WO2018131637A1 - 無線通信システム、アクセスポイント、端末、通信方法 - Google Patents

無線通信システム、アクセスポイント、端末、通信方法 Download PDF

Info

Publication number
WO2018131637A1
WO2018131637A1 PCT/JP2018/000446 JP2018000446W WO2018131637A1 WO 2018131637 A1 WO2018131637 A1 WO 2018131637A1 JP 2018000446 W JP2018000446 W JP 2018000446W WO 2018131637 A1 WO2018131637 A1 WO 2018131637A1
Authority
WO
WIPO (PCT)
Prior art keywords
obss
bss
sta
nav
signaling
Prior art date
Application number
PCT/JP2018/000446
Other languages
English (en)
French (fr)
Inventor
レオナルド ラナンテ
勇平 長尾
博 尾知
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018561407A priority Critical patent/JP6677322B2/ja
Priority to EP18738830.1A priority patent/EP3554173B1/en
Priority to MYPI2019003971A priority patent/MY193925A/en
Priority to CN201880006626.XA priority patent/CN110178436B/zh
Priority to EP21211177.7A priority patent/EP3979756A1/en
Publication of WO2018131637A1 publication Critical patent/WO2018131637A1/ja
Priority to US16/507,673 priority patent/US10986664B2/en
Priority to US17/216,831 priority patent/US11812466B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/02Hybrid access techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0264Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by selectively disabling software applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless communication system, an access point, a terminal, and a communication method.
  • IEEE 802.11ax uses new modulation / demodulation methods (1024QAM (Quadrature Amplitude Modulation)), uplink MU-MIMO (Multi-User Multi-Input Multi-Output) support, OFDMA (Orthogonal frequency-division multiple access ) Is expected to be introduced.
  • OBSS Basic Service Set
  • OBSS problems frequently occur. Also, in the Dense deployment environment, both the terminal and the access point receive interference from the OBSS and the throughput is greatly reduced.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system in which an OBSS problem has occurred.
  • BSS1 and BSS2 use the same frequency with overlapping areas. Therefore, BSS2 becomes OBSS when viewed from BSS1, and BSS1 becomes OBSS when viewed from BSS2.
  • the nodes belonging to BSS1 include access point AP1 forming BSS1 and terminals STA1-1 and 1-2 associated with access point AP1.
  • the terminal STA1-1 is located in an area where BSS1 and BSS2 overlap. Therefore, the communication between the access point AP1 and the terminal STA1-1 receives interference from the BSS2, so that the throughput of the access point AP1 and the terminal STA1-1 decreases.
  • Nodes belonging to BSS2 include access point AP2 forming BSS2 and terminals STA2-1 and 2-2 associated with access point AP2.
  • the terminal STA2-1 is located in an area where BSS1 and BSS2 overlap. Therefore, since communication between the access point AP2 and the terminal STA2-1 receives interference from the BSS1, the throughput of the access point AP2 and the terminal STA2-1 decreases.
  • the BSS1 is not limited to the two terminals STA1-1 and 1-2, but it is sufficient that at least one terminal belongs.
  • the terminal belonging to BSS1 is referred to as terminal STA1 if it is not specified which terminal.
  • the BSS2 is not limited to the two terminals STA2-1 and 2-2 belonging, and it is sufficient that at least one terminal belongs.
  • the terminal belonging to BSS2 is referred to as terminal STA2 if it is not specified which terminal.
  • terminal STA1 or STA2 when it is not specified which terminal STA1 or STA2, it is called a terminal STA, and when it is not specified which access point AP1 or AP2, it is called an access point AP.
  • SR Spatial Reuse
  • OBSS_PD Power Detect
  • NAV Network Allocation ⁇ ⁇ Vectors
  • OBSS_PD-based SR First, OBSS_PD-based SR will be described.
  • the access point AP and terminal STA dynamically adjust the transmission power (TXPWR) and CCA (Clear Channel Assessment) sensitivity level to avoid interference between BSS and OBSS.
  • TXPWR transmission power
  • CCA Carrier Channel Assessment
  • This function contributes to the solution of the OBSS problem.
  • the specific algorithm for determining TXPWR and CCA sensitivity levels is implementation dependent.
  • a terminal STA receives a radio frame (for example, a PPDU (Physical Layer Convergence Protocol (PLCP) Protocol Data Unit) frame) received from a BSS to which the terminal STA has received a channel (A mechanism is introduced for determining whether the frame is an Intra-BSS frame) or a radio frame (Inter-BSS frame) received from the OBSS. This determination is performed, for example, by confirming the BSS color bit and MAC (Media Access Control) header of the received radio frame (see, for example, Non-Patent Document 1). For example, in the example of FIG.
  • the terminal STA1-1 belonging to the BSS1 determines that the radio frame received from the access point AP1 or the terminal STA1-2 belonging to the same BSS1 is an intra-BSS frame, and the BSS2 serving as the OBSS
  • the radio frame received from the access point AP2 to which the terminal belongs or the terminals STA2-1 and STA2-2 is determined as an Inter-BSS frame.
  • IEEE 802.11ax the virtual carrier sense function used in IEEE 802.11 is expanded.
  • Conventional NAV the existing NAV used in the virtual carrier sense of DCF (Distributed Coordination Function) communication is referred to as Conventional NAV.
  • Conventional NAV sets a transmission prohibition period in the terminal STA by signaling.
  • the terminal STA determines that the medium being used is BUSY (virtual carrier sense) without performing physical carrier sense during the period of Conventional NAV> 0, and does not transmit a radio frame. Therefore, ConventionalConNAV contributes to power saving and communication efficiency improvement of terminal STA (to cope with the so-called hidden terminal problem).
  • IEEE 802.11ax in addition to Conventional NAV, new Two NAVs called Intra-BSS NAV and Basic NAV are defined (for example, see Non-Patent Document 1).
  • the Intra-BSS NAV is updated based on the NAV value included in the received Intra-BSS frame.
  • Basic NAV could not determine the received radio frame as an Intra-BSS frame when the reception level of the received radio frame exceeded the threshold value OBSS_PD and the received radio frame was determined to be an Inter-BSS frame In this case, it is updated based on the NAV value included in the received radio frame.
  • OBSS_PD is a threshold value that changes according to the transmission power TXPWR (see, for example, Non-Patent Document 2).
  • IEEE ax802.11ax compatible terminal STA determines that the medium is BUSY and transmits a radio frame without performing physical carrier sense during Intra-BSS NAV> 0 or Basic NAV> 0. No (virtual carrier sense).
  • the IEEE-802.11ax compatible terminal STA does not consider the medium being used as BUSY when the reception level of the Inter-BSS frame received from OBSS is less than or equal to the threshold OBSS_PD.
  • Intra-BSS communication can be continued within the BSS to which the user belongs, and throughput degradation can be suppressed in the OBSS environment.
  • the setting of OBSS_PD-based SR depends on the implementation of the manufacturer of the terminal STA and access point AP. Therefore, there is a problem that the behavior of the entire wireless communication system cannot be predicted.
  • one of the objects of the present disclosure is to provide a wireless communication system, an access point, a terminal, and a communication method that can solve the above-described problems and can easily predict the behavior of the entire wireless communication system.
  • a wireless communication system comprises It has an access point (AP) and terminal (STA) belonging to a certain BSS (Basic Service Set),
  • the AP and the STA are
  • the access point is The AP in a wireless communication system including an access point (AP) and a terminal (STA) belonging to a certain BSS (Basic Service Set), A memory for storing instructions; And at least one processor configured to process the instructions,
  • the processor is OBSS_PD (Power Detect) -based SR (Spatial Reuse), which is adjusted so as to avoid interference between the BSS and OBSS (Overlapping BSS), is disabled adaptively.
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • the terminal in a wireless communication system including an access point (AP) and a terminal (STA) belonging to a certain BSS (Basic Service Set), A memory for storing instructions; And at least one processor configured to process the instructions,
  • the processor is OBSS_PD (Power Detect) -based SR (Spatial Reuse), which is adjusted so as to avoid interference between the BSS and OBSS (Overlapping BSS), is disabled adaptively.
  • the communication method comprises: A communication method by the AP in a wireless communication system including an access point (AP) and a terminal (STA) belonging to a certain BSS (Basic Service Set), OBSS_PD (Power Detect) -based SR (Spatial Reuse), which is adjusted so as to avoid interference between the BSS and OBSS (Overlapping BSS), is disabled adaptively.
  • BSS Basic Service Set
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • the communication method comprises: A communication method by the STA in a wireless communication system including an access point (AP) and a terminal (STA) belonging to the same BSS (Basic Service Set), OBSS_PD (Power Detect) -based SR (Spatial Reuse), which is adjusted so as to avoid interference between the BSS and OBSS (Overlapping BSS), is disabled adaptively.
  • BSS Basic Service Set
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • FIG. 6 is a sequence diagram illustrating mode 1 in the radio communication system according to Embodiment 1.
  • FIG. 6 is a sequence diagram illustrating mode 2 in the wireless communication system according to Embodiment 1.
  • FIG. 6 is a sequence diagram illustrating mode 3 in the wireless communication system according to Embodiment 1.
  • FIG. 11 is a sequence diagram for explaining mode 4 in the wireless communication system according to the second embodiment.
  • FIG. 10 is a sequence diagram for explaining an operation example 1 in the radio communication system according to the third embodiment.
  • FIG. 10 is a sequence diagram for explaining an operation example 2 in the radio communication system according to the third embodiment.
  • FIG. 10 is a sequence diagram for explaining an operation example 3 in the radio communication system according to the third embodiment. It is a block diagram which shows the structural example of the access point in a certain viewpoint. It is a block diagram which shows the structural example of the terminal in a certain viewpoint.
  • the configuration itself of the radio communication system according to each embodiment described below is the same as the configuration shown in FIG. 1 and includes an access point AP and a terminal STA.
  • the terminal STA is roughly classified into either a terminal STA that supports IEEE 802.11ax or a terminal STA that does not support IEEE 802.11ax.
  • the IEEE 802. 11ax compatible terminal STA internally holds three NAVs, Conventional NAVs and Two NAVs (Intra-BSS NAV and Basic NAV), and uses at least one of the three NAVs as a virtual carrier. Make sense.
  • the IEEE 802.11ax compatible terminal STA may treat Conventional NAV and Basic NAV in a unified manner.
  • the terminal STA that supports IEEE 802.11ax internally holds Basic NAV (this Basic NAV is identified with Conventional NAV) and Intra-BSS NAV.
  • OBSS_PD-based SR can be set for a terminal STA that supports IEEE 802.11ax.
  • the terminal STA that does not support IEEE ax802.11ax holds only Conventional ⁇ NAV and performs virtual carrier sense using Conventional NAV. Also, OBSS_PD-based SR cannot be set for a terminal STA that does not support IEEE 802.11ax.
  • Embodiment 1 IEEE 802.11ax adds two mechanisms, OBSS_PD-based SR and Two NAVs.
  • OBSS_PD-based SR and Two NAVs are used together in a wireless communication system, there is a problem that the behavior of the entire wireless communication system becomes very complicated.
  • any BSS whether the setting of OBSS_PD-based SR is turned on in the access point AP belonging to the BSS and the IEEE 802. 11ax compatible terminal STA (in other words, OBSS_PD-based Depending on whether SR is available (hereinafter the same), IEEE ax802.11ax compatible terminal STA switches the NAV used for virtual carrier sense to adaptive.
  • the wireless communication system includes modes 0, 1, 2, and 3 as virtual carrier sense operation modes.
  • the terminal STA that supports 802.11ax switches the NAV used for virtual carrier sense.
  • modes 0, 1, 2, and 3 will be described.
  • Modes 0, 1, 2, and 3 may include a terminal STA that supports IEEE ax802.11ax and a terminal STA that does not support IEEE ⁇ ⁇ ⁇ 802.11ax, or a terminal STA that supports IEEE 802.11ax. Only may be present.
  • the operation in BSS1 will be described as an example, but the operation in BSS2 is assumed to be the same.
  • Mode 0 is the same mode as the related technology using OBSS_PD-based SR and two NAVs together. Mode 0 is performed in an environment in which the setting of OBSS_PD-based SR is turned on at the access point AP1 belonging to BSS1 and the terminal STA1 supporting IEEE 802.11ax.
  • the IEEE 802. 11ax compatible terminal STA1 uses conventional NAV and two NAVs (Intra-BSS NAV and Basic NAV) to perform virtual carrier sense, and the IEEE 802.11ax non-compliant terminal STA1 is conventional NAV. Use to perform virtual carrier sense.
  • the mode 0 is summarized as shown in Table 1 below.
  • Mode 1 is performed in an environment where the setting of OBSS_PD-based SR is turned on at the access point AP1 belonging to BSS1 and the terminal STA1 that supports IEEE 802.11ax.
  • both the IEEE ax802.11ax compatible terminal STA1 and the IEEE 802.11ax non-compliant terminal STA1 perform virtual carrier sense using only Conventional NAV.
  • the mode 1 is summarized as shown in Table 2 below.
  • Mode 2 In mode 2, the setting of OBSS_PD-based SR is turned off at the access point AP1 belonging to BSS1 and the terminal STA1 that supports IEEE 802.11ax (in other words, OBSS_PD-based SR is prohibited). The same shall apply hereinafter).
  • both the IEEE ax802.11ax compatible terminal STA1 and the IEEE 802.11ax non-compliant terminal STA1 perform virtual carrier sense using only Conventional NAV.
  • the mode 2 is summarized as shown in Table 3 below.
  • Mode 3 is performed in an environment in which the setting of OBSS_PD-based SR is turned off at the access point AP1 belonging to BSS1 and the terminal STA1 compatible with IEEE 802.11ax.
  • the terminal STA1 compatible with IEEE 802.11ax performs virtual carrier sense using Conventional NAV, Intra-BSS NAV, and Basic NAV.
  • an IEEE 802.11ax compliant terminal STA1 receives a radio frame including a NAV value (PPDU frame, RTS (Request To Send) / CTS (Clear to send) frame, etc.)
  • the received radio frame is received from the associated BSS1. It is determined whether the received frame is an Intra-BSS frame or an Inter-BSS frame received from BSS2 serving as an OBSS.
  • the IEEE 802.11ax compatible terminal STA1 determines that it is an Intra-BSS frame, it updates the Conventional NAV and Intra-BSS NAV based on the NAV value included in the Intra-BSS frame, and is an Intra-BSS frame. If it is determined, Conventional NAV and Basic NAV are updated based on the NAV value included in the Intra-BSS frame. On the other hand, the terminal STA1 that does not support IEEE 802.11ax performs virtual carrier sense using only Conventional NAV.
  • the mode 3 is summarized as shown in Table 4 below.
