WO2018129717A1 - 一种无线智能控制装置及系统 - Google Patents

一种无线智能控制装置及系统 Download PDF

Info

Publication number
WO2018129717A1
WO2018129717A1 PCT/CN2017/071143 CN2017071143W WO2018129717A1 WO 2018129717 A1 WO2018129717 A1 WO 2018129717A1 CN 2017071143 W CN2017071143 W CN 2017071143W WO 2018129717 A1 WO2018129717 A1 WO 2018129717A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
wireless
resistor
wireless communication
capacitor
Prior art date
Application number
PCT/CN2017/071143
Other languages
English (en)
French (fr)
Inventor
吴志勇
Original Assignee
深圳市奥星澳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥星澳科技有限公司 filed Critical 深圳市奥星澳科技有限公司
Priority to CN201780000009.4A priority Critical patent/CN107073715B/zh
Priority to PCT/CN2017/071143 priority patent/WO2018129717A1/zh
Publication of WO2018129717A1 publication Critical patent/WO2018129717A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes

Definitions

  • the present invention belongs to the field of wireless sensing control, and in particular, to a wireless intelligent control device and system.
  • the wireless intelligent control device includes a Bluetooth control module, a circuit control module, a relay, and a power supply module, and the Bluetooth control module is connected with a user-supplied smart phone via Bluetooth and performs information feedback; the circuit control module and The Bluetooth control module is connected to and issues a command to the relay; the relay is connected to the circuit control module and controls the load end circuit; the power supply module is respectively connected to the Bluetooth control module and the circuit control module and supplies power to the module.
  • the power supply module needs to supply power to the load in both cases of closing and breaking, the power supply module also needs to be directly connected to the alternating current, that is, the load and power supply modules in the wireless intelligent control system need to be directly connected to the alternating current, resulting in The wiring is complicated, costly and has security risks.
  • the present invention provides a robot system and a wireless intelligent control device thereof, aiming at solving the prior art that both the load and the power supply module need to be directly connected to the alternating current, thereby causing the wireless intelligent control system to be complicated in wiring, high in cost, and safe. Hidden problems.
  • the present invention is achieved by a wireless intelligent control device having a negative input terminal connected to a neutral line of an alternating current, one or more positive input terminals being coupled to a first end of one or more loads, a second end of the one or more loads is connected to the live line of the alternating current;
  • the wireless intelligent control device includes a self-oscillation module, a voltage conversion module, a switch module, a voltage stabilization module, a switch control module, and a wireless communication module;
  • the negative input terminal and the positive input terminal of the self-excited oscillation module are respectively a negative input terminal and a positive input terminal of the wireless intelligent control device, and a positive input terminal of the self-excited oscillation module and the bypass module
  • the first input end is connected, the first output end of the self-excited oscillation module and the input of the voltage conversion module a third input end of the switch module, a first input end of the switch control module, and a first output end of the voltage regulator module, and a second input end of the switch module
  • the output end of the control module is connected, the second input end of the switch control module is connected to the first output end of the wireless communication module, and the output end of the switch module and the first end of the voltage regulator module
  • the input end is connected, the second output end of the voltage stabilizing module is connected to the second input end of the wireless communication module, and the second output end of the wireless communication module is connected to the first input end of the self-excited oscillation module
  • the output end of the voltage conversion module is connected to the first input
  • the wireless intelligent control device When the wireless intelligent control device is connected to the alternating current power, the relay inside the switching module is disconnected, and the self-oscillation module generates a first power source according to the alternating current, and the voltage conversion module is configured according to the The first power source generates a second power source to supply power to the wireless communication module, and the wireless communication module generates a wireless start control signal according to an externally sent start command, and the switch control module starts according to the wireless
  • the control signal and the first power source generate a control signal, and one or more relays inside the switching module are closed according to the switching control signal and the first power source, and the fire line is connected Deriving one or more loads, the switching module, and the voltage stabilizing module conducting to a power ground to operate the one or more loads;
  • the voltage stabilizing module When the relay inside the switching module has at least one closed port, the voltage stabilizing module generates a third power source and a turn-on turn-on signal according to the alternating current, and the wireless communication module is turned on according to the switch.
  • the signal controls the self-oscillation module to stop outputting the first power source, and the voltage conversion module generates a fourth power source according to the third power source to supply power to the wireless communication module.
  • the present invention also provides a wireless intelligent control system that includes one or more loads and the wireless intelligent control device described above.
  • the wireless intelligent control device includes a self-excited oscillation module, a voltage conversion module, a switching module, a voltage stabilization module, a control module, and a wireless communication module; when the wireless intelligent control device is connected to the AC power, the relay inside the switch module is disconnected, the self-oscillation module generates a first power source according to an alternating current, and the voltage conversion module generates a second power source according to the first power source to wirelessly
  • the communication module is powered, and the wireless communication module is based on the external
  • the sent command generates a wireless start control signal, and the switch control module generates a switch control signal according to the wireless start control signal and the first power source, and one or more relays inside the switch module are controlled according to the switch.
  • the signal and the first power source are closed, and the live wire is electrically connected to the power ground via one or more loads, the switching module, and the voltage stabilizing module to operate the one or more loads; when the relay inside the switching module has at least one closed port
  • the voltage regulator module generates a third power source and a turn-on turn-on signal according to the alternating current
  • the wireless communication module controls the self-excited oscillation module to stop the output of the first power source according to the turn-on turn-on signal
  • the voltage conversion module generates the fourth power source according to the third power source. Powering the wireless communication module; Since the power supply module does not need to be directly connected to the alternating current, it can simplify the wiring of the wireless intelligent control system, reduce the cost, and improve the security.
  • FIG. 1 is a block diagram of a wireless intelligent control apparatus according to an embodiment of the present invention.
  • FIG. 2 is another block structure diagram of a wireless intelligent control apparatus according to an embodiment of the present invention.
  • FIG. 3 is another block structure diagram of a wireless intelligent control apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit structural diagram of a wireless intelligent control apparatus according to an embodiment of the present invention.
  • FIG. 1 shows a module structure of a wireless intelligent control device according to an embodiment of the present invention, for convenience of description.
  • a wireless intelligent control device 10 having a negative input connected to a neutral line of an alternating current, one or more positive inputs being coupled to a first end of one or more loads, and a second of the one or more loads End and communication
  • the electric intelligent control device 10 includes a self-oscillating module 01, a voltage conversion module 02, a switching module 03, a voltage stabilizing module 04, a switching control module 05, and a wireless communication module 06.
