에서 도파민은 산화되고 중합되어 마이크로스피어 표면에 폴리도파민 코팅층을 형성하게 된다. 이후 탈이온수로 5회 세척 및 원심분리하여 폴리도파민으로 코팅된 마이크로스피어를 획득하고, 상기 획득한 마이크로스피어는 동결 건조하여 -20℃에 보관하였다.PLGA microspheres coated with polydopamine (polydopamine coated microspheres, pD-Ms) were prepared at room temperature using alkaline buffer (bicarbonate, pH = 8.5, 10 mM). Briefly, dopamine hydrochloride was dissolved in 10 mM bicarbonate buffer (pH 8.5), PLGA microsphere suspension was added and stirred at constant speed for a period of time. The concentration of dopamine hydrochloride in the reaction mixture was 1 mg / ml and the concentration of microspheres was 0.5 mg / ml. In the process, the dopamine is oxidized and polymerized to form a polydopamine coating layer on the microsphere surface. Thereafter, washed and centrifuged five times with deionized water to obtain a microsphere coated with polydopamine, and the obtained microsphere was lyophilized and stored at -20 ° C.
실시예 4 : PLGA 마이크로스피어의 특징 분석Example 4 Characterization of PLGA Microspheres
입자 고정 및 백금(platinum) 코팅 단계에 따른 마이크로스피어의 크기 및 표면 지형을 관찰하기 위해, 주사 전자 현미경(scanning electron microscope, SEM; S-4100, Hitachi, Japan)을 사용하였다. 또한, 아세토니트릴을 이용하여 폴리도파민으로 코팅된 마이크로스피어의 코어로부터 PLGA 중합체를 제거한 후, 폴리도파민 캡슐을 분석하기 위해, 투과 전자 현미경 시스템(TEM 120kV, H-7600; Hitachi, Japan)을 사용하였다.In order to observe the size and surface topography of the microspheres according to the particle fixation and platinum coating steps, a scanning electron microscope (SEM; S-4100, Hitachi, Japan) was used. In addition, after removing the PLGA polymer from the core of the polyspheres coated with polydopamine using acetonitrile, a transmission electron microscope system (TEM 120kV, H-7600; Hitachi, Japan) was used to analyze the polydopamine capsules. .
그 결과, 도 3a를 참조하여 보면, PLGA 마이크로스피어를 주사 전자 현미경으로 분석한 결과, 평균 직경이 1 내지 8 μm였으며, 마이크로스피어의 크기는 FK506이 봉입되었을 때, 잘 조절되는 것을 확인하였다. 그러나, M(F2)에서 볼 수 있듯이, 높은 약물 봉입 함량은 입자 표면을 어둡게 하고 표면 조도를 변화시키는 것을 관찰하였다. As a result, referring to FIG. 3A, the PLGA microspheres were analyzed by a scanning electron microscope, and the average diameter was 1 to 8 μm, and the size of the microspheres was found to be well controlled when FK506 was enclosed. However, as can be seen from M (F2), it was observed that the high drug loading content darkens the particle surface and changes the surface roughness.
다음으로 폴리도파민으로 코팅된 PLGA 마이크로스피어의 특성을 분석하였으며, 특성에 영향을 미치는 변수들 중 도파민 반응 시간이 중요한 바, 도파민의 최종 농도를 1 mg/ml로 유지시키면서 1 내지 7시간 동안 실험을 수행하였다. Next, the characteristics of the polygapamine-coated PLGA microspheres were analyzed, and the dopamine reaction time was important among the variables affecting the properties. The experiment was conducted for 1 to 7 hours while maintaining the final concentration of dopamine at 1 mg / ml. Was performed.
그 결과, 도 4a 및 도 4b를 참조하여 보면, 반응 시간 증가는 접합되지 않은 폴리도파민 나노입자의 양을 증가시켰고, 100 내지 200 μm의 입자 크기를 가지는 것을 확인하였다. 상기 나노입자는 마이크로스피어 및 췌장 소도 세포 사이의 반응을 방해하는 것으로 사료된다. 따라서, 상기 문제는 반응 시간을 1시간으로 적용하여 해결할 수 있다.As a result, referring to Figures 4a and 4b, the increase in the reaction time increased the amount of unconjugated polydopamine nanoparticles, it was confirmed to have a particle size of 100 to 200 μm. The nanoparticles are thought to interfere with the reaction between microspheres and pancreatic islet cells. Therefore, the problem can be solved by applying the reaction time to 1 hour.
마이크로스피어의 표면에 폴리도파민 코팅층이 형성되었는지 여부를 확인하기 위해, 아세토니트릴로 PLGA 코어를 제거한 후, 투과 전자 현미경 분석을 수행하였다. In order to confirm whether a polydopamine coating layer was formed on the surface of the microspheres, after removing the PLGA core with acetonitrile, transmission electron microscopic analysis was performed.
그 결과, 도 4c를 참조하여 보면, 매우 얇은 밀봉 막과 그 표면에 결합한 작은 미립자의 두 부분으로 구성되는 유연한 폴리도파민 캡슐을 확인할 수 있었다.As a result, referring to FIG. 4C, a flexible polydopamine capsule composed of two parts, a very thin sealing membrane and small particles bonded to the surface thereof, was identified.
시료로부터 분자의 작용기를 분석하기 위해, 푸리에 변환 적외선 분광학(fourier transform infrared(FT-IR) spectroscopy, Nicolet Nexus 670 FT-IR spectrometer, Thermo Fisher Scientific Inc., Waltham, MA, USA)을 수행하였다. 또한, PLGA 마이크로스피어에 봉입된 FK506의 위상 상태(phase state)를 분석하기 위해, X’Pert PRO MPD 회절계(PANalytical, Almelo, the Netherlands)를 이용하여 X-선 분말 회절 분석(X-ray powder diffraction, XRD)을 수행하였다. FK506이 봉입된 PLGA 마이크로스피어 또는 PLGA 마이크로스피어(대조군)를 분석하기 위해, 40 kV의 전압 및 30 mA의 전류에서의 구리 양극(Cu Kα 방사선) 및 주위 온도에서 10 내지 70도 사이의 2θ 검출기 해상도를 사용하였다.Fourier transform infrared (FT-IR) spectroscopy, Nicolet Nexus 670 FT-IR spectrometer, Thermo Fisher Scientific Inc., Waltham, Mass., USA, was performed to analyze the functional groups of the molecules from the samples. In addition, X-ray powder diffraction analysis (X-ray powder) using an X'Pert PRO MPD diffractometer (PANalytical, Almelo, the Netherlands) to analyze the phase state of the FK506 enclosed in PLGA microspheres diffraction, XRD). To analyze PLGA microspheres or PLGA microspheres (control) with FK506 encapsulation, copper anodes (Cu Kα radiation) at a voltage of 40 kV and a current of 30 mA and 2θ detector resolution between 10 and 70 degrees at ambient temperature. Was used.