  • the access point AP1 belonging to BSS1 transmits signaling instructing to invalidate Intra-BSS NAV and Basic NAV other than Conventional NAV to all terminals STA1 compatible with IEEE 802.11ax belonging to BSS1 ( Step S101).
  • This signaling is included in a radio frame such as a beacon frame and transmitted.
  • the IEEE 802.11ax compatible terminal STA1 When receiving the above signaling from the access point AP1, the IEEE 802.11ax compatible terminal STA1 invalidates Intra-BSS NAV and Basic NAV other than Conventional NAV. It should be noted that there are two modes of disabling NAV: NAV is disabled, and NAV is set (fixed) to a special value such as 0 (hereinafter the same). Thereby, only Conventional ⁇ ⁇ NAV is validated (step S102). For this reason, the terminal STA1 that supports IEEE ⁇ 802.11ax performs virtual carrier sense using only Conventional NAV.
  • the IEEE STA802.11ax compatible terminal STA1 is based on the NAV value included in the received wireless frame.
  • Conventional NAV is updated (step S104). Thereafter, the IEEE T802.11ax compatible terminal STA1 does not perform physical carrier sense during the period T1 of Conventional NAV> 0, regards the medium being used as BUSY (virtual carrier sense), and does not transmit a radio frame. .
  • the IEEE 802.11ax-compatible terminal STA1 also receives a radio frame such as a PPDU frame or an RTS / CTS frame from the access point AP2 belonging to BSS2 serving as OBSS on the same medium (step S105).
  • the terminal STA1 that does not support IEEE 802.11ax does not hold Two NAVs, and therefore performs conventional carrier sense using Conventional NAV. Since this operation is the same as the related art, the description thereof is omitted.
  • the access point AP1 belonging to BSS1 instructs BSS1 to instruct to turn off the setting of OBSS_PD based SR and to instruct to disable Intra-BSS NAV and Basic NAV other than Conventional NAV. It transmits to all the terminals STA1 corresponding to IEEE 802.11ax to which it belongs (step S201).
  • This signaling is transmitted by being included in a capability element or a HE operation element of a radio frame such as a beacon frame, for example.
  • the terminal STA1 compatible with IEEE 802.11ax When the terminal STA1 compatible with IEEE 802.11ax receives the above signaling from the access point AP1, it turns off the setting of OBSS_PD based SR (step S202). Further, the terminal STA1 that supports IEEE 802.11ax disables Intra-BSS NAV and Basic NAV other than Conventional NAV. Thereby, only Conventional ⁇ ⁇ NAV is validated (step S203). For this reason, the terminal STA1 that supports IEEE ⁇ 802.11ax performs virtual carrier sense using only Conventional NAV.
  • the IEEE STA802.11ax compatible terminal STA1 is based on the NAV value included in the received wireless frame. Conventional NAV is updated (step S205). Thereafter, the IEEE STA802.11ax compatible terminal STA1 does not perform physical carrier sense and regards the medium being used as BUSY (virtual carrier sense) and does not transmit a radio frame in the period T2 of Conventional NAV> 0. .
  • the IEEE 802.11ax compatible terminal STA1 also receives a radio frame such as a PPDU frame or an RTS / CTS frame from the access point AP2 belonging to BSS2 which is OBSS on the same medium (step S206).
  • the terminal STA1 that does not support IEEE 802.11ax does not hold Two NAVs, and therefore performs conventional carrier sense using Conventional NAV. Since this operation is the same as the related art, the description thereof is omitted.
  • the access point AP1 belonging to BSS1 transmits signaling instructing to turn off the setting of OBSS_PD based SR to all terminals STA1 compatible with IEEE 802.11ax belonging to BSS1 (step S301).
  • This signaling is transmitted by being included in a capability element or a HE operation element of a radio frame such as a beacon frame, for example.
  • the terminal STA1 compatible with IEEE 802.11ax When the terminal STA1 compatible with IEEE 802.11ax receives the above signaling from the access point AP1, it turns off the setting of OBSS_PD based SR (step S302). Further, the IEEE 802. 11ax compatible terminal STA1 arbitrarily selects an OBSS_PD value for determining whether the received radio frame is an Intra-BSS frame or an Inter-BSS frame (step S303). . For example, as the OBSS_PD value, a default value (for example, OBSS_PDmin) may be selected, or OBSS_PDmin notified in advance from the access point AP1 may be selected.
  • OBSS_PD value a default value (for example, OBSS_PDmin) may be selected, or OBSS_PDmin notified in advance from the access point AP1 may be selected.
  • the IEEE 802.11ax compatible terminal STA1 uses Conventional NAV, Intra-BSS NAV, and Basic NAV, since Conventional NAV, Intra-BSS NAV, and Basic NAV are all enabled. Will perform virtual career sense.
  • an IEEE STA802.11ax compatible terminal STA1 receives a radio frame such as a PPDU frame or an RTS / CTS frame from the access point AP1 of the BSS1 to which it belongs (step S304), for example, the reception level of the received radio frame is expressed as an OBSS_PD value.
  • the reception level of the received radio frame is expressed as an OBSS_PD value.
  • the received radio frame is an Intra-BSS frame or an Inter-BSS frame (step S305).
  • the IEEE STA802.11ax compatible terminal STA1 updates Conventional NAV and Intra-BSS NAV based on the NAV value included in the Intra-BSS frame. (Steps S306 and S307). On the other hand, Inter-BSS NAV is not updated. Thereafter, the terminal STA1 supporting IEEE 802.11ax does not perform physical carrier sense during the period T3 in which any of Conventional NAV, Intra-BSS NAV, and Basic NAV is greater than 0, and is in use. The medium is regarded as BUSY (virtual carrier sense), and radio frames are not transmitted.
  • BUSY virtual carrier sense
  • the terminal STA1 supporting IEEE ax 802.11ax receives a radio frame such as a PPDU frame or an RTS / CTS frame from the access point AP2 belonging to BSS2 serving as OBSS on the same medium (step S308), for example, reception By comparing the reception level of the received radio frame with the OBSS_PD value, it is determined whether the received radio frame is an Intra-BSS frame or an Inter-BSS frame (step S309).
  • the IEEE 802.11ax-compliant terminal STA1 updates Conventional NAV and Basic NAV based on the NAV value included in the Inter-BSS frame ( Steps S310 and S311).
  • the access point AP belonging to the BSS and the IEEE 802.11ax compatible terminal STA depend on whether the setting of OBSS_PD-based SR is turned on or not.
  • the corresponding terminal STA switches the NAV used for virtual carrier sense.
  • mode 1 is performed in an environment where the setting of OBSS_PD-based SR is turned on in the access point AP1 belonging to BSS1 and the terminal STA1 that supports IEEE 802.11ax.
  • the IEEE 802.11ax compatible terminal STA1 performs virtual carrier sense using only Conventional NAV.
  • an IEEE ax 802.11ax compatible terminal STA1 performs virtual carrier sense using Basic NAV.
  • BSS2 which is an OBSS
  • the terminal STA1 that does not support IEEE ax802.11ax sets a conventional NAV and enters a transmission prohibited section to suppress communication.
  • IEEE 802.11ax compatible terminal STA1 acquires TXOP (transmission opportunity) without setting Basic NAV by the function of OBSS_PD value and starts communication in BSS1 It can happen.
  • the terminal STA1 that does not support IEEE 802.11ax sets a new Conventional NAV with a radio frame transmitted by the terminal STA1 that supports IEEE 802.
  • the terminal STA1 that does not support IEEE 802.11ax may be disadvantageous in terms of throughput and communication efficiency compared to the terminal STA1 that supports IEEE 802.11ax.
  • Mode 1 since the IEEE 802.11ax compatible terminal STA1 also uses the Conventional NAV, it is possible to suppress the occurrence of a case where the IEEE 802.11ax non-compliant terminal STA1 is disadvantageous.
  • Embodiment 2 IEEE 802.11ax adds two mechanisms, OBSS_PD-based SR and Two NAVs.
  • OBSS_PD-based SR and Two NAVs are used together in a wireless communication system, there is a problem that the behavior of the entire wireless communication system becomes very complicated.
  • OBSS_PD-based SR can be set for all terminals STA belonging to the BSS in a special environment where only the terminal STA supporting IEEE 802.11ax exists as the terminal STA belonging to the BSS.
  • OBSS_PD-based SR functions properly, there will be fewer opportunities to receive frames from terminal STA or access point AP belonging to OBSS, and Intra-BSS communication in OBSS will become Intra-BSS in BSS. Since the interference to communication is reduced, the need for the terminal STA to use Two NAVs is reduced.
  • the second embodiment belongs to an arbitrary BSS in an environment where the access point AP belonging to the BSS and the IEEE ⁇ ⁇ 802.11ax compatible terminal STA are set to OBSS_PD-based SR.
  • the NAV used by STA for virtual carrier sense is switched to adaptive.
  • the radio communication system includes modes 0 ′ and 4 as virtual carrier sense operation modes, and switching between modes 0 ′ and 4 allows the terminal STA compatible with IEEE 802.11ax. Switches the NAV used for virtual carrier sense.
  • modes 0 'and 4 will be described.
  • the operation in BSS1 will be described as an example, but the operation in BSS2 is assumed to be the same.
  • Mode 0 ′ is different from mode 0 only in that it is limited to being performed in an environment in which only terminal STA1 compatible with IEEE 802.11ax exists as terminal STA1 belonging to BSS1. That is, in mode 0 ′, only the terminal STA1 compatible with IEEE 802.11ax exists as the terminal STA1 belonging to BSS1, and the OBSS_PD-based SR is used in the access point AP1 belonging to BSS1 and the terminal STA1 compatible with IEEE 802.11ax. This is done in an environment where the setting is turned on.
  • the IEEE 802. 11ax compatible terminal STA1 uses conventional ⁇ ⁇ ⁇ NAV and two NAVs (Intra-BSS NAV and Basic NAV) to perform virtual carrier sense, and the IEEE 802.11ax non-compliant terminal STA1 Perform virtual carrier sense using NAV.
  • the mode 0 ′ is summarized as shown in Table 5 below.
  • Mode 4 In mode 4, only the terminal STA1 supporting IEEE 802.11ax exists as the terminal STA1 belonging to BSS1, and the setting of OBSS_PD-based SR is turned on for the access point AP1 belonging to BSS1 and the terminal STA1 supporting IEEE 802.11ax. It is done in an environment where
  • IEEE ax802.11ax compatible terminal STA1 performs virtual carrier sense using only Intra-BSS NAV.
  • an IEEE 802.11ax compatible terminal STA1 receives a radio frame including a NAV value (PPDU frame, RTS / CTS frame, etc.)
  • the received radio frame is an Intra-BSS frame received from the associated BSS1, or Then, it is determined whether the frame is an Inter-BSS frame received from BSS2 serving as an OBSS. If the terminal STA1 compatible with IEEE ⁇ 802.11ax determines that it is an Intra-BSS frame, it updates the Intra-BSS NAV based on the NAV value included in the Intra-BSS frame.
  • the mode 4 is summarized as shown in Table 6 below.
  • the access point AP1 belonging to BSS1 transmits signaling instructing to invalidate Basic NAV and Conventional NAV other than Intra-BSS NAV to all terminals STA1 compatible with IEEE 802.11ax belonging to BSS1 ( Step S401).
  • This signaling is included in a radio frame such as a beacon frame and transmitted.
  • the IEEE 802.11ax compatible terminal STA1 When receiving the above signaling from the access point AP1, the IEEE 802.11ax compatible terminal STA1 invalidates the Basic NAV and the Conventional NAV other than the Intra-BSS NAV. Thereby, only Intra-BSSBNAV is validated (step S402). Therefore, the terminal STA1 corresponding to IEEE 802.11ax performs virtual carrier sense using only Intra-BSS NAV. Further, the IEEE 802. 11ax compatible terminal STA1 arbitrarily selects an OBSS_PD value for determining whether the received radio frame is an Intra-BSS frame or an Inter-BSS frame (step S403). . For example, as the OBSS_PD value, a default value (for example, OBSS_PDmin) may be selected, or OBSS_PDmin notified in advance from the access point AP1 may be selected.
  • OBSS_PD value a default value (for example, OBSS_PDmin) may be selected, or OBSS_PDmin
  • an IEEE STA802.11ax compatible terminal STA1 receives a radio frame such as a PPDU frame or an RTS / CTS frame from the access point AP1 of the BSS1 to which it belongs (step S404), for example, the reception level of the received radio frame is expressed as an OBSS_PD value.
  • the reception level of the received radio frame is expressed as an OBSS_PD value.
  • the terminal STA1 that supports IEEE ax 802.11ax updates Intra-BSS NAV based on the NAV value included in the Intra-BSS frame (step S406). Thereafter, the IEEE ax802.11ax compatible terminal STA1 does not perform physical carrier sense in the period T4 of Intra-BSS NAV> 0, and regards the medium being used as BUSY (virtual carrier sense) and transmits a radio frame. Not performed.
  • step S407 the terminal STA1 supporting IEEE 802.11ax happens to receive a radio frame from the access point AP2 belonging to BSS2 which becomes OBSS on the same medium.
  • the IEEE 802. 11ax compatible terminal STA1 compares the received level of the received radio frame with the OBSS_PD value, so that the received radio frame is an Intra-BSS frame or an Inter-BSS frame. It is determined whether or not there is (step S408).
  • the radio frame received in step S407 is an Inter-BSS frame.
  • an access point AP belonging to a BSS and an IEEE 802.11ax compatible terminal STA belong to the BSS in an environment where the setting of OBSS_PD-based SR is turned on.
  • a terminal STA there is only an IEEE 802.11ax compatible terminal STA, or an IEEE 802.11ax compliant terminal STA and an IEEE 802.11ax non-compliant terminal STA are mixed. STA switches the NAV used for virtual carrier sense.
  • mode 4 the IEEE ax802.11ax compatible terminal STA1 performs virtual carrier sense using only Intra-BSS NAV.
  • the IEEE 802.11ax compatible terminal STA1 determines whether the received radio frame is an Intra-BSS frame received from the BSS1 to which it belongs or an Inter-BSS2 received from the BSS2 serving as an OBSS. It is determined whether the frame is a BSS frame, and only when it is determined that the frame is an Intra-BSS frame, Intra-BSS NAV is updated based on the NAV value included in the Intra-BSS frame.
  • the terminal STA1 belonging to BSS1 has only IEEE 802.11ax compatible terminal STA1 and the IEEE ax802.11ax compatible terminal STA1 uses Two NAVs, it happens to receive strong reception from BSS2 that becomes OBSS. NAV may be received at the level and Basic ⁇ ⁇ NAV may be set. However, if OBSS_PD-based SR is functioning properly, intra-BSS communication in BSS2 performed during the transmission prohibited section set by this Basic NAV will interfere with Intra-BSS communication in BSS1. There is no. For this reason, if the Intra-BSS communication in BSS1 by terminal STA1 is suppressed by BasicVNAV, a case where the throughput and communication efficiency of terminal STA1 are deteriorated may occur. In mode 4, since the IEEE 802.11ax compatible terminal STA1 does not use Basic NAV, occurrence of such a case can be suppressed.
  • Embodiment 3 IEEE 802.11ax adds two mechanisms, OBSS_PD-based SR and Two NAVs.
  • the setting of the OBSS_PD-based SR in the access point AP and the IEEE 802.11ax compatible terminal STA is implementation-dependent, and thus there is a problem that the behavior of the entire wireless communication system cannot be predicted.