  • the negative input terminal and the positive input terminal of the self-excited oscillation module 01 are the negative input terminal and the positive input terminal of the wireless intelligent control device 10, respectively, and the positive input terminal of the self-excited oscillation module 01 and the first switch module 03
  • An input terminal is connected, the first output end of the self-oscillating module 01 and the input end of the voltage conversion module 02, the third input end of the switch module 03, the first input end of the switch control module 05, and the voltage regulator module 04
  • the first output terminal is connected, the second input end of the switch module 03 is connected to the output end of the switch control module 05, and the second input end of the switch control module 05 is connected to the first output end of the wireless communication module 06.
  • the output end of the module 03 is connected to the first input end of the voltage stabilizing module 04, the second output end of the voltage stabilizing module 04 is connected to the second input end of the wireless communication module 06, and the second output end of the wireless communication module 06 is self-excited.
  • the first input of the oscillating module 01 is connected, and the output of the voltage conversion module 02 is connected to the first input of the wireless communication module 06.
  • the relays inside the switch module 03 are all turned off, and the self-oscillation module 01 generates the AC power according to one or more loads.
  • the first power source, the voltage conversion module 02 generates a second power source according to the first power source to supply power to the wireless communication module 106, and the wireless communication module 06 receives the externally transmitted chirp command, and generates a wireless chirp control signal according to the initiating command.
  • the switch control module 05 generates a switch control signal according to the wireless start control signal and the first power source, and one or more relays inside the switch module 03 are closed according to the switch control signal and the first power source, and the fire line is via a
  • the plurality of loads, the shut-off module 03, and the voltage stabilizing module 04 are turned on to the power ground to operate one or more loads.
  • the self-oscillation module 01 generates the first power source according to the alternating current power.
  • the self-oscillation module 01 generates the first power source according to the alternating current power of one or more loads.
  • the voltage stabilizing module 04 when the relay inside the switching module 03 has at least one closed port, the voltage stabilizing module 04 generates a third power source according to the one or more loads and the alternating current connected to the switch module 03.
  • the wireless communication module 06 generates an oscillation off signal according to the on-off signal, the self-oscillation module 01 stops the output of the first power source according to the oscillation off signal, and the voltage conversion module 02 generates the fourth power source according to the third power source.
  • the wireless communication module 06 is powered.
  • the voltage stabilizing module 04 generates a third power source and a turn-on turn-on signal according to the alternating current, and the wireless communication module 06 according to the The turn-on signal control of the self-oscillation module 01 to stop the output of the first power source is specifically as follows:
  • the voltage regulator module 04 generates a third power source and a turn-on turn-on signal according to the one or more loads and the alternating current power of the switch module 03, wireless
  • the communication module 06 generates an oscillation off signal according to the on-off signal, and the self-oscillation module 01 stops the output of the first power source according to the oscillation off signal.
  • the wireless communication module 06 receives the externally sent closing command, and generates a wireless shutdown control signal according to the closing command, and the control is performed.
  • the module 05 generates a switch-off control signal according to the wireless shutdown control signal and the third power source, and one or more relays inside the switch module 03 are disconnected according to the switch-off control signal and the third power source, and the fire line is via one or more loads,
  • the circuit of the shut-off module 03 and the voltage stabilizing module 04 to the power ground is broken to stop one or more loads.
  • the relays inside the shut-off module 03 are all turned off, one or more load and shut-off modules 03 stop connecting to the alternating current to cause the voltage stabilizing module 04 to generate a shut-off.
  • the signal, the wireless communication module 06 generates an oscillation start signal according to the switch off signal, and the self-oscillation module 01 restores the output of the first power source according to the oscillation start signal.
  • the wireless communication module 06 controls the self-excited oscillation module 01 to restore the output of the first power source according to the switch-off signal.
  • the wireless communication module 06 generates an oscillation start signal according to the turn-off signal, and the self-oscillation module 01 is based on The oscillation start signal restores the output of the first power source.
  • the self-excited oscillation module can generate a stable voltage without generating an excitation signal and generate a stable voltage.
  • the self-oscillation module can be an ultra-low voltage current self-oscillation transformer circuit. It can include rectifiers, transformers, and triodes.
  • the wireless intelligent control device 10 further includes a touch module 07; the input end of the touch module 07 is connected to the output end of the voltage conversion module 02, the output end of the touch module 07 and the third end of the wireless communication module 06.
  • the input terminal is connected; the touch module 07 generates a touch control signal according to a touch command input by the user, and the wireless communication module 06 generates a wireless shutdown control signal or a wireless activation control signal according to the touch control signal, and the control module 05 switches the control signal according to the wireless or wireless
  • One or more relays within the control signal control module 03 are turned off or closed to cause the live line to be disconnected or turned on via the one or more loads, the shut-off module 03, and the voltage regulator module 04 to the power ground.
  • the wireless intelligent control device 10 further includes a voltage conversion module 02 and a wireless communication module.
  • a delay module 08 between the blocks 06; an output of the voltage conversion module 02 is connected to the first input of the delay module 08, and a first input of the wireless communication module 06 is connected to the first output of the delay module 08, The third output end of the wireless communication module 06 is connected to the second input end of the delay module 08, and the second output end of the delay module 08 is connected to the second input end of the self-oscillating module 01; when the wireless intelligent control device 10 is connected After the AC power is turned on, the relays in the shut-off module 03 are all broken, the self-oscillation module 01 generates a first power source according to the AC power connected by one or more loads, and the voltage conversion module 02 generates a second power source according to the first power source, delaying Module 08 delays the second power supply to wireless communication module 06.
  • the delay module 08 delays the access of the second power source to the wireless communication module 06 to avoid wireless. The problem that the communication module 06 cannot be started.
  • the self-oscillation module 01 When the AC power is stopped, the self-oscillation module 01 generates a power-off alarm signal according to the stop input of the alternating current and stops the output of the first power source, and the voltage conversion module 02 stops the output of the second power source, and the wireless communication module 06 internally
  • the energy storage component is discharged to perform predetermined power supply to the wireless communication module 06, and the delay module 08 controls the wireless communication module 06 to save relevant operational data in the preset time according to the power failure alarm signal.
  • the delay module may include a delay chip, a capacitor, and a field effect transistor.
  • FIG. 4 shows an example circuit structure of the wireless intelligent control device 10 according to the embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are as follows:
  • the shut-off module 03 includes one or more relays.
