WO2018080155A2 - Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same - Google Patents

Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same Download PDF

Info

Publication number
WO2018080155A2
WO2018080155A2 PCT/KR2017/011814 KR2017011814W WO2018080155A2 WO 2018080155 A2 WO2018080155 A2 WO 2018080155A2 KR 2017011814 W KR2017011814 W KR 2017011814W WO 2018080155 A2 WO2018080155 A2 WO 2018080155A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitric oxide
thin film
poly
group
polymer
Prior art date
Application number
PCT/KR2017/011814
Other languages
French (fr)
Korean (ko)
Other versions
WO2018080155A3 (en
Inventor
홍진기
정혜중
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2018080155A2 publication Critical patent/WO2018080155A2/en
Publication of WO2018080155A3 publication Critical patent/WO2018080155A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7007Drug-containing films, membranes or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a complex for delivery of nitric oxide and a method for producing the same.
  • Nitric monoxide is a highly reactive radical molecule produced by nitric oxide-producing enzymes in cells, and is an important cellular signaling molecule responsible for various physiological or pathological processes in the body. Nitrogen monoxide began to attract attention in neuroscience, physiology, and immunology when it was named “Molecule of the Year” by the American journal Science in 1992. The study, which revealed the cardiovascular signaling function of nitric oxide, won the Nobel Prize in Physiology in 1998. Nitric oxide acts as a powerful vasodilator in the blood vessels, and in addition, it functions in various functions such as immune response, neurotransmission, erectile control, antibacterial action and wound healing.
  • nitrogen monoxide plays a variety of roles in the body, people have conducted studies to find ways to artificially deliver nitrogen monoxide externally. In particular, nitrogen monoxide has various effects in the gas state, and since the half-life is very short within 6 seconds, studies on the release of nitrogen monoxide in the form of compounds have been conducted.
  • the most studied compounds include diaeniumdiolate (NONOate) and S-nitrosothiol (RSNO).
  • NONOate diaeniumdiolate
  • RSNO S-nitrosothiol
  • the emission is promoted by temperature, light, and copper ions (Cu 2+), and the nitrogen monoxide emission efficiency is high.
  • it is difficult to obtain nitrogen monoxide in a pure state because nitrogen monoxide is not released into the living body or the material is not stable.
  • Diagenium dioleate can be stored stably in a solid state, has high solubility in water, and can easily produce nitrogen monoxide at a living temperature and pH conditions.
  • degradation products may be toxic and have the disadvantage of releasing nitrogen monoxide upon contact with water.
  • Non-Patent Document 1 Representative foreign groups conducting research on nitrogen monoxide carriers include Mark E. Meyerhoff Group of the University of Michigan and Mark H. Schoenfisch Group of Chapel Hill, North Carolina State University. Meyerhoff Group has developed silica nanoparticles that release hundreds of nanometers of nitrogen oxides based on diazenium dioleate in a sol-gel manner using aminoalkylsilane.
  • the Schoenfisch group first manufactured silica nanoparticles, and then converted the secondary amine group on the surface into a diagenium diolate group, thereby converting the particles showing the release of nitrogen monoxide from the surface, and the aminoalkoxysilane molecules into the diagenium diolate group
  • silica nanoparticles were fabricated and developed two forms in which nitrogen monoxide was released from inside the particles. After preparing the particles using various aminoalkoxysilanes, the size and nitrogen monoxide emission efficiency were reported. When there is an aminoalkoxysilane group inside the particle, the efficiency of nitrogen monoxide emission is maximized, thereby making it possible to manufacture high-efficiency nitric oxide nanoparticles.
  • Non-Patent Document 2 The efficiency varies depending on the molecular structure of aminoalkoxysilane. However, since the aminoalkoxysilane-based nitric oxide nanoparticles are manufactured according to the sol-gel principle, the process must be thoroughly controlled for temperature and moisture, which makes the process difficult, costly, and likely to fail (Non-Patent Document 2).
  • Non-Patent Document 3 when irradiated with UV, 2-nitro-benzaldehyde in the nanoparticles releases hydrogen ions, resulting in the release of nitrogen monoxide as the capping layer decomposes as the pH is lowered.
  • Non-Patent Document 3 there is still a disadvantage in this study that the process of using aminoalkoxysilane is complicated and difficult.
  • An object of the present invention is to provide a method for producing a composite for nitric oxide delivery.
  • It is formed on the substrate, and comprises a polymer thin film containing a diazenium dioleate group,
  • the polymer thin film provides a composite for transferring nitric oxide formed in at least one layer.
  • the present invention (A) forming at least one polymer thin film containing a secondary amine group on the substrate;
  • (B) at a temperature of 25 to 300 °C and a pressure of 1 to 30 atm, it provides a method for producing a nitric oxide delivery complex comprising the step of reacting with nitrogen monoxide.
  • the nitric oxide delivery composite produced by the present invention has the same or higher nitrogen monoxide emission efficiency as conventional sol-gel based nitric oxide particles.
  • the manufacturing process is simple and not limited, so the probability of manufacturing success is high and mass production is possible.
  • Polymer coating of the layer and layer (LbL) lamination method can be applied to any size or shape, such as microparticles and flat substrates as well as nanoparticles, it is possible to manufacture a variety of nitric oxide delivery complex.
  • the LbL method can coat not only desired biocompatible polymers but also graphene, proteins, drugs and growth factors based on various intermolecular attraction. Therefore, by applying this, it is possible to give a multi-functionality in which the release of the drug or growth factor simultaneously with the release of nitrogen oxide gas.
  • the surface coating can freely control the surface charges and functional groups of the particles or specific surfaces to increase the distribution ability and biocompatibility of the particles.
  • the rate and amount of nitrogen monoxide release can also be controlled.
  • Figure 1 is a schematic diagram showing the manufacturing process of the composite for the delivery of nitrogen oxide of various forms, such as particles, thin film and hydrogel.
  • Figure 2 is a schematic diagram showing the chemical structure of the diazenium dioleate functional groups produced when a polymer such as BPEI reacted under high pressure nitrogen monoxide at room temperature for 3 days.
  • 5 is a graph of surface charge analysis of silica nanoparticles, BPEI coated nanoparticles, and nitric oxide nanoparticles.
  • FIG. 6 is a graph analyzing the amount of nitrogen monoxide released from the nitric oxide nanoparticles in real time with a nitrogen monoxide analyzer.
  • FIG. 7 is a graph showing cumulative amounts of nitrogen monoxide released from nitric oxide nanoparticles.
  • FIG. 9 is a graph evaluating toxicity for myoblasts for 24 hours and 48 hours according to the concentrations of nitric oxide nanoparticles (B-NO) and BPEI coated nanoparticles (B-Si).
  • FIG. 10 is a graph evaluating toxicity for myoblasts with higher concentrations of silica nanoparticles (Si), nitric oxide nanoparticles (B-NO) and BPEI coated nanoparticles (B-Si) for 24 hours.
  • the present invention And a polymer thin film formed on the substrate and including a diazenium dioleate group.
  • the polymer thin film relates to a composite for transferring nitric oxide formed in at least one layer.
  • the "nitric oxide delivery complex” means a material capable of delivering nitrogen monoxide, and may be referred to as a “nitrogen oxide complex” or a “nitrogen oxide transporter.”
  • the substrate is not particularly limited as long as it is a material to be coated on the surface to control and release nitrogen monoxide, and may be a stable inorganic component in vivo, a biodegradable polymer degradable in vivo, micelles and bio-derived materials.
  • a material to be coated on the surface to control and release nitrogen monoxide may be a stable inorganic component in vivo, a biodegradable polymer degradable in vivo, micelles and bio-derived materials.
  • the inorganic component may be silica, hydroxyapatite or gold, and the like
  • the biodegradable polymer may be poly- ⁇ -hydroxy butyrate (PHB), polylactic acid (PLA), Poly-DL-lactide-co-glycolide (PLGA), aliphatic polyesters, polycaprolactone (PCL), polymethyl methacrylate (polymethyl methacrylate, PMMA), poly-ethyleneglycol (PEG), poly-vinylalcohol (PVA), poly-alkyl-cyano-carylates (PAC) ), Chitosan or gelatin.
  • PHB poly- ⁇ -hydroxy butyrate
  • PLA polylactic acid
  • PLGA Poly-DL-lactide-co-glycolide
  • PCL polycaprolactone
  • PCL polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • PMMA poly-ethyleneglycol
  • PVA poly-vinylalcohol
  • micelles are Phopholipid-based liposomes, emulsion-type particles formed on water / oil including surfactants, PS-b-PAA, PS-b-P4VP, PEO-b-PCL, and the like.
  • the block copolymer may be a block copolymer and the like, and the bio-derived material may be DNA / RNA, phospholipid or liposome.
  • silica may be used as the substrate.
  • the shape of the substrate is not particularly limited, and may have a nanoparticle, microparticle, or film shape.
  • the composite for delivering nitric oxide may be referred to as nitric oxide nanoparticles, and may be referred to as nitric oxide microparticles when having the shape of microparticles, and as a nitric oxide film when it has a film shape. .
  • the substrate may be made of a material that can be inserted into the body (hereinafter, referred to as a body insert).
  • the body insert means any article that can be placed in a position where the physiological effect can be seen by the release of nitric oxide in the body of an animal including a human or a mammal, and can have a carrier for controlled release of nitric oxide on its surface.
  • Such inserts do not necessarily have to be present in the body as long as a part is inserted into the body. For example, connections such as pipes and wires may be pushed out of the body.
  • These implants include stents, catheters, subcutaneous implants, chemical sensors, leads, heart pacemakers, vascular grafts, wound dressings, Penile implants, implantable pulse generators, implantable cardiac defibrillators, nerve stimulators, and the like.
  • the polymer containing the diazenium dioleate group can be stably stored as a solid form, has high solubility in water, and release forms such as release rate and method according to the structure of the remaining portion to which the diazenium dioleate group is connected. Can be adjusted.
  • the polymer containing the diazenium dioleate group not only decomposes at the temperature and pH conditions of the body, but also has various forms of release depending on the pH.
  • since two molecules of nitrogen monoxide are released per unit of diazenium dioleate group relatively high concentrations of nitrogen monoxide can be generated when included in the complex.
  • the polymer thin film including the diazenium dioleate group may be formed in one or more layers, and specifically, may be formed in a multilayer of 1 to 500 layers or 2 to 200 layers.
  • one thin film may be formed by a neighboring thin film and a layer-by-layer (LbL) lamination method.
  • LbL layer-by-layer
  • Layer-by-layer lamination is a technique that can be freely controlled at the molecular level, does not limit the properties of various materials, and can produce multilayer nano thin films by simple molecular mutual attraction without applying heat or strong stimulus. . Since the attraction between each other is not a chemical bond but a physical bond, it does not denature the intrinsic properties of the materials. Since the layer and the layer lamination method use a substrate rather than mixing the solutions with each other, a thin film (polymer layer) without phase separation may be produced.
  • the layer and layer stacking method is not limited to the size and shape, such as not only nanoparticles, but also particles of any size or planar substrate, and by modifying the surface to be coated by surface treatment such as oxygen plasma, RCA and piranha There is almost no limit.
  • the layer-to-layer stacking method includes electrostatic attraction, van der Waals forces, hydrogen bonds, covalent bonds, ionic bonds, hydrophobic bonds, charge-transfer bonds, ⁇ -interaction, and coordination. Chemical bonds, stereocomplexation, host-guest or biological bonds can be used.
  • the host may be cyclodextrins, cucurbiturils, calixarenes, pillarararenes, crown ethers, or porphyrins.
  • the guest may be ferrocene, adamantine or azobenzene.
  • the biological binding may be avidin-Biotin binding, antigen-antibody binding, lectin-carbohydrate binding or DNA complementary binding.
  • the layer and layer stacking method may use an electrostatic attraction or hydrogen bonding.
  • the total thickness of the thin film may be 1 nm to 1000 ⁇ m, or 1 nm to 10 ⁇ m. It is stable at this thickness and does not exhibit cytotoxicity, and may have excellent nitrogen monoxide release effect.
  • the polymer thin film including the diazenium dioleate group may further include one or more components selected from the group consisting of proteins, growth factors, graphene, and drugs in the thin film. These components can impart new functions in addition to nitrogen monoxide delivery.
  • the nitric oxide complex in the present invention may further include a thin film composed of one or more components selected from the group consisting of a second polymer, a protein, a growth factor, graphene, and a drug.
  • the protein, growth factor, graphene, and drugs can be used without limitation materials used in the art.
  • graphene has a gas barrier effect, it is possible to control the rate and amount of nitrogen monoxide released.
  • the nitric oxide complex when the multilayer polymer thin film is formed by electrostatic attraction, may further include a thin film including a second polymer, wherein the second polymer may be a polymer having a negative charge. have.
  • the second polymer is poly (ethylene glycol), hyaluronic acid, poly-L-lactic acid, alginic acid, dextran Dextran sulfate, lignin, tannic acid, chondroitin sulfate, cellulose polymers, fucoidan, poly (acrylic acid), poly (Sodium-4-styrenesulfonate), poly (vinylidene fluoride), poly (methacrylic acid), poly (glycol Acid) (poly (glycolic acid)), poly (lactic acid), poly (caprolactone), poly (ortho ester) II, poly [(carboxyphenoxy) Propane sebacic acid], poly (alkyl cyanoacrylate), polyphosphoesters, polyester Imide may be used one or more selected from the group consisting of (polyester amides) and polyurethanes (polyurethane).
  • the present invention also relates to a method for preparing the nitric oxide complex described above.
  • the nitric oxide composite according to the present invention comprises the steps of: (A) forming at least one polymer thin film containing a secondary amine group on a substrate; And
  • (B) at a temperature of 25 to 300 ° C. and a pressure of 1 to 30 atm it may be prepared through a step of reacting with nitrogen monoxide.
  • the substrate may use one or more selected from the group consisting of an inorganic component stable in vivo, a biodegradable polymer degradable in vivo, micelles, and a bio-derived material.
  • the shape may be nanoparticles, micro particles or film shape.
  • the composite for delivering nitric oxide may be referred to as nitric oxide nanoparticles, and may be referred to as nitric oxide microparticles when having the shape of microparticles, and as a nitric oxide film when it has a film shape. .
  • Step (A) in the present invention can be carried out by immersing the substrate in a polymer solution containing a secondary amine group.
  • the solvent in the polymer solution containing the secondary amine group may be water, ethanol, sodium acetate buffer (PBS), phosphate buffered saline (PBS) or culture media, and the like. It is positively charged.
  • the silica when silica is used as the substrate, the silica is negatively charged by the OH- group, and thus, the silica may be bonded to the secondary amine group through electrostatic attraction.
  • a surface treatment step for forming a negatively charged surface on the substrate may be further performed.
  • the surface treatment may include a high frequency spark discharge treatment such as corona treatment or plasma treatment; Heat treatment; Flame treatment; Coupling agent treatment; Primer activation or chemical activation treatment using gas phase Lewis acid (ex. BF3), sulfuric acid or hot sodium hydroxide and the like.
  • the polymer containing the secondary amine group is branched polyethyleneimine (BPEI), chitosan (chitosan), gelatin (gelatin), collagen (collagen), fibrinogen, silk fibroin (silk fibroin), casein (casein), elastin, laminin, fibronectin, poly dopamine, poly ethyleneimine, poly-L-lysine, poly (vinyl) Amine) hydrochloride (poly (vinylamine) hydrochloride), poly (amino acids) and desaminotyrosyl octyl ester (desaminotyrosyl octyl ester) may be at least one selected from the group, specifically BPEI Can be.
  • BPEI Can be branched polyethyleneimine
  • chitosan chitosan
  • gelatin gelatin
  • collagen collagen
  • fibrinogen silk fibroin
  • silk fibroin silk fibroin
  • casein casein
  • elastin lamin
  • the polymer solution including the secondary amine group may further include one or more selected from the group consisting of proteins, growth factors, graphene, and drugs, in addition to the polymer including the secondary amine group.
  • one thin film when the thin film is formed in multiple layers, one thin film may be formed by a neighboring thin film and a layer-by-layer (LbL) lamination method.
  • the layer-to-layer stacking method includes electrostatic attraction, van der Waals forces, hydrogen bonds, covalent bonds, ionic bonds, hydrophobic bonds, charge-transfer bonds, ⁇ -interaction, and coordination. Chemical bonds, stereocomplexation, host-guest or biological bonds may be used, specifically electrostatic attraction or hydrogen bonds.
  • the thin film when the thin film is formed of two or more multilayers through hydrogen bonding, the thin film may be formed by stacking a polymer solution containing a secondary amine group two or more times.
  • the thin film when the thin film is formed into two or more multilayers through electrostatic attraction, the thin film may be formed by repeatedly stacking a polymer solution and a negatively charged polymer solution including a secondary amine group.
  • the negatively charged polymer in the negatively charged polymer solution refers to a polymer that can dissolve in a solvent and take a negative charge.
  • the kind of the negatively charged polymer is not particularly limited, and polymers used in the art may be used without limitation.
  • negatively charged polymers include hyaluronic acid, poly-L-lactic acid, alginic acid, dextran sulfate, lignin, tannic acid natural polymer and poly (acrylic acid, PAA) including tannic acid, chondroitin sulfate, cellulose polymer, fucoidan, heparin, and HEP , Poly (sodium4-styrenesulfonate), poly (vinylidene fluoride), poly (methacrylic acid), poly (Glycolic acid), poly (lactic acid), poly (caprolactone), poly (ortho ester) II, poly [(carboxyphenoxy) Poly ((carboxyphenoxy) propane sebacic acid], poly (alkyl
  • washing may be further performed.
  • the present invention may further comprise the step of forming a thin film comprising at least one selected from the group consisting of a second polymer, a protein, a growth factor, graphene and a drug.
  • a second polymer the above-described polymer may be used.
  • step (B) is a step of reacting the substrate coated with the polymer thin film containing the secondary amine group prepared in step (A) with nitrogen monoxide.
  • the nanoparticles or microparticles formed with the polymer thin film may be encapsulated in a hydrogel and then reacted with nitrogen monoxide.
  • the reaction with nitrogen monoxide may be carried out at a temperature of 25 to 300 °C and a pressure of 1 to 30 atm.
  • the reaction time can be 1 to 5 days, 2 to 4 days or 3 days.
  • the amount of the product prepared in (A) may vary depending on the size of the reaction vessel. For example, when the size of the reaction vessel is 1 ml to 10 L, the amount of the product may be 1 mg to 100 g.
  • the secondary amine group can be converted to the diazenium diolate group (FIG. 2).
  • step (b) is a step of putting a thin film coated substrate and a catalyst in a solvent to the reactor;
  • Nitrogen monoxide in the reactor may be carried out through the step of reacting.
  • a base catalyst such as sodium methoxide may be used.
  • the exhaust to the inert gas may be performed to remove the gas contained in the reactor and the solution, and argon (Ar) may be used as the inert gas.
  • the exhaust may be performed by repeatedly injecting and releasing an inert gas a plurality of times.
  • the reaction with nitrogen monoxide may be carried out for the above temperature, pressure and time.
  • the product can be stored after packaging dry.
  • Figure 1 is a schematic diagram showing the manufacturing process of the nitric oxide composite of various forms such as particles, films and hydrogels.
  • particles or films in which a polymer thin film is formed may be manufactured as a nitrogen monoxide composite through a layer-to-layer lamination method.
  • the nitric oxide complex can also be produced in an applied form such as a hydrogel containing particles having a thin film formed thereon.
  • Silica nanoparticles with a diameter of 100 nm were fabricated with reference to a study reported by K. Nozawa et al. Based on Stober principle (Langmuir 2005, 21, 1516).
  • Tetraethyl orthosilicate (TEOS), ammonia and ethanol were used in a volume ratio of 1: 1: 10.
  • TEOS Tetraethyl orthosilicate
  • Ammonia was added rapidly while ammonia was added to ethanol and the solution was stirred at 400 rpm. After stirring for 12 hours at the same rate, the supernatant was removed by centrifugation to identify the sinking silica nanoparticles.
  • Silica nanoparticles were finally prepared by further washing and centrifuging the nanoparticles by adding ethanol and washing.
  • the surface of the silica nanoparticles was modified using BPEI, a polymer having secondary amine functionality.
  • Aqueous solution of BPEI at a concentration of 10 mg / mL was prepared using water as a solvent. 1 L of BPEI aqueous solution was added to 500 mg of silica nanoparticles, and then dispersed for 5 minutes using a vortexer and a sonicator. The silica nanoparticles were then precipitated for 5 minutes using a small centrifuge. After removing the BPEI aqueous solution of the upper layer, 1 L of distilled water of the same pH was added, and then dispersed for 30 minutes to proceed with the washing process. In the same manner, the supernatant was removed by precipitating silica nanoparticles. This process was repeated five times to wash the silica nanoparticles to form a layer of BPEI on the surface of the nanoparticles.
  • Nitric oxide nanoparticles were synthesized by reacting BPEI-coated nanoparticles under high pressure monoxide gas.
  • BPEI-coated nanoparticles were placed in a vial containing 30 mL of methanol, and sonication was performed for 30 minutes to disperse well. Sodium methoxide was added at the same ratio as the amount of BPEI.
  • the vial was placed in a high-pressure reactor, sealed, and then rapidly injected and discharged with argon gas at 3 atm and repeated for 30 minutes to remove gases contained in the reactor and the solution.
  • the secondary amine group of the BPEI polymer is converted to a diaeniumdiolate group and may release nitric oxide.
  • the surface charges of the silica nanoparticles, BPEI coated nanoparticles, and nitric oxide nanoparticles prepared in Examples were measured.
  • the nanoparticles were dried on a silicon wafer and analyzed for morphology and size by SEM, and the surface charge was measured by zeta potential.
  • 3 is an SEM image of BPEI coated nanoparticles, in which silica nanoparticles having a diameter of about 100 nm were observed.
  • Figure 4 is a SEM image of the nitric oxide nanoparticles, it can be seen that there is no difference in the shape and size of the silica particles according to the high-pressure reaction of nitrogen monoxide.
  • Figure 5 is a graph measuring the charge charge of the nanoparticles. Since SiO ⁇ on the surface of the prepared silica nanoparticles is negatively charged, it is possible to coat positively charged BPEI on the nanoparticles using electrostatic attraction. This can be confirmed that the surface charge of the BPEI coated nanoparticles are positively charged. Subsequently, when the surface charge of the nitric oxide nanoparticles is measured, it is confirmed that the secondary amine is converted to a diazeniumdiolate in a large part and has a negative charge. The diazenium dioleate group is in the zwitter form in the pH 7 environment, but the negative charge is more activated in the pH 8 environment where zeta potential is measured.
  • nitric oxide nanoparticles prepared in Example 1 mg was quantified and dispersed in 0.1 ml of distilled water at pH 8. 0.01 M PBS (0.05 M NaCl) at pH 7.4 was added to the round flask and soaked in a constant temperature water bath to create a living environment at 37 ° C. A bubbler was installed inside the round flask to release argon gas, which serves to deliver nitrogen monoxide, onto the PBS. The other connection of the round flask was connected to a nitrogen monoxide analyzer. When ready in the analyzer, the analysis was started by software, and then nitric oxide nanoparticles dispersed in distilled water were added to the PBS inside the flask using a pipette.
  • FIG. 6 the concentration (ppb) of nitrogen monoxide released in real time is measured and graphed at 1 second intervals.
  • Figure 8 based on the graph of Figures 6 and 7, the total amount of nitrogen monoxide released, half-life, the maximum release and total release time of nitrogen monoxide are shown in a table.
  • the total nitrogen monoxide emissions of the nitric oxide delivery nanoparticles were 3.5 umol / mg, which was high compared to previous studies. In addition, it can be said that the efficiency is very high considering the release of nitrogen monoxide only on the surface of the particles. In addition, the half-life of 151 minutes was 3 to 4 times slower than the existing diazenium diolate particles. Since BPEI contains many amine groups, it is expected that primary amines or unreacted secondary amines form hydrogen bonds with diazenium diolate groups, thereby stabilizing the release rate of nitrogen monoxide through stabilization.
  • Rat myoblast cells were used to evaluate the biocompatibility of the BPEI coated nanoparticles and nitric oxide nanoparticles prepared in the examples.
  • myoblasts were seeded (2000) per well in four 24 well plates and cultured in an incubator for 12 hours. After removing the cell culture medium from each well, 640 ⁇ l of fresh culture medium was added, and then various concentrations (0.1 ⁇ g / ml, 0.5 ⁇ g / ml, 1 ⁇ g / ml, 5 ⁇ g / ml and 10 ⁇ g / ml) were added to PBS at pH 7.4. 160 ⁇ l of BPEI-coated nanoparticles dispersed in) were treated in the wells. Each concentration was treated with six wells. Nitric oxide nanoparticles were also dispersed in various concentrations in PBS at pH 8 and treated in wells in the same manner.
  • the culture medium was removed, and 2.5 mg / ml of MTT solution and the culture solution were prepared in a 1: 9 ratio, and 800 ⁇ l was added to each well.
  • the culture solution was removed, DMSO was added to dissolve the dye, and 100 ⁇ l of the solution was transferred to a 96 well plate.
  • the absorbance of the solutions at 540 nm was measured with a plate reader. The higher the absorbance, the higher the cell survival rate. The results obtained by treating the media and nanoparticles were calculated as percentages and compared. After 48 hours, cell viability was analyzed through the same procedure.
  • nitric oxide nanoparticles were compared with the negative control group and the BPEI-coated nanoparticles at 24 hours and 48 hours, biocompatibility was confirmed because they did not show toxicity at the highest concentration.
  • One unusual feature is that cell viability was slightly lower than the other concentrations when 5 ⁇ g / ml nitric oxide particles were treated in both graphs. Since nitric oxide gas is often involved in cell signaling and variously at low concentrations, it is likely that it is a specific nitric oxide concentration that causes other changes besides proliferation in myoblasts, including the possibility of differentiation, rather than causing cell death.
  • the concentration of the nitric oxide nanoparticles increases it can be seen that the cell viability is rapidly reduced to 68%, 55%, 38%. This is because high concentrations of nitric oxide can be released rapidly and can be toxic to cells. Therefore, this concentration range is high enough to bring positive results to the cells, and can be applied to anticancer or antibacterial activity.
  • the nitric oxide delivery complex prepared according to the present invention has no cytotoxicity, it is expected to be used for medical purposes such as vasodilation, wound healing, and antibacterial through the regulation of the release amount and release rate of nitric oxide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a nitrogen oxide delivery composite in which the surface of a base material such as nano-particles or the like is modified by a polymer having a secondary amine group. A secondary amine forms a diazeniumdiolate functional group through a high pressure reaction with nitrogen monoxide, and the functional group can function as a nitrogen oxide provider. According to the present invention, the surface of a base material can be modified by a polymer to be single layer or multilayer through a layer-by-layer (LbL) coating method. The production technique involves simple processes, is economical, and can be applied in a wide range of fields. In addition, the emission speed and emission amount of nitrogen monoxide can be easily adjusted, and the distribution of a base material such as nano-particles or the like can be increased. The nitrogen oxide delivery composite produced according to the present invention is not cytotoxic, and thus is expected to be usable for medical purposes, such as for enlarging blood vessels, treating wounds, or killing bacteria and the like, in vivo, through adjustment of the emission amount and emission speed of nitrogen monoxide.

