WO2018166497A1 - 控制电路及显示设备 - Google Patents

控制电路及显示设备 Download PDF

Info

Publication number
WO2018166497A1
WO2018166497A1 PCT/CN2018/079127 CN2018079127W WO2018166497A1 WO 2018166497 A1 WO2018166497 A1 WO 2018166497A1 CN 2018079127 W CN2018079127 W CN 2018079127W WO 2018166497 A1 WO2018166497 A1 WO 2018166497A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
control
signal
unit
output
Prior art date
Application number
PCT/CN2018/079127
Other languages
English (en)
French (fr)
Inventor
魏开涛
Original Assignee
京东方科技集团股份有限公司
高创(苏州)电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 高创(苏州)电子有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,527 priority Critical patent/US10658922B2/en
Publication of WO2018166497A1 publication Critical patent/WO2018166497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present disclosure relates to the field of display device technologies, and in particular, to a control circuit and a display device including the same.
  • a control circuit includes a power input terminal, an energy storage unit, a switch unit, and a trigger unit and an output, an input end of the energy storage unit and the
  • the power input unit is connected to the power supply unit for supplying power to the control circuit, and the input end of the switch unit is connected to the power input end, and the output end of the switch unit is connected to the control circuit
  • the output end is connected, the control end of the switch unit is connected to the output end of the trigger unit, the trigger unit is configured to receive a trigger signal, and send the received trigger signal to the switch unit, where the switch unit is used And changing a communication state between an input end of the switch unit and an output end of the switch unit when a control signal from the trigger unit is received at a control end of the switch unit.
  • the trigger unit includes a signal receiving module and a control module.
  • the signal receiving module transmits the received trigger signal to the control module through an output end of the signal receiving module.
  • the control module is capable of decoding the received signal after receiving the signal sent by the signal receiving module, and transmitting the decoded signal to the triggering unit when the decoded signal is a shutdown signal
  • An output end such that the control end of the switch unit controls the input end of the switch unit and the output end of the switch unit to be disconnected after receiving the turn-off signal, and the input end of the energy storage unit passes through
  • the power input terminal is connected for energy storage charging;
  • the signal receiving module can directly transmit the received trigger signal to the output end of the trigger unit through the output end of the signal receiving module, and the control end of the switch unit The input end of the switching unit and the output end of the switching unit are controlled to communicate after receiving the trigger signal.
  • the signal receiving module includes: an energy storage sub-module and a receiving sub-module, an output end of the energy storage sub-module is connected to a power end of the receiving sub-module, and an input of the energy storage sub-module The end is electrically connected to the output end of the energy storage unit, the ground end of the receiving submodule is connected to the first ground end, and the output end of the receiving submodule is connected to the output end of the signal receiving module, wherein
  • the energy storage sub-module is capable of charging and storing energy, providing power supply for the operation of the receiving sub-module, the receiving sub-module being capable of receiving the trigger signal, and transmitting the trigger signal to the control module or the switch unit.
  • the energy storage sub-module includes a fifth capacitor and a fifth diode, a cathode of the fifth capacitor is connected to a cathode of the fifth diode, and a cathode of the fifth capacitor is An anode connection of the fifth diode is connected to the first ground end, and a cathode of the fifth capacitor and a cathode of the fifth diode are both input ends of the energy storage submodule and Output.
  • the fifth capacitor comprises an electrolytic capacitor
  • the fifth diode comprises a Zener diode
  • the receiving sub-module comprises an infrared receiver.
  • the trigger signal comprises an infrared signal.
  • control module includes an amplification sub-module, a first photocoupler, a second photocoupler, and a control sub-module, and an input end of the amplification sub-module is connected to an input end of the control module.
  • An output end of the amplification sub-module is connected to an input end of the first photocoupler, and a first output end of the first photocoupler is connected to an input end of the control sub-module, the first optocoupler
  • the second output end is connected to the second ground end, the power end of the first photocoupler is connected to the output end of the energy storage unit, and the control end of the control submodule and the second photocoupler
  • the input end is connected, the first output end of the second photocoupler is connected to the output end of the energy storage unit, and the second output end of the second photocoupler is connected to the output end of the control module, wherein Amplifying the sub-module for amplifying the trigger signal received from the signal receiving module, the first photocoupler for using an amplified trigger signal from the amplifying sub-module to the
  • the control sub-module performs an isolated transmission, the control sub-module is configured to process the amplified trigger signal, and the second photocoupler is configured to turn the shutdown signal when
  • the amplifying submodule includes a fourth triode, and a control end of the fourth triode is connected to an input end of the control module, and the first end of the fourth triode is An input end of the first photocoupler is connected, and a second end of the fourth triode is connected to the first ground end.
  • control end of the fourth triode is the base of the fourth triode, and the first end of the fourth triode is the collector of the fourth triode The second end of the fourth transistor is an emitter of the fourth transistor.
  • control sub-module includes a control chip and a fifth triode, an input end of the control chip is connected to an input end of the control sub-module, and a control end of the control chip and the control a control end of the sub-module is connected, a control end of the fifth triode is connected to a control end of the control sub-module, a first end of the fifth triode and an input end of the second photocoupler Connected, the second end of the fifth transistor is connected to the second ground.
  • control end of the fifth triode is the base of the fifth triode, and the first end of the fifth triode is the collector of the fifth triode The second end of the fifth transistor is an emitter of the fifth transistor.
