WO2018129768A1 - Aéronef à ailes et fuselage fusionnés - Google Patents

Aéronef à ailes et fuselage fusionnés Download PDF

Info

Publication number
WO2018129768A1
WO2018129768A1 PCT/CN2017/072079 CN2017072079W WO2018129768A1 WO 2018129768 A1 WO2018129768 A1 WO 2018129768A1 CN 2017072079 W CN2017072079 W CN 2017072079W WO 2018129768 A1 WO2018129768 A1 WO 2018129768A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
airfoil
section
slightly
root
Prior art date
Application number
PCT/CN2017/072079
Other languages
English (en)
Chinese (zh)
Inventor
李晓亮
Original Assignee
顺丰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺丰科技有限公司 filed Critical 顺丰科技有限公司
Publication of WO2018129768A1 publication Critical patent/WO2018129768A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/10All-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings

Definitions

  • the present disclosure generally relates to the field of aviation aircraft technology, and in particular to a drone, and more particularly to a wing body fusion aircraft.
  • wing body fusion In the 1960s, aircraft designers began to propose the concept of wing body fusion.
  • the feature of the aircraft design is that there are no obvious fuselage and wing connections.
  • the fuselage like the wing, is designed with an airfoil that also produces lift.
  • the wing body fusion design increases the body space, the aircraft can get better aerodynamic performance and reduce flight resistance.
  • Most third-generation supersonic fighters such as F-15, F-16, Mirage 2000, MiG-29, Sue The -27 and so on all adopt the wing body fusion layout.
  • the US future wing body fusion concept aircraft X-48B is an attempted application of the wing body fusion layout in the passenger aircraft.
  • the existing wing body fuses the layout of the aircraft, resulting in a load that is not large enough; and the flight resistance is large and the lift is small, which makes the flight radius small and the battery life short.
  • the present application provides a wing body fusion aircraft, including a fuselage body and a wing body, the wing includes wings on the left and right sides of the fuselage; the body has a central symmetry plane; The body has a central cross section on the central symmetry plane, a center of gravity perpendicular to the apex of the central section; the upper airfoil of the center of gravity section has an upper convex line shape with a middle height and a low side, the center of gravity The lower airfoil of the cross section has a lower concave streamline shape with a lower middle and a higher side, the height of the center of gravity cross section on the central symmetry plane is H, and the width of the cross section of the center of gravity is D, wherein 0.7 ⁇ H/D ⁇ 0.8.
  • the curvature of the upper airfoil of the center of gravity section is greater than the curvature of the lower airfoil.
  • the structure of the center of gravity cross section is determined according to the following formula:
  • the curvature of the upper airfoil of the central section is greater than the curvature of the lower airfoil.
  • the wing comprises a plurality of cross-sectional airfoils arranged side by side from the wing root to the wing, the wing having a wing-wing type, a wing-wing type and a plurality of sectional airfoils as control surfaces
  • the outer surface shape of the surface of the Sel
  • five cross-sectional airfoils are provided between the wing root and the wing slightly, respectively, from 0%, 22%, 50%, 70%, 80% of the span distance of the wing root airfoil.
  • the twist angle of the wing root airfoil, the five of the cross-sectional airfoils, and the wing slightly airfoil is in the direction from the wing root to the wing slightly: 0.5° to 1.5°, 0.2 ° ⁇ 0.7°, -0.2° to 0.2°, -0.8° to -0.5°, -1.5° to -1.0°, -2.2° to -1.2°, -3.5° to -2.6°.
  • the twist angles of the wing root airfoil, the five of the cross-sectional airfoils, and the wing slightly airfoil are sequentially: 1°, 0.5°, 0 from the wing root to the wing slightly. °, -0.65°, -1.35°, -2°, -3°.
  • chord lengths of the wing root airfoil, the five of the cross-sectional airfoils, and the wing slightly airfoil are sequentially from the wing root to the wing slightly: P, 0.80P to 0.85P 0.72 to 0.76 P, 0.58 P to 0.62 P, 0.5 P to 0.55 P, 0.46 P to 0.49 P, and 0.3 P to 0.35 P.
  • chord lengths of the wing root airfoil, the five of the cross-sectional airfoils, and the wing slightly airfoil are sequentially: P, 0.83P, 0.75P, from a direction of the wing root to the wing. , 0.6P, 0.53P, 0.48P, 0.33P.