Description

고분자 코팅 기반의 산화질소 전달용 복합체 제작 방법 및 이의 응용Polymeric coating-based composite manufacturing method for nitric oxide delivery and its application
본 발명은 산화질소 전달용 복합체 및 그의 제조 방법에 관한 것이다.The present invention relates to a complex for delivery of nitric oxide and a method for producing the same.
일산화질소(NO, nitric monoxide)는 세포 내에서 일산화질소 생성 효소에 의해 생성되는 반응성이 높은 라디칼 분자로서, 체내에서 다양한 생리적 또는 병리적인 과정을 담당하는 중요한 세포 신호 분자(cellular signaling molecule)이다. 일산화질소는 1992년 미국 학술지 사이언스에서 “올해의 분자”로 선정되면서 신경과학, 생리학과 및 면역학 분야에서 주목받기 시작했다. 일산화질소의 심혈관계 신호전달 기능을 밝혀낸 연구는 1998년에 노벨 생리의학상을 수상하였다. 일산화질소는 혈관 내에서 강력한 혈관확장제로써 작용하며 그 외에도 면역 반응, 신경 전달, 발기 조절, 항균 작용 및 상처 치유 등 다양한 기능을 한다. Nitric monoxide (NO) is a highly reactive radical molecule produced by nitric oxide-producing enzymes in cells, and is an important cellular signaling molecule responsible for various physiological or pathological processes in the body. Nitrogen monoxide began to attract attention in neuroscience, physiology, and immunology when it was named “Molecule of the Year” by the American journal Science in 1992. The study, which revealed the cardiovascular signaling function of nitric oxide, won the Nobel Prize in Physiology in 1998. Nitric oxide acts as a powerful vasodilator in the blood vessels, and in addition, it functions in various functions such as immune response, neurotransmission, erectile control, antibacterial action and wound healing.
나노 입자를 통한 일산화질소 전달의 필요성Necessity of Nitric Oxide Delivery Through Nanoparticles
일산화질소는 신체 내에서 다양한 역할을 수행하기 때문에, 사람들은 외부에서 일산화질소를 인위적으로 전달하는 방법을 찾기 위한 연구들을 진행하였다. 특히 일산화질소는 가스 상태에서 다양한 효능을 나타내는데, 반감기가 6초 이내로 매우 짧으므로 화합물 형태로의 일산화질소 방출에 관한 연구가 진행되고 있다. Since nitrogen monoxide plays a variety of roles in the body, people have conducted studies to find ways to artificially deliver nitrogen monoxide externally. In particular, nitrogen monoxide has various effects in the gas state, and since the half-life is very short within 6 seconds, studies on the release of nitrogen monoxide in the form of compounds have been conducted.
가장 많이 연구된 화합물로는 다이아제니움다이올레이트(diazeniumdiolate, NONOate)와 S-니트로소티올(S-nitrosothiol, RSNO) 등이 있다. S-니트로소티올의 경우에는 온도, 빛 및 구리 이온(Cu2+)에 의해서 방출이 촉진되며 일산화질소 방출 효율이 높다는 장점을 가진다. 반면 일산화질소가 생체 내로 방출되지 않거나 물질이 안정하지 못하여 순수한 상태로 얻어내기 어려운 단점이 있다. 다이아제니움다이올레이트는 고체 상태로 안정하게 보관할 수 있고, 물에 대한 용해도가 높으며, 생체 온도와 pH 조건에서 쉽게 일산화질소를 생성할 수 있다. 그러나 분해산물이 독성을 나타낼 수 있으며, 물과 접촉하는 동시에 일산화질소가 방출되는 단점을 가진다. The most studied compounds include diaeniumdiolate (NONOate) and S-nitrosothiol (RSNO). In the case of S-nitrosothiol, the emission is promoted by temperature, light, and copper ions (Cu 2+), and the nitrogen monoxide emission efficiency is high. On the other hand, it is difficult to obtain nitrogen monoxide in a pure state because nitrogen monoxide is not released into the living body or the material is not stable. Diagenium dioleate can be stored stably in a solid state, has high solubility in water, and can easily produce nitrogen monoxide at a living temperature and pH conditions. However, degradation products may be toxic and have the disadvantage of releasing nitrogen monoxide upon contact with water.
나노 입자를 통한 일산화질소 전달 선행 연구들 Nitrogen Monoxide Delivery Through Nanoparticles
일산화질소 전달체에 관한 연구를 진행하는 대표적인 국외 그룹으로는 미국 University of Michigan의 Mark E. Meyerhoff 그룹과 North Carolina State University Chapel Hill의 Mark H. Schoenfisch 그룹 등이 있다. Meyerhoff 그룹에서는 aminoalkylsilane을 이용하여 졸-젤 방식으로 다이아제니움다이올레이트 기반의 수백 나노미터의 산화질소를 방출하는 실리카 나노입자를 개발하였다(비특허문헌 1). 이후 Schoenfisch 그룹에서는 실리카 나노입자를 먼저 제작한 후 표면의 이차 아민 그룹을 다이아제니움다이올레이트기로 변환하여 표면에서 일산화질소의 방출이 나타나는 입자와, aminoalkoxysilane 분자를 다이아제니움다이올레이트기로 변환한 다음 실리카 나노입자를 제작하여 입자의 내부에서부터 일산화질소의 방출이 일어나는 두 가지 형태를 개발하였다. 다양한 aminoalkoxysilane를 이용하여 입자들을 제작한 후에 크기 및 일산화질소 방출 효율을 정리하여 보고하였다. 입자의 내부에 aminoalkoxysilane 그룹이 있을 경우에 일산화질소의 방출 효율이 최대가 되어 고효율의 산화질소 나노입자를 제조할 수 있으며, aminoalkoxysilane 분자 구조에 따라서 효율에 차이가 있다. 그러나 aminoalkoxysilane 기반의 산화질소 나노입자는 졸-젤 원리에 따라 제작되므로 실험과정에서 온도 및 수분을 철저히 통제해야하므로 과정이 까다롭고 비용이 많이 들며 실패할 확률이 높다(비특허문헌 2).Representative foreign groups conducting research on nitrogen monoxide carriers include Mark E. Meyerhoff Group of the University of Michigan and Mark H. Schoenfisch Group of Chapel Hill, North Carolina State University. Meyerhoff Group has developed silica nanoparticles that release hundreds of nanometers of nitrogen oxides based on diazenium dioleate in a sol-gel manner using aminoalkylsilane (Non-Patent Document 1). Subsequently, the Schoenfisch group first manufactured silica nanoparticles, and then converted the secondary amine group on the surface into a diagenium diolate group, thereby converting the particles showing the release of nitrogen monoxide from the surface, and the aminoalkoxysilane molecules into the diagenium diolate group Next, silica nanoparticles were fabricated and developed two forms in which nitrogen monoxide was released from inside the particles. After preparing the particles using various aminoalkoxysilanes, the size and nitrogen monoxide emission efficiency were reported. When there is an aminoalkoxysilane group inside the particle, the efficiency of nitrogen monoxide emission is maximized, thereby making it possible to manufacture high-efficiency nitric oxide nanoparticles. The efficiency varies depending on the molecular structure of aminoalkoxysilane. However, since the aminoalkoxysilane-based nitric oxide nanoparticles are manufactured according to the sol-gel principle, the process must be thoroughly controlled for temperature and moisture, which makes the process difficult, costly, and likely to fail (Non-Patent Document 2).
국내에서는 최근 포스텍의 김원종 교수팀에서 다이아제니움다이올레이트 기반의 산화질소 나노입자의 일산화질소 방출을 조절하기 위한 연구를 진행히고 있다. Aminoalkoxysilane으로 제작된 다공성 실리카 나노입자에 2-nitro-benzaldehyde라는 UV에 의해서 구조적인 형태가 변해서 수소이온을 방출하는 분자를 넣은 후, calcium phosphate로 나노입자를 capping한 형태를 제작하여 고압의 일산화질소 기체 하에서 3일간 반응을 시켜서 산화질소 나노입자를 제작하였다. 이렇게 제작된 나노입자는 capping에 의해 외부의 수소이온의 침투가 저해되므로 일산화질소의 방출이 자발적으로 일어나지 않는다. 또한, UV를 조사하였을 경우, 나노입자 내부의 2-nitro-benzaldehyde가 수소이온을 방출하여 pH가 낮아짐에 따라 capping layer가 분해되면서 일산화질소의 방출이 일어나는 결과를 가진다(비특허문헌 3). 그러나 이 연구에서도 여전히 aminoalkoxysilane을 사용하여 실험과정이 복잡하고 까다롭다는 단점이 존재한다. In Korea, Professor Kim Won-jong of POSTECH is conducting research to control the nitrogen monoxide release of diazenium dioleate-based nitric oxide nanoparticles. The porous silica nanoparticles made of aminoalkoxysilane changed the structural form by UV, 2-nitro-benzaldehyde, to release hydrogen ions, and then capped the nanoparticles with calcium phosphate. The reaction was carried out for 3 days under to prepare nitric oxide nanoparticles. The nanoparticles produced as described above are inhibited from penetrating external hydrogen ions by capping, so the release of nitrogen monoxide does not occur spontaneously. In addition, when irradiated with UV, 2-nitro-benzaldehyde in the nanoparticles releases hydrogen ions, resulting in the release of nitrogen monoxide as the capping layer decomposes as the pH is lowered (Non-Patent Document 3). However, there is still a disadvantage in this study that the process of using aminoalkoxysilane is complicated and difficult.
즉, 기존에 많이 연구되고 있는 졸-젤 반응을 기반으로 하는 산화질소 나노입자의 합성은 온도 및 수분에 민감한 물질을 사용하기 때문에, 실험과정에서 통제할 조건이 많아 과정이 까다롭고 비용이 많이 들며 실패 확률이 매우 높다.In other words, the synthesis of nitric oxide nanoparticles based on the sol-gel reaction, which has been studied a lot, uses materials that are sensitive to temperature and moisture. The probability of failure is very high.
[비특허문헌][Non-Patent Documents]
1. J. Am. Chem. Soc. 2003, 125, 5015-50241. J. Am. Chem. Soc. 2003, 125, 5015-5024
2. Chem. Mater. 2008, 20, 239-2492. Chem. Mater. 2008, 20, 239-249
3. ACS Nano 2016, 10, 4199-4208ACS Nano 2016, 10, 4199-4208
본 발명에서는 전술한 문제를 해결하기 위하여, 외부 환경에 민감하게 반응하는 물질 대신 생체적합한 고분자를 이용하고, 층과층(layer-by-layer, LbL) 적층 방식을 적용하여 단순한 원리로 손쉽고 저렴하게 산화질소 전달용 복합체를 제작하는 방법을 제공하는 것을 목적으로 한다.In the present invention, in order to solve the above problems, using a biocompatible polymer instead of a material that reacts sensitively to the external environment, by applying a layer-by-layer (LbL) lamination method, it is easy and inexpensive with a simple principle. An object of the present invention is to provide a method for producing a composite for nitric oxide delivery.
본 발명에서는 기재; 및 In the present invention; And
상기 기재 상에 형성되고, 다이아제니움다이올레이트기를 포함하는 고분자 박막을 포함하며, It is formed on the substrate, and comprises a polymer thin film containing a diazenium dioleate group,
상기 고분자 박막은 한 층 이상 형성된 산화질소 전달용 복합체를 제공한다. The polymer thin film provides a composite for transferring nitric oxide formed in at least one layer.
또한, 본 발명에서는 (A) 기재 상에 이차 아민 그룹을 포함하는 고분자 박막을 한 층 이상 형성하는 단계; 및 In addition, the present invention (A) forming at least one polymer thin film containing a secondary amine group on the substrate; And
(B) 25 내지 300℃의 온도 및 1 내지 30 atm의 압력에서, 일산화질소와 반응시키는 단계를 포함하는 산화질소 전달용 복합체의 제조방법을 제공한다.(B) at a temperature of 25 to 300 ℃ and a pressure of 1 to 30 atm, it provides a method for producing a nitric oxide delivery complex comprising the step of reacting with nitrogen monoxide.
본 발명에 의해 제조되는 산화질소 전달용 복합체는 기존의 졸-젤 기반의 산화질소 입자와 같거나 높은 일산화질소 방출 효율을 가진다. 또한, 제조 공정이 간단하고 제한적이지 않아서 제조 성공확률이 높으며 대량생산이 가능하다. The nitric oxide delivery composite produced by the present invention has the same or higher nitrogen monoxide emission efficiency as conventional sol-gel based nitric oxide particles. In addition, the manufacturing process is simple and not limited, so the probability of manufacturing success is high and mass production is possible.
층과층(LbL) 적층 방식의 고분자 코팅은 나노입자뿐만 아니라 마이크로 입자 및 평면 기판 등 크기나 형태에 제한없이 적용 가능하며, 이에 따라 다양한 산화질소 전달용 복합체의 제작이 가능하다. Polymer coating of the layer and layer (LbL) lamination method can be applied to any size or shape, such as microparticles and flat substrates as well as nanoparticles, it is possible to manufacture a variety of nitric oxide delivery complex.
또한, LbL 방식은 다양한 분자 간 인력을 기반으로 원하는 생체적합성 고분자뿐만 아니라, 그래핀, 단백질, 약물 및 성장인자 등을 코팅할 수 있다. 따라서 이를 적용하여 산화질소 기체의 방출과 동시에 약물이나 성장인자의 방출이 일어나는 다기능성을 부여할 수 있다. In addition, the LbL method can coat not only desired biocompatible polymers but also graphene, proteins, drugs and growth factors based on various intermolecular attraction. Therefore, by applying this, it is possible to give a multi-functionality in which the release of the drug or growth factor simultaneously with the release of nitrogen oxide gas.
