WO2018130057A1 - 调度方法及相关设备 - Google Patents

调度方法及相关设备 Download PDF

Info

Publication number
WO2018130057A1
WO2018130057A1 PCT/CN2017/117768 CN2017117768W WO2018130057A1 WO 2018130057 A1 WO2018130057 A1 WO 2018130057A1 CN 2017117768 W CN2017117768 W CN 2017117768W WO 2018130057 A1 WO2018130057 A1 WO 2018130057A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
logical channel
base station
terminal
mode
Prior art date
Application number
PCT/CN2017/117768
Other languages
English (en)
French (fr)
Inventor
于海凤
熊新
于峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019014284-3A priority Critical patent/BR112019014284A2/pt
Priority to EP17891059.2A priority patent/EP3554163A4/en
Priority to AU2017392744A priority patent/AU2017392744B2/en
Publication of WO2018130057A1 publication Critical patent/WO2018130057A1/zh
Priority to US16/511,452 priority patent/US20190342903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and more specifically, to a scheduling method and related devices.
  • LTE Long Term Evolution
  • eNB base station
  • UE User Equipment
  • the LTE scheduling process specifically includes five steps as shown in FIG. 1 , where the terminal sends a scheduling request (Scheduling Request, SR) to the base station, and the base station returns an uplink grant (UL Grant) resource to the terminal, and the terminal uses the uplink.
  • the authorized resource sends a Buffer State Report (BSR), and the buffer status report carries the data volume of the service data to be sent.
  • BSR Buffer State Report
  • the base station returns an uplink grant resource corresponding to the data volume to the terminal, and the terminal uses the uplink grant resource to send the service data.
  • the present application provides a scheduling method, including: if a target logical channel has service data to be sent, sending a scheduling indication to a base station; wherein the target logical channel is a logical channel specified by a base station or a terminal,
  • the scheduling indication is used to indicate that the base station allocates an uplink grant resource to the target logical channel according to a preset allocation manner; and receives an uplink grant resource sent by the base station.
  • the terminal may send a scheduling indication to the base station to indicate that the base station can allocate the uplink authorization resource to the terminal in a preset accelerated manner, thereby simplifying the steps related to allocating the uplink authorization resource in the existing scheduling process, thereby shortening The delay of the existing scheduling process.
  • the sending the scheduling indication to the base station includes: sending a scheduling request to the base station, where the scheduling request uses the bit to carry the scheduling indication.
  • the scheduling indication is carried in the scheduling request in an explicit manner to increase the bit, and the sending manner of the scheduling indication is relatively simple and easy to implement.
  • the sending the scheduling indication to the base station includes: sending a period according to a preset scheduling request, And sending a scheduling request to the base station; where the preset scheduling request sending period is shorter than a scheduling request sending period of other logical channels except the target logical channel.
  • the terminal sends a scheduling request according to a preset scheduling request sending period, and implicitly indicates that the terminal sends a scheduling indication to the base station, and does not need to add a bit in the scheduling request, thereby reducing resources used for sending the scheduling request.
  • the sending the scheduling indication to the base station includes: sending a buffer status report to the base station, wherein the buffer status report uses the bit position to carry the scheduling indication.
  • the scheduling indication is carried in the cache status report in an explicit manner of the bit, and the sending manner of the scheduling indication is relatively simple and easy to implement.
  • the sending the scheduling indication to the base station includes: sending a buffer status report to the base station at a preset location of the physical uplink shared channel.
  • the terminal sends a buffer status report on the preset position of the physical uplink shared channel, and implicitly indicates that the terminal sends a scheduling indication to the base station, and does not need to add a bit in the buffer status report, thereby reducing the sending buffer status report. The resources consumed.
  • the application provides a scheduling method, including: if a target logical channel has service data to be sent, generating a scheduling request, where the target logical channel is a logical channel specified by a base station or a terminal,
  • the scheduling request includes the buffering state information, and the scheduling request is sent to the base station, where the buffering state information in the scheduling request is used by the base station to allocate an uplink grant resource, and the uplink grant resource sent by the base station is received.
  • the cache state information includes data volume indication information
  • the data volume indication information includes: a data volume value of the service data; or a data volume index of the service data; wherein the data The quantity index is used to indicate the data amount range of the business data.
  • the present application provides a scheduling method, including: if a target logical channel has service data to be sent, sending a buffer status report to a base station by using a pre-configured uplink resource; wherein the target logical channel is a base station Or the logical channel specified by the terminal, where the buffer status report is used by the base station to allocate an uplink grant resource for the target logical channel; and receive an uplink grant resource sent by the base station.
  • the buffer status report is sent by using the pre-configured uplink resource, thereby omitting the step of requesting the uplink resource from the base station, thereby shortening the delay of the existing scheduling process.
  • the sending the buffer status report to the base station by using the pre-configured uplink resource includes: sending the same cache status report to the base station multiple times using the pre-configured uplink resource.
  • the buffer status report is sent multiple times, and the base station can receive the success rate of the buffer status report.
  • the application provides a scheduling method, including: after receiving a detection instruction, continuously detecting whether the target logical channel of the terminal has service data to be sent; wherein the target logical channel is a base station or a terminal a predetermined logical channel; if the target logical channel has service data to be sent, the preset first scheduling mode is enabled; wherein the first scheduling mode is a scheduling mode for sending a scheduling request, and the scheduling request carries Any one or more of the following items: a scheduling indication, a cache status information, and a type of the service data; if the enabled duration of the first scheduling mode reaches a first preset duration, the first scheduling is performed The mode is switched to a preset second scheduling mode, where the second scheduling mode is a scheduling mode that sends a buffer status report to the base station by using the pre-stored uplink resource.
  • the resource used in the first scheduling mode is a limited resource, and switching between the first scheduling mode and the second scheduling mode may alleviate the tight demand of the first scheduling mode for limited
  • the scheduling method further includes: if the first scheduling mode is enabled, if the target logic The first scheduling mode is disabled if the service data to be transmitted is no longer available on the channel, and the duration of the service data does not have the second preset duration.
  • the scheduling method further includes: after the first scheduling mode is disabled, if the service data to be sent is detected on the target logical channel, the first scheduling mode is enabled.
  • the application provides a scheduling method, including: receiving a scheduling indication sent by a terminal, where the scheduling indication is sent when the target logical channel of the terminal has service data to be sent, where the target logic is sent.
  • the channel is a logical channel designated by the base station or the terminal; the uplink authorized resource is allocated to the target logical channel according to a preset allocation manner.
  • the method is applied to the base station side, and after receiving the scheduling indication, quickly allocates the uplink authorization resource to the terminal, thereby simplifying the steps related to allocating the uplink authorization resource in the existing scheduling process, thereby shortening the delay of the existing scheduling process. .
  • the allocating an uplink grant resource to the target logical channel according to a preset allocation manner includes: separately assigning an uplink grant resource to the target logical channel; or, after a preset short time interval And allocating an uplink grant resource to the target logical channel, where the short time interval indicates that the time interval for obtaining the uplink grant resource by the target logical channel is shorter than the time interval of other logical channels; or, when multiple logical channels are received
  • the uplink logical resource is preferentially allocated to the target logical channel; or, according to the data volume of the service data on the target logical channel, the target logical channel is allocated more than the data volume. More upstream authorization resources.
  • the application provides a scheduling configuration method, where the method includes: determining a logical channel that uses a preset scheduling mode; and sending, to the terminal, an identifier of the preset scheduling mode and an identifier of the logical channel;
  • the preset scheduling mode is any one of the following three modes: a first scheduling mode, a second scheduling mode, and a mode of converting between the first scheduling mode and the second scheduling mode;
  • the first scheduling mode is a base station
  • Receiving a scheduling mode of the scheduling request sent by the terminal where the scheduling request carries any one or more of the following items: a scheduling indication, a buffering status information, a type of the service data, and the second scheduling mode is a base station receiving
  • the terminal sends a scheduling mode of the buffer status report by using the pre-stored uplink resource.
  • the method is a configuration method before the scheduling method, so that the terminal can perform scheduling according to the configured scheduling mode, so as to shorten the delay of the existing scheduling method.
  • the sending, by the terminal, the identifier of the preset scheduling mode and the identifier of the logical channel including: sending a logical channel connection reconfiguration message to a terminal, where the logical channel connection reconfiguration message The identifier of the preset scheduling mode and the identifier of the logical channel are included; or the physical downlink control channel resource is sent to the terminal, where the physical downlink control channel resource includes the identifier of the preset scheduling mode and the logic The identifier of the channel; or, the medium access control unit is sent to the terminal, where the media access control unit includes an identifier of the preset scheduling mode and an identifier of the logical channel.
  • the application provides a scheduling configuration method, including: receiving an identifier of a preset scheduling mode and an identifier of a logical channel sent by a base station; where the preset scheduling mode is any one of the following three types: a first scheduling mode, a second scheduling mode, and a mode for converting between the first scheduling mode and the second scheduling mode; the first scheduling mode is a scheduling mode in which the terminal sends a scheduling request to the base station, where the scheduling request carries the following Any one or more of a plurality of items: a scheduling indication, a buffer status information, and a type of the service data; the second scheduling mode is a scheduling mode in which the terminal sends a buffer status report to the base station by using the pre-stored uplink resource; Corresponding logic of the logical channel identifier The channel is determined as the target logical channel, and the scheduling mode corresponding to the identifier of the preset scheduling mode is determined as the scheduling mode used by the terminal.
  • the method is a configuration method before the scheduling method, so that the
  • the present application provides a terminal having a function of implementing a scheduling method of the foregoing application on a terminal.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a terminal having a function of implementing a scheduling configuration method of the foregoing application on a terminal.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a base station having a function of implementing a scheduling method of the foregoing application on a base station.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a base station having a function of implementing a scheduling configuration method of the foregoing application on a base station.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a terminal including the above processor and a communication interface.
  • the processor can implement the function of a processing module applied on the terminal, and the communication interface can implement the functions of the transmitting module and/or the receiving module applied to the terminal.
  • the present application provides a base station including the above processor and a communication interface.
  • the processor can implement the function of a processing module applied on the terminal, and the communication interface can implement the functions of the transmitting module and/or the receiving module applied to the terminal.
  • the present application provides a communication system including the terminal and base station described in the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the terminal described above, including a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the base station described above, including a program designed to perform the above aspects.
  • the existing scheduling process is simplified, thereby shortening the delay of the existing scheduling process and ensuring the fast and efficient communication service.
  • FIG. 1 is a schematic flowchart of a current LTE scheduling process
  • FIG. 2 is a schematic diagram of connection and scheduling interaction between a terminal and a base station provided by the present application
  • FIG. 3 is a flowchart of Embodiment 1 of a scheduling method provided by the present application.
  • Embodiment 4 is a flowchart of Embodiment 2 of a scheduling method provided by the present application.
  • FIG. 5 is a flowchart of Embodiment 3 of a scheduling method provided by the present application.
  • FIG. 6 is a flowchart of Embodiment 4 of a scheduling method provided by the present application.
  • FIG. 7 is a flowchart of a BSR repeated transmission mode provided by the present application.
  • FIG. 8 is a flowchart of Embodiment 5 of a scheduling method provided by the present application.
  • FIG. 10 is a schematic structural diagram of hardware of a terminal provided by the present application.
  • FIG. 11 is a schematic structural diagram of hardware of a base station provided by the present application.
  • URLLC Ultra-Reliable and Low Latency Communications
  • the URLLC service is not a specific service name, but a type of service, which requires a small delay in the communication process. Therefore, as long as it is a communication service requiring time delay, it is within the protection scope of the present application.
  • the technical solution of the present application will be described below by taking the URLLC service as an example.
  • the LTE scheduling process can implement the communication service between the base station and the terminal.
  • the LTE scheduling process cannot meet the low delay requirement of the service. This is because, in the existing LTE scheduling process, before the terminal uploads the service data, it is necessary to exchange control signaling between the terminal and the base station multiple times to configure the communication resource for the upload of the service data.
  • FIG. 1 shows a flow diagram of an existing LTE scheduling flow. As shown in FIG. 1, the process specifically includes five steps.
  • Step 1 When the terminal has a communication service demand, the terminal sends a scheduling request (Scheduling Request, SR) to the base station. There is only one bit in the scheduling request SR to inform the base station that the UE needs an uplink grant (UL Grant).
  • SR scheduling request
  • UL Grant uplink grant
  • Step 2 The base station sends a UL Grant to the terminal for the terminal to send a Buffer State Report (BSR).
  • BSR Buffer State Report
  • Step 3 The terminal sends a BSR by using the UL Grant, and the BSR is used to report the amount of data of the service data to be sent by the terminal.
  • Step 4 The base station allocates a UL Grant to the terminal according to the BSR and the scheduling algorithm reported by the terminal, and the UL Grant is used by the terminal to send service data (the service data may also be referred to as uplink data).
  • Step 5 The terminal sends the service data (Data) using the UL Grant.
  • the uplink grant UL grant for sending the BSR sent in the step 2 is referred to as the first uplink grant (UL Grant_1), and is sent in step 4, in order to facilitate the distinguishing.
  • the uplink grant UL Grant for transmitting service data is the second uplink grant (UL Grant_2).
  • the uplink authorization may also be referred to as an uplink authorization resource.
  • the base station needs to determine the size of the second uplink grant resource according to the data volume of the service data to be uploaded by the terminal, but the terminal does not directly inform the base station of the data volume of the data to be sent, but first steps through 1 report
  • the base station is required to send the service data, and waits for the base station to send the first uplink authorization resource in step 2, and then uses the first uplink authorization resource to upload the data amount of the to-be-sent data in step 3.
  • the base station temporarily determines the second uplink grant required by the terminal according to the data volume and the scheduling algorithm, and then sends the second uplink grant to the terminal.
  • the terminal needs to perform multiple signaling interactions (including at least the interaction of steps 1 to 4) before transmitting the service data to the base station. See Table 1, which shows the delay data in the LTE scheduling process. As can be seen from Table 1, each terminal and the base station need to spend a certain processing time in each signaling interaction. The more signaling interactions, the more The resulting delay is longer.
  • the scheduling process delay before the terminal sends the service data to the base station is long.
  • the present application provides a scheduling method to shorten the delay caused by the scheduling process, and then meets the delay requirement of the service in a scenario in which the terminal sends a low-latency and high-reliability communication URLLC service.
  • the SR sent by the terminal carries more information, and the information is originally carried in the BSR for the base station to generate an uplink grant for uploading service data (ie, the second uplink grant).
  • step 2 of transmitting the first uplink grant and step 3 of transmitting the BSR can be reduced, thereby shortening the delay of the scheduling process.
  • the terminal may carry more information in the SR, and the terminal having the function may be based on the configuration of the base station in the connection process before the scheduling process.
  • the connection process is performed between the terminal and the base station before the scheduling process.
  • the base station sends a Radio Resource Control (RRC) connection reconfiguration message to the terminal.
  • RRC connection reconfiguration message includes a configuration message for the logical channel, and different services use different logical channels, and the base station
  • the logical channel used by the URLLC service may be configured, that is, a configuration identifier is added to the configuration message of the logical channel used by the URLLC service, and the configuration identifier is used to indicate that the terminal can send the SR in an enhanced manner in the logical channel.
  • the terminal when the terminal performs the scheduling process, the terminal encapsulates more information in the SR sent to the base station according to the indication of the configuration identifier. Certainly, if the terminal does not detect the configuration identifier in the RRC connection reconfiguration message, the terminal may send the SR according to the existing manner.
  • the configuration identifier added in the configuration message of the logical channel may be an information element (IE).
  • the specific name of the information unit IE may be logicalChannel-SR-Enhancement-mask-r15.
  • the configuration indication sent by the base station to the terminal is not limited to the added configuration identifier in the RRC connection reconfiguration message, and may be other forms, such as the configuration identifier may be carried on the physical downlink control channel (Physical Downlink). Control Channel, PDCCH) resource or MAC CE.
  • the Medium Access Control (MAC) Control Element (CE) may be referred to as a Media Access Control Unit.
  • the manner in which the base station sends the configuration indication to the terminal may not be limited to the connection process, or may be other processes before the scheduling process or in the scheduling process.
  • the terminal may implement the function, which may be based on the configuration of the base station as described above, but may also be the configuration of the terminal itself, that is, the terminal generates a configuration indication for the logical channel where the URLLC service is located, to indicate that the logical channel is used in the logical channel.
  • the enhanced mode sends the SR.
  • FIG. 3 is a flowchart of the first embodiment of the scheduling method provided by the present application, and specifically includes steps S301-S303.
  • the terminal When the terminal needs to send the URLLC service data, the terminal sends an enhanced SR to the base station, where the enhanced SR carries the cache state information in the BSR.
  • the terminal determines whether the service data of the URLLC service needs to be sent. If the service data of the URLLC service needs to be sent, the terminal generates an SR reported to the base station.
  • the service data of the URLLC service may be sent on the logical channel designated by the base station, or may not be sent on the logical channel designated by the base station.
  • the SR generated by the terminal contains more information than the existing SR shown in FIG. 1. Therefore, for the sake of distinction, the SR generated in this embodiment may be referred to as an enhanced SR.
  • the existing SR contains only one bit, which is used to inform the base station terminal that it has the service data to be transmitted. If you want to add cache status information to the SR, you can add bits to the SR and use the added bits to indicate the new cache status information.
  • the enhanced SR carries the indication information of the service data to be sent by the terminal, and carries the cache status information originally carried in the BSR.
  • the cache status information originally carried in the BSR is enhanced by the added cache status information in the SR, including but not limited to any one or combination of the following: the data volume of the service data to be sent, the logical channel (or logical channel group) ) the logo.
  • the amount of data to be sent is used by the base station to calculate the size of the uplink grant resource (ie, the second uplink grant resource).
  • the identifier of the logical channel group is used by the base station to determine which logical channel group the uplink grant resource is allocated to, and the logical channel group includes a logical channel for transmitting service data.
  • the added cache state information in the enhanced SR includes data volume indication information of the service data to be sent, and the data volume indication information is used to represent the data volume of the service data.
  • the data amount indication information may be in the following form Any one:
  • the base station stores a correspondence table of the first-level index of the data volume and the first-level range of the data volume. After receiving the index of the data volume index, the base station searches the corresponding table for the data volume level corresponding to the index of the primary index of the data volume. , thereby determining the approximate amount of data of the service data to be transmitted in the terminal.
  • the base station can determine that the amount of data of the service data to be sent in the terminal is between 300 and 400.
  • the amount of data of the mode carried in the SR is enhanced, and the information provided by the base station is not accurate, and the base station can only roughly determine the amount of data of the service data to be sent.
  • the base station not only stores the above correspondence table, but also stores a correspondence table of the secondary index of the data amount secondary index and the secondary range of the data amount.
  • the first correspondence table may be referred to as a first correspondence table
  • the second correspondence table may be referred to as a second correspondence table.
  • the enhanced SR further includes a secondary index sub-index of data in addition to the index index of the data volume. The role of the data volume secondary index sub-index is to provide more detailed data volume range information.
  • the base station searches for the data amount in the first-level correspondence table according to index 3, and the range of the data is 300-400, according to the sub-index 6
  • the secondary data range found in the secondary correspondence table is 60-70, and the amount of data to be sent is determined to be between 360 and 370.
  • the enhanced data carrying the form in the SR can provide a more detailed data volume range search basis for the base station, so that the base station can more accurately determine the data volume of the service data to be sent.
  • the indexes of the above two methods can be summarized as an index of the amount of data, and the index of the amount of data is used to indicate the range of the amount of data.
  • the index of the amount of data may include several levels of indexes, each of which indicates a finer range of data amount than the range of data indicated by the upper level index.
  • the primary index indicates the data amount range on the hundred digits
  • a three-level index may be further included, and the three-level index may indicate a range of data amounts on the individual bits.
  • the range of data indicated by the primary index, the secondary index, and the tertiary index is not limited to hundreds, ten, and ones, but may be a range of values on other units.
  • the terminal stores the service data to be sent in the cache Buffer, and records the amount of data in the buffer Buffer, which is the amount of data of the service data to be sent.
  • the enhanced SR does not carry the index of the above form, but carries the specific value of the data volume in the buffer Buffer, for example, 365.
  • the enhanced amount of data carried in the SR can provide the most detailed basis for the base station.
  • the base station can generate the uplink resource with the most accurate resource size. Compared with the above two forms, this form is the most accurate, but the overhead of the bit is the largest. In practical applications, the corresponding data form can be selected according to actual needs.
  • the present application provides three specific forms for enhancing the amount of data carried in the SR, but is not limited thereto, as long as it can provide more detailed data amount information for the base station.
  • the terminal may determine the amount of data to be transmitted by the terminal, or may be determined by the base station, that is, the base station transmits an indication of which form of data is used in the RRC connection reconfiguration message to the terminal, so that the terminal according to the Indicates what form of data is sent.
  • the enhanced SR can be sent to the base station.
  • S302 The base station allocates a UL Grant to the terminal according to the cache state information carried by the enhanced SR.
  • the base station allocates an uplink grant resource UL Grant to the terminal according to the cache state information carried in the enhanced SR, and the uplink grant resource is the second uplink grant resource described above, for the terminal to upload the service data.