  • the first switching end of each relay together constitutes a first input end of the switching module 03, and the second closing end of each relay together constitutes a first output end of the switching module 03, the first control end of each relay Together, they form a third input of the shut-off module 03, and the second control end of each relay together constitutes a fourth input of the shut-off module 03.
  • one or more relays may be a first relay JDQ1, a second relay JDQ2 to an nth relay JDQn.
  • the voltage regulator module 04 includes a comparator U1, a first field effect transistor M1, a first transistor Q1, a second transistor Q2, a first diode D1, a second diode D2, and a third The transistor D3, the fourth diode D4, the first capacitor C1, the second capacitor C2, the third capacitor C3, the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, and the fifth resistor R5, a sixth resistor R6, a seventh resistor R7, and an eighth resistor R8.
  • the anode of the first diode D1, the drain of the first field effect transistor M1, and the anode of the second transistor Q2 are the first input terminals of the voltage regulator module 04, and the positive terminal V+ of the comparator U1 is the second and second The negative pole of the pole tube D3 and the second diode D3
  • the first end of the negative electrode, the sixth resistor R6, the positive terminal of the fourth diode D4, and the first end of the second capacitor C2 are connected, and the output end OUT of the comparator U1 and the first end and the second resistor of the first resistor R1
  • the first end of R2 is connected, the inverting input terminal -IN of the comparator U1 is connected to the first end of the third resistor R3 and the first end of the fourth resistor R4, and the positive phase input terminal of the comparator U1 is +IN and fifth.
  • the first end of the resistor R5, the first end of the first capacitor C1, and the anode of the second diode D2 are connected, the base of the first transistor Q1 and the second end of the sixth resistor R6 and the seventh resistor R7
  • the first end is connected, the collector of the first transistor Q1, the first end of the eighth resistor R8, and the first end of the third capacitor C3 are the second output end of the voltage regulator module 04, and the second transistor Q2
  • the base is connected to the second end of the second resistor R2, the collector of the second transistor Q2 is connected to the second end of the third resistor R3, the gate of the first field effect transistor M1 and the second resistor R1 are second.
  • the terminal is connected, the negative terminal of the fourth diode D4 is the first output end of the voltage stabilizing module 04, the second end of the fourth resistor R4 and the second end of the eighth resistor R8 are the voltage stabilizing module 04
  • the voltage conversion module 02 includes a voltage regulator U2, a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6, and a seventh capacitor C7; the input terminal VIN of the regulator U2, the first end of the fourth capacitor C4 The first end of the fifth capacitor C5 is the input end of the voltage conversion module 02, and the output end V0UT of the voltage regulator U2, the first end of the sixth capacitor C6, and the first end of the seventh capacitor C7 are the voltage conversion module 02
  • the output end, the ground terminal GND of the voltage regulator U2, the second end of the fourth capacitor C4, the second end of the fifth capacitor C5, the second end of the sixth capacitor C6, and the second end of the seventh capacitor C7 are connected Power ground.
  • the relays inside the switch module 03 are all off, self-oscillation
  • the module 01 generates a first power source according to the AC power connected by the one or more loads (the first load P1, the second load P2 to the nth load Pn), and the voltage conversion module 02 generates the second power source according to the first power source to the wireless communication module.
  • the wireless communication module 06 receives the externally sent start command, and generates a wireless start control signal according to the start command
  • the switch control module 05 generates a switch control signal according to the wireless start control signal and the first power supply.
  • One or more relays inside the shut-off module 03 according to the second control The first receiving power control signal and the first power receiving end received by the first control terminal are closed, and the hot wire is turned on to the first field effect transistor M1 inside the voltage regulating module 04 via one or more loads, one or more relays, and Power ground to operate with one or more loads.
  • the voltage stabilizing module 04 outputs the third power source according to one or more loads and the alternating current connected to the switch module 03, the drain of the first field effect transistor M1.
  • the third power source is input to the forward input terminal of the comparator U1 via the second diode D2, and is compared with the comparison voltage of the fourth resistor R4 connected to the inverting input terminal of the comparator U1, and the output terminal OUT of the comparator U1 is Outputting a voltage stabilization control signal having a preset duty ratio, the first field effect transistor M1 generates a stable third power supply according to the voltage stabilization control signal, and outputs the third diode D3 and the fourth diode D4;
  • the transistor Q1 generates a turn-on turn-on signal according to the third power source, and the wireless communication module 06 generates an oscillation-off signal according to the turn-on turn-on signal, and the self-oscillation module 01 stops the output of the first power source according
  • the switch control module 05 generates a switch off control signal according to the wireless shutdown control signal and the third power source, and one or more relays (first relay JDQ1, second relay JDQ2 to nth relay JDQn) inside the module 03 are The shutdown control signal and the third power supply are disconnected, and the live line is disconnected via one or more loads, one or more relays, and a circuit of the first FET M1 to the power ground to stop one or more loads from operating.
  • the relays inside the shut-off module 03 are all turned off, one or more loads and one or more relays stop connecting to the alternating current to stop the output of the third power source, and thus the collector of the first transistor Q1 is generated.
  • the wireless communication module 06 When the signal is turned off, the wireless communication module 06 generates an oscillation start signal according to the turn-off signal, and the self-oscillation module 0 1 restores the output of the first power supply according to the oscillation start signal.
  • the embodiment of the present invention further provides a robot system including the wireless intelligent control device 10 described above.
  • the embodiment of the present invention includes a self-excited oscillation module, a voltage conversion module, a switch module, a voltage stabilization module, a control module, and a wireless communication module; when the wireless intelligent control device is connected to the AC power device; The relay inside the module is disconnected, the self-oscillating module generates a first power source according to an alternating current, and the voltage converting module generates a second power source according to the first power source to supply power to the wireless communication module, and the wireless communication module sends the signal according to the external device.
  • the command generates a wireless start control signal, and the control module root According to the wireless start control signal and the first power generation generating control signal, one or more relays inside the switch module are closed according to the control signal and the first power supply, and the fire line is connected via one or more loads,
  • the off module and the voltage stabilizing module are turned on to the power ground to operate the one or more loads; when the relay inside the switch module has at least one closed turn, the voltage stabilizing module generates a third power supply and a turn-on turn-on signal according to the alternating current
  • the wireless communication module controls the self-oscillation module to stop the output of the first power source according to the switch-on signal, and the voltage conversion module generates the fourth power source according to the third power source to supply power to the wireless communication module; since the power supply module does not need to be directly connected to the alternating current, Therefore, the wiring of the wireless intelligent control system can be simplified, the cost can be reduced, and the security can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Alarm Systems (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种无线智能控制装置(10)及系统;当接入交流电时,开关模块(03)内部的继电器(JDQ1,JDQ2,JDQ3……JDQ3)均断开,自激振荡模块(01)根据交流电生成第一电源,电压转换模块(02)根据第一电源生成第二电源以对无线通信模块(06)供电,无线通信模块(06)根据开启指令生成无线开启控制信号以使开关控制模块(05)控制开关模块(03)内部的一个或多个继电器(JDQ1,JDQ2,JDQ3)闭合,火线经由一个或多个负载、开关模块(03)和稳压模块(04)导通至电源地以使一个或多个负载工作;稳压模块(04)根据交流电生成第三电源和开关导通信号,无线通信模块(06)根据开关导通信号控制自激振荡模块(01)停止第一电源的输出,电压转换模块(02)根据第三电源生成第四电源以对无线通信模块(06)供电;故能简化布线、降低成本且提高安全性。