  • the wing body fusion aircraft provided by the present application adopts a novel wing body fusion layout, that is, a smooth transition from the fuselage to the wing shape, which greatly reduces the interference resistance, increases the internal space of the body, and improves the bearing capacity;
  • FIG. 1 is a front view of a fuselage and a wing of a wing body according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a fuselage according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along line M-M of Figure 2;
  • Figure 4 is a diagram showing the relationship between the width and the thickness of the center of gravity of the cross section shown in Figure 3;
  • FIG. 5 is a schematic structural diagram of a wing provided by an embodiment of the present invention.
  • Figure 6 is an A-A end view of Figure 5;
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 5;
  • Figure 8 is a cross-sectional view taken along line C-C of Figure 5;
  • Figure 9 is a cross-sectional view taken along line D-D of Figure 5;
  • Figure 10 is a cross-sectional view taken along line E-E of Figure 5;
  • Figure 11 is a cross-sectional view taken along line F-F of Figure 5;
  • Fig. 12 is a G-G end view of Fig. 5;
  • the embodiment provides a wing body fusion aircraft, including a fuselage 1 and a wing body.
  • the wing includes wings 2 located on the left and right sides of the fuselage 1 , and the body 1 has The central symmetry plane, the fuselage 1 of the wing body has a length D; the fuselage 1 has a central section 1-1 on the central symmetry plane, and a center of gravity section 2-1 perpendicular to the apex of the central section.
  • the MM surface corresponds to the plane of the central section 1-1;
  • the upper wing surface of the center of gravity section 2-1 has an upper convex line shape with a middle height and a low side, and the lower airfoil of the center of gravity section 2-1 is in the middle.
  • the lower and upper sides have a lower concave streamline shape, and the maximum height of the central section as shown in FIG. 3 is H, that is, H is the maximum thickness of the fuselage body. It can be seen that the height of the center-of-gravity section 2-1 on the central symmetry plane is H, and the width of the center-of-gravity section is D, where 0.7 ⁇ H / D ⁇ 0.8.
  • a novel wing body fusion layout is adopted.
  • H/D When 0.7 ⁇ H/D ⁇ 0.8, the lift of the fuselage is ideal, and when the H/D is between 0.7 and 0.8, the lift is first. Increase and decrease; H/D may preferably be 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, H/D is between 0.76 and 0.78, and the lift of the fuselage has the largest value.
  • the Reynolds number is 500000
  • H ⁇ 0.7D the airfoil airfoil thickness is reduced, the pressure difference on the lower surface is reduced, the lift is reduced, and the lift-to-drag ratio coefficient is reduced.
  • the Reynolds number is 500,000.
  • the smooth flow line is at the trailing edge of the fuselage. It becomes a disordered line, which is a relatively obvious turbulent area. The generation of the turbulent area will significantly reduce the lift of the fuselage and increase the differential pressure resistance.
  • the height of H should not be More than 0.8D.
  • the maximum thickness H of the fuselage and the extension D of the fuselage are designed to be 0.7 ⁇ H / D ⁇ 0.8, preferably 0.76 ⁇ H / D ⁇ 0.78, so that the fuselage has a high lift-to-drag ratio, improving the aerodynamic performance of the aircraft.
  • the curvature of the upper airfoil of the center of gravity section is greater than the curvature of the lower airfoil, and the fuselage 1 is lifted while ensuring a large load capacity.
  • the solution provided by this embodiment is applicable to a cargo drone or a passenger aircraft.
  • the application of the aspect, for example H, is preferably 32.15 dm, and the height can satisfy a certain load space.
  • the curvature of the airfoil under the curvature of the upper airfoil of the central section allows the fuselage 1 to obtain lift while ensuring a large load capacity.
  • the wing of the wing body of the present invention comprises a plurality of cross-sectional airfoils arranged side by side from the wing root 3 to the wing 4.
  • the wing has a wing-wing type and a wing.
  • the slightly airfoil and the multi-section airfoil are the outer surface shapes of the Bezier surface established by the control surface; from the wing root airfoil to the wing slightly airfoil, the torsion angle of each airfoil is gradually reduced, and the chord of each airfoil The length gradually decreases.
  • the A-A surface is the end surface at the wing root, corresponding to the wing root airfoil type 3-1;
  • the G-G surface is the end surface slightly at the wing, corresponding to the wing slightly airfoil type 3-7.