  • the triggering unit further includes a signal amplifying module, and an input end of the signal amplifying module is respectively connected to an output end of the signal receiving module and an output end of the control module, where the signal amplifying module The output end is connected to an output end of the trigger unit, and the signal amplifying module is configured to amplify a signal input from the signal receiving module or the control module.
  • the signal amplifying module includes a first signal amplifying submodule, a second signal amplifying submodule, and a third signal amplifying submodule, and the input end of the first signal amplifying submodule and the signal amplifying module
  • the input end of the first signal amplifying sub-module is connected to the input end of the second signal amplifying sub-module, the output end of the second signal amplifying sub-module and the third signal amplifying sub-module
  • the input end of the third signal amplifying sub-module is connected to the output end of the signal amplifying module, wherein the first signal amplifying sub-module is used to input from the input end of the signal amplifying module
  • the signal is amplified and transmitted to the second signal amplifying submodule, and the second signal amplifying submodule is configured to amplify and transmit the received signal to the third signal amplifying submodule, the third signal amplifying The submodule is for amplifying and transmitting the received signal to
  • the first signal amplifying submodule includes a first triode, and a control end of the first triode is connected to an input end of the first signal amplifying submodule, the first three a first end of the pole tube is connected to an input end of the second signal amplifying submodule and an output end of the energy storage unit, and the second signal amplifying submodule comprises a second triode, the second three pole a control end of the tube is connected to an input end of the second signal amplifying submodule, a first end of the second triode is connected to an output end of the energy storage unit, and a second end of the second triode The end is connected to the second end of the first transistor, and the third signal amplifying submodule comprises a third transistor, a third capacitor and a sixth diode, and the control end of the third transistor Connected to the second end of the first transistor and the second end of the second transistor, the first end of the third transistor is connected to the output end of the signal amplifying module, the third a first
  • the switch unit includes a relay, and the control end of the relay includes a first control end and a second control end, and the first control end of the relay is connected to an output end of the energy storage unit.
  • the second control terminal of the relay is connected to the output of the signal amplification module.
  • control circuit further includes a rectifying unit, an input end of the rectifying unit is connected to the power input end, and an output end of the rectifying unit is connected to an input end of the energy storage unit,
  • the rectifying unit is capable of converting alternating current input from the power input terminal into direct current.
  • the input end of the rectifying unit includes a first alternating current input end and a second alternating current input end, and the first alternating current input end is connected to an input end of the switching unit
  • the rectifying unit includes: a capacitor, a second capacitor, a first diode, a second diode, a third diode, and a fourth diode, wherein one end of the first capacitor is connected to the first AC input terminal of the rectifying unit The other end of the first capacitor is connected to the cathode of the first diode, one end of the second capacitor is connected to the cathode of the first diode, and the other end of the second capacitor is An output end of the switching unit is connected, an anode of the first diode is connected to the first ground end, and an anode of the second diode is connected to a cathode of the first diode, a cathode of the diode is further connected to an output end of the rectifying unit, an anode of the third dio
  • the energy storage unit includes a fourth capacitor and a tenth resistor, one end of the tenth resistor is connected to an input end of the energy storage unit, and the other end of the tenth resistor is opposite to the first
  • the anode of the fourth capacitor is connected, the cathode of the fourth capacitor is connected to the first ground, and the anode of the fourth capacitor is the output of the energy storage unit.
  • a display device including a remote controller, a processor, a peripheral circuit electrically connected to the processor, and a switching power supply control device, the switching power supply control device including a power supply module And the power supply hard switch, wherein the switching power supply control device further includes the above control circuit provided by the present disclosure, the power hard switch is connected to an alternating current power source, and the power input end of the control circuit is hard-switched to the power source, An output end of the control circuit is connected to an input end of the power module, and the control circuit controls an input end of the power module by changing a connection state between an input end of the switch unit and an output end of the switch unit Connected or disconnected from the alternating current power source, the output of the switching power supply control device is coupled to a power input of the processor for providing power to the operation of the processor, the remote controller The switching power supply control device is communicatively coupled to the remote control for issuing a trigger signal to the switching power supply control device.
  • FIG. 1 is a block diagram showing the circuit structure of a display device of the prior art
  • FIG. 2 is a first structural block diagram of a control circuit provided by the present disclosure
  • FIG. 3 is a second structural block diagram of a control circuit provided by the present disclosure.
  • FIG. 4 is a third structural block diagram of a control circuit provided by the present disclosure.
  • FIG. 5 is a fourth structural block diagram of a control circuit provided by the present disclosure.
  • FIG. 6 is a circuit structural diagram of a control circuit provided by the present disclosure.
  • Figure 7 is a block diagram showing the structure of a switching power supply control device
  • FIG. 8 is a structural block diagram of a display device provided by the present disclosure.
  • the display device in the prior art mainly includes a power hard switch 200, a power module 300, a processor 400, and a peripheral circuit 500.
  • the standby principle of the power module 300 used by the display device is: when the remote control is turned off, the main pass
  • the processor 400 cuts off the output of the other sets of DC power supply voltages, leaving only one set of remote control circuits and the processor 400 having a voltage output, but the power supply module is still operating, so there is still a large power loss.
  • a control circuit 100 is provided, as shown in FIG. 2, wherein the control circuit 100 includes a power input terminal 101, an energy storage unit 110, a switch unit 130, a trigger unit 120, and an output of a control circuit.
  • the input end of the energy storage unit 110 is connected to the power input terminal 101.
  • the energy storage unit 110 is used to store power and then supply power to the control circuit 100.