더 나아가 표면 코팅을 통해서 입자나 특정 표면의 표면전하 및 작용기를 자유자재로 조절하여 입자의 분포도(distribution ability) 및 생체적합성을 증대시킬 수 있으며, 그래핀과 같은 기체 차단 효과가 있는 물질을 이용하여 일산화질소의 방출 속도 및 양 또한 조절이 가능하다.Furthermore, the surface coating can freely control the surface charges and functional groups of the particles or specific surfaces to increase the distribution ability and biocompatibility of the particles. The rate and amount of nitrogen monoxide release can also be controlled.
도 1은 입자, 박막 및 하이드로젤 등의 다양한 형태의 산화질소 전달용 복합체의 제작 과정을 나타낸 모식도이다.Figure 1 is a schematic diagram showing the manufacturing process of the composite for the delivery of nitrogen oxide of various forms, such as particles, thin film and hydrogel.
도 2는 BPEI 등의 고분자를 상온에서 고압의 일산화질소 하에 3일 간 반응하였을 때, 생성되는 다이아제니움다이올레이트 작용기를 화학적 구조로 나타낸 모식도이다. Figure 2 is a schematic diagram showing the chemical structure of the diazenium dioleate functional groups produced when a polymer such as BPEI reacted under high pressure nitrogen monoxide at room temperature for 3 days.
도 3은 실시예에서 제조된 BPEI 코팅 나노입자의 SEM 이미지이다.3 is an SEM image of the BPEI coated nanoparticles prepared in the Examples.
도 4는 실시예에서 제조된 산화질소 나노입자의 SEM 이미지이다. 4 is a SEM image of the nitric oxide nanoparticles prepared in the example.
도 5는 실리카 나노입자, BPEI 코팅 나노입자 및 산화질소 나노입자의 표면전하를 분석한 그래프이다. 5 is a graph of surface charge analysis of silica nanoparticles, BPEI coated nanoparticles, and nitric oxide nanoparticles.
도 6는 산화질소 나노입자로부터 실시간으로 방출되는 일산화질소의 양을 일산화질소 분석기기로 분석한 그래프이다. 6 is a graph analyzing the amount of nitrogen monoxide released from the nitric oxide nanoparticles in real time with a nitrogen monoxide analyzer.
도 7은 산화질소 나노입자로부터 방출된 일산화질소의 양을 누적으로 나타낸 그래프이다. 7 is a graph showing cumulative amounts of nitrogen monoxide released from nitric oxide nanoparticles.
도 8은 산화질소 나노입자로부터 일산화질소의 총 방출량, 반감기, 일산화질소의 최대 방출 및 총 방출 시간을 정리한 표이다. 8 is a table summarizing the total amount of nitrogen monoxide released from the nitric oxide nanoparticles, half-life, the maximum release of nitrogen monoxide and the total release time.
도 9은 산화질소 나노입자(B-NO)와 BPEI 코팅 나노입자(B-Si)의 농도에 따른 근아세포(myoblast)에 대한 독성을 24 시간과 48 시간 동안 평가한 그래프이다.9 is a graph evaluating toxicity for myoblasts for 24 hours and 48 hours according to the concentrations of nitric oxide nanoparticles (B-NO) and BPEI coated nanoparticles (B-Si).
도 10는 실리카 나노입자(Si), 산화질소 나노입자(B-NO) 및 BPEI 코팅 나노입자(B-Si)의 더 높은 농도에 따른 근아세포에 대한 독성을 24 시간 동안 평가한 그래프이다.FIG. 10 is a graph evaluating toxicity for myoblasts with higher concentrations of silica nanoparticles (Si), nitric oxide nanoparticles (B-NO) and BPEI coated nanoparticles (B-Si) for 24 hours.
이하, 본 발명의 구성을 구체적으로 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated concretely.
본 발명은 기재; 및 상기 기재 상에 형성되고, 다이아제니움다이올레이트기를 포함하는 고분자 박막을 포함하며, The present invention; And a polymer thin film formed on the substrate and including a diazenium dioleate group.
상기 고분자 박막은 한 층 이상 형성된 산화질소 전달용 복합체에 관한 것이다. The polymer thin film relates to a composite for transferring nitric oxide formed in at least one layer.
본 발명에서 ‘산화질소 전달용 복합체’는 일산화질소를 전달할 수 있는 물질을 의미하여, ‘산화질소 복합체’ 또는 ‘산화질소 전달체’라 할 수도 있다. In the present invention, the "nitric oxide delivery complex" means a material capable of delivering nitrogen monoxide, and may be referred to as a "nitrogen oxide complex" or a "nitrogen oxide transporter."
본 발명에서 기재는 일산화질소를 조절 방출할 수 있도록 표면을 코팅하고자 하는 소재라면 특별히 제한되지 않으며, 생체 내에서 안정한 무기 성분, 생체 내에서 분해가능한 생분해성 고분자, 마이셀(micelle) 및 생체 유래 물질로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. In the present invention, the substrate is not particularly limited as long as it is a material to be coated on the surface to control and release nitrogen monoxide, and may be a stable inorganic component in vivo, a biodegradable polymer degradable in vivo, micelles and bio-derived materials. One or more selected from the group consisting of:
이때, 무기 성분은 실리카, 하이드록시 아파타이트(hydroxyapatite) 또는 금 등일 수 있고, 생분해성 고분자는 폴리-β-하이드록시 부티레이트(poly-β-hydroxy butyrate, PHB), 폴리유산(polylactic acid, PLA), 폴리-D-L-락티드-co- 글라이콜리드(poly-D-L-lactide-co-glycolide, PLGA), 알리파틱 폴리에스테르(aliphatic polyesters), 폴리카프로락톤(polycaprolactone, PCL), 폴리메틸 메타크릴레이트(polymethyl methacrylate, PMMA), 폴리-에틸렌글리콜(poly-ethyleneglycol, PEG), 폴리-비닐알코올(poly-vinylalcohol, PVA), 폴리-알킬-시아노-카릴레이트(poly-alkyl-cyano-carylates, PAC), 키토산(chitosan) 또는 젤라틴(gelatin) 등일 수 있다. 또한, 마이셀은 Phopholipid 기반의 리포좀, 계면활성제(surfactant)를 포함한 유중수(water/oil) 상에서 생성되는 에멀젼 형태의 입자, PS-b-PAA, PS-b-P4VP, PEO-b-PCL 등의 블록 코폴리머(block copolymer) 등일 수 있으고, 생체 유래 물질은 DNA/RNA, 인지질(phospholipid) 또는 리포좀(liposome) 등일 수 있다. At this time, the inorganic component may be silica, hydroxyapatite or gold, and the like, and the biodegradable polymer may be poly-β-hydroxy butyrate (PHB), polylactic acid (PLA), Poly-DL-lactide-co-glycolide (PLGA), aliphatic polyesters, polycaprolactone (PCL), polymethyl methacrylate (polymethyl methacrylate, PMMA), poly-ethyleneglycol (PEG), poly-vinylalcohol (PVA), poly-alkyl-cyano-carylates (PAC) ), Chitosan or gelatin. In addition, micelles are Phopholipid-based liposomes, emulsion-type particles formed on water / oil including surfactants, PS-b-PAA, PS-b-P4VP, PEO-b-PCL, and the like. The block copolymer may be a block copolymer and the like, and the bio-derived material may be DNA / RNA, phospholipid or liposome.
일 구체예에서, 상기 기재로는 실리카를 사용할 수 있다. In one embodiment, silica may be used as the substrate.
상기 기재의 형상은 특별히 제한되지 않으며, 나노입자, 마이크로 입자 또는 필름 형상을 가질 수 있다. 상기 나노입자의 형상을 가질 경우 산화질소 전달용 복합체는 산화질소 나노입자로 명명할 수 있으며, 마이크로 입자의 형상을 가질 경우 산화질소 마이크로 입자로, 필름 형상을 가질 경우 산화질소 필름으로 명명할 수 있다. The shape of the substrate is not particularly limited, and may have a nanoparticle, microparticle, or film shape. When having the shape of the nanoparticles, the composite for delivering nitric oxide may be referred to as nitric oxide nanoparticles, and may be referred to as nitric oxide microparticles when having the shape of microparticles, and as a nitric oxide film when it has a film shape. .
일 구체예에서 상기 기재는 체내 삽입이 가능한 소재(이하, 체내 삽입물이라 한다.)로 구성될 수 있다. 상기 체내 삽입물은 사람 또는 포유동물을 포함한 동물의 체내에서 일산화질소 방출로 생리 효과를 볼 수 있는 위치에 자리 잡으며, 그 표면에 일산화질소 조절 방출용 전달체를 갖출 수 있는 모든 물건을 의미한다. 이러한 삽입물은 체내에 그 일부분이 삽입되어 있는 이상 반드시 그 물건의 전부가 체내에 존재할 필요는 없다. 예를 들어 관이나 전선 등의 연결부가 체외로 빠져 나와 있을 수 있다. 이러한 체내 삽입물은 스텐트(stent), 카테터(catheter), 피하 이식편(subcutaneous implant), 화학 센서, 도관(lead), 심장 박동기(pacemaker), 이식 혈관편(vascular graft), 상처용 드레싱(dressing), 남성기 삽입물(penile implant), 삽입용 심박 발생 장치(implantable pulse generator), 삽입용 심장 제세동기(cardiac defibrillator), 또는 신경 흥분기(nerve stimulator) 등일 수 있다. In one embodiment, the substrate may be made of a material that can be inserted into the body (hereinafter, referred to as a body insert). The body insert means any article that can be placed in a position where the physiological effect can be seen by the release of nitric oxide in the body of an animal including a human or a mammal, and can have a carrier for controlled release of nitric oxide on its surface. Such inserts do not necessarily have to be present in the body as long as a part is inserted into the body. For example, connections such as pipes and wires may be pushed out of the body. These implants include stents, catheters, subcutaneous implants, chemical sensors, leads, heart pacemakers, vascular grafts, wound dressings, Penile implants, implantable pulse generators, implantable cardiac defibrillators, nerve stimulators, and the like.
본 발명에서 상기 기재 상에는 일산화질소를 저장 및 방출할 수 있는 다이아제니움다이올레이트기(RR’N-N(O)=NOR)를 포함하는 고분자 박막이 형성된다. 상기 다이아제니움다이올레이트기를 포함하는 고분자는 고체 형태로서 안정하게 보관할 수 있으며, 물에 대한 용해도가 높고, 다이아제니움다이올레이트기가 연결된 나머지 부분의 구조에 따라 방출 속도와 방식 등의 방출 형태를 조절할 수 있다. 또한, 다이아제니움다이올레이트기를 포함하는 고분자는 생체 온도와 pH 조건에서 분해될 뿐만 아니라, pH에 따라 다양한 방출 형태를 가진다. 그리고 한 단위의 다이아제니움다이올레이트기당 2분자의 일산화질소를 방출하므로 복합체에 포함시켰을 때 상대적으로 높은 농도의 일산화질소 발생이 가능하다. In the present invention, a polymer thin film including a diazenium dioleate group (RR′N-N (O) = NOR) capable of storing and releasing nitrogen monoxide is formed on the substrate. The polymer containing the diazenium dioleate group can be stably stored as a solid form, has high solubility in water, and release forms such as release rate and method according to the structure of the remaining portion to which the diazenium dioleate group is connected. Can be adjusted. In addition, the polymer containing the diazenium dioleate group not only decomposes at the temperature and pH conditions of the body, but also has various forms of release depending on the pH. In addition, since two molecules of nitrogen monoxide are released per unit of diazenium dioleate group, relatively high concentrations of nitrogen monoxide can be generated when included in the complex.
이러한 다이아제니움다이올레이트기를 포함하는 고분자 박막은 한 층 이상으로 형성될 수 있으며, 구체적으로 1 내지 500 층, 또는 2 내지 200 층의 다층으로 형성될 수 있다. The polymer thin film including the diazenium dioleate group may be formed in one or more layers, and specifically, may be formed in a multilayer of 1 to 500 layers or 2 to 200 layers.
상기 박막이 2 층 이상의 다층으로 형성될 경우, 하나의 박막은 이웃하는 박막과 층과층(layer-by-layer, LbL) 적층 방식에 의해 형성될 수 있다.When the thin film is formed of two or more layers, one thin film may be formed by a neighboring thin film and a layer-by-layer (LbL) lamination method.
층과층 적층 방식은 분자 수준에서 자유롭게 조절이 가능하고 여러 가지 재료들의 특성에 제한을 주지 않으며, 열이나 강한 자극을 가할 필요 없이 간단하게 분자적 상호 인력에 의해 다층 나노 박막을 제작할 수 있는 기술이다. 상호 간의 인력은 화학적 결합이 아닌 물리적 결합이기 때문에 물질들의 고유의 특성을 변성시키지 않는다는 큰 장점이 있다. 상기 층과층 적층 방식은 용액을 서로 혼합하는 것이 아니라 기질을 사용하는 방법이기 때문에 상분리가 일어나지 않는 박막(고분자층)을 제작할 수 있다.Layer-by-layer lamination is a technique that can be freely controlled at the molecular level, does not limit the properties of various materials, and can produce multilayer nano thin films by simple molecular mutual attraction without applying heat or strong stimulus. . Since the attraction between each other is not a chemical bond but a physical bond, it does not denature the intrinsic properties of the materials. Since the layer and the layer lamination method use a substrate rather than mixing the solutions with each other, a thin film (polymer layer) without phase separation may be produced.
또한, 상기 층과층 적층 방식은 나노입자 뿐만 아니라 모든 크기의 입자나 평면 기판과 같이 크기나 형태에 제한되지 않으며, 산소 플라즈마, RCA 및 piranha와 같은 표면처리를 통해서 코팅하고자 하는 표면을 개질하여 재료의 제한도 거의 없다.In addition, the layer and layer stacking method is not limited to the size and shape, such as not only nanoparticles, but also particles of any size or planar substrate, and by modifying the surface to be coated by surface treatment such as oxygen plasma, RCA and piranha There is almost no limit.