  • the base station sends the uplink grant resource UL Grant to the terminal.
  • S303 The terminal uploads the service data by using the UL Grant.
  • the terminal uses the uplink grant resource UL Grant allocated by the base station to upload the URLLC service data to be sent to the base station.
  • this embodiment needs to add a bit in the SR to carry more information.
  • the terminal needs to use the Physical Uplink Control Channel (PUCCH) resource to send the SR.
  • PUCCH Physical Uplink Control Channel
  • the enhanced SR generated by the terminal carries the information required for scheduling, and the information is originally included in the BSR.
  • the information required for scheduling is included in the enhanced SR, so that the information in FIG. 1 can be omitted.
  • Step 2 of transmitting the UL Grant in the existing scheduling process and step 3 of transmitting the BSR (the step of the dotted line of the drawing fork shown in FIG. 3 is omitted), thereby shortening the delay of the existing scheduling process.
  • the enhanced SR generated by the terminal includes the cache state information in the original BSR, and the purpose is to reduce steps 2 and 3 in the existing scheduling process.
  • the processing of some steps can be simplified, which can also shorten the delay of the existing scheduling process.
  • the enhanced SR generated by the terminal may carry a high priority scheduling indication (which may be simply referred to as a priority scheduling indication or a scheduling indication) of the URLLC service data to be sent, so that the base station quickly allocates the first uplink authorization for the URLLC service data based on the high priority scheduling indication. Resources, thereby simplifying the processing of steps 2 and/or 3 in Figure 1.
  • FIG. 4 is a flowchart of the second embodiment of the scheduling method provided by the present application, and specifically includes steps S401 to S405.
  • the terminal When the terminal needs to send the URLLC service data, the terminal sends an enhanced SR to the base station, where the enhanced SR carries a high priority scheduling indication set for the URLLC service data.
  • the base station can process multiple service data at the same time. If the priority of the service data is high, the base station can perform a faster uplink authorization resource allocation mode for the service data than the prior art. Therefore, the terminal can set the scheduling priority of the URLLC service data to a high priority, and when the URLLC service data needs to be sent, carry the high priority scheduling indication in the enhanced SR, so that the base station quickly allocates the second uplink for the URLLC service data.
  • Authorization resources the specific quick allocation method, refer to the description of step S402.
  • the SR carrying a high priority scheduling indication can be implemented in the following explicit or implicit manner.
  • the first type the enhanced SR explicitly carries the high priority scheduling indication of the service data to be sent, that is, the enhanced SR usage bit carries the scheduling indication.
  • a bit indicating a priority is added to the enhanced SR, and the value of the bit is set to be high.
  • the priority indication may include only two types. If the priority of the URLLC service data is high, the other service data is prioritized. The level indication is low. Further, the value of the bit can be set to a priority value. For example, a natural number is used to indicate a priority value, and a lower value indicates a higher priority. Therefore, if the priority level of the URLLC service data is to be set to the highest, the priority indication of the URLLC service data can be set to zero.
  • the enhanced SR implicitly carries a high priority scheduling indication of the service data to be transmitted.
  • the terminal and the base station establish multiple logical channels, and different logical channels are used to send different service data.
  • Each logical channel of the terminal continuously sends an SR according to a certain transmission period, and the transmission period may be referred to as an SR transmission period (that is, a scheduling request transmission period).
  • the transmission period of each logical channel is the same.
  • the transmission period of the logical channel used by the URLLC service data can be shortened in advance, so that the SR transmission period of the URLLC service data is shorter than the SR transmission period of other service data.
  • the shortened SR sending period may be referred to as a preset scheduling request sending period, and the preset scheduling request sending period is smaller than the scheduling request sending period corresponding to other services except the URLLC service.
  • the base station can agree with the terminal through a protocol. The shorter the transmission period of the SR, the higher the priority of the service data to be sent corresponding to the SR.
  • the terminal can not only indicate the high priority of the to-be-sent service data corresponding to the SR to the base station by sending the SR, but also shorten the waiting time of the to-be-sent service data to the uplink authorized resource, and reduce resources. Waiting for the delay.
  • the length of the SR transmission period can be set by the terminal itself or by the base station. If set by the base station, the base station may configure the SR transmission period in the connection process before the scheduling process. For example, the base station sends the SR transmission period to the terminal in the RRC connection reconfiguration message, where the SR transmission period indicates the service data to be sent. A higher priority transmission period.
  • the terminal In the first mode, a new bit is added to the enhanced SR sent by the terminal, which is used to explicitly inform the base station that the priority of the service data to be sent is high.
  • the terminal In the second mode, the terminal does not directly inform the base station of the above information, but implicitly indicates the high priority of the service data to be transmitted through a shorter SR transmission period.
  • the high-priority scheduling indication of the service data to be sent may be reported to the base station in any of the above manners.
  • the enhanced SR is sent to the base station, and the enhanced SR is sent according to a certain transmission period. If the enhanced SR carries the high priority scheduling indication of the service data to be transmitted in the second manner, that is, the implicit manner, the transmission period of the enhanced SR is necessarily shorter than the transmission period of other service data.
  • the base station allocates a UL Grant to the terminal by using a fast allocation manner according to the high priority scheduling indication carried by the enhanced SR.
  • the UL Grant is used by the terminal to upload the BSR.
  • the base station may detect whether the SR includes a priority indication and the priority indication is a high bit. If detected, it indicates that the SR is an enhanced SR that carries a high priority scheduling indication. If the terminal uses the implicit mode to carry the high-priority scheduling indication, the base station determines the sending period of the SR after receiving the SR. If the sending period is shorter than the sending period of the other SR, the determining that the SR is carrying Enhanced SR indicated by high priority scheduling.
  • the terminal After determining that the enhanced SR is received, the terminal allocates the first uplink authorization resource by using a preset accelerated allocation manner.
  • the fast allocation mode is implemented based on the high priority scheduling indication, and may include any one of the following four modes or a combination of any multiple. It should be noted that there is no conflict between multiple ways of combining, so it can be combined use.
  • the first type of fast allocation is separately allocated, that is, the uplink authorization resources are separately allocated for the service data with the high priority scheduling indication.
  • the terminal reports the sum of the data volume of the service data to be sent of the multiple logical channels to the base station, and the base station generates the uplink grant resource according to the sum of the data amount and sends the uplink grant resource to the terminal.
  • the terminal After receiving the uplink authorization resource, the terminal re-allocates the uplink authorization resource to each logical channel according to the requirement of each logical channel.
  • the base station in this embodiment may separately allocate an uplink grant resource for the logical channel where the URLLC service data is located, that is, after generating an uplink grant resource for the URLLC service data, the base station indicates that the uplink grant resource is allocated to the logic of the URLLC service data. channel.
  • the terminal after receiving the uplink authorization resource, the terminal can directly allocate the uplink authorization resource to the logical channel where the URLLC service data is located according to the allocation object corresponding to the uplink authorization resource.
  • the specific manner of indicating the allocation object may be various forms such as adding an allocation object identifier.
  • the separate allocation mode may omit the redistribution process of the received uplink authorization resource by the terminal (the redistribution process is included in the original scheduling process, specifically included in step 3 of the original scheduling process), thereby simplifying the processing of step 3 of the original scheduling process. This reduces the delay of the scheduling process.
  • the second fast allocation mode is to shorten the uplink and downlink data transmission interval. That is, after receiving the enhanced SR sent by the terminal, the base station shortens the time interval for sending the uplink authorization resource to the terminal.
  • the base station after receiving the enhanced SR uploaded by the terminal, the base station sends the uplink authorization resource corresponding to the enhanced SR to the terminal after the preset time interval. For example, if the base station receives the enhanced SR at time n, and the preset time interval is 4, the base station sends the uplink grant resource to the terminal at time n+4.
  • This embodiment shortens the time interval, for example, shortening the time interval from 4 to 2. In this way, the base station can send the uplink authorization resource to the terminal more quickly, that is, the terminal can quickly obtain the uplink authorization resource.
  • the time interval may be referred to as a preset short time interval, indicating that the time interval at which the URLLC service obtains the uplink grant resource is shorter than the time interval of other services.
  • the fast allocation mode can shorten the process of issuing the UL Grant in step 2 of the scheduling process.
  • the third fast allocation mode is priority allocation, that is, the uplink authorization resource is preferentially allocated for the service data with the high priority scheduling indication.
  • multiple terminals may send SRs to the same base station. Even if the same terminal has multiple service data to be transmitted, the logical channel where different service data is located may also send multiple SRs to the base station, and therefore, the base station may receive simultaneously. To a variety of SR.
  • the SR is set to the enhanced SR, and the enhanced SR carries the high priority scheduling indication.
  • the base station can determine the corresponding SR.
  • the priority of the service data is high, and the uplink grant resource is preferentially allocated to the enhanced SR, thereby shortening the waiting delay of the scheduling process.
  • the fast allocation mode can shorten the process of issuing the UL Grant in step 2 of the scheduling process.
  • the fourth fast allocation mode is pre-allocation, that is, pre-allocating uplink grant resources for service data with high priority scheduling indication.
  • the terminal continuously sends an enhanced SR to the base station according to a certain transmission period.
  • the base station allocates a corresponding priority uplink resource resource for the enhanced SR if the enhanced SR carries the high priority scheduling indication.
  • some amount of uplink authorization resources are also pre-allocated.
  • the base station can directly send the pre-assigned uplink grant resource to the terminal, thereby saving time for generating the uplink grant resource and shortening the delay of the scheduling process.
  • the fast allocation mode can shorten the process of issuing the UL Grant in step 2 of the scheduling process.
  • the base station may send the pre-assigned uplink grant resources to the terminal together when transmitting the uplink grant resource corresponding to the enhanced SR.
  • the terminal does not need to send the SR to request the uplink grant resource, but directly sends the BSR by using the pre-assigned uplink grant resource.
  • the process of sending the SR in step 1 of the scheduling process and issuing the UL Grant in step 2 may be omitted.
  • the service source of the service data may be of different types.
  • the service source refers to a specific type of service data, and the service data of the different types of service sources may have different data amounts. Therefore, the SR is enhanced.
  • the service source type of the service data can be further carried to provide a more accurate basis for the base station to pre-allocate the data volume.
  • the base station may select any one or more of the above four fast allocation modes.
  • Each type of fast allocation can shorten the delay to a certain extent. The more the number of fast allocation methods is selected, the shorter the delay can be.
  • S403 The terminal uses the UL Grant to upload the BSR to the base station.
  • the fast scheduling mode selected by the base station is the first type, that is, the uplink authorization resource is separately allocated for the service data with the high priority scheduling indication
  • the terminal after receiving the uplink authorization resource with the indication of the allocation object, The uplink grant resource is directly allocated to the logical channel corresponding to the allocation object indication.
  • the allocation object indicates that the uplink authorization resource is allocated to the URLLC service data, and the terminal allocates the uplink authorization resource to the logical channel where the URLLC service data is located according to the allocation object indication, so that the URLLC service data uses the uplink authorization resource to upload the BSR.
  • the base station sends a UL Grant to the terminal.
  • the UL Grant is used by the terminal to upload service data.
  • S405 The terminal uploads the service data by using the UL Grant.
  • the terminal After receiving the uplink grant resource UL Grant sent by the base station, the terminal uses the uplink grant resource UL Grant to upload the URLLC service data.
  • the embodiment is suitable for the scenario in which the PUCCH resource is expandable. If the SR carries the high-priority scheduling indication in an implicit manner, it is suitable for the scenario where the PUCCH resource is relatively limited, but the service data to be sent has a high latency requirement.
  • the enhanced SR sent by the terminal carries a high-priority scheduling indication of the service data to be sent, and the base station quickly allocates an uplink authorization resource for the URLLC service data according to the indication of the high priority, and the fast allocation manner can be simplified.
  • the process of step 2 and/or step 3 in the existing scheduling process (such as the horizontal line thickening step in FIG. 4) is shown, thereby shortening the delay of the existing scheduling process.
  • the high-priority scheduling indication corresponding to the URLLC service data is carried in the enhanced SR in an explicit or implicit manner, but the high-priority scheduling indication may not be carried in the enhanced SR but carried in the BSR. Therefore, the present application provides the following embodiment 3 of transmitting a high priority scheduling indication through a BSR.
  • FIG. 5 is a flowchart of the third embodiment of the scheduling method provided by the present application, and specifically includes the following steps S501 to S505.
  • S501 The terminal sends the SR to the base station when the URLLC service data needs to be sent.
  • the SR can be used as an SR in the existing scheduling process, and includes only one bit, which is used to notify the base station that the terminal has a requirement for transmitting service data.
  • S502 The base station sends a UL Grant to the terminal.
  • the uplink grant resource UL Grant is used by the terminal to upload the BSR.
  • the terminal sends an enhanced BSR to the base station, where the enhanced BSR carries a high priority scheduling indication corresponding to the URLLC service data.
  • the terminal When the terminal determines to send the URL LC service data, the terminal sets a high priority scheduling indication for the URLLC service data, and uses the BSR to carry the high priority scheduling indication.
  • the manner in which the enhanced BSR carries the high priority scheduling indication may be an explicit manner, such as adding a bit in the BSR to indicate a high priority scheduling indication.
  • the enhanced BSR is more explicit or implicitly carried than the existing BSR, and the enhanced BSR is essentially a BSR.
  • the manner in which the enhanced BSR carries the high priority scheduling indication may also be an implicit manner.
  • the BSR is transmitted to the base station through a Physical Uplink Shared Channel (PUSCH), and the BSR has location information on the PUSCH resource when the BSR is transmitted.
  • the terminal and the base station can pre-agreed the location corresponding to the high priority service data.
  • the terminal sends the URLLC service data
  • the terminal can send the BSR in a preset position of the PUSCH resource, so that after receiving the BSR, the base station receives the BSR according to the BSR.
  • the location information on the PUSCH resource can determine that the BSR carries a high priority scheduling indication.
  • the high-priority scheduling indication refer to the description of the foregoing Embodiment 2, and details are not described herein again.
  • S504 The base station allocates a UL Grant to the terminal by using a fast allocation manner according to the high priority scheduling indication carried by the enhanced BSR.
  • the base station may detect whether the enhanced BSR includes the priority indication and the priority indication is a high bit after receiving the enhanced BSR. If detected, the terminal allocates uplink resources by using a preset fast allocation method. For a description of the quick assignment, refer to the description of the second embodiment above, and details are not described herein again.
  • the base station can quickly allocate the uplink grant resource to the terminal according to the high-priority scheduling indication.
  • the fast-assigned uplink grant resource is the second uplink grant resource.
  • the processing procedure of step 5 in the existing scheduling process can be simplified, and if any of the three fast allocation modes are used, the simplification can be simplified. The processing of step 4 in the existing scheduling process.
  • S505 The terminal uploads the service data to be sent by using the UL Grant.
  • the service data is URLLC service data.
  • the present embodiment does not need to add information to the SR. Therefore, the present embodiment can be applied in a scenario where the PUCCH resource is limited but the delay requirement of the service data to be sent is high.
  • the embodiment also sends a high priority scheduling indication of the service data to be sent, so that the processing of steps 4 and/or 5 in the existing scheduling process can be simplified (the horizontal line in the figure is added). Rough step).
  • the high-priority scheduling indication in this embodiment is carried in the BSR and is not carried in the SR.
  • the first embodiment is to carry the buffer status information in the BSR in the SR to save the steps 2 and 3;
  • the second embodiment is to send the high priority scheduling indication by the SR to instruct the base station to quickly deliver the first uplink authorization resource, so as to simplify
  • the process of step 2 and/or 5 is to send the high-priority scheduling indication by the BSR to instruct the base station to quickly deliver the first uplink authorization resource to simplify the process of steps 4 and/or 5.
  • the implementations of these embodiments do not conflict, and thus can be implemented in any two or three combinations, thereby reducing the delay of the existing scheduling process to a greater extent.
  • step 1 sending SR
  • step 2 sending UL Grant
  • FIG. 6 is a flowchart of the fourth embodiment of the scheduling method provided by the present application, and specifically includes the following steps S601-S603.
  • the base station may allocate some uplink authorization resources to the URLLC service data in advance. For example, the base station pre-allocates the uplink authorization resources to the terminal before the scheduling process, and the uplink authorization resources are exclusively used for the URLLC service data, and therefore may be referred to as uplink. Authorized resources.
  • the terminal may also be pre-configured with uplink shared resources, and the uplink shared resources are used for multiple service data, instead of being exclusively used for URLLC service data. The terminal can compete for these uplink shared resources. After competing for these uplink shared resources, the terminal can use the uplink shared resources to send the BSR.
  • pre-configured uplink grant resource Whether it is a pre-configured uplink grant resource or a pre-configured uplink shared resource, it can be called a pre-configured uplink resource (or a pre-stored uplink resource).
  • the terminal When the terminal needs to send the URLLC service data, the terminal selects one of the pre-configured uplink resources to send the BSR.
  • the manner in which the BSR is transmitted using the provisioned uplink resource may be referred to as a BSR enhancement mode.
  • the terminal can implement the above functions, which can be implemented based on the configuration of the base station.
  • For the configuration refer to the configuration procedure of the enhanced SR by the base station. The following is only a brief description.
  • the base station may send an RRC connection reconfiguration message to the terminal during the connection process before the scheduling process.
  • the RRC connection re-message may include the enhanced indication information, and is used to indicate that the terminal sends the BSR in the BSR enhanced mode.
  • S602 The base station allocates a UL Grant to the terminal according to the cache state information carried by the BSR.
  • the UL Grant is an uplink authorization resource for sending service data.
  • S603 The terminal sends the service data to the base station by using the UL Grant.
  • the terminal uses the uplink grant resource UL Grant to send URLLC service data to the base station.
  • the terminal needs to apply for a UL Grant to the base station through the SR.
  • the terminal pre-stores the uplink resource, and can randomly select one of the resources to send the BSR, thereby saving step 1
  • the step of transmitting the SR and the step of transmitting the UL Grant in step 2 (the step of the dotted line of the drawing fork shown in FIG. 6 is the step of omitting the step) shortens the delay of the scheduling process.
  • this embodiment does not need to occupy more PUCCH resources than the enhanced manner of adding bits in the SR.
  • the terminal needs to use the PUCCH resource to send the SR.
  • the more bits included in the SR the more PUCCH resources need to be used.
  • the PUCCH resources communicated with the base station are limited and available to multiple terminals. If the number of PUCCH resources occupied by a single terminal is larger, the number of terminals communicating with the base station is smaller.
  • the terminal may send the BSR by using the uplink resource in a competitive manner. That is, if multiple terminals need to send the BSR, the multiple terminals compete for the uplink resource, so that if a terminal sends the URLLC service data.
  • the BSR of the terminal may collide with other terminals, and the BSR transmission success rate corresponding to the URLLC service data is low. Therefore, in order to meet the data reliability requirements of the URLLC service, the pre-configured BSR repeated transmission mode may be used for transmission. As shown in FIG. 7, the preset BSR repeated transmission mode is a mode in which the same BSR is repeatedly transmitted multiple times.
  • the mode of repeatedly transmitting the same BSR may be used not only in combination with Embodiment 4, but may be used in any embodiment of the BSR transmission to reduce the impact of channel fading, thereby improving the contention mode.
  • the success rate of reception of the BSR may be used not only in combination with Embodiment 4, but may be used in any embodiment of the BSR transmission to reduce the impact of channel fading, thereby improving the contention mode.
  • the specific BSR transmission mode may include, but is not limited to, the following types.
  • which transmission mode is used may be determined by the terminal itself, or may be determined by the base station, that is, the base station sets and sends in the RRC connection reconfiguration message.
  • the terminal receives the RRC connection reconfiguration message and repeatedly sends the BSR according to the transmission mode included therein.
  • the mode is similar to the multiplexing of the frequency domain resources, and the same BSR is sent in multiple connections between the terminal and the base station, and the specific number of connections may be included in the RRC connection reconfiguration message.
  • CA Carrier Aggregation
  • the mode is similar to the multiplexing of the frequency domain resources, and the same BSR is sent in multiple carriers, and the specific number of carriers may be included in the RRC connection reconfiguration message.
  • TTI-bundling Transmission Time Interval-bundling
  • the mode is similar to the multiplexing of the time domain, and the same BSR is sent on multiple TTI-bundlings, and the specific number of TTI-bundlings may be included in the RRC connection reconfiguration message.
  • the mode is similar to the multiplexing of the air domain, and the same BSR is sent on multiple beam beams, and the specific number of beams may be included in the RRC connection reconfiguration message.
  • the method of repeatedly transmitting the BSR can improve the transmission success rate of the BSR, thereby improving the reliability of the service data transmission process.
  • the more the number of transmissions the more time the terminal and the base station need to process the BSR, which leads to an extension of the scheduling process delay. Therefore, if you want to balance the delay and reliability, you need to select the appropriate number of repeated transmissions according to the actual application requirements.
  • the number of suitable repeated transmissions may be selected by the terminal or the base station, and is not specifically limited in this application.
  • the first embodiment can carry the cache state information in the original BSR in the SR, and the second embodiment can add the high priority tone of the to-be-sent service in the SR.
  • the high-priority scheduling indication of the to-be-transmitted service may be added to the BSR.
  • the BSR is sent by using the pre-configured uplink resource.
  • the transmission of the SR needs to use the PUCCH resource, but the resource is a dedicated resource and the number is limited. That is, the base station allocates each PUCCH resource to each terminal, and the allocated PUCCH resource is limited. If the SR sent by a terminal carries more information, it will consume more PUCCH resources. Therefore, the transmission may fail due to the limited PUCCH resources and the delay is long. On the other hand, there is a contradiction between the base station assigning the PUCCH resource to the terminal and allocating other resources, such as the uplink grant. If the PUCCH resource is always allocated to the terminal, the terminal may be allocated other resources, which may affect other communication processes.
  • the inventor has found that the transmission of the BSR does not need to use the PUCCH resource. Therefore, the SR enhanced mode (the first scheduling mode) and the BSR enhanced mode (the second scheduling mode) can be switched to alleviate the SR to the PUCCH resource. Nervous demand.
  • the specific switching manner is as described in Embodiment 5 below.
  • the terminal Before performing the scheduling process of the fifth embodiment, the terminal may be configured to perform switching between the two sending modes when the terminal performs the scheduling process.
  • the terminal may generate a switching function opening instruction by itself, and start the switching function according to the instruction.