  • the input end 131 of the switch unit is connected to the power input terminal 101, and the output end of the switch unit is connected.
  • 132 is connected to the output end 102 of the control circuit, and the control end 133 of the switch unit is connected to the output end of the trigger unit 120.
  • the switch unit 130 is used to change the switch unit when the control end 133 of the switch unit receives the trigger signal of the trigger unit 120.
  • control circuit When the control circuit provided by the present disclosure is applied to a switching power supply control device of a display device, it is disposed between the power hard switch and the power module.
  • the control circuit can control the on/off between the AC power source and the power module by changing the communication state of the switch unit when receiving the trigger signal, and when the received trigger signal causes the switch unit in the control circuit to be disconnected,
  • the disconnection of the AC power source and the power module enables the control circuit of the structure to have only a small operating current in the standby state, thereby reducing the standby power consumption of the display device.
  • the trigger unit 120 is configured to receive a trigger signal, and when the trigger unit 120 receives the trigger signal, send the trigger signal to the switch unit 130.
  • the switch unit 130 When the switch unit 130 is in the on state, after receiving the trigger signal, the switch unit 130 changes state, from the on state to the off state. Conversely, when the switch unit 130 is in the off state, the receiver is received. After the trigger signal is described, it changes from the off state to the on state.
  • the output terminal 132 of the switch unit is connected to the output terminal 102 of the control circuit, so when the switch unit 130 receives the trigger signal, the conduction state is changed to In the off state, the power input terminal 101 of the control circuit and the output terminal 102 of the control circuit are also changed from the on state to the off state, and conversely, when the switch unit 130 receives the trigger signal, the off state is changed. In the on state, the power input terminal 101 of the control circuit and the output terminal 102 of the control circuit also change from the off state to the on state.
  • the energy storage unit 110 is connected to the power input terminal 101, can be charged and stored by the current input of the power input terminal 101, and uses the stored energy for the normal operation of the control circuit 100.
  • control circuit 100 of the above configuration When the control circuit 100 of the above configuration is applied to the switching power supply control device, it is disposed between the power hard switch and the power module, and when the control circuit 100 is disconnected, the connection between the power module and the AC power source can be disconnected, so that the control is performed. Only a small current for charging the capacitor flows in the circuit 100, and at this time, the power module is in an inoperative state, so that the standby power consumption of the display device can be well reduced.
  • the trigger unit 120 includes a signal receiving module 122 and a control module 121.
  • the signal receiving module 122 transmits the received trigger signal to the control module 121 through the output end of the signal receiving module 122.
  • the control module 121 can receive the signal sent by the signal receiving module 122.
  • the received signal is decoded.
  • the decoded signal is a shutdown signal
  • the decoded signal is transmitted to the output end of the trigger unit 120, so that the control terminal 133 of the switching unit controls the switch after receiving the shutdown signal.
  • the input end 131 of the unit and the output end 132 of the switch unit are disconnected, and the input end of the energy storage unit 110 is connected to the power input terminal 101 for energy storage charging;
  • the signal receiving module 122 can directly transmit the received trigger signal to the output end of the trigger unit 120 through the output end of the signal receiving module 122, and the control end of the switch unit 130 receives the After the trigger signal, the switch unit 130 controls the input terminal 131 of the switch unit to communicate with the output terminal 132 of the switch unit.
  • the control circuit 100 receives the trigger signal by the trigger unit 120 to control the on/off of the switch unit 130.
  • the trigger unit 120 may specifically include a control module 121 and a signal receiving module 122.
  • the control circuit 100 receives the trigger signal through the signal receiving module 122. And processing the trigger signal according to whether the control module 121 is powered, thereby implementing on-off control of the switch unit 130.
  • the signal receiving module 122 includes: an energy storage submodule and a receiving submodule, wherein an output end of the energy storage submodule is connected to a power end of the receiving submodule, The input end of the energy storage sub-module is electrically connected to the output end of the energy storage unit, the ground end of the receiving sub-module is connected to the first ground end, and the output end of the receiving sub-module and the output of the signal receiving module End connection.
  • the energy storage sub-module is connected to the energy storage unit 110, can charge and store energy, and is connected to the power terminal of the receiving sub-module to provide power supply for the operation of the receiving sub-module.
  • the receiving sub-module may be an infrared receiver IR1
  • the trigger signal may be an infrared signal
  • the energy storage sub-module provides working power to the infrared receiver IR1 and the control module 121 is in a charged state.
  • the infrared receiver IR1 sends the received infrared signal to the control module 121, and the control module 121 processes the infrared signal.
  • the infrared signal is the shutdown signal, the infrared signal is sent to the switch unit 130 to control the switch unit 130. disconnect.
  • the energy storage sub-module includes a fifth capacitor CA2 and a fifth diode ZD3, and a positive pole of the fifth capacitor CA2 and the fifth
  • the cathode of the diode ZD3 is connected, the cathode of the fifth capacitor CA2 is connected to the anode of the fifth diode ZD3 and is connected to the first ground, the anode of the fifth capacitor CA2 and the fifth
  • the cathode of diode ZD3 is the input and output of the energy storage sub-module.
  • the fifth capacitor CA2 serves as a charging and discharging capacitor, and may be an electrolytic capacitor.
  • the fifth capacitor CA2 is connected to the energy storage unit 110 to enable charging, and after the charging is completed, the infrared receiver IR1 is provided by discharging.
  • a fifth diode ZD3 is connected in parallel across the fifth capacitor CA2 for voltage regulation, and the fifth diode ZD3 can be a Zener diode.