  • the wing of the wing body fusion aircraft forms a surface of the wing by a Bezier surface, and the torsion angle of the blade root wing type, the five section airfoil type, and the wing slightly airfoil shape gradually increases from the wing root to the wing wing shape.
  • each of the cutting positions is a cross-sectional airfoil
  • the five cross-sectional airfoil from the wing root 3 to the wing slightly 4 is the first cross-sectional airfoil 3-2, the second cross-sectional airfoil 3-3, The third section airfoil 3-4, the fourth section airfoil 3-5, and the fifth section airfoil 3-6.
  • the airfoil can adopt an airfoil with a large lift coefficient.
  • the five cross-section airfoil from the wing root to the wing can be GOE227, NACA5402, NACA7403, NACA7408, NACA6401.
  • the choice of airfoil is not only It is limited to the five types.
  • Other types of airfoils can be selected according to actual needs. The five listed here are only for illustration. Of course, other numbers of cross-section airfoils can be set according to actual needs.
  • the twist angle ⁇ of the wing root airfoil, the five cross-section airfoil, and the wing slightly airfoil are: 0.5° to 1.5°, 0.2° to 0.7°, -0.2 ° ⁇ 0.2°, -0.8° to -0.5°, -1.5° to -1.0°, -2.2° to -1.2°, -3.5° to -2.6°.
  • the torsion angle ⁇ referred to herein is the angle between the line connecting the leading edge point and the trailing edge point of the airfoil to the horizontal plane.
  • the twist angle ⁇ of the wing root airfoil, the five cross-section airfoil, and the wing slightly airfoil are: 1°, 0.5°, 0°, -0.65°, - 1.35°, -2°, -3°.
  • the torsion angle at each airfoil is designed according to this, which can greatly improve the lift of the wing and reduce the resistance.
  • the chord lengths of the wing root airfoil, the five cross-section airfoil, and the wing slightly airfoil are: P, 0.80P to 0.85P, 0.72 to 0.76P, 0.58P. ⁇ 0.62P, 0.5P to 0.55P, 0.46P to 0.49P, and 0.3P to 0.35P. That is, the chord length of the wing root airfoil is P, and the chord lengths of the airfoil at the span distances of 0%, 22%, 50%, 70%, 80%, and 100% of the wing root airfoil are respectively 0.80.
  • chord lengths of the wing root airfoil, the five cross-section airfoil, and the wing slightly airfoil are: P, 0.83P, 0.75P, 0.6P, 0.53P, 0.48 P, 0.33P.
  • the chord length at each airfoil is designed according to this, which can greatly improve the lift of the wing and reduce the resistance.
  • the impact of the embodiment on the lift and drag of the whole machine is less than 5%, and the characteristics of the high lift-to-drag ratio of the wing body fusion fuselage are fully exerted, and the lift-to-resistance ratio of the whole machine is above 14.0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un aéronef à ailes et fuselage fusionnés, comprenant un fuselage (1) et des ailes, qui sont fusionnés les uns aux autres. Les ailes comprennent des ailes (2) qui sont situées d'un côté gauche et d'un côté droit du fuselage (1) ; le fuselage (1) a une surface de symétrie centrale ; le fuselage a également un profil transversal central situé au-dessus de la surface de symétrie centrale et un profil transversal de centre de gravité perpendiculaire au sommet du profil transversal central. Une surface d'aile supérieure du profil transversal de centre de gravité a une forme aérodynamique convexe vers le haut, le milieu étant élevé et les deux côtés étant bas ; une surface d'aile inférieure du profil transversal de centre de gravité a une forme aérodynamique concave vers le bas, le milieu étant bas et les deux côtés étant élevés ; la hauteur du profil transversal de centre de gravité sur la surface de symétrie centrale étant H, la largeur du profil transversal de centre de gravité est D, et l'expression suivante étant satisfaite 0,7 ≤ H/D ≤ 0,8. L'aéronef à ailes et fuselage fusionnés fait appel à une nouvelle disposition d'ailes et de fuselage fusionnés, à savoir une transition lisse du fuselage aux contours des ailes, de sorte que la résistance aux perturbations soit fortement réduite, tandis que l'espace interne du fuselage est accru et que la capacité de charge est améliorée. L'épaisseur maximale et le rapport de largeur du fuselage sont maîtrisés, de sorte que le fuselage a un rapport portance-traînée élevé, et la performance pneumatique de l'aéronef est améliorée.
PCT/CN2017/072079 2017-01-16 2017-01-22 Aéronef à ailes et fuselage fusionnés WO2018129768A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710032658.4A CN106628113A (zh) 2017-01-16 2017-01-16 翼身融合飞机
CN201710032658.4 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018129768A1 true WO2018129768A1 (fr) 2018-07-19