  • the handover function of the terminal is set by the base station, that is, the base station may send an RRC connection reconfiguration message to the terminal during the connection process before the scheduling process, and the RRC connection reconfiguration message may carry a handover function enable command, and the instruction is used for Enable the terminal to enable the switching function.
  • the terminal that turns on the switching function can implement the transmission mode switching in the following fifth embodiment.
  • FIG. 8 is a flowchart of the fifth embodiment of the enhanced scheduling method provided by the present application, which specifically includes the following steps S801-805.
  • the time point at which the terminal starts the handover function may be before, at the same time as, or after the scheduling process.
  • the terminal may receive the RRC connection reconfiguration message before the scheduling process, and the handover function is enabled when the RRC connection reconfiguration message is received; for example, the terminal detects that the scheduling process starts and simultaneously starts the handover function; for example, the terminal is scheduling.
  • the switching function is turned on at some point after the process starts.
  • the time point may be determined by the terminal itself, or may be determined by the base station.
  • the RRC connection reconfiguration message sent by the base station includes a switching function start command, and includes a time point corresponding to the switching function opening command, so that the terminal When the time point arrives, the switching function on command is executed to enable the switching function to be turned on.
  • the terminal After the terminal turns on the switching function, it can generate a detection command. According to the detection instruction, the terminal can execute the following scheduling process.
  • the service data belongs to the preset low-latency and high-reliability communication service data. If it belongs, the terminal needs to send the URLLC service data. If not, the terminal is currently No URLLC service data needs to be sent.
  • the terminal If the URLLC service data needs to be sent, the terminal enables the SR enhanced mode to perform the scheduling process according to the SR enhanced mode.
  • the SR sent by the terminal to the base station in the SR enhanced mode is an enhanced SR.
  • the terminal needs to generate an enhanced SR and send an enhanced SR to the base station.
  • the enhanced SR contains more information than the existing SR, in addition to the indication information for transmitting the service data. More information may be referred to as new information, and may include, but is not limited to, any combination of one or more of the following: the original BSR The cache status information, the high-priority scheduling indication, and the type of service data (that is, the foregoing service source) carried in the network.
  • the terminal when the terminal enables the SR enhanced mode, it indicates that the terminal can perform the scheduling process according to the SR enhanced mode. Specifically, the information included in the enhanced SR is different, and the specific execution process of the SR enhanced mode is also different. If the enhanced SR sent by the terminal includes the cache status information in the original BSR, the scheduling process of the first embodiment is performed. If the enhanced SR sent by the terminal includes a high priority scheduling indication or a type of service data (that is, the foregoing service source), the scheduling process of the second embodiment is performed.
  • the terminal uses the PUCCH resource to send the enhanced SR to the base station, and uses more PUCCH resources than the existing transmitting SR, and thus is suitable for application in a scenario where the PUCCH resource is sufficient.
  • S803 The terminal counts the duration of the SR enhanced mode. If the duration reaches the preset duration, the terminal switches to the BSR enhanced mode to perform the scheduling process according to the BSR enhanced mode. The terminal does not send the SR to the base station in the BSR enhanced mode.
  • step S802 After the foregoing step S802 is switched to the SR enhanced mode, the terminal needs to count the duration of the SR enhanced mode. It should be noted that, in this application, in the actual application, the BSR enhanced mode and the SR enhanced mode may be switched multiple times.
  • the duration of statistics in this step is not the total duration of the SR enhanced mode, but statistics are entered each time. The length of time after the SR enhancement mode. That is to say, each time the step S802 is switched to the SR enhanced mode, the duration of the statistics is cleared.
  • the specific implementation manner of the statistical SR enhancement mode duration may be that the SR transmission period is counted or counted by a timer.
  • the RRC connection reconfiguration message sent by the base station to the terminal includes a timer (such as an SR enhanced period timer, an SREnhancementCycleTimer) and an SR transmission period, and the terminal continuously transmits the enhanced SR according to the SR transmission period.
  • the timer is started or the number of SR transmission cycles is counted, thereby achieving timing.
  • the terminal switches to the BSR enhanced mode.
  • the terminal can perform the scheduling process according to the BSR enhanced mode. It is important that the terminal does not send the SR to the base station in the sending mode, thereby saving the use of the PUCCH resource.
  • the BSR enhanced mode may be the foregoing four process.
  • the duration duration of the step S803 may be referred to as a first duration duration, and the preset duration used for comparison is referred to as a first preset duration.
  • the duration duration counted in this step is referred to as a second duration.
  • the preset duration for comparison is referred to as the second preset duration.
  • the values of the first preset duration and the second preset duration may be the same or different, and the application is not specifically limited.
  • the manner of counting the second duration may be the same as the manner of counting the first duration, such as counting by a timer or counting the SR transmission period. For details, refer to the description of the first duration, which is not described here.
  • the SR enhanced mode may be disabled to save the use of the PUCCH resource.
  • the terminal can perform the BSR enhanced mode temporarily.
  • the BSR enhanced mode does not send the SR to the base station as described above, thereby saving PUCCH resources.
  • the terminal may also restart the SR enhanced mode to perform the scheduling process according to the SR enhanced mode.
  • the terminal switches to the BSR enhanced mode after the SR enhanced mode continues for a certain period of time to reduce the use of the PUCCH resource; when the terminal does not send the URLLC service data for a period of time, the terminal can disable the SR enhanced mode, and Restart SR enhanced mode when there is URLLC service data transmission.
  • the SR enhanced mode needs to use more PUCCH resources, switch to BSR enhanced mode or turn off SR enhanced mode, thereby saving PUCCH resources.
  • the enhanced scheduling process is described from the perspective of service data.
  • the condition for determining the execution of the enhanced scheduling process is the service data having the URLLC service to be sent.
  • an enhanced scheduling process can be performed to shorten the scheduling delay corresponding to the service data.
  • the present application may also perform an enhanced scheduling procedure from the perspective of a logical channel, for example, determining that the condition for performing the enhanced scheduling procedure is that the service data to be transmitted on a certain logical channel is such that the logical channel can be distinguished from other logical channels.
  • An enhanced scheduling process is performed to shorten the scheduling delay corresponding to the logical channel.
  • all settings corresponding to the URLLC service are converted into settings corresponding to the target logical channel.
  • the high priority scheduling indication is not an indication corresponding to the service data of the URLLC service, but an indication corresponding to the target logical channel, and the like.
  • the logical channel may be referred to as a target logical channel.
  • the service data of the URLLC service can be sent on the target logical channel, and of course, other types of service data can also be sent.
  • the present application does not limit which logical channel is the target logical channel on the terminal, the target logical channel may be a logical channel designated by the base station, or the target logical channel may be specified by the terminal itself, for example, the terminal designates any logical channel as a target.
  • the logical channel for example, the terminal designates the logical channel that satisfies the preset condition as the target logical channel.
  • a specific implementation manner of designating a logical channel that satisfies a preset condition as a target logical channel is as follows.
  • the terminal determines whether the target parameter of the logical channel reaches a threshold corresponding to the target parameter, and if so, specifies the logical channel as the target logical channel.
  • the target parameter may be a parameter obtained in advance, or may be a parameter collected in real time.
  • the target parameter may be a cached data amount, and the threshold corresponding to the target parameter is a cached data amount threshold.
  • the target parameter is the rate of data arriving at the buffer unit of the logical channel, and the threshold corresponding to the target parameter is a rate threshold.
  • the target parameter is a duration in which the data in the buffer unit of the logical channel is not allocated an available resource, and the threshold corresponding to the target parameter is a duration threshold.
  • the target parameter and its corresponding threshold may be other situations, which are not specifically limited in this application.
  • the threshold corresponding to the target parameter may be pre-configured by the base station, or may be set according to related parameters in the communication protocol, and the application does not limit the application.
  • the base station may also specify which enhanced scheduling method to use for the terminal.
  • the present application provides a scheduling configuration method. As shown in FIG. 9, the scheduling configuration method may include steps S901 to S903.
  • the base station determines a logical channel that uses a preset scheduling mode.
  • the preset scheduling mode is any one of the following three types: a first scheduling mode, a second scheduling mode, and converting between the first scheduling mode and the second scheduling mode. Mode.
  • the first scheduling mode is a scheduling mode in which the terminal sends an enhanced scheduling request to the base station, that is, the scheduling mode in which the base station receives the scheduling request sent by the terminal, where the enhanced scheduling request carries any one or more of the following items: high priority Scheduling indication, cache status information, type of the service data.
  • the first scheduling mode includes the cache state information
  • the enhanced scheduling method of the first embodiment where the first scheduling mode includes a high priority scheduling indication or a type of service data, the first scheduling mode is the second scheduling mode.
  • Enhanced scheduling method is a scheduling mode in which the terminal sends an enhanced scheduling request to the base station, that is, the scheduling mode in which the base station receives the scheduling request sent by the terminal, where the enhanced scheduling request carries any one or more of the following items: high priority Scheduling indication, cache status information, type of the service data.
  • the second scheduling mode is a scheduling mode in which the terminal sends a buffer status report to the base station by using the pre-stored uplink resource, that is, the enhanced scheduling method in the fourth embodiment, that is, the scheduling mode in which the base station receiving terminal uses the pre-stored uplink resource to send the buffer status report. .
  • the mode of switching between the first scheduling mode and the second scheduling mode is the enhanced scheduling method of the fifth embodiment.
  • the base station sends the identifier of the preset scheduling mode and the identifier of the logical channel to the terminal.
  • the base station may include the identifier of the preset scheduling mode and the identifier of the logical channel in the logical channel connection reconfiguration message, the physical downlink control channel resource, or the medium access control unit, and send the signal to the terminal.
  • the base station may further include the identifier of the preset scheduling mode and the identifier of the logical channel in the existing other message or resource, and the base station may directly send the identifier of the preset scheduling mode and the identifier of the logical channel to the terminal. .
  • the terminal determines the logical channel corresponding to the identifier of the logical channel as the target logical channel, and determines the scheduling mode corresponding to the identifier of the preset scheduling mode as the target scheduling mode.
  • the terminal may obtain the two identifiers according to the manner in which the base station sends the identifier of the preset scheduling mode and the identifier of the logical channel. Further, the terminal determines the logical channel indicated by the identifier of the logical channel as the target logical channel, and determines the scheduling mode corresponding to the identifier of the preset scheduling mode as the target scheduling mode, so as to perform the enhanced scheduling method corresponding to the target scheduling mode.
  • the base station may configure the terminal, so that the terminal can implement a scheduling method corresponding to the determined scheduling mode.
  • the present application further provides a terminal, including: a processing module, a sending module, and a receiving module.
  • a processing module configured to determine whether the service data to be sent is on the target logical channel
  • a sending module configured to send, to the base station, a scheduling indication, if the processing module determines that the target logical channel has service data to be sent, where the target logical channel is a logical channel specified by the base station, and the scheduling indication
  • the method is configured to: allocate, by the base station, an uplink authorization resource to the target logical channel according to a preset allocation manner;
  • the receiving module is configured to receive an uplink authorization resource sent by the base station.
  • the sending module when the step of sending a scheduling indication to the base station is performed, is specifically configured to: send a scheduling request to the base station, where the scheduling request uses the bit to carry the scheduling indication.
  • the sending module when performing the step of sending a scheduling indication to the base station, is specifically configured to: send a scheduling request to the base station according to a preset scheduling request sending period; where the preset scheduling request is sent The period is less than a scheduling request transmission period of other logical channels than the target logical channel.
  • the sending module when performing the step of sending a scheduling indication to the base station, is specifically configured to: send a buffer status report to the base station, where the buffer status report uses the bit position to carry the scheduling indication.
  • the sending module when performing the step of sending a scheduling indication to the base station, is specifically configured to: send a buffer status report to the base station at a preset position of the physical uplink shared channel.
  • the application further provides a terminal, including: a processing module, a sending module, and a receiving module.
  • a processing module configured to generate a scheduling request if the target logical channel has service data to be sent, where the target logical channel is a logical channel specified by a base station, and the scheduling request includes cache state information;
  • a sending module configured to send the scheduling request to a base station, where the buffer status information in the scheduling request is used by a base station to allocate an uplink authorization resource;
  • the receiving module is configured to receive an uplink authorization resource sent by the base station.
  • the buffer status information includes data quantity indication information, where the data quantity indication information includes:
  • a data amount value of the service data or a data volume index of the service data; wherein the data volume index is used to indicate a data amount range of the service data.
  • the application further provides a terminal, including: a processing module, a sending module, and a receiving module.
  • a processing module configured to determine whether the service data to be sent is on the target logical channel
  • a sending module configured to: if the processing module determines that the target logical channel has service data to be sent, send a buffer status report to the base station by using a pre-configured uplink resource; where the target logical channel is a logic specified by the base station Channel, the buffer status report is used by the base station to allocate an uplink grant resource to the target logical channel;
  • the receiving module is configured to receive an uplink authorization resource sent by the base station.
  • the sending module when the step of sending a buffer status report to the base station by using the pre-configured uplink resource is performed, the sending module is specifically configured to: send the same cache status report to the base station multiple times by using the pre-configured uplink resource.
  • the application also provides a terminal, including: a receiving module and a processing module.
  • a receiving module configured to receive a detection instruction
  • a processing module configured to: after the receiving module receives the detection instruction, continuously detecting whether the target logical channel of the terminal has service data to be sent; wherein the target logical channel is a logical channel specified by the base station;
  • the processing module is further configured to enable a preset first scheduling mode if the target logical channel has service data to be sent, where the first scheduling mode is a scheduling mode that sends a scheduling request, and the scheduling The request carries any one or more of the following items: a scheduling indication, a cache status information, and a type of the service data;
  • the processing module is further configured to: if the enabled duration of the first scheduling mode reaches a first preset duration, switch the first scheduling mode to a preset second scheduling mode; wherein the second scheduling mode A scheduling mode for transmitting a buffer status report to the base station for using the pre-stored uplink resource.
  • the processing module is further configured to: after the first scheduling mode is enabled, if the target logical channel no longer has the service data to be sent, and the duration of the service data does not have reached The second preset duration length disables the first scheduling mode.
  • the processing module is further configured to enable the first scheduling mode if the service data to be sent is detected on the target logical channel after the first scheduling mode is disabled.
  • the application further provides a base station, comprising: a receiving module, a processing module and a sending module.
  • a receiving module configured to receive a scheduling indication sent by the terminal, where the scheduling indication is sent when the target logical channel of the terminal has service data to be sent, and the target logical channel is a logical channel specified by the base station;
  • a processing module configured to allocate an uplink authorization resource to the target logical channel according to a preset allocation manner
  • a sending module configured to send the uplink authorization resource to the terminal.
  • the processing module when the step of allocating an uplink grant resource to the target logical channel according to a preset allocation manner is performed, the processing module is specifically configured to separately allocate an uplink grant resource for the target logical channel.
  • the processing module when the step of allocating an uplink authorization resource to the target logical channel according to a preset allocation manner is performed, is specifically configured to: after the preset short time interval, be the target logic The channel allocates an uplink grant resource; wherein the short time interval indicates that the time interval at which the target logical channel obtains the uplink grant resource is shorter than the time interval of other logical channels.
  • the processing module when the step of allocating an uplink grant resource to the target logical channel according to a preset allocation manner is performed, is specifically configured to: receive an uplink grant resource allocation request corresponding to multiple logical channels The uplink authorization resource is preferentially allocated to the target logical channel.
  • the processing module when the step of allocating an uplink grant resource to the target logical channel according to a preset allocation manner, is specifically configured to: according to the data volume of the service data on the target logical channel, Allocating more uplink grant resources than the data volume for the target logical channel.
  • the application also provides a base station, including: a processing module and a sending module.
  • a processing module configured to determine a logical channel that uses a preset scheduling mode
  • a sending module configured to send, to the terminal, an identifier of the preset scheduling mode and an identifier of the logical channel;
  • the preset scheduling mode is any one of the following three types: a first scheduling mode, a second scheduling mode, a mode for converting between the first scheduling mode and the second scheduling mode, and the first scheduling
  • the mode is a scheduling mode in which the base station receives the scheduling request sent by the terminal, where the scheduling request carries any one or more of the following items: a scheduling indication, a buffering state information, a type of the service data, and a second scheduling mode.
  • the sending module when the step of sending the identifier of the preset scheduling mode and the identifier of the logical channel to the terminal is performed, is specifically configured to: send a logical channel connection reconfiguration message to the terminal, where The logical channel connection reconfiguration message includes an identifier of the preset scheduling mode and an identifier of the logical channel.
  • the sending module when the step of sending the identifier of the preset scheduling mode and the identifier of the logical channel to the terminal is performed, is specifically configured to: send a physical downlink control channel resource to the terminal, where The physical downlink control channel resource includes an identifier of the preset scheduling mode and an identifier of the logical channel.
  • the sending module is specifically configured to: send a media access control unit to the terminal, where The media access control unit includes an identifier of the preset scheduling mode and an identifier of the logical channel.
  • the application also provides a terminal, including: a receiving module and a processing module.
  • the receiving module is configured to receive the identifier of the preset scheduling mode and the identifier of the logical channel sent by the base station, where the preset scheduling mode is any one of the following three types: a first scheduling mode, a second scheduling mode, and a mode of converting between the first scheduling mode and the second scheduling mode;
  • the first scheduling mode is a scheduling mode in which the terminal sends a scheduling request to the base station, where the scheduling request carries any one or more of the following items: The scheduling indication, the buffer status information, and the type of the service data;
  • the second scheduling mode is that the terminal sends the cache to the base station by using the pre-stored uplink resource. Scheduling mode of state report;
  • a processing module configured to determine a logical channel corresponding to the identifier of the logical channel as a target logical channel, and determine a scheduling mode corresponding to the identifier of the preset scheduling mode as a scheduling mode used by the terminal.
  • the processor 1001, the memory 1002, the communication interface 1003, the input device 1004, and the output device 1005 are connected to each other.
  • the controller/processor 1001 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, etc., or may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention. It can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • the controller/processor 1101 can also be a combination of computing functions, including, for example, one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. specifically:
  • the controller/processor 1001 of the terminal may implement the functions of the processing module in the above-described terminal for performing the above-described scheduling method of the application on the terminal and/or other processes for the techniques described in the present application.
  • the program for executing the technical solution of the present application is stored in the memory 1002, and an operating system and other applications can also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1002 may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), storable information, and Other types of dynamic storage devices, disk storage, and the like.
  • the communication interface 1003 can implement the functions of the transmitting module and the receiving module in the above terminal.
  • the communication interface 1003 includes means using any transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • the communication interface 1003 of the terminal may send information such as a scheduling indication, a scheduling request, a buffer status report, and the like to the base station, and send the received information to the controller/processor, where the controller/processor executes the scheduling of the application on the terminal. method.
  • the communication interface 1003 of the terminal may receive an uplink authorization resource and the like sent by the base station.
  • Input device 1004 can include means for receiving data and information input by a user, such as a keyboard, a light pen, a voice input device, a touch screen, and the like.
  • Output device 1005 can include devices that allow output of information to the user, such as a display screen, speakers, and the like.
  • FIG. 11 a possible structural diagram of a base station is shown, including:
  • the processor 1101, the memory 1102, and the communication interface 1103 are connected to each other.
  • the controller/processor 1101 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, etc., or may be an application-specific integrated circuit. ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention. It can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the controller/processor 1101 can also be a combination of computing functions, including, for example, one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. specifically:
  • the controller/processor 1101 of the base station may implement the functions of the processing modules in the base stations described above for performing the scheduling methods described above on the base station and/or other processes for the techniques described herein.
  • the program for executing the technical solution of the present application is stored in the memory 1102, and an operating system and other applications can also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1102 can be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), storable information, and Other types of dynamic storage devices, disk storage, and the like.
  • the communication interface 1103 can implement the functions of the transmitting module and the receiving module in the above base station.
  • the communication interface 1103 includes devices that use any type of transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • the communication interface 1103 of the base station may receive information such as a scheduling indication, a scheduling request, a buffer status report, and the like sent by the terminal, and send the received information to the controller/processor, where the controller/processor performs scheduling of the application on the base station. method.
  • the communication interface 1103 of the base station may also send an uplink grant resource or the like to the terminal.