그 결과, 도 3b를 참조하여 보면, FK506이 10°에서 30°까지 날카로운 피크를 갖는 고도로 결정화된 구조를 갖는 반면, 마이크로스피어 내로 일단 봉입되면 스펙트럼 상에서 어떠한 피크의 관찰도 없이 분자적으로 분산된 것을 확인하였다.As a result, referring to FIG. 3B, the FK506 has a highly crystallized structure with sharp peaks from 10 ° to 30 °, whereas once enclosed into the microspheres it is molecularly dispersed without observing any peaks in the spectrum. Confirmed.
또한, 도 3c를 참조하여 보면, FT-IR 스펙트럼 결과에서 PLGA 마이크로스피어와 비교하였을 때, FK506이 봉입된 PLGA 마이크로스피어는 새로운 피크의 형성을 나타내지 않았다. 상기 결과는 FK506과 PLGA 사이의 화학적 상호작용이 없음을 의미한다.In addition, referring to FIG. 3C, when compared to PLGA microspheres in the FT-IR spectral results, PLK microspheres containing FK506 did not show formation of new peaks. The results indicate that there is no chemical interaction between FK506 and PLGA.
또한, 폴리도파민으로 코팅된 마이크로스피어에서 세포 표면에 접합된 폴리도파민의 존재를 FT-IR로 확인한 결과, 도 4d를 참조하여 보면, 폴리도파민 스펙트럼은 3500 내지 3000 cm-1 범위에서 넓은 피크를 보였고, 하이드록시기(-OH)의 신축 진동이 관찰된 반면, 폴리도파민으로 코팅된 마이크로스피어의 스펙트럼은 하이드록시기의 신축 진동이 관찰되지 않는 것을 확인하였다. 폴리도파민 및 폴리도파민 코팅된 마이크로스피어의 스펙트럼은 2400 내지 2250 cm-1 범위에서 피크를 보였다. 상기 결과로부터 폴리도파민이 마이크로스피어에 물리적으로 접합되어 있음을 확인하였다.In addition, FT-IR confirmed the presence of polydopamine conjugated to the cell surface in the polysphere coated with polydopamine. Referring to FIG. 4D, the polydopamine spectrum showed a broad peak in the range of 3500 to 3000 cm −1 . The stretching vibration of the hydroxyl group (-OH) was observed, whereas the spectrum of the microspheres coated with polydopamine confirmed that the stretching vibration of the hydroxyl group was not observed. The spectra of polydopamine and polydopamine coated microspheres showed peaks in the 2400 to 2250 cm −1 range. From the above results, it was confirmed that the polydopamine was physically bonded to the microspheres.
FK506에 대한 다양한 PLGA 마이크로스피어 제제의 봉입 용량(loading capacity, LC) 및 캡슐 효율(encapsulation efficiency, EE)을 결정하기 위해, 고성능 액체 크로마토그래피(high performance liquid chromatography, HPLC) 시스템을 사용하여 제제에서의 약물 농도를 정량화 하였다. 간략하게, FK506이 봉입된 PLGA 마이크로스피어를 아세토니트릴에 용해하고, 원심분리 후 상등액을 취하였다. 분석 컬럼은 Inertsil 컬럼(4.6 x 150 mm, 5 μm)을 이용하였으며, 아세토니트릴 및 0.1% 인산(phosphoric acid)이 85:15 비율로 구성된 이동상을 이용하였고, 1 ml/분의 유속 및 210 nm의 파장, 60℃의 칼럼 온도 조건으로 실험을 수행하였다. 봉입 용량 및 캡슐 효율은 하기 계산식 1 및 계산식 2를 이용하여 계산하였다.In order to determine the loading capacity (LC) and encapsulation efficiency (EE) of the various PLGA microsphere formulations for FK506, a high performance liquid chromatography (HPLC) system was used in the formulation. Drug concentration was quantified. Briefly, PLK microspheres loaded with FK506 were dissolved in acetonitrile and the supernatant was taken after centrifugation. An analytical column was used with an Inertsil column (4.6 x 150 mm, 5 μm), a mobile phase consisting of acetonitrile and 0.1% phosphoric acid in an 85:15 ratio, flow rate of 1 ml / min and 210 nm. The experiment was carried out under the condition of wavelength, column temperature of 60 ℃. Encapsulation capacity and capsule efficiency were calculated using Formula 1 and Formula 2 below.
[계산식 1][Calculation 1]
봉입 용량(%)Encapsulation Capacity (%)
= 마이크로스피어에서 FK506의 총양/FK506의 실제 주입 양 X 100%= Total volume of FK506 in microspheres / actual injection volume of FK506 X 100%
[계산식 2][Calculation 2]
캡슐 효율(%)Capsule efficiency (%)
= 마이크로스피어에서 FK506의 총양/마이크로스피어의 양 X 100%= Total amount of FK506 in microspheres / amount of microspheres X 100%
또한, 방출 과정 동안 FK506의 침전을 방지하기 위해 계면활성제로서 1% 트윈20(Sigma-Aldrich)을 함유하는 인산완충식염수(PBS)를 이용하여 PLGA 마이크로스피어로부터 FK506의 시험관 내 방출을 분석하였다. 간략하게, 적절한 양의 폴리도파민이 코팅된 FK506 봉입 PLGA 마이크로스피어를 방출 배지 5 ml에 현탁하고, 300,000 Da MWCO 멤브레인(Sartorius Stedim Lab Ltd, Stonehouse, Gloucestershire, UK)이 장착된 초원심분리 튜브에 봉입하였다. 상기 튜브는 멤브레인 양쪽으로부터 액체가 통과하도록 방출 배지 5 ml을 함유하는 다른 50 ml 튜브로 대체하고, 진탕 배양기(SI-64, 150; Hanyang Scientific Equipment Co., Ltd, Republic of Korea)를 이용하여 37℃에서 배양하였다. 일정 시간 후, 초원심분리 튜브 내 방출 용액을 원심분리하여 입자로부터 분리하고, 농축시켜 FK506 농도를 분석하였다. 약물 방출을 위한 싱크 조건(sink condition)을 유지하기 위해 새로운 배지를 튜브에 채워 실험을 수행하였다. In vitro release of FK506 from PLGA microspheres was also analyzed using phosphate buffered saline (PBS) containing 1% Tween20 (Sigma-Aldrich) as a surfactant to prevent precipitation of FK506 during the release process. Briefly, an appropriate amount of polydopamine-coated FK506-encapsulated PLGA microspheres are suspended in 5 ml of release medium and enclosed in ultracentrifuge tubes equipped with a 300,000 Da MWCO membrane (Sartorius Stedim Lab Ltd, Stonehouse, Gloucestershire, UK). It was. The tube was replaced with another 50 ml tube containing 5 ml of release medium to allow liquid to pass from both sides of the membrane, and was shaken using a shake incubator (SI-64, 150; Hanyang Scientific Equipment Co., Ltd, Republic of Korea) 37 Incubated at ℃. After some time, the effluent solution in the ultracentrifuge tube was centrifuged to separate from the particles and concentrated to analyze the FK506 concentration. Experiments were performed by filling fresh tubes with tubes to maintain sink conditions for drug release.
