WO2018131755A1 - Virtual accident-based radiation emergency site exploration training method - Google Patents

Virtual accident-based radiation emergency site exploration training method Download PDF

Info

Publication number
WO2018131755A1
WO2018131755A1 PCT/KR2017/004168 KR2017004168W WO2018131755A1 WO 2018131755 A1 WO2018131755 A1 WO 2018131755A1 KR 2017004168 W KR2017004168 W KR 2017004168W WO 2018131755 A1 WO2018131755 A1 WO 2018131755A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
virtual
training
accident
server
Prior art date
Application number
PCT/KR2017/004168
Other languages
French (fr)
Korean (ko)
Inventor
이광표
Original Assignee
(주)라드서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)라드서치 filed Critical (주)라드서치
Priority to JP2017551583A priority Critical patent/JP2019507893A/en
Priority to CN201780001024.0A priority patent/CN108701338A/en
Priority to RU2017133295A priority patent/RU2669871C1/en
Publication of WO2018131755A1 publication Critical patent/WO2018131755A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to a virtual accident-based radiation emergency site exploration training method, and more specifically, to design a virtual accident scenario similar to the actual radiological emergency accident, and virtual location-based exploration data in real time according to the designed scenario.
  • This study relates to a virtual accident-based radiation emergency field exploration training method that can collect and train the central control center to reconstruct the distribution of effluent radiation.
  • Radiation emergency refers to an accident situation in which radioactivity (radioactive materials) may leak or leak out of various accidents and failures that may occur in nuclear facilities.
  • 'Radiation emergency planning area' refers to a legal area that is set up in advance to concentrate on resident protection measures such as preparation of protective drugs, securing relief centers, evacuation and introduction in case of radiation leakage accidents at nuclear facilities.
  • the outflow of radiation during radiological emergency may not be limited to radiological emergency planning zones. Therefore, in the present invention, the 'incident zone' refers to a place where radiation exposure or fear of exposure is expected due to an accident, war, terrorism, natural disaster, intention or the like.
  • the accident area shall mean not only the radiological emergency planning area but also all areas or areas where there is a potential for radiation damage.
  • the first step in preparing for and promptly responding and preparing for the protection of citizens is to grasp information on the distribution status and change trends of radiation spilled in the area, that is, radiation distribution information. This is because the level and extent of response to an accident can be determined based on real-time radiation distribution information.
  • a monitoring system using a monitoring network including a plurality of radiation monitors, a communication network, and an operation server is provided to secure the radiation level distribution data of the accident area so that the radiation distribution information can be quickly identified in case of emergency.
  • RMS Radiation Monitoring System
  • 'exploration process' the movement path of various monitors as 'exploration path', and the radiation level information measured during the exploration process as 'exploration data'.
  • the operation server is an institution that operates and manages the radiological emergency monitoring system (a national agency or a local government agency, a second agency that is involved in various organizations, etc.) and can be determined by statutory provisions, for example, a joint radiation monitoring center, It is a server operated by 'administrative organization'.
  • the radiation level at a specific position in the area is usually measured by a fixed monitor and transmitted to the operation server. Then, in case of radiation emergency, various mobile monitors are operated along the exploration path, and the radiation levels are measured in real time in various locations of the accident area and transmitted to the operation server through the network.
  • the management server (operating server can be a plurality of physically separated devices) manages the location-based real-time radiation level to derive the radiation distribution information within the zone, for example, an institution such as the Central Emergency Headquarters Based on this radiation distribution information, the level and extent of response to the accident will be determined.
  • the operation of the monitoring system for obtaining the radiation distribution information is largely based on the following steps: 1 An exploration stage for measuring the radiation level at the accident site; 2 A situation in which real-time location-based radiation levels are collected from each monitor and synthesized to derive the radiation distribution information on the map. It is subdivided into grasping stage and countermeasure stage to determine optimal accident spread prevention and resident protection measures based on real-time radiation distribution information.
  • the monitoring system for obtaining radiation distribution information in case of emergency also needs to perform virtual training on a regular basis or periodically.
  • the conventional monitoring system it is only possible to train how fast emergency planners passed the planned exploration path at the time of the virtual radiation emergency, and because the radiation level of the virtual accident zone is the same as usual, the sense of urgency of training And there was no realism.
  • the real-time location-based radiation level in the exploration phase is the usual value, the training on the situation detection phase and the response phase of the latter stage was inevitably separated without interlocking with the exploration phase of the front end.
  • the virtual training of the conventional surveillance system was not able to be organically performed, and the efficiency of the training was not so high.
  • An object of the present invention is to provide a virtual accident-based radiation emergency field exploration training method that can train the operation of the radiation emergency monitoring system similar to the actual radiation emergency accident.
  • an object of the present invention is to provide a method for evaluating a virtual accident-based radiation emergency site exploration training results.
  • the present invention for achieving the above object is a monitoring network comprising a plurality of radiation monitors for securing the radiation level distribution data, the operation server for wireless communication with the monitor so that the radiation distribution information of the accident area can be quickly identified during radiation emergency; And a virtual accident-based radiation emergency site exploration training method using a training server wirelessly communicating with the monitor, wherein (A) the training server sets a virtual radiation level for each scheduled training time of a training scheduled area from a training manager; Scenario setting process of receiving and storing integrated real-time radiation level virtual data of the training scheduled area: (B) 1 Before the training is started, the training server includes transmitting the scenario information set to each monitor, or 2 The training is started, and the plurality of radiation monitors are determined in advance.
  • Transmitting a real-time location to the training server while moving along an exploration path according to the present invention And transmitting, by the training server, a corresponding virtual datum to each monitor corresponding to a predetermined real time position set in the scenario, the virtual radiation level exploration process comprising : (C) each of the plurality of monitors at each real time position. Transmitting the based radiation level virtual datum to the operation server; Hypothetical accident based, including: a virtual radiation distribution information acquisition process including a; and wherein the production server, the method comprising: obtaining a real-time location-specific radiation level virtual data in real time to buy consolidation local virtual radiation distribution information received from the plurality of monitors It is characterized by a radiological emergency site exploration training method.
  • the training can be conducted in a sense of urgency and reality. .
  • the training can be performed according to various scenarios, thereby improving the ability to respond to an unpredictable radiation emergency.
  • FIG. 1 is a conceptual relationship diagram showing the objects involved in the training method according to the invention and the relationship between them.
  • FIG. 2 is a conceptual flowchart showing the information transfer relationship between objects involved in the training method according to the present invention.
  • Figure 3 shows an example of a scenario set in the training method according to the present invention on a map.
  • Figure 4 is an example of the planned exploration path of the monitor for the accident prediction zone in the training method according to the present invention.
  • FIG. 5 is an example of visually showing the virtual radiation level measured on the exploration path as a result of training according to the scenario shown in FIG. 3 and the exploration path as shown in FIG.
  • FIG. 6 is an example in which virtual radiation distribution information is displayed on a map by analyzing and integrating the information obtained by FIG. 5;
  • FIG. 6 is an example in which virtual radiation distribution information is displayed on a map by analyzing and integrating the information obtained by FIG. 5;
  • the present invention includes a plurality of radiation monitors for securing radiation level distribution data, a surveillance network including an operation server for wireless communication with the monitors, so that the radiation distribution information of the accident area can be quickly identified during a radiation emergency.
  • Virtual accident-based radiation emergency site training using the training server for wireless communication includes scenario setting process , virtual radiation level exploration process, and virtual radiation distribution information acquisition process .
  • 1 is a conceptual relationship diagram showing the objects involved in the training method according to the present invention and the relationship between them
  • FIG. 2 schematically shows the components involved in the training method according to the present invention and the information transmission relationship therebetween. Shown.
  • the 'radiation monitor' or 'monitoring' basically has a radiation level measurement function, a GPS function and a real-time communication function, and in case of emergency, it is installed in advance / post-location at various places in the accident area or a route scheduled for the accident area ( It is a device that measures the location-based real-time radiation level of land, sea and air while traveling along the exploration path and transmits it to the operation server.
  • 'Scheduled' means 'scheduled in the action plan'.
  • the 'operation server' is a server operated by a management agency managing a radiation emergency monitoring system, and receives location-based real-time radiation level data from a plurality of monitors, and aggregates them to derive radiation distribution information in a zone. do.
  • the 'training server' is a server interworking with the monitoring network only in a training situation, and serves to set up a radiation distribution information scenario and transmit it to the monitor.
  • each monitor at a specific point in time only transmits or receives one radiation level information. Therefore, the radiation level information measured or exchanged by one monitor at a specific time is expressed in singular 'datum', and the information gathered by these datums is expressed in plural 'data'.
  • 'real time' may be substantially real time, but may also mean time within a predetermined time range.
  • real-time data may refer to all radiation level data in the accident area less than 10 minutes old.
  • the scenario setting process is a process in which the training server receives the virtual radiation level virtual data by the integrated real-time location of the training scheduled zone, which sets the virtual radiation level for each training scheduled time zone of the training scheduled zone from the training manager.
  • a scenario is a process of receiving and storing [position-time-virtual radiation level] setting data consisting of virtual radiation level values for each time of training scheduled time for each location of training scheduled area.
  • Scenarios may be good for visibility in the form of radiation level distribution information at specific times displayed on the map of the area to be trained.
  • 3 illustrates an example of graphically displaying a scenario in the form of a contour line on a map.
  • the radiation level is higher, that is, the radiation pollution is severe, for example, the radiation level of the green region may be set to 100nSv (nanosievert) / h or less, the red region is 1mSv / h or more.
  • the radiation level information for each location of the accident area can be known at a specific point in time.
  • the scenario may be fixed at a specific point in time, but it may be determined that the radiation level distribution information changes over time in consideration of the trend of radiation emergency accidents, wind speed or wind direction change.
  • the scenario can be set differently every 30 minutes from the start of the training, making the training more realistic.
  • the basic training method is the same, and thus, the present invention will be described based on setting one scenario.
  • the virtual radiation level exploration process is a process of sending a virtual datum according to a scenario to each monitor, and may select any one of two methods.
  • the first method is that the training server transmits and sets the scenario information to each monitor before the training is started. This setting will be available offline.
  • information virtual datum
  • the real-time position current position and time
  • the real-time virtual datum is extracted.
  • FIG. 4 Examples of scheduled exploration paths for all monitors are shown in FIG. 4.
  • the path moving up and down zigzag indicates the exploration path of the monitor mounted on the plane.
  • the second method ('real time method') can be applied when the monitor does not have a function of storing and controlling the scenario information.
  • the training is initiated and the plurality of radiation monitors are moved along the exploration path according to a predetermined action plan in the case of a mobile, and the real-time position (current position and time) is directly or through the training server.
  • the location is fixed, so one location information transmission is sufficient.
  • the training server receiving the real-time position of each monitor, each scenario corresponding to a predetermined real-time position (that is, the current position and time) set in the scenario, that is, each monitor in the scenario position at the time in the scenario, the scenario Send the virtual datum set on the screen.
  • the virtual radiation distribution information acquisition process is a process in which the operational server collects virtual datums from each monitor in real time and integrates them to obtain virtual radiation distribution information.
  • the flow of this process is the same as the process of acquiring the actual radiation distribution information, can also be divided into two steps.
  • each of the plurality of monitors transmits the real-time location-based radiation level virtual datum received from the training server to the operation server.
  • the virtual datum is a virtual datum extracted in correspondence with the place where the monitor is currently located in the case of the 'pre-setting method' and the virtual datum received in real time from the training server in the case of the 'real time method'.
  • the measured datum may be transmitted together, and a predetermined indicator (tag) may be combined with the virtual datum to distinguish it from the measured datum.
  • the measured datum may be corrected (for example, added or subtracted) to the virtual datum received from the training server and transmitted to the operation server.
  • the operation server collects and stores the real-time location-specific virtual data of the radiation levels received from the plurality of monitors and integrates them by matching the virtual radiation levels measured on the exploration path and the exploration path.
  • the virtual radiation levels measured on the exploration path are visually shown on the exploration path as a result of training along the scenario as shown in FIG. 3 and the exploration path as shown in FIG. 4.
  • the operation server analyzes these survey results in an integrated manner to derive the virtual radiation distribution information in real time.
  • the virtual radiation distribution information is preferably in the form of radiation level distribution information of a specific time displayed on the map of the training target area. 6 shows an example in which the virtual radiation distribution information is displayed graphically in a contour form on a map by analyzing and integrating the information obtained by FIG. 5.
  • each information (datum / data) may be transmitted at an appropriate predetermined period.
  • FIG. 2 schematically illustrates the components involved in the virtual accident-based radiation emergency site exploration training method of the present invention and the information transmission relationship therebetween, in which an operation server and a training server are separated and communicated with each other. .
  • the operation server or the training server is a functional concept, both may be physically mounted on one server.
  • the present invention is not only limited to the virtual accident-based radiation emergency site exploration training method, but also provides an evaluation method for evaluating the training results according to the training method.
  • the training evaluation process includes real-time location-specific virtual radiation level virtual data (i.e., setting data for "location-visual-virtual radiation level" of a training zone) in the scenario stored in the training server (A), and the operation.
  • the training results are evaluated by comparing the measured and measured real-time location-specific radiation level virtual data (ie, exploration data) with each other.
  • FIGS. 3 and 5 are shown in FIG. 3.
  • the training manager designs the accident scenario information that sets the virtual accident area by accident time zone and the radiation contamination level (radiation level) by area at the virtual accident site and stores it in the training server.
  • the monitor automatically communicates with the training server to transmit and set the accident scenario information (can be set offline).
  • the virtual datum in the accident scenario is automatically calculated according to the monitor's location information (fixed installation location or GPS location information collection).
  • the monitor can display both the actual measured datum and the training virtual datum.
  • the site response person monitors the virtual datum of the monitor and trains the site response in case of emergency.
  • the remote central command center operation server monitors the virtual datum collected from the site in real time and trains the decision to protect the citizens through emergency response center training and data analysis.
  • the training manager After the training, the training manager performs the training evaluation through the incident response procedure, time required, comparison of the accident scenario and the training analysis results.