  • the third embodiment adaptively turns on / off the setting of the OBSS_PD-based SR in the access point AP and the IEEE 802.11ax compatible terminal STA.
  • three operation examples in the third embodiment will be described. In the following, the operation in BSS1 will be described as an example, but the operation in BSS2 is assumed to be the same.
  • Operation example 1 First, the operation example 1 will be described with reference to FIG.
  • the access point AP1 belonging to BSS1 knows the number of terminals STA1 that belong to BSS1 and do not support IEEE 802.11ax.
  • the access point AP1 determines that the number of terminals STA1 that do not support IEEE 802.11ax is equal to or greater than a preset threshold value (step S501).
  • the access point AP1 turns off its OBSS_PD-based SR setting (step S502). Further, the access point AP1 transmits signaling instructing to turn off the setting of the OBSS_PD-based SR to all the terminals STA1 supporting IEEE 802.11ax belonging to the BSS1 (step S503).
  • This signaling is transmitted by being included in a capability element or a HE operation element of a radio frame such as a beacon frame, for example.
  • the IEEE 802.11ax-compatible terminal STA1 turns off the setting of its own OBSS_PD-based SR (step S504).
  • step S503 the access point AP1 transmits signaling indicating that the setting of the Two NAVs is turned off (in other words, the Two NAVs are disabled (hereinafter the same)).
  • step S504 the terminal STA1 compatible with IEEE 802.11ax also turns off its own Two NAVs setting.
  • the signaling in step S503 may be, for example, a signal indicating that the BSS color bit is invalidated.
  • Operation example 2 Subsequently, the operation example 2 will be described with reference to FIG. Here, description will be made assuming that the terminal STA1 belonging to BSS1 is only the terminals STA1-1 and STA1-2 compatible with IEEE 802.11ax (see FIG. 1).
  • the IEEE STA802.11ax compatible terminal STA1-1 belonging to BSS1 detects a beacon frame transmitted from the access point AP2 belonging to BSS2 serving as OBSS (step S601). Also, it is assumed that an instruction to turn off the setting of OBSS_PD-based SR is included in a beacon frame or the like.
  • the terminal STA1-1 compatible with IEEE 802.11ax similarly turns off its OBSS_PD-based SR setting (step S602).
  • the IEEE ax802.11ax compliant terminal STA1-1 transmits signaling (first signaling) for notifying its own OBSS_PD-based SR setting to the access point AP1 belonging to BSS1 (step S603).
  • this signaling is transmitted by being included in the capability element or HE operation element of a radio frame such as a management frame.
  • the access point AP1 When the access point AP1 receives the above signaling from the IEEE STA802.11ax compatible terminal STA1-1, the access point AP1 turns off its own OBSS_PD-based SR setting in the same manner as the terminal STA1-1 (step S604). In addition, the access point AP1 instructs the OBSS_PD-based SR setting to be turned off in the same manner as the terminal STA1-1 for all the IEEE 802.11ax compatible terminals STA1-1 and 1-2 belonging to the BSS1. Signaling to be performed (second signaling) is transmitted (step S605). For example, this signaling is transmitted by being included in the capability element and the HE element of a radio frame such as a beacon frame.
  • the IEEE 802.11ax compatible terminal STA1-2 When receiving the above signaling from the access point AP1, the IEEE 802.11ax compatible terminal STA1-2 turns off its own OBSS_PD-based SR setting in the same manner as the terminal STA1-1 (step S606). Note that the IEEE STA802.11ax compatible terminal STA1-1 has already turned off its own OBSS_PD-basedPDSR setting at the time of step S602, and continues this setting.
  • the setting of Two NAVs (Intra-BSS NAV and Basic NAV) is turned off (invalidated) in the beacon frame received from the access point AP2 to the IEEE 802.11ax compatible terminal STA1-1.
  • the following operation may be added when an instruction is included.
  • the terminal STA1-1 compatible with IEEE 802.11ax also turns off the setting of its Two NAVs.
  • the terminal STA1-1 compatible with IEEE 802.11ax transmits signaling for notifying the setting of its own Two NAVs.
  • the access point AP1 transmits signaling instructing to turn off the setting of Two NAVs.
  • the terminal STA1-2 that supports IEEE 802.11ax also turns off the setting of its Two NAVs.
  • the setting of Two NAVs (Intra-BSS NAV and Basic NAV) is turned on (in other words, beacon frames received from the access point AP2 to the IEEE 802.11ax compatible terminal STA1-1) (in other words, The following operations may be added when two NAVs are enabled (hereinafter the same).
  • the terminal STA1-1 corresponding to IEEE 802.11ax also turns on the setting of its own Two NAVs.
  • the terminal STA1-1 compatible with IEEE 802.11ax transmits signaling for notifying the setting of its own Two NAVs.
  • the access point AP1 transmits signaling instructing to turn on the setting of Two NAVs.
  • the terminal STA1-2 that supports IEEE 802.11ax also turns on the setting of its Two NAVs.
  • Operation example 3 Subsequently, the operation example 3 will be described with reference to FIG. Here, description will be made assuming that the terminal STA1 belonging to BSS1 is only the terminals STA1-1 and STA1-2 compatible with IEEE 802.11ax (see FIG. 1).
  • the IEEE 802.11ax compatible terminal STA1-1 belonging to BSS1 detects a PPDU frame transmitted from the access point AP2 belonging to BSS2 serving as OBSS (step S701).
  • the IEEE 802.11ax compatible terminal STA1-1 turns on the setting of its own OBSS_PD-based SR (step S702). Also, the IEEE ax802.11ax compatible terminal STA1-1 transmits signaling (first signaling) for notifying its own OBSS_PD-based SR setting to the access point AP1 belonging to BSS1 (step S703). For example, this signaling is transmitted by being included in the capability element or HE operation element of a radio frame such as a management frame.
  • the access point AP1 When the access point AP1 receives the above signaling from the IEEE STA802.11ax compatible terminal STA1-1, the access point AP1 turns on the setting of its own OBSS_PD-based SR in the same manner as the terminal STA1-1 (step S704). In addition, the access point AP1 instructs all the terminals STA1-1 and 1-2 compatible with IEEE 802.11ax belonging to BSS1 to turn on the OBSS_PD-based SR setting as with the terminal STA1-1. Signaling to be performed (second signaling) is transmitted (step S705). For example, this signaling is transmitted by being included in the capability element and the HE element of a radio frame such as a beacon frame.
  • the IEEE 802.11ax compatible terminal STA1-2 When receiving the above signaling from the access point AP1, the IEEE 802.11ax compatible terminal STA1-2 turns on its own OBSS_PD-based SR setting in the same manner as the terminal STA1-1 (step S706). Note that the IEEE STA802.11ax compatible terminal STA1-1 has already set its own OBSS_PD-based SR setting at the time of step S702, and continues this setting.
  • step S702 when a PPDU frame or the like is received from the access point AP2 to the IEEE 802.11ax compatible terminal STA1-1, the following operation may be added.
  • step S703 the terminal STA1-1 compatible with IEEE 802.11ax turns on the setting of its Two NAVs.
  • step S703 the terminal STA1-1 compatible with IEEE 802.11ax transmits signaling for notifying the setting of its Two NAVs.
  • step S705 the access point AP1 transmits signaling instructing to turn on the setting of Two NAVs.
  • step S706 the terminal STA1-2 that supports IEEE 802.11ax also turns on the setting of its Two NAVs.
  • step S702 the terminal STA1-1 corresponding to IEEE 802.11ax turns off the setting of its Two NAVs.
  • step S703 the terminal STA1-1 compatible with IEEE 802.11ax transmits signaling for notifying the setting of its Two NAVs.
  • step S705 the access point AP1 transmits signaling instructing to turn off the setting of Two NAVs.
  • step S706 the terminal STA1-2 compatible with IEEE 802.11ax also turns off the setting of its Two NAVs.
  • the access point AP belonging to the BSS and the IEEE 802.11ax compatible terminal STA adaptively turn on / off the setting of the OBSS_PD-based SR.
  • FIG. 9 is a block diagram illustrating a configuration example of the access point AP from a certain point of view.
  • the access point AP includes a communication unit 11, a processor 12, and a memory 13.
  • the communication unit 11 is configured to perform wireless communication with the terminal STA in the BSS to which the communication unit 11 belongs, and is connected to the processor 12.
  • the memory 13 is configured to store a software module (computer program) including an instruction group and data for performing processing by the access point AP described in the above embodiment.
  • the memory 13 may be configured by a combination of a volatile memory and a nonvolatile memory, for example.
  • the processor 12 is configured to read out and execute a software module (computer program) from the memory 13 to perform the processing of the access point AP described in the above embodiment.
  • the processor 12 may be, for example, a microprocessor, an MPU (Micro Processing Unit), or a CPU (Central Processing Unit).
  • the processor 12 may include a plurality of processors.
  • FIG. 10 is a block diagram showing a configuration example of the terminal STA from a certain point of view.
  • the terminal STA includes a communication unit 21, a processor 22, and a memory 23.
  • the communication unit 21 is configured to perform wireless communication with the access point AP in the BSS to which the communication unit 21 belongs, and is connected to the processor 22.
  • the memory 23 is configured to store a software module (computer program) including an instruction group and data for performing processing by the terminal STA described in the above embodiment.
  • the memory 23 may be configured by a combination of a volatile memory and a nonvolatile memory, for example.
  • the processor 22 is configured to read the software module (computer program) from the memory 23 and execute it, thereby performing the processing of the terminal STA described in the above embodiment.
  • the processor 22 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 22 may include a plurality of processors.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media are magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Compact Disk-Read Only Memory). , CD-R (CD-Recordable), CD-R / W (CD-ReWritable), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory) )including.
  • the program may also be supplied to the computer by various types of temporary computer readable media.
  • Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • AP access point
  • STA terminal
  • BSS Base Service Set
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • the AP is Sending signaling indicating that the OBSS_PD-based SR is unusable and instructing the STA that the OBSS_PD-based SR is unusable, The STA makes its OBSS_PD-based SR unavailable, The wireless communication system according to attachment 1.
  • the AP is Sending the signaling to the STA not to update Intra-BSS NAV and Basic NAV, The STA is Do not update its own Intra-BSS NAV and Basic NAV, The wireless communication system according to attachment 2.
  • the STA is Based on the Inter-BSS frame received from the OBSS, the OBSS_PD-based SR is made available or unavailable, and the first signaling for notifying the AP of the setting of the OBSS_PD-based SR is provided.
  • Send The AP is The setting of the OBSS_PD-based SR is the same as the setting notified by the first signaling, and the setting of the OBSS_PD-based SR is the same as the setting notified by the first signaling to the STA.
  • Sending a second signaling instructing to The STA is The own setting of the OBSS_PD-based SR is made the same as the setting indicated by the second signaling.
  • the wireless communication system according to attachment 1.
  • the STA is Based on the Inter-BSS frame received from the OBSS, its own Intra-BSS NAV and Basic NAV are made usable or unusable, and the Intra-BSS NAV and Basic NAV are set to the AP.
  • Sending the first signaling to notify The AP is Sending the second signaling instructing the STA to make the settings of the Intra-BSS NAV and the Basic NAV the same as the settings notified in the first signaling;
  • the STA is Make the settings of the Intra-BSS NAV and the Basic NAV similar to the settings instructed by the second signaling.
  • the wireless communication system according to attachment 4.
  • the STA is Based on the first beacon frame received from the OBSS, the OBSS_PD-based SR of its own is disabled, and a management frame for notifying the AP of the setting of the OBSS_PD-based SR is transmitted,
  • the AP is Based on the management frame, the second OBSS_PD-based SR is disabled, and a second beacon frame is transmitted to the STA instructing the OBSS_PD-based SR to be disabled.
  • the STA is Making the OBSS_PD-based SR of itself unavailable based on the second beacon frame;
  • the wireless communication system according to appendix 4 or 5.
  • the STA is Based on the Inter BSS PPDU received from the OBSS, the OBSS_PD-based SR of its own can be used, and the AP transmits a management frame for notifying the setting of the OBSS_PD-based SR of its own, The AP is Based on the management frame, the OBSS_PD-based SR of its own can be used, and the STA transmits a beacon frame instructing to turn on the setting of the OBSS_PD-based SR, The STA is Making its own OBSS_PD-based SR available based on the beacon frame;
  • the wireless communication system according to any one of appendices 4 to 6.
  • the AP in a wireless communication system including an access point (AP) and a terminal (STA) belonging to a certain BSS (Basic Service Set), A memory for storing instructions; And at least one processor configured to process the instructions,
  • the processor is OBSS_PD (Power Detect) -based SR (Spatial Reuse) that adjusts to avoid interference between the BSS and OBSS (Overlapping BSS) is disabled adaptively.
  • OBSS_PD Power Detect
  • SR spatial Reuse
  • the processor is Making the OBSS_PD-based SR its own unusable, and sending signaling instructing the STA to make the OBSS_PD-based SR unusable,
  • the AP according to Appendix 8.
  • the processor is Sending the signaling to the STA so as not to update Intra-BSS NAV and Basic NAV, The AP according to appendix 9.
  • the STA in a wireless communication system including an access point (AP) and a terminal (STA) belonging to a certain BSS (Basic Service Set), A memory for storing instructions; And at least one processor configured to process the instructions,
  • the processor is OBSS_PD (Power Detect) -based SR (Spatial Reuse) that adjusts to avoid interference between the BSS and OBSS (Overlapping BSS) is disabled adaptively.
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • the processor is From the AP, when receiving a signaling instructing the OBSS_PD-based SR to be unavailable, the OBSS_PD-based SR of its own is made unavailable. STA described in Appendix 11.
  • the processor When receiving the signaling from the AP, it does not update its own Intra-BSS NAV and Basic NAV, STA described in Appendix 12.
  • BSS Basic Service Set
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • BSS Basic Service Set
  • OBSS_PD Power Detect
  • SR Spatial Reuse
  • AP access point STA terminal 11 communication unit 12 processor 13 memory 21 communication unit 22 processor 23 memory