그 결과, 도 4e를 참조하여 보면, 네 가지 제제(F1 내지 F4)의 초기 시간에서는 FK506 방출이 명백하게 관찰되지 않았지만, 방출 역학은 사용된 PLGA 유형에 의해 영향을 받는 것을 확인하였다. 특히, pD-M(F1)과 pD-M(F2)은 40일 이내에 봉입된 약물 전체를 방출하는 반면, pD-M(F3)과 pD-M(F4)은 40일 후에도 지속적으로 약물을 방출하는 것을 확인하였다.As a result, referring to FIG. 4E, it was confirmed that the release kinetics of FK506 was not clearly observed at the initial time of the four formulations (F1 to F4), but the release kinetics were affected by the type of PLGA used. In particular, pD-M (F1) and pD-M (F2) release the entire encapsulated drug within 40 days, while pD-M (F3) and pD-M (F4) continue to release the drug after 40 days. It was confirmed that.
실시예 5 : 췌장 소도 세포 분리Example 5 Pancreatic Islet Cell Isolation
8주령, 250-300 g의 정상 수컷 Sprague-Dawley(SD) 랫(rat)의 췌장 소도 세포는 P형 콜라게나제(collagenase type P)를 이용하여 분리하였다. 췌장 소도 세포는 10% 우태아혈청(fetal bovine serum, FBS, Gibco), 2 mM 중탄산 나트륨(sodium bicarbonate), 11 mM 글루코즈(Sigma), 6 mM HEPES 및 1% 페니실린/스트렙토마이신(penicillin/streptomycin, Invitrogen Co., Carlsbad, CA)이 포함된 RPMI-1640 배지에서 배양하였다. 동물실험은 영남대학교 기관윤리위원회에 승인을 받고 수행하였다.At 8 weeks of age, 250-300 g of normal male Sprague-Dawley (SD) rat pancreatic islet cells were isolated using collagenase type P. Pancreatic islet cells were composed of 10% fetal bovine serum (FBS, Gibco), 2 mM sodium bicarbonate, 11 mM glucose (Sigma), 6 mM HEPES and 1% penicillin / streptomycin, Invitrogen Co., Carlsbad, Calif.) Was cultured in RPMI-1640 medium. Animal experiments were approved by the Institutional Review Board of Yeungnam University.
실시예 6 : 췌장 소도 세포 표면에 폴리도파민으로 코팅된 마이크로스피어의 접합Example 6 Conjugation of Microspheres Coated with Polydopamine on Pancreatic Islet Cell Surface
분리 후 3일째, 췌장 소도 세포는 HBSS(pH 8.0)로 2회 세척하고 1,000 rpm으로 1분 동안 원심분리하여 획득하였다. 췌장 소도 세포 표면에 마이크로스피어를 접합시키기 위해, HBSS(pH=8.0, 10 mM)에 2 mg/ml 농도로 첨가된 pD-Ms의 현탁액을 췌장 소도 세포에 첨가하고 37℃에서 2분 동안 섞어주었다. 이후 세포를 수집하고 배양 배지에 재현탁하였다. Three days after isolation, pancreatic islet cells were obtained by washing twice with HBSS (pH 8.0) and centrifuging for 1 minute at 1,000 rpm. In order to conjugate microspheres to the pancreatic islet cell surface, a suspension of pD-Ms added at 2 mg / ml concentration to HBSS (pH = 8.0, 10 mM) was added to pancreatic islet cells and mixed at 37 ° C. for 2 minutes. . Cells were then collected and resuspended in culture medium.
췌장 소도 세포의 표면에서 마이크로스피어의 최대 접합을 위해, 두 가지 배양 방법으로 코팅 효율을 평가하였다. 첫 번째 방법은 세포를 마이크로스피어와 연속적으로 1시간 또는 10분 동안 3회 반복하여 배양하는 것이며, 두 번째 방법은 다음 배양 전, HBSS로 세척하여 접합되지 않은 마이크로스피어를 제거하는 것이다. For maximum conjugation of microspheres on the surface of pancreatic islet cells, the coating efficiency was evaluated by two culture methods. The first method is to incubate cells with microspheres three times continuously for 1 hour or 10 minutes in succession, and the second method is to remove unconjugated microspheres by washing with HBSS before the next incubation.
췌장 소도 세포 표면에서 폴리도파민의 코팅 효과를 분석하기 위해, 비기능화된 마이크로스피어를 대조군으로 사용하였다. 접합의 안정성을 입증하기 위해, 마이크로스피어가 접합된 췌장 소도세포를 24일 동안 배양하면서 스캐닝 전자 현미경 및 공초점 레이저 스캐닝 현미경으로 관찰하였다. To analyze the coating effect of polydopamine on pancreatic islet cell surface, nonfunctionalized microspheres were used as controls. To demonstrate the stability of the conjugation, microsphere-conjugated pancreatic islet cells were cultured for 24 days and observed by scanning electron microscopy and confocal laser scanning microscopy.
도 5a를 참조하여 보면, 비기능화된 마이크로스피어는 췌장 소도 세포와 반응하지 않은 반면, 폴리도파민으로 기능화된 마이크로스피어는 췌장 소도 세포 표면에 균일하게 코팅되는 것을 확인하였다.Referring to FIG. 5A, it was confirmed that the non-functionalized microspheres did not react with the pancreatic islets, whereas the microspheres functionalized with polydopamine were uniformly coated on the surface of the pancreatic islets.
그러나, 도 5b 및 도 5d를 참조하여 보면, 마이크로스피어 코팅을 위한 도파민 산화 시간의 증가는 폴리도파민 나노입자에 의해 마이크로스피어와 췌장 소도 세포 사이의 상호작용을 억제하여 접합에 부정적인 영향을 미치는 것을 확인하였다. 따라서, 폴리도파민으로 코팅된 균일한 마이크로스피어를 제조하기 위해서는 도파민 산화 시간을 1시간으로 유지시키는 것이 중요하다. 또한, 마이크로스피어와 췌장 소도 세포를 10분씩 3회 반응시켰을 때, 췌장 소도 세포 표면에 마이크로스피어의 밀도가 1시간 동안 반응시켰을 때 보다 더 증가하는 것을 확인하였다. However, referring to Figures 5b and 5d, it was confirmed that the increase in dopamine oxidation time for microsphere coating has a negative effect on conjugation by inhibiting the interaction between microspheres and pancreatic islet cells by polydopamine nanoparticles. It was. Therefore, it is important to maintain the dopamine oxidation time at 1 hour in order to prepare uniform microspheres coated with polydopamine. In addition, it was confirmed that when the microspheres and pancreatic islet cells were reacted three times for 10 minutes, the density of the microspheres on the surface of the pancreatic islets was increased for 1 hour.