상기 층과층 적층 방식으로는 정전기적 인력, 반 데르발스 힘, 수소결합, 공유결합, 이온결합, 소수성결합, 전하-전송(charge-transfer) 결합, π-상호작용(π-interaction), 배위화학결합, 스트레오복합화(stereocomplexation), 호스트-게스트(host-guest) 또는 생물학적 결합을 이용할 수 있다. The layer-to-layer stacking method includes electrostatic attraction, van der Waals forces, hydrogen bonds, covalent bonds, ionic bonds, hydrophobic bonds, charge-transfer bonds, π-interaction, and coordination. Chemical bonds, stereocomplexation, host-guest or biological bonds can be used.
상기 호스트-게스트(host-guest)에서 호스트는 사이클로덱스트린 (cyclodextrins), 쿠커비투릴(cucurbiturils), 칼릭스아렌(calixarenes), 필러아렌(pillararenes), 크라운 에테르(crown ethers) 또는 포르피린(porphyrins)일 수 있으며, 게스트는 페로센(ferrocene), 아다만탄(adamantine) 또는 아조벤젠(azobenzene)일 수 있다. 또한, 생물학적 결합은 아비딘-비오틴(Avidin-Biotin) 결합, 항원-항체 결합, 렉틴-카보하이드레이트(lectin-carbohydrate) 결합 또는 DNA 상보결합일 수 있다. In the host-guest, the host may be cyclodextrins, cucurbiturils, calixarenes, pillarararenes, crown ethers, or porphyrins. The guest may be ferrocene, adamantine or azobenzene. In addition, the biological binding may be avidin-Biotin binding, antigen-antibody binding, lectin-carbohydrate binding or DNA complementary binding.
일 구체예에서 상기 층과층 적층 방식은 정전기적 인력 또는 수소결합을 이용할 수 있다. In one embodiment, the layer and layer stacking method may use an electrostatic attraction or hydrogen bonding.
본 발명에서 상기 박막의 총 두께는 1 nm 내지 1000 μm, 또는 1 nm 내지 10 μm일 수 있다. 상기 두께에서 안정하고 세포독성을 나타내지 않으며, 우수한 일산화질소 방출 효과를 가질 수 있다. In the present invention, the total thickness of the thin film may be 1 nm to 1000 μm, or 1 nm to 10 μm. It is stable at this thickness and does not exhibit cytotoxicity, and may have excellent nitrogen monoxide release effect.
본 발명에서 상기 다이아제니움다이올레이트기를 포함하는 고분자 박막은 박막 내에 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상의 성분을 추가로 포함할 수 있다. 상기 성분들을 통해 일산화질소 전달 외에 새로운 기능을 부여할 수 있다. In the present invention, the polymer thin film including the diazenium dioleate group may further include one or more components selected from the group consisting of proteins, growth factors, graphene, and drugs in the thin film. These components can impart new functions in addition to nitrogen monoxide delivery.
또한, 본 발명에서 산화질소 복합체는 제 2 고분자, 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상의 성분으로 구성된 박막을 추가로 포함할 수 있다. In addition, the nitric oxide complex in the present invention may further include a thin film composed of one or more components selected from the group consisting of a second polymer, a protein, a growth factor, graphene, and a drug.
상기 단백질, 성장인자, 그래핀 및 약물은 당업계에서 사용되는 물질을 제한없이 사용할 수 있다. The protein, growth factor, graphene, and drugs can be used without limitation materials used in the art.
일 구체예에서 그래핀은 기체 차단 효과를 가지므로, 일산화질소의 방출 속도 및 양을 조절할 수 있다. In one embodiment graphene has a gas barrier effect, it is possible to control the rate and amount of nitrogen monoxide released.
일 구체예에서 다층의 고분자 박막이 정전기적 인력에 의해 형성될 경우, 상기 산화질소 복합체는 제 2 고분자를 포함하는 박막을 추가로 포함할 수 있으며, 이때 상기 제 2 고분자는 음전하를 가지는 고분자일 수 있다. In one embodiment, when the multilayer polymer thin film is formed by electrostatic attraction, the nitric oxide complex may further include a thin film including a second polymer, wherein the second polymer may be a polymer having a negative charge. have.
상기 제 2 고분자로는 폴리(에틸렌 글리콜)(poly(ethylene glycol)), 히알루론 산(hyaluronic acid), 폴리-L-락틱 산(poly-L-lactic acid), 알긴산(alginic acid), 덱스트란황산(dextran sulfate), 리그닌(lignin), 탄닌산(tannic acid), 콘드로이틴 황산(chondroitin sulfate), 셀룰로오스(cellulose)류 고분자, 후코이단(fucoidan), 폴리(아크릴 산)(poly(acrylic acid)), 폴리 (소디움-4-스티렌술포네이트(Poly(sodium4-styrenesulfonate)), 폴리(비닐이딘 플루오라이드)(poly(vinylidene fluoride)), 폴리(메타크릴산)(Poly(methacrylic acid)), 폴리(글리콜산)(poly(glycolic acid)), 폴리(락틱산)(poly(lactic acid)), poly(caprolactone), 폴리(오쏘 에스터) Ⅱ(poly(ortho ester) Ⅱ), 폴리[(카르복시페녹시)프로판 세바스산](poly[(carboxyphenoxy)propane sebacic acid]), 폴리(알킬 시아노아크릴레이트)(poly(alkyl cyanoacrylate)), 폴리포스포에스터(polyphosphoesters), 폴리에스테르 아미드(polyester amides) 및 폴리우레탄(polyurethane)으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. The second polymer is poly (ethylene glycol), hyaluronic acid, poly-L-lactic acid, alginic acid, dextran Dextran sulfate, lignin, tannic acid, chondroitin sulfate, cellulose polymers, fucoidan, poly (acrylic acid), poly (Sodium-4-styrenesulfonate), poly (vinylidene fluoride), poly (methacrylic acid), poly (glycol Acid) (poly (glycolic acid)), poly (lactic acid), poly (caprolactone), poly (ortho ester) II, poly [(carboxyphenoxy) Propane sebacic acid], poly (alkyl cyanoacrylate), polyphosphoesters, polyester Imide may be used one or more selected from the group consisting of (polyester amides) and polyurethanes (polyurethane).
또한, 본 발명은 전술한 산화질소 복합체를 제조하는 방법에 관한 것이다. The present invention also relates to a method for preparing the nitric oxide complex described above.
본 발명에 따른 산화질소 복합체는 (A) 기재 상에 이차 아민 그룹을 포함하는 고분자 박막을 한 층 이상 형성하는 단계; 및 The nitric oxide composite according to the present invention comprises the steps of: (A) forming at least one polymer thin film containing a secondary amine group on a substrate; And
(B) 25 내지 300℃의 온도 및 1 내지 30 atm의 압력에서, 일산화질소와 반응시키는 단계를 통해 제조될 수 있다. (B) at a temperature of 25 to 300 ° C. and a pressure of 1 to 30 atm, it may be prepared through a step of reacting with nitrogen monoxide.
본 발명에서 기재는 전술한 바와 같이, 생체 내에서 안정한 무기 성분, 생체 내에서 분해가능한 생분해성 고분자, 마이셀(micelle) 및 생체 유래 물질로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있고, 구체적으로 실리카를 사용할 수 있으며, 형상은 나노입자, 마이크로 입자 또는 필름 형상일 수 있다. 상기 나노입자의 형상을 가질 경우 산화질소 전달용 복합체는 산화질소 나노입자로 명명할 수 있으며, 마이크로 입자의 형상을 가질 경우 산화질소 마이크로 입자로, 필름 형상을 가질 경우 산화질소 필름으로 명명할 수 있다.In the present invention, as described above, the substrate may use one or more selected from the group consisting of an inorganic component stable in vivo, a biodegradable polymer degradable in vivo, micelles, and a bio-derived material. It may be used, the shape may be nanoparticles, micro particles or film shape. When having the shape of the nanoparticles, the composite for delivering nitric oxide may be referred to as nitric oxide nanoparticles, and may be referred to as nitric oxide microparticles when having the shape of microparticles, and as a nitric oxide film when it has a film shape. .
본 발명에서 단계 (A)는 기재를 이차 아민 그룹을 포함하는 고분자 용액에 침지하여 수행할 수 있다. 상기 이차 아민 그룹을 포함하는 고분자 용액에서 용매로는 물, 에탄올, 아세트산 나트륨 버퍼(sodium acetate buffer), PBS(phosphate buffered saline) 또는 배지(culture media) 등을 사용할 수 있으며, 상기 용액은 아민 그룹에 의해 양전하를 띠게 된다. Step (A) in the present invention can be carried out by immersing the substrate in a polymer solution containing a secondary amine group. The solvent in the polymer solution containing the secondary amine group may be water, ethanol, sodium acetate buffer (PBS), phosphate buffered saline (PBS) or culture media, and the like. It is positively charged.
일 구체예에서 기재로 실리카를 사용할 경우, 상기 실리카는 OH-기에 의해 음전하를 띠므로, 이차 아민 그룹과 정전기적 인력을 통해 결합할 수 있다. In one embodiment, when silica is used as the substrate, the silica is negatively charged by the OH- group, and thus, the silica may be bonded to the secondary amine group through electrostatic attraction.
일 구체예에서 기재가 음전하를 띠지 않을 경우, 상기 기재에 음전하 표면을 형성하기 위한 표면처리 단계를 추가로 수행할 수 있다. 상기 표면처리는 코로나 처리 또는 플라즈마 처리와 같은 고주파수의 스파크 방전 처리; 열 처리; 화염 처리; 커플링제 처리; 프라이머 처리 또는 기상 루이스산(ex. BF3), 황산 또는 고온 수산화나트륨 등을 사용한 화학적 활성화 처리 등일 수 있다. In one embodiment, when the substrate is not negatively charged, a surface treatment step for forming a negatively charged surface on the substrate may be further performed. The surface treatment may include a high frequency spark discharge treatment such as corona treatment or plasma treatment; Heat treatment; Flame treatment; Coupling agent treatment; Primer activation or chemical activation treatment using gas phase Lewis acid (ex. BF3), sulfuric acid or hot sodium hydroxide and the like.
본 발명에서 이차 아민 그룹을 포함하는 고분자는 가지친 폴리에틸렌이민(branched polyethyleneimine, BPEI), 키토산(chitosan), 젤라틴(gelatin), 콜라겐(collagen), 피브리노겐(fibrinogen), 실크 피브로인(silk fibroin), 카세인(casein), 엘라스틴(elastin), 라미닌(laminin), 피브로넥틴(fibronectin), 폴리 도파민(poly dopamine), 폴리 에틸렌이민(poly ethyleneimine), 폴리-L-리신(poly-L-lysine), 폴리(비닐아민) 하이드로클로라이드(poly(vinylamine) hydrochloride), 폴라(아미노 산)(poly(amino acids)) 및 des아미노타이로실옥틸 에스터(desaminotyrosyl octyl ester)로 이루어진 그룹으로부터 선택된 하나 이상일 수 있으며, 구체적으로 BPEI일 수 있다. In the present invention, the polymer containing the secondary amine group is branched polyethyleneimine (BPEI), chitosan (chitosan), gelatin (gelatin), collagen (collagen), fibrinogen, silk fibroin (silk fibroin), casein (casein), elastin, laminin, fibronectin, poly dopamine, poly ethyleneimine, poly-L-lysine, poly (vinyl) Amine) hydrochloride (poly (vinylamine) hydrochloride), poly (amino acids) and desaminotyrosyl octyl ester (desaminotyrosyl octyl ester) may be at least one selected from the group, specifically BPEI Can be.
또한, 이차 아민 그룹을 포함하는 고분자 용액은 이차 아민 그룹을 포함하는 고분자 외에 필요에 따라 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상을 추가로 포함할 수 있다. In addition, the polymer solution including the secondary amine group may further include one or more selected from the group consisting of proteins, growth factors, graphene, and drugs, in addition to the polymer including the secondary amine group.
본 발명에서 박막이 다층으로 형성될 경우, 하나의 박막은 이웃하는 박막과 층과층(layer-by-layer, LbL) 적층 방식에 의해 형성될 수 있다. 상기 층과층 적층 방식으로는 정전기적 인력, 반 데르발스 힘, 수소결합, 공유결합, 이온결합, 소수성결합, 전하-전송(charge-transfer) 결합, π-상호작용(π-interaction), 배위화학결합, 스트레오복합화(stereocomplexation), 호스트-게스트(host-guest) 또는 생물학적 결합을 이용할 수 있으며, 구체적으로 정전기적 인력 또는 수소결합을 이용할 수 있다.In the present invention, when the thin film is formed in multiple layers, one thin film may be formed by a neighboring thin film and a layer-by-layer (LbL) lamination method. The layer-to-layer stacking method includes electrostatic attraction, van der Waals forces, hydrogen bonds, covalent bonds, ionic bonds, hydrophobic bonds, charge-transfer bonds, π-interaction, and coordination. Chemical bonds, stereocomplexation, host-guest or biological bonds may be used, specifically electrostatic attraction or hydrogen bonds.
일 구체예에서 박막이 수소 결합을 통해 둘 이상의 다층으로 형성될 경우, 상기 박막은 이차 아민 그룹을 포함하는 고분자 용액을 2회 이상 적층하여 형성할 수 있다. In one embodiment, when the thin film is formed of two or more multilayers through hydrogen bonding, the thin film may be formed by stacking a polymer solution containing a secondary amine group two or more times.