  • the control module 121 includes an amplification sub-module, a first photocoupler U1, a second photocoupler U2, and a control sub-module, and the input end of the amplification sub-module
  • An input end of the control module 121 is connected, an output end of the amplifying sub-module is connected to an input end of the first photocoupler U1, and a first output end of the first photocoupler U1 is connected to an input end of the control sub-module.
  • the second output end of the first photocoupler U1 is connected to the second ground end, and the power end of the first photocoupler U1 is connected to the output end of the energy storage unit 110, and the control end of the control submodule is coupled with the second photocoupler
  • the input end of the second photocoupler U2 is connected to the output end of the energy storage unit 110, and the second output end of the second photocoupler U2 is connected to the output end of the control module 121.
  • a power terminal of the photocoupler U2 is connected to an output end of the power module.
  • control module 121 is configured to implement the control of the switch unit 130 according to the trigger signal received by the signal receiving module 122.
  • the control module 120 may specifically include an amplification submodule, a first photocoupler U1, and a second optocoupler.
  • the amplifying submodule amplifies the trigger signal received from the signal receiving module 122, and in order to isolate the control submodule and the amplifying submodule, the triggered trigger
  • the signal is transmitted to the control sub-module through the first photocoupler U1, and the first photocoupler U1 can function as an isolated transmission.
  • the amplified trigger signal is sent to the output of the control module 121 through the second photocoupler U2 after being processed by the control sub-module.
  • the second photocoupler U2 can also function as an isolated transmission.
  • the amplifying submodule includes a fourth triode Q4, and the control end of the fourth triode Q4 is connected to the input end of the control module 121, and fourth The first end of the transistor Q4 is connected to the input end of the first photocoupler U1, and the second end of the fourth transistor Q4 is connected to the first ground end.
  • the control sub-module includes the control chip M1 and the The fifth transistor Q5, the input end of the control chip M1 is connected to the input end of the control sub-module, the control end of the control chip M1 is connected with the control end of the control sub-module, and the control end of the fifth triode Q5 is The control terminal of the control submodule is connected, the first end of the fifth transistor Q5 is connected to the input end of the second photocoupler U2, and the second end of the fifth transistor Q5 is connected to the second ground end. .
  • the control end of the fourth transistor Q4 is the base of the fourth transistor Q4, the first end of the fourth transistor Q4 is the collector of the fourth transistor Q4, and the fourth transistor Q4
  • the second end is the emitter of the fourth transistor Q4, the base of the fourth transistor Q4 is connected to the input end of the control module 121 through the resistor R6, and the collector of the fourth transistor Q4 is passed through the seventh resistor R7.
  • the emitter of the fourth transistor Q4 is connected to the first ground terminal and connected to the output end of the control module 121 through the ninth resistor R9.
  • the first output of the second photocoupler U2 is connected to the output of the energy storage unit 110 via an eighth resistor R8.
  • the control end of the fifth triode Q5 is the base of the fifth triode Q5, the first end of the fifth triode Q5 is the collector of the fifth triode Q5, and the second end of the fifth triode Q5 The end is the emitter of the fifth transistor Q5. Therefore, the collector of the fifth transistor Q5 is connected to the input end of the second photocoupler U2, and the emitter of the fifth transistor Q5 is connected to the second ground. End connection.
  • the trigger signal received by the signal receiving module is sent to the switch unit 130 after being processed by the control module 121.
  • the signal receiving module 122 receives the trigger signal and transmits it to the input end of the control module 121.
  • the input end of the control module 121 is connected to the input end of the amplifying submodule, and the amplification is performed.
  • the trigger signal input to the input terminal of the submodule is transmitted to the fourth transistor Q4 via the sixth resistor R6 for amplification, and then transmitted to the first photocoupler U1 through the seventh resistor R7.
  • the amplified trigger signal is transmitted to the control chip M1 through the first photocoupler U1, and the control chip M1 decodes the amplified trigger signal, and if the trigger signal is a shutdown signal, passes the first
  • the five transistor Q5 is transmitted to the second photocoupler U2 and transmitted to the output of the control module 121 via the second photocoupler U2.
  • the trigger unit 120 in order to implement the function of amplifying the trigger signal received by the trigger unit 120, the trigger unit 120 further includes a signal amplifying module 123, and an input end of the signal amplifying module 123.
  • the output of the signal receiving module 122 and the output of the control module 121 are respectively connected, and the output of the signal amplifying module 123 is connected to the output of the triggering unit 120.
  • the signal amplifying module 123 includes multi-level signal amplification. Specifically, the signal amplifying module 123 includes a first signal amplifying sub-module, a second signal amplifying sub-module, and a third signal amplifying sub-module.
  • An input end of the first signal amplifying submodule is connected to an input end of the signal amplifying module 123, and an output end of the first signal amplifying submodule is connected to an input end of the second signal amplifying submodule, the second signal An output end of the amplifying submodule is connected to an input end of the third signal amplifying submodule, and an output end of the third signal amplifying submodule is connected to an output end of the signal amplifying module 123.
