WO2018129896A1 - 一种针对污水处理厂尾水深度处理的人工湿地系统 - Google Patents

一种针对污水处理厂尾水深度处理的人工湿地系统 Download PDF

Info

Publication number
WO2018129896A1
WO2018129896A1 PCT/CN2017/093357 CN2017093357W WO2018129896A1 WO 2018129896 A1 WO2018129896 A1 WO 2018129896A1 CN 2017093357 W CN2017093357 W CN 2017093357W WO 2018129896 A1 WO2018129896 A1 WO 2018129896A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pool
ecological pool
plant
ecological
Prior art date
Application number
PCT/CN2017/093357
Other languages
English (en)
French (fr)
Inventor
宋海勇
彭立新
李伟奇
王永秀
张俊辉
雷志洪
林静
张冉
Original Assignee
深圳市碧园环保技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市碧园环保技术有限公司 filed Critical 深圳市碧园环保技术有限公司
Publication of WO2018129896A1 publication Critical patent/WO2018129896A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2

Definitions

  • the invention relates to the field of advanced treatment of sewage, in particular to an artificial wetland system for deep treatment of tail water of a sewage treatment plant.
  • the discharge form of the tailwater of the urban sewage treatment plant in China is mainly concentrated discharge, and the self-purification ability of the river is used to further degrade the pollutants in the tail water to meet the water environment functional target of the receiving water body.
  • the tailwaters of most urban sewage plants have gradually lost their water environment functions.
  • many water plants have been unable to meet the existing requirements due to design reasons.
  • the on-site upgrades are difficult to upgrade and upgrade in the current conditions due to the limitations of the site and the original process. More and more sewage treatment plant tailwater advanced treatment projects have been planned and constructed.
  • the urban sewage treatment plant adopts mature technology, its organic matter removal ability is strong, the concentration of COD and BOD in the effluent is low, and the concentration of nitrogen and phosphorus in the effluent is relatively high, which becomes the focus of deep treatment.
  • the existing artificial wetland technology for the advanced treatment of tail water in sewage treatment plants is mostly based on the wetland structure, and the pollutant removal efficiency is improved by the combination of different types of wetlands, but the treatment efficiency of the constructed wetland sewage treatment system is still low, sewage treatment The carbon source of the tail water of the plant is insufficient, resulting in low efficiency of nitrogen removal.
  • the invention overcomes the defects that the treatment efficiency of the constructed wetland sewage treatment system in the prior art is low, the carbon source of the tail water of the sewage treatment plant is insufficient, and the denitrification efficiency is low, and the artificial treatment for the advanced treatment of the tail water of the sewage treatment plant is provided.
  • Wetland system Wetland system.
  • the technical solution adopted by the present invention for achieving the object of the invention is: an artificial wetland system for deep treatment of tail water of a sewage treatment plant, including a constructed wetland system, and an ecological pool system for pretreating sewage, the ecological pool system comprising A water distribution channel, an ecological pool and a water collecting channel, a microbial carrier filler mounting bracket is arranged in the ecological pool, and the microbial carrier filler is fixedly mounted on the microbial carrier packing mounting bracket, and the ecological pool is provided with a plant floating bed, and the plant floating bed is filled with water.
  • the water outlet end of the water distribution channel is connected with the water inlet end of the ecological pool, and the water outlet end of the ecological pool is connected with the water inlet end of the water collecting channel, and the lower water collecting perforated pipe is arranged in the pool of the artificial wetland from the bottom of the pool to the surface of the pool.
  • the gravel support layer, the pollutant adsorption layer, the sand filter layer, the upper perforated water distribution pipe and the water-generating plant 2 the water outlet end of the collecting channel is connected with the inlet end of the upper perforated water distribution pipe, and the lower collecting water perforating pipe is provided at one end Water nozzle.
  • the microbial carrier filler is a non-woven fabric.
  • the ecological pool is provided with a baffle wall, and the ecological pool is divided by the baffle wall into a multi-stage series cell structure.
  • the plant floating bed is composed of a set of floating body units.
  • the invention has the beneficial effects that the invention combines the use of the ecological pool and the constructed wetland system, thereby greatly improving the nitrogen and phosphorus removal efficiency of the sewage, and the total nitrogen removal rate can reach more than 50%, and the total phosphorus is compared with the conventional constructed wetland system.
  • the removal rate can reach more than 60%, and the area load of the constructed wetland can be increased to 1.5m 3 /m 2 ⁇ d, which greatly reduces the footprint of the constructed wetland.