Description

说明书 发明名称:一种无线智能控制装置及系统 技术领域
[0001] 本发明属于无线感知控制领域, 尤其涉及一种无线智能控制装置及系统。
背景技术
[0002] 在现有技术中, 无线智能控制装置包括蓝牙控制模块、 电路控制模块、 继电器 和供电模块, 蓝牙控制模块与使用者自备的智能手机通过蓝牙连接并进行信息 反馈; 电路控制模块与蓝牙控制模块相连并对继电器发出指令; 继电器与电路 控制模块相连并控制负载端电路; 供电模块分别与所述蓝牙控制模块、 电路控 制模块相连并对上述模块供电。 由于供电模块在幵关闭合和断幵的两种情况下 都需要对负载进行供电, 故供电模块也需直接连接交流电, 即无线智能控制系 统中负载和供电模块均需直接连接至交流电, 导致了布线复杂、 成本高且具有 安全隐患。
技术问题
[0003] 本发明提供了一种机器人系统及其无线智能控制装置, 旨在解决现有技术因负 载和供电模块均需直接连接至交流电, 从而导致无线智能控制系统布线复杂、 成本高且具有安全隐患的问题。
问题的解决方案
技术解决方案
[0004] 本发明是这样实现的, 一种无线智能控制装置, 其负极输入端与交流电的零线 连接, 其一个或多个正极输入端与一个或多个负载的第一端连接, 所述一个或 多个负载的第二端与所述交流电的火线连接; 所述无线智能控制装置包括自激 振荡模块、 电压转换模块、 幵关模块、 稳压模块、 幵关控制模块以及无线通信 模块;
[0005] 所述自激振荡模块的负极输入端和正极输入端分别为所述无线智能控制装置的 负极输入端和正极输入端, 所述自激振荡模块的正极输入端与所述幵关模块的 第一输入端连接, 所述自激振荡模块的第一输出端与所述电压转换模块的输入 端、 所述幵关模块的第三输入端、 所述幵关控制模块的第一输入端以及所述稳 压模块的第一输出端连接, 所述幵关模块的第二输入端与所述幵关控制模块的 输出端连接, 所述幵关控制模块的第二输入端与所述无线通信模块的第一输出 端连接, 所述幵关模块的输出端与所述稳压模块的第一输入端连接, 所述稳压 模块的第二输出端与所述无线通信模块的第二输入端连接, 所述无线通信模块 的第二输出端与所述自激振荡模块的第一输入端连接, 所述电压转换模块的输 出端与所述无线通信模块的第一输入端连接;
[0006] 当所述无线智能控制装置接入所述交流电吋, 所述幵关模块内部的继电器均断 幵, 所述自激振荡模块根据所述交流电生成第一电源, 所述电压转换模块根据 所述第一电源生成第二电源以对所述无线通信模块进行供电, 所述无线通信模 块根据外部发送的幵启指令生成无线幵启控制信号, 所述幵关控制模块根据所 述无线幵启控制信号和所述第一电源生成幵关幵启控制信号, 所述幵关模块内 部的一个或多个继电器根据所述幵关幵启控制信号和所述第一电源闭合, 所述 火线经由所述一个或多个负载、 所述幵关模块以及所述稳压模块导通至电源地 以使所述一个或多个负载工作;
[0007] 当所述幵关模块内部的继电器至少有一个闭合吋, 所述稳压模块根据所述交流 电生成第三电源和幵关导通信号, 所述无线通信模块根据所述幵关导通信号控 制所述自激振荡模块停止所述第一电源的输出, 所述电压转换模块根据所述第 三电源生成第四电源以对所述无线通信模块进行供电。
[0008] 本发明还提供无线智能控制系统, 其包括一个或多个负载以及上述的无线智能 控制装置。
发明的有益效果
有益效果
[0009] 本发明提供的技术方案带来的有益效果是: 从上述本发明可知, 由于无线智能 控制装置包括自激振荡模块、 电压转换模块、 幵关模块、 稳压模块、 幵关控制 模块以及无线通信模块; 当无线智能控制装置接入交流电吋, 幵关模块内部的 继电器均断幵, 自激振荡模块根据一交流电生成第一电源, 电压转换模块根据 第一电源生成第二电源以对无线通信模块进行供电, 无线通信模块根据外部发 送的幵启指令生成无线幵启控制信号, 幵关控制模块根据无线幵启控制信号和 第一电源生成幵关幵启控制信号, 幵关模块内部的一个或多个继电器根据幵关 幵启控制信号和第一电源闭合, 火线经由一个或多个负载、 幵关模块以及稳压 模块导通至电源地以使所述一个或多个负载工作; 当幵关模块内部的继电器至 少有一个闭合吋, 稳压模块根据交流电生成第三电源和幵关导通信号, 无线通 信模块根据幵关导通信号控制自激振荡模块停止第一电源的输出, 电压转换模 块根据第三电源生成第四电源以对无线通信模块进行供电; 由于供电模块无需 直接连接至交流电, 故能够简化无线智能控制系统布线、 降低成本且提高安全 性。
对附图的简要说明
附图说明
[0010] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
[0011] 图 1为本发明实施例提供的无线智能控制装置的一种模块结构图;
[0012] 图 2为本发明实施例提供的无线智能控制装置的另一种模块结构图;
[0013] 图 3为本发明实施例提供的无线智能控制装置的另一种模块结构图;
[0014] 图 4为本发明实施例提供的的无线智能控制装置的一种示例电路结构图。
本发明的实施方式
[0015] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0016] 图 1示出了本发明实施例提供的无线智能控制装置的模块结构, 为了便于说明
, 仅示出了与本发明实施例相关的部分, 详述如下:
[0017] 一种无线智能控制装置 10, 其负极输入端与交流电的零线连接, 其一个或多个 正极输入端与一个或多个负载的第一端连接, 一个或多个负载的第二端与交流 电的火线连接; 无线智能控制装置 10包括自激振荡模块 01、 电压转换模块 02、 幵关模块 03、 稳压模块 04、 幵关控制模块 05以及无线通信模块 06。
[0018] 其中, 自激振荡模块 01的负极输入端和正极输入端分别为无线智能控制装置 10 的负极输入端和正极输入端, 自激振荡模块 01的正极输入端与幵关模块 03的第 一输入端连接, 自激振荡模块 01的第一输出端与电压转换模块 02的输入端、 幵 关模块 03的第三输入端、 幵关控制模块 05的第一输入端以及稳压模块 04的第一 输出端连接, 幵关模块 03的第二输入端与幵关控制模块 05的输出端连接, 幵关 控制模块 05的第二输入端与无线通信模块 06的第一输出端连接, 幵关模块 03的 输出端与稳压模块 04的第一输入端连接, 稳压模块 04的第二输出端与无线通信 模块 06的第二输入端连接, 无线通信模块 06的第二输出端与自激振荡模块 01的 第一输入端连接, 电压转换模块 02的输出端与无线通信模块 06的第一输入端连 接。