따라서, 췌장 소도 세포 표면에 마이크로스피어를 접합하는 최적의 조건은 다음과 같다: (1) 마이크로스피어 코팅 단계: 도파민 1 mg/ml, 산화 시간 1시간; (2) 췌장 소도 세포의 접합: 마이크로스피어 농도 2 ㎎/ml, 배양 시간 10분, 3회 반복.Thus, the optimal conditions for conjugating microspheres to the pancreatic islet cell surface are as follows: (1) Microsphere coating step: 1 mg / ml dopamine, 1 hour oxidation time; (2) Conjugation of pancreatic islet cells: microsphere concentration 2 mg / ml, incubation time 10 minutes, repeated 3 times.
또한, 도 6을 참조하여 보면, 마이크로스피어는 7일째까지 췌장 소도 세포 표면에서 관찰되었다. SEM 이미지에서 관찰된 바와 같이, 마이크로스피어는 14일 후 췌장 소도 세포 표면에서 사라졌으나, 공초점 현미경 레이저 스캐닝 이미지에서 고밀도로 검출되는 것을 확인하였다.In addition, referring to FIG. 6, microspheres were observed on the surface of pancreatic islets until day 7. As observed in the SEM image, the microspheres disappeared from the surface of the pancreatic islets after 14 days, but were detected with high density in the confocal microscope laser scanning image.
실시예 7 : 개질된 췌장 소도 세포에서 캡슐화된 FK506의 정량Example 7: Quantification of FK506 Encapsulated in Modified Pancreatic Islet Cells
간략하게, 폴리도파민으로 코팅된 마이크로스피어(pD-M (F1))로 개질된 췌장 소도 세포(150 IEQ)를 1 ml의 아세토니트릴에서 배양한 후, 초음파 처리하고, 17,000 rpm에서 원심분리하여 상등액을 취하고, 이를 LC/MS/MS 분석에 사용하였다. 장비는 Agilent 1260 Infinity HPLC 시스템(Agilent Technologies, Santa Clara, CA) 및 API-400 질량 분석기(AB SCIEX, Framingham, MA)를 사용하였다. 크로마토그래피 분리는 Atlatis® dC18 컬럼(2.1 x 150 mm, 3 μm; Water Corporations, Milford, MA) 및 아세토니트릴(A) 및 2 mM 아세트산 암모늄 및 0.1% 포름산(B)을 함유하는 수성 완충액으로 구성된 이동상을 이용하여 수행하였다. 구배는 90% A에서 시작하여 2.5분에서 10.5분까지 5% A로, 10.5분에서 16.0분까지 90%로 변경하였다. 유속은 250 μl/분, 컬럼 온도는 60℃로 설정하였다. 전자분무 이온화(electrospray ionization)는 양이온 모드에서 수행하였다. 질소는 전자 분사원(elecrospray source)에서 시스(sheath) 가스 및 보조 가스로 사용하였다. 탠덤 질량 분광 분석은 다중 반응 모니터링(mutiple reaction monitoring; MRM) 모드에서 수행하였다. DP(declustering potential), CE(collision energy) 및 CXP(collision cell exit potential)의 값은 각각 81, 29 및 22였다.Briefly, pancreatic islet cells (150 IEQ) modified with polydopamine coated microspheres (pD-M (F1)) were incubated in 1 ml of acetonitrile, sonicated, and centrifuged at 17,000 rpm for supernatant. Was taken and used for LC / MS / MS analysis. The instrument used an Agilent 1260 Infinity HPLC system (Agilent Technologies, Santa Clara, Calif.) And an API-400 mass spectrometer (AB SCIEX, Framingham, Mass.). Chromatographic separations consisted of an Atlatis® dC18 column (2.1 x 150 mm, 3 μm; Water Corporations, Milford, Mass.) And a mobile phase consisting of acetonitrile (A) and an aqueous buffer containing 2 mM ammonium acetate and 0.1% formic acid (B). It was performed using. The gradient started at 90% A and changed from 2.5 minutes to 10.5 minutes to 5% A and from 10.5 to 16.0 minutes to 90%. The flow rate was set to 250 μl / min and the column temperature to 60 ° C. Electrospray ionization was performed in cation mode. Nitrogen was used as the sheath gas and auxiliary gas in the elecrospray source. Tandem mass spectrometry was performed in mulitple reaction monitoring (MRM) mode. Decelerating potential (DP), collision energy (CE) and collision cell exit potential (CXP) were 81, 29 and 22, respectively.
실시예 8 : 췌장 소도 세포의 생존율 분석Example 8 Analysis of Viability of Pancreatic Islet Cells
비개질된 췌장 소도 세포 및 캡슐화된 췌장 소도 세포의 생존율은 CCK-8분석을 이용하여 분석하였다. 간략하게, RPMI 배지에 현탁한 췌장 소도 세포 100 μl를 96 웰 플레이트(96 well plate) (20 세포/웰)에 넣고, WST-8[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-etrazoium, monosodium salt] 10 μl를 처리하였다. 4시간 반응 후, 450 nm에서 흡광도를 측정하고, 최종 데이터는 각 시료의 dsDNA 함량으로 정규화하여 분석하였다.Survival rates of unmodified pancreatic islet cells and encapsulated pancreatic islet cells were analyzed using CCK-8 analysis. Briefly, 100 μl of pancreatic islet cells suspended in RPMI medium were placed in a 96 well plate (20 cells / well) and WST-8 [2- (2-methoxy-4-nitrophenyl) -3- ( 10 μl of 4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-etrazoium, monosodium salt] was treated. After 4 hours reaction, absorbance was measured at 450 nm and final data was analyzed by normalizing to the dsDNA content of each sample.
췌장 소도 세포 생존율은 생존/사멸 분석 키트(live/dead assay kit)를 이용하여 분석하였다. 간략하게, 췌장 소도 세포를 배양 배지로부터 수집한 후 세척하고, 차광 상태에서 아크리딘 오렌지(acridine orange, AO, Sigma) 0.67 μM 및 프로피디움 이오다이드 75 μM(propidium Iodide PI, Sigma)이 포함된 HBSS와 10분 동안 반응시켰다. 이후 염색된 췌장 소도 세포를 형광 현미경으로 관찰하였다. 아크리딘 오렌지는 세포 투과성을 가지므로 모든 유핵 세포를 염색하여 초록색 형광을 나타낸다. PI는 오직 기능 결핍된 세포막을 가지는 세포에 들어가므로 사멸 세포 및 괴사 세포를 염색하여 빨간색 형광을 나타낸다.Pancreatic islet cell viability was analyzed using a live / dead assay kit. Briefly, pancreatic islet cells are collected from the culture medium and washed, containing 0.67 μM of acridine orange (AO, Sigma) and 75 μM of propidium iodide PI (Sigma) in shaded condition. Reacted with HBSS for 10 minutes. Stained pancreatic islet cells were then observed under a fluorescence microscope. Acridine orange has cell permeability, so all nucleated cells are stained to give green fluorescence. PI only enters cells with dysfunctional cell membranes and stains dead and necrotic cells to show red fluorescence.