  • the sewage of the invention uniformly enters the ecological pool through the water distribution channel, and the inflow of the ecological pool adopts a baffled flow mode, and the multi-stage baffle is fully contacted with the microbial carrier filler in the ecological pool, and the front end and the end of the influent are different due to the concentration of the pollutant. It can form different microbial structures, and the removal of pollutants is more targeted, which improves the efficiency of microbial action.
  • the plant roots of the plant floating bed on the surface of the ecological pool grow to the interior of the water body, which on the one hand improves the efficiency of pollutant removal.
  • the litter of the plants and the regular release of the plants after harvesting supplement the ecological pool with carbon sources.
  • the nitrate nitrogen is converted into nitrogen to achieve deep nitrogen removal.
  • the invention has no aeration equipment such as aeration, and the carbon source uses wetland plants, which greatly reduces the running cost and reduces the cost of the wetland plant transportation.
  • Figure 1 is a schematic view of the structure of the present invention.
  • 1 is a water distribution channel
  • 2 is an ecological pool
  • 3 is a microbial carrier packing mounting bracket
  • 4 is a microbial carrier filler
  • 5 is a baffle wall
  • 6 is a plant floating bed
  • 7 is a watering plant
  • 8 is a collecting channel.
  • 9 is a constructed wetland system
  • 10 is a lower water collecting perforated pipe
  • 11 is a gravel supporting layer
  • 12 is a pollutant adsorption layer
  • 13 is a sand filter layer
  • 14 is a watering plant 2
  • 15 is an upper layer perforated water distribution pipe.
  • an artificial wetland system for the advanced treatment of tail water in a sewage treatment plant of the present embodiment including a constructed wetland system 9, further includes an ecological pool system for pretreating sewage.
  • the ecological pool system includes a water distribution channel 1, an ecological pool 2, and a water collecting channel 8.
  • the pool of the ecological pool 2 adopts a reinforced concrete structure, and the pool body is square, at least divided into two grids in parallel, and each grid is not connected to each other, which is convenient for maintenance.
  • the microbial carrier packing mounting bracket 3 is arranged in the pool of the ecological pool 2, and the microbial carrier packing 4 is fixedly mounted on the microbial carrier packing mounting bracket 3, and the biofilm is formed on the surface of the microbial carrier filler 4, and the biofilm is mainly grown in anaerobic and anoxic conditions.
  • the denitrifying bacteria that grow underneath provide the necessary conditions for denitrification and denitrification.
  • the preferred microbial carrier filler 4 of the present embodiment is a non-woven fabric having a thickness of about 2 mm, the width can be adjusted according to the size of the pool of the ecological pool 2, the installation height is not more than 3 meters, the installation interval is not more than 1 meter, and the filler surface of the microbial carrier filler 4 In the direction of the incoming water, the surface of the microbial carrier filler 4 is rough, which is beneficial to the growth of microorganisms and zooplankton, and the surface can form a micro-ecological structure, which is beneficial to the removal of pollutants.
  • a preferred baffle wall 5 is provided in the ecological pond 2 of the present embodiment.
  • the baffle wall 5 is fixed under the ecological pool 2, and the height of the wall of the baffle wall 5 is high and the water outlet position is behind, and an opening is arranged below the wall of the baffle wall 5 to ensure the passage of water.
  • the ecological pool 2 is divided into a multi-stage series cell structure by the baffle wall 5, and the sewage flowing into the ecological pool 2 forms a water flow that is bucked up and down under the action of the baffle wall 5 to ensure sufficient contact between the sewage and the microbial carrier filler 4.
  • the water surface of the ecological pool 2 is provided with a plant floating bed 6.
  • the preferred plant floating bed 6 of this embodiment consists of a set of pontoon unit splicing.
  • the single floating body unit has an area of about 3 to 5 m 2 and is composed of an upper and lower protective steel plate and an intermediate foam floating body, and has a total thickness of about 10 to 15 cm. It is guaranteed to have a certain buoyancy while improving the mechanical strength. A flexible occlusion connection is used between the individual floating body units. Since the water level of the ecological pool 2 is small, there is basically no wind and wave. Plant floating bed 6 reserves plant planting holes, the size of the cavity is: 8 ⁇ 12cm in diameter, spacing 30 ⁇ 50cm. The plant floating bed 6 is planted with a water-producing plant-7, and the water-producing plant-7 includes a perennial herb that can be hydroponically grown, such as canna, windmill grass, and rich bamboo.