Abstract

The present invention relates to a virtual accident-based radiation emergency site exploration training method, which allows designing a virtual accident scenario similar to an actual radiation emergency accident, and training of collecting virtual location-based exploration data in real time at an actual site and reconfiguring a current situation of distribution of leaked radiation by a central control center, according to the designed scenario. More particularly, the virtual accident-based radiation emergency site exploration training method uses: a plurality of radiation monitors for securing radiation level distribution data to enable quick identification of radiation distribution information of an accident region in a radiation emergency; a monitoring network including an operating server for wirelessly communicating with the monitors; and a training server for wirelessly communicating with the monitors. Further, the virtual accident-based radiation emergency site exploration training method comprises a scenario setting step, a virtual radiation level exploration step, and a virtual radiation distribution information acquisition step.

Description

가상사고 기반 방사선비상 현장탐사 훈련방법Virtual accident based radiation emergency site exploration training method
본 발명은 가상사고 기반 방사선비상 현장탐사 훈련방법에 관한 것으로서, 보다 상세하게는 실제 방사선비상 사고와 유사하게 가상사고 시나리오를 설계하고, 이렇게 설계된 시나리오에 따라 실제 현장에서 실시간으로 가상의 위치기반 탐사데이터를 수집하고 중앙관제센터에서 유출 방사선의 분포현황을 재구성하도록 훈련할 수 있는 가상사고 기반 방사선비상 현장탐사 훈련방법에 관한 것이다.The present invention relates to a virtual accident-based radiation emergency site exploration training method, and more specifically, to design a virtual accident scenario similar to the actual radiological emergency accident, and virtual location-based exploration data in real time according to the designed scenario. This study relates to a virtual accident-based radiation emergency field exploration training method that can collect and train the central control center to reconstruct the distribution of effluent radiation.
지난 2011년 3월 일본 후쿠시마 원전 사고로, 원전 사고에 대한 경각심이 높아지고 있다. 이에 따라 정부는 「원자력시설 등의 방호 및 방사능 방재 대책법」을 시행하여 방사선비상계획구역을 기존의 8~10km에서 20~30km로 확대 개편하였다.In March 2011, the Fukushima nuclear power plant accident in Japan, raising awareness about the nuclear accident. As a result, the government implemented the Act on the Protection of Radiation and Radiation Disaster Prevention Act and expanded the radiological emergency planning zone from the existing 8-10km to 20-30km.
'방사선비상(이하 단순히 '비상'이라 함)'이란, 원자력시설에서 발생할 수 있는 여러 가지 사고·고장 중 방사능(방사성물질)이 외부로 누출되거나 누출될 우려가 있는 사고 상황을 의미한다. '방사선비상계획구역'은 원자력시설에서 방사능누출사고가 발생할 경우에 대비해 방호 약품 준비나 구호소 확보, 대피·소개 등과 같은 주민보호대책을 사전에 집중적으로 마련하기 위해 설정하는 법적 구역을 말한다. 그런데 방사선비상시 방사선의 유출은 방사선비상계획구역에 한정되지 않을 수도 있다. 따라서 본 발명에서 '사고구역'이란 사고, 전쟁, 테러, 자연재해, 고의 등에 의해 방사선 피폭되거나 또는 피폭의 우려가 예상되는 장소를 말한다. 즉 사고구역이란 방사선비상계획구역 뿐 아니라 잠정적으로 방사선 피해의 가능성이 있는 모든 구역이나 영역을 의미하는 것으로 한다.Radiation emergency (hereinafter simply referred to as 'emergency') refers to an accident situation in which radioactivity (radioactive materials) may leak or leak out of various accidents and failures that may occur in nuclear facilities. 'Radiation emergency planning area' refers to a legal area that is set up in advance to concentrate on resident protection measures such as preparation of protective drugs, securing relief centers, evacuation and introduction in case of radiation leakage accidents at nuclear facilities. However, the outflow of radiation during radiological emergency may not be limited to radiological emergency planning zones. Therefore, in the present invention, the 'incident zone' refers to a place where radiation exposure or fear of exposure is expected due to an accident, war, terrorism, natural disaster, intention or the like. In other words, the accident area shall mean not only the radiological emergency planning area but also all areas or areas where there is a potential for radiation damage.
방사선비상이 발생하면 신속한 초기대응 및 주민보호조치 준비와 실행을 위해 가장 선행되어야 하는 것이, 구역 내에 유출된 방사선의 분포현황 및 변화추이에 대한 정보 즉, 방사선분포정보를 파악하는 것이다. 실시간 방사선분포정보에 따라 사고에 대한 대응의 수준과 범위를 결정할 수 있기 때문이다. In the event of a radiological emergency, the first step in preparing for and promptly responding and preparing for the protection of citizens is to grasp information on the distribution status and change trends of radiation spilled in the area, that is, radiation distribution information. This is because the level and extent of response to an accident can be determined based on real-time radiation distribution information.
현재, 유사시 신속하게 방사선분포정보를 파악할 수 있도록 사고지역의 방사선 준위 분포 데이터 확보를 위해, 복수의 방사선 감시기와 통신네트워크와 운영서버를 포함하는 감시네트워크를 활용한 감시시스템이 마련되어 있다. At present, a monitoring system using a monitoring network including a plurality of radiation monitors, a communication network, and an operation server is provided to secure the radiation level distribution data of the accident area so that the radiation distribution information can be quickly identified in case of emergency.
방사선 감시기(RMS: Radiation Monitoring System)는 통상 사고지역의 곳곳의 위치에 사전/사후에 설치되거나 또는 사고지역을 이동하면서 육상, 해상 및 공중 각 위치의 방사선 준위를 측정하는 기기로서, 기본적으로 방사선 준위 측정기능, GPS기능 및 실시간 통신기능(이러한 기능들은 물리적으로 다른 장치에 구현될 수도 있음)이 있다. 고정식 감시기는 방사선 준위의 감시를 요하는 구역의 주요 위치에 고정 설치되는 것이다. 이동식 감시기로는, 방사선비상이 발생하면 사전에 설정된 주요 지점에 이동설치되는 형식, 차량이나 선박에 탑재되어 사전에 설정된 경로의 도로나 해상으로 이동되는 형식, 헬기나 비행기에 탑재되어 비행하면서 이동되는 형식 또는 관계자가 직접 등에 지는 등 휴대하여 사전에 정해진 또는 임의의 경로로 이동되는 형식 등이 있다. 이렇게 사고구역 현장의 방사선 준위를 측정하는 과정을 '탐사과정', 각종 감시기의 이동경로를 '탐사경로', 탐사과정에서 측정된 방사선 준위 정보를 '탐사데이터'라 칭하기로 한다.Radiation Monitoring System (RMS) is a device that normally measures the radiation level at each land, sea and air location while being installed before / after the accident or moving around the accident area. There are measurement functions, GPS functions and real-time communication functions (these functions may be implemented in other physical devices). Fixed monitors are fixed installations in key locations in areas requiring monitoring of radiation levels. Mobile monitors are designed to be moved to a pre-set key point when a radiological emergency occurs, to be mounted on a vehicle or ship, and to be moved to a road or sea in a predetermined route, or to be mounted on a helicopter or an airplane and moved while flying. There is a form or a form that the person concerned carries directly to the back, such as a form that is carried in a predetermined or arbitrary path. The process of measuring the radiation level at the site of the accident zone will be referred to as 'exploration process', the movement path of various monitors as 'exploration path', and the radiation level information measured during the exploration process as 'exploration data'.
운영서버는 방사선비상 감시시스템을 운영하고 관리하는 기관(국가기관 또는 지자체기관, 여러 기관이 함께 관여하는 제2의 기관 등으로 법령 규정에 의해 정해질 수 있음, 예를 들면 합동방사선감시센터, 이하 '관리기관'이라 함)이 운영하는 서버이다.The operation server is an institution that operates and manages the radiological emergency monitoring system (a national agency or a local government agency, a second agency that is involved in various organizations, etc.) and can be determined by statutory provisions, for example, a joint radiation monitoring center, It is a server operated by 'administrative organization'.