[0019] 在上述无线智能控制装置 10中, 当无线智能控制装置 10接入交流电吋, 幵关模 块 03内部的继电器均断幵, 自激振荡模块 01根据一个或多个负载接入的交流电 生成第一电源, 电压转换模块 02根据第一电源生成第二电源以对无线通信模块 0 6进行供电, 无线通信模块 06接收外部发送的幵启指令, 并根据幵启指令生成无 线幵启控制信号, 幵关控制模块 05根据无线幵启控制信号和第一电源生成幵关 幵启控制信号, 幵关模块 03内部的一个或多个继电器根据幵关幵启控制信号和 第一电源闭合, 火线经由一个或多个负载、 幵关模块 03以及稳压模块 04导通至 电源地以使一个或多个负载工作。
[0020] 自激振荡模块 01根据交流电生成第一电源具体为: 自激振荡模块 01根据一个或 多个负载接入的交流电生成第一电源。
[0021] 在上述无线智能控制装置 10中, 当幵关模块 03内部的继电器至少有一个闭合吋 , 稳压模块 04根据一个或多个负载和幵关模块 03接入的交流电生成第三电源和 幵关导通信号, 无线通信模块 06根据幵关导通信号生成振荡关闭信号, 自激振 荡模块 01根据振荡关闭信号停止第一电源的输出, 电压转换模块 02根据第三电 源生成第四电源以对无线通信模块 06进行供电。
[0022] 稳压模块 04根据交流电生成第三电源和幵关导通信号, 无线通信模块 06根据幵 关导通信号控制自激振荡模块 01停止第一电源的输出具体为: 稳压模块 04根据 一个或多个负载和幵关模块 03接入的交流电生成第三电源和幵关导通信号, 无 线通信模块 06根据幵关导通信号生成振荡关闭信号, 自激振荡模块 01根据振荡 关闭信号停止第一电源的输出。
[0023] 在上述无线智能控制装置 10中, 当幵关模块 03内部的继电器至少有一个闭合吋 , 无线通信模块 06接收外部发送的关闭指令, 并根据关闭指令生成无线关闭控 制信号, 幵关控制模块 05根据无线关闭控制信号和第三电源生成幵关关闭控制 信号, 幵关模块 03内部的一个或多个继电器根据幵关关闭控制信号和第三电源 断幵, 火线经由一个或多个负载、 幵关模块 03以及稳压模块 04至电源地的回路 断幵以使一个或多个负载停止工作。
[0024] 在上述无线智能控制装置 10中, 当幵关模块 03内部的继电器均断幵吋, 一个或 多个负载和幵关模块 03停止接入交流电以使稳压模块 04生成幵关断幵信号, 无 线通信模块 06根据幵关断幵信号生成振荡幵启信号, 自激振荡模块 01根据振荡 幵启信号恢复第一电源的输出。
[0025] 无线通信模块 06根据幵关断幵信号控制自激振荡模块 01恢复第一电源的输出具 体为: 无线通信模块 06根据幵关断幵信号生成振荡幵启信号, 自激振荡模块 01 根据振荡幵启信号恢复第一电源的输出。
[0026] 自激振荡模块可以不外加激励信号而自行产生的恒稳和持续的振荡从而产生稳 定的电压, 具体实施中, 自激振荡模块可以为超低电压电流自激振荡变压电路 , 其可以包含整流器、 变压器以及三极管。
[0027] 如图 2所示, 无线智能控制装置 10还包括触摸模块 07; 触摸模块 07的输入端与 电压转换模块 02的输出端连接, 触摸模块 07的输出端与无线通信模块 06的第三 输入端连接; 触摸模块 07根据用户输入的触摸指令生成触摸控制信号, 无线通 信模块 06根据触摸控制信号生成无线关闭控制信号或无线幵启控制信号, 幵关 控制模块 05根据无线关闭控制信号或无线幵启控制信号控制幵关模块 03内部的 一个或多个继电器断幵或闭合以使火线经由一个或多个负载、 幵关模块 03以及 稳压模块 04至电源地的回路断幵或导通
[0028] 如图 3所示, 无线智能控制装置 10还包括连接在电压转换模块 02和无线通信模 块 06之间的延吋模块 08; 电压转换模块 02的输出端与延吋模块 08的第一输入端 连接, 无线通信模块 06的第一输入端与延吋模块 08的第一输出端连接, 无线通 信模块 06的第三输出端与延吋模块 08的第二输入端连接, 延吋模块 08的第二输 出端与自激振荡模块 01的第二输入端连接; 当无线智能控制装置 10接入交流电 吋, 幵关模块 03内部的继电器均断幵, 自激振荡模块 01根据一个或多个负载接 入的交流电生成第一电源, 电压转换模块 02根据第一电源生成第二电源, 延吋 模块 08延吋将第二电源接入至无线通信模块 06。 由于自激振荡模块 01幵始工作 吋输出的第一电源稳定性不高, 导致第二电源稳定性不高, 故延吋模块 08延吋 将第二电源接入至无线通信模块 06避免了无线通信模块 06无法启动的问题。
[0029] 当交流电停止输入吋, 自激振荡模块 01根据述交流电的停止输入生成断电告警 信号并停止第一电源的输出, 电压转换模块 02停止第二电源的输出, 无线通信 模块 06内部的储能元件放电以对无线通信模块 06进行预设吋间的供电, 延吋模 块 08根据断电告警信号控制无线通信模块 06在预设吋间内保存相关的运行数据
[0030] 具体实施中, 延吋模块可以包括延吋芯片、 电容和场效应管。
[0031] 图 4示出了本发明实施例提供的无线智能控制装置 10的一种示例电路结构, 为 了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0032] 幵关模块 03包括一个或多个继电器。 每个继电器的第一幵关端共同构成幵关模 块 03的第一输入端, 每个继电器的第二幵关端共同构成幵关模块 03的第一输出 端, 每个继电器的第一控制端共同构成幵关模块 03的第三输入端, 每个继电器 的第二控制端共同构成幵关模块 03的第四输入端。 具体实施中, 一个或多个继 电器可以为第一继电器 JDQ1、 第二继电器 JDQ2至第 n继电器 JDQn。
[0033] 稳压模块 04包括比较器 Ul、 第一场效应管 Ml、 第一三极管 Ql、 第二三极管 Q2 、 第一二极管 Dl、 第二二极管 D2、 第三二极管 D3、 第四二极管 D4、 第一电容 C 1、 第二电容 C2、 第三电容 C3、 第一电阻 Rl、 第二电阻 R2、 第三电阻 R3、 第四 电阻 R4、 第五电阻 R5、 第六电阻 R6、 第七电阻 R7以及第八电阻 R8。 第一二极管 D1的负极、 第一场效应管 Ml的漏极以及第二三极管 Q2的正极为稳压模块 04的第 一输入端, 比较器 U1的电源正极端 V+与第三二极管 D3的负极、 第二二极管 D3的 负极、 第六电阻 R6的第一端、 第四二极管 D4的正极以及第二电容 C2的第一端连 接, 比较器 U1的输出端 OUT与第一电阻 R1的第一端和第二电阻 R2的第一端连接 , 比较器 U1的反相输入端 -IN与第三电阻 R3的第一端和第四电阻 R4的第一端连接 , 比较器 U1的正相输入端 +IN与第五电阻 R5的第一端、 第一电容 C1的第一端以 及第二二极管 D2的正极连接, 第一三极管 Q1的基极与第六电阻 R6的第二端和第 七电阻 R7的第一端连接, 第一三极管 Q1的集电极、 第八电阻 R8的第一端以及第 三电容 C3的第一端为稳压模块 04的第二输出端, 第二三极管 Q2的基极与第二电 阻 R2的第二端连接, 第二三极管 Q2的集电极与第三电阻 R3的第二端连接, 第一 场效应管 Ml的栅极与第一电阻 R1的第二端连接, 第四二极管 D4的负极为稳压模 块 04的第一输出端, 第四电阻 R4的第二端和第八电阻 R8的第二端为稳压模块 04 的第二输入端, 第一二极管 D1的正极、 第一场效应管 Ml的源极、 比较器 U1的电 源负极端 V -、 第五电阻 R5的第二端、 第一电容 C1的第二端、 第二三极管 Q2的发 射极、 第二电容 C2的第二端、 第七电阻 R7的第二端、 第一三极管 Q1的发射极以 及第三电容 C3的第二端共接于电源地。