  • the first signal amplifying submodule includes a first transistor Q1, and a control end of the first transistor Q1 is connected to an input end of the first signal amplifying submodule, A first end of a transistor Q1 is connected to an input end of the second signal amplifying submodule and an output end of the energy storage unit 110, and the second signal amplifying submodule comprises a second transistor Q2, the second three The control end of the pole tube Q2 is connected to the input end of the second signal amplifying submodule, the first end of the second transistor Q2 is connected to the output end of the energy storage unit 110, and the second end of the second transistor Q2 Connected to the second end of the first transistor Q1, the third signal amplifying submodule comprises a third transistor Q3, a third capacitor C3 and a sixth diode D3, and the control end of the third transistor Q3 Connected to the second end of the first transistor Q1 and the second end of the second transistor Q2, the first end of the third transistor Q3 is connected
  • the trigger signal input from the input end of the signal amplifying module 123 is first amplified by the first signal amplifying sub-module, and then transmitted to the second signal amplifying sub-module, and amplified by the second signal amplifying sub-module.
  • the third signal amplification sub-module is finally transmitted from the output end of the third signal amplification sub-module to the output end of the signal amplification module 123.
  • the switch unit 130 includes a relay S1, and the control end of the relay S1 includes a first control end and a second control end, and the first control end of the relay S1 is The output of the energy storage unit 110 is connected, and the second control end of the relay S1 is connected to the output of the signal amplification module 123.
  • the control circuit 100 further includes a rectifying unit 140, the input end of the rectifying unit 140 and the power supply.
  • the input terminal 101 is connected, and the output end of the rectifying unit 140 is connected to the input end of the energy storage unit 110, and the rectifying unit 140 is capable of converting the alternating current input from the power input terminal 101 into direct current.
  • the input end of the rectifying unit 140 includes a first alternating current input end and a second alternating current input end, and the first alternating current input end and the switch unit 130
  • the rectifying unit 140 may specifically include: a first capacitor C1, a second capacitor C2, a first diode ZD1, a second diode D1, a third diode ZD2, and a fourth diode D2.
  • One end of the first capacitor C1 is connected to the first AC input end of the rectifying unit, the other end of the first capacitor C1 is connected to the cathode of the first diode ZD1, and the second capacitor C2 One end of the first diode ZD1 is connected to the cathode of the first diode ZD1, and the other end of the second capacitor C2 is connected to the output end of the switch unit 130.
  • the anode of the first diode ZD1 and the first a ground terminal is connected, an anode of the second diode D1 is connected to a cathode of the first diode ZD1, and a cathode of the second diode D1 is connected to an output end of the rectifying unit 140,
  • the anode of the third diode ZD2 is connected to the first ground terminal, and the third diode ZD2 a cathode is connected to a second alternating current input of the rectifying unit, an anode of the fourth diode D2 is connected to a cathode of the third diode ZD2, and a cathode of the fourth diode D2 is The output terminals of the rectifying unit 140 are connected.
  • the first diode ZD1 and the third diode ZD2 are preferably Zener diodes.
  • the energy storage unit 110 includes a fourth capacitor CA1 and a tenth resistor R10, and one end of the tenth resistor R10 is connected to the input end of the energy storage unit 110.
  • the other end of the tenth resistor R10 is connected to the anode of the fourth capacitor CA1
  • the cathode of the fourth capacitor CA1 is connected to the first ground
  • the anode of the fourth capacitor CA1 is the energy storage unit 110.
  • the AC mains first enters the rectifying unit 140, and is coupled to the rectifying circuit composed of the rectifying diodes D1, ZD1, D2, and ZD2 through the first capacitor C1 for rectification and rectification.
  • the maximum output voltage is the breakdown voltage of Zener diodes ZD1 and ZD2, which is generally greater than 10V.
  • the rectified output voltage enters the energy storage unit 110, and first charges the fourth capacitor CA1 through the tenth resistor R10.
  • the fourth capacitor CA1 is preferably an electrolytic capacitor, and the energy storage function can also be filtered until the first After the capacitor CA1 is fully charged, the voltage across it reaches the rectified output voltage. At this time, the fourth capacitor CA1 can be regarded as an energy storage power source, and the voltage can be supplied to the entire control circuit 100. At the same time, the rectified output voltage is also charged to the fifth capacitor CA2 via the second resistor R2.
  • the fifth capacitor CA2 is preferably an electrolytic capacitor, and can also function as a filter while storing energy until the fifth capacitor CA2 is fully charged.
  • the voltage across the two ends reaches the breakdown voltage of the fifth diode ZD3, and the fifth diode ZD3 is preferably a Zener diode, and the voltage across the fifth capacitor CA2 is provided to the receiving sub-module, and the receiving sub-module may specifically For the infrared remote control receiving circuit, the value is generally 5V.
  • the infrared remote control receiving circuit can receive the infrared signal sent by the remote controller. For example, when the user needs to turn on the display device, the user can press any button on the remote controller, and the infrared remote control receiving circuit receives the infrared signal and converts it. For the pulsed electrical signal output, the trigger control circuit 100 begins to operate.
  • the remote control pulse signal can be specifically divided into two ways, one way is sent to the signal amplification module 123 via the resistor R1, that is, the base of the first transistor Q1, passes through the first transistor Q1, the second transistor Q2 and the third After the three-stage amplification of the transistor Q3, the contact output switch of the third transistor Q3 drives the contact switch of the relay S1 to be closed, thereby turning on the AC mains channel to supply power to the power module SP1, so that the display device works normally.
  • the 1 and 2 pins of the relay S1 (the first control terminal and the second control terminal) are connected in parallel with a reverse freewheeling diode, that is, the sixth diode D3 in FIG. 6, to protect the third three poles. Tube Q3 is not affected by induced high voltage breakdown damage.
  • the capacity of the fourth capacitor CA1 is to be sufficiently large, so that the voltage across the fourth capacitor CA1 can be continued when the control circuit 100 is operated, so that the contact switch of the relay S1 can be continuously closed and turned on.