Abstract

本開示の無線通信システムは、あるBSSに所属するアクセスポイント(AP)及び端末(STA)を備える。AP及びSTAは、OBSS_PD-based SRをアダプティブに利用不可とする。

Description

無線通信システム、アクセスポイント、端末、通信方法
 本開示は、無線通信システム、アクセスポイント、端末、通信方法に関する。
 無線LAN(Local Area Network)標準規格 IEEE(Institute of Electrical and Electronics Engineers) 802.11において、次世代通信方式IEEE 802.11ax(HEW:High Efficiency WLAN(Wireless LAN))の検討が、タスクグループTGaxにおいて行われている。IEEE 802.11axにおいては、要素技術に関して、新しい変復調方式(1024QAM(Quadrature Amplitude Modulation))の採用、上りのMU-MIMO(Multi User Multi-Input Multi-Output)のサポート、OFDMA(Orthogonal frequency-division multiple access)の導入などが進められる見通しである。
 ところで、任意のBSS(Basic Service Set)に対して、エリアが重複し、同一の周波数を使用する他のBSSはOBSS(Overlapping BSS)と呼ばれる。また、複数のBSSが互いにOBSSとして併存している状態は、OBSS問題(又はOBSS環境)と呼ばれる。アクセスポイントの配置密度が高いDense deployment 環境では、OBSS問題が頻繁に発生する。また、Dense deployment 環境では、端末及びアクセスポイントは共に、OBSSから干渉を受けてスループットが大きく低下する。
 図1は、OBSS問題が発生している無線通信システムの構成例を示す図である。BSS1及びBSS2は、互いにエリアが重複し、同一の周波数を使用している。そのため、BSS1から見ると、BSS2はOBSSとなり、また、BSS2から見ると、BSS1はOBSSとなる。
 BSS1に所属するノードは、BSS1を形成するアクセスポイントAP1と、アクセスポイントAP1にアソシエート中の端末STA1-1,1-2と、を含む。このうち、端末STA1-1は、BSS1及びBSS2が重複するエリアに位置している。そのため、アクセスポイントAP1と端末STA1-1との間の通信は、BSS2から干渉を受けるため、アクセスポイントAP1及び端末STA1-1のスループットが低下する。
 BSS2に所属するノードは、BSS2を形成するアクセスポイントAP2と、アクセスポイントAP2にアソシエート中の端末STA2-1,2-2と、を含む。このうち、端末STA2-1は、BSS1及びBSS2が重複するエリアに位置している。そのため、アクセスポイントAP2と端末STA2-1との間の通信は、BSS1から干渉を受けるため、アクセスポイントAP2及び端末STA2-1のスループットが低下する。
 なお、BSS1には、2つの端末STA1-1,1-2が所属することに限らず、少なくとも1つの端末が所属していれば良い。以下、BSS1に所属する端末を、どの端末であるか特定しない場合は端末STA1と呼ぶ。また、BSS2には、2つの端末STA2-1,2-2が所属することに限らず、少なくとも1つの端末が所属していれば良い。以下、BSS2に所属する端末を、どの端末であるか特定しない場合は端末STA2と呼ぶ。また、以下、どの端末STA1,STA2であるか特定しない場合は端末STAと呼び、どのアクセスポイントAP1,AP2であるか特定しない場合はアクセスポイントAPと呼ぶ。
 IEEE 802.11ax(HEW)においては、Dense deployment 環境でのアクセスポイントAPのスループット向上のために、SR(Spatial Reuse;空間再利用/周波数再利用)の機能が追加される見通しである。以下、SRに関連するOBSS_PD(Power Detect)-based SR及びTwo NAVs(Network Allocation Vectors)という2つの仕組みについて説明する。
 まず、OBSS_PD-based SRについて説明する。
 OBSS_PD-based SRには、アクセスポイントAP及び端末STAが送信電力(TXPWR)及びCCA (Clear Channel Assessment)sensitivity レベルの調整を動的に行い、BSSとOBSSとの間の干渉を回避するように調整する機能がある(例えば、非特許文献1参照)。この機能により、OBSS問題の解決に寄与する。但し、TXPWR及びCCA sensitivity レベルを決定する具体的なアルゴリズムは実装依存である。
 続いて、Two NAVsについて説明する。
 IEEE 802.11ax(HEW)においては、端末STAは、チャネル上で受信した無線フレーム(例えば、PPDU(PLCP(Physical Layer Convergence Protocol) Protocol Data Unit)フレーム等)が、所属するBSSから受信した無線フレーム(Intra-BSSフレーム)であるか、又は、OBSSから受信した無線フレーム(Inter-BSSフレーム)であるか、を判定する仕組みが導入される。この判定は、例えば、受信した無線フレームのBSSカラービット、MAC(Media Access Control)ヘッダを確認することにより行う(例えば、非特許文献1参照)。例えば、図1の例では、BSS1に所属する端末STA1-1は、同じBSS1に所属するアクセスポイントAP1又は端末STA1-2から受信した無線フレームをintra-BSSフレームと判定し、OBSSとなるBSS2に所属するアクセスポイントAP2又は端末STA2-1,STA2-2から受信した無線フレームをInter-BSSフレームと判定することになる。
 また、IEEE 802.11ax(HEW)においては、IEEE 802.11で用いられる仮想キャリアセンス(Virtual Carrier Sense)機能を拡張する。以下では、DCF(Distributed Coordination Function)通信の仮想キャリアセンスで使用される既存のNAVをConventional NAVと呼ぶことにする。Conventional NAVは、シグナリングにより端末STAに送信禁止期間を設定するものである。端末STAは、Conventional NAV>0の期間中、物理的キャリアセンスをすることなく、利用中のメディアをBUSYと判定し(仮想キャリアセンス)、無線フレームの送信を行わない。そのため、Conventional NAVは、端末STAの省電力化や通信効率の向上(いわゆる隠れ端末問題への対処)に寄与する。
 IEEE 802.11ax(HEW)においては、Conventional NAVに追加して、Intra-BSS NAV及びBasic NAVと呼ばれる新たなTwo NAVsが定義されている(例えば、非特許文献1参照)。
 Intra-BSS NAVは、受信したIntra-BSSフレームに含まれるNAV値を基に更新される。
 Basic NAVは、受信した無線フレームの受信レベルが閾値OBSS_PDを超え、かつ、受信した無線フレームをInter-BSSフレームと判定した場合に、又は、受信した無線フレームをIntra-BSSフレームと判定できなかった場合に、受信した無線フレームに含まれるNAV値を基に更新される。ここで、OBSS_PDは、送信電力TXPWRに応じて変化する閾値である(例えば、非特許文献2参照)。
 IEEE 802.11ax対応の端末STAは、Intra-BSS NAV> 0の期間中又はBasic NAV>0の期間中は、物理的キャリアセンスをすることなく、メディアをBUSYと判定し、無線フレームの送信を行わない(仮想キャリアセンス)。
 以上のようなTwo NAVsの働きにより、IEEE 802.11ax対応の端末STAは、OBSSから受信したInter-BSSフレームの受信レベルが閾値OBSS_PD以下となる場合は、利用中のメディアをBUSYとみなさないため、所属するBSS内でのIntra-BSS通信を継続することができ、OBSS環境においてスループットの低下を抑制することができる。
IEEE 802.11-15/0132r17 IEEE 802.11-16/0414r1
 ところで、OBSS_PD-based SRの設定は、端末STAやアクセスポイントAPの製造メーカーの実装依存となる。そのため、無線通信システム全体の挙動を予測することができないという問題がある。
 そこで本開示の目的の1つは、上述の課題を解決し、無線通信システム全体の挙動を予測しやすくすることができる無線通信システム、アクセスポイント、端末、通信方法を提供することにある。
 一態様において、無線通信システムは、
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備え、
 前記AP及び前記STAは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD (Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする。
 一態様において、アクセスポイントは、
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APであって、
 命令を記憶するメモリと、
 前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
 前記プロセッサは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする。
 一態様において、端末は、
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAであって、
 命令を記憶するメモリと、
 前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
 前記プロセッサは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする。
 一態様において、通信方法は、
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APによる通信方法であって、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする。
 他の態様において、通信方法は、
 同一のBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAによる通信方法であって、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする。
 上述の態様によれば、無線通信システム全体の挙動を予測しやすくすることができるという効果が得られる。
OBSS問題が発生している無線通信システムの構成例を示す図である。 実施の形態1に係る無線通信システムにおけるモード1を説明するシーケンス図である。 実施の形態1に係る無線通信システムにおけるモード2を説明するシーケンス図である。 実施の形態1に係る無線通信システムにおけるモード3を説明するシーケンス図である。 実施の形態2に係る無線通信システムにおけるモード4を説明するシーケンス図である。 実施の形態3に係る無線通信システムにおける動作例1を説明するシーケンス図である。 実施の形態3に係る無線通信システムにおける動作例2を説明するシーケンス図である。 実施の形態3に係る無線通信システムにおける動作例3を説明するシーケンス図である。 ある観点におけるアクセスポイントの構成例を示すブロック図である。 ある観点における端末の構成例を示すブロック図である。
 以下、図面を参照して本開示の実施の形態について説明する。以下で説明する各実施の形態に係る無線通信システムの構成自体は、図1に示される構成と同様であり、アクセスポイントAPと、端末STAと、を含む。
 端末STAは、大別して、IEEE 802.11ax対応の端末STA又はIEEE 802.11ax非対応の端末STAのいずれかとなる。
 IEEE 802.11ax対応の端末STAは、Conventional NAV及びTwo NAVs(Intra-BSS NAV及びBasic NAV)の3つのNAVを内部に保持しており、3つのNAVのうちの少なくとも1つを使用して仮想キャリアセンスを行う。なお、IEEE 802.11ax対応の端末STAは、Conventional NAVを、Basic NAVと統一的に扱っても良い。この場合、IEEE 802.11ax対応の端末STAは、Basic NAV(このBasic NAVはConventional NAVと同一視される)およびIntra-BSS NAVを内部に保持する。また、IEEE 802.11ax対応の端末STAは、OBSS_PD-based SRが設定可能である。
 一方、IEEE 802.11ax非対応の端末STAは、Conventional NAVのみを内部に保持しており、Conventional NAVを使用して仮想キャリアセンスを行う。また、IEEE 802.11ax非対応の端末STAは、OBSS_PD-based SRが設定不可である。
(1)実施の形態1
 IEEE 802.11ax(HEW)では、OBSS_PD-based SR及びTwo NAVsという2つの仕組みが追加される。しかし、無線通信システムにおいて、OBSS_PD-based SR及びTwo NAVsを併用すると、無線通信システム全体の挙動が非常に煩雑になるという問題がある。
 そこで、本実施の形態1は、任意のBSSにおいて、そのBSSに所属するアクセスポイントAP及びIEEE 802.11ax対応の端末STAにおいて、OBSS_PD-based SRの設定がオンされているか(言い換えれば、OBSS_PD-based SRが利用可能であるか。以下、同じ)否かに応じて、IEEE 802.11ax対応の端末STAが仮想キャリアセンスで使用するNAVをアダプティブに切り替える。
 具体的には、本実施の形態1に係る無線通信システムは、仮想キャリアセンスの動作モードとしてモード0,1,2,3を備えており、モード0,1,2,3の切り替えにより、IEEE 802.11ax対応の端末STAが仮想キャリアセンスで使用するNAVを切り替える。以下、モード0,1,2,3について説明する。モード0,1,2,3は、BSSに所属する端末STAとして、IEEE 802.11ax対応の端末STA及びIEEE 802.11ax非対応の端末STAが混在していても良いし、IEEE 802.11ax対応の端末STAのみが存在していても良いものとする。なお、以下では、BSS1における動作を例に挙げて説明するが、BSS2における動作も同様であるとする。
 モード0:
 モード0は、OBSS_PD-based SR及びtwo NAVsを併用する関連技術と同様のモードである。
 モード0は、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオンされている環境下で行われる。
 モード0では、IEEE 802.11ax対応の端末STA1は、Conventional NAV及びtwo NAVs(Intra-BSS NAV及びBasic NAV)を使用して、仮想キャリアセンスを行い、IEEE 802.11ax非対応の端末STA1は、Conventional NAVを使用して、仮想キャリアセンスを行う。
 モード0をまとめると、以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 モード1:
 モード1は、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオンされている環境下で行われる。