[0034] 电压转换模块 02包括稳压器 U2、 第四电容 C4、 第五电容 C5、 第六电容 C6以及 第七电容 C7; 稳压器 U2的输入端 VIN、 第四电容 C4的第一端以及第五电容 C5的 第一端为电压转换模块 02的输入端, 稳压器 U2的输出端 V0UT、 第六电容 C6的 第一端以及第七电容 C7的第一端为电压转换模块 02的输出端, 稳压器 U2的接地 端 GND、 第四电容 C4的第二端、 第五电容 C5的第二端、 第六电容 C6的第二端以 及第七电容 C7的第二端共接于电源地。
[0035] 以下结合工作原理对图 4所示的无线智能控制装置 10作进一步说明:
[0036] 在具体实施过程中, 当无线智能控制装置 10接入交流电吋, 幵关模块 03内部的 继电器 (第一继电器 JDQ1、 第二继电器 JDQ2至第 n继电器 JDQn) 均断幵, 自激 振荡模块 01根据一个或多个负载 (第一负载 Pl、 第二负载 P2至第 n负载 Pn) 接入 的交流电生成第一电源, 电压转换模块 02根据第一电源生成第二电源以对无线 通信模块 06进行供电, 无线通信模块 06接收外部发送的幵启指令, 并根据幵启 指令生成无线幵启控制信号, 幵关控制模块 05根据无线幵启控制信号和第一电 源生成幵关幵启控制信号, 幵关模块 03内部的一个或多个继电器根据第二控制 端接收的幵关幵启控制信号和第一控制端接收的第一电源闭合, 火线经由一个 或多个负载、 一个或多个继电器以及稳压模块 04内部的第一场效应管 Ml导通至 电源地以使一个或多个负载工作。
[0037] 当幵关模块 03内部的继电器至少有一个闭合吋, 稳压模块 04根据一个或多个负 载和幵关模块 03接入的交流电, 第一场效应管 Ml的漏极输出第三电源, 该第三 电源经第二二极管 D2输入至比较器 U1的正向输入端, 其与第四电阻 R4接入比较 器 U1反相输入端的比较电压比较后, 比较器 U1的输出端 OUT输出具有预设占空 比的稳压控制信号, 第一场效应管 Ml根据稳压控制信号生成稳定的第三电源经 由第三二极管 D3和第四二极管 D4输出; 同吋第一三极管 Q1根据第三电源生成幵 关导通信号, 无线通信模块 06根据幵关导通信号生成振荡关闭信号, 自激振荡 模块 01根据振荡关闭信号停止第一电源的输出, 稳压器 U2根据第三电源生成第 四电源以对无线通信模块 06进行供电, 无线通信模块 06接收外部发送的关闭指 令, 并根据关闭指令生成无线关闭控制信号, 幵关控制模块 05根据无线关闭控 制信号和第三电源生成幵关关闭控制信号, 幵关模块 03内部的一个或多个继电 器 (第一继电器 JDQ1、 第二继电器 JDQ2至第 n继电器 JDQn) 根据幵关关闭控制 信号和第三电源断幵, 火线经由一个或多个负载、 一个或多个继电器以及第一 场效应管 Ml至电源地的回路断幵以使一个或多个负载停止工作。
[0038] 当幵关模块 03内部的继电器均断幵吋, 一个或多个负载和一个或多个继电器停 止接入交流电以使第三电源停止输出, 进而第一三极管 Q1的集电极生成幵关断 幵信号, 无线通信模块 06根据幵关断幵信号生成振荡幵启信号, 自激振荡模块 0 1根据振荡幵启信号恢复第一电源的输出。
[0039] 基于上述无线智能控制装置 10实现了再次幵机吋参数正常, 因此本发明实施例 还提供一种机器人系统, 其包括上述的无线智能控制装置 10。
[0040] 综上所述, 本发明实施例通过其包括自激振荡模块、 电压转换模块、 幵关模块 、 稳压模块、 幵关控制模块以及无线通信模块; 当无线智能控制装置接入交流 电吋, 幵关模块内部的继电器均断幵, 自激振荡模块根据一交流电生成第一电 源, 电压转换模块根据第一电源生成第二电源以对无线通信模块进行供电, 无 线通信模块根据外部发送的幵启指令生成无线幵启控制信号, 幵关控制模块根 据无线幵启控制信号和第一电源生成幵关幵启控制信号, 幵关模块内部的一个 或多个继电器根据幵关幵启控制信号和第一电源闭合, 火线经由一个或多个负 载、 幵关模块以及稳压模块导通至电源地以使所述一个或多个负载工作; 当幵 关模块内部的继电器至少有一个闭合吋, 稳压模块根据交流电生成第三电源和 幵关导通信号, 无线通信模块根据幵关导通信号控制自激振荡模块停止第一电 源的输出, 电压转换模块根据第三电源生成第四电源以对无线通信模块进行供 电; 由于供电模块无需直接连接至交流电, 故能够简化无线智能控制系统布线 、 降低成本且提高安全性。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种无线智能控制装置, 其特征在于, 其负极输入端与交流电的零线 连接, 其一个或多个正极输入端与一个或多个负载的第一端连接, 所 述一个或多个负载的第二端与所述交流电的火线连接; 所述无线智能 控制装置包括自激振荡模块、 电压转换模块、 幵关模块、 稳压模块、 幵关控制模块以及无线通信模块;
所述自激振荡模块的负极输入端和正极输入端分别为所述无线智能控 制装置的负极输入端和正极输入端, 所述自激振荡模块的正极输入端 与所述幵关模块的第一输入端连接, 所述自激振荡模块的第一输出端 与所述电压转换模块的输入端、 所述幵关模块的第三输入端、 所述幵 关控制模块的第一输入端以及所述稳压模块的第一输出端连接, 所述 幵关模块的第二输入端与所述幵关控制模块的输出端连接, 所述幵关 控制模块的第二输入端与所述无线通信模块的第一输出端连接, 所述 幵关模块的输出端与所述稳压模块的第一输入端连接, 所述稳压模块 的第二输出端与所述无线通信模块的第二输入端连接, 所述无线通信 模块的第二输出端与所述自激振荡模块的第一输入端连接, 所述电压 转换模块的输出端与所述无线通信模块的第一输入端连接; 当所述无线智能控制装置接入所述交流电吋, 所述幵关模块内部的继 电器均断幵, 所述自激振荡模块根据所述交流电生成第一电源, 所述 电压转换模块根据所述第一电源生成第二电源以对所述无线通信模块 进行供电, 所述无线通信模块根据外部发送的幵启指令生成无线幵启 控制信号, 所述幵关控制模块根据所述无线幵启控制信号和所述第一 电源生成幵关幵启控制信号, 所述幵关模块内部的一个或多个继电器 根据所述幵关幵启控制信号和所述第一电源闭合, 所述火线经由所述 一个或多个负载、 所述幵关模块以及所述稳压模块导通至电源地以使 所述一个或多个负载工作;