  • an integral capacitor needs to be added to the base of the third transistor Q3, that is, in FIG.
  • the third capacitor C3 is shown, which integrates the trigger signal for turning on the display device and filters out the AC-retained direct current, and the time constant of the circuit formed by the third capacitor C3 and the fifth resistor R5 is large.
  • the third transistor Q3 is continuously turned on to ensure that the contact switch of the relay S1 is continuously closed and turned on.
  • the second capacitor C2 is also turned on, and it supplies power to the rectifying circuit together with the first capacitor C1 connected in parallel thereto, and supplies sufficient current to the control circuit 100, thereby ensuring that the relay S1 can be long-timed. jobs.
  • the control chip M1 of the control module 121 has an I/O control pin (POWER- ON/OFF) outputs a high level (5V) control signal for turning on the DC voltage output of the power module SP1 (ie, DC1, DC2, DC3 in Figure 6).
  • the high level control signal is also amplified by the second photocoupler U2 and sent to the base of the first transistor Q1, so that the first transistor Q1, the second transistor Q2 and the third three
  • the amplifying circuit such as the pole tube Q3 continues to work, and its function is the same as the trigger signal for turning on the display device, and the relay is continuously triggered to keep the contact switch of the relay S1 continuously turned on, forming a self-locking state.
  • the user touches the function key on the remote controller, and the infrared signal is converted into a remote control electric signal by the infrared remote control receiving circuit, and is sent to the base of the fourth triode Q4 through the sixth resistor R6.
  • the quadrupole Q4 is amplified, outputted to the first photocoupler U1 via the seventh resistor R7 for further amplification and isolation, and then outputted to the first output terminal (3 pin (ie, collector)) of the first photocoupler U1 for control
  • the chip M1 is decoded by the control chip M1 and realizes various functional operations.
  • the user sends a set of shutdown signals to the control chip M1 through the remote controller, first decodes through the control chip M1, and then outputs a low level by the POWER-ON/OFF pin of the control chip M1 ( 0V)
  • the control signal causes each DC output voltage of the power module SP1 to be turned off.
  • the output signal of the low-level control signal after passing through the second photo-coupled amplifier U2 is also a low level, so that the amplifying circuits of the first transistor Q1, the second transistor Q2, and the third transistor Q3 are all turned off and stopped.
  • the first transistor Q1, the second transistor Q2, the third transistor Q3, and the fourth transistor Q4 are not working, and the operating current of the entire control circuit 100 is small, and only A relatively small current is used to charge the fourth capacitor CA1 so that the voltage across it remains constant. According to the current of 10 mA and the voltage of 15 volts, when the control circuit is applied to the display device, since the power module does not work when the display device is in standby, the standby power consumption of the display device is 0.15 watt.
  • the disclosed control circuit has the advantage of being low cost and capable of reducing standby power consumption.
  • a display device includes a switching power supply control device, a processor 400, and a peripheral circuit 500 electrically connected to the processor 400 (including tuning The device 501, the sound amplifying circuit 502, the speaker 503, the display screen 504, the button 505, and the flash memory 506) and a remote controller (not shown).
  • the switching power supply control device includes a power module 300 and a power hard switch 200, and the switching power supply control device further includes a control circuit 100 as described above, and the power hard switch 200 is connected to an alternating current power source.
  • the power input terminal 101 of the control circuit is connected to the power hard switch 200, the output end 102 of the control circuit is connected to the input end of the power module 300, and the control circuit 100 changes the input of the switch unit.
  • the communication state between the terminal 131 and the output terminal 132 of the switch unit controls the connection or disconnection between the input terminal of the power module 300 and the AC power source.
  • An output of the switching power supply control device is coupled to a power input of the processor 400 for providing power to the operation of the processor 400.
  • the switching power supply control device controls the conduction and disconnection between the power module and the AC power source through the control circuit described above, and can reduce the standby of the display device when the switching power supply control device is applied to the display device. Power consumption.
  • the display device provided by the present disclosure realizes the power-off and shutdown control of the display device by the switching power supply control device, and the switching power supply control device described above can cut off the input of the power module and the output is also turned off when the power is turned off. It can reduce the loss of the display device when it is in the off state, saving standby power consumption.
  • the display device may be a display device such as a television set or a computer display.
  • the remote controller is communicatively coupled to the switching power supply control device, and the remote controller is configured to issue a trigger signal to the switching power supply control device.