 モード1では、IEEE 802.11ax対応の端末STA1及びIEEE 802.11ax非対応の端末STA1は共に、Conventional NAVのみを使用して仮想キャリアセンスを行う。
 モード1をまとめると、以下の表2の通りである。
Figure JPOXMLDOC01-appb-T000002
 モード2:
 モード2は、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオフされている(言い換えれば、OBSS_PD-based SRが利用不可(prohibited)とされている。以下、同じ)環境下で行われる。
 モード2では、IEEE 802.11ax対応の端末STA1及びIEEE 802.11ax非対応の端末STA1は共に、Conventional NAVのみを使用して仮想キャリアセンスを行う。
 モード2をまとめると、以下の表3の通りである。
Figure JPOXMLDOC01-appb-T000003
 モード3:
 モード3は、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオフされている環境下で行われる。
 モード3では、IEEE 802.11ax対応の端末STA1は、Conventional NAV、Intra-BSS NAV及びBasic NAVを使用して仮想キャリアセンスを行う。IEEE 802.11ax対応の端末STA1は、NAV値を含む無線フレーム(PPDUフレーム、RTS(Request To Send)/CTS(Clear to send)フレーム等)を受信すると、受信した無線フレームが、所属するBSS1から受信したIntra-BSSフレームであるか、又は、OBSSとなるBSS2から受信したInter-BSSフレームであるかを判定する。IEEE 802.11ax対応の端末STA1は、Intra-BSSフレームであると判定した場合は、Intra-BSSフレームに含まれるNAV値を基にConventional NAV及びIntra-BSS NAVを更新し、Intra-BSSフレームであると判定した場合は、Intra-BSSフレームに含まれるNAV値を基にConventional NAV及びBasic NAVを更新する。
 一方、IEEE 802.11ax非対応の端末STA1は、Conventional NAVのみを使用して仮想キャリアセンスを行う。
 モード3をまとめると、以下の表4の通りである。
Figure JPOXMLDOC01-appb-T000004
 続いて、モード1を実現する具体例について、図2を参照して説明する。
 まず、BSS1に所属するアクセスポイントAP1は、Conventional NAV以外のIntra-BSS NAV及びBasic NAVを無効化することを指示するシグナリングを、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1に送信する(ステップS101)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームに含めて送信する。
 IEEE 802.11ax対応の端末STA1は、アクセスポイントAP1から上記のシグナリングを受信した場合、Conventional NAV以外のIntra-BSS NAV及びBasic NAVを無効化する。なお、NAVを無効化する態様としては、NAVをdisabledにする、NAVを0等のSpecial Valueに設定(固定)する、という2態様があるとする(以下、同じ)。これにより、Conventional NAVのみが有効化される(ステップS102)。そのため、IEEE 802.11ax対応の端末STA1は、以降、Conventional NAVのみを使用して仮想キャリアセンスを行うことになる。
 IEEE 802.11ax対応の端末STA1は、所属するBSS1のアクセスポイントAP1から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合(ステップS103)、受信した無線フレームに含まれるNAV値を基にConventional NAVを更新する(ステップS104)。以降、IEEE 802.11ax対応の端末STA1は、Conventional NAV>0の期間T1では、物理的キャリアセンスを行わず、利用中のメディアをBUSYとみなして(仮想キャリアセンス)、無線フレームの送信を行わない。
 また、IEEE 802.11ax対応の端末STA1は、同一メディア上でOBSSとなるBSS2に所属するアクセスポイントAP2から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合も(ステップS105)、受信した無線フレームに含まれるNAV値を基にConventional NAVを更新する(ステップS106)。
 その後、IEEE 802.11ax対応の端末STA1は、Conventional NAV=0になると、物理的キャリアセンスを再開する(ステップS107)。
 なお、IEEE 802.11ax非対応の端末STA1は、Two NAVsを保持していないため、Conventional NAVを使用して、仮想キャリアセンスを行う。この動作は、関連技術と同様であるため、説明を省略する。
 続いて、モード2を実現する具体例について、図3を参照して説明する。
 まず、BSS1に所属するアクセスポイントAP1は、OBSS_PD based SRの設定をオフにすることを指示すると共に、Conventional NAV以外のIntra-BSS NAV及びBasic NAVを無効化することを指示するシグナリングを、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1に送信する(ステップS201)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 IEEE 802.11ax対応の端末STA1は、アクセスポイントAP1から上記のシグナリングを受信した場合、OBSS_PD based SRの設定をオフする(ステップS202)。また、IEEE 802.11ax対応の端末STA1は、Conventional NAV以外のIntra-BSS NAV及びBasic NAVを無効化する。これにより、Conventional NAVのみが有効化される(ステップS203)。そのため、IEEE 802.11ax対応の端末STA1は、以降、Conventional NAVのみを使用して仮想キャリアセンスを行うことになる。
 IEEE 802.11ax対応の端末STA1は、所属するBSS1のアクセスポイントAP1から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合(ステップS204)、受信した無線フレームに含まれるNAV値を基にConventional NAVを更新する(ステップS205)。以降、IEEE 802.11ax対応の端末STA1は、Conventional NAV>0の期間T2では、物理的キャリアセンスを行わず、利用中のメディアをBUSYとみなして(仮想キャリアセンス)、無線フレームの送信を行わない。
 また、IEEE 802.11ax対応の端末STA1は、同一メディア上でOBSSとなるBSS2に所属するアクセスポイントAP2から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合も(ステップS206)、受信した無線フレームに含まれるNAV値を基にConventional NAVを更新する(ステップS207)。
 その後、IEEE 802.11ax対応の端末STA1は、Conventional NAV=0になると、物理的キャリアセンスを再開する(ステップS208)。
 なお、IEEE 802.11ax非対応の端末STA1は、Two NAVsを保持していないため、Conventional NAVを使用して、仮想キャリアセンスを行う。この動作は、関連技術と同様であるため、説明を省略する。
 続いて、モード3を実現する具体例について、図4を参照して説明する。
 まず、BSS1に所属するアクセスポイントAP1は、OBSS_PD based SRの設定をオフにすることを指示するシグナリングを、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1に送信する(ステップS301)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 IEEE 802.11ax対応の端末STA1は、アクセスポイントAP1から上記のシグナリングを受信した場合、OBSS_PD based SRの設定をオフする(ステップS302)。また、IEEE 802.11ax対応の端末STA1は、受信した無線フレームが、Intra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定するためのOBSS_PD値を任意に選択する(ステップS303)。例えば、OBSS_PD値は、デフォルト値(例えば、OBSS_PDmin)を選択しても良いし、アクセスポイントAP1から予め通知されているOBSS_PDminを選択しても良い。
 このとき、IEEE 802.11ax対応の端末STA1は、Conventional NAV、Intra-BSS NAV、及びBasic NAVがいずれも有効化されたままであるため、以降、Conventional NAV、Intra-BSS NAV、及びBasic NAVを使用して仮想キャリアセンスを行うことになる。
 IEEE 802.11ax対応の端末STA1は、所属するBSS1のアクセスポイントAP1から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合(ステップS304)、例えば、受信した無線フレームの受信レベルをOBSS_PD値と比較することで、受信した無線フレームがIntra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定する(ステップS305)。
 ここでは、ステップS304で受信した無線フレームはIntra-BSSフレームとなるため、IEEE 802.11ax対応の端末STA1は、Intra-BSSフレームに含まれるNAV値を基に、Conventional NAV及びIntra-BSS NAVを更新する(ステップS306,S307)。その一方で、Inter-BSS NAVは更新しない。以降、IEEE 802.11ax対応の端末STA1は、Conventional NAV、Intra-BSS NAV、及びBasic NAVのいずれかが0よりも大きい値を示している期間T3では、物理的キャリアセンスを行わず、利用中のメディアをBUSYとみなして(仮想キャリアセンス)、無線フレームの送信を行わない。
 また、IEEE 802.11ax対応の端末STA1は、同一メディア上でOBSSとなるBSS2に所属するアクセスポイントAP2から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合(ステップS308)、例えば、受信した無線フレームの受信レベルをOBSS_PD値と比較することで、受信した無線フレームがIntra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定する(ステップS309)。
 ここでは、ステップS308で受信した無線フレームはInter-BSSフレームとなるため、IEEE 802.11ax対応の端末STA1は、Inter-BSSフレームに含まれるNAV値を基に、Conventional NAV及びBasic NAVを更新する(ステップS310,S311)。その一方で、Intra-BSS NAVは更新しない。Intra-BSS NAV=0となってもConventional NAV又はBasic NAVが0より大きい値を示している間は仮想キャリアセンスを継続する。
 その後、IEEE 802.11ax対応の端末STA1は、Conventional NAV、Intra-BSS NAV、及びBasic NAVが全てゼロになると、物理的キャリアセンスを再開する(ステップS312)。
 上述したように本実施の形態1によれば、BSSに所属するアクセスポイントAP及びIEEE 802.11ax対応の端末STAにおいて、OBSS_PD-based SRの設定がオンされているか否かに応じて、IEEE 802.11ax対応の端末STAが仮想キャリアセンスで使用するNAVを切り替える。
 これにより、OBSS_PD-based SR及びTwo NAVsが併用されるケースが少なくなるため、無線通信システム全体の挙動が非常に煩雑になることを抑制することができる。また、無線通信システム全体の挙動がシンプルになるため、安定した通信状態を確保することができる。
 例えば、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオンされている環境下では、モード1が行われる。モード1では、IEEE 802.11ax対応の端末STA1は、Conventional NAVのみを使用して仮想キャリアセンスを行う。このような環境下でモード1を行うことにより、BSS1に所属する端末STA1として、IEEE 802.11ax対応の端末STA1及びIEEE 802.11ax非対応の端末STA1が混在する場合には、IEEE 802.11ax非対応の端末STA1が不利になることを抑制することができる。以下、この点につき説明する。
 例えば、IEEE 802.11ax対応の端末STA1が、Basic NAVを使用して仮想キャリアセンスを行うと仮定する。IEEE 802.11ax非対応の端末STA1は、OBSSとなるBSS2からの無線フレームを受信した場合、Conventional NAVを設定して送信禁止区間に入り通信を抑制する。その一方、IEEE 802.11ax対応の端末STA1は、BSS2からの無線フレームを受信した場合、OBSS_PD値の働きによりBasic NAVを設定せずにTXOP(送信機会)を獲得し、BSS1内での通信を始めることがあり得る。この際には、IEEE 802.11ax非対応の端末STA1は、IEEE 802.11ax対応の端末STA1が送信する無線フレームにより新たなConventional NAVを設定してしまうため、たとえBSS2からの干渉が小さくなっていたとしても、BSS1内でのIntra-BSS通信を行うことができない。そのため、IEEE 802.11ax非対応の端末STA1は、IEEE 802.11ax対応の端末STA1と比較して、スループットや通信効率の点で不利になるケースが生じ得る。しかし、モード1では、IEEE 802.11ax対応の端末STA1もConventional NAVを使用するため、IEEE 802.11ax非対応の端末STA1が不利になるケースの発生を抑制することができる。
(2)実施の形態2
 IEEE 802.11ax(HEW)では、OBSS_PD-based SR及びTwo NAVsという2つの仕組みが追加される。しかし、無線通信システムにおいて、OBSS_PD-based SR及びTwo NAVsを併用すると、無線通信システム全体の挙動が非常に煩雑になるという問題がある。また、あるBSSにおいて、そのBSSに所属する端末STAとして、IEEE 802.11ax対応の端末STAのみが存在する特殊環境下では、そのBSSに所属する全ての端末STAにOBSS_PD-based SRを設定可能であるため、OBSS_PD-based SRが適切に機能すれば、OBSSに所属する端末STAまたはアクセスポイントAPからフレームを受信する機会が少なくなり、また、OBSS内のIntra-BSS通信が、BSS内のIntra-BSS通信に干渉を与えることが低減されるため、端末STAはTwo NAVsを使用する必要性が低減される。