Abstract

本申请涉及通信技术领域,具体地,本申请提供了一种调度方法。该方法中,终端需要发送低时延高可靠业务的业务数据时,向基站发送调度请求,该调度请求携带原调度流程中终端向基站发送的缓存状态报告中的缓存信息,从而,相比现有的调度流程,本申请提供的调度方法无需再向基站发送缓存状态报告,从而节省了调度流程的步骤,进而减少了调度时延。为了实现节省调度流程步骤的发明思想,本申请还提供了简化调度流程步骤的调度方法。另外,为了保证调度方法在实际中的应用及实现,本申请还提供了相应的调度设备。

Description

调度方法及相关设备
本申请要求于2017年1月13日提交中国专利局、申请号为201710025821.4、发明名称为“调度方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,是调度方法及相关设备。
背景技术
在移动通信领域,长期演进(Long Term Evolution,LTE)是一种常用的通信技术。使用该通信技术进行通信的过程中,需要使用调度流程,该调度流程可以称为LTE调度流程。LTE调度流程可以在基站(eNB)与终端(User Equipment,UE)之间传输数据,以实现终端与基站的通信业务。
LTE调度流程具体包括如图1所示的五个步骤,分别为:终端向基站发送调度请求(Scheduling Request,SR),基站向终端返回上行授权(Uplink Grant,UL Grant)资源,终端使用该上行授权资源发送缓存状态报告(Buffer State Report,BSR),缓存状态报告中携带待发送业务数据的数据量,基站向终端返回与数据量对应的上行授权资源,终端使用该上行授权资源发送业务数据。
目前,通信业务的一个发展趋势是业务数据的快速高效发送。然而,通信业务所使用的现有LTE调度流程信令交互较多,时延较大,并不能满足时延敏感通信业务对时延的要求。
发明内容
一个方面,本申请提供了一种调度方法,包括:若目标逻辑信道上具有待发送的业务数据,则向基站发送调度指示;其中,所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度指示用于指示所述基站按照预设的分配方式为所述目标逻辑信道分配上行授权资源;接收所述基站发送的上行授权资源。在本方法中,终端可以向基站发送调度指示,以指示基站可以预设的加快分配方式为终端分配上行授权资源,从而简化了现有调度流程中与分配上行授权资源相关的步骤,从而缩短了现有调度流程的时延。
在一个可能的设计中,所述向基站发送调度指示包括:向基站发送调度请求,其中所述调度请求使用比特位携带所述调度指示。在本方法中,调度指示以增加比特位的显式方式携带在调度请求中,调度指示的发送方式比较简单容易实现。
在一个可能的设计中,所述向基站发送调度指示包括:按照预设的调度请求发送周期, 向基站发送调度请求;其中所述预设的调度请求发送周期小于所述目标逻辑信道之外的其他逻辑信道的调度请求发送周期。在本方法中,终端按照预设的调度请求发送周期发送调度请求,则隐式表示终端向基站发送调度指示,并不需要在调度请求中增加比特位,减少了发送调度请求所耗费的资源。
在一个可能的设计中,所述向基站发送调度指示包括:向基站发送缓存状态报告,其中所述缓存状态报告使用比特位携带调度指示。在本方法中,调度指示以比特位的显式方式携带在缓存状态报告中,调度指示的发送方式比较简单容易实现。
在一个可能的设计中,所述向基站发送调度指示包括:在物理上行共享信道的预设位置上,向基站发送缓存状态报告。在本方法中,终端在物理上行共享信道的预设位置上发送缓存状态报告,则隐式表示终端向基站发送调度指示,并不需要在缓存状态报告中增加比特位,减少了发送缓存状态报告所耗费的资源。
再一方面,本申请提供了一种调度方法,包括:若目标逻辑信道上具有待发送的业务数据,则生成调度请求,其中所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度请求包含缓存状态信息;向基站发送所述调度请求,其中所述调度请求中的缓存状态信息用于基站分配上行授权资源;接收所述基站发送的上行授权资源。
在一个可能的设计中,所述缓存状态信息包括数据量指示信息,所述数据量指示信息包括:所述业务数据的数据量数值;或,所述业务数据的数据量索引;其中所述数据量索引用于指示业务数据的数据量范围。
再一方面,本申请提供了一种调度方法,包括:若目标逻辑信道上具有待发送的业务数据,则使用预先配置的上行资源向基站发送缓存状态报告;其中,所述目标逻辑信道为基站或终端指定的逻辑信道,所述缓存状态报告用于所述基站为所述目标逻辑信道分配上行授权资源;接收所述基站发送的上行授权资源。本方法中,缓存状态报告是使用预先配置的上行资源发送,从而省略了向基站请求上行资源的步骤,进而缩短了现有调度流程的时延。
在一个可能的设计中,所述使用预先配置的上行资源向基站发送缓存状态报告,包括:使用预先配置的上行资源多次向基站发送同一缓存状态报告。本方法中,多次发送缓存状态报告可以基站接收该缓存状态报告的成功率。
再一方面,本申请提供了一种调度方法,包括:接收到检测指令后,持续检测所述终端的目标逻辑信道上是否具有待发送的业务数据;其中,所述目标逻辑信道为基站或终端指定的逻辑信道;若所述目标逻辑信道上具有待发送的业务数据,则启用预设的第一调度模式;其中,所述第一调度模式为发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;若所述第一调度模式的启用时长达到第一预设时长,则将所述第一调度模式切换为预设的第二调度模式;其中,所述第二调度模式为使用预先存储的上行资源向基站发送缓存状态报告的调度模式。本方法中,第一调度模式中使用的资源为有限资源,在第一调度模式与第二调度模式之间切换,可以缓解第一调度模式对有限资源的紧张需求。
在一个可能的设计中,调度方法还包括:在启用所述第一调度模式后,若所述目标逻 辑信道上不再具有待发送的业务数据、且不具有所述业务数据的持续时长达到第二预设时长,则禁用所述第一调度模式。
在一个可能的设计中,调度方法还包括:在禁用所述第一调度模式后,若检测到所述目标逻辑信道上具有待发送的业务数据,则启用所述第一调度模式。
再一方面,本申请提供了一种调度方法,包括:接收终端发送的调度指示;其中所述调度指示是所述终端的目标逻辑信道上具有待发送的业务数据时发送的,所述目标逻辑信道为所述基站或终端指定的逻辑信道;按照预设的分配方式为所述目标逻辑信道分配上行授权资源。本方法应用在基站一侧,在接收到调度指示后,为终端快速分配上行授权资源,从而简化了现有调度流程中与分配上行授权资源相关的步骤,从而缩短了现有调度流程的时延。
在一个可能的设计中,所述按照预设的分配方式为所述目标逻辑信道分配上行授权资源,包括:为所述目标逻辑信道单独分配上行授权资源;或者,在预设的短时间间隔后,为所述目标逻辑信道分配上行授权资源;其中,所述短时间间隔表示所述目标逻辑信道获得上行授权资源的时间间隔比其他逻辑信道的时间间隔短;或者,在接收到多个逻辑信道对应的上行授权资源分配请求后,优先为所述目标逻辑信道分配上行授权资源;或者,依据所述目标逻辑信道上的业务数据的数据量,为所述目标逻辑信道分配比所述数据量更多的上行授权资源。
再一方面,本申请提供了一种调度配置方法,该方法包括:确定使用预设调度模式的逻辑信道;向终端发送所述预设调度模式的标识及所述逻辑信道的标识;其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为基站接收终端发送的调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为基站接收终端使用预先存储的上行资源发送缓存状态报告的调度模式。本方法是调度方法之前的配置方法,以使终端可以按照配置的调度模式进行调度,以缩短现有调度方法的时延。
在一个可能的设计中,所述向终端发送所述预设调度模式的标识及所述逻辑信道的标识,包括:向终端发送逻辑信道连接重配消息,其中,所述逻辑信道连接重配消息包含所述预设调度模式的标识及所述逻辑信道的标识;或者,向终端发送物理下行控制信道资源,其中,所述物理下行控制信道资源包含所述预设调度模式的标识及所述逻辑信道的标识;或者,向终端发送媒体接入控制单元,其中,所述媒体接入控制单元包含所述预设调度模式的标识及所述逻辑信道的标识。
再一方面,本申请提供了一种调度配置方法,包括:接收基站发送的预设调度模式的标识及逻辑信道的标识;其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为终端向基站发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为终端使用预先存储的上行资源向基站发送缓存状态报告的调度模式;将所述逻辑信道的标识对应的逻 辑信道确定为目标逻辑信道,并将所述预设调度模式的标识对应的调度模式确定为所述终端使用的调度模式。本方法是调度方法之前的配置方法,以使终端可以按照配置的调度模式进行调度,以缩短现有调度方法的时延。
再一方面,本申请提供了一种终端,该终端具有实现上述应用在终端上的调度方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
再一方面,本申请提供了一种终端,该终端具有实现上述应用在终端上的调度配置方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
再一方面,本申请提供了一种基站,该基站具有实现上述应用在基站上的调度方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
再一方面,本申请提供了一种基站,该基站具有实现上述应用在基站上的调度配置方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
再一方面,本申请提供了一种终端,其包括上述处理器以及通信接口。该处理器可以实现应用在终端上的处理模块的功能,通信接口可以实现应用在终端上的发送模块和/或接收模块的功能。
再一方面,本申请提供了一种基站,其包括上述处理器以及通信接口。该处理器可以实现应用在终端上的处理模块的功能,通信接口可以实现应用在终端上的发送模块和/或接收模块的功能。
再一方面,本申请提供了一种通信系统,该通信系统包括上述方面所述的终端和基站。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
根据本申请提供的技术方案,简化了现有的调度流程,从而缩短了现有调度流程的时延,保证了通信业务的快速高效。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为现有LTE调度流程的一个流程示意图;
图2为本申请提供的终端与基站连接与调度交互的一个示意图;
图3为本申请提供的调度方法实施例一的流程图;
图4为本申请提供的调度方法实施例二的流程图;
图5为本申请提供的调度方法实施例三的流程图;
图6为本申请提供的调度方法实施例四的流程图;
图7为本申请提供的BSR重复发送模式的流程图;
图8本申请提供的调度方法实施例五的流程图;
图9为本申请提供的调度配置方法的流程图;
图10为本申请提供的终端的硬件结构示意图;
图11为本申请提供的基站的硬件结构示意图。
具体实施方式
目前,通信业务的一个发展趋势为低时延高可靠业务(Ultra-Reliable and Low Latency Communications,URLLC),该业务对时延要求较高。需要说明的是,URLLC业务并非一项具体业务的名称,而是一种类型的业务,该种业务要求通信过程时延较小。因此,只要是对时延性有要求的通信业务,均在本申请的保护范围内。为了便于说明,以下以URLLC业务为例对本申请的技术方案进行说明。
LTE调度流程可以实现基站与终端之间的通信业务,在具体实现URLLC这一通信业务的场景中,LTE调度流程不能满足该业务的低时延要求。这是由于,现有LTE调度流程中,在终端上传业务数据之前,需要多次在终端与基站之间交互控制信令,以为业务数据的上传进行通信资源的配置。
见图1,其示出了现有LTE调度流程的一个流程示意。如图1所示,该流程具体包括五个步骤。
步骤1:终端在有通信业务需求时,向基站发送调度请求(Scheduling Request,SR)。调度请求SR中只有一个比特位,用来告知基站此UE需要上行授权(Uplink Grant,UL Grant)。
步骤2:基站向终端发送UL Grant,该UL Grant以供终端发送缓存状态报告(Buffer State Report,BSR)。
步骤3:终端使用UL Grant发送BSR,BSR用于上报终端即要发送的业务数据的数据量。
步骤4:基站根据终端上报的BSR及调度算法,为终端分配UL Grant,该UL Grant以供终端发送业务数据(业务数据也可以称为上行数据)。
步骤5:终端使用UL Grant发送业务数据(Data)。
其中,以上流程中涉及到两个上行授权UL Grant,为了便于区分,可以将步骤2中发送的用于发送BSR的上行授权UL Grant称为第一上行授权(UL Grant_1),将步骤4中发送的用于发送业务数据的上行授权UL Grant为第二上行授权(UL Grant_2)。另外,上行授权也可以称为上行授权资源。
在图1所示的调度中,基站需要根据终端待上传业务数据的数据量,来确定第二上行授权资源的大小,但终端并未直接告知基站待发送数据的数据量,而是首先通过步骤1告 诉基站其要发送业务数据这个需求,等待步骤2中基站发送第一上行授权资源后,再在步骤3中使用第一上行授权资源上传待发送数据的数据量。另外,基站在步骤4中根据该数据量及调度算法,临时确定出终端需要的第二上行授权,再将第二上行授权下发给终端。
可见,终端在向基站发送业务数据之前,需要进行多次的信令交互(至少包括步骤1~4的交互)。见表1,其示出了LTE调度流程中的时延数据,从表1中可以看出,每次信令交互中终端及基站均需要耗费一定的处理时间,信令交互次数越多,则导致的时延越长。
表1
Figure PCTCN2017117768-appb-000001
结合图1及表1可以看出,终端向基站发送业务数据之前的调度流程时延较长。为了解决此问题,本申请提供了一种调度方法,以缩短调度流程导致的时延,进而在终端发送低时延高可靠通信URLLC业务的场景中,满足该业务对时延性的要求。
本申请技术方案通过简化调度流程步骤的方式来缩短现有调度流程的时延。基于该构思,本申请提供以下几种具体的实施例。
实施例一
本实施例是终端发送的SR中携带更多的信息,这些信息原来携带在BSR中以供基站生成用于上传业务数据的上行授权(即第二上行授权)。这样,便可以减少发送第一上行授权的步骤2以及发送BSR的步骤3,进而缩短调度流程的时延。
需要说明的是,终端可以在SR中携带更多的信息,终端具有该项功能可以是基于调度流程之前的连接过程中基站的配置。
具体地,在调度流程之前,终端与基站之间会执行连接过程。如图2所示,在连接过程中,基站会给终端发送无线资源控制(Radio Resource Control,RRC)连接重配消息。RRC连接重配消息中包含对逻辑信道的配置消息,不同的业务使用不同的逻辑信道,基站 可以对URLLC业务所使用的逻辑信道进行配置,即在URLLC业务所使用逻辑信道的配置消息中新增一配置标识,该配置标识用于指示终端在该逻辑信道中可以采用增强方式发送SR。这样,终端在执行调度流程时,便根据该配置标识的指示,在发送给基站的SR中封装更多的信息。当然,若终端并未在RRC连接重配消息中检测到配置标识,则终端可以按照现有方式发送SR。
有关上述流程,需指出一些技术细节。在逻辑信道的配置消息中新增的配置标识可以是信息单元(Information Element,IE)这种形式,信息单元IE的具体名称可为logicalChannel-SR-Enhancement-mask-r15。
需要说明的是,基站向终端发送的配置指示并非局限于RRC连接重配消息中的添加的配置标识这一种形式,还可以是其他形式,如配置标识可携带在物理下行控制信道(Physical Downlink Control Channel,PDCCH)资源或者MAC CE中。其中,媒体接入控制(Medium Access Control,MAC)控制元素(Control Element,CE)可以称为媒体接入控制单元。
进一步地,基站对终端发送配置指示的方式可以并非局限于连接过程,也可以是调度流程之前的其他过程或者在调度流程中。
更进一步地,终端可以实现此功能,可以如上所述是基于基站的配置,但也可以是终端自身的配置,即终端对URLLC业务所在的逻辑信道生成配置指示,以指示在该逻辑信道中采用增强方式发送SR。
终端经过上述配置后,便可以采用增强方式发送SR。见图3,其示出了本申请提供的调度方法实施例一的流程,具体包括步骤S301~S303。
S301:终端在需要发送URLLC业务数据时,向基站发送增强SR,该增强SR中携带有BSR内的缓存状态信息。
其中,终端确定是否需要发送URLLC业务的业务数据,若需要发送URLLC业务的业务数据,则终端会生成向基站上报的SR。URLLC业务的业务数据可能是在基站指定的逻辑信道上发送,也可能并未在基站指定的逻辑信道上发送。
终端生成的SR与图1所示的现有SR相比包含更多的信息,因此,为了便于区分,可以将本实施例生成的SR称为增强SR。现有的SR中仅包含1个比特位,该比特位用于告知基站终端具有要发送的业务数据。若想要在SR中新增缓存状态信息,则可以在SR中增加比特位,使用增加的比特位来表示新增的缓存状态信息。
可选的,增强SR内除了携带此终端具有待发送的业务数据的指示信息之外,还携带有原来携带在BSR内的缓存状态信息。原来携带在BSR内的缓存状态信息即增强SR内新增的缓存状态信息,包括但不限定于以下任意一种或两种的组合:待发送业务数据的数据量、逻辑信道(或逻辑信道组)的标识。
其中,待发送业务数据的数据量以供基站计算上行授权资源(即第二上行授权资源)的大小。逻辑信道组的标识,以供基站确定上行授权资源是分配给哪个逻辑信道组的,这些逻辑信道组中包含发送业务数据的逻辑信道。
可选的,增强SR中增加的缓存状态信息包含待发送业务数据的数据量指示信息,数据量指示信息用于表示业务数据的数据量。具体地,数据量指示信息可以是以下形式中的 任意一种:
1、数据量一级索引index。
基站中存储有数据量一级索引与数据量一级范围的对应表,基站接收到数据量一级索引index后,在对应表中查找该数据量一级索引index所对应的数据量一级范围,从而确定出终端中待发送业务数据的大概数据量。
例如,增强SR中携带的index的值为3,对应表中index 3对应的数据量为300-400,则基站便可以确定出终端中待发送业务数据的数据量在300与400之间。
可见,增强SR中携带的该种方式的数据量,为基站提供的信息并不精确,基站只能大致确定待发送业务数据的数据量。
2、数据量一级索引index及数据量二级索引sub-index。
基站中不仅存储有上述对应表,还存储有数据量二级索引sub-index与数据量二级范围的对应表。为了便于区分,可以将第一个对应表称为第一对应表,将第二个对应表称为第二对应表。增强SR中除了包含数据量一级索引index外,还进一步包括数据量二级索引sub-index。数据量二级索引sub-index的作用是提供更详细的数据量范围信息。
例如,增强SR中携带的index的值为3,sub-index的值为6,则基站根据index 3在一级对应表中查找到的数据量一级范围为300-400,根据sub-index 6在二级对应表中查找到的数据量二级范围为60-70,进而确定出待发送业务数据的数据量在360-370之间。
可见,增强SR中携带该种形式的数据量,可以为基站提供更详细的数据量范围查找依据,从而使得基站可以更加精确地确定出待发送业务数据的数据量。
以上两种方式的索引可以概括为数据量的索引,数据量的索引用于指示数据量的范围。数据量的索引可以包括若干级别的索引,每一下级索引指示的数据量范围均比上一级索引指示的数据量范围更精细。以上述的一级索引及二级索引为例,一级索引指示的是百位上的数据量范围,二级索引指示的十位上的数据量范围。或者,还可以进一步包括三级索引,三级索引可以指示个位上的数据量范围。当然,一级索引、二级索引及三级索引所指示的数据量范围并非局限于百位、十位及个位,还可以是其他单位上数值范围。
3、数据量具体值。
终端将待发送的业务数据存储在缓存Buffer中,并且记录缓存Buffer中的数据量,该数据量即待发送业务数据的数据量。增强SR中并不携带上述形式的索引,而是携带缓存Buffer中数据量具体值例如365。