이러한 감시시스템에 의하면, 평소에는 고정식 감시기에 의해 구역 내 특정 위치의 방사선 준위가 상시적으로 측정되어 운영서버로 전송된다. 그러다가 방사선비상시에는 각종 이동식 감시기를 탐사경로를 따라 가동시키면서 사고영역 여러 위치에서 실시간으로 방사선 준위를 측정하여 네트워크를 통해 운영서버로 전송하도록 되어 있다. 운영서버(운영서버도 물리적으로 분리된 복수의 장치일 수 있음)를 관리기관은 위치기반 실시간 방사선 준위를 종합하여 구역내 방사선분포정보를 도출하게 되는데, 예를 들면 방사선비상 중앙지휘본부와 같은 기관은 이 방사선분포정보를 기초로 사고에 대한 대응의 수준과 범위를 결정하게 된다.According to such a monitoring system, the radiation level at a specific position in the area is usually measured by a fixed monitor and transmitted to the operation server. Then, in case of radiation emergency, various mobile monitors are operated along the exploration path, and the radiation levels are measured in real time in various locations of the accident area and transmitted to the operation server through the network. The management server (operating server can be a plurality of physically separated devices) manages the location-based real-time radiation level to derive the radiation distribution information within the zone, for example, an institution such as the Central Emergency Headquarters Based on this radiation distribution information, the level and extent of response to the accident will be determined.
이러한 방사선분포정보 획득을 위한 감시시스템의 작동은 크게 ① 사고구역 현장의 방사선 준위를 측정하는 탐사단계 ② 각 감시기로부터 실시간 위치기반 방사선 준위를 수집하고 이를 종합하여 지도상에 방사선분포정보를 도출하는 상황파악단계 및 ③ 실시간 방사선분포정보를 기초로 최적의 사고확산 방지 및 주민보호조치 등을 결정하는 대응단계로 세분화된다.The operation of the monitoring system for obtaining the radiation distribution information is largely based on the following steps: ① An exploration stage for measuring the radiation level at the accident site; ② A situation in which real-time location-based radiation levels are collected from each monitor and synthesized to derive the radiation distribution information on the map. It is subdivided into grasping stage and countermeasure stage to determine optimal accident spread prevention and resident protection measures based on real-time radiation distribution information.
한편, 다른 기본적인 비상계획 시스템의 작동훈련과 마찬가지로, 유사시 방사선분포정보 획득을 위한 감시시스템도 평상시에 주기적 또는 비주기적으로 가상의 훈련을 할 필요성이 있다. 그런데 종래 감시시스템에 의하면 단순히 가상의 방사선비상이 발생한 시점에서 얼마나 빠르게 비상계획상의 감시기들이 계획상의 탐사경로를 통과하였는지 정도만 훈련할 수 있을 뿐, 가상 사고구역의 방사선 준위가 평소와 같기 때문에 훈련의 긴박감과 현실감이 없었다. 나아가 탐사단계에서 실시간 위치기반 방사선 준위가 평소값이기 때문에 후단의 상황파악단계 및 대응단계에 대한 훈련은 전단의 탐사단계와 연동없이 분리될 수밖에 없었다. 즉, 종래 감시시스템의 가상훈련은 유기적으로 이루어질 수가 없어서 훈련의 효율성이 그리 높지 않은 것이 현실이었다.On the other hand, as with the operation training of other basic emergency planning systems, the monitoring system for obtaining radiation distribution information in case of emergency also needs to perform virtual training on a regular basis or periodically. However, according to the conventional monitoring system, it is only possible to train how fast emergency planners passed the planned exploration path at the time of the virtual radiation emergency, and because the radiation level of the virtual accident zone is the same as usual, the sense of urgency of training And there was no realism. Furthermore, since the real-time location-based radiation level in the exploration phase is the usual value, the training on the situation detection phase and the response phase of the latter stage was inevitably separated without interlocking with the exploration phase of the front end. In other words, the virtual training of the conventional surveillance system was not able to be organically performed, and the efficiency of the training was not so high.
한편 종래기술에 의하면 일정지역의 방사선 피폭선량을 유무선으로 실시간 측정하여 비상사고로 인한 방사능오염여부를 확인하고 관리하는 기술이나, 평가된 결과물을 지리정보시스템(GIS)에 연결하여 방사성물질의 피해지역과 주민보호조치 대책 등 대응·대책을 수립할 수 있도록 하는 기술 등이 알려져 있다.(대한민국 공개특허 10-2003-0086646, 대한민국 공개특허 10-2008-0007821, 대한민국 공개특허 10-2014-0120979)On the other hand, according to the prior art, a technique for checking and managing radioactive contamination due to an emergency accident by measuring the radiation exposure dose of a certain area in real time with wired or wireless, or by connecting the evaluated result to the Geographic Information System (GIS) And techniques for establishing countermeasures and countermeasures such as measures to protect the population and resident protection are known. (Republic of Korea Patent Publication 10-2003-0086646, Republic of Korea Patent Publication 10-2008-0007821, Republic of Korea Patent Publication 10-2014-0120979)
그러나 이들에 의하면 각종 방사선 오염 감시시스템의 훈련을 어떻게 현실감 있게 하고, 감시시스템의 유효 작동을 담보할 것인지에 대한 체계적인 기술은 알려져 있지 않다.However, according to these, systematic techniques on how to make the training of various radiation pollution monitoring systems realistic and to ensure the effective operation of the monitoring system are not known.
본 발명은 실제 방사선비상 사고와 유사하게 방사선비상 감시시스템의 작동을 훈련할 수 있는 가상사고 기반 방사선비상 현장탐사 훈련방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a virtual accident-based radiation emergency field exploration training method that can train the operation of the radiation emergency monitoring system similar to the actual radiation emergency accident.
또한 본 발명은, 가상사고 기반 방사선비상 현장탐사 훈련 결과의 평가방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for evaluating a virtual accident-based radiation emergency site exploration training results.
전술한 목적을 달성하기 위한 본 발명은 방사선비상시 신속하게 사고지역의 방사선분포정보를 파악할 수 있도록 방사선 준위 분포 데이터 확보를 위한 복수의 방사선 감시기, 상기 감시기와 무선통신하는 운영서버를 포함하는 감시네트워크, 및 상기 감시기와 무선통신하는 훈련서버를 활용한 가상사고 기반 방사선비상 현장탐사 훈련방법으로서, (A) 상기 훈련서버가, 훈련관리자로부터 훈련 예정구역의 훈련 예정 시간대별 가상의 방사선준위를 설정한, 훈련 예정구역의 통합 실시간 위치별 방사선준위 가상데이터를 입력받아 저장하는 시나리오설정과정: (B) ① 훈련이 개시되기 전에 상기 훈련서버가 각각의 감시기에 설정된 시나리오 정보를 전송하는 단계를 포함하거나, ② 훈련이 개시되어 상기 복수의 방사선 감시기가, 사전에 확정된 액션플랜에 따라 탐사경로를 따라 이동하면서 실시간 위치를 상기 훈련서버로 전송하는 단계; 및 상기 훈련서버가, 시나리오에 설정된 소정의 실시간 위치에 대응되는 각 감시기에, 대응되는 가상데이텀을 전송하는 단계;를 포함하는 가상방사선준위탐사과정: (C) 상기 복수의 감시기가 각각의 실시간 위치기반 방사선준위 가상데이텀를 상기 운영서버로 전송하는 단계; 및 상기 운영서버가, 복수의 감시기로부터 전송받은 실시간 위치별 방사선준위 가상데이터를 통합한 실시간 사고지역 가상방사선분포정보를 획득하는 단계;를 포함하는 가상방사선분포정보획득과정:을 포함하는 가상사고 기반 방사선비상 현장탐사 훈련방법인 것을 특징으로 한다. The present invention for achieving the above object is a monitoring network comprising a plurality of radiation monitors for securing the radiation level distribution data, the operation server for wireless communication with the monitor so that the radiation distribution information of the accident area can be quickly identified during radiation emergency; And a virtual accident-based radiation emergency site exploration training method using a training server wirelessly communicating with the monitor, wherein (A) the training server sets a virtual radiation level for each scheduled training time of a training scheduled area from a training manager; Scenario setting process of receiving and storing integrated real-time radiation level virtual data of the training scheduled area: (B) ① Before the training is started, the training server includes transmitting the scenario information set to each monitor, or ② The training is started, and the plurality of radiation monitors are determined in advance. Transmitting a real-time location to the training server while moving along an exploration path according to the present invention; And transmitting, by the training server, a corresponding virtual datum to each monitor corresponding to a predetermined real time position set in the scenario, the virtual radiation level exploration process comprising : (C) each of the plurality of monitors at each real time position. Transmitting the based radiation level virtual datum to the operation server; Hypothetical accident based, including: a virtual radiation distribution information acquisition process including a; and wherein the production server, the method comprising: obtaining a real-time location-specific radiation level virtual data in real time to buy consolidation local virtual radiation distribution information received from the plurality of monitors It is characterized by a radiological emergency site exploration training method.
이상과 같은 본 발명의 가상사고 기반 방사선비상 현장탐사 훈련방법에 의하면, 방사선비상 훈련시에 시나리오에 따라 감시기에 실제 사고인 것처럼 높은 수준의 방사선 준위가 계측되므로 긴박감과 현실감 있게 훈련을 진행할 수 있게 된다.According to the virtual accident-based radiation emergency field exploration training method of the present invention as described above, since the radiation level is measured at a high level as if it is a real accident in the monitor during the radiological emergency training, the training can be conducted in a sense of urgency and reality. .