 そこで、本実施の形態2は、任意のBSSにおいて、そのBSSに所属するアクセスポイントAP及びIEEE 802.11ax対応の端末STAにOBSS_PD-based SRの設定がオンされている環境下では、そのBSSに所属する端末STAとして、IEEE 802.11ax対応の端末STAのみが存在するか、又は、IEEE 802.11ax対応の端末STA及びIEEE 802.11ax非対応の端末STAが混在するかに応じて、IEEE 802.11ax対応の端末STAが仮想キャリアセンスで使用するNAVをアダプティブに切り替える。
 具体的には、本実施の形態2に係る無線通信システムは、仮想キャリアセンスの動作モードとしてモード0’,4を備えており、モード0’,4の切り替えにより、IEEE 802.11ax対応の端末STAが仮想キャリアセンスで使用するNAVを切り替える。以下、モード0’,4について説明する。なお、以下では、BSS1における動作を例に挙げて説明するが、BSS2における動作も同様であるとする。
 モード0’:
 モード0’は、モード0と異なる点は、BSS1に所属する端末STA1として、IEEE 802.11ax対応の端末STA1のみが存在する環境下で行われることに限定される点のみである。
 すなわち、モード0’は、BSS1に所属する端末STA1として、IEEE 802.11ax対応の端末STA1のみが存在し、かつ、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオンされている環境下で行われる。
 モード0’では、IEEE 802.11ax対応の端末STA1は、Conventional NAV及びtwo NAVs(Intra-BSS NAV及びBasic NAV)を使用して、仮想キャリアセンスを行い、IEEE 802.11ax非対応の端末STA1は、Conventional NAVを使用して、仮想キャリアセンスを行う。
 モード0’をまとめると、以下の表5の通りである。
Figure JPOXMLDOC01-appb-T000005
 モード4:
 モード4は、BSS1に所属する端末STA1として、IEEE 802.11ax対応の端末STA1のみが存在し、かつ、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1にOBSS_PD-based SRの設定がオンされている環境下で行われる。
 モード4では、IEEE 802.11ax対応の端末STA1は、Intra-BSS NAVのみを使用して仮想キャリアセンスを行う。IEEE 802.11ax対応の端末STA1は、NAV値を含む無線フレーム(PPDUフレーム、RTS/CTSフレーム等)を受信すると、受信した無線フレームが、所属するBSS1から受信したIntra-BSSフレームであるか、又は、OBSSとなるBSS2から受信したInter-BSSフレームであるかを判定する。IEEE 802.11ax対応の端末STA1は、Intra-BSSフレームであると判定した場合、Intra-BSSフレームに含まれるNAV値を基にIntra-BSS NAVを更新する。
 モード4をまとめると、以下の表6の通りである。
Figure JPOXMLDOC01-appb-T000006
 続いて、モード4を実現する具体例について、図5を参照して説明する。
 まず、BSS1に所属するアクセスポイントAP1は、Intra-BSS NAV以外のBasic NAV及びConventional NAVを無効化することを指示するシグナリングを、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1に送信する(ステップS401)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームに含めて送信する。
 IEEE 802.11ax対応の端末STA1は、アクセスポイントAP1から上記のシグナリングを受信した場合、Intra-BSS NAV以外のBasic NAV及びConventional NAVを無効化する。これにより、Intra-BSS NAVのみが有効化される(ステップS402)。そのため、IEEE 802.11ax対応の端末STA1は、以降、Intra-BSS NAV のみを使用して仮想キャリアセンスを行うことになる。また、IEEE 802.11ax対応の端末STA1は、受信した無線フレームが、Intra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定するためのOBSS_PD値を任意に選択する(ステップS403)。例えば、OBSS_PD値は、デフォルト値(例えば、OBSS_PDmin)を選択しても良いし、アクセスポイントAP1から予め通知されているOBSS_PDminを選択しても良い。
 IEEE 802.11ax対応の端末STA1は、所属するBSS1のアクセスポイントAP1から、PPDUフレームやRTS/CTSフレーム等の無線フレームを受信した場合(ステップS404)、例えば、受信した無線フレームの受信レベルをOBSS_PD値と比較することで、受信した無線フレームがIntra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定する(ステップS405)。
 ここでは、ステップS404で受信した無線フレームはIntra-BSSフレームとなるため、IEEE 802.11ax対応の端末STA1は、Intra-BSSフレームに含まれるNAV値を基にIntra-BSS NAVを更新する(ステップS406)。以降、IEEE 802.11ax対応の端末STA1は、Intra-BSS NAV>0の期間T4では、物理的キャリアセンスを行わず、利用中のメディアをBUSYとみなして(仮想キャリアセンス)、無線フレームの送信を行わない。
 また、OBSSとなるBSS2に所属するアクセスポイントAP2やIEEE 802.11ax対応の端末STA2がOBSS_PD-based SRを適切に機能させている場合には、IEEE 802.11ax対応の端末STA1が、BSS2から無線フレームを受信するという事象は起こりにくい。しかし、ここでは、IEEE 802.11ax対応の端末STA1は、同一メディア上でOBSSとなるBSS2に所属するアクセスポイントAP2から、たまたま無線フレームを受信したとする(ステップS407)。この場合、IEEE 802.11ax対応の端末STA1は、例えば、受信した無線フレームの受信レベルをOBSS_PD値と比較することで、受信した無線フレームがIntra-BSSフレームであるか、又は、Inter-BSSフレームであるかを判定する(ステップS408)。
 ここでは、ステップS407で受信した無線フレームはInter-BSSフレームとなる。しかし、IEEE 802.11ax対応の端末STA1は、Basic NAV及びConventional NAVを無効化しているため、値を更新しない。そのため、仮想キャリアセンスに影響を与えることはない。
 その後、IEEE 802.11ax対応の端末STA1は、Intra-BSS NAV=0になると、物理的キャリアセンスを再開する(ステップS409)。
 上述したように本実施の形態2によれば、BSSに所属するアクセスポイントAP及びIEEE 802.11ax対応の端末STAにおいて、OBSS_PD-based SRの設定がオンされている環境下では、そのBSSに所属する端末STAとして、IEEE 802.11ax対応の端末STAのみが存在するか、又は、IEEE 802.11ax対応の端末STA及びIEEE 802.11ax非対応の端末STAが混在するかに応じて、IEEE 802.11ax非対応の端末STAが仮想キャリアセンスで使用するNAVを切り替える。
 これにより、OBSS_PD-based SR及びTwo NAVsが併用されるケースが少なくなるため、無線通信システム全体の挙動が非常に煩雑になることを抑制することができる。また、無線通信システム全体の挙動がシンプルになるため、安定した通信状態を確保することができる。
 例えば、BSS1に所属するアクセスポイントAP1及びIEEE 802.11ax対応の端末STA1において、OBSS_PD-based SRの設定がオンされており、かつ、端末STA1として、IEEE 802.11ax対応の端末STA1のみが存在する環境下では、モード4が行われる。モード4では、IEEE 802.11ax対応の端末STA1は、Intra-BSS NAVのみを使用して仮想キャリアセンスを行う。IEEE 802.11ax対応の端末STA1は、NAV値を含む無線フレームを受信すると、受信した無線フレームが、所属するBSS1から受信したIntra-BSSフレームであるか、又は、OBSSとなるBSS2から受信したInter-BSSフレームであるかを判定し、Intra-BSSフレームであると判定した場合にのみ、Intra-BSSフレームに含まれるNAV値を基にIntra-BSS NAVを更新する。
 仮に、BSS1に所属する端末STA1として、IEEE 802.11ax対応の端末STA1のみが存在する環境下で、IEEE 802.11ax対応の端末STA1が、Two NAVsを使用する場合、OBSSとなるBSS2から、たまたま強い受信レベルでNAVを受信してBasic NAVを設定してしまうことがあり得る。しかし、OBSS_PD-based SRが適切に機能している場合、このBasic NAVにより設定された送信禁止区間中に行われるBSS2内のIntra-BSS通信は、BSS1内のIntra-BSS通信に干渉を与えることはない。そのため、Basic NAVによって端末STA1によるBSS1内のIntra-BSS通信を抑制すると、端末STA1のスループットや通信効率を悪化させてしまうケースが生じ得る。モード4では、IEEE 802.11ax対応の端末STA1がBasic NAVを使用しないため、このようなケースの発生を抑制することができる。
(3)実施の形態3
 IEEE 802.11ax(HEW)では、OBSS_PD-based SR及びTwo NAVsという2つの仕組みが追加される。しかし、無線通信システムにおいて、アクセスポイントAP及びIEEE 802.11ax対応の端末STA におけるOBSS_PD-based SRの設定は実装依存であるため、無線通信システム全体の挙動を予測することができないという問題がある。
 そこで、本実施の形態3は、アクセスポイントAP及びIEEE 802.11ax対応の端末STAにおけるOBSS_PD-based SRの設定をアダプティブにオン/オフする。以下、本実施の形態3における3つの動作例について説明する。なお、以下では、BSS1における動作を例に挙げて説明するが、BSS2における動作も同様であるとする。
 動作例1:
 まず、動作例1について、図6を参照して説明する。
 BSS1に所属するアクセスポイントAP1は、BSS1に所属するIEEE 802.11ax非対応の端末STA1の端末数を把握している。ここでは、アクセスポイントAP1は、IEEE 802.11ax非対応の端末STA1の端末数が予め設定された閾値以上になったと判定したとする(ステップS501)。
 すると、アクセスポイントAP1は、自身のOBSS_PD-based SRの設定をオフにする(ステップS502)。また、アクセスポイントAP1は、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1に対し、OBSS_PD-based SRの設定をオフにすることを指示するシグナリングを送信する(ステップS503)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 IEEE 802.11ax対応の端末STA1は、アクセスポイントAP1から上記のシグナリングを受信した場合、自身のOBSS_PD-based SRの設定をオフにする(ステップS504)。
 なお、本動作例1においては、BSS1に所属するIEEE 802.11ax非対応の端末STA1の端末数が予め設定された閾値以上になった場合、以下の動作を追加しても良い。
 ステップS503において、アクセスポイントAP1は、Two NAVsの設定をオフにする(言い換えれば、Two NAVsを利用不可(disabled)にする。以下、同じ)ことも指示するシグナリングを送信する。
 ステップS504において、IEEE 802.11ax対応の端末STA1は、自身のTwo NAVsの設定もオフにする。
 ステップS503におけるシグナリングは、例えばBSS カラービットを無効化することを示す信号であってもよい。
 動作例2:
 続いて、動作例2について、図7を参照して説明する。ここでは、BSS1に所属する端末STA1は、IEEE 802.11ax対応の端末STA1-1,STA1-2のみ(図1参照)であるものとして説明する。
 BSS1に所属するIEEE 802.11ax対応の端末STA1-1は、OBSSとなるBSS2に所属するアクセスポイントAP2から送信されてきたビーコンフレーム等を検出したとする(ステップS601)。また、ビーコンフレーム等にはOBSS_PD-based SRの設定をオフにする指示が含まれていたとする。
 すると、IEEE 802.11ax対応の端末STA1-1は、自身のOBSS_PD-based SRの設定を同様にオフにする(ステップS602)。また、IEEE 802.11ax対応の端末STA1-1は、自身のOBSS_PD-based SRの設定を通知するシグナリング(第1シグナリング)を、BSS1に所属するアクセスポイントAP1に送信する(ステップS603)。このシグナリングは、例えば、マネージメントフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 アクセスポイントAP1は、IEEE 802.11ax対応の端末STA1-1から上記のシグナリングを受信した場合、自身のOBSS_PD-based SRの設定を、端末STA1-1と同様にオフにする(ステップS604)。また、アクセスポイントAP1は、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1-1,1-2に対し、OBSS_PD-based SRの設定を、端末STA1-1と同様にオフにすることを指示するシグナリング(第2シグナリング)を送信する(ステップS605)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 IEEE 802.11ax対応の端末STA1-2は、アクセスポイントAP1から上記のシグナリングを受信した場合、自身のOBSS_PD-based SRの設定を、端末STA1-1と同様にオフにする(ステップS606)。なお、IEEE 802.11ax対応の端末STA1-1は、既にステップS602の時点で、自身のOBSS_PD-based SRの設定をオフしており、この設定を継続する。
 なお、本動作例2においては、アクセスポイントAP2からIEEE 802.11ax対応の端末STA1-1に受信されたビーコンフレーム等に、Two NAVs(Intra-BSS NAV及びBasic NAV)の設定をオフ(無効化)にする指示が含まれていた場合、以下の動作を追加しても良い。
 ステップS602において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定もオフにする。
 ステップS603において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定も通知するシグナリングを送信する。
 ステップS605において、アクセスポイントAP1は、Two NAVsの設定をオフにすることも指示するシグナリングを送信する。
 ステップS606において、IEEE 802.11ax対応の端末STA1-2は、自身のTwo NAVsの設定もオフにする。
 また、これとは逆に、アクセスポイントAP2からIEEE 802.11ax対応の端末STA1-1に受信されたビーコンフレーム等に、Two NAVs(Intra-BSS NAV及びBasic NAV)の設定をオンにする(言い換えれば、Two NAVsを利用可能(enabled)にする。以下、同じ)指示が含まれていた場合、以下の動作を追加しても良い。