可见,增强SR中携带该种形式的数据量可以为基站提供最为详细的依据,基站根据该数据量,可以生成资源量大小最精确的上行资源。相比以上两种形式,该种形式最为精确,但比特位的开销最大,在实际应用中可以根据实际需求选择相应的数据形式。
需要说明的是,本申请提供了增强SR中携带的数据量的三种具体形式,但并非局限于此,只要是能为基站提供较为详细的数据量信息的形式均可。另外,终端可以自身决定发送何种形式的数据量,或者,可以是由基站决定的,即基站在向终端发送RRC连接重配消息中携带使用哪种形式数据量的指示,以使终端根据该指示决定发送何种形式的数据量。
终端生成增强SR后,便可以将该增强SR发送给基站。
S302:基站根据增强SR携带的缓存状态信息,为终端分配UL Grant。
其中,基站根据增强SR内携带的缓存状态信息,为终端分配上行授权资源UL Grant,该上行授权资源即以上所述的第二上行授权资源,以供终端上传业务数据。基站并将该上行授权资源UL Grant下发给终端。
S303:终端使用UL Grant上传业务数据。
其中,终端使用基站分配的上行授权资源UL Grant,向基站上传待发送的URLLC业务数据。
由以上的技术方案可知,本实施例需要在SR内增加比特位,来携带更多的信息。然而,终端需要使用物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源发送SR,SR中包含的比特位越多,则需要使用的PUCCH资源也就越多。因此,本实施例适合应用在PUCCH资源可扩展的场景中。
本实施中终端生成的增强SR内携带有调度所需信息,此些信息原来包含在BSR内发送,本实施例中将此些调度所需信息包含在增强SR内发送,从而可以省略图1所示现有调度流程中发送UL Grant的步骤2及发送BSR的步骤3(图3所示画叉线的虚线步骤即省略步骤),进而缩短现有调度流程的时延。
以上实施例一中,终端生成的增强SR中包含有原BSR中的缓存状态信息,目的是为了减少现有调度流程中的步骤2及3。但是,要实现简化现有调度流程,除了可以省略图1中步骤2及3,还可以简化一些步骤的处理过程,这样也可以缩短现有调度流程的时延。基于此,本申请提供了以下实施例二及实施例三。
实施例二
终端生成的增强SR可以携带待发送URLLC业务数据的高优先级调度指示(可简称为优先级调度指示或调度指示),以使基站基于高优先级调度指示为URLLC业务数据快速分配第一上行授权资源,从而简化图1中步骤2和/或3的处理过程。
见图4,其示出了本申请提供的调度方法实施例二的流程,具体包括步骤S401~S405。
S401:终端在需要发送URLLC业务数据时,向基站发送增强SR,该增强SR携带有为URLLC业务数据设置的高优先级调度指示。
其中,基站可以同时处理多种业务数据,若某种业务数据的优先级较高,则基站可以为该业务数据执行相比现有技术较为快速的上行授权资源分配方式。因此,终端可以将URLLC业务数据的调度优先级设置为高优先级,且在需要发送URLLC业务数据时,在增强SR中携带高优先级调度指示,以使基站为URLLC业务数据快速分配第二上行授权资源,具体的快速分配方法参见步骤S402的说明。
在实际应用中,SR携带高优先级调度指示可以通过以下显式或隐式方式实现。
第一种,增强SR显式携带待发送业务数据的高优先级调度指示,即增强SR使用比特位携带所述调度指示。
具体地,增强SR中新增表示优先级的比特位,该比特位的值设置为高。优先级的指示可以仅包含高低两种,若URLLC业务数据的优先级指示为高,则其他业务数据的优先 级指示为低。更进一步地,比特位的值可以设置为优先级别值。例如,使用自然数表示优先级别值,且数值越低表示优先级别越高。因此,若想要将URLLC业务数据的优先级别设置为最高,则可以将URLLC业务数据的优先级指示设置为0。
第二种,增强SR隐式携带待发送业务数据的高优先级调度指示。
具体地,终端与基站建立有多个逻辑信道,不同的逻辑信道用于发送不同的业务数据。终端的每个逻辑信道会按照一定的发送周期不断发送SR,发送周期可以称为SR发送周期(即调度请求发送周期)。
现有的每个逻辑信道的发送周期相同,本实施例可以预先将URLLC业务数据所使用的逻辑信道的发送周期缩短,以使URLLC业务数据的SR发送周期比其他业务数据的SR发送周期更短,以体现出URLLC业务数据的处理急迫性。其中,缩短后的SR发送周期可以称为预设的调度请求发送周期,预设的调度请求发送周期小于URLLC业务之外的其他业务对应的调度请求发送周期。基站可以与终端通过协议约定,SR的发送周期越短,则该SR对应的待发送业务数据的优先级越高。
缩短SR发送周期后,终端不仅可以通过发送SR隐含地向基站指示该SR对应的待发送业务数据的高优先级,而且,还可以缩短待发送业务数据对上行授权资源的等待时间,减少资源等待造成的时延。
SR发送周期的长短可以是终端自己设置的,也可以是基站设置的。若由基站设置,则基站可以在调度流程之前的连接过程中配置SR发送周期,例如,基站将SR发送周期包含在RRC连接重配消息中发送给终端,该SR发送周期是指示待发送业务数据优先级较高的发送周期。
第一种方式中,终端发送的增强SR内新增有比特位,用于明确告知基站待发送业务数据的优先级较高。第二种方式中,终端并未直接告知基站上述信息,而是通过较短的SR发送周期来隐含表明待发送业务数据的高优先级。在实际应用中,可以选择以上任意一种方式向基站上报待发送业务数据的高优先级调度指示。
终端生成增强SR后,便将增强SR发送至基站,且增强SR是按照一定的发送周期发送的。若增强SR以上述第二种方式即隐式方式携带待发送业务数据的高优先级调度指示,则增强SR的发送周期必然比其他业务数据的发送周期要短。
S402:基站根据增强SR携带的高优先级调度指示,使用快速分配方式为终端分配UL Grant。其中,该UL Grant以供终端上传BSR。
其中,若增强SR使用显式方式携带高优先级调度指示,则基站在接收到SR后,可以检测该SR中是否包含优先级指示且该优先级指示为高的比特位。若检测到,则表示该SR为携带高优先级调度指示的增强SR。若终端使用隐式方式携带高优先级调度指示,则基站在接收到SR后,确定该SR的发送周期,若发送周期为相较于其他SR的发送周期较短,则可以确定该SR为携带高优先级调度指示的增强SR。
确定接收到增强SR后,使用预设的加快分配方式为终端分配第一上行授权资源。快速分配方式是基于高优先级调度指示实现的,可以包括以下四种方式中的任意一种或者任意多种的组合。需要说明的是,进行组合的多种方式之间并不存在冲突,因此可以组合使 用。
1、第一种快速分配方式为单独分配,即为具有高优先级调度指示的业务数据单独分配上行授权资源。
具体地,现有的上行授权资源分配方式,终端向基站上报多个逻辑信道的待发送业务数据的数据量总和,基站根据数据量总和生成上行授权资源并将其下发给终端。终端接收到该上行授权资源后,按照每个逻辑信道的需求,将该上行授权资源再分配给各个逻辑信道使用。
然而,本实施例的基站可以为URLLC业务数据所在的逻辑信道单独分配上行授权资源,即为URLLC业务数据生成上行授权资源后,便指示出该上行授权资源的分配对象为URLLC业务数据所在的逻辑信道。这样,终端接收到上行授权资源后,便可以根据该上行授权资源对应的分配对象,直接将该上行授权资源分配给URLLC业务数据所在的逻辑信道。其中,指示分配对象的具体方式可以是添加分配对象标识等各种形式。
单独分配方式可以省略终端对接收到的上行授权资源的再分配过程(再分配过程包含在原调度流程中,具体包含在原调度流程的步骤3中),从而简化了原调度流程步骤3的处理过程,进而减少了调度流程的时延。
2、第二种快速分配方式为缩短上下行数据发送间隔,即基站在接收到终端发送的增强SR后,缩短向终端发送上行授权资源的时间间隔。
具体地,基站接收到终端上传的增强SR后,会在预设的时间间隔后,向终端发送该增强SR所对应的上行授权资源。例如,基站在时刻n接收到增强SR,预设的时间间隔为4,则基站会在时刻n+4向终端发送上行授权资源。本实施例是将该时间间隔缩短,例如将时间间隔由4缩短为2。这样,基站便可以更为快速地将上行授权资源发送终端,也即表示终端可以快速地获得该上行授权资源。为了便于说明,该时间间隔可以称为预设的短时间间隔表示URLLC业务获得上行授权资源的时间间隔比其他业务的时间间隔短。
结合图1所示的现有调度流程,本快速分配方式可以缩短该调度流程的步骤2下发UL Grant的处理过程。
3、第三种快速分配方式为优先分配,即优先为具有高优先级调度指示的业务数据分配上行授权资源。
具体地,多个终端可以向同一基站发送SR,即使是同一终端,其有多种业务数据要发送时,不同业务数据所在的逻辑信道也可以向基站发送多种SR,因此,基站可能同时接收到多种SR。
本实施例中,若终端发送URLLC业务数据时将SR设置为增强SR,增强SR携带有高优先级调度指示,基站接收到包含高优先级调度指示的增强SR后,便可以确定该SR对应的业务数据的优先级较高,优先为该增强SR分配上行授权资源,从而缩短调度流程的等待时延。结合图1所示的现有调度流程,本快速分配方式可以缩短该调度流程的步骤2下发UL Grant的处理过程。
4、第四种快速分配方式为预分配,即为具有高优先级调度指示的业务数据预分配上行授权资源。
前已述及,终端按照一定发送周期不断向基站发送增强SR,基站在接收到增强SR后,若增强SR携带有高优先级调度指示,则在为该增强SR分配相应大小的上行授权资源基础上,还预分配一些量的上行授权资源。这样,基站接收到终端发送的下一个增强SR后,可以将预分配的上行授权资源直接发送给终端,从而节省生成上行授权资源的时间,缩短调度流程的时延。结合图1所示的现有调度流程,本快速分配方式可以缩短该调度流程的步骤2下发UL Grant的处理过程。或者,基站可以在发送增强SR对应的上行授权资源时,将预分配的上行授权资源一并发送给终端。这样,终端可以不必发送SR请求上行授权资源,而是直接使用预分配的上行授权资源发送BSR。结合图1所示的现有调度流程,这样可以省略该调度流程的步骤1发送SR及步骤2下发UL Grant的处理过程
更具体地,业务数据的业务源可以是各种不同类型,业务源指的是业务数据的具体类型,不同类型的业务源,其生成的业务数据的数据量可能存在差别,因此,增强SR中还可以进一步携带业务数据的业务源类型,以为基站预分配数据量提供更准确的依据。
在实际应用中,基站可以选择以上四种快速分配方式中的任意一种或多种的组合。每种快速分配方式均可以在一定程度上缩短时延,选择的快速分配方式个数越多,则可以越大程度地缩短时延。
S403:终端使用UL Grant,向基站上传BSR。
需要说明的是,若基站选择的快速调度方式为第一种,即为具有高优先级调度指示的业务数据单独分配上行授权资源,则终端在接收到具有分配对象指示的上行授权资源后,便直接将该上行授权资源分配给分配对象指示对应的逻辑信道。分配对象指示,是指示上行授权资源分配给URLLC业务数据,则终端根据该分配对象指示,将上行授权资源分配给URLLC业务数据所在的逻辑信道,以供URLLC业务数据使用该上行授权资源上传BSR。
S404:基站向终端发送UL Grant。其中,该UL Grant以供终端上传业务数据。
S405:终端使用UL Grant上传业务数据。
其中,终端接收到基站下发的上行授权资源UL Grant后,使用该上行授权资源UL Grant上传URLLC业务数据。
由以上技术方案可以看出,本实施例若在SR内增加比特位来携带高优先级调度指示,则适合应用在PUCCH资源可扩展的场景中。若SR通过隐式方式携带高优先级调度指示,则适合应用在PUCCH资源比较受限,但待发送的业务数据对时延性要求较高的场景中。
本实施例中终端发送的增强SR携带有待发送业务数据的高优先级调度指示,基站根据该高优先级的指示,快速地为URLLC业务数据分配上行授权资源,该快速分配方式可以简化图1所示现有调度流程中的步骤2和/或步骤3的处理过程(如图4中的横线加粗步骤),从而缩短了现有调度流程的时延。
以上实施例二中,URLLC业务数据对应的高优先级调度指示通过显式或隐式方式携带在增强SR中,但高优先级调度指示可以并非携带在增强SR中,而是携带在BSR中。因此,本申请提供了以下通过BSR发送高优先级调度指示的实施例三。
实施例三
见图5,其示出了本申请提供的调度方法实施例三的流程,具体包括以下步骤S501~S505。
S501:终端在需要发送URLLC业务数据时,向基站发送SR。
其中,该SR可以如现有调度流程中的SR,只包含一个比特位,用于通知基站该终端有发送业务数据的需求。
S502:基站向终端发送UL Grant。
其中,该上行授权资源UL Grant以供终端上传BSR。
S503:终端向基站发送增强BSR,该增强BSR携带URLLC业务数据对应的高优先级调度指示。
其中,终端在确定发送URLLC业务数据时,为URLLC业务数据设置高优先级调度指示,并使用BSR携带该高优先级调度指示。具体地,增强BSR携带高优先级调度指示的方式可以是显式方式,如在BSR中增加比特位用于表示高优先级调度指示。其中,增强BSR是相比现有BSR,显式或隐式携带了更多的信息,增强BSR本质上还是一种BSR。
或者,增强BSR携带高优先级调度指示的方式也可以是隐式方式。具体地,BSR是通过物理上行共享信道(PhysicalUplink Shared Channel,PUSCH)发送到基站的,且发送BSR时BSR在PUSCH资源上具有位置信息。终端与基站可以预先约定高优先级的业务数据所对应的位置,终端在发送URLLC业务数据时,便可以在PUSCH资源的预先设定的位置上发送BSR,这样,基站接收到BSR后,根据BSR在PUSCH资源上的位置信息便可以确定该BSR携带高优先级调度指示。有关高优先级调度指示的说明可以参见上述实施例二的说明,此处并不再赘述。
S504:基站根据增强BSR携带的高优先级调度指示,使用快速分配方式为终端分配UL Grant。
其中,若增强BSR使用显式方式携带高优先级调度指示,则基站在接收到增强BSR后,可以检测增强BSR中是否包含优先级指示且该优先级指示为高的比特位。若检测到,则使用预设的快速分配方式为终端分配上行资源。有关快速分配方式的说明可以参见上述实施例二的说明,此处并不再赘述。
需要说明的是,基站可以根据高优先级调度指示快速地为终端分配上行授权资源,与实施例二不同的是,快速分配的上行授权资源为第二上行授权资源。在本实施例中,若使用实施例二中的第一种快速分配方式,可以简化现有调度流程中的步骤5的处理过程,若使用后三种快速分配方式中的任意一种,可以简化现有调度流程中的步骤4的处理过程。
S505:终端使用UL Grant上传待发送的业务数据。
其中,该业务数据为URLLC业务数据。
由以上技术方案可知,本实施例并无需在SR中新增信息,因此本实施例可以应用在PUCCH资源受限但对待发送业务数据的时延要求较高的场景中。
与实施例二相同的是,本实施例同样发送有待发送业务数据的高优先级调度指示,因此可以简化现有调度流程中的步骤4和/或5的处理过程(如图中的横线加粗步骤)。与实施例二不同的是,本实施例中的高优先级调度指示携带在BSR中,并非携带在SR中。
以上实施例一是在SR中携带BSR内的缓存状态信息,以节省步骤2及3;实施例二是通过SR发送高优先级调度指示,以指示基站快速下发第一上行授权资源,以简化步骤2和/或3的流程;实施例三是通过BSR发送高优先级调度指示,以指示基站快速下发第一上行授权资源,以简化步骤4和/或5的流程。这几个实施例的实现并不冲突,因此可以任意两种或三种结合实现,从而更大程度地缩短现有调度流程的时延。
实施例四
以上各个实施例是对现有调度流程中的步骤3~5进行改进,发明人研究后发现,还可以考虑对步骤1(发送SR)及步骤2(发送UL Grant)进行优化处理,基于该发明思想,本申请提供了以下实施例四。
见图6,其示出了本申请提供的调度方法实施例四的流程,具体包括以下步骤S601~S603。
S601:终端在需要发送URLLC业务数据时,使用预先配置的上行资源,向基站发送BSR。
其中,基站可以预先为URLLC业务数据分配一些上行授权资源,例如,基站在调度流程之前,为终端预先分配有上行授权资源,该些上行授权资源专供URLLC业务数据使用,因此,可以称为上行授权资源。在实施中,终端上还可能预先配置有上行共享资源,上行共享资源是供多种业务数据使用的,而非专供URLLC业务数据使用。终端可以竞争这些上行共享资源,竞争得到这些上行共享资源后,便可以使用上行共享资源发送BSR。
不论是预先配置的上行授权资源还是预先配置的上行共享资源,均可以称为预配上行资源(或预存上行资源)。
终端在需要发送URLLC业务数据时,在预配上行资源中选择一个,用来发送BSR即可。该种使用预配上行资源发送BSR的方式可以称为BSR增强方式。
终端能够实现上述功能,可以是基于基站的配置实现的。该配置方式可以参见基站对增强SR的配置过程,以下仅进行简单说明。
基站可以在调度流程之前的连接过程中,向终端发送RRC连接重配消息。RRC连接重新消息中可以包含增强指示信息,用于指示终端采用BSR增强方式发送BSR。
S602:基站根据BSR携带的缓存状态信息,为终端分配UL Grant。
其中,该UL Grant即用于发送业务数据的上行授权资源。
S603:终端使用UL Grant向基站发送业务数据。
其中,终端使用上行授权资源UL Grant,向基站发送URLLC业务数据。
由以上技术方案可知,现有的调度流程中,终端需要通过SR向基站申请UL Grant,本实施例中终端预存有上行资源,可直接从这些资源中随机选择一个来发送BSR,从而节省步骤1发送SR及步骤2发送UL Grant的步骤(图6所示画叉线的虚线步骤即省略步骤),缩短了调度流程的时延。
并且,相比在SR中增加比特位的增强方式,本实施例无需占用更多的PUCCH资源。 具体来说,终端需要使用PUCCH资源发送SR,SR中包含的比特位越多,则需要使用的PUCCH资源也就越多。然而,在调度流程中,与基站通信的PUCCH资源是有限的,且可供多个终端使用。若单个终端占用的PUCCH资源越多,则与基站通信的终端个数越少。
需要说明的是,以上实施例四中,终端可以通过竞争使用上行资源的方式发送BSR,即若多个终端都需要发送BSR,则该多个终端竞争上行资源,这样若某终端发送URLLC业务数据,可能导致该终端的该BSR与其他终端发生竞争碰撞,URLLC业务数据对应的BSR发送成功率较低。因此,为了达到URLLC业务对数据可靠性的要求,可以使用预先配置的BSR重复发送模式进行发送,如图7所示,预置BSR重复发送模式是多次重复发送同一BSR的模式。
需要说明的是,重复发送同一BSR的模式可以并非仅结合实施例四使用,只要有BSR发送的实施例中均可以使用该模式,以减小信道衰落带来的影响,进而提高竞争发送方式中BSR的接收成功率。
具体的BSR发送模式可以包括但不限定于以下几种,在实际应用中,使用哪种发送模式可以由终端自身决定,也可以是由基站决定的,即基站在RRC连接重配消息中设置发送模式,终端接收到RRC连接重配消息中,根据其中包含的发送模式重复发送BSR。
1、双连接(Dual Connectivity,DC)模式。
其中,该模式类似频域资源的复用,是在终端与基站之间的多个连接中发送同一BSR,具体的连接个数可以包含在RRC连接重配消息中。
2、载波聚合(Carrier Aggregation,CA)模式。
其中,该模式类似频域资源的复用,是在多个载波中发送同一BSR,具体的载波个数可以包含在RRC连接重配消息中。
3、传输时间间隔-束(Transmission Time Interval-bundling,TTI-bundling)模式。
其中,该模式类似时域的复用,是在多个TTI-bundling上发送同一BSR,具体的TTI-bundling个数可以包含在RRC连接重配消息中。
4、多波束(Multi-beam)模式。
其中,该模式类似空域的复用,是在多个波束beam上发送同一BSR,具体的波束个数可以包含在RRC连接重配消息中。
需要说明的是,以上重复发送BSR的方式可以提高BSR的发送成功率,从而提高业务数据传输过程的可靠性。但是,发送次数越多,则终端及基站需要更多的时间来处理BSR,这样会导致调度流程时延的延长。因此,若想要实现时延与可靠性的平衡,需要根据实际应用需求选择合适的重复发送次数。合适的重复发送次数,可由终端或基站来选择,本申请并不做具体限定。
实施例五
以上实施例有些是对SR进行改进,有些是对BSR进行改进。例如,实施例一可以在SR中携带原BSR内的缓存状态信息,实施例二可以在SR中新增待发送业务的高优先级调 度指示,实施例三可以在BSR中新增待发送业务的高优先级调度指示,实施例四是使用预先配置的上行资源发送BSR。