또한 본 발명에 의하면 다양한 시나리오에 따라 훈련을 수행할 수 있으므로 예측하기 어려운 방사선 비상에 대한 대응능력을 제고할 수 있게 된다.In addition, according to the present invention, the training can be performed according to various scenarios, thereby improving the ability to respond to an unpredictable radiation emergency.
또한 본 발명에 의하면 단순히 실감나는 계측정보 수집뿐만 아니라, 수집된 정보를 활용하여 방사선 비상의 상황파악과 대응방안 결정에 대한 실감나는 훈련이 가능하게 된다.In addition, according to the present invention, it is possible not only to collect realistic measurement information, but also to use the collected information to realize realistic training on the situation of the radiation emergency and the determination of the countermeasures.
도 1은 본 발명에 의한 훈련방법에 관여하는 객체들과 그들 사이의 관계를 보여주는 개념적 관계도.1 is a conceptual relationship diagram showing the objects involved in the training method according to the invention and the relationship between them.
도 2는 본 발명에 의한 훈련방법에 관여하는 객체들 사이의 정보이동 관계를 보여주는 개념적 흐름도.2 is a conceptual flowchart showing the information transfer relationship between objects involved in the training method according to the present invention.
도 3은 본 발명에 의한 훈련방법에서 설정된 시나리오 일예를 지도상에 표시한 것.Figure 3 shows an example of a scenario set in the training method according to the present invention on a map.
도 4는 본 발명에 의한 훈련방법에서 사고 예상 구역에 대한 감시기의 예정된 탐사경로의 예.Figure 4 is an example of the planned exploration path of the monitor for the accident prediction zone in the training method according to the present invention.
도 5는 도 3과 같은 시나리오와 도 4와 같은 탐사경로를 따라 훈련한 결과 탐사경로상에서 측정된 가상 방사선준위를 탐사경로상에 시각적으로 도시한 예.5 is an example of visually showing the virtual radiation level measured on the exploration path as a result of training according to the scenario shown in FIG. 3 and the exploration path as shown in FIG.
도 6는 도 5에 의해 얻어진 정보를 분석하고 통합하여 가상방사선분포정보를 지도상에 표시한 예.FIG. 6 is an example in which virtual radiation distribution information is displayed on a map by analyzing and integrating the information obtained by FIG. 5; FIG.
이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 첨부된 도면은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, the accompanying drawings are only examples for easily describing the content and scope of the technical idea of the present invention, and thus the technical scope of the present invention is not limited or changed. It will be apparent to those skilled in the art that various modifications and variations are possible within the scope of the present invention based on these examples.
전술하였듯이 본 발명은, 방사선비상시 신속하게 사고지역의 방사선분포정보를 파악할 수 있도록 방사선 준위 분포 데이터 확보를 위한 복수의 방사선 감시기, 상기 감시기와 무선통신하는 운영서버를 포함하는 감시네트워크, 및 상기 감시기와 무선통신하는 훈련서버를 활용한 가상사고 기반 방사선비상 현장탐사 훈련방법으로서, 시나리오설정과정, 가상방사선준위탐사과정가상방사선분포정보획득과정을 포함하고 있다. 도 1은 본 발명에 의한 훈련방법에 관여하는 객체들과 그들 사이의 관계를 보여주는 개념적 관계도를, 도 2에 본 발명에 의한 훈련방법에 관여되는 구성요소들과 이들간의 정보전달 관계를 개략적으로 도시하였다.As described above, the present invention includes a plurality of radiation monitors for securing radiation level distribution data, a surveillance network including an operation server for wireless communication with the monitors, so that the radiation distribution information of the accident area can be quickly identified during a radiation emergency. Virtual accident-based radiation emergency site training using the training server for wireless communication includes scenario setting process , virtual radiation level exploration process, and virtual radiation distribution information acquisition process . 1 is a conceptual relationship diagram showing the objects involved in the training method according to the present invention and the relationship between them, and FIG. 2 schematically shows the components involved in the training method according to the present invention and the information transmission relationship therebetween. Shown.
본 발명에서 '방사선 감시기' 또는 '감시기'란 기본적으로 방사선 준위 측정기능, GPS기능 및 실시간 통신기능을 가지며, 유사시에 사고지역의 곳곳의 위치에 사전/사후에 설치되거나 또는 사고지역을 예정된 경로(탐사경로)를 따라 이동하면서 육상, 해상 및 공중의 위치기반 실시간 방사선 준위를 측정하여 상기 운영서버로 전송하는 기기이다. '예정된'이란 '액션플랜에서 정해진'이란 의미이다. In the present invention, the 'radiation monitor' or 'monitoring' basically has a radiation level measurement function, a GPS function and a real-time communication function, and in case of emergency, it is installed in advance / post-location at various places in the accident area or a route scheduled for the accident area ( It is a device that measures the location-based real-time radiation level of land, sea and air while traveling along the exploration path and transmits it to the operation server. 'Scheduled' means 'scheduled in the action plan'.
본 발명에서 '운영서버'는 방사선비상 감시시스템을 관리하는 관리기관이 운영하는 서버로서, 복수의 감시기로부터의 위치기반 실시간 방사선 준위 데이터를 전송받아 이를 종합하여 구역내 방사선분포정보를 도출하는 역할을 한다.In the present invention, the 'operation server' is a server operated by a management agency managing a radiation emergency monitoring system, and receives location-based real-time radiation level data from a plurality of monitors, and aggregates them to derive radiation distribution information in a zone. do.
본 발명에서 상기 '훈련서버'는 훈련상황에서만 상기 감시네트워크와 연동하는 서버로서, 방사선분포정보 시나리오를 설정하고 이를 감시기로 전송하는 역할을 한다.In the present invention, the 'training server' is a server interworking with the monitoring network only in a training situation, and serves to set up a radiation distribution information scenario and transmit it to the monitor.
본 발명에서, 특정 시점에 각 감시기는 하나의 방사선준위 정보만 측정하거나 주고받는다. 따라서 특정 시점에 하나의 감시기가 측정하거나 주고받는 방사선준위 정보를 단수인 '데이텀'으로 표현하고, 이들 데이텀이 모인 정보를 복수인 '데이터'로 표현한다.In the present invention, each monitor at a specific point in time only transmits or receives one radiation level information. Therefore, the radiation level information measured or exchanged by one monitor at a specific time is expressed in singular 'datum', and the information gathered by these datums is expressed in plural 'data'.
방사선 사고는 무색무취인 방사선이 광범위하게 분포될 수 있다. 이 경우 실용적으로 가능한 많은 수의 감시기를 두더라도 광범위한 지역 전체를 실시간으로 커버하여 방사선준위를 측정하는 것은 불가능하다. 따라서 고정식 또는 고정식과 이동식 감시기로 사고지역을 이동하면서 오염도를 측정할 수밖에 없는 것이 현실이다. 이러한 현실을 반영하여 본 발명에서 '실시간'이란 실질적인 실시간일 수도 있지만, 소정의 시간적 범위 내의 시간이라는 의미일 수도 있다. 후자의 경우 예를 들면, 실시간 데이터란 측정시각이 10분 경과하지 않은 사고지역의 모든 방사선준위 데이터를 의미할 수도 있는 것이다.Radiation accidents can be widely distributed in colorless and odorless radiation. In this case, it is impossible to measure the radiation level by covering the entire area in real time even if there are as many monitors as practically possible. Therefore, the reality is that you have to measure the pollution while moving the accident area with a fixed or fixed and mobile monitor. Reflecting such a reality, in the present invention, 'real time' may be substantially real time, but may also mean time within a predetermined time range. In the latter case, for example, real-time data may refer to all radiation level data in the accident area less than 10 minutes old.
본 발명에서 시나리오설정과정은, 상기 훈련서버가, 훈련관리자로부터 훈련 예정구역의 훈련 예정 시간대별 가상의 방사선준위를 설정한, 훈련 예정구역의 통합 실시간 위치별 방사선준위 가상데이터를 입력받아 저장하는 과정이다. 시나리오 즉, 훈련 예정구역 각 위치별 훈련 예정시간의 각 시각별 가상의 방사선준위값으로 이루어지는 [위치-시각-가상방사선준위] 설정데이터를 입력받아 저장하는 과정이다. In the present invention, the scenario setting process is a process in which the training server receives the virtual radiation level virtual data by the integrated real-time location of the training scheduled zone, which sets the virtual radiation level for each training scheduled time zone of the training scheduled zone from the training manager. to be. In other words, a scenario is a process of receiving and storing [position-time-virtual radiation level] setting data consisting of virtual radiation level values for each time of training scheduled time for each location of training scheduled area.