  • the root of the plant grows downward and penetrates into the water body of the pond. Under the action of root oxygen secretion, an aerobic biofilm is formed on the surface of the root system, and nitrification occurs to achieve the effect of removing ammonia nitrogen.
  • the growth of plants can absorb nutrients such as organic matter, nitrogen and phosphorus from sewage, and play a role in pollutant removal.
  • the litter and roots dropped during the growth process provide a carbon source to the water body. It can also be regularly harvested by plants, and plants are regularly added to the water in the pool to form a stable carbon source, thus ensuring the smooth progress of denitrification.
  • the nitrate nitrogen is converted to nitrogen to achieve deep denitrification.
  • the water outlet end of the water distribution channel 1 is connected to the water inlet end of the ecological pool 2, and the water outlet end of the ecological pool 2 is connected to the water inlet end of the water collection channel 8.
  • the constructed wetland is a downward vertical flow constructed wetland.
  • a lower water collecting perforated pipe 10, a gravel supporting layer 11, a pollutant adsorbing layer 12, a sand filter layer 13, an upper perforated water distribution pipe 15, and a water-repellent plant 2 are sequentially arranged from the bottom of the pool to the surface of the pool.
  • the total thickness of the filler layer formed by the sand filter layer 13, the pollutant adsorption layer 12, and the gravel support layer 11 is 1.2 m to 1.5 m.
  • the lower water collecting perforated pipe 10 is a UPVC drainage pipe, the pipe diameter is not less than DN350, the opening diameter is 10-15 mm, the spacing is 20 cm, and the opening direction is the 1st and a half direction and the 10:30 direction of the pipe section, and is staggered. Open the hole.
  • Crushed stone support layer 11 main material is granular
  • the crushed stone with a diameter of 20-40mm has a thickness of 20-40mm. It mainly supports the upper layer packing and protects the lower layer water collecting perforated pipe 10 to prevent the upper layer of fine packing from blocking the collecting hole of the pipe.
  • the main material of the pollutant adsorption layer 12 is the crushed ceramsite with a large specific surface area.
  • the thickness of the filler is 60-80 cm.
  • the ceramsite processing process adds calcium, magnesium, aluminum, iron and other metal elements with strong N and P adsorption capacity. It can greatly improve the adsorption efficiency of N and P in the system, and its particle size is 10-15mm.
  • the N and P adsorption layers are the growth layers of plant roots, and the absorption of roots can also improve the removal of system organic matter and N and P. effectiveness.
  • the main material of the sand filter layer 13 is coarse sand, the particle size is 0-5 mm, the thickness of the filler is 40-50 cm, and the mud content should be less than 10%.
  • the sand filter layer 13 mainly serves as an intercepting and filtering function, and removes particulate matter or fallen biofilm or fallen plant residues in the effluent of the ecological pool 2.
  • the upper perforated water distribution pipe 15 is a UPVC drainage pipe, the pipe diameter is not more than DN100, the opening diameter is 3 to 5 mm, the spacing is 20 cm, and the opening direction is the 1st and a half direction and the 10:30 direction of the pipe section, and the holes are staggered.
  • each section of the upper perforated water distribution pipe 15 is preferably less than 3 m, and the spacing between the pipes is 1.2 m to 2 m.
  • the upper perforated water distribution pipe 15 is installed above the sand filter layer 13 and ensures that the water outlet hole is not blocked by the coarse sand.
  • the water-producing plants 2 14 preferably select local plants suitable for the climatic conditions of the project site, and mainly include more than two kinds of perennial herbs such as canna, windmill grass, iris, re-flower, reed, reed, and spider berry.
  • the water outlet end of the water collecting channel 8 is connected to the water inlet end of the upper layer perforated water distribution pipe 15, and the water collecting port of the lower layer water collecting and perforating pipe 10 is provided with a water outlet, and the treated sewage is discharged along the water outlet end of the lower layer water collecting and perforating pipe 10.
  • the sewage enters the constructed wetland system through the catchment 8 and further treats the pollutants such as organic matter, nitrogen and phosphorus in the sewage through the synergistic action of the filler layer, microorganisms and plants in the constructed wetland. Finally, the lower layer of water is collected from the bottom. The perforated tube 10 is collected and discharged.
  • the denitrification and denitrification is realized by the ecological action of the pretreatment system, and the structure of the constructed wetland system and the optimization of the filler are used to improve the dephosphorization efficiency, and the effluent quality is achieved in the “Surface Water Environmental Quality Standard” (GB3838-2002). Class III to IV standards.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