需要说明的是,SR的发送需要使用PUCCH资源,但该资源是专用资源且数量有限,即基站为每个终端分配各自的PUCCH资源,且分配的PUCCH资源是有限的。若某终端发送的SR中携带更多的信息,则会需要耗费更多的PUCCH资源,因此可能会因为PUCCH资源的有限性导致发送失败且时延较长。另一方面,基站为终端分配PUCCH资源与分配其他资源如上行授权之间存在矛盾,若始终为终端分配PUCCH资源,则可能会影响为终端分配其他资源,导致其他通信过程受影响。
发明人研究后发现,BSR的发送并不需要使用PUCCH资源,因此,可以在SR增强模式(第一调度模式)与BSR增强模式(第二调度模式)之间切换,以缓解SR对PUCCH资源的紧张需求。具体切换方式如下述实施例五所述。
在执行实施例五的调度流程之前,可以对终端进行功能设置,以使终端在执行调度流程时,可以在两种发送模式之间进行切换。
具体地,终端可以自身生成切换功能开启指令,并根据该指令开启切换功能。或者,终端的切换功能是由基站设置的,即基站在调度流程之前的连接过程中,可以向终端发送RRC连接重配消息,RRC连接重配消息中可以携带切换功能开启指令,该指令用于使终端开启切换功能。开启切换功能的终端可以实现以下实施例五中的发送模式切换。
见图8,其示出了本申请提供的增强调度方法实施例五的流程,具体包括以下步骤S801~805。
S801:终端开启切换功能后,持续检测终端是否需要发送URLLC业务数据。
其中,终端开启切换功能的时间点可以是在调度流程的之前、同时或之后。例如,终端在调度流程之前可以接收到RRC连接重配消息,接收到该RRC连接重配消息便开启切换功能;又如,终端检测到调度流程开始便同时开启切换功能;再如,终端在调度流程开始之后的某个时间点开启切换功能。其中,该时间点可以是由终端自身决定的,也可以是由基站决定的,如基站发送的RRC连接重配消息除了包括切换功能开启指令,还包括切换功能开启指令对应的时间点,从而终端在该时间点到达时,执行该切换功能开启指令,以使自身开启切换功能。
终端开启切换功能后,便可以生成检测指令。终端根据该检测指令,便可以执行以下调度流程。
在具有发送业务数据的需求时,首先判断该业务数据是否属于预设的低时延高可靠通信业务数据,若属于,则说明终端当前需要发送URLLC业务数据,若不属于,则说明终端当前并没有URLLC业务数据需要发送。
S802:若需要发送URLLC业务数据,则终端启用SR增强模式,以按照SR增强模式执行调度流程。其中,SR增强模式中终端向基站发送的SR为增强SR。
若业务数据为URLLC业务数据,则终端需要生成增强SR,并向基站发送增强SR。增强SR相较于现有SR而言,除了包含发送业务数据的指示信息外,还包含更多的信息。更多的信息可以称为新增信息,可以包括但不局限于以下任意一种或多种的组合:原BSR 内携带的缓存状态信息、高优先级调度指示、业务数据的类型(即上述业务源)。
需要说明的是,终端启用SR增强模式,便表示终端可以按照SR增强模式执行调度流程。具体地,增强SR内包含的信息不同,SR增强模式的具体执行过程也不同。若终端发送的增强SR包含原BSR中的缓存状态信息,则执行实施例一的调度流程。若终端发送的增强SR包含高优先级调度指示或业务数据的类型(即上述业务源),则执行实施例二的调度流程。
终端使用PUCCH资源将增强SR发送至基站,且使用的PUCCH资源比现有发送SR使用的要多,因此适合应用在PUCCH资源充分的场景中。
S803:终端统计SR增强模式的持续时长,若持续时长达到预设时长,则终端切换为BSR增强模式,以按照BSR增强模式执行调度流程。其中,BSR增强模式中终端并未向基站发送SR。
上述步骤S802切换为SR增强模式后,终端需要统计SR增强模式的持续时长。需要说明的是,本实施例在实际应用中,可能多次在BSR增强模式与SR增强模式之间进行切换,本步骤中统计的持续时长并非SR增强模式的总时长,而是统计每次进入SR增强模式后的时长。也就是说,每次步骤S802切换为SR增强模式后,便将统计的持续时长清零。
统计SR增强模式持续时长的具体实现方式可以是,通过计时器计时或统计SR发送周期。例如,基站向终端发送的RRC连接重配消息中包含计时器(如SR增强周期定时器,SREnhancementCycleTimer)及SR发送周期,终端是按照该SR发送周期不断地发送增强SR。终端切换为SR增强模式后,启动计时器计时或者统计SR发送周期的个数,从而实现计时。
若统计的SR增强模式持续时长达到预设时长(第一预设时长),则终端切换为BSR增强模式。终端可以按照BSR增强模式执行调度流程,重要的是,该发送模式中终端并未向基站发送SR,从而节省PUCCH资源的使用,BSR增强模式可以为上述实施例四过程。
S804:启用SR增强模式的情况下,若不需要发送URLLC业务数据,则统计不需要发送URLLC业务数据的持续时长,且在持续时长达到预设时长后,终端禁用SR增强模式。
其中,为了便于区分,可以将步骤S803中统计的持续时长称为第一持续时长,用来比较的预设时长称为第一预设时长,本步骤中统计的持续时长称为第二持续时长,用来比较的预设时长称为第二预设时长。第一预设时长及第二预设时长的值可以相同,也可以不同,本申请并不做具体限定。
统计第二持续时长的方式可以同统计第一持续时长的方式相同,如通过计时器计时或统计SR发送周期。具体说明可以参见第一持续时长的说明,此处并不赘述。
终端在SR增强模式的情况下,若终端长时间不需要发送URLLC业务数据,则可以禁用该SR增强模式,以节省PUCCH资源的使用。
S805:终端在禁用SR增强模式的情况下,若检测到需要发送URLLC业务数据,则启用SR增强模式,以按照SR增强模式执行调度流程。
若在禁用SR增强模式的情况下,终端检测到需要发送URLLC业务数据时,可以临时执行BSR增强模式,BSR增强模式如上所述,并未向基站发送SR,从而节省PUCCH资 源的使用。在禁用SR增强模式的情况下,终端检测到需要发送URLLC业务数据时,还可以重新启动SR增强模式,以按照SR增强模式执行调度流程。
由以上技术方案可以看出,终端在SR增强模式持续一定时长后切换为BSR增强模式,以减少对PUCCH资源的使用;终端在一段时长内无URLLC业务数据发送时,可以禁用SR增强模式,且在有URLLC业务数据发送时,重启SR增强模式。SR增强模式需要使用较多的PUCCH资源,切换为BSR增强模式或关闭SR增强模式,从而节省PUCCH资源。
需要说明的是,以上各个实施例中,是从业务数据的角度来说明增强调度流程,例如,确定执行增强调度流程的条件是具有待发送的URLLC业务的业务数据。这样,可以保证在发送某一种业务数据如URLLC业务的业务数据时,可以执行增强调度流程,以缩短该种业务数据对应的调度时延。
但是,本申请还可以从逻辑信道的角度来执行增强调度流程,例如,确定执行增强调度流程的条件是某个逻辑信道上具有待发送的业务数据,以使该逻辑信道可以区别于其他逻辑信道,执行增强调度流程,以缩短该逻辑信道对应的调度时延。在以逻辑信道的角度说明本申请的技术方案时,所有与URLLC业务对应的设定,均转换为与目标逻辑信道对应的设定。例如,高优先级调度指示并不是与URLLC业务的业务数据对应的指示,而是与目标逻辑信道对应的指示等等。
为了便于描述,该逻辑信道可以称为目标逻辑信道。目标逻辑信道上可以发送URLLC业务的业务数据,当然,也可以发送其他类型的业务数据。另外,本申请并不限定终端上的目标逻辑信道为哪个逻辑信道,目标逻辑信道可以是由基站指定的逻辑信道,或者目标逻辑信道可以由终端自己指定,例如终端将任意一个逻辑信道指定为目标逻辑信道,又如终端将满足预设条件的逻辑信道指定为目标逻辑信道。关于将满足预设条件的逻辑信道指定为目标逻辑信道的具体实现方式如下所述。
终端判断逻辑信道的目标参数是否达到与该目标参数对应的阈值,若达到,则将该逻辑信道指定为目标逻辑信道。其中目标参数可以是预先获得的参数,也可以是实时采集到的参数。
在一个示例中,目标参数可以是缓存数据量,该目标参数对应的阈值为缓存数据量阈值。在另一个示例中,目标参数为到达逻辑信道的缓存单元的数据的速率,该目标参数对应的阈值为速率阈值。在又一个示例中,目标参数为逻辑信道的缓存单元中的数据没有分配可用资源的时长,该目标参数对应的阈值为时长阈值。当然,目标参数及其对应的阈值可以是其他情况,本申请并不做具体限定。另外,目标参数对应的阈值可以由基站预先配置,也可以是根据通信协议中的相关参数设置,本申请并不做局限限定。
需要说明的是,基站除了可以为终端指定目标逻辑信道,还可以为终端指定使用哪种增强调度方法。对此,本申请提供了一种调度配置方法。如图9所示,该调度配置方法可以包括步骤S901~S903。
S901:基站确定使用预设调度模式的逻辑信道。其中,预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换 的模式。
第一调度模式为终端向基站发送增强调度请求的调度模式,也即基站接收终端发送的调度请求的调度模式,所述增强调度请求携带以下几项中的任意一项或多项:高优先级调度指示、缓存状态信息、所述业务数据的类型。在第一调度模式包含缓存状态信息的情况下为实施例一的增强调度方法,在第一调度模式包含高优先级调度指示或业务数据的类型的情况下,第一调度模式为实施例二的增强调度方法。
第二调度模式为终端使用预先存储的上行资源向基站发送缓存状态报告的调度模式,即上述实施例四的增强调度方法,也即基站接收终端使用预先存储的上行资源发送缓存状态报告的调度模式。
在第一调度模式与第二调度模式之间进行转换的模式即上述实施例五的增强调度方法。
S902:基站将预设调度模式的标识及逻辑信道的标识向终端发送。
其中,基站可以将预设调度模式的标识及逻辑信道的标识包含在逻辑信道连接重配消息、物理下行控制信道资源或媒体接入控制单元中,并向终端发送。当然,基站还可以将预设调度模式的标识及逻辑信道的标识包含在现有的其他消息或资源中发送给终端,或者,基站可以直接将预设调度模式的标识及逻辑信道的标识给终端。
S903:终端将逻辑信道的标识对应的逻辑信道确定为目标逻辑信道,并将预设调度模式的标识对应的调度模式确定为目标调度模式。
其中,终端可以根据基站发送预设调度模式的标识及逻辑信道的标识的方式,获取到该两个标识。进而,终端将逻辑信道的标识所指示的逻辑信道确定为目标逻辑信道,并将预设调度模式的标识对应的调度模式确定为目标调度模式,以执行目标调度模式对应的增强调度方法。
本申请提供的调度配置方法中,基站可以对终端进行配置,以使终端可以实现按照确定出的调度模式对应的调度方法。
另外,本申请还提供的一种终端,包括:处理模块、发送模块及接收模块。
处理模块,用于确定目标逻辑信道上是否具有待发送的业务数据;
发送模块,用于若所述处理模块确定所述目标逻辑信道上具有待发送的业务数据,则向基站发送调度指示;其中,所述目标逻辑信道是由基站指定的逻辑信道,所述调度指示用于指示所述基站按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
接收模块,用于接收所述基站发送的上行授权资源。
在一种实现方式中,在执行向基站发送调度指示的步骤时,所述发送模块具体用于:向基站发送调度请求,其中所述调度请求使用比特位携带所述调度指示。
在一种实现方式中,在执行向基站发送调度指示的步骤时,所述发送模块具体用于:按照预设的调度请求发送周期,向基站发送调度请求;其中所述预设的调度请求发送周期小于所述目标逻辑信道之外的其他逻辑信道的调度请求发送周期。
在一种实现方式中,在执行向基站发送调度指示的步骤时,所述发送模块具体用于:向基站发送缓存状态报告,其中所述缓存状态报告使用比特位携带调度指示。
在一种实现方式中,在执行向基站发送调度指示的步骤时,所述发送模块具体用于:在物理上行共享信道的预设位置上,向基站发送缓存状态报告。
本申请还提供了一种终端,包括:处理模块、发送模块及接收模块。
处理模块,用于若目标逻辑信道上具有待发送的业务数据,则生成调度请求,其中所述目标逻辑信道是由基站指定的逻辑信道,所述调度请求包含缓存状态信息;
发送模块,用于向基站发送所述调度请求,其中所述调度请求中的所述缓存状态信息用于基站分配上行授权资源;
接收模块,用于接收所述基站发送的上行授权资源。
在一种实现方式中,缓存状态信息包括数据量指示信息,所述数据量指示信息包括:
所述业务数据的数据量数值,或所述业务数据的数据量索引;其中所述数据量索引用于指示业务数据的数据量范围。
本申请还提供了一种终端,包括:处理模块、发送模块及接收模块。
处理模块,用于确定目标逻辑信道上是否具有待发送的业务数据;
发送模块,用于若所述处理模块确定所述目标逻辑信道上具有待发送的业务数据,则使用预先配置的上行资源向基站发送缓存状态报告;其中,所述目标逻辑信道为基站指定的逻辑信道,所述缓存状态报告用于所述基站为所述目标逻辑信道分配上行授权资源;
接收模块,用于接收所述基站发送的上行授权资源。
在一种实现方式中,执行使用预先配置的上行资源向基站发送缓存状态报告的步骤时,所述发送模块具体用于:使用预先配置的上行资源多次向基站发送同一缓存状态报告。
本申请还提供了一种终端,包括:接收模块及处理模块。
接收模块,用于接收检测指令;
处理模块,用于在所述接收模块接收到所述检测指令后,持续检测所述终端的目标逻辑信道上是否具有待发送的业务数据;其中,所述目标逻辑信道为基站指定的逻辑信道;
所述处理模块还用于若所述目标逻辑信道上具有待发送的业务数据,则启用预设的第一调度模式;其中,所述第一调度模式为发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;
所述处理模块还用于若所述第一调度模式的启用时长达到第一预设时长,则将所述第一调度模式切换为预设的第二调度模式;其中,所述第二调度模式为使用预先存储的上行资源向基站发送缓存状态报告的调度模式。
在一种实现方式中,上述处理模块还用于在启用所述第一调度模式后,若所述目标逻辑信道上不再具有待发送的业务数据、且不具有所述业务数据的持续时长达到第二预设时长,则禁用所述第一调度模式。
在一种实现方式中,上述处理模块还用于在禁用所述第一调度模式后,若检测到所述目标逻辑信道上具有待发送的业务数据,则启用所述第一调度模式。
本申请还提供了一种基站,包括:接收模块、处理模块及发送模块。
接收模块,用于接收终端发送的调度指示;其中所述调度指示是所述终端的目标逻辑信道上具有待发送的业务数据时发送的,所述目标逻辑信道为所述基站指定的逻辑信道;
处理模块,用于按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
发送模块,用于向所述终端发送所述上行授权资源。
在一种实现方式中,执行按照预设的分配方式为所述目标逻辑信道分配上行授权资源的步骤时,所述处理模块具体用于:为所述目标逻辑信道单独分配上行授权资源。
在一种实现方式中,执行按照预设的分配方式为所述目标逻辑信道分配上行授权资源的步骤时,所述处理模块具体用于:在预设的短时间间隔后,为所述目标逻辑信道分配上行授权资源;其中,所述短时间间隔表示所述目标逻辑信道获得上行授权资源的时间间隔比其他逻辑信道的时间间隔短。
在一种实现方式中,执行按照预设的分配方式为所述目标逻辑信道分配上行授权资源的步骤时,所述处理模块具体用于:在接收到多个逻辑信道对应的上行授权资源分配请求下,优先为所述目标逻辑信道分配上行授权资源。
在一种实现方式中,执行按照预设的分配方式为所述目标逻辑信道分配上行授权资源的步骤时,所述处理模块具体用于:依据所述目标逻辑信道上的业务数据的数据量,为所述目标逻辑信道分配比所述数据量更多的上行授权资源。
本申请还提供了一种基站,包括:处理模块及发送模块。
处理模块,用于确定使用预设调度模式的逻辑信道;
发送模块,用于向终端发送所述预设调度模式的标识及所述逻辑信道的标识;
其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为基站接收终端发送的调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为接站接收终端使用预先存储的上行资源发送缓存状态报告的调度模式。
在一种实现方式中,执行向终端发送所述预设调度模式的标识及所述逻辑信道的标识的步骤时,所述发送模块具体用于:向终端发送逻辑信道连接重配消息,其中,所述逻辑信道连接重配消息包含所述预设调度模式的标识及所述逻辑信道的标识。
在一种实现方式中,执行向终端发送所述预设调度模式的标识及所述逻辑信道的标识的步骤时,所述发送模块具体用于:向终端发送物理下行控制信道资源,其中,所述物理下行控制信道资源包含所述预设调度模式的标识及所述逻辑信道的标识。
在一种实现方式中,执行向终端发送所述预设调度模式的标识及所述逻辑信道的标识的步骤时,所述发送模块具体用于:向终端发送媒体接入控制单元,其中,所述媒体接入控制单元包含所述预设调度模式的标识及所述逻辑信道的标识。
本申请还提供了一种终端,包括:接收模块及处理模块。
接收模块,用于接收基站发送的预设调度模式的标识及逻辑信道的标识;其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为终端向基站发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为终端使用预先存储的上行资源向基站发送缓存状 态报告的调度模式;
处理模块,用于将所述逻辑信道的标识对应的逻辑信道确定为目标逻辑信道,并将所述预设调度模式的标识对应的调度模式确定为所述终端使用的调度模式。
见图10,其示出了终端的一种可能的结构示意,包括:
控制器/处理器1001、存储器1002、通信接口1003、输入设备1004和输出设备1005。处理器1001、存储器1002、通信接口1003、输入设备1004和输出设备1005相互连接。
控制器/处理器1001可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器1101也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。具体地:
终端的控制器/处理器1001可以实现上述终端中处理模块的功能,用于执行上述应用在终端上的调度方法和/或用于本申请所描述的技术的其他过程。
存储器1002中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,存储器1002可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。
通信接口1003可以实现上述终端中发送模块和接收模块的功能。所述通信接口1003包括使用任何收发器一类的装置,以便与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(WLAN)等。
终端的通信接口1003可以向基站发送的调度指示、调度请求、缓存状态报告等信息,并将接收到的信息发送给控制器/处理器,由控制器/处理器执行上述应用在终端上的调度方法。或者,终端的通信接口1003可以接收基站发送的上行授权资源等。
输入设备1004可包括接收用户输入的数据和信息的装置,例如键盘、光笔、语音输入装置、触摸屏等。
输出设备1005可包括允许输出信息给用户的装置,例如显示屏、扬声器等。
见图11,其示出了基站的一种可能的结构示意,包括:
控制器/处理器1101、存储器1102及通信接口1103。处理器1101、存储器1102、及通信接口1103相互连接。
控制器/处理器1101可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者 其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器1101也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。具体地:
基站的控制器/处理器1101可以实现上述基站中处理模块的功能,用于执行上述应用在基站上的调度方法和/或用于本申请所描述的技术的其他过程。
存储器1102中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,存储器1102可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。
通信接口1103可以实现上述基站中发送模块和接收模块的功能。所述通信接口1103包括使用任何收发器一类的装置,以便与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(WLAN)等。
基站的通信接口1103可以接收终端发送的调度指示、调度请求、缓存状态报告等信息,并将接收到的信息发送给控制器/处理器,由控制器/处理器执行上述应用在基站上的调度方法。基站的通信接口1103还可以向终端发送上行授权资源等。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (44)