Abstract

本公开提供了一种控制电路,包括电源输入端、储能单元、开关单元和触发单元,储能单元的输入端与电源输入端相连,储能单元用于存储电能后为控制电路供电,开关单元的输入端与电源输入端连接,开关单元的输出端与电源模块连接,开关单元的控制端与触发单元的输出端相连,开关单元用于在开关单元的控制端接收到触发单元的触发信号时改变开关单元的输入端和开关单元的输出端之间的连通状态。本公开还提供一种包括该控制电路的显示设备。控制电路应用于显示设备中时,能够很好的降低显示设备的电源模块的待机功耗。

Description

控制电路及显示设备
相关申请的交叉引用
本公开要求于2017年3月17日提交的申请号为CN201720262335.X的中国专利申请的优先权,在此将其全部内容以引文方式整体并入本文。
技术领域
本公开涉及显示设备技术领域,具体涉及一种控制电路、包括该控制电路的显示设备。
背景技术
目前,普通显示设备已经被广泛用于家庭和公共场所,显示设备在带来很大方便的同时,也消耗大量的电能,特别是显示设备待机时的电能消耗是一种能源浪费。
公开内容
本公开的目的在于提供一种控制电路、包括该控制电路的显示设备。
作为本公开的第一个方面,提供一种控制电路,其中,所述控制电路包括电源输入端、储能单元、开关单元和触发单元和输出端,所述储能单元的输入端与所述电源输入端相连,所述储能单元用于存储电能后为所述控制电路供电,所述开关单元的输入端与所述电源输入端连接,所述开关单元的输出端与所述控制电路的输出端连接,所述开关单元的控制端与所述触发单元的输出端相连,所述触发单元用于接收触发信号,并将接收到的触发信号发送到所述开关单元,所述开关单元用于在所述开关单元的控制端接收到来自所述触发单元的触发信号时改变所述开关单元的输入端和所述开关单元的输出端之间的连通状态。
在一个实施例中,所述触发单元包括信号接收模块和控制模块,
当所述控制模块带电工作时,所述信号接收模块将接收到的所述触发信号通过所述信号接收模块的输出端传递至所述控制模块,
所述控制模块能够在接收到所述信号接收模块发出的信号后对接收到的信号进行解码,当解码后的信号为关断信号时,将所述解码后的信号传递至所述触发单元的输出端,使得所述开关单元的控制端在接收到所述关断信号后控制所述开关单元的输入端和所述开关单元的输出端断开,所述储能单元的输入端通过与所述电源输入端连接进行储能充电;
当所述控制模块不带电时,所述信号接收模块能够将接收到的所述触发信号通过所述信号接收模块的输出端直接传递至所述触发单元的输出端,所述开关单元的控制端在接收到所述触发信号后控制所述开关单元的输入端和所述开关单元的输出端连通。
在一个实施例中,所述信号接收模块包括:储能子模块和接收子模块,所述储能子模块的输出端与所述接收子模块的电源端连接,所述储能子模块的输入端与所述储能单元的输出端电连接,所述接收子模块的接地端与第一接地端连接,所述接收子模块的输出端与所述信号接收模块的输出端连接,其中,所述储能子模块能够进行充电并储存能量,为接收子模块的工作提供电源供应,所述接收子模块能够接收所述触发信号,并将所述触发信号发送至所述控制模块或所述开关单元。
在一个实施例中,所述储能子模块包括第五电容和第五二极管,所述第五电容的正极与所述第五二极管的阴极连接,所述第五电容的负极与所述第五二极管的阳极连接并均与所述第一接地端连接,所述第五电容的正极和所述第五二极管的阴极均为所述储能子模块的输入端和输出端。
在一个实施例中,所述第五电容包括电解电容,以及所述第五二极管包括稳压二极管。
在一个实施例中,所述接收子模块包括红外接收器。
在一个实施例中,所述触发信号包括红外信号。
在一个实施例中,所述控制模块包括放大子模块、第一光电耦 合器、第二光电耦合器和控制子模块,所述放大子模块的输入端与所述控制模块的输入端连接,所述放大子模块的输出端与所述第一光电耦合器的输入端连接,所述第一光电耦合器的第一输出端与所述控制子模块的输入端连接,所述第一光电耦合器的第二输出端与第二接地端连接,所述第一光电耦合器的电源端与所述储能单元的输出端连接,所述控制子模块的控制端与所述第二光电耦合器的输入端连接,所述第二光电耦合器的第一输出端与所述储能单元的输出端连接,所述第二光电耦合器的第二输出端与所述控制模块的输出端连接,其中,所述放大子模块用于对从所述信号接收模块接收到的所述触发信号进行放大,所述第一光电耦合器用于将经过放大的触发信号从所述放大子模块至所述控制子模块进行隔离传输,所述控制子模块用于处理所述经过放大的触发信号,所述第二光电耦合器用于当经过处理的触发信号为所述关断信号时将所述关断信号从所述控制子模块至所述控制模块的输出端进行隔离传输。
在一个实施例中,所述放大子模块包括第四三极管,所述第四三极管的控制端与所述控制模块的输入端连接,所述第四三极管的第一端与所述第一光电耦合器的输入端连接,所述第四三极管的第二端与所述第一接地端连接。
在一个实施例中,所述第四三极管的控制端为所述第四三极管的基极,所述第四三极管的第一端为所述第四三极管的集电极,所述第四三极管的第二端为所述第四三极管的发射极。
在一个实施例中,所述控制子模块包括控制芯片和第五三极管,所述控制芯片的输入端与所述控制子模块的输入端连接,所述控制芯片的控制端与所述控制子模块的控制端连接,所述第五三极管的控制端与所述控制子模块的控制端连接,所述第五三极管的第一端与所述第二光电耦合器的输入端连接,所述第五三极管的第二端与所述第二接地端连接。
在一个实施例中,所述第五三极管的控制端为所述第五三极管的基极,所述第五三极管的第一端为所述第五三极管的集电极,所述第五三极管的第二端为所述第五三极管的发射极。