FK506은 췌장을 비롯한 많은 장기 및 세포 유형에 심각한 독성을 일으키는 것으로 알려져 있다. 또한, 화학적 및 물리적 변형을 야기하는 접합 공정은 췌장 소도 세포 기능 장애의 원인이 될 수 있다. 따라서, FK506 전달 시스템이 췌장 소도 세포의 생존율 및 기능에 영향을 미치는지 여부를 확인하였다. 비개질된 췌장 소도 세포(대조군), pD-M으로 개질된 췌장 소도 세포, pD-M(F1)으로 개질된 췌장 소도 세포 및 pD-M(F2)으로 개질된 췌장 소도 세포를 이용하여 실험을 수행하였다.FK506 is known to cause severe toxicity to many organs and cell types, including the pancreas. In addition, conjugation processes that cause chemical and physical modifications can cause pancreatic islet cell dysfunction. Therefore, it was confirmed whether the FK506 delivery system affects the survival and function of pancreatic islet cells. Experiments were performed using unmodified pancreatic islet cells (control), pancreatic islet cells modified with pD-M, pancreatic islet cells modified with pD-M (F1), and pancreatic islet cells modified with pD-M (F2). Was performed.
그 결과, 도 7a를 참조하여 보면, 생존/사멸 분석에서 확인할 수 있듯이, 모든 군에서 췌장 소도 세포가 살아 있는 것을 확인하였으며, 도 7b를 참조하여 보면, CCK-8 분석에서 대조군(100 ± 11.55%)과 비교하였을 때, pD-M으로 개질된 췌장 소도 세포, pD-M(F1)으로 개질된 췌장 소도 세포 및 pD-M(F2)으로 개질된 췌장 소도 세포의 생존율이 각각 103.22 ± 7.32%, 96.78 ± 8.09% 및 113.15 ± 7.75%인 것을 확인하였다. 또한, 도 7c를 참조하여 보면, 췌장 소도 세포의 Bcl-2 및 Bax 발현 수준은 군 간에 유의한 차이를 보이지 않았다. 따라서, FK506이 봉입되며, 폴리도파민으로 코팅된 마이크로스피어를 이용한 췌장 소도 세포의 개질은 세포 생존율에 영향을 미치지 않는 것을 확인하였다. As a result, referring to Figure 7a, as can be seen in the survival / killing analysis, it was confirmed that the pancreatic islet cells are alive in all groups, and referring to Figure 7b, the control group (100 ± 11.55%) in CCK-8 analysis ), The survival rate of pancreatic islet cells modified with pD-M, pancreatic islet cells modified with pD-M (F1) and pancreatic islet cells modified with pD-M (F2) were 103.22 ± 7.32%, respectively. It was confirmed that it is 96.78 ± 8.09% and 113.15 ± 7.75%. In addition, referring to Figure 7c, Bcl-2 and Bax expression levels of pancreatic islet cells did not show a significant difference between groups. Thus, it was confirmed that the modification of pancreatic islet cells using FK506-encapsulated, polydopamine-coated microspheres did not affect cell viability.
실시예 9 : 글루코스 자극 인슐린 분비Example 9 Glucose Stimulating Insulin Secretion
마이크로스피어로 개질된 췌장 소도 세포의 기능은 저 글루코스 및 고 글루코스 Krebs-Ringer 중탄산염 완충액(KRBB, pH 7.4) 용액(Sigma, St. Louis, MO)을 이용하여 췌장 소도 세포로부터 분비되는 인슐린의 양을 측정하여 평가하였다. 간략하게, 췌장 소도 세포를 2회 세척한 다음 2.8 mM 농도의 저 글루코오스 KRBB 용액 1 ml과 1시간 동안 전처리한 후, 새로운 2.8 mM 농도의 저 글루코오스 KRBB 용액 1 ml과 2시간 동안 배양하고, 28 mM 농도의 고 글루코오스 KRBB 용액 1 ml과 37℃에서 2시간 더 배양하였다. 각 조건에서 상등액을 취하고, Rat/Mouse Insulin ELISA 키트(Millipore, MA)를 사용하여 췌장 소도 세포로부터 분비된 인슐린의 양을 측정하였다. 최종 데이터는 각 시료의 dsDNA 함량으로 정규화하여 분석하였다. 자극 지수(stimulation index, SI) 값은 고 글루코스 조건의 인슐린 분비량을 저 글루코스 조건의 인슐린 분비량으로 나누어 계산하였다.The function of pancreatic islet cells modified with microspheres was determined by the amount of insulin secreted from pancreatic islet cells using low glucose and high glucose Krebs-Ringer bicarbonate buffer (KRBB, pH 7.4) solution (Sigma, St. Louis, MO). Measured and evaluated. Briefly, pancreatic islet cells were washed twice and then pretreated with 1 ml of a low glucose KRBB solution at 2.8 mM concentration for 1 hour, followed by incubation with 1 ml of a new 2.8 mM low glucose KRBB solution for 2 hours, followed by 28 mM Incubated further with 1 ml of high glucose KRBB solution at 37 ° C for 2 hours. Supernatants were taken under each condition and the amount of insulin secreted from pancreatic islet cells was measured using a Rat / Mouse Insulin ELISA kit (Millipore, MA). Final data were analyzed by normalizing to the dsDNA content of each sample. The stimulation index (SI) value was calculated by dividing the insulin secretion under high glucose condition by the insulin secretion under low glucose condition.
그 결과, 도 7d 및 도 7e를 참조하여 보면, 저 글루코스(2.8 MM) 및 고 글루코스(28 MM) 조건에서 개질된 췌장 소도 세포의 인슐린 분비량이 약간 감소하는 것을 확인하였다. 그러나 자극 지수는 4개의 군 간 통계적으로 유의한 차이는 없었다. 상기 결과로부터 세포 표면 개질 공정은 췌장 소도 세포의 기능에 영향을 미치지 않는 것을 확인하였다.As a result, referring to Figures 7d and 7e, it was confirmed that the insulin secretion of the modified pancreatic islet cells under low glucose (2.8 MM) and high glucose (28 MM) conditions slightly decreased. However, there was no statistically significant difference in stimulus index between the four groups. From the above results, it was confirmed that the cell surface modification process did not affect the function of the pancreatic islets.