  1. 一种调度方法,其特征在于,应用于终端,该方法包括:
    若目标逻辑信道上具有待发送的业务数据,则向基站发送调度指示;其中,所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度指示用于指示所述基站按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
    接收所述基站发送的上行授权资源。
  2. 根据权利要求1所述的调度方法,其特征在于,所述向基站发送调度指示,包括:
    向所述基站发送调度请求,其中所述调度请求使用比特位携带所述调度指示。
  3. 根据权利要求1所述的调度方法,其特征在于,所述向基站发送调度指示,包括:
    按照预设的调度请求发送周期,向所述基站发送调度请求;其中所述预设的调度请求发送周期小于所述目标逻辑信道之外的其他逻辑信道的调度请求发送周期。
  4. 根据权利要求1所述的调度方法,其特征在于,所述向基站发送调度指示,包括:
    向所述基站发送缓存状态报告,其中所述缓存状态报告使用比特位携带所述调度指示。
  5. 根据权利要求1所述的调度方法,其特征在于,所述向基站发送调度指示,包括:
    在物理上行共享信道的预设位置上,向所述基站发送缓存状态报告。
  6. 一种调度方法,其特征在于,应用于终端,该方法包括:
    若目标逻辑信道上具有待发送的业务数据,则生成调度请求,其中所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度请求包含缓存状态信息;
    向所述基站发送所述调度请求,其中所述调度请求中的所述缓存状态信息用于所述基站分配上行授权资源;
    接收所述基站发送的上行授权资源。
  7. 根据权利要求6所述的调度方法,其特征在于,所述缓存状态信息包括数据量指示信息,所述数据量指示信息包括:
    所述业务数据的数据量数值;或,
    所述业务数据的数据量索引;其中,所述数据量索引用于指示所述业务数据的数据量范围。
  8. 一种调度方法,其特征在于,应用于终端,该方法包括:
    若目标逻辑信道上具有待发送的业务数据,则使用预先配置的上行资源向基站发送缓存状态报告;其中,所述目标逻辑信道为基站或终端指定的逻辑信道,所述缓存状态报告用于所述基站为所述目标逻辑信道分配上行授权资源;
    接收所述基站发送的上行授权资源。
  9. 根据权利要求8所述的调度方法,其特征在于,所述使用预先配置的上行资源向基站发送缓存状态报告,包括:
    使用预先配置的上行资源多次向基站发送同一缓存状态报告。
  10. 一种调度方法,其特征在于,应用于终端,该方法包括:
    接收到检测指令后,持续检测所述终端的目标逻辑信道上是否具有待发送的业务数据;其中,所述目标逻辑信道为基站或终端指定的逻辑信道;
    若所述目标逻辑信道上具有待发送的业务数据,则启用预设的第一调度模式;其中,所述第一调度模式为发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;
    若所述第一调度模式的启用时长达到第一预设时长,则将所述第一调度模式切换为预设的第二调度模式;其中,所述第二调度模式为使用预先存储的上行资源向基站发送缓存状态报告的调度模式;
    若所述目标逻辑信道上不具有待发送的业务数据,则禁用所述第一调度模式,且在所述目标逻辑信道上具有待发送的业务数据,重启所述第一调度模式。
  11. 根据权利要求10所述的调度方法,其特征在于,还包括:
    在启用所述第一调度模式后,若所述目标逻辑信道上不再具有待发送的业务数据、且不具有所述业务数据的持续时长达到第二预设时长,则禁用所述第一调度模式。
  12. 根据权利要求11所述的调度方法,其特征在于,还包括:
    在禁用所述第一调度模式后,若检测到所述目标逻辑信道上具有待发送的业务数据,则启用所述第一调度模式。
  13. 一种调度方法,其特征在于,应用于基站,该方法包括:
    接收终端发送的调度指示;其中所述调度指示是所述终端的目标逻辑信道上具有待发送的业务数据时发送的,所述目标逻辑信道为所述基站或终端指定的逻辑信道;
    按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
    向所述终端发送所述上行授权资源。
  14. 根据权利要求13所述的调度方法,其特征在于,所述按照预设的分配方式为所述目标逻辑信道分配上行授权资源,包括:
    为所述目标逻辑信道单独分配上行授权资源。
  15. 根据权利要求13所述的调度方法,其特征在于,所述按照预设的分配方式为所述目标逻辑信道分配上行授权资源,包括:
    在预设的短时间间隔后,为所述目标逻辑信道分配上行授权资源;其中,所述短时间间隔表示所述目标逻辑信道获得上行授权资源的时间间隔比其他逻辑信道的时间间隔短。
  16. 根据权利要求13所述的调度方法,其特征在于,所述按照预设的分配方式为所述目标逻辑信道分配上行授权资源,包括:
    在接收到多个逻辑信道对应的上行授权资源分配请求后,优先为所述目标逻辑信道分配上行授权资源。
  17. 根据权利要求13所述的调度方法,其特征在于,所述按照预设的分配方式为所述目标逻辑信道分配上行授权资源,包括:
    依据所述目标逻辑信道上的业务数据的数据量,为所述目标逻辑信道分配比所述数据量更多的上行授权资源。
  18. 一种调度配置方法,其特征在于,应用于基站,该方法包括:
    确定使用预设调度模式的逻辑信道;
    向终端发送所述预设调度模式的标识及所述逻辑信道的标识;
    其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为基站接收终端发送的调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为基站接收终端使用预先存储的上行资源发送缓存状态报告的调度模式。
  19. 根据权利要求18所述的调度配置方法,其特征在于,所述向终端发送所述预设调度模式的标识及所述逻辑信道的标识,包括:
    向终端发送逻辑信道连接重配消息,其中,所述逻辑信道连接重配消息包含所述预设调度模式的标识及所述逻辑信道的标识。
  20. 根据权利要求18所述的调度配置方法,其特征在于,所述向终端发送所述预设调度模式的标识及所述逻辑信道的标识,包括:
    向终端发送物理下行控制信道资源,其中,所述物理下行控制信道资源包含所述预设调度模式的标识及所述逻辑信道的标识。
  21. 根据权利要求18所述的调度配置方法,其特征在于,所述向终端发送所述预设调度模式的标识及所述逻辑信道的标识,包括:
    向终端发送媒体接入控制单元,其中,所述媒体接入控制单元包含所述预设调度模式的标识及所述逻辑信道的标识。
  22. 一种调度配置方法,其特征在于,应用于终端,该方法包括:
    接收基站发送的预设调度模式的标识及逻辑信道的标识;其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为终端向基站发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为终端使用预先存储的上行资源向基站发送缓存状态报告的调度模式;
    将所述逻辑信道的标识对应的逻辑信道确定为目标逻辑信道,并将所述预设调度模式的标识对应的调度模式确定为所述终端使用的调度模式。
  23. 一种终端,其特征在于,包括:
    处理模块,用于确定目标逻辑信道上是否具有待发送的业务数据;
    发送模块,用于若所述处理模块确定所述目标逻辑信道上具有待发送的业务数据,则向基站发送调度指示;其中,所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度指示用于指示所述基站按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
    接收模块,用于接收所述基站发送的上行授权资源。
  24. 根据权利要求23所述的终端,其特征在于,发送模块向基站发送调度指示包括:
    所述发送模块用于向所述基站发送调度请求,其中所述调度请求使用比特位携带所述调度指示。
  25. 根据权利要求23所述的终端,其特征在于,发送模块向基站发送调度指示包括:
    所述发送模块用于按照预设的调度请求发送周期,向所述基站发送调度请求;其中所 述预设的调度请求发送周期小于所述目标逻辑信道之外的其他逻辑信道的调度请求发送周期。
  26. 根据权利要求23所述的终端,其特征在于,发送模块向基站发送调度指示包括:
    所述发送模块用于向所述基站发送缓存状态报告,其中所述缓存状态报告使用比特位携带所述调度指示。
  27. 根据权利要求23所述的终端,其特征在于,发送模块向基站发送调度指示包括:
    所述发送模块用于在物理上行共享信道的预设位置上,向所述基站发送缓存状态报告。
  28. 一种终端,其特征在于,包括:
    处理模块,用于若目标逻辑信道上具有待发送的业务数据,则生成调度请求,其中所述目标逻辑信道是由基站或终端指定的逻辑信道,所述调度请求包含缓存状态信息;
    发送模块,用于向基站发送所述调度请求,其中所述调度请求中的所述缓存状态信息用于基站分配上行授权资源;
    接收模块,用于接收所述基站发送的上行授权资源。
  29. 根据权利要求28所述的终端,其特征在于,所述缓存状态信息包括数据量指示信息,所述数据量指示信息包括:
    所述业务数据的数据量数值;或,
    所述业务数据的数据量索引;其中,所述数据量索引用于指示业务数据的数据量范围。
  30. 一种终端,其特征在于,包括:
    处理模块,用于确定目标逻辑信道上是否具有待发送的业务数据;
    发送模块,用于若所述处理模块确定所述目标逻辑信道上具有待发送的业务数据,则使用预先配置的上行资源向基站发送缓存状态报告;其中,所述目标逻辑信道为基站或终端指定的逻辑信道,所述缓存状态报告用于所述基站为所述目标逻辑信道分配上行授权资源;
    接收模块,用于接收所述基站发送的上行授权资源。
  31. 根据权利要求30所述的终端,其特征在于,发送模块使用预先配置的上行资源向基站发送缓存状态报告包括:
    所述发送模块还用于使用预先配置的上行资源多次向基站发送同一缓存状态报告。
  32. 一种终端,其特征在于,包括:
    接收模块,用于接收检测指令;
    处理模块,用于在所述接收模块接收到所述检测指令后,持续检测所述终端的目标逻辑信道上是否具有待发送的业务数据;其中,所述目标逻辑信道为基站或终端指定的逻辑信道;
    所述处理模块还用于若所述目标逻辑信道上具有待发送的业务数据,则启用预设的第一调度模式;其中,所述第一调度模式为发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;
    所述处理模块还用于若所述第一调度模式的启用时长达到第一预设时长,则将所述第一调度模式切换为预设的第二调度模式;其中,所述第二调度模式为使用预先存储的上行 资源向基站发送缓存状态报告的调度模式。
  33. 根据权利要求32所述的终端,其特征在于:
    所述处理模块还用于在启用所述第一调度模式后,若所述目标逻辑信道上不再具有待发送的业务数据、且不具有所述业务数据的持续时长达到第二预设时长,则禁用所述第一调度模式。
  34. 根据权利要求33所述的终端,其特征在于,还包括:
    所述处理模块还用于在禁用所述第一调度模式后,若检测到所述目标逻辑信道上具有待发送的业务数据,则启用所述第一调度模式。
  35. 一种基站,其特征在于,包括:
    接收模块,用于接收终端发送的调度指示;其中所述调度指示是所述终端的目标逻辑信道上具有待发送的业务数据时发送的,所述目标逻辑信道为所述基站或终端指定的逻辑信道;
    处理模块,用于按照预设的分配方式为所述目标逻辑信道分配上行授权资源;
    发送模块,用于向所述终端发送所述上行授权资源。
  36. 根据权利要求35所述的基站,其特征在于,处理模块按照预设的分配方式为所述目标逻辑信道分配上行授权资源包括:
    所述处理模块还用于为所述目标逻辑信道单独分配上行授权资源。
  37. 根据权利要求35所述的基站,其特征在于,处理模块按照预设的分配方式为所述目标逻辑信道分配上行授权资源包括:
    所述处理模块还用于在预设的短时间间隔后,为所述目标逻辑信道分配上行授权资源;其中,所述短时间间隔表示所述目标逻辑信道获得上行授权资源的时间间隔比其他逻辑信道的时间间隔短。
  38. 根据权利要求35所述的基站,其特征在于,处理模块按照预设的分配方式为所述目标逻辑信道分配上行授权资源包括:
    所述处理模块还用于在所述接收模块接收到多个逻辑信道对应的上行授权资源分配请求后,优先为所述目标逻辑信道分配上行授权资源。
  39. 根据权利要求35所述的基站,其特征在于,处理模块按照预设的分配方式为所述目标逻辑信道分配上行授权资源包括:
    所述处理模块还用于依据所述目标逻辑信道上的业务数据的数据量,为所述目标逻辑信道分配比所述数据量更多的上行授权资源。
  40. 一种基站,其特征在于,包括:
    处理模块,用于确定使用预设调度模式的逻辑信道;
    发送模块,用于向终端发送所述预设调度模式的标识及所述逻辑信道的标识;
    其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为基站接收终端发送的调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为接站接收终端使用预先存储的 上行资源发送缓存状态报告的调度模式。
  41. 根据权利要求40所述的基站,其特征在于,发送模块向终端发送所述预设调度模式的标识及所述逻辑信道的标识包括:
    所述发送模块还用于向终端发送逻辑信道连接重配消息,其中,所述逻辑信道连接重配消息包含所述预设调度模式的标识及所述逻辑信道的标识。
  42. 根据权利要求40所述的基站,其特征在于,发送模块向终端发送所述预设调度模式的标识及所述逻辑信道的标识包括:
    所述发送模块还用于向终端发送物理下行控制信道资源,其中,所述物理下行控制信道资源包含所述预设调度模式的标识及所述逻辑信道的标识。
  43. 根据权利要求40所述的基站,其特征在于,发送模块向终端发送所述预设调度模式的标识及所述逻辑信道的标识包括:
    所述发送模块还用于向终端发送媒体接入控制单元,其中,所述媒体接入控制单元包含所述预设调度模式的标识及所述逻辑信道的标识。
  44. 一种终端,其特征在于,包括:
    接收模块,用于接收基站发送的预设调度模式的标识及逻辑信道的标识;其中,所述预设调度模式为以下三种中的任意一种:第一调度模式、第二调度模式、在第一调度模式与第二调度模式之间进行转换的模式;所述第一调度模式为终端向基站发送调度请求的调度模式,所述调度请求携带以下几项中的任意一项或多项:调度指示、缓存状态信息、所述业务数据的类型;所述第二调度模式为终端使用预先存储的上行资源向基站发送缓存状态报告的调度模式;
    处理模块,用于将所述逻辑信道的标识对应的逻辑信道确定为目标逻辑信道,并将所述预设调度模式的标识对应的调度模式确定为所述终端使用的调度模式。
PCT/CN2017/117768 2017-01-13 2017-12-21 调度方法及相关设备 WO2018130057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112019014284-3A BR112019014284A2 (pt) 2017-01-13 2017-12-21 Método de programação e dispositivo relacionado
EP17891059.2A EP3554163A4 (en) 2017-01-13 2017-12-21 SCHEDULING PROCEDURE AND RELATED DEVICE
AU2017392744A AU2017392744B2 (en) 2017-01-13 2017-12-21 Scheduling method and related device
US16/511,452 US20190342903A1 (en) 2017-01-13 2019-07-15 Scheduling method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710025821.4 2017-01-13
CN201710025821.4A CN108307505B (zh) 2017-01-13 2017-01-13 调度方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/511,452 Continuation US20190342903A1 (en) 2017-01-13 2019-07-15 Scheduling method and related device