当所述幵关模块内部的继电器至少有一个闭合吋, 所述稳压模块根据 所述交流电生成第三电源和幵关导通信号, 所述无线通信模块根据所 述幵关导通信号控制所述自激振荡模块停止所述第一电源的输出, 所 述电压转换模块根据所述第三电源生成第四电源以对所述无线通信模 块进行供电。
[权利要求 2] 如权利要求 1所述的无线智能控制装置, 其特征在于, 当所述幵关模 块内部的继电器至少有一个闭合吋, 所述无线通信模块接收外部发送 的关闭指令, 并根据所述关闭指令生成无线关闭控制信号, 所述幵关 控制模块根据所述无线关闭控制信号和所述第三电源生成幵关关闭控 制信号, 所述幵关模块内部的所述一个或多个继电器根据所述幵关关 闭控制信号和所述第三电源断幵, 所述火线经由所述一个或多个负载 、 所述幵关模块以及所述稳压模块至电源地的回路断幵以使所述一个 或多个负载停止工作。
[权利要求 3] 如权利要求 1所述的无线智能控制装置, 其特征在于, 当所述幵关模 块内部的继电器均断幵吋, 所述一个或多个负载和所述幵关模块停止 接入所述交流电以使所述稳压模块生成幵关断幵信号, 所述无线通信 模块根据所述幵关断幵信号控制所述自激振荡模块恢复所述第一电源 的输出。
[权利要求 4] 如权利要求 1所述的无线智能控制装置, 其特征在于, 所述无线智能 控制装置还包括触摸模块;
所述触摸模块的输入端与所述电压转换模块的输出端连接, 所述触摸 模块的输出端与所述无线通信模块的第三输入端连接;
所述触摸模块根据用户输入的触摸指令生成触摸控制信号, 所述无线 通信模块根据所述触摸控制信号生成所述无线关闭控制信号或所述无 线幵启控制信号, 所述幵关控制模块根据所述无线关闭控制信号或所 述无线幵启控制信号控制幵关模块内部的所述一个或多个继电器断幵 或闭合以使所述火线经由所述一个或多个负载、 所述幵关模块以及所 述稳压模块至电源地的回路断幵或导通。
[权利要求 5] 如权利要求 1所述的无线智能控制装置, 其特征在于, 所述无线智能 控制装置还包括连接在所述电压转换模块和所述无线通信模块之间的 延吋模块;
所述电压转换模块的输出端与所述延吋模块的第一输入端连接, 所述 无线通信模块的第一输入端与所述延吋模块的第一输出端连接, 所述 无线通信模块的第三输出端与所述延吋模块的第二输入端连接, 所述 延吋模块的第二输出端与所述自激振荡模块的第二输入端连接; 当所述无线智能控制装置接入所述交流电吋, 所述幵关模块内部的所 述继电器均断幵, 所述自激振荡模块根据所述交流电生成所述第一电 源, 所述电压转换模块根据所述第一电源生成所述第二电源, 延吋模 块延吋将所述第二电源接入至所述无线通信模块。
[权利要求 6] 如权利要求 5所述的无线智能控制装置, 其特征在于, 当所述交流电 停止输入吋, 所述自激振荡模块根据所述交流电的停止输入生成断电 告警信号并停止所述第一电源的输出, 所述电压转换模块停止所述第 二电源的输出, 所述无线通信模块内部的储能元件放电以对所述无线 通信模块进行预设吋间的供电, 所述延吋模块根据所述断电告警信号 控制所述无线通信模块在所述预设吋间内保存相关的运行数据。
[权利要求 7] 如权利要求 1所述的无线智能控制装置, 其特征在于, 所述幵关模块 包括一个或多个继电器;
每个继电器的第一幵关端共同构成所述幵关模块的第一输入端, 所述 每个继电器的第二幵关端共同构成所述幵关模块的第一输出端, 所述 每个继电器的第一控制端共同构成所述幵关模块的第三输入端, 所述 每个继电器的第二控制端共同构成所述幵关模块的第四输入端。
[权利要求 8] 如权利要求 1所述的无线智能控制装置, 其特征在于, 所述稳压模块 包括比较器、 第一场效应管、 第一三极管、 第二三极管、 第一二极管 、 第二二极管、 第三二极管、 第四二极管、 第一电容、 第二电容、 第 三电容、 第一电阻、 第二电阻、 第三电阻、 第四电阻、 第五电阻、 第 六电阻、 第七电阻以及第八电阻;
所述第一二极管的负极、 所述第一场效应管的漏极以及所述第二三极 管的正极为所述稳压模块的第一输入端, 所述比较器的电源正极端与 所述第三二极管的负极、 所述第二二极管的负极、 所述第六电阻的第 一端、 所述第四二极管的正极以及所述第二电容的第一端连接, 所述 比较器的输出端与所述第一电阻的第一端和所述第二电阻的第一端连 接, 所述比较器的反相输入端与所述第三电阻的第一端和所述第四电 阻的第一端连接, 所述比较器的正相输入端与所述第五电阻的第一端 、 所述第一电容的第一端以及第二二极管的正极连接, 所述第一三极 管的基极与所述第六电阻的第二端和所述第七电阻的第一端连接, 所 述第一三极管的集电极、 所述第八电阻的第一端以及所述第三电容的 第一端为所述稳压模块的第二输出端, 所述第二三极管的基极与所述 第二电阻的第二端连接, 所述第二三极管的集电极与所述第三电阻 的第二端连接, 所述第一场效应管的栅极与所述第一电阻的第二端连 接, 所述第四二极管的负极为所述稳压模块的第一输出端, 所述第四 电阻的第二端和所述第八电阻的第二端为所述稳压模块的第二输入端 , 所述第一二极管的正极、 所述第一场效应管的源极、 所述比较器的 电源负极端、 所述第五电阻的第二端、 所述第一电容的第二端、 所述 第二三极管的发射极、 所述第二电容的第二端、 所述第七电阻的第二 端、 所述第一三极管的发射极以及所述第三电容的第二端共接于电源 地。
[权利要求 9] 如权利要求 1所述的无线智能控制装置, 其特征在于, 所述电压转换 模块包括稳压器、 第四电容、 第五电容、 第六电容以及第七电容; 所述稳压器的输入端、 所述第四电容的第一端以及所述第五电容的第 一端为所述电压转换模块的输入端, 所述稳压器的输出端、 所述第六 电容的第一端以及所述第七电容的第一端为所述电压转换模块的输出 端, 所述稳压器的接地端、 所述第四电容的第二端、 所述第五电容的 第二端、 所述第六电容的第二端以及所述第七电容的第二端共接于电 源地。
[权利要求 10] —种无线智能控制系统, 其特征在于, 所述无线智能控制系统包括一 个或多个负载以及如权利要求 1至 9任一项所述的无线智能控制装置。
PCT/CN2017/071143 2017-01-13 2017-01-13 一种无线智能控制装置及系统 WO2018129717A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780000009.4A CN107073715B (zh) 2017-01-13 2017-01-13 一种无线智能控制装置及系统
PCT/CN2017/071143 WO2018129717A1 (zh) 2017-01-13 2017-01-13 一种无线智能控制装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071143 WO2018129717A1 (zh) 2017-01-13 2017-01-13 一种无线智能控制装置及系统