一种针对污水处理厂尾水深度处理的人工湿地系统,其包括对污水进行预处理的生态池系统,生态池系统包括配水渠(1)、生态池(2)和集水渠(8),生态池(2)池体内设有微生物载体填料安装支架(3),微生物载体填料(4)固定安装在微生物载体填料安装支架(3)上,生态池(2)的水面设有植物浮床(6),植物浮床(6)内种有挺水植物一(7),配水渠(1)的出水端与生态池(2)的进水端连接,生态池(2)的出水端与集水渠(8)的进水端连接,集水渠(8)的出水端与人工湿地系统(9)内的上层穿孔配水管(15)的进水端连接。

Description

一种针对污水处理厂尾水深度处理的人工湿地系统 技术领域
本发明涉及污水深度处理领域,尤其涉及一种针对污水处理厂尾水深度处理的人工湿地系统。
背景技术
我国城市污水厂达标尾水的排放形式主要为集中排放,并利用河流的自净能力对尾水中的污染物进一步降解,以满足受纳水体的水环境功能目标。但是随着城市化进程的加快,使得大多城市污水厂尾水受纳河流已经逐渐丧失水环境功能。为达到更高的排放标准,许多水厂由于设计原因,原有的处理单元已无法满足现有要求,场内升级改造由于场地和原工艺的限制,难以在现状条件进行升级改造,因此越来越多的污水处理厂尾水深度处理工程已开展规划建设。由于城市污水处理厂多采用成熟工艺,其有机物去除能力较强,出水中COD、BOD浓度低,而相对地表水环境质量,其出水氮、磷的浓度较高,成为深度处理中的重点。
现有的人工湿地用于污水处理厂尾水深度处理方面的技术多从湿地结构出发,通过不同类型湿地的组合,提高污染物去除效率,但依然存在人工湿地污水处理系统处理效率低,污水处理厂尾水的碳源不足,导致脱氮效率低等问题。
发明内容
本发明克服了现有技术中的人工湿地污水处理系统处理效率低,污水处理厂尾水的碳源不足,导致脱氮效率低的缺点,提供了一种针对污水处理厂尾水深度处理的人工湿地系统。
本发明实现发明目的采用的技术方案是:一种针对污水处理厂尾水深度处理的人工湿地系统,包括人工湿地系统,还包括对污水进行预处理的生态池系统,所述的生态池系统包括配水渠、生态池和集水渠,生态池池体内设有微生物载体填料安装支架,微生物载体填料固定安装在微生物载体填料安装支架上,生态池的水面设有植物浮床,植物浮床内种有挺水植物一,配水渠的出水端与生态池的进水端连接,生态池的出水端与集水渠的进水端连接,人工湿地的池内从池底至池面依次设有下层集水穿孔管、碎石承托层、污染物吸附层、砂滤层、上层穿孔配水管和挺水植物二,集水渠的出水端与上层穿孔配水管的进水端连接,下层集水穿孔管一端设有出水口。
进一步的,所述的微生物载体填料为无纺布。
进一步的,所述的生态池内设有折流墙,生态池被折流墙分隔成多级串联的池体结构。
进一步的,所述的植物浮床由一组浮体单元拼接组成。
本发明的有益效果是:与传统人工湿地系统相比,本发明通过生态池和人工湿地系统的组合使用,大大提高了污水脱氮除磷效率,总氮去除率可达到50%以上,总磷去除率可达60%以上,且人工湿地的面积负荷可提高至1.5m3/m2·d,大大减少了人工湿地的占地面积。
本发明的污水经配水渠均匀进入生态池,生态池进水采用折流式流动方式,经多级折流,与生态池内的微生物载体填料充分接触,进水前端和末端由于污染物浓度的不同,可形成不同的微生物结构,对污染物的去除更有针对性,提高了微生物的作用效率。同时,生态池水面的植物浮床的植物根系向水体内部生长,一方面提高了污染物去除效率,另一方面,植物的枯枝落叶以及收割后植物的定期投放,为生态池补充了碳源,保证了反硝化作用的顺利进行,将部 分硝态氮转化为氮气,实现深度脱氮。本发明没有曝气等动力设备,碳源采用湿地植物,大大降低了运行成本,同时减少了湿地植物外运处置的费用。
下面结合附图与具体实施方式对本发明作进一步的描述。
附图说明
图1为本发明的结构示意图。
附图中,1为配水渠、2为生态池、3为微生物载体填料安装支架、4为微生物载体填料、5为折流墙、6为植物浮床、7为挺水植物一、8为集水渠、9为人工湿地系统、10为下层集水穿孔管、11为碎石承托层、12为污染物吸附层、13为砂滤层、14为挺水植物二、15为上层穿孔配水管。
具体实施方式