 ステップS602において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定もオンにする。
 ステップS603において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定も通知するシグナリングを送信する。
 ステップS605において、アクセスポイントAP1は、Two NAVsの設定をオンにすることも指示するシグナリングを送信する。
 ステップS606において、IEEE 802.11ax対応の端末STA1-2は、自身のTwo NAVsの設定もオンにする。
 動作例3:
 続いて、動作例3について、図8を参照して説明する。ここでは、BSS1に所属する端末STA1は、IEEE 802.11ax対応の端末STA1-1,STA1-2のみ(図1参照)であるものとして説明する。
 BSS1に所属するIEEE 802.11ax対応の端末STA1-1は、OBSSとなるBSS2に所属するアクセスポイントAP2から送信されてきたPPDUフレーム等を検出したとする(ステップS701)。
 すると、IEEE 802.11ax対応の端末STA1-1は、自身のOBSS_PD-based SRの設定をオンにする(ステップS702)。また、IEEE 802.11ax対応の端末STA1-1は、自身のOBSS_PD-based SRの設定を通知するシグナリング(第1シグナリング)を、BSS1に所属するアクセスポイントAP1に送信する(ステップS703)。このシグナリングは、例えば、マネージメントフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 アクセスポイントAP1は、IEEE 802.11ax対応の端末STA1-1から上記のシグナリングを受信した場合、自身のOBSS_PD-based SRの設定を、端末STA1-1と同様にオンにする(ステップS704)。また、アクセスポイントAP1は、BSS1に所属するIEEE 802.11ax対応の全ての端末STA1-1,1-2に対し、OBSS_PD-based SRの設定を、端末STA1-1と同様にオンにすることを指示するシグナリング(第2シグナリング)を送信する(ステップS705)。このシグナリングは、例えば、ビーコンフレーム等の無線フレームのcapability elementや、HE operation elementに含めて送信する。
 IEEE 802.11ax対応の端末STA1-2は、アクセスポイントAP1から上記のシグナリングを受信した場合、自身のOBSS_PD-based SRの設定を、端末STA1-1と同様にオンにする(ステップS706)。なお、IEEE 802.11ax対応の端末STA1-1は、既にステップS702の時点で、自身のOBSS_PD-based SRの設定をオンしており、この設定を継続する。
 なお、本動作例3においては、アクセスポイントAP2からIEEE 802.11ax対応の端末STA1-1にPPDUフレーム等が受信された場合、以下の動作を追加しても良い。
 ステップS702において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定をオンにする。
 ステップS703において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定も通知するシグナリングを送信する。
 ステップS705において、アクセスポイントAP1は、Two NAVsの設定をオンにすることも指示するシグナリングを送信する。
 ステップS706において、IEEE 802.11ax対応の端末STA1-2は、自身のTwo NAVsの設定もオンにする。
 また、上記動作の代わりに、以下の動作を追加しても良い。
 ステップS702において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定をオフにする。
 ステップS703において、IEEE 802.11ax対応の端末STA1-1は、自身のTwo NAVsの設定も通知するシグナリングを送信する。
 ステップS705において、アクセスポイントAP1は、Two NAVsの設定をオフにすることも指示するシグナリングを送信する。
 ステップS706において、IEEE 802.11ax対応の端末STA1-2は、自身のTwo NAVsの設定もオフにする。
 上述したように本実施の形態3によれば、BSSに所属するアクセスポイントAP及びIEEE 802.11ax対応の端末STAは、OBSS_PD-based SRの設定をアダプティブにオン/オフする。
 これにより、アクセスポイントAP及びIEEE 802.11ax対応の端末STAにおけるOBSS_PD-based SRの設定の状況を把握することができるため、無線通信システム全体の挙動を予測しやすくすることができる。
 以下、上述の実施の形態1~3で説明された、ある観点におけるアクセスポイントAP及び端末STAの構成例について説明する。
 図9は、ある観点におけるアクセスポイントAPの構成例を示すブロック図である。アクセスポイントAPは、通信部11、プロセッサ12、及びメモリ13を備えている。通信部11は、所属するBSS内の端末STAと無線通信を行うよう構成されており、プロセッサ12に接続されている。
 メモリ13は、上述の実施の形態で説明されたアクセスポイントAPによる処理を行うための命令群及びデータを含むソフトウェアモジュール(コンピュータプログラム)を格納するように構成されている。メモリ13は、例えば、揮発性メモリ及び不揮発性メモリの組み合わせによって構成されても良い。
 プロセッサ12は、メモリ13からソフトウェアモジュール(コンピュータプログラム)を読み出して実行することで、上述の実施の形態で説明されたアクセスポイントAPの処理を行うように構成されている。プロセッサ12は、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、又はCPU(Central Processing Unit)であっても良い。プロセッサ12は、複数のプロセッサを含んでも良い。
 図10は、ある観点における端末STAの構成例を示すブロック図である。端末STAは、通信部21、プロセッサ22、及びメモリ23を備えている。通信部21は、所属するBSS内のアクセスポイントAPと無線通信を行うよう構成されており、プロセッサ22に接続されている。
 メモリ23は、上述の実施の形態で説明された端末STAによる処理を行うための命令群及びデータを含むソフトウェアモジュール(コンピュータプログラム)を格納するように構成されている。メモリ23は、例えば、揮発性メモリ及び不揮発性メモリの組み合わせによって構成されても良い。
 プロセッサ22は、メモリ23からソフトウェアモジュール(コンピュータプログラム)を読み出して実行することで、上述の実施の形態で説明された端末STAの処理を行うように構成されている。プロセッサ22は、例えば、マイクロプロセッサ、MPU、又はCPUであっても良い。プロセッサ22は、複数のプロセッサを含んでも良い。
 上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を使用して格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Compact Disk-Read Only Memory)、CD-R(CD-Recordable)、CD-R/W(CD-ReWritable)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されても良い。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバなどの有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明における様々な観点を説明したが、本願発明は上記によって限定されるものではない。本願発明の各観点における構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、上記の実施の形態1,2,3は、一部又は全部を相互に組み合わせて用いても良い。
 以上、実施の形態を参照して本願発明における様々な観点を説明したが、本願発明は上記によって限定されるものではない。本願発明の各観点における構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、上記の実施の形態1,2,3は、一部又は全部を相互に組み合わせて用いても良い。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備え、
 前記AP及び前記STAは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD (Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
 無線通信システム。
 (付記2)
 前記APは、
 自身の前記OBSS_PD-based SRを利用不可とし、前記STAに対し、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを送信し、
 前記STAは、自身の前記OBSS_PD-based SRを利用不可とする、
 付記1に記載の無線通信システム。
 (付記3)
 前記APは、
 前記STAに対し、Intra-BSS NAV及びBasic NAVを更新しないために前記シグナリングを送信し、
 前記STAは、
 自身の前記Intra-BSS NAV及び前記Basic NAVの更新をしない、
 付記2に記載の無線通信システム。
 (付記4)
 前記STAは、
 前記OBSSから受信したInter-BSSフレームを基に自身の前記OBSS_PD-based SRを利用可能又は利用不可とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知する第1シグナリングを送信し、
 前記APは、
 自身の前記OBSS_PD-based SRの設定を、前記第1シグナリングで通知された設定と同様にすると共に、前記STAに対し、前記OBSS_PD-based SRの設定を前記第1シグナリングで通知された設定と同様にすることを指示する第2シグナリングを送信し、
 前記STAは、
 自身の前記OBSS_PD-based SRの設定を、前記第2シグナリングで指示された設定と同様にする、
 付記1に記載の無線通信システム。
 (付記5)
 前記STAは、
 前記OBSSから受信したInter-BSSフレームを基に自身のIntra-BSS NAV及びBasic NAVを利用可能又は利用不可とすると共に、前記APに対し、自身の前記Intra-BSS NAV及び前記Basic NAVの設定を通知する前記第1シグナリングを送信し、
 前記APは、
 前記STAに対し、前記Intra-BSS NAV及び前記Basic NAVの設定を、前記第1シグナリングで通知された設定と同様にすることを指示する前記第2シグナリングを送信し、
 前記STAは、
 自身の前記Intra-BSS NAV及び前記Basic NAVの設定を、前記第2シグナリングで指示された設定と同様にする、
 付記4に記載の無線通信システム。
 (付記6)
 前記STAは、
 前記OBSSから受信した第1のビーコンフレームを基に自身の前記OBSS_PD-based SRを利用不可とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知するマネージメントフレームを送信し、
 前記APは、
 前記マネージメントフレームに基づいて自身の前記OBSS_PD-based SRを利用不可とすると共に、前記STAに対し、前記OBSS_PD-based SRを利用不可とすることを指示する第2のビーコンフレームを送信し、
 前記STAは、
 前記第2のビーコンフレームに基づいて自身の前記OBSS_PD-based SRを利用不可とする、
 付記4又は5に記載の無線通信システム。
 (付記7)
 前記STAは、
 前記OBSSから受信したInter BSS PPDUを基に自身の前記OBSS_PD-based SRを利用可能とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知するマネージメントフレームを送信し、
 前記APは、
 前記マネージメントフレームに基づいて自身の前記OBSS_PD-based SRを利用可能とすると共に、前記STAに対し、前記OBSS_PD-based SRの設定をオンすることを指示するビーコンフレームを送信し、
 前記STAは、
 前記ビーコンフレームに基づいて自身の前記OBSS_PD-based SRを利用可能とする、
 付記4乃至6のいずれか1項に記載の無線通信システム。
 (付記8)
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APであって、
 命令を記憶するメモリと、
 前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
 前記プロセッサは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
 AP。
 (付記9)
 前記プロセッサは、
 自身の前記OBSS_PD-based SRを利用不可とし、前記STAに対し、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを送信する、
 付記8に記載のAP。
 (付記10)
 前記プロセッサは、
 前記STAに対し、Intra-BSS NAV及びBasic NAVを更新しないために前記シグナリングを送信する、
 付記9に記載のAP。
 (付記11)
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAであって、
 命令を記憶するメモリと、
 前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
 前記プロセッサは、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
 STA。
 (付記12)
 前記プロセッサは、
 前記APから、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを受信すると、自身の前記OBSS_PD-based SRを利用不可とする、
 付記11に記載のSTA。
 (付記13)
 前記プロセッサは、
 前記APから前記シグナリングを受信すると、自身のIntra-BSS NAV及びBasic NAVの更新をしない、
 付記12に記載のSTA。
 (付記14)
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APによる通信方法であって、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
 通信方法。
 (付記15)
 あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAによる通信方法であって、
 前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
 通信方法。
 この出願は、2017年1月13日に出願された日本出願特願2017-004668を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 AP アクセスポイント
 STA 端末
 11 通信部
 12 プロセッサ
 13 メモリ
 21 通信部
 22 プロセッサ
 23 メモリ