Family

ID=58840769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072079 WO2018129768A1 (fr) 2017-01-16 2017-01-22 Aéronef à ailes et fuselage fusionnés

Country Status (2)

Country Link
CN (1) CN106628113A (fr)
WO (1) WO2018129768A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849387A (zh) * 2021-01-22 2021-05-28 西北工业大学 一种考虑动力安装平台的飞翼反弯翼型

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720535A (zh) * 2017-10-30 2019-05-07 成都飞机工业(集团)有限责任公司 一种翼身融合飞机
CN110318931B (zh) * 2019-05-24 2020-09-18 中国航天空气动力技术研究院 一种用于水下发电的飞翼结构
CN111563295B (zh) * 2020-04-24 2022-05-03 西北工业大学 一种可应用于翼身融合水下滑翔机外形设计的参数化方法
CN111581722B (zh) * 2020-04-30 2021-12-03 中国直升机设计研究所 一种翼身融合的运输直升机短翼外形设计方法
CN112478127A (zh) * 2020-12-04 2021-03-12 中国航空工业集团公司沈阳飞机设计研究所 一种具有几何扭转结构的飞翼无人机
CN114313253B (zh) * 2022-03-03 2022-05-17 中国空气动力研究与发展中心计算空气动力研究所 一种高升阻比吸气式高超声速飞机气动布局及设计方法
CN114852299A (zh) * 2022-04-30 2022-08-05 西北工业大学 一种前掠翼布局的翼身融合水下滑翔机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893535A (en) * 1997-06-19 1999-04-13 Mcdonnell Douglas Corporation Rib for blended wing-body aircraft
CN2681998Y (zh) * 2004-03-16 2005-03-02 清华大学 翼身融合体微型飞行器
WO2011005278A1 (fr) * 2008-11-14 2011-01-13 Williams Aerospace, Inc. Véhicule aérien sans pilote de type à fuselage intégré
CN202499274U (zh) * 2012-03-03 2012-10-24 西北工业大学 一种无尾翼身融合飞机的中央机体
CN202609085U (zh) * 2012-05-11 2012-12-19 西北工业大学 一种采用混合翼身的飞行器气动外形

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730181B (zh) * 2012-05-11 2014-03-12 西北工业大学 一种采用混合翼身的飞行器气动外形
CN204399465U (zh) * 2015-01-14 2015-06-17 西北工业大学 一种无尾飞翼多操纵面无人机
CN206537485U (zh) * 2017-01-16 2017-10-03 顺丰科技有限公司 翼身融合飞机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893535A (en) * 1997-06-19 1999-04-13 Mcdonnell Douglas Corporation Rib for blended wing-body aircraft
CN2681998Y (zh) * 2004-03-16 2005-03-02 清华大学 翼身融合体微型飞行器
WO2011005278A1 (fr) * 2008-11-14 2011-01-13 Williams Aerospace, Inc. Véhicule aérien sans pilote de type à fuselage intégré
CN202499274U (zh) * 2012-03-03 2012-10-24 西北工业大学 一种无尾翼身融合飞机的中央机体
CN202609085U (zh) * 2012-05-11 2012-12-19 西北工业大学 一种采用混合翼身的飞行器气动外形

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849387A (zh) * 2021-01-22 2021-05-28 西北工业大学 一种考虑动力安装平台的飞翼反弯翼型

Also Published As

Publication number Publication date
CN106628113A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018129768A1 (fr) Aéronef à ailes et fuselage fusionnés
US8113462B2 (en) Low-drag swept wings
US4674709A (en) Airframe design
US9555874B2 (en) Fixed wing of an aircraft
CN103057695B (zh) 一种无尾飞机的组合舵面
ITMI20012170A1 (it) Configurazione velivolo a prestazioni aerodinamiche migliorate
CN106043688A (zh) 一种直升机旋翼翼型
CN115571323A (zh) 一种亚声速扁平融合体布局飞行器
JP4237981B2 (ja) 飛行機の主翼構造体
CN203740120U (zh) 宽飞行包线变体飞行器的气动结构
US20180105255A1 (en) Aircraft having supporting fuselage
CN106828872B (zh) 采用支撑尾翼的高后翼高空长航时串列翼飞行器气动布局
CN206537485U (zh) 翼身融合飞机
CN107487438B (zh) 一种高升力翼型
CN205418070U (zh) 一种类三角布局高空螺旋桨
Murai et al. Theoretical investigation of sailwing airfoils taking account of elasticities
CN214824062U (zh) 一种用于低速大攻角流动特性改善的栅格融合翼
CN105775108B (zh) 一种外载式布局高空螺旋桨
CN201647122U (zh) 一种飞行器气动布局
CN112224383A (zh) 保持机翼横向静稳定性不变的微下反式翼梢小翼及机翼
CN210793629U (zh) 直升机旋翼桨尖结构及旋翼
CN206569255U (zh) 机翼
CN112849387A (zh) 一种考虑动力安装平台的飞翼反弯翼型
CN110406659A (zh) 翼梢装置、飞行器机翼和飞行器及其设计和制造方法
CN205418071U (zh) 一种外载式布局高空螺旋桨

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890898

Country of ref document: EP

Kind code of ref document: A1