시나리오 설정시에는 방사성물질 오염 수준별 확산영역 분포, 훈련구역 위치별-시각대별 사고 방사선준위(=설정 데이텀) 등을 구성하게 된다.In setting up the scenario, the distribution of diffusion area by radioactive contamination level and accident radiation level by time zone and training zone (= set datum) are composed.
시나리오는 훈련 대상구역의 지도상에 표시된 특정 시각의 방사선준위분포정보 형태인 것이 시인성에 좋을 것이다. 도 3에 이렇게 시나리오를 지도상에 등고선 형태의 그래픽으로 표시한 예를 도시하였다. 도면에서 녹색에서 적색으로 갈수록 방사선준위가 높은 것 즉 방사선 오염도가 심한 것인데, 예를 들면 녹색영역의 방사선준위가 100nSv(나노시버트)/h 이하, 적색영역이 1mSv/h 이상인 것으로 설정할 수 있을 것이다. 도면에 의하면 특정 시점에서 사고지역 각 위치별 방사선준위정보를 알 수 있다. 시나리오는 특정 시점을 고정하여 정할 수도 있지만, 방사선비상 사고의 추이, 풍속이나 풍향의 변화 등을 고려하여 경시적으로 방사선준위분포정보가 변해가는 것으로 정할 수도 있을 것이다. 예를 들면, 시나리오를 훈련 시작시각부터 30분 간격으로 다르게 설정함으로써 보다 현실감있는 훈련이 가능한 것이다. 그런데 시나리오를 하나로 하거나 경시적으로 복수개의 시나리오를 설정하여도 기본적인 훈련방법은 동일하므로, 본 발명에서는 하나의 시나리오를 설정한 것을 기준으로 설명한다.Scenarios may be good for visibility in the form of radiation level distribution information at specific times displayed on the map of the area to be trained. 3 illustrates an example of graphically displaying a scenario in the form of a contour line on a map. In the drawing from green to red, the radiation level is higher, that is, the radiation pollution is severe, for example, the radiation level of the green region may be set to 100nSv (nanosievert) / h or less, the red region is 1mSv / h or more. According to the drawing, the radiation level information for each location of the accident area can be known at a specific point in time. The scenario may be fixed at a specific point in time, but it may be determined that the radiation level distribution information changes over time in consideration of the trend of radiation emergency accidents, wind speed or wind direction change. For example, the scenario can be set differently every 30 minutes from the start of the training, making the training more realistic. However, even if one scenario or a plurality of scenarios are set over time, the basic training method is the same, and thus, the present invention will be described based on setting one scenario.
본 발명에서 상기 가상방사선준위탐사과정은, 시나리오에 따른 가상의 데이텀을 각 감시기로 보내는 과정으로, 두 방식 중 어느 하나를 선택할 수 있다. In the present invention, the virtual radiation level exploration process is a process of sending a virtual datum according to a scenario to each monitor, and may select any one of two methods.
① 첫 번째 방식('사전세팅방식')은, 훈련이 개시되기 전에 상기 훈련서버가 설정된 시나리오 정보를 각각의 감시기에 전송하여 세팅하는 것이다. 이 세팅은 오프라인으로도 가능할 것이다. 이런 방식을 택하면, 이동식 감시기인 경우 액션플랜에 따라 탐사경로를 따라 이동하면서 실시간 위치(현재의 위치와 시각)에 해당하는 시나리오 정보상의 방사선준위에 대한 정보(가상데이텀)가 추출된다. 고정식 또는 설치식인 경우에도 동일하게 실시간 가상데이텀이 추출된다. ① The first method ('pre-setting method') is that the training server transmits and sets the scenario information to each monitor before the training is started. This setting will be available offline. In this way, in the case of a mobile monitor, information (virtual datum) about the radiation level on the scenario information corresponding to the real-time position (current position and time) is extracted while moving along the exploration path according to the action plan. Even in the case of fixed or installed, the real-time virtual datum is extracted.
모든 감시기의 예정된 탐사경로의 예를 도 4에 도시하였다. 도면에서 상하로 지그재그로 이동하는 경로는 비행기에 탑재된 감시기의 탐사경로를 나타낸다.Examples of scheduled exploration paths for all monitors are shown in FIG. 4. In the figure, the path moving up and down zigzag indicates the exploration path of the monitor mounted on the plane.
② 아래의 두 번째 방식('실시간방식')은, 감시기에 상기 시나리오 정보를 저장하고 제어하는 기능이 없는 경우에 적용될 수 있다. ② The second method ('real time method') can be applied when the monitor does not have a function of storing and controlling the scenario information.
먼저, 훈련이 개시되어 상기 복수의 방사선 감시기가, 이동식인 경우 사전에 확정된 액션플랜에 따라 탐사경로를 따라 이동하면서 실시간 위치(현재의 위치와 시각)를 직접 또는 상기 운영서버를 통해 상기 훈련서버로 전송한다. 고정식 또는 설치식 감시기인 경우에는 위치가 고정되어 있으므로 한 번의 위치정보 전송으로 충분하다. 이어서 각 감시기의 실시간 위치를 전송받은 상기 훈련서버는, 시나리오에 설정된 소정의 실시간 위치(즉, 현재의 위치와 시각)에 대응되는 각 감시기 즉 시나리오상의 시간에 시나리오상의 위치에 있는 각 감시기에, 시나리오상에 설정된 가상데이텀을 전송한다. First, the training is initiated and the plurality of radiation monitors are moved along the exploration path according to a predetermined action plan in the case of a mobile, and the real-time position (current position and time) is directly or through the training server. To send. In the case of fixed or installed monitors, the location is fixed, so one location information transmission is sufficient. Subsequently, the training server receiving the real-time position of each monitor, each scenario corresponding to a predetermined real-time position (that is, the current position and time) set in the scenario, that is, each monitor in the scenario position at the time in the scenario, the scenario Send the virtual datum set on the screen.
가상방사선준위탐사과정을 거치면, 훈련중인 각 감시기에는 실시간으로 시나리오상의 위치기반 가상데이텀이 표시되도록 하는 것이 좋다. 이때 실측데이텀(=실제 측정된 방사선준위 정보)과 구분하기 위해 가상데이텀에는 소정의 표시자(태그)가 결합될 수 있을 것이다. 감시기에 표시된 가상데이텀에 따라 현장관계자는 그에 적절한 현장 대응방안을 훈련한다.After the virtual radiation level exploration process, it is good practice to display each location's location-based virtual datum in real time on each monitor under training. In this case, a predetermined indicator (tag) may be combined with the virtual datum to distinguish it from the measured datum (= actual measured radiation level information). Based on the virtual datums displayed on the monitor, site personnel will train appropriate site response.
본 발명에서 상기 가상방사선분포정보획득과정은, 상기 운영서버가 각 감시기로부터 실시간으로 가상데이텀을 수집하여 이를 통합하여 가상방사선분포정보를 얻는 과정이다. 이 과정의 흐름은 실제 방사선분포정보를 획득하는 과정과 동일하게 이루어지며, 역시 두 단계로 구분될 수 있다. In the present invention, the virtual radiation distribution information acquisition process is a process in which the operational server collects virtual datums from each monitor in real time and integrates them to obtain virtual radiation distribution information. The flow of this process is the same as the process of acquiring the actual radiation distribution information, can also be divided into two steps.
먼저, 복수의 감시기 각각이 상기 훈련서버로부터 전송받은 실시간 위치기반 방사선준위 가상데이텀을 운영서버로 전송한다. 이때 가상데이텀은 위의 '사전세팅방식'에 의한 경우에는 감시기가 현재 위치한 그 곳에 대응되어 추출된 가상데이텀이며, 위의 '실시간방식'에 의한 경우에는 훈련서버로부터 실시간으로 전송받은 가상데이텀이다. 가상데이텀이 운영서버로 전송될 때 실측데이텀도 함께 전송될 수 있으며, 실측데이텀과 구분하기 위해 가상데이텀에는 소정의 표시자(태그)가 결합될 수 있을 것이다. 또한 현실감을 강조하기 위해, 훈련서버로부터 전송받은 가상데이텀에 실측데이텀을 보정하여(예를 들면, 가감하여) 운영서버로 전송할 수도 있을 것이다. First, each of the plurality of monitors transmits the real-time location-based radiation level virtual datum received from the training server to the operation server. In this case, the virtual datum is a virtual datum extracted in correspondence with the place where the monitor is currently located in the case of the 'pre-setting method' and the virtual datum received in real time from the training server in the case of the 'real time method'. When the virtual datum is transmitted to the operation server, the measured datum may be transmitted together, and a predetermined indicator (tag) may be combined with the virtual datum to distinguish it from the measured datum. In addition, in order to emphasize realism, the measured datum may be corrected (for example, added or subtracted) to the virtual datum received from the training server and transmitted to the operation server.