또한, 일 구체예에서 박막이 정전기적 인력을 통해 둘 이상의 다층으로 형성될 경우, 상기 박막은 이차 아민 그룹을 포함하는 고분자 용액 및 음전하 고분자 용액을 반복적으로 적층하여 형성할 수 있다. In addition, in one embodiment, when the thin film is formed into two or more multilayers through electrostatic attraction, the thin film may be formed by repeatedly stacking a polymer solution and a negatively charged polymer solution including a secondary amine group.
상기 음전하 고분자 용액에서 음전하 고분자는 용매에 용해되어 음전하를 띨 수 있는 고분자를 의미한다. 상기 음전하 고분자의 종류는 특별히 제한되지 않으며, 당 업계에서 사용되는 고분자를 제한없이 사용할 수 있다. 예를 들어, 음전하 고분자는 히알루론 산(hyaluronic acid), 폴리-L-락틱 산(poly-L-lactic acid), 알긴산(alginic acid), 덱스트란황산(dextran sulfate), 리그닌(lignin), 탄닌산(tannic acid), 콘드로이틴 황산(chondroitin sulfate), 셀룰로오스(cellulose)류 고분자, 후코이단(fucoidan), 헤파린(Heparin, HEP) 등을 포함하는 천연고분자 및 폴리(아크릴산)(Poly(acrylic acid), PAA), 폴리 (소디움-4-스티렌술포네이트(Poly(sodium4-styrenesulfonate)), 폴리(비닐이딘 플루오라이드)(poly(vinylidene fluoride)), 폴리(메타크릴산)(Poly(methacrylic acid)), 폴리(글리콜산)(poly(glycolic acid)), 폴리(락틱산)(poly(lactic acid)), poly(caprolactone), 폴리(오쏘 에스터) Ⅱ(poly(ortho ester) Ⅱ), 폴리[(카르복시페녹시)프로판 세바스산](poly[(carboxyphenoxy)propane sebacic acid]), 폴리(알킬 시아노아크릴레이트)(poly(alkyl cyanoacrylate)), 폴리포스포에스터(polyphosphoesters), 폴리에스테르 아미드(polyester amides) 및 폴리우레탄(polyurethane)등의 합성고분자 또는 이들의 혼합물일 수 있다. The negatively charged polymer in the negatively charged polymer solution refers to a polymer that can dissolve in a solvent and take a negative charge. The kind of the negatively charged polymer is not particularly limited, and polymers used in the art may be used without limitation. For example, negatively charged polymers include hyaluronic acid, poly-L-lactic acid, alginic acid, dextran sulfate, lignin, tannic acid natural polymer and poly (acrylic acid, PAA) including tannic acid, chondroitin sulfate, cellulose polymer, fucoidan, heparin, and HEP , Poly (sodium4-styrenesulfonate), poly (vinylidene fluoride), poly (methacrylic acid), poly (Glycolic acid), poly (lactic acid), poly (caprolactone), poly (ortho ester) II, poly [(carboxyphenoxy) Poly ((carboxyphenoxy) propane sebacic acid], poly (alkyl cyanoacrylate), polyphosphoester s), synthetic polymers such as polyester amides and polyurethanes, or mixtures thereof.
본 발명에서는 하나의 박막을 형성한 후, 워싱하는 단계를 추가로 수행할 수 있다. In the present invention, after forming one thin film, washing may be further performed.
또한, 본 발명에서는 제 2 고분자, 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 박막을 형성하는 단계를 추가로 포함할 수 있다. 상기 제 2 고분자는 전술한 고분자를 사용할 수 있다. In addition, the present invention may further comprise the step of forming a thin film comprising at least one selected from the group consisting of a second polymer, a protein, a growth factor, graphene and a drug. As the second polymer, the above-described polymer may be used.
본 발명에서 단계 (B)는 단계 (A)에서 제조된 이차 아민 그룹을 포함하는 고분자 박막이 코팅된 기재를 일산화질소와 반응시키는 단계이다. 본 발명에서는 고분자 박막이 형성된 나노입자 또는 마이크로 입자를 하이드로겔에 봉입시킨 후 일산화질소와 반응시킬 수 있다. In the present invention, step (B) is a step of reacting the substrate coated with the polymer thin film containing the secondary amine group prepared in step (A) with nitrogen monoxide. In the present invention, the nanoparticles or microparticles formed with the polymer thin film may be encapsulated in a hydrogel and then reacted with nitrogen monoxide.
본 발명에서 상기 일산화질소와의 반응은 25 내지 300℃의 온도 및 1 내지 30 atm의 압력에서 수행될 수 있다. 반응 시간은 1 내지 5 일, 2 내지 4일 또는 3일일 수 있다. 또한, (A)에서 제조된 생성물의 사용량은 반응용기의 크기에 따라 달라질 수 있으며, 예를들어 반응용기의 크기가 1 ml 내지 10 L일 경우 생성물의 사용량은 1 mg 내지 100 g일 수 있다. 상기 반응에 의해 이차 아민 그룹은 다이아제니움다이올레이트기로 변환될 수 있다(도 2).In the present invention, the reaction with nitrogen monoxide may be carried out at a temperature of 25 to 300 ℃ and a pressure of 1 to 30 atm. The reaction time can be 1 to 5 days, 2 to 4 days or 3 days. In addition, the amount of the product prepared in (A) may vary depending on the size of the reaction vessel. For example, when the size of the reaction vessel is 1 ml to 10 L, the amount of the product may be 1 mg to 100 g. By this reaction, the secondary amine group can be converted to the diazenium diolate group (FIG. 2).
일 구체예에서 상기 단계 (b)는 박막이 코팅된 기재 및 촉매를 용매에 넣고 반응기에 투입하는 단계;In one embodiment step (b) is a step of putting a thin film coated substrate and a catalyst in a solvent to the reactor;
반응기를 불활성 기체로 배기하는 단계; 및 Evacuating the reactor with an inert gas; And
반응기 내에 일산화질소를 투입하여 반응시키는 단계를 통해 수행될 수 있다. Nitrogen monoxide in the reactor may be carried out through the step of reacting.
상기 용매로는 물, 에탄올, 메탄올, THF 또는 DMF 등을 사용할 수 있으며, 촉매로는 소디움 메톡사이드(Sodium methoxide)와 같은 염기 촉매(base catalyst)를 사용할 수 있다. As the solvent, water, ethanol, methanol, THF, or DMF may be used, and as the catalyst, a base catalyst such as sodium methoxide may be used.
상기 불활성 기체로의 배기는 반응기와 용액에 포함된 기체를 제거하기 위해 수행할 수 있으며, 불활성 기체로는 아르곤(Ar)을 사용할 수 있다. 상기 배기는 불활성 기체를 주입하고 방출하는 과정을 복수회 반복하여 수행할 수 있다. The exhaust to the inert gas may be performed to remove the gas contained in the reactor and the solution, and argon (Ar) may be used as the inert gas. The exhaust may be performed by repeatedly injecting and releasing an inert gas a plurality of times.
상기 일산화질소와의 반응은 전술한 온도, 압력 및 시간동안 수행할 수 있다. The reaction with nitrogen monoxide may be carried out for the above temperature, pressure and time.
상기 반응이 완료된 생성물은 건조한 후 포장하여 보관할 수 있다. After the reaction is completed, the product can be stored after packaging dry.
본 발명에서 도 1은 입자, 필름 및 하이드로젤 등의 다양한 형태의 산화질소 복합체의 제작 과정을 나타낸 모식도이다.In the present invention, Figure 1 is a schematic diagram showing the manufacturing process of the nitric oxide composite of various forms such as particles, films and hydrogels.
도 1에 나타난 바와 같이, 층과층 적층 방식을 통해서 고분자 박막이 형성된 입자 또는 필름을 일산화질소 복합체로 제조할 수 있다. 또한, 박막이 형성된 입자를 함유하는 하이드로젤과 같이 응용된 형태로도 일산화질소 복합체를 제작할 수 있다. As shown in FIG. 1, particles or films in which a polymer thin film is formed may be manufactured as a nitrogen monoxide composite through a layer-to-layer lamination method. In addition, the nitric oxide complex can also be produced in an applied form such as a hydrogel containing particles having a thin film formed thereon.
이하, 본 발명을 실시예를 통해 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, the present invention will be described in detail through examples. The following examples are merely illustrative of the present invention, and the scope of the present invention is not limited to the following examples. These embodiments are provided so that this disclosure will be thorough, and will fully convey the scope of the invention to those skilled in the art, and the invention will be defined by the scope of the claims. It is only.
실시예Example
실시예Example 1. 산화질소 나노입자 제조 1. Preparation of Nitric Oxide Nanoparticles
(1) 실리카 나노입자 합성 (1) Silica Nanoparticle Synthesis
지름 100 nm의 실리카 나노입자는 Stober 원리를 기반으로 K. Nozawa et al.에 의하여 보고된 연구를 참고하여 제작하였다(Langmuir 2005, 21, 1516). Silica nanoparticles with a diameter of 100 nm were fabricated with reference to a study reported by K. Nozawa et al. Based on Stober principle (Langmuir 2005, 21, 1516).
TEOS(Tetraethyl orthosilicate), 암모니아, 에탄올을 1:1:10의 부피 비로 사용하였다. 먼저 에탄올에 암모니아를 첨가하여 400 rpm 속도로 용액을 교반하면서 TEOS를 빠르게 첨가하였다. 같은 속도로 12시간 동안 교반한 후, 원심분리하여 상층액을 제거하고 가라앉은 실리카 나노입자를 확인하였다. 에탄올을 첨가하여 나노입자를 세척하고 원심분리하는 과정을 두 번 더 진행하고 세척하여 실리카 나노입자를 최종 제조하였다. Tetraethyl orthosilicate (TEOS), ammonia and ethanol were used in a volume ratio of 1: 1: 10. First, TEOS was added rapidly while ammonia was added to ethanol and the solution was stirred at 400 rpm. After stirring for 12 hours at the same rate, the supernatant was removed by centrifugation to identify the sinking silica nanoparticles. Silica nanoparticles were finally prepared by further washing and centrifuging the nanoparticles by adding ethanol and washing.
(2) Amine 기반의 고분자를 이용한 실리카 나노입자의 표면 개질 ((2) Surface Modification of Silica Nanoparticles Using Amine-based Polymers) BPEIBPEI 코팅 나노입자 제조) Manufacturing coated nanoparticles)
이차 아민(Secondary amine) 작용기를 가지고 있는 고분자인 BPEI를 이용하여 실리카 나노입자의 표면을 개질하였다. The surface of the silica nanoparticles was modified using BPEI, a polymer having secondary amine functionality.
물을 용매로 하여 10 mg/mL 농도의 BPEI 수용액을 제조하였다. 실리카 나노입자 500 mg에 BPEI 수용액 1 L을 첨가한 후, vortexer와 sonicator를 이용하여 5분 동안 분산시켰다. 그 다음, 소형 원심분리기를 이용하여 5분 간 실리카 나노입자를 침전시켰다. 상층의 BPEI 수용액을 제거한 후, 동일한 pH의 증류수를 1 L 첨가한 후, 30분 동안 분산시켜서 세척 과정을 진행하였다. 같은 방법으로 실리카 나노입자를 침전시켜서 상층액을 제거하였다. 이 과정을 5회 반복하여 실리카 나노입자를 세척하여, 나노입자의 표면 위에 BPEI 한 층을 형성시켰다. Aqueous solution of BPEI at a concentration of 10 mg / mL was prepared using water as a solvent. 1 L of BPEI aqueous solution was added to 500 mg of silica nanoparticles, and then dispersed for 5 minutes using a vortexer and a sonicator. The silica nanoparticles were then precipitated for 5 minutes using a small centrifuge. After removing the BPEI aqueous solution of the upper layer, 1 L of distilled water of the same pH was added, and then dispersed for 30 minutes to proceed with the washing process. In the same manner, the supernatant was removed by precipitating silica nanoparticles. This process was repeated five times to wash the silica nanoparticles to form a layer of BPEI on the surface of the nanoparticles.
이와 같은 방법으로 BPEI와 인력을 가지는 재료를 이용하여 과정을 반복함으로써 나노입자의 표면에 다층을 형성할 수 있었다. In this way, by repeating the process using a material having a BPEI and attractive force it was possible to form a multilayer on the surface of the nanoparticles.
(3) 산화질소 나노입자 합성(3) Nitric Oxide Nanoparticle Synthesis
BPEI 코팅 나노입자를 고압의 일산화기체 하에서 반응시켜 산화질소 나노입자를 합성하였다. Nitric oxide nanoparticles were synthesized by reacting BPEI-coated nanoparticles under high pressure monoxide gas.
BPEI 코팅 나노입자를 메탄올 30 mL가 담긴 바이알(vial)에 넣고 sonication을 30 분간 처리하여 잘 분산시킨 후, 소디움 메톡사이드(sodium methoxide)를 BPEI의 양과 동일한 비율로 첨가하였다. 바이알을 고압반응기에 넣고, 밀폐한 다음 아르곤 기체를 3 기압으로 빠르게 주입하고 방출하는 과정과 30분 동안 주입하는 과정을 각각 세 번씩 반복하여 반응기와 용액에 포함되어있는 기체들을 제거하였다. BPEI-coated nanoparticles were placed in a vial containing 30 mL of methanol, and sonication was performed for 30 minutes to disperse well. Sodium methoxide was added at the same ratio as the amount of BPEI. The vial was placed in a high-pressure reactor, sealed, and then rapidly injected and discharged with argon gas at 3 atm and repeated for 30 minutes to remove gases contained in the reactor and the solution.