실시예 10 : 당뇨 마우스의 신장 캡슐을 이용한 랫 췌장 소도 세포의 이종 이식Example 10 Xenograft of Rat Pancreatic Islet Cells Using Kidney Capsule of Diabetic Mice
C57BL/6 마우스에 스트렙토조토신(streptozotocin, STZ) 200 mg/kg을 단일 복강 내 주사하여 제 1형 당뇨병을 유도하였다. 3일 후, 2일 연속 350 mg/dl 이상의 혈당 수치를 가지는 마우스를 당뇨 마우스로 선별하였다. 마우스는 케타민(ketamine) 80 mg/kg 및 자일라진(xylazine) 16 mg/kg을 복강 내 주사하여 마취시키고, 요추 절개로 마우스 왼쪽 신장을 노출시킨 다음 31 게이지(gauge) 바늘을 이용하여 신장 바닥에 작은 상처를 만들었다. 이후, 곡선형 모세관을 캡슐에 삽입하고 모든 방향으로 부드럽게 움직여 이식체를 보관한 캡슐 아래 주머니(pouch)를 만들었다. 컷다운 튜빙(cutdown tubing, JMS Co., Ltd, South Korea)에 포함된 마이크로스피어로 개질된 췌장 소도 세포 또는 비개질된 췌장 소도 세포(400 IEQ)는 해밀턴 주사기(Hamilton company, Nevada, USA)로 주머니에 주입하였다. 이후, 상처를 조심스럽게 낮은 열로 소작한 다음 신장을 복막으로 다시 넣고 절개를 봉합하였다. 실험하는 동안 마우스는 물과 사료를 자율적으로 섭취하도록 하였다. Type 1 diabetes was induced by C57BL / 6 mice with a single intraperitoneal injection of streptozotocin (STZ) 200 mg / kg. After 3 days, mice with blood glucose levels of 350 mg / dl or more for 2 consecutive days were selected as diabetic mice. Mice were anesthetized by intraperitoneal injection of ketamine 80 mg / kg and xylazine 16 mg / kg, exposing the left kidney of the mouse to the lumbar incision and then using a 31 gauge needle to the bottom of the kidney. Made a small wound. The curved capillary was then inserted into the capsule and gently moved in all directions to create a pouch under the capsule containing the implant. Microsphere-modified pancreatic islet cells or unmodified pancreatic islet cells (400 IEQ) included in cutdown tubing (JMS Co., Ltd, South Korea) were transferred to Hamilton syringes (Hamilton company, Nevada, USA). It was injected into the bag. The wound was then cauterized carefully with low heat, then the kidneys were returned to the peritoneum and the incisions closed. Mice were allowed to consume water and feed autonomously during the experiment.
췌장 소도 세포 이식 후, 비-공복 혈당 농도는 휴대용 혈당계(Contour TS, Bayer Healthcare LLC, IN, USA)를 이용하여 마우스 꼬리 정맥에서 측정하였다. 혈당치가 2일 연속 200 mg/dl 이하로 떨어지면 실험이 성공적인 것으로 간주하였고, 2일 연속 200 mg/dl 이상이면 이식된 췌장 소도 세포가 거부 반응을 일으킨 것으로 간주하였다. After pancreatic islet cell transplantation, non-fasting blood glucose levels were measured in mouse tail veins using a handheld blood glucose meter (Contour TS, Bayer Healthcare LLC, IN, USA). Experiments were considered successful if blood glucose levels dropped below 200 mg / dl for two consecutive days, and transplanted pancreatic islet cells were considered to have rejected for two consecutive days above 200 mg / dl.
그 결과, 도 8a 및 도 8b를 참조하여 보면, 췌장 소도 세포 수혜자(n=5) 및 pD-M으로 개질된 췌장 소도 세포 수혜자(n=7)는 12일의 동일 이식 중간 생존 시간(median survival time; MST)에서 단시간 동안 정상 혈당을 유지하였으나, 이후 급성 이식 실패를 나타내었다.As a result, referring to FIGS. 8A and 8B, the pancreatic islet cell beneficiary (n = 5) and the pancreatic islet cell beneficiary (n = 7) modified with pD-M were 12 days of median survival. normal blood sugar was maintained for a short time at time;
반면, 도 8d 및 도 8e를 참조하여 보면, FK506이 봉입되고, 폴리도파민으로 코팅된 마이크로스피어를 췌장 소도 세포에 접합시켰을 때, 이식 생존율이 크게 향상되는 것을 확인하였다. pD-M(F1)로 개질된 췌장 소도 세포 수혜자(n=12) 및 pD-M(F2)로 개질된 췌장 소도 세포 수혜자(n=6)의 MST는 대조군보다 2.8배 및 2.2배 더 높은 값을 나타내었다(MST=34일 및 26.5일).On the other hand, referring to Figures 8d and 8e, when the FK506 is sealed, and the polyspheres coated with polydopamine is conjugated to pancreatic islet cells, it was confirmed that the graft survival rate is greatly improved. The MST of pancreatic islet cell beneficiaries modified with pD-M (F1) (n = 12) and pancreatic islet cell beneficiaries modified with pD-M (F2) (n = 6) was 2.8- and 2.2-fold higher than the control group. (MST = 34 days and 26.5 days).
또한, 도 8h를 참조하여 보면, pD-M(F1)은 이식 생존율을 향상시켰을 뿐만 아니라 pD-M(F2)보다 혈당치를 훨씬 잘 조절하였으며, pD-M(F1)에서 FK506의 함유량은 pD-M(F2)에서 FK506 함유량에 절반에 불과하였다(각각 3.33 ± 0.07% 및 6.71 ± 0.11%). pD-M(F2)에서 방출된 FK506의 수준은 pD-M(F1)에서 방출된 FK506 수준보다 약 3배 더 높았다. 상기 결과는 pD-M(F2)에서 방출된 FK506의 높은 수준이 이식된 췌장 소도 세포의 생존 및 기능을 방해할 수 있음을 의미한다. 또한, pD-M(F1)으로부터 방출된 FK506은 췌장 소도 세포에 악영향을 미치지 않으면서 면역 거부로부터 췌장 소도 세포를 보호하기에 충분함을 확인하였다.In addition, referring to Figure 8h, pD-M (F1) not only improved the graft survival rate, but also regulated blood glucose much better than pD-M (F2), the content of FK506 in pD-M (F1) is pD- Only half of the FK506 content in M (F2) was 3.33 ± 0.07% and 6.71 ± 0.11%, respectively. The level of FK506 released in pD-M (F2) was about three times higher than the FK506 level released in pD-M (F1). The results indicate that high levels of FK506 released from pD-M (F2) may interfere with the survival and function of transplanted pancreatic islets. In addition, FK506 released from pD-M (F1) was confirmed to be sufficient to protect the pancreatic islets cells from immune rejection without adversely affecting the pancreatic islets cells.
실시예 11 : 복강 내 당 부하 검사Example 11 Intraperitoneal Sugar Loading Test
혈당 수준을 낮추는데 있어서, 이식된 췌장 소도 세포의 기능을 평가하기 위해, 이식 후 20일째에 복강 내 당 부하 검사(intraperitoneal glucose tolerance test, IPGTT)를 수행하였다. 간략하게, 마우스는 물을 자유롭게 섭취하게 하였으나, 식염수에 용해한 포도당 용액(2.0 g/kg)을 복강 주사하기 전 12시간 동안 금식시켰다. 혈당 수치는 주사 후, 0, 5, 10, 15, 20, 30, 45, 60, 90 및 120분에 측정하고 기록하였다. 정상 마우스 및 당뇨병 마우스를 대조군으로 사용하였다.In order to evaluate the function of transplanted pancreatic islet cells in lowering blood glucose levels, an intraperitoneal glucose tolerance test (IPGTT) was performed 20 days after transplantation. Briefly, mice were allowed to ingest water freely, but fasted for 12 hours prior to intraperitoneal injection of glucose solution (2.0 g / kg) dissolved in saline. Blood glucose levels were measured and recorded at 0, 5, 10, 15, 20, 30, 45, 60, 90 and 120 minutes after injection. Normal mice and diabetic mice were used as controls.