如附图1所示,本实施例的一种针对污水处理厂尾水深度处理的人工湿地系统,包括人工湿地系统9,还包括对污水进行预处理的生态池系统。所述的生态池系统包括配水渠1、生态池2和集水渠8。生态池2池体采用钢筋混凝土结构,池体方形,至少分为并联的两格,每格间互不联通,方便检修。生态池2池体内设有微生物载体填料安装支架3,微生物载体填料4固定安装在微生物载体填料安装支架3上,微生物载体填料4表面形成生物膜,生物膜上主要生长在厌氧和缺氧条件下生长的反硝化细菌,为反硝化脱氮作用提供必要条件。本实施例优选的微生物载体填料4为无纺布,厚度约2mm,宽度可根据生态池2池体尺寸调整,安装高度不超过3米,安装间距不超过1米,微生物载体填料4的填料面迎向来水方向,微生物载体填料4的表面粗糙,有利于微生物及浮游动物附着生长,表面可形成微生态结构,有利于污染物的去除。为了便于污水与微生物载体填料4充分接触,本实施例优选的生态池2内设有折流墙5。折流墙5固定在生态池2的下方,折流墙5墙体高度高与后面的出水位,折流墙5 墙体下方设有开口,保证水流穿过。生态池2被折流墙5分隔成多级串联的池体结构,流入生态池2的污水在折流墙5的作用下形成上下折流的水流,保证污水与微生物载体填料4的充分接触。生态池2的水面设有植物浮床6。本实施例优选的植物浮床6由一组浮体单元拼接组成。单个浮体单元面积约3~5m2左右,由上下保护钢板和中间泡沫浮体组成,总厚度约10~15cm。保证具有一定浮力的同时,提高机械强度。单个浮体单元之间采用柔性咬合连接,由于生态池2水位变化小,基本无风浪。植物浮床6预留植物种植孔,空洞大小为:直径8~12cm,间距30~50cm。植物浮床6内种有挺水植物一7,挺水植物一7包括美人蕉、风车草、富贵竹等可水培生长的多年生草本植物,植物根系向下生长,深入池内水体。在根系泌氧作用下,根系表面形成好氧生物膜,发生硝化作用,达到去除氨氮的作用。植物的生长可从污水中吸收有机质、氮、磷等营养物质,起到污染物去除的作用。植物生长过程掉落的枯枝落叶及根系,向水体提供了碳源,也可通过植物定期收割,向池内水体定期投加植物,形成稳定碳源,从而保证反硝化作用的顺利进行,将部分硝态氮转化为氮气,实现深度脱氮。
配水渠1的出水端与生态池2的进水端连接,生态池2的出水端与集水渠8的进水端连接。
所述的人工湿地为下行垂直流人工湿地。人工湿地的池内从池底至池面依次设有下层集水穿孔管10、碎石承托层11、污染物吸附层12、砂滤层13、上层穿孔配水管15和挺水植物二14。砂滤层13、污染物吸附层12和碎石承托层11形成的填料层的总厚度为1.2m~1.5m。所述的下层集水穿孔管10为UPVC排水管,管径不小于DN350,开孔孔径为10-15mm,间距20cm,开孔方向为管道断面的1点半方向和10点半方向,并交错开孔。碎石承托层11主要材料为粒 径为20-40mm的碎石,厚度为20-40mm,主要起到承托上层填料,保护下层集水穿孔管10,防止上层较细填料堵塞管道收集孔的作用。污染物吸附层12主要材料为比表面积较大的破碎后的陶粒,填料厚度为60~80cm,陶粒加工过程添加钙、镁、铝、铁等具有较强N、P吸附能力的金属元素,可大大提高系统对N、P的吸附效率,其粒径为10-15mm,另一方面,N、P吸附层是植物须根生长层,根系的吸收也可提高系统有机物和N、P的去除效率。
砂滤层13主要材料为粗砂,粒径0-5mm,填料厚度为40~50cm,含泥量应小于10%。砂滤层13主要起到拦截、过滤作用,去除生态池2出水中的颗粒物或脱落的生物膜或掉落的植物残体等。上层穿孔配水管15为UPVC排水管,管径不超过DN100,开孔孔径为3~5mm,间距20cm,开孔方向为管道断面的1点半方向和10点半方向,并交错开孔。上层穿孔配水管15每段管道长度以小于3m为宜,管道之间间距1.2m~2m,上层穿孔配水管15安装在砂滤层13填料上方,并确保出水孔不被粗砂堵塞。所述的挺水植物二14优先选择适合项目所在地气候条件的本地植物,主要包括美人蕉、风车草、鸢尾、再力花、芦苇、花叶芦荻、蜘蛛兰等两种以上的多年生草本植物。
集水渠8的出水端与上层穿孔配水管15的进水端连接,下层集水穿孔管10一端设有出水口,处理后的污水沿下层集水穿孔管10的出水端排出。
实际使用时,包括以下步骤:
(1)、污水经配水渠1向生态池2均匀配水;
(2)、污水经步骤(1)均匀配水进入生态池2,生态池2维持缺氧或厌氧状态,溶解氧浓度不超过2mg/L,有利于反硝化作用的进行;
(3)生态池2内的微生物、植物的协同作用,对污水中的有机物、氮、磷等污染物进行处理;
(4)、经步骤(3)处理后的污水进入集水渠8;
(5)污水经集水渠8进入人工湿地系统,通过人工湿地中的填料层、微生物、植物的协同作用对污水中的有机物、氮、磷等污染物进一步处理,最后,由底部的下层集水穿孔管10收集后排出。
本实施例利用预处理系统的生态作用实现反硝化脱氮,通过人工湿地系统的结构和填料的优化,提高除磷效率,实现出水水质达到《地表水环境质量标准》(GB3838-2002)中的Ⅲ~Ⅳ类标准。