그 후, 일산화질소 기체를 3 기압으로 반응기에 주입하여 상온에서 5일간 반응을 진행하였다. 5일 후, 일산화질소 기체를 배출시킨 후, 아르곤 가스를 3 기압으로 빠르게 주입하고 배출하는 과정을 다섯 번 반복하여 용액 속에 미반응된 일산화질소 기체를 제거하였다. 6,000 rpm으로 30분 간 원심분리하여 상층액을 제거한 후, 용해를 시키지 못하는 용매를 100 ml 채워서 나노입자를 분산시킨 다음 같은 방법으로 원심분리하는 과정을 두 번 더 반복하여 산화질소 나노입자를 세척하였다. 전술한 과정을 통해서 도 2와 같이 BPEI 고분자의 이차 아민 그룹이 다이아제늄디올레이트(diazeniumdiolate)기로 변환되었으며 산화질소를 방출할 수 있다. Thereafter, nitrogen monoxide gas was injected into the reactor at 3 atmospheres, and the reaction was performed at room temperature for 5 days. After 5 days, the nitrogen monoxide gas was discharged, and then, the argon gas was rapidly injected and discharged at 3 atmospheres five times to remove the unreacted nitrogen monoxide gas from the solution. After removing the supernatant by centrifugation at 6,000 rpm for 30 minutes, the nanoparticles were dispersed by dissolving 100 ml of a solvent that could not be dissolved and then centrifuged twice in the same manner to wash the nitric oxide nanoparticles. . Through the above-described process, as shown in FIG. 2, the secondary amine group of the BPEI polymer is converted to a diaeniumdiolate group and may release nitric oxide.
실험예Experimental Example 1. 입자 크기 및  1.particle size and 표면전하Surface charge 측정 Measure
실시예에서 제조된 실리카 나노입자, BPEI 코팅 나노입자 및 산화질소 나노입자의 표면전하를 측정하였다. The surface charges of the silica nanoparticles, BPEI coated nanoparticles, and nitric oxide nanoparticles prepared in Examples were measured.
나노입자들은 실리콘 웨이퍼 위에 건조되어 SEM으로 형태 및 크기를 분석하였으며, 제타포텐셜(zeta potential)로 표면전하를 측정하였다.The nanoparticles were dried on a silicon wafer and analyzed for morphology and size by SEM, and the surface charge was measured by zeta potential.
도 3은 BPEI 코팅 나노입자의 SEM 이미지로, 약 100 nm의 지름을 가지는 실리카 나노입자가 관찰되었다. 3 is an SEM image of BPEI coated nanoparticles, in which silica nanoparticles having a diameter of about 100 nm were observed.
도 4는 산화질소 나노입자의 SEM 이미지로, 일산화질소의 고압반응에 따른 실리카 입자의 형태나 크기의 차이는 없는 것을 확인할 수 있다. Figure 4 is a SEM image of the nitric oxide nanoparticles, it can be seen that there is no difference in the shape and size of the silica particles according to the high-pressure reaction of nitrogen monoxide.
또한, 도 5는 나노입자들의 표전전하를 측정한 그래프이다. 제조된 실리카 나노입자에서 표면의 SiO-는 음전하를 띠므로 정전기적 인력을 이용하여 상기 나노입자 상에 양전하를 띠는 BPEI를 코팅할 수 있다. 이는 BPEI 코팅 나노입자의 표면전하가 양전하를 띠는 것으로 확인할 수 있다. 이어서, 산화질소 나노입자의 표면전하를 측정해보면 이차 아민이 상당 부분 다이아제니움다이올레이트(diazeniumdiolate)로 변환되어 음전하를 띠는 것을 확인할 수 있다. pH 7의 생체환경에서 다이아제니움다이올레이트 그룹은 zwitter 형태이지만, 제타포텐셜이 측정된 pH 8 환경에서는 음전하가 더 활성화된다.In addition, Figure 5 is a graph measuring the charge charge of the nanoparticles. Since SiO on the surface of the prepared silica nanoparticles is negatively charged, it is possible to coat positively charged BPEI on the nanoparticles using electrostatic attraction. This can be confirmed that the surface charge of the BPEI coated nanoparticles are positively charged. Subsequently, when the surface charge of the nitric oxide nanoparticles is measured, it is confirmed that the secondary amine is converted to a diazeniumdiolate in a large part and has a negative charge. The diazenium dioleate group is in the zwitter form in the pH 7 environment, but the negative charge is more activated in the pH 8 environment where zeta potential is measured.
실험예Experimental Example 2. 산화질소 나노입자의 산화질소 방출량 측정 2. Measurement of Nitric Oxide Emissions from Nitric Oxide Nanoparticles
실시예에서 제조된 산화질소 나노입자 1 mg을 정량하여 pH 8의 증류수 0.1 ml에 분산시켰다. 둥근플라스크에 pH 7.4의 0.01 M PBS (0.05 M NaCl)를 넣고 항온수조에 담가서 37℃의 생체환경을 조성하였다. 일산화질소를 전달하는 역할을 하는 아르곤 가스가 PBS 상에 방출되도록 버블러를 둥근플라스크 내부에 설치하였다. 둥근플라스크의 다른 연결부는 일산화질소 분석기기와 연결시켰다. 분석기기에서 준비가 되면 소프트웨어로 분석을 시작한 후, 증류수에 분산되어있던 산화질소 나노입자를 파이펫을 이용하여 플라스크 내부의 PBS 상에 첨가하였다. 1 mg of the nitric oxide nanoparticles prepared in Example was quantified and dispersed in 0.1 ml of distilled water at pH 8. 0.01 M PBS (0.05 M NaCl) at pH 7.4 was added to the round flask and soaked in a constant temperature water bath to create a living environment at 37 ° C. A bubbler was installed inside the round flask to release argon gas, which serves to deliver nitrogen monoxide, onto the PBS. The other connection of the round flask was connected to a nitrogen monoxide analyzer. When ready in the analyzer, the analysis was started by software, and then nitric oxide nanoparticles dispersed in distilled water were added to the PBS inside the flask using a pipette.
도 6에서는 방출되는 일산화질소의 농도(ppb)를 1초 간격으로 실시간 측정하여 그래프로 나타내었고, 도 7에서는 일산화질소의 실시간 방출을 누적 방출량 그래프로 나타내었다. 또한, 도 8에서는 상기 도 6 및 7의 그래프를 기반으로 일산화질소의 총 방출량, 반감기, 일산화질소의 최대 방출 및 총 방출 시간을 분석하여 표로 나타내었다.In FIG. 6, the concentration (ppb) of nitrogen monoxide released in real time is measured and graphed at 1 second intervals. In FIG. In addition, in Figure 8 based on the graph of Figures 6 and 7, the total amount of nitrogen monoxide released, half-life, the maximum release and total release time of nitrogen monoxide are shown in a table.
산화질소 전달용 나노입자의 일산화질소 총 방출량은 3.5 umol/mg으로 기존에 보고된 연구결과와 비교했을 때 높은 수치였다. 또한 입자의 표면에서만 일산화질소의 방출이 일어남을 고려했을 때는 매우 높은 효율성을 가진다고 볼 수 있다. 또한 반감기가 151분으로 기존의 다이아제니움다이올레이트 입자들보다 3배에서 4배 이상 반감기가 느리게 나타났다. 이는 BPEI가 많은 아민 그룹을 포함하고 있으므로 일차 아민이나 미반응된 이차 아민이 다이아제니움다이올레이트 그룹과 수소결합을 형성하여 안정화를 통해 일산화질소의 방출 속도를 저해하는 것으로 예상된다. The total nitrogen monoxide emissions of the nitric oxide delivery nanoparticles were 3.5 umol / mg, which was high compared to previous studies. In addition, it can be said that the efficiency is very high considering the release of nitrogen monoxide only on the surface of the particles. In addition, the half-life of 151 minutes was 3 to 4 times slower than the existing diazenium diolate particles. Since BPEI contains many amine groups, it is expected that primary amines or unreacted secondary amines form hydrogen bonds with diazenium diolate groups, thereby stabilizing the release rate of nitrogen monoxide through stabilization.
실험예Experimental Example 3. 산화질소 나노입자의 생체적합성 평가  3. Evaluation of Biocompatibility of Nitric Oxide Nanoparticles
쥐의 근아세포(myoblast) 세포를 이용하여 실시예에서 제조된 BPEI 코팅 나노입자 및 산화질소 나노입자의 생체적합성을 평가하였다. Rat myoblast cells were used to evaluate the biocompatibility of the BPEI coated nanoparticles and nitric oxide nanoparticles prepared in the examples.
먼저, 근아세포를 4개의 24 well plate에 하나의 well 당 20000개씩 씨딩(seeding)하여 12시간 동안 인큐베이터에서 배양하였다. 각 well의 세포배양액을 제거한 후, 새로운 배양액을 640 ㎕씩 넣은 다음, pH 7.4의 PBS에 다양한 농도(0.1 ㎍/ml, 0.5 ㎍/ml, 1 ㎍/ml, 5 ㎍/ml 및 10 ㎍/ml)로 분산되어있는 BPEI 코팅 나노입자를 160 ㎕씩 well에 처리하였다. 각 농도는 여섯 개의 well씩 처리하였다. 산화질소 나노입자도 pH 8의 PBS에 다양한 농도로 분산되어있으며 같은 방식으로 well에 처리하였다. Well plate는 24시간 동안 incubation한 후, 배양액을 제거한 다음 2.5 mg/ml의 MTT solution과 배양액을 1:9 비율로 제조하여 각 well에 800 ㎕씩 첨가하였다. 2시간 동안 incubation 후, 배양액을 제거하고 DMSO를 넣어서 dye를 녹인 다음 96 well plate로 100 ㎕씩 용액을 옮겼다. Plate reader로 540 nm에서의 용액들의 흡광도를 측정하였다. 흡광도가 높을수록 세포생존률이 높음을 의미하며, 음성대조군(Media)과 나노입자들을 처리한 결과를 백분율로 계산하여 비교하였다. 48시간 후에도 위와 동일한 과정을 통해서 세포생존률을 분석하였다. First, myoblasts were seeded (2000) per well in four 24 well plates and cultured in an incubator for 12 hours. After removing the cell culture medium from each well, 640 μl of fresh culture medium was added, and then various concentrations (0.1 μg / ml, 0.5 μg / ml, 1 μg / ml, 5 μg / ml and 10 μg / ml) were added to PBS at pH 7.4. 160 μl of BPEI-coated nanoparticles dispersed in) were treated in the wells. Each concentration was treated with six wells. Nitric oxide nanoparticles were also dispersed in various concentrations in PBS at pH 8 and treated in wells in the same manner. After the well plate was incubated for 24 hours, the culture medium was removed, and 2.5 mg / ml of MTT solution and the culture solution were prepared in a 1: 9 ratio, and 800 μl was added to each well. After incubation for 2 hours, the culture solution was removed, DMSO was added to dissolve the dye, and 100 μl of the solution was transferred to a 96 well plate. The absorbance of the solutions at 540 nm was measured with a plate reader. The higher the absorbance, the higher the cell survival rate. The results obtained by treating the media and nanoparticles were calculated as percentages and compared. After 48 hours, cell viability was analyzed through the same procedure.
상기 분석결과를 도 9에 그래프로 나타내었다. The analysis results are shown graphically in FIG. 9.
도 9에 나타나듯이, 24시간과 48시간에서 모두 산화질소 나노입자를 음성대조군과 BPEI 코팅 나노입자와 비교했을 때, 가장 높은 농도에서도 독성을 나타내지 않았으므로 생체적합성을 확인할 수 있다. 한 가지 특이한 점은 두 그래프에서 모두 5 ㎍/ml 산화질소 입자를 처리하였을 때, 다른 농도들에 비해서 세포생존률이 약간 낮게 나타난 점이다. 산화질소 기체가 낮은 농도에서 세포의 신호전달 및 여러가지로 관여하는 바가 많기 때문에, 이는 세포사멸을 일으켰다기보다는 분화가능성을 포함하는 근아세포에게 증식 외에 다른 변화를 유발하는 특정 산화질소 농도일 가능성이 있다.As shown in FIG. 9, when the nitric oxide nanoparticles were compared with the negative control group and the BPEI-coated nanoparticles at 24 hours and 48 hours, biocompatibility was confirmed because they did not show toxicity at the highest concentration. One unusual feature is that cell viability was slightly lower than the other concentrations when 5 μg / ml nitric oxide particles were treated in both graphs. Since nitric oxide gas is often involved in cell signaling and variously at low concentrations, it is likely that it is a specific nitric oxide concentration that causes other changes besides proliferation in myoblasts, including the possibility of differentiation, rather than causing cell death.
동일한 근아세포를 이용하여 더 높은 농도 범위의 산화질소 나노입자의 생체적합성을 평가하였다. 비교실험군으로는 실리카 나노입자 및 BPEI 코팅 나노입자가 사용되었으며 입자의 농도는 25, 50, 100 ㎍/ml로 하였다. 동일한 방법으로 MTT assay를 24시간 후에 진행했으며 그 결과를 도 10에 그래프로 나타내었다.  The same myoblasts were used to assess the biocompatibility of nitric oxide nanoparticles in higher concentration ranges. Silica nanoparticles and BPEI-coated nanoparticles were used as a comparative test group, and the concentrations of the particles were 25, 50, and 100 μg / ml. MTT assay was performed after 24 hours in the same manner and the results are shown graphically in FIG. 10.
도 10에 나타난 바와 같이, 산화질소 나노입자의 농도가 증가함에 따라 세포생존률은 68%, 55%, 38%로 급격히 감소함을 확인할 수 있다. 그 이유는 고농도의 산화질소가 급격하게 방출되어 세포에게 독성을 미칠 수 있기 때문이다. 따라서 이 농도 범위는 세포에게 긍정적인 결과를 가져오기에는 고농도이며, 항암이나 항균작용에 응용될 수 있을 것으로 판단된다.As shown in Figure 10, as the concentration of the nitric oxide nanoparticles increases it can be seen that the cell viability is rapidly reduced to 68%, 55%, 38%. This is because high concentrations of nitric oxide can be released rapidly and can be toxic to cells. Therefore, this concentration range is high enough to bring positive results to the cells, and can be applied to anticancer or antibacterial activity.
본 발명에 따라 제조된 산화질소 전달용 복합체는 세포 독성이 없으므로, 일산화질소의 방출량 및 방출 속도의 조절을 통해 체내에서 혈관확장, 상처치유, 항균 등의 의료용 목적으로 활용할 수 있을 것으로 예상된다.Since the nitric oxide delivery complex prepared according to the present invention has no cytotoxicity, it is expected to be used for medical purposes such as vasodilation, wound healing, and antibacterial through the regulation of the release amount and release rate of nitric oxide.