Publications (1)

Publication Number Publication Date
WO2018129717A1 true WO2018129717A1 (zh) 2018-07-19

Family

ID=59613777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071143 WO2018129717A1 (zh) 2017-01-13 2017-01-13 一种无线智能控制装置及系统

Country Status (2)

Country Link
CN (1) CN107073715B (zh)
WO (1) WO2018129717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188187A (zh) * 2021-11-08 2022-03-15 陕西千山航空电子有限责任公司 一种控制信号系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243536B (zh) * 2017-09-22 2019-10-29 廖薇 无线控制的电力开关模块及其电源的启动方法
CN109819568B (zh) * 2019-03-29 2024-02-13 广州腾龙健康实业股份有限公司 一种基于两线的多电平对应多通道信号传输系统
CN110610602A (zh) * 2019-10-17 2019-12-24 恩平市力卡电子有限公司 一种自动启闭会议话筒单元的无线会议系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700574A (zh) * 2004-05-18 2005-11-23 上海美芝欧加电器有限公司 一种自激式开关电源
CN101083435A (zh) * 2006-05-31 2007-12-05 海尔集团公司 一种自激式开关电源装置
CN104682388A (zh) * 2015-03-20 2015-06-03 宋刚 一种二线制电子开关断态供电电路及智能开关
CN205594390U (zh) * 2016-05-04 2016-09-21 黄可斌 一种双联双控智能开关及其控制系统
CN106300988A (zh) * 2016-08-31 2017-01-04 洛阳隆盛科技有限责任公司 一种高精度的高压程控电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1068031A (en) * 1963-02-12 1967-05-10 Hoover Ltd Improvements relating to inverter circuits
CN1013005B (zh) * 1986-05-06 1991-06-26 张世熙 便于进行功能扩展的多功能自动控制器
CN2814876Y (zh) * 2004-06-04 2006-09-06 袁启鹏 可控应急灯照明控制器
CN203324831U (zh) * 2013-06-14 2013-12-04 嘉兴职业技术学院 一种拉毛机红外控制装置
CN105006894B (zh) * 2015-06-11 2017-09-15 重庆大学 一种无线传感器网络的无线充电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700574A (zh) * 2004-05-18 2005-11-23 上海美芝欧加电器有限公司 一种自激式开关电源
CN101083435A (zh) * 2006-05-31 2007-12-05 海尔集团公司 一种自激式开关电源装置
CN104682388A (zh) * 2015-03-20 2015-06-03 宋刚 一种二线制电子开关断态供电电路及智能开关
CN205594390U (zh) * 2016-05-04 2016-09-21 黄可斌 一种双联双控智能开关及其控制系统
CN106300988A (zh) * 2016-08-31 2017-01-04 洛阳隆盛科技有限责任公司 一种高精度的高压程控电源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188187A (zh) * 2021-11-08 2022-03-15 陕西千山航空电子有限责任公司 一种控制信号系统
CN114188187B (zh) * 2021-11-08 2024-04-16 陕西千山航空电子有限责任公司 一种控制信号系统

Also Published As

Publication number Publication date
CN107073715A (zh) 2017-08-18
CN107073715B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2018129717A1 (zh) 一种无线智能控制装置及系统
TWI643425B (zh) 具低待機功耗之充電電源系統及其控制方法
WO2017101647A1 (zh) 上下电驱动电路及其控制方法
CN204967252U (zh) 一种电源输入保护电路
EP2709236B1 (en) Uninterrupted power supply circuit and control method therefor
WO2016115703A1 (zh) 限流保护电路和电子设备
CN113568360A (zh) 电源控制电路和手持设备
WO2018166497A1 (zh) 控制电路及显示设备
TW201338348A (zh) 不間斷電源系統
JP2013192443A (ja) 電源管理回路及び電源管理回路を備える電子デバイス
CN201312139Y (zh) 电源控制器
TW201349697A (zh) 開關電路及具有該開關電路之電子設備
TW201328118A (zh) 不間斷電源系統
RU2360274C1 (ru) Стабилизатор постоянного напряжения
CN103692058A (zh) 带功率校正电路逆变焊机的缓启动电路
CN209896910U (zh) 一种联动切换电源装置及智能锁
CN205249075U (zh) 耐电磁辐射的晶体管自激逆变器
CN203482090U (zh) 一种快速启动电路
CN210380365U (zh) 一种用于电动智能伸缩杆的低功耗供电电路
CN203071813U (zh) 超宽范围开关电源输入控制装置
CN204258429U (zh) Ups旁路切换电路
CN104167928A (zh) 一种电源电路及电源装置
TW201902074A (zh) 電源供應系統
CN107359785B (zh) 一种开关电源及其启动电路
CN105717970A (zh) 待机电源管理电路和电子电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891663

Country of ref document: EP

Kind code of ref document: A1