Claims (4)

  1. 一种针对污水处理厂尾水深度处理的人工湿地系统,包括人工湿地系统,其特征在于,还包括对污水进行预处理的生态池系统,所述的生态池系统包括配水渠(1)、生态池(2)和集水渠(8),生态池(2)池体内设有微生物载体填料安装支架(3),微生物载体填料(4)固定安装在微生物载体填料安装支架(3)上,生态池(2)的水面设有植物浮床(6),植物浮床(6)内种有挺水植物一(7),配水渠(1)的出水端与生态池(2)的进水端连接,生态池(2)的出水端与集水渠(8)的进水端连接,人工湿地的池内从池底至池面依次设有下层集水穿孔管(10)、碎石承托层(10)、污染物吸附层(12)、砂滤层(13)、上层穿孔配水管(15)和挺水植物二(14),集水渠(8)的出水端与上层穿孔配水管(15)的进水端连接,下层集水穿孔管(10)一端设有出水口。
  2. 根据权利要求1所述的一种针对污水处理厂尾水深度处理的人工湿地系统,其特征在于,所述的微生物载体填料(4)为无纺布。
  3. 根据权利要求1或2所述的一种针对污水处理厂尾水深度处理的人工湿地系统,其特征在于,所述的生态池(2)内设有折流墙(5),生态池(2)被折流墙(5)分隔成多级串联的池体结构。
  4. 根据权利要求1所述的一种针对污水处理厂尾水深度处理的人工湿地系统,其特征在于,所述的植物浮床(6)由一组浮体单元拼接组成。
PCT/CN2017/093357 2017-01-11 2017-07-18 一种针对污水处理厂尾水深度处理的人工湿地系统 WO2018129896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710017028.X 2017-01-11
CN201710017028.XA CN106745777A (zh) 2017-01-11 2017-01-11 一种针对污水处理厂尾水深度处理的人工湿地系统

Publications (1)

Publication Number Publication Date
WO2018129896A1 true WO2018129896A1 (zh) 2018-07-19

Family

ID=58948818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093357 WO2018129896A1 (zh) 2017-01-11 2017-07-18 一种针对污水处理厂尾水深度处理的人工湿地系统

Country Status (2)