Claims (14)

  1. 기재; 및 materials; And
    상기 기재 상에 형성되고, 다이아제니움다이올레이트기를 포함하는 고분자 박막을 포함하며, It is formed on the substrate, and comprises a polymer thin film containing a diazenium dioleate group,
    상기 고분자 박막은 한 층 이상 형성된 산화질소 전달용 복합체.The polymer thin film is a composite for delivering nitric oxide formed more than one layer.
  2. 제 1 항에 있어서,The method of claim 1,
    기재는 실리카, 하이드록시 아파타이트(hydroxyapatite), 금, 폴리-β-하이드록시 부티레이트(poly-β-hydroxy butyrate, PHB), 폴리유산(polylactic acid, PLA), 폴리-D-L-락티드-co- 글리코리드(poly-D-L-lactide-co-glycolide, PLGA), 알리파틱 폴리에스테르(aliphatic polyesters), 폴리카프로락톤(polycaprolactone, PCL), 폴리메틸 메타크릴레이트(polymethyl methacrylate, PMMA), 폴리-에틸렌글리콜(poly-ethyleneglycol, PEG), 폴리-비닐알코올(poly-vinylalcohol, PVA), 폴리-알킬-시아노-카릴레이트(poly-alkyl-cyano-carylates, PAC), 키토산(chitosan), 젤라틴(gelatin), 마이셀(micelle), DNA/RNA, 인지질(phospholipid) 및 리포좀(liposome)으로 이루어진 그룹으로부터 선택된 하나 이상을 기반으로 형성되는 산화질소 전달용 복합체.The substrate is silica, hydroxyapatite, gold, poly-β-hydroxy butyrate (PHB), polylactic acid (PLA), poly-DL-lactide-co-glyco Lead (poly-DL-lactide-co-glycolide (PLGA)), aliphatic polyesters, polycaprolactone (PCL), polymethyl methacrylate (PMMA), polyethylene glycol ( poly-ethyleneglycol (PEG), poly-vinylalcohol (PVA), poly-alkyl-cyano-carylates (PAC), chitosan, gelatin, Complex for delivery of nitric oxide, which is formed based on one or more selected from the group consisting of micelles, DNA / RNA, phospholipids and liposomes.
  3. 제 1 항에 있어서,The method of claim 1,
    기재는 나노입자, 마이크로 입자 또는 필름 형상을 가지는 산화질소 전달용 복합체.The substrate is a composite for nitric oxide delivery having a nanoparticle, microparticle or film shape.
  4. 제 1 항에 있어서,The method of claim 1,
    다이아제니움다이올레이트기를 포함하는 고분자 박막은 1 내지 500 층으로 형성되는 산화질소 전달용 복합체.A polymer thin film comprising a diazenium dioleate group is formed of 1 to 500 layers.
  5. 제 1 항에 있어서,The method of claim 1,
    다이아제니움다이올레이트기를 포함하는 고분자 박막은 층과층(layer-by-layer, LbL) 적층 방식에 의해 다층으로 형성되는 산화질소 전달용 복합체.A polymer thin film comprising a diazenium dioleate group is formed in a multi-layer by a layer-by-layer (LbL) lamination method.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    층과층(layer-by-layer, LbL) 적층 방식은 정전기적 인력, 반 데르발스 힘, 수소결합, 공유결합, 이온결합, 소수성결합, 전하-전송(charge-transfer) 결합, π-상호작용(π-interaction), 배위화학결합, 스트레오복합화(stereocomplexation), 호스트-게스트(host-guest) 또는 생물학적 결합을 이용하는 산화질소 전달용 복합체.Layer-by-layer (LbL) lamination allows for electrostatic attraction, van der Waals forces, hydrogen bonds, covalent bonds, ionic bonds, hydrophobic bonds, charge-transfer bonds, and π-interactions. Complex for nitric oxide delivery using (π-interaction), coordination chemical bonds, stereocomplexation, host-guest or biological bonds.
  7. 제 1 항에 있어서,The method of claim 1,
    다이아제니움다이올레이트기를 포함하는 고분자 박막은 상기 박막 내에 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상을 추가로 포함하는 산화질소 전달용 복합체.The polymer thin film comprising a diazenium dioleate group further comprises at least one selected from the group consisting of proteins, growth factors, graphene and drugs in the thin film.
  8. 제 1 항에 있어서,The method of claim 1,
    제 2 고분자, 단백질, 성장인자, 그래핀 및 약물로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 박막을 추가로 포함하는 산화질소 전달용 복합체.Nitric oxide delivery complex further comprises a thin film comprising at least one selected from the group consisting of a second polymer, a protein, a growth factor, graphene and a drug.
  9. (A) 기재 상에 이차 아민 그룹을 포함하는 고분자 박막을 한 층 이상 형성하는 단계; 및 (A) forming at least one polymer thin film containing a secondary amine group on the substrate; And
    (B) 25 내지 300℃의 온도 및 1 내지 30 atm의 압력에서, 일산화질소와 반응시키는 단계를 포함하는 산화질소 전달용 복합체의 제조방법.(B) a method for producing a composite for delivering nitric oxide, comprising the step of reacting with nitrogen monoxide at a temperature of 25 to 300 ° C. and a pressure of 1 to 30 atm.
  10. 제 9 항에 있어서,The method of claim 9,
    기재는 나노입자, 마이크로 입자 또는 필름 형상을 가지는 산화질소 전달용 복합체의 제조방법. The substrate is a method for producing a composite for delivering nitric oxide having a nanoparticle, microparticle or film shape.
  11. 제 9 항에 있어서,The method of claim 9,
    이차 아민 그룹을 포함하는 고분자는 가지친 폴리에틸렌이민(branched polyethyleneimine, BPEI), 키토산(chitosan), 젤라틴(gelatin), 콜라겐(collagen), 피브리노겐(fibrinogen), 실크 피브로인(silk fibroin), 카세인(casein), 엘라스틴(elastin), 라미닌(laminin), 피브로넥틴(fibronectin), 폴리 도파민(poly dopamine), 폴리 에틸렌이민(poly ethyleneimine), 폴리-L-리신(poly-L-lysine), 폴리(비닐아민) 하이드로클로라이드(poly(vinylamine) hydrochloride), 폴라(아미노 산)(poly(amino acids)) 및 des아미노타이로실 옥틸 에스터(desaminotyrosyl octyl ester)로 이루어진 그룹으로부터 선택된 하나 이상인 산화질소 전달용 복합체의 제조방법. Polymers containing secondary amine groups include branched polyethyleneimine (BPEI), chitosan, gelatin, collagen, fibrinogen, silk fibroin, casein , Elastin, laminin, fibronectin, poly dopamine, poly ethyleneimine, poly-L-lysine, poly (vinylamine) hydro A method for preparing a complex for delivery of nitric oxide, which is at least one selected from the group consisting of chloride (poly (vinylamine) hydrochloride), poly (amino acids) and desaminotyrosyl octyl ester.
  12. 제 9 항에 있어서,The method of claim 9,
    단계 (A)에서 박막이 수소 결합을 통해 둘 이상의 다층으로 형성될 경우,If the thin film in step (A) is formed into two or more multilayers through hydrogen bonding,
    상기 박막은 이차 아민 그룹을 포함하는 고분자 용액을 2회 이상 적층하여 형성하는 산화질소 전달용 복합체의 제조방법. The thin film is a method for producing a nitric oxide delivery composite formed by stacking a polymer solution containing a secondary amine group two or more times.
  13. 제 9 항에 있어서,The method of claim 9,
    단계 (A)에서 박막이 정전기적 인력을 통해 둘 이상의 다층으로 형성될 경우,If in step (A) the thin film is formed into two or more multilayers via electrostatic attraction,
    상기 박막은 이차 아민 그룹을 포함하는 고분자 용액 및 음전하 고분자 용액을 반복적으로 적층하여 형성하는 산화질소 전달용 복합체의 제조방법.The thin film is a method for producing a nitric oxide delivery composite formed by repeatedly stacking a polymer solution and a negatively charged polymer solution containing a secondary amine group.
  14. 제 10 항에 있어서,The method of claim 10,
    단계 (A)를 수행한 후, 고분자 박막이 형성된 나노입자 또는 마이크로 입자를 하이드로겔에 봉입하는 단계를 추가로 포함하는 산화질소 전달용 복합체의 제조방법.After performing step (A), the method for producing a composite for nitric oxide delivery further comprising the step of encapsulating nanoparticles or microparticles formed with a polymer thin film in a hydrogel.
PCT/KR2017/011814 2016-10-28 2017-10-25 Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same WO2018080155A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0142007 2016-10-28
KR1020160142007A KR20180046962A (en) 2016-10-28 2016-10-28 Manufacturing method of complex for the delivery of nitric oxide