이어서 운영서버는 복수의 감시기로부터 전송받은 실시간 위치별 방사선준위 가상데이터를 취합하여 저장하고 이를 탐사경로와 탐사경로상에서 측정된 가상 방사선준위를 매칭하는 등의 방법으로 통합한다. 도 5에 도 3과 같은 시나리오와 도 4와 같은 탐사경로를 따라 훈련한 결과 탐사경로상에서 측정된 가상 방사선준위를 탐사경로상에 시각적으로 도시하였다. 또한 운영서버는 이러한 탐사결과를 통합적으로 분석하여 실시간 사고지역 가상방사선분포정보를 도출한다. 이때 가상방사선분포정보는 훈련 대상구역의 지도상에 표시된 특정 시각의 방사선준위분포정보 형태로 하는 것이 바람직하다. 도 6에 도 5에 의해 얻어진 정보를 분석하고 통합하여 가상방사선분포정보를 지도상에 등고선 형태의 그래픽으로 표시한 예를 도시하였다.Subsequently, the operation server collects and stores the real-time location-specific virtual data of the radiation levels received from the plurality of monitors and integrates them by matching the virtual radiation levels measured on the exploration path and the exploration path. In FIG. 5, the virtual radiation levels measured on the exploration path are visually shown on the exploration path as a result of training along the scenario as shown in FIG. 3 and the exploration path as shown in FIG. 4. In addition, the operation server analyzes these survey results in an integrated manner to derive the virtual radiation distribution information in real time. At this time, the virtual radiation distribution information is preferably in the form of radiation level distribution information of a specific time displayed on the map of the training target area. 6 shows an example in which the virtual radiation distribution information is displayed graphically in a contour form on a map by analyzing and integrating the information obtained by FIG. 5.
한편, 방사선 비상과 같은 비상상황에 무선네트워크의 부하가 많이 발생할 수 있다. 따라서 본 발명에서 각 정보(데이텀/데이터)는 적절한 소정의 주기로 전송되도록 하는 것도 좋다.On the other hand, a load of the wireless network may occur in an emergency situation such as a radiation emergency. Therefore, in the present invention, each information (datum / data) may be transmitted at an appropriate predetermined period.
본 발명의 가상사고 기반 방사선비상 현장탐사 훈련방법에 관여되는 구성요소들과 이들간의 정보전달 관계를 개략적으로 도시한 도 2에서는 운영서버와 훈련서버가 분리되어 있으면서 상호간 통신하는 형태인 것으로 예시되어 있다. 그러나 본 발명에서 운영서버나 훈련서버는 기능적 개념이기 때문에 양자가 물리적으로 하나의 서버에 탑재될 수도 있다.FIG. 2 schematically illustrates the components involved in the virtual accident-based radiation emergency site exploration training method of the present invention and the information transmission relationship therebetween, in which an operation server and a training server are separated and communicated with each other. . However, in the present invention, since the operation server or the training server is a functional concept, both may be physically mounted on one server.
한편, 본 발명은, 단순히 가상사고 기반 방사선비상 현장탐사 훈련방법에만 한정되는 것이 아니라, 훈련방법에 따라 훈련한 결과의 평가를 할 수 있는 평가방법도 제공한다.On the other hand, the present invention is not only limited to the virtual accident-based radiation emergency site exploration training method, but also provides an evaluation method for evaluating the training results according to the training method.
즉, 전술한 시나리오설정과정, 가상방사선준위탐사과정 및 가상방사선분포정보획득과정 이후에, 다음과 같은 훈련평가과정을 추가할 수 있다. 훈련평가과정은, 상기 훈련서버에 저장된 상기 과정(A)에서의 시나리오상의 실시간 위치별 방사선준위 가상데이터(즉, 훈련구역의 "위치-시각-가상방사선준위"에 대한 설정데이터)와, 상기 운영서버가 통합한 상기 과정(C)에서의 탐사측정된 실시간 위치별 방사선준위 가상데이터(즉, 탐사데이터)를 상호 비교하여 훈련결과를 평가하는 것이다.That is, after the above scenario setting process, virtual radiation level exploration process and virtual radiation distribution information acquisition process, the following training evaluation process may be added. The training evaluation process includes real-time location-specific virtual radiation level virtual data (i.e., setting data for "location-visual-virtual radiation level" of a training zone) in the scenario stored in the training server (A), and the operation. In this process (C) integrated by the server, the training results are evaluated by comparing the measured and measured real-time location-specific radiation level virtual data (ie, exploration data) with each other.
예를 들면, 도 3과 같은 가상방사선분포 시나리오를 기초로 훈련을 수행하고, 그 결과 획득된 결과가 도 3과 도 5와 같은 탐사방사선분포정보라 할 때, 도 3과 도 5가 도 3과 얼마나 유사한가를 판단함으로써 훈련이 정교하게 이루어졌는지 여부를 평가할 수 있는 것이다.For example, when training is performed based on a virtual radiation distribution scenario as shown in FIG. 3, and the result obtained is exploration radiation distribution information as shown in FIGS. 3 and 5, FIGS. 3 and 5 are shown in FIG. 3. By judging how similar they are, one can assess whether the training was elaborate.
이상의 훈련방법의 운영과정을 관계자 중심으로 다시 한번 설명한다.The operation process of the above training method will be explained once again by the personnel.
1) 훈련관리자가 훈련 전에 가상 사고현장에 사고시각대별 가상의 사고영역 및 영역별 방사선 오염정도(방사선준위)를 설정한 사고 시나리오 정보를 설계하여 훈련서버에 저장한다.1) Before training, the training manager designs the accident scenario information that sets the virtual accident area by accident time zone and the radiation contamination level (radiation level) by area at the virtual accident site and stores it in the training server.
2) 훈련과정에서 비상대응 감시기를 작동하면 감시기는 자동으로 훈련서버와 통신하여 사고 시나리오 정보를 전송하여 세팅한다(오프라인으로 세팅 가능).2) If the emergency response monitor is operated during the training, the monitor automatically communicates with the training server to transmit and set the accident scenario information (can be set offline).
3) 감시기가 실제 계측을 수행할 때마다 감시기의 위치정보(고정된 설치위치 또는 GPS를 이용한 위치정보 수집)에 따라 사고 시나리오에서의 가상데이텀을 자동 산출한다. 이때 실측데이텀과 가상데이텀을 합하여 가상데이텀(=훈련용 계측값)이 되도록 할 수도 있다. 감시기에는 실제 측정된 실측데이텀과 훈련용 가상데이텀이 모두 표시될 수 있다.3) Whenever the monitor performs the actual measurement, the virtual datum in the accident scenario is automatically calculated according to the monitor's location information (fixed installation location or GPS location information collection). At this time, the measured datum and the virtual datum may be combined to be a virtual datum (= training measured value). The monitor can display both the actual measured datum and the training virtual datum.
4) 각각의 감시기의 위치정보, 시간정보 및 가상데이텀이 원격의 중앙지휘본부에 있는 운영서버로 자동으로 전송된다.4) Location information, time information and virtual datum of each monitor are automatically transmitted to the operation server in the remote central command center.
5) 사고현장에서 현장대응담당자는 감시기의 가상데이텀을 모니터링하며, 비상시의 현장 대응 업무를 훈련한다.5) At the accident site, the site response person monitors the virtual datum of the monitor and trains the site response in case of emergency.
6) 원격의 중앙지휘본부 운영서버는 현장으로부터 수집된 가상데이텀을 통합 실시간 모니터링하며, 비상시 센터 대응업무 훈련 및 데이터 분석을 통한 주민보호조치 의사 결정을 훈련한다.6) The remote central command center operation server monitors the virtual datum collected from the site in real time and trains the decision to protect the citizens through emergency response center training and data analysis.
7) 가상의 사고정보의 실시간 공유 및 의사 교환을 통해 중앙지휘본부와 사고현장의 현장대응담당자간의 대응 업무 협력을 훈련한다.7) Train cooperative work cooperation between the central command headquarters and the field response staff at the accident site by sharing and communicating virtual accident information in real time.
8) 훈련 후에는 훈련관리자가 사고대응 절차, 소요시간, 사고 시나리오와 훈련분석결과 비교 등을 통해 훈련평가를 수행한다.8) After the training, the training manager performs the training evaluation through the incident response procedure, time required, comparison of the accident scenario and the training analysis results.
이상과 같은 본 발명의 가상사고 기반 방사선비상 현장탐사 훈련방법에 의하면, 실제 방사선 비상사고와 유사한 환경에서 사고현장 및 관제센터의 비상대응을 효과적으로 훈련하기 위해 하드웨어-인-더-루프(Hardware-in-the-loop) 방식으로 가상의 방사성물질 유출사고 시나리오에 대하여 실제 비상대응장비 및 실제 운영환경을 활용하여 사고현장과 중앙관제센터에서의 방사선비상 대응훈련을 운영/평가할 수 있게 된다.According to the virtual accident-based radiation emergency field exploration training method of the present invention as described above, hardware-in-the-loop (Hardware-in) to effectively train the emergency response of the accident site and control center in an environment similar to the actual radiation emergency accident It is possible to operate / evaluate the radiological emergency response training at the accident site and the central control center by using the actual emergency response equipment and the actual operating environment in the scenario of a virtual radioactive spill accident.
또한 본 발명에 의하면, 방사선비상 훈련시에 다양한 사고상황 시나리오에 따라 실제와 유사한 환경에서 예상 사고구역의 방사선분포정보를 얻는 훈련을 할 수 있게 됨으로써 방사선 비상에 대한 대응능력을 제고할 수 있게 된다.In addition, according to the present invention, it is possible to improve the ability to respond to radiation emergency by training to obtain the radiation distribution information of the expected accident zone in a similar environment to the actual situation according to various accident situation scenarios during the radiological emergency training.