Country Link
CN (1) CN106745777A (zh)
WO (1) WO2018129896A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911142A (zh) * 2018-08-23 2018-11-30 北京东方复地环境科技有限公司 一种两段式强化脱氮智能人工湿地系统
CN109133378A (zh) * 2018-09-30 2019-01-04 北京东方园林环境股份有限公司 一种复合人工湿地系统
CN109354182A (zh) * 2018-12-14 2019-02-19 中国科学院武汉植物园 一种家庭污水处理及中水回用生态装置
CN109650530A (zh) * 2018-12-24 2019-04-19 江苏和合水环境有限公司 一种漂浮式多功能微生物反应修复设备
CN110002577A (zh) * 2019-03-28 2019-07-12 杭州天宇环保工程实业有限公司 一种高水位浮挂式生物填料的安装结构
CN111003794A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种处理农村生活污水的人工湿地系统
CN111072152A (zh) * 2020-01-10 2020-04-28 中国科学院南京地理与湖泊研究所 生态浮床装置
CN112250193A (zh) * 2020-09-28 2021-01-22 国河环境研究院(南京)有限公司 一种基于食物链尾水资源化循环利用的装置及其方法
CN112499909A (zh) * 2020-12-18 2021-03-16 长春工程学院 一种湖库水体循环净化利用系统及其循环净化方法
CN112759087A (zh) * 2020-12-16 2021-05-07 郑州大学环境技术咨询工程有限公司 一种反硝化人工湿地集成净化系统及污水生态净化方法
CN113072188A (zh) * 2021-04-01 2021-07-06 湖南易净环保科技有限公司 一种鱼塘尾水处理系统
CN113277678A (zh) * 2021-05-28 2021-08-20 哈尔滨岗宇水利工程有限责任公司 城市道路雨水径流生态协同处理装置及方法
CN113582344A (zh) * 2021-04-29 2021-11-02 南京必蓝环境技术有限公司 一种立体式水平潜流的生态景观人工湿地系统
CN114149083A (zh) * 2021-11-26 2022-03-08 哈尔滨工业大学(深圳) 一种植物碳源基新型复合人工湿地系统及其应用
CN114249412A (zh) * 2021-11-17 2022-03-29 河海大学 一种水中碳源可智能定位释放的多层净化装置及净化方法
CN114620897A (zh) * 2022-03-25 2022-06-14 扬州大学 一种带有过滤功能的城市人工湿地系统
CN115304225A (zh) * 2022-09-01 2022-11-08 广东省科学院生态环境与土壤研究所 一种原位治理农村生活污水的梯级分级净化系统
CN115367881A (zh) * 2021-12-03 2022-11-22 沈阳大学 一种地表水体生态修复装置
CN115784457A (zh) * 2022-12-02 2023-03-14 江苏启德水务有限公司 一种适用于生活污水处理的后生态人工湿地系统
CN117125836A (zh) * 2023-10-13 2023-11-28 广东新泰隆环保集团有限公司 智能化立体生态生物膜污水处理系统
CN117142659A (zh) * 2023-10-27 2023-12-01 广州市藏绿环保工程技术有限公司 一种农村生活污水处理的复合生态滤池
CN117401871A (zh) * 2023-12-14 2024-01-16 西南石油大学 一种基于生物处理的油田生活区污水处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745777A (zh) * 2017-01-11 2017-05-31 深圳市碧园环保技术有限公司 一种针对污水处理厂尾水深度处理的人工湿地系统
CN107585868B (zh) * 2017-09-20 2020-06-30 广州太和水生态科技有限公司 水体深度净化系统
CN107529526A (zh) * 2017-10-10 2018-01-02 广州华浩能源环保集团股份有限公司 一种微动力强化脱氮生态处理方法及系统
CN109942078B (zh) * 2019-04-25 2024-05-28 深圳市绿洲生态科技有限公司 生物膜反应器水体净化装置和填料的制造方法
CN110451742B (zh) * 2019-09-23 2020-05-19 王晓景 防堵塞的人工湿地系统
CN114133102A (zh) * 2021-11-10 2022-03-04 中冶集团武汉勘察研究院有限公司 一种煤矿溢流污染水体的植物修复系统及其修复方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201406359Y (zh) * 2009-04-07 2010-02-17 上海智泓环保工程有限公司 黑臭河道的治理装置
CN202594863U (zh) * 2012-04-28 2012-12-12 黄河勘测规划设计有限公司 一种人工湿地污水处理系统及氧化塘
CN103408197A (zh) * 2013-08-22 2013-11-27 深圳市环境科学研究院 一种微污染水处理人工湿地强化脱氮除磷预处理方法及装置
CN203451334U (zh) * 2013-08-22 2014-02-26 深圳市环境科学研究院 一种微污染水处理人工湿地强化脱氮除磷预处理装置
CN204958677U (zh) * 2015-09-02 2016-01-13 重庆三峡环保(集团)有限公司 低能耗污水处理系统
US9394190B2 (en) * 2012-11-26 2016-07-19 Michael Francis Curry Floating treatment bed for plants
CN106745777A (zh) * 2017-01-11 2017-05-31 深圳市碧园环保技术有限公司 一种针对污水处理厂尾水深度处理的人工湿地系统
CN206417916U (zh) * 2017-01-11 2017-08-18 深圳市碧园环保技术有限公司 一种针对污水处理厂尾水深度处理的人工湿地系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013023850A2 (pt) * 2011-03-17 2016-12-13 Biomatrix Water Technology Llp sistema de tratamento de água integrado
CN105859041A (zh) * 2016-05-18 2016-08-17 无锡城市发展集团有限公司 一种深度处理污水厂二级出水的多级生态单元组合系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201406359Y (zh) * 2009-04-07 2010-02-17 上海智泓环保工程有限公司 黑臭河道的治理装置
CN202594863U (zh) * 2012-04-28 2012-12-12 黄河勘测规划设计有限公司 一种人工湿地污水处理系统及氧化塘
US9394190B2 (en) * 2012-11-26 2016-07-19 Michael Francis Curry Floating treatment bed for plants
CN103408197A (zh) * 2013-08-22 2013-11-27 深圳市环境科学研究院 一种微污染水处理人工湿地强化脱氮除磷预处理方法及装置
CN203451334U (zh) * 2013-08-22 2014-02-26 深圳市环境科学研究院 一种微污染水处理人工湿地强化脱氮除磷预处理装置
CN204958677U (zh) * 2015-09-02 2016-01-13 重庆三峡环保(集团)有限公司 低能耗污水处理系统
CN106745777A (zh) * 2017-01-11 2017-05-31 深圳市碧园环保技术有限公司 一种针对污水处理厂尾水深度处理的人工湿地系统
CN206417916U (zh) * 2017-01-11 2017-08-18 深圳市碧园环保技术有限公司 一种针对污水处理厂尾水深度处理的人工湿地系统