Publications (2)

Publication Number Publication Date
WO2018080155A2 true WO2018080155A2 (en) 2018-05-03
WO2018080155A3 WO2018080155A3 (en) 2018-08-09

Family

ID=62025288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011814 WO2018080155A2 (en) 2016-10-28 2017-10-25 Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same

Country Status (2)

Country Link
KR (1) KR20180046962A (en)
WO (1) WO2018080155A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440153A (en) * 2018-11-27 2019-03-08 河北北方学院 Microwave-electrochemical preparation method of CuHA/GO/ dopamine composite coating
CN109912822A (en) * 2019-03-01 2019-06-21 南通大学 A kind of preparation method of self-supporting selfreparing host and guest's body thin film
CN110960724A (en) * 2019-12-31 2020-04-07 暨南大学 Medicinal hydrogel and preparation method thereof
CN116655983A (en) * 2023-05-24 2023-08-29 浙江和顺新材料有限公司 Antistatic and antibacterial biaxially oriented polyester composite film and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102088809B1 (en) * 2018-06-20 2020-03-13 연세대학교 산학협력단 A nitric oxide carrier and a method for manufacturing the same
KR102112783B1 (en) * 2018-11-08 2020-05-19 연세대학교 산학협력단 A crystal releasing nitric oxide and a method for manufacturing the same
CN110170068B (en) * 2019-05-27 2023-09-26 南通大学附属医院 Multi-functional medical suture and preparation method thereof
CN114948882B (en) * 2022-05-12 2023-07-25 黑龙江齐盛科技有限公司 Preparation method of nervonic acid water-soluble composite micro powder with acid environment response

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052443A1 (en) * 2012-09-28 2014-04-03 The Regents Of The University Of Michigan Sustained nitric oxide release coating using diazeniumdiolate-doped polymer matrix with ester capped poly(lactic-co-glycolic acid) additive
KR101351130B1 (en) * 2012-11-05 2014-01-15 포항공과대학교 산학협력단 Method for preparing coating film containing nitrogen monoxide using catecholamines in the surface of materials
KR101555523B1 (en) * 2014-02-28 2015-09-25 부산대학교 산학협력단 Nitric oxide-releasing films for wound healing and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440153A (en) * 2018-11-27 2019-03-08 河北北方学院 Microwave-electrochemical preparation method of CuHA/GO/ dopamine composite coating
CN109912822A (en) * 2019-03-01 2019-06-21 南通大学 A kind of preparation method of self-supporting selfreparing host and guest's body thin film
CN109912822B (en) * 2019-03-01 2024-05-14 南通大学 Preparation method of self-supporting self-repairing host-guest film
CN110960724A (en) * 2019-12-31 2020-04-07 暨南大学 Medicinal hydrogel and preparation method thereof
CN110960724B (en) * 2019-12-31 2022-02-15 暨南大学 Medicinal hydrogel and preparation method thereof
CN116655983A (en) * 2023-05-24 2023-08-29 浙江和顺新材料有限公司 Antistatic and antibacterial biaxially oriented polyester composite film and preparation method thereof

Also Published As

Publication number Publication date
KR20180046962A (en) 2018-05-10
WO2018080155A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018080155A2 (en) Method for producing polymer coating-based nitrogen oxide delivery composite, and use of same
Jagur-Grodzinski Biomedical application of functional polymers
Praphakar et al. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin-loaded poly (ester amide) s nanocarriers
WO2012046994A2 (en) Nitric oxide delivery system using thermosensitive synthetic polymers
Feng et al. An ultrasound-controllable release system based on waterborne polyurethane/chitosan membrane for implantable enhanced anticancer therapy
N Mengatto et al. Recent advances in chitosan films for controlled release of drugs
WO2014069728A1 (en) Method for forming coating film including nitrogen monoxide on surface of material by using catecholamine
JP2009520814A (en) Controlled release gel
Akagi et al. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly (γ-glutamic acid)
CN110123785B (en) Double-sensitive targeted nanoparticle preparation loaded with chemotherapeutic drugs and preparation method thereof
Lari et al. PEDOT: PSS-containing nanohydroxyapatite/chitosan conductive bionanocomposite scaffold: Fabrication and evaluation
Teng et al. Synthesis of gold-nanoshelled pluronic-PEI nanocapsules for drug delivery
Szczesna et al. Szyk-Warszy nska, L.; Zboi nska, E.; Warszy nski, P.; Wilk, KA Multilayered curcumin-loaded hydrogel microcarriers with antimicrobial function
WO2016036061A1 (en) Temperature-sensitive biodegradable hydrogel
CN116687869B (en) Double-carrier flurbiprofen axetil nano medicine-carrying material and preparation method thereof
Wu et al. Controllable Growth of Core–Shell Nanogels via Esterase-Induced Self-Assembly of Peptides for Drug Delivery
CN114522249B (en) Preparation method of manganese-containing coated calcium phosphate microsphere and application of manganese-containing coated calcium phosphate microsphere in aspect of drug carrier
KR101498364B1 (en) Preparing method of microcapsule of oral delivery of active substance using natural polymer
KR20190143217A (en) A nitric oxide carrier and a method for manufacturing the same
CN113041214A (en) Modified hyaluronic acid hydrogel loaded with mucinous-Ackermanella tabescens and preparation method and application thereof
Xu et al. Preparation and cytocompatibility of polyaniline/PLCL conductive nanofibers
WO2012105815A2 (en) Biodegradable paox microspheres having cationic properties
CN111607017B (en) Amphiphilic polymer, process for producing the same, use thereof, and contact lens material
WO2023090892A1 (en) Surface-modified inorganic nanoparticles and preparation method therefor
CN114716582B (en) Keratin peptide modified chitosan derivative and preparation method, application and pharmaceutical composition thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864903

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864903

Country of ref document: EP

Kind code of ref document: A2