그 결과, 도 8i를 참조하여 보면, 당뇨병 마우스의 혈당 수치는 고농도의 글루코스 투여 10분 후에 600 mg/dL 이상으로 급속히 증가하였으며, 120분에 400 mg/dL 이상으로 유지되었다. 대조적으로, 정상 마우스와 pD-M(F1)으로 개질된 췌장 소도 세포 수혜자의 혈당 수준의 변화 패턴은 유사하였고, 15분에 증가하여 120분 이내에 정상 수준까지 점진적으로 감소하였다. 상기 결과는 pD-M(F1)으로 개질된 췌장 소도 세포와 비개질된 췌장 소도 세포가 생체 내 기능에 있어서 유의한 차이를 나타내지 않는 것을 의미한다. As a result, referring to FIG. 8I, the blood glucose level of diabetic mice rapidly increased to 600 mg / dL or more after 10 minutes of high glucose administration, and maintained at 400 mg / dL or more at 120 minutes. In contrast, the pattern of change in blood glucose levels of normal mice and pancreatic islet cell recipients modified with pD-M (F1) was similar and increased to 15 minutes and gradually decreased to normal levels within 120 minutes. The results indicate that pancreatic islet cells modified with pD-M (F1) and unmodified pancreatic islet cells do not show significant differences in function in vivo.
또한, 도 9를 참조하여 보면, 이식된 마우스의 체중 변화에 있어서, pD-M(F1)으로 개질된 췌장 소도 세포만이 체중을 증가시켜 정상적인 발달을 나타내었고, 약물 전달 시스템의 효과를 입증하였다.In addition, referring to Figure 9, in the change in body weight of the transplanted mice, only pancreatic islet cells modified with pD-M (F1) showed normal development by gaining weight, demonstrating the effect of the drug delivery system. .
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above in detail certain parts of the present invention, it is apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (11)

  1. 폴리도파민(polydopamine)으로 코팅되며 폴리(락틱-코-글리콜산) (poly(lactic-co-glycolic acid), PLGA) 고분자로 이루어진 마이크로스피어 및 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시킨 것을 특징으로 하는 마이크로스피어.It is coated with a polydopamine (polydopamine) and the microspheres made of poly (lactic-co-glycolic acid) (PLGA) polymer and the drug or bioactive material in the microspheres Microspheres.
  2. 제 1항에 있어서, 상기 마이크로스피어의 평균 직경은 1 내지 1000 μm인 것을 특징으로 하는 마이크로스피어.The microsphere of claim 1, wherein the microspheres have an average diameter of 1 to 1000 μm.
  3. 제 1항에 있어서, 상기 약물 또는 생리활성물질은 면역억제제, 항혈액응고제, 항염증제, 항산화제 및 호르몬제로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 마이크로스피어.The microsphere of claim 1, wherein the drug or bioactive substance is at least one selected from the group consisting of immunosuppressants, anticoagulants, anti-inflammatory agents, antioxidants, and hormones.
  4. 제 3항에 있어서, 상기 약물 또는 생리활성물질은 화학 약품, 단백질, 펩타이드, 항체, 유전자, siRNA 및 microRNA로 이루어진 군에서 선택된 형태로 제공되는 것을 특징으로 하는 마이크로스피어.The microsphere of claim 3, wherein the drug or bioactive material is provided in a form selected from the group consisting of chemicals, proteins, peptides, antibodies, genes, siRNAs and microRNAs.
  5. PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계;A first step of encapsulating the drug or bioactive material in the microspheres by stirring the PLGA microspheres with the drug or the bioactive material;
    상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계; 및A second step of reacting the dopamine solution with the polymer suspension of the PLGA microspheres containing the drug or the bioactive material; And
    상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계;Centrifuging the reacted reactants to obtain a PLGA microsphere coated with polydopamine;
    를 포함하는 마이크로스피어의 제조방법.Microsphere manufacturing method comprising a.
  6. 제 5항에 있어서, 상기 제 2단계는 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 1:1.5 내지 3의 부피비로 첨가하는 것을 특징으로 하는 마이크로스피어의 제조방법.6. The method of claim 5, wherein the second step is a method for producing a microsphere, characterized in that the polymer suspension of the PLGA microspheres and the dopamine solution is added in a volume ratio of 1: 1.5 to 3.
  7. 제 5항에 있어서, 상기 제 2단계는 15 내지 40℃, pH 8 내지 9의 조건에서 30분 내지 2시간 동안 수행하는 것을 특징으로 하는 마이크로스피어의 제조방법.The method of claim 5, wherein the second step is performed at 15 to 40 ° C. and pH 8 to 9 for 30 minutes to 2 hours.
  8. PLGA 마이크로스피어와 약물 또는 생리활성물질을 교반시켜 상기 마이크로스피어 내 약물 또는 생리활성물질을 봉입시키는 제 1단계;A first step of encapsulating the drug or bioactive material in the microspheres by stirring the PLGA microspheres with the drug or the bioactive material;
    상기 약물 또는 생리활성물질이 봉입된 PLGA 마이크로스피어의 고분자 현탁액과 도파민 용액을 반응시키는 제 2단계; A second step of reacting the dopamine solution with the polymer suspension of the PLGA microspheres containing the drug or the bioactive material;
    상기 반응시킨 반응물을 원심분리하여 폴리도파민으로 코팅된 PLGA 마이크로스피어를 획득하는 제 3단계; 및 Centrifuging the reacted reactants to obtain a PLGA microsphere coated with polydopamine; And
    상기 폴리도파민으로 코팅된 PLGA 마이크로스피어와 세포를 반응시켜 세포 표면을 개질하는 제 4단계;A fourth step of modifying a cell surface by reacting the polygapamine-coated PLGA microspheres with cells;
    를 포함하는 세포 표면 개질 방법. Cell surface modification method comprising a.
  9. 제 8항에 있어서, 제 4단계의 세포는 췌장 소도 세포, 줄기세포, 간세포, 섬유아세포, 림프구, 혈관내피세포, 신경세포, 법랑아세포, 각질세포, 지방세포, 차골세포, 섬모세포, 대식세포, 수상세포, 뇌의 뉴런, 난세포 및 신방근세포로 이루어진 군에서 선택된 것을 특징으로 하는 세포 표면 개질 방법.The method of claim 8, wherein the fourth stage cells are pancreatic islet cells, stem cells, hepatocytes, fibroblasts, lymphocytes, vascular endothelial cells, neurons, enamel cells, keratinocytes, adipocytes, osteoblasts, ciliated cells, macrophages Cell surface modification method, characterized in that selected from the group consisting of dendritic cells, brain neurons, egg cells and neomyocytes.