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911142A (zh) * 2018-08-23 2018-11-30 北京东方复地环境科技有限公司 一种两段式强化脱氮智能人工湿地系统
CN109133378A (zh) * 2018-09-30 2019-01-04 北京东方园林环境股份有限公司 一种复合人工湿地系统
CN109354182A (zh) * 2018-12-14 2019-02-19 中国科学院武汉植物园 一种家庭污水处理及中水回用生态装置
CN109354182B (zh) * 2018-12-14 2024-03-19 中国科学院武汉植物园 一种家庭污水处理及中水回用生态装置
CN109650530A (zh) * 2018-12-24 2019-04-19 江苏和合水环境有限公司 一种漂浮式多功能微生物反应修复设备
CN110002577A (zh) * 2019-03-28 2019-07-12 杭州天宇环保工程实业有限公司 一种高水位浮挂式生物填料的安装结构
CN110002577B (zh) * 2019-03-28 2024-03-22 杭州天宇环保工程实业有限公司 一种高水位浮挂式生物填料的安装结构
CN111003794A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种处理农村生活污水的人工湿地系统
CN111072152A (zh) * 2020-01-10 2020-04-28 中国科学院南京地理与湖泊研究所 生态浮床装置
CN112250193A (zh) * 2020-09-28 2021-01-22 国河环境研究院(南京)有限公司 一种基于食物链尾水资源化循环利用的装置及其方法
CN112759087A (zh) * 2020-12-16 2021-05-07 郑州大学环境技术咨询工程有限公司 一种反硝化人工湿地集成净化系统及污水生态净化方法
CN112499909A (zh) * 2020-12-18 2021-03-16 长春工程学院 一种湖库水体循环净化利用系统及其循环净化方法
CN113072188A (zh) * 2021-04-01 2021-07-06 湖南易净环保科技有限公司 一种鱼塘尾水处理系统
CN113582344A (zh) * 2021-04-29 2021-11-02 南京必蓝环境技术有限公司 一种立体式水平潜流的生态景观人工湿地系统
CN113582344B (zh) * 2021-04-29 2024-04-16 南京东宸供应链管理有限公司 一种立体式水平潜流的生态景观人工湿地系统
CN113277678A (zh) * 2021-05-28 2021-08-20 哈尔滨岗宇水利工程有限责任公司 城市道路雨水径流生态协同处理装置及方法
CN114249412A (zh) * 2021-11-17 2022-03-29 河海大学 一种水中碳源可智能定位释放的多层净化装置及净化方法
CN114249412B (zh) * 2021-11-17 2022-10-21 河海大学 一种水中碳源可智能定位释放的多层净化装置及净化方法
CN114149083A (zh) * 2021-11-26 2022-03-08 哈尔滨工业大学(深圳) 一种植物碳源基新型复合人工湿地系统及其应用
CN115367881A (zh) * 2021-12-03 2022-11-22 沈阳大学 一种地表水体生态修复装置
CN114620897A (zh) * 2022-03-25 2022-06-14 扬州大学 一种带有过滤功能的城市人工湿地系统
CN115304225A (zh) * 2022-09-01 2022-11-08 广东省科学院生态环境与土壤研究所 一种原位治理农村生活污水的梯级分级净化系统
CN115784457A (zh) * 2022-12-02 2023-03-14 江苏启德水务有限公司 一种适用于生活污水处理的后生态人工湿地系统
CN117125836A (zh) * 2023-10-13 2023-11-28 广东新泰隆环保集团有限公司 智能化立体生态生物膜污水处理系统
CN117125836B (zh) * 2023-10-13 2024-02-20 广东新泰隆环保集团有限公司 智能化立体生态生物膜污水处理系统
CN117142659A (zh) * 2023-10-27 2023-12-01 广州市藏绿环保工程技术有限公司 一种农村生活污水处理的复合生态滤池
CN117142659B (zh) * 2023-10-27 2024-01-23 广州市藏绿环保工程技术有限公司 一种农村生活污水处理的复合生态滤池
CN117401871A (zh) * 2023-12-14 2024-01-16 西南石油大学 一种基于生物处理的油田生活区污水处理方法
CN117401871B (zh) * 2023-12-14 2024-02-20 西南石油大学 一种基于生物处理的油田生活区污水处理方法

Also Published As

Publication number Publication date
CN106745777A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018129896A1 (zh) 一种针对污水处理厂尾水深度处理的人工湿地系统
WO2018113279A1 (zh) 一种景观水体循环净化的人工湿地
CN104230100B (zh) 用于河道水体原位修复的立体生态廊道系统及方法
CN102101736B (zh) 一种人工强化生态滤床污水处理系统及应用
CN103880257A (zh) 一种农村分散式污水的生态组合处理方法及装置
CN203269659U (zh) 一种高效脱氮三级复合人工湿地
CN201942568U (zh) 生化膜自动曝气垂直潜流式人工湿地污水处理装置
CN204185336U (zh) 用于河道水体原位修复的立体生态廊道系统
CN108946950A (zh) 一种多功能人工浮岛水质净化系统
CN204162567U (zh) 复合型人工湿地系统
CN110668575A (zh) 一种全自动高效脱氮除磷潮汐流人工湿地及其使用方法
CN210656590U (zh) 一种地埋式农村生活污水治理系统
CN111484132A (zh) 用于尾水深度处理的复合型人工湿地系统及污水处理方法
CN111170580A (zh) 一种污水净化处理系统
CN107364973B (zh) 一种污水处理系统及其应用和污水处理方法
CN211339184U (zh) 基于钢渣陶粒填料生物滤池的生活污水一体化处理设备
CN110182959B (zh) 一种河道断头面源污染控制系统
CN109879536B (zh) 一种农村生活污水净化系统及净化方法
CN208732861U (zh) 一种农村生活污水处理设施
CN209226683U (zh) 分级生物过滤滞留装置
CN101875513A (zh) 一种清除生活污水中Cr6+的方法及其装置
CN207726821U (zh) 一种污水处理厂尾水人工湿地处理系统
CN116119859A (zh) 用于雨污溢流口治理的生态过滤方法
CN108751649A (zh) 一种具有对农村污水处理剩余污泥的处理系统
CN213327175U (zh) 一种多功能复合型人工湿地污水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891973

Country of ref document: EP

Kind code of ref document: A1