Publications (1)

Publication Number Publication Date
WO2018130057A1 true WO2018130057A1 (zh) 2018-07-19

Family

ID=62839315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117768 WO2018130057A1 (zh) 2017-01-13 2017-12-21 调度方法及相关设备

Country Status (6)

Country Link
US (1) US20190342903A1 (zh)
EP (1) EP3554163A4 (zh)
CN (1) CN108307505B (zh)
AU (1) AU2017392744B2 (zh)
BR (1) BR112019014284A2 (zh)
WO (1) WO2018130057A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2923887T3 (es) * 2017-08-04 2022-10-03 Angdong Oppo Mobile Telecommunications Corp Ltd Método de planificación de recursos, dispositivo terminal y dispositivo de red
CN110677872B (zh) * 2017-08-11 2020-11-24 华为技术有限公司 数据传输方法、设备和通信系统
CN110933742B (zh) * 2018-09-20 2021-08-13 华为技术有限公司 调度方法、设备与计算机可读存储介质
CN110944395B (zh) * 2018-09-21 2022-02-25 华为技术有限公司 无线调度的方法和装置
CN114629601A (zh) * 2019-02-15 2022-06-14 中兴通讯股份有限公司 信息确定方法、信息确定装置及存储介质
CN113455083A (zh) * 2019-03-20 2021-09-28 联想(新加坡)私人有限公司 多资源分配模式配置
CN116781209A (zh) * 2019-07-16 2023-09-19 华为技术有限公司 数据传输方法、装置及系统
WO2021151566A1 (en) * 2020-01-28 2021-08-05 Sony Group Corporation Enhanced buffer status report
EP4030847A1 (en) * 2021-01-19 2022-07-20 Vestel Elektronik Sanayi ve Ticaret A.S. Adaptive frame selection for sensing and joint sensing and communication applications
EP4338465A1 (en) * 2021-05-12 2024-03-20 Sony Group Corporation Methods for uplink transmission, related wireless devices and related network nodes
WO2023212074A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Reduced latency scheduling request procedures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685895A (zh) * 2011-03-11 2012-09-19 华为技术有限公司 一种上行数据的调度方法、系统及装置
CN102932939A (zh) * 2012-10-12 2013-02-13 中兴通讯股份有限公司 一种lte系统上行调度优化方法、系统、基站及终端
CN104185290A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 数据调度的方法、中继设备、中继节点及系统
WO2016190593A1 (en) * 2015-05-22 2016-12-01 Lg Electronics Inc. Method for triggering a buffer status reporting in a wireless communication system and a device therefor
CN106209326A (zh) * 2016-06-30 2016-12-07 深圳市海思半导体有限公司 上行数据发送方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483918B (zh) * 2008-01-08 2011-11-23 华为技术有限公司 缓冲区状态报告的发送方法及其装置
WO2013067677A1 (en) * 2011-11-07 2013-05-16 Renesas Mobile Corporation Methods, devices and computer program products for enhanced scheduling request transmission to improve resource efficiency
JP6050021B2 (ja) * 2012-04-19 2016-12-21 シャープ株式会社 端末装置、基地局装置、通信システム、通信方法および集積回路
EP2661138A1 (en) * 2012-05-04 2013-11-06 Panasonic Corporation Threshold-based and power-efficient scheduling request procedure
EP2850901A1 (en) * 2012-05-14 2015-03-25 Nokia Solutions and Networks Oy Uplink signalling overhead
WO2014139083A1 (zh) * 2013-03-12 2014-09-18 华为技术有限公司 传输数据处理方法及设备
US20150078294A1 (en) * 2013-09-13 2015-03-19 Qualcomm Incorporated Scheduling request in wireless communication system
JP6783755B2 (ja) * 2015-05-15 2020-11-11 京セラ株式会社 無線端末、基地局、及びプロセッサ
CN108401302B (zh) * 2017-02-04 2022-07-29 华为技术有限公司 一种资源调度方法、装置及系统
CN117062240A (zh) * 2017-08-11 2023-11-14 华为技术有限公司 调度请求的发送方法、调度请求的处理方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685895A (zh) * 2011-03-11 2012-09-19 华为技术有限公司 一种上行数据的调度方法、系统及装置
CN102932939A (zh) * 2012-10-12 2013-02-13 中兴通讯股份有限公司 一种lte系统上行调度优化方法、系统、基站及终端
CN104185290A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 数据调度的方法、中继设备、中继节点及系统
WO2016190593A1 (en) * 2015-05-22 2016-12-01 Lg Electronics Inc. Method for triggering a buffer status reporting in a wireless communication system and a device therefor
CN106209326A (zh) * 2016-06-30 2016-12-07 深圳市海思半导体有限公司 上行数据发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3554163A4

Also Published As

Publication number Publication date
AU2017392744B2 (en) 2021-06-17
EP3554163A1 (en) 2019-10-16
CN108307505B (zh) 2021-07-09
AU2017392744A1 (en) 2019-07-18
US20190342903A1 (en) 2019-11-07
CN108307505A (zh) 2018-07-20
EP3554163A4 (en) 2019-12-25
BR112019014284A2 (pt) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2018130057A1 (zh) 调度方法及相关设备
TWI571153B (zh) 用於一無線通訊系統之基地台及裝置對裝置使用者裝置
US11751262B2 (en) Electronic apparatus, a central node apparatus and a network side apparatus, a transmission method and a configuration method
US9775168B2 (en) Methods assigning resources for dedicated scheduling requests using MAC messages and related wireless terminals and base stations
EP3565303B1 (en) Data packet transmission method and terminal
WO2020147825A1 (zh) 确定参数值的方法和设备
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
KR20200139803A (ko) 대역폭 부분 스위칭
US11812461B2 (en) Communication method and related device
WO2016155113A1 (zh) 一种群组通信的方法、用户设备、基站设备及系统
KR20100025501A (ko) 반-지속 스케줄링의 harq 프로세스를 핸들링하는 방법 및 장치
WO2015067197A1 (zh) D2d发现信号的发送方法和发送装置
WO2018201756A1 (zh) 长pucch的资源调度、传输方法及装置、设备及存储介质
WO2016186537A1 (en) Methods assigning resources for dedicated scheduling requests using mac messages and related wireless terminals and base stations
WO2020034740A1 (zh) 一种调度请求资源确定及配置方法、设备及存储介质
JP2023082193A (ja) 自動車のネットワークにおけるキャリア選択方法及び端末機器
TWI572234B (zh) 用於巢狀式網路之中央控制設備及其資源分配方法
KR20200064140A (ko) 상향링크 데이터 패킷 자원 할당 방법 및 사용자 단말기
JP2019502278A (ja) 無線通信の方法、ネットワーク装置及び端末機器
US20200413429A1 (en) Radio communication method, user equipment, and network device
CN110225594B (zh) 一种调整调度请求周期的方法及装置
US20230074305A1 (en) Resource determining method, apparatus, and system
JP2015091133A (ja) ユーザ機器のアクセス方法、ユーザ機器、及び基地局
EP4351247A1 (en) Resource selection method and apparatus
WO2024067186A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017392744

Country of ref document: AU

Date of ref document: 20171221

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014284

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017891059

Country of ref document: EP

Effective date: 20190710

ENP Entry into the national phase

Ref document number: 112019014284

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190710