  10. 제 8항에 있어서, 상기 제 4단계는 15 내지 40℃에서 5 내지 15분씩 2 내지 5회 반복 수행하는 것을 특징으로 하는 세포 표면 개질 방법.9. The method of claim 8, wherein the fourth step is repeated 2 to 5 times at 5 to 15 minutes at 15 to 40 ℃.
  11. 제 1항에 따른 마이크로스피어로 표면이 개질된 세포를 유효성분으로 포함하는 당뇨병 치료용 약학 조성물.A pharmaceutical composition for treating diabetes, comprising a cell whose surface is modified with a microsphere according to claim 1 as an active ingredient.
PCT/KR2018/000488 2017-01-11 2018-01-10 Poly(lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using same WO2018131890A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170004145 2017-01-11
KR10-2017-0004145 2017-01-11
KR1020180003155A KR102080689B1 (en) 2017-01-11 2018-01-10 Polydopamine coated poly(lactic-co-glycolic acid) microsphere and cell surface modification method using thereof
KR10-2018-0003155 2018-01-10

Publications (1)

Publication Number Publication Date
WO2018131890A1 true WO2018131890A1 (en) 2018-07-19

Family

ID=62840191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000488 WO2018131890A1 (en) 2017-01-11 2018-01-10 Poly(lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using same

Country Status (1)

Country Link
WO (1) WO2018131890A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110179982A (en) * 2019-06-20 2019-08-30 武汉理工大学 Multifunctional targeted drug delivery system with combined effect of chemotherapy and phototherapy and preparation method thereof
CN113633788A (en) * 2021-08-02 2021-11-12 郑州大学第一附属医院 Preparation method of high-adhesion drug sustained release carrier for developing nerve block
US20220105047A1 (en) * 2019-01-16 2022-04-07 Research Cooperation Foundation Of Yeungnam University Microcapsule composition using alginate gel, and method for producing same
CN114288461A (en) * 2021-12-17 2022-04-08 上海市第一人民医院 Preparation and synchronous modification method of novel multifunctional embolus
CN115025723A (en) * 2022-05-10 2022-09-09 吉林大学 PEG-PLGA microspheres modified by nerve growth factor and dopamine
CN116983269A (en) * 2023-07-26 2023-11-03 上海交通大学医学院附属第九人民医院 Cell-loaded porous microsphere and preparation method and application thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMJADI, I: "Synthesis and characterization of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 168, no. 6, 14 September 2012 (2012-09-14), pages 1434 - 1447, XP035141022 *
DONG, H. O: "Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice", PLOS ONE, vol. 7, no. 12, December 2012 (2012-12-01), pages 1 - 7, XP055518550 *
HYO-EUN JANG, HYEJUNG MOK: "Polydopamine-coated porous microspheres conjugated with immune stimulators for enhanced cytokine induction in macrophages", MACROMOLECULAR BIOSCIENCE, vol. 16, November 2016 (2016-11-01), pages 1562 - 1569, XP055518548 *
PARK, J.: "Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers", ASC NANO, vol. 8, no. 4, 22 April 2014 (2014-04-22), pages 3347 - 3356, XP055260726 *
PRADIP DAS, NIKHIL R. JANA: "Dopamine functionalized polymeric nanoparticle for targeted drug delivery", RSC ADVANCES, vol. 5, 2015, pages 33586 - 33594, XP055518553 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105047A1 (en) * 2019-01-16 2022-04-07 Research Cooperation Foundation Of Yeungnam University Microcapsule composition using alginate gel, and method for producing same
CN110179982A (en) * 2019-06-20 2019-08-30 武汉理工大学 Multifunctional targeted drug delivery system with combined effect of chemotherapy and phototherapy and preparation method thereof
CN110179982B (en) * 2019-06-20 2021-07-06 武汉理工大学 Multifunctional targeted drug delivery system with combined effect of chemotherapy and phototherapy and preparation method thereof
CN113633788A (en) * 2021-08-02 2021-11-12 郑州大学第一附属医院 Preparation method of high-adhesion drug sustained release carrier for developing nerve block
CN114288461A (en) * 2021-12-17 2022-04-08 上海市第一人民医院 Preparation and synchronous modification method of novel multifunctional embolus
CN115025723A (en) * 2022-05-10 2022-09-09 吉林大学 PEG-PLGA microspheres modified by nerve growth factor and dopamine
CN116983269A (en) * 2023-07-26 2023-11-03 上海交通大学医学院附属第九人民医院 Cell-loaded porous microsphere and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018131890A1 (en) Poly(lactic-co-glycolic acid) microspheres coated with polydopamine and cell surface modification method using same
US10709667B2 (en) Hydrogel encapsulated cells and anti-inflammatory drugs
KR102080689B1 (en) Polydopamine coated poly(lactic-co-glycolic acid) microsphere and cell surface modification method using thereof
Liu et al. Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation
Zhi et al. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes
US10137150B2 (en) Graphene and graphene-related materials for manipulation of cell membrane potential
Kizilel et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion
Orive et al. Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy
US9555007B2 (en) Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates
Spasojevic et al. Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers
JPH10501523A (en) Method using uncoated gel particles
JPH11501928A (en) Immunoisolation
WO2018080155A2 (en) Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same
Bahmanpour et al. Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin
White et al. Engineering strategies to improve islet transplantation for type 1 diabetes therapy
Kim et al. Suppression of fibrotic reactions of chitosan-alginate microcapsules containing porcine islets by dexamethasone surface coating
WO2017078277A1 (en) Drug sustained-release type nanoparticle and pharmaceutical composition for treatment of diabetes comprising pancreatic islet cells having surface-modified with nanoparticle
Yuan et al. Robust and Multifunctional Nanoparticles Assembled from Natural Polyphenols and Metformin for Efficient Spinal Cord Regeneration
Hütten et al. UHV-alginate as matrix for neurotrophic factor producing cells—a novel biomaterial for cochlear implant optimization to preserve inner ear neurons from degeneration
WO2019190176A1 (en) Glycyrrhizin-glycol chitosan conjugate-coated iron oxide nanoparticles and use thereof
Abbaszadeh et al. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond
US7128931B2 (en) Semi-permeable microcapsule with covalently linked layers and method for producing same
WO2020116989A1 (en) Anti-cancer composition comprising in vivo cell injection chip
WO2023153832A1 (en) Ectosome-biodegradable polymer nanoparticle complex having enhanced lesion-targeting ability, and preparation method therefor
WO2023140695A1 (en) Composition for improving intestinal health and function comprising milk-derived exosomes as active ingredient, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739268

Country of ref document: EP

Kind code of ref document: A1