Claims (15)

  1.  あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備え、
     前記AP及び前記STAは、
     前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD (Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
     無線通信システム。
  2.  前記APは、
     自身の前記OBSS_PD-based SRを利用不可とし、前記STAに対し、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを送信し、
     前記STAは、自身の前記OBSS_PD-based SRを利用不可とする、
     請求項1に記載の無線通信システム。
  3.  前記APは、
     前記STAに対し、Intra-BSS NAV及びBasic NAVを更新しないために前記シグナリングを送信し、
     前記STAは、
     自身の前記Intra-BSS NAV及び前記Basic NAVの更新をしない、
     請求項2に記載の無線通信システム。
  4.  前記STAは、
     前記OBSSから受信したInter-BSSフレームを基に自身の前記OBSS_PD-based SRを利用可能又は利用不可とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知する第1シグナリングを送信し、
     前記APは、
     自身の前記OBSS_PD-based SRの設定を、前記第1シグナリングで通知された設定と同様にすると共に、前記BSSに所属する前記STA以外のSTAに対し、前記OBSS_PD-based SRの設定を前記第1シグナリングで通知された設定と同様にすることを指示する第2シグナリングを送信し、
     前記第2シグナリングを受信した前記STAは、
     自身の前記OBSS_PD-based SRの設定を、前記第2シグナリングで指示された設定と同様にする、
     請求項1に記載の無線通信システム。
  5.  前記STAは、
     前記OBSSから受信したInter-BSSフレームを基に自身のIntra-BSS NAV及びBasic NAVを利用可能又は利用不可とすると共に、前記APに対し、自身の前記Intra-BSS NAV及び前記Basic NAVの設定を通知する前記第1シグナリングを送信し、
     前記APは、
     前記BSSに所属する前記STA以外のSTAに対し、前記Intra-BSS NAV及び前記Basic NAVの設定を、前記第1シグナリングで通知された設定と同様にすることを指示する前記第2シグナリングを送信し、
     前記第2シグナリングを受信した前記STAは、
     自身の前記Intra-BSS NAV及び前記Basic NAVの設定を、前記第2シグナリングで指示された設定と同様にする、
     請求項4に記載の無線通信システム。
  6.  前記STAは、
     前記OBSSから受信した第1のビーコンフレームを基に自身の前記OBSS_PD-based SRを利用不可とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知するマネージメントフレームを送信し、
     前記APは、
     前記マネージメントフレームに基づいて自身の前記OBSS_PD-based SRを利用不可とすると共に、前記BSSに所属する前記STA以外のSTAに対し、前記OBSS_PD-based SRを利用不可とすることを指示する第2のビーコンフレームを送信し、
     前記第2のビーコンフレームを受信した前記STAは、
     前記第2のビーコンフレームに基づいて自身の前記OBSS_PD-based SRを利用不可とする、
     請求項4又は5に記載の無線通信システム。
  7.  前記STAは、
     前記OBSSから受信したInter BSS PPDUを基に自身の前記OBSS_PD-based SRを利用可能とすると共に、前記APに対し、自身の前記OBSS_PD-based SRの設定を通知するマネージメントフレームを送信し、
     前記APは、
     前記マネージメントフレームに基づいて自身の前記OBSS_PD-based SRを利用可能とすると共に、前記BSSに所属する前記STA以外のSTAに対し、前記OBSS_PD-based SRの設定をオンすることを指示するビーコンフレームを送信し、
     前記ビーコンフレームを受信した前記STAは、
     前記ビーコンフレームに基づいて自身の前記OBSS_PD-based SRを利用可能とする、
     請求項4乃至6のいずれか1項に記載の無線通信システム。
  8.  あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APであって、
     命令を記憶するメモリと、
     前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
     前記プロセッサは、
     前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
     AP。
  9.  前記プロセッサは、
     自身の前記OBSS_PD-based SRを利用不可とし、前記STAに対し、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを送信する、
     請求項8に記載のAP。
  10.  前記プロセッサは、
     前記STAに対し、Intra-BSS NAV及びBasic NAVを更新しないために前記シグナリングを送信する、
     請求項9に記載のAP。
  11.  あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAであって、
     命令を記憶するメモリと、
     前記命令を処理するように構成される少なくとも1つのプロセッサと、を備え、
     前記プロセッサは、
     前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
     STA。
  12.  前記プロセッサは、
     前記APから、前記OBSS_PD-based SRを利用不可とすることを指示するシグナリングを受信すると、自身の前記OBSS_PD-based SRを利用不可とする、
     請求項11に記載のSTA。
  13.  前記プロセッサは、
     前記APから前記シグナリングを受信すると、自身のIntra-BSS NAV及びBasic NAVの更新をしない、
     請求項12に記載のSTA。
  14.  あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記APによる通信方法であって、
     前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
     通信方法。
  15.  あるBSS(Basic Service Set)に所属するアクセスポイント(AP)及び端末(STA)を備える無線通信システムにおける前記STAによる通信方法であって、
     前記BSSとOBSS(Overlapping BSS)との間の干渉を回避するように調整するOBSS_PD(Power Detect)-based SR(Spatial Reuse)をアダプティブに利用不可とする、
     通信方法。
PCT/JP2018/000446 2017-01-13 2018-01-11 無線通信システム、アクセスポイント、端末、通信方法 WO2018131637A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018561407A JP6677322B2 (ja) 2017-01-13 2018-01-11 無線通信システム、アクセスポイント、端末、通信方法
EP18738830.1A EP3554173B1 (en) 2017-01-13 2018-01-11 Wireless communication system, access point, terminal, and communication method
MYPI2019003971A MY193925A (en) 2017-01-13 2018-01-11 Wireless communication system, access point, terminal, and communication method
CN201880006626.XA CN110178436B (zh) 2017-01-13 2018-01-11 无线通信系统、接入点、终端和通信方法
EP21211177.7A EP3979756A1 (en) 2017-01-13 2018-01-11 Wireless communication system, access point, terminal, and communication method
US16/507,673 US10986664B2 (en) 2017-01-13 2019-07-10 Access point, terminal, and communication method for controlling network allocation vector
US17/216,831 US11812466B2 (en) 2017-01-13 2021-03-30 Access point, terminal, and communication method for controlling network allocation vector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004668 2017-01-13
JP2017004668 2017-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/507,673 Continuation US10986664B2 (en) 2017-01-13 2019-07-10 Access point, terminal, and communication method for controlling network allocation vector

Publications (1)

Publication Number Publication Date
WO2018131637A1 true WO2018131637A1 (ja) 2018-07-19

Family

ID=62840058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000446 WO2018131637A1 (ja) 2017-01-13 2018-01-11 無線通信システム、アクセスポイント、端末、通信方法

Country Status (6)

Country Link
US (2) US10986664B2 (ja)
EP (2) EP3979756A1 (ja)
JP (5) JP6677322B2 (ja)
CN (1) CN110178436B (ja)
MY (1) MY193925A (ja)
WO (1) WO2018131637A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261454A1 (en) * 2018-05-11 2019-08-22 Intel Corporation Handling radio resource control (rrc) configured channels and signals with conflict direction
US11212750B1 (en) * 2020-07-23 2021-12-28 Huawei Technologies Co., Ltd. Method, device, and medium for spatial frequency reuse in wireless networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134821A (ja) * 2015-01-21 2016-07-25 日本電信電話株式会社 無線通信方法、無線通信システムおよび無線通信装置
WO2016195011A1 (ja) * 2015-06-05 2016-12-08 シャープ株式会社 無線通信装置、通信方法及び集積回路
JP2017004668A (ja) 2015-06-08 2017-01-05 アイリスオーヤマ株式会社 直管形照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093831A2 (en) * 2001-05-15 2002-11-21 Koninklijke Philips Electronics N.V. Overlapping network allocation vector (onav) for avoiding collision in the ieee 802.00 wlan operating under hcf
US8125952B2 (en) * 2009-05-08 2012-02-28 Qualcomm Incorporated Synchronious multi-channel transmissions in wireless local area networks
CN104202535B (zh) * 2014-06-30 2017-10-27 杭州光典医疗器械有限公司 一种自动曝光方法及装置
JP6536792B2 (ja) 2015-03-25 2019-07-03 セイコーエプソン株式会社 超音波センサー及びその製造方法
JP6697003B2 (ja) * 2015-04-29 2020-05-20 インターデイジタル パテント ホールディングス インコーポレイテッド Wlanにおけるサブチャネル化送信方式のための方法およびデバイス
JP2018121094A (ja) * 2015-06-05 2018-08-02 シャープ株式会社 無線通信装置、通信方法及び通信システム
WO2017074024A1 (ko) * 2015-10-26 2017-05-04 엘지전자 주식회사 무선랜 시스템에서 nav를 업데이트하는 방법 및 이를 위한 장치
CN114364053A (zh) * 2016-08-25 2022-04-15 华为技术有限公司 一种数据通信方法及装置
CN110024338B (zh) * 2016-09-30 2021-06-25 中兴通讯股份有限公司 改进空间复用中的edca机制的技术
CN108271263B (zh) * 2016-12-30 2019-07-09 中兴通讯股份有限公司 空间复用的方法及装置
WO2018128497A1 (ko) * 2017-01-08 2018-07-12 엘지전자 주식회사 무선랜 시스템에서 채널 엑세스 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134821A (ja) * 2015-01-21 2016-07-25 日本電信電話株式会社 無線通信方法、無線通信システムおよび無線通信装置
WO2016195011A1 (ja) * 2015-06-05 2016-12-08 シャープ株式会社 無線通信装置、通信方法及び集積回路
JP2017004668A (ja) 2015-06-08 2017-01-05 アイリスオーヤマ株式会社 直管形照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT STACEY: "Specification Framework for TGax", IEEE 802. 11-15/0132R17, 25 May 2016 (2016-05-25), pages 41 - 43, XP055452275, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/15/11-15-0132-17-00ax-spec-framework.docx> *

Also Published As

Publication number Publication date
JP6795111B2 (ja) 2020-12-02
CN110178436A (zh) 2019-08-27
JPWO2018131637A1 (ja) 2019-11-07
JP2021007268A (ja) 2021-01-21
JP6677322B2 (ja) 2020-04-08
CN110178436B (zh) 2021-04-27
EP3554173A4 (en) 2019-12-18
EP3554173B1 (en) 2022-03-02
JP2021007267A (ja) 2021-01-21
JP7020526B2 (ja) 2022-02-16
US20210219338A1 (en) 2021-07-15
EP3979756A1 (en) 2022-04-06
US20190335498A1 (en) 2019-10-31
JP2020099100A (ja) 2020-06-25
US11812466B2 (en) 2023-11-07
EP3554173A1 (en) 2019-10-16
US10986664B2 (en) 2021-04-20
JP7020527B2 (ja) 2022-02-16
JP6973464B2 (ja) 2021-12-01
JP2020025356A (ja) 2020-02-13
MY193925A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US10791572B2 (en) Communication apparatus that permits high frequency utilization efficiency while reducing interference, control method, and storage medium
US11700636B2 (en) Wireless communication system, access point, terminal, and communication method
JP7020527B2 (ja) 無線通信システム、アクセスポイント、端末、通信方法
EP3342239B1 (en) Wlan nodes, and methods therein for efficient usage of wlan resources
JP6614366B2 (ja) 無線通信システム、アクセスポイント、端末、通信方法
US20230371078A1 (en) Communication apparatus, control method for communication apparatus, and storage medium
WO2022050218A1 (ja) 通信装置、制御方法、およびプログラム
JP2023042335A (ja) 通信装置、通信方法、及び、プログラム
EP4178281A1 (en) Control device and control method therefor, communication device and communication method therefor, and program
CN117941452A (en) Access point device, communication method, communication system, and program
JP2022073248A (ja) 通信装置、制御方法、およびプログラム
JP2023145261A (ja) 通信装置、通信方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018738830

Country of ref document: EP

Effective date: 20190711