Claims (5)

  1. 방사선비상시 신속하게 사고지역의 방사선분포정보를 파악할 수 있도록 방사선 준위 분포 데이터 확보를 위한 복수의 방사선 감시기, 상기 감시기와 무선통신하는 운영서버를 포함하는 감시네트워크, 및 상기 감시기와 무선통신하는 훈련서버를 활용한 가상사고 기반 방사선비상 현장탐사 훈련방법으로서,In the event of radiation emergency, a plurality of radiation monitors for securing radiation level distribution data so as to quickly grasp the radiation distribution information of the accident area, a monitoring network including an operation server wirelessly communicating with the monitor, and a training server wirelessly communicating with the monitor As a virtual accident-based radiation emergency site exploration training method,
    (A) 상기 훈련서버가, 훈련관리자로부터 훈련 예정구역의 훈련 예정 시간대별 가상의 방사선준위를 설정한, 훈련 예정구역의 통합 실시간 위치별 방사선준위 가상데이터인 시나리오정보를 입력받아 저장하는 시나리오설정과정:(A) Scenario setting process for the training server to receive and store the scenario information, which is the virtual real-time location-specific virtual radiation level data of the training scheduled zone, the virtual radiation level for each scheduled training time zone of the training scheduled zone from the training manager :
    (B) ① 훈련이 개시되기 전에 상기 훈련서버가 각각의 감시기에 설정된 시나리오 정보를 전송하는 단계를 포함하거나,(B) ① before the start of the training includes the step of transmitting the scenario information set in each of the monitoring server, or
    ② 훈련이 개시되어 상기 복수의 방사선 감시기가, 사전에 확정된 액션플랜에 따라 탐사경로를 따라 이동하면서 실시간 위치를 상기 훈련서버로 전송하는 단계; 및 상기 훈련서버가, 시나리오에 설정된 소정의 실시간 위치에 대응되는 각 감시기에, 대응되는 가상데이텀을 전송하는 단계;를 포함하는 가상방사선준위탐사과정:(2) training is started, and the plurality of radiation monitors transmit a real time position to the training server while moving along an exploration path according to a predetermined action plan; And transmitting, by the training server, a corresponding virtual datum to each monitor corresponding to a predetermined real-time location set in a scenario, the virtual radiation level exploration process comprising :
    (C) 상기 복수의 감시기가 각각의 실시간 위치기반 방사선준위 가상데이텀을 상기 운영서버로 전송하는 단계; 및 (C) the plurality of monitors transmitting each real-time location-based radiation level virtual datum to the operating server; And
    상기 운영서버가, 복수의 감시기로부터 전송받은 실시간 위치별 방사선준위 가상데이터를 통합한 실시간 사고지역 가상방사선분포정보를 획득하는 단계;를 포함하는 가상방사선분포정보획득과정:The operation server, the method comprising: obtaining a real-time virtual radiation incident area distribution information integrating real-time location-specific radiation level virtual data received from the plurality of monitors; virtual radiation distribution information acquisition process, comprising:
    을 포함하는 것을 특징으로 하는 가상사고 기반 방사선비상 현장탐사 훈련방법.Virtual accident-based radiation emergency site exploration training method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 과정(A)와 과정(C)에서의 실시간 위치별 방사선준위 가상데이터는, 훈련 대상구역의 지도상에 표시된 등고선 형태의 그래픽 형태인 것을 특징으로 하는 가상사고 기반 방사선비상 현장탐사 훈련방법.The real-time location-specific virtual radiation level virtual data in the process (A) and (C) is a virtual accident-based radiation emergency field exploration training method, characterized in that the graphical form of the contour displayed on the map of the training target area.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 과정(C)에서, In the process (C),
    상기 방사선준위 가상데이텀은 훈련서버로부터 전송받은 가상데이텀에 실측데이텀을 보정한 것을 특징으로 하는 가상사고 기반 방사선비상 현장탐사 훈련방법.The radiation level virtual datum is a virtual accident-based radiation emergency field exploration training method characterized in that the correction of the actual datum to the virtual datum received from the training server.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 운영서버와 훈련서버는 물리적으로 일체형이거나, 상호통신 가능한 분리형인 것을 특징으로 하는 가상사고 기반 방사선비상 현장탐사 훈련방법.The operational server and training server is a virtual accident-based radiation emergency site exploration training method, characterized in that the physically integrated or separate communication capable.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    (D) 상기 훈련서버에 저장된 실시간 위치별 방사선준위 가상데이터와, 상기 운영서버가 통합한 실시간 위치별 방사선준위 탐사데이터를 상호 비교하여 훈련결과를 평가하는 훈련평가과정:(D) Training evaluation process for evaluating the training results by comparing the real-time location-specific radiation level virtual data stored in the training server and the real-time location-specific radiation level exploration data integrated by the operation server:
    을 추가로 가지는 것을 특징으로 하는 가상사고 기반 방사선비상 현장탐사 훈련방법.Virtual accident-based radiation emergency site exploration training method characterized in that it further has a.
PCT/KR2017/004168 2017-01-13 2017-04-19 Virtual accident-based radiation emergency site exploration training method WO2018131755A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017551583A JP2019507893A (en) 2017-01-13 2017-04-19 On-site exploration training method of virtual accident base radiation emergency
CN201780001024.0A CN108701338A (en) 2017-01-13 2017-04-19 The emergent in-situ measurement training method of radiation based on virtual accident
RU2017133295A RU2669871C1 (en) 2017-01-13 2017-04-19 Method of training to the determination of the area of a radiation emergency situation on the basis of a modeled accident

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170006019A KR101713253B1 (en) 2017-01-13 2017-01-13 Method for Training Radiation Emergency Field Exploration Based on Postulated Accident
KR10-2017-0006019 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131755A1 true WO2018131755A1 (en) 2018-07-19

Family

ID=58402614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004168 WO2018131755A1 (en) 2017-01-13 2017-04-19 Virtual accident-based radiation emergency site exploration training method

Country Status (5)

Country Link
JP (1) JP2019507893A (en)
KR (1) KR101713253B1 (en)
CN (1) CN108701338A (en)
RU (1) RU2669871C1 (en)
WO (1) WO2018131755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055804A1 (en) * 2021-09-29 2023-04-06 Lawrence Livermore National Security, Llc Scenario development for an incident exercise

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241606B (en) * 2018-08-30 2023-04-25 中广核核电运营有限公司 Emergency exercise scenario design method and system
CN110873889B (en) * 2019-11-19 2021-09-24 中国人民解放军海军工程大学 Penetrating radiation emergency detection simulation system and method
KR102511206B1 (en) 2021-03-02 2023-03-20 주식회사 니어네트웍스 Radiation safety education system based on mixed reality
CN113724555A (en) * 2021-11-03 2021-11-30 四川新先达测控技术有限公司 Simulation system is searched to radiation source
CN114325795A (en) * 2021-12-31 2022-04-12 天津大学 Urban measuring point distribution and measuring value acquisition method in harmful radiation field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063068A (en) * 2002-01-22 2003-07-28 미츠비시 쥬고교 가부시키가이샤 Nuclear emergency countermeasure system and nuclear emergency countermeasure training system
KR20080007821A (en) * 2006-07-18 2008-01-23 한국원자력안전기술원 Care : computerized technical advisory system for a radiological emergency
KR20130122853A (en) * 2012-05-01 2013-11-11 한국수력원자력 주식회사 System and method for simulating realtime severe accident phenomena for training simulator of the nuclear power plant
KR20160035361A (en) * 2014-09-23 2016-03-31 전자부품연구원 Nuclear power plant accident integrated action system
JP2016205864A (en) * 2015-04-16 2016-12-08 株式会社東芝 Nuclear power plant training system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163077A (en) * 1984-02-03 1985-08-24 三菱重工業株式会社 Exposed radiation dose simulator
ES2007869A6 (en) * 1988-05-19 1989-07-01 Tecnatom S A Radiation detection simulator equipment. (Machine-translation by Google Translate, not legally binding)
RU737U1 (en) * 1993-03-02 1995-08-16 Саратовский государственный университет им. Н.Г. Чернышевского Training device for the skills of radiation, chemical, biological intelligence
JP2001208848A (en) * 2000-01-27 2001-08-03 Aloka Co Ltd Radiation mesuring system and method
JP2002228753A (en) * 2001-01-30 2002-08-14 Nec Aerospace Syst Ltd Radioactive material diffusion estimating system
KR20030086646A (en) 2002-05-06 2003-11-12 케이엔디티앤아이 주식회사 Total management system of radiation exposure, and device for measuring and recording radiation exposed dose which is provided for establishing the total management system
JP2004295729A (en) * 2003-03-28 2004-10-21 Toshiba Corp Disaster prevention system
JP2008530561A (en) * 2005-02-10 2008-08-07 ブッシュバーグ,ジェロルド,ティー Dynamic emergency radiation monitor
US8794973B2 (en) * 2008-04-17 2014-08-05 Radiation Safety And Control Services, Inc. Contamination detection simulation systems and methods
RU2441215C1 (en) * 2010-06-23 2012-01-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургская государственная педиатрическая медицинская академия" Министерства здравоохранения и социального развития Российской Федерации Method of determining radioactive contamination of water bodies
RU2497151C1 (en) * 2012-05-17 2013-10-27 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" Method of determining environmental contamination during accidental emissions at nuclear power stations
US9836993B2 (en) * 2012-12-17 2017-12-05 Lawrence Livermore National Security, Llc Realistic training scenario simulations and simulation techniques
KR101608875B1 (en) 2013-04-03 2016-04-04 한전케이디엔주식회사 Data concentrator unit and automatic meter reading system of providing radiation information and method using the same
WO2015057264A1 (en) * 2013-10-16 2015-04-23 Passport Systems, Inc. Injection of simulated sources in a system of networked sensors
CN104573032B (en) * 2015-01-14 2018-07-10 清华大学 For the emergent simulated maneuver all-in-one machine of nuclear emergency disposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063068A (en) * 2002-01-22 2003-07-28 미츠비시 쥬고교 가부시키가이샤 Nuclear emergency countermeasure system and nuclear emergency countermeasure training system
KR20080007821A (en) * 2006-07-18 2008-01-23 한국원자력안전기술원 Care : computerized technical advisory system for a radiological emergency
KR20130122853A (en) * 2012-05-01 2013-11-11 한국수력원자력 주식회사 System and method for simulating realtime severe accident phenomena for training simulator of the nuclear power plant
KR20160035361A (en) * 2014-09-23 2016-03-31 전자부품연구원 Nuclear power plant accident integrated action system
JP2016205864A (en) * 2015-04-16 2016-12-08 株式会社東芝 Nuclear power plant training system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, ET AL.: "Georgaphical information system for nuclear desaster prevention", 2017 FALL CONFERENCE OF GEORGAPHIC INFORMATION SYSTEM ASSOCIATION OF KOREA, 2007 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055804A1 (en) * 2021-09-29 2023-04-06 Lawrence Livermore National Security, Llc Scenario development for an incident exercise

Also Published As

Publication number Publication date
RU2669871C1 (en) 2018-10-16
CN108701338A (en) 2018-10-23
KR101713253B1 (en) 2017-03-09
JP2019507893A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018131755A1 (en) Virtual accident-based radiation emergency site exploration training method
CN112530119B (en) Forest fire emergency drilling evaluation and analysis system and method and computer equipment
CN205940615U (en) Wisdom city monitored control system
AU2013201646B2 (en) Emergency services system and method
KR101675733B1 (en) Nuclear power plant accident integrated action system
CN102117528B (en) Dynamic feedback type tunnel fire intelligent evacuating and rescuing system based on digitizing technique
CN106022610A (en) Typhoon prevention and resistance monitoring emergency method for electric power system
WO2012047072A1 (en) Method and system for safely managing gas station
CN105719011A (en) Escape path planning method and system based on mobile terminal
CN108828399A (en) A kind of remote auto lookup power transmission line failure monitoring system
CN207301751U (en) The engineering machinery vehicle operation monitoring system of power grid wisdom building site control platform
CN105976116A (en) IoT based fire safety dynamic evaluation method and system
CN207946855U (en) A kind of piping lane cruising inspection system
CN109858826A (en) A kind of gas operation intelligent and safe managing and control system and method
CN109146331A (en) A kind of contaminated site repair intelligence control platform based on technology of Internet of things
CN107316151A (en) A kind of people's air defense information monitoring management system based on big data
CN108280895A (en) A kind of explosion-proof crusing robot of petrochemical industry and explosion protection system
CN115664006B (en) Intelligent management and control integrated platform for incremental power distribution network
CN210051889U (en) Position monitoring system for chemical plant
WO2017191969A1 (en) Method for operating real-time management system for protection of residents using mobile phone location information in radiation disaster
CN108711265A (en) Mudstone flow monitoring is taken refuge alarm system and method
CN113391605A (en) Automatic mining method based on digital mining technology
CN208770714U (en) Sighting device for rotor wing unmanned aerial vehicle fire extinguisher bomb system
CN102361314A (en) Safety construction method of signal engineering of railway business line
JP2001331216A (en) Job site task supporting system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017133295

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017551583

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17891550

Country of ref document: EP

Kind code of ref document: A1