在一个实施例中,所述触发单元还包括信号放大模块,所述信号放大模块的输入端分别与所述信号接收模块的输出端和所述控制模块的输出端连接,所述信号放大模块的输出端与所述触发单元的输出端连接,所述信号放大模块用于将从所述信号接收模块或所述控制模块输入的信号进行放大。。
在一个实施例中,所述信号放大模块包括第一信号放大子模块、第二信号放大子模块和第三信号放大子模块,所述第一信号放大子模块的输入端与所述信号放大模块的输入端连接,所述第一信号放大子模块的输出端与所述第二信号放大子模块的输入端连接,所述第二信号放大子模块的输出端与所述第三信号放大子模块的输入端连接,所述第三信号放大子模块的输出端与所述信号放大模块的输出端连接,其中,所述第一信号放大子模块用于将从所述信号放大模块的输入端输入的信号进行放大并传输至所述第二信号放大子模块,所述第二信号放大子模块用于将接收到的信号放大并传输至所述第三信号放大子模块,所述第三信号放大子模块用于将接收到的信号放大并传输至所述信号放大模块的输出端。
在一个实施例中,所述第一信号放大子模块包括第一三极管,所述第一三极管的控制端与所述第一信号放大子模块的输入端连接,所述第一三极管的第一端与所述第二信号放大子模块的输入端以及所述储能单元的输出端连接,所述第二信号放大子模块包括第二三极管,所述第二三极管的控制端与所述第二信号放大子模块的输入端连接,所述第二三极管的第一端与所述储能单元的输出端连接,所述第二三极管的第二端与所述第一三极管的第二端连接,所述第三信号放大子模块包括第三三极管、第三电容和第六二极管,所述第三三极管的控制端与所述第一三极管的第二端和第二三极管的第二端连接,所述第三三极管的第一端与所述信号放大模块的输出端连接,所述第三三极管的第一端还与所述第六二极管的阳极连接,所述第六二极管的阴极与所述储能单元的输出端连接,所述第三三极管的第二端与所述第一接地端连接,所述第三电容的一端与所述第一三极管的第二端和第二三极管的第二端连接,所述第三电容的另一端与所述第一接地端 连接。
在一个实施例中,所述开关单元包括继电器,所述继电器的控制端包括第一控制端和第二控制端,所述继电器的第一控制端与所述储能单元的输出端连接,所述继电器的第二控制端与所述信号放大模块的输出端连接。
在一个实施例中,所述控制电路还包括整流单元,所述整流单元的输入端与所述电源输入端连接,所述整流单元的输出端与所述储能单元的输入端连接,所述整流单元能够将从所述电源输入端输入的交流电转换为直流电。
在一个实施例中,所述整流单元的输入端包括第一交流输入端和第二交流输入端,所述第一交流输入端与所述开关单元的输入端连接,所述整流单元包括:第一电容、第二电容、第一二极管、第二二极管、第三二极管和第四二极管,所述第一电容的一端与所述整流单元的第一交流输入端连接,所述第一电容的另一端与所述第一二极管的阴极连接,所述第二电容的一端与所述第一二极管的阴极连接,所述第二电容的另一端与所述开关单元的输出端连接,所述第一二极管的阳极与所述第一接地端连接,所述第二二极管的阳极与所述第一二极管的阴极连接,所述第二二极管的阴极还与所述整流单元的输出端连接,所述第三二极管的阳极与所述第一接地端连接,所述第三二极管的阴极与所述整流单元的第二交流输入端连接,所述第四二极管的阳极与所述第三二极管的阴极连接,所述第四二极管的阴极与所述整流单元的输出端连接。
在一个实施例中,所述储能单元包括第四电容和第十电阻,所述第十电阻的一端与所述储能单元的输入端连接,所述第十电阻的另一端与所述第四电容的正极连接,所述第四电容的负极与第一接地端连接,所述第四电容的正极为所述储能单元的输出端。
作为本公开的另一个方面,提供一种显示设备,所述显示设备包括遥控器、处理器、与所述处理器电连接的周边电路和开关电源控制装置,所述开关电源控制装置包括电源模块和电源硬开关,其中,所述开关电源控制装置还包括本公开所提供的上述控制电路,所述电 源硬开关与交流电源连接,所述控制电路的电源输入端与所述电源硬开关连接,所述控制电路的输出端与所述电源模块的输入端连接,所述控制电路通过改变所述开关单元的输入端和所述开关单元的输出端的连通状态,来控制所述电源模块的输入端与所述交流电源之间的连通或断开,所述开关电源控制装置的输出端与所述处理器的电源输入端连接,用于为所述处理器的工作提供电源,所述遥控器与所述开关电源控制装置通信连接,所述遥控器用于向所述开关电源控制装置发出触发信号。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为现有技术的显示设备的电路结构框图;
图2为本公开提供的控制电路的第一种结构框图;
图3为本公开提供的控制电路的第二种结构框图;
图4为本公开提供的控制电路的第三种结构框图;
图5为本公开提供的控制电路的第四种结构框图;
图6为本公开提供的控制电路的电路结构图;
图7为开关电源控制装置的结构框图;
图8为本公开提供的显示设备的结构框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
现有技术中的显示设备如图1所示,主要包括电源硬开关200、电源模块300、处理器400和周边电路500,显示设备所用的电源模块300待机原理为,当遥控关机时,主要通过处理器400切断其它多组直流电源电压的输出,只保留一组遥控电路和处理器400有电压输 出,但电源模块还是在工作,所以还是存在较大的功率损耗。
因此,如何降低现有技术中显示设备待机功耗成为亟待解决的技术问题。
作为本公开的第一个方面,提供一种控制电路100,如图2所示,其中,控制电路100包括电源输入端101、储能单元110、开关单元130、触发单元120和控制电路的输出端102,储能单元110的输入端与电源输入端101相连,储能单元110用于存储电能后为控制电路100供电,开关单元的输入端131与电源输入端101连接,开关单元的输出端132与控制电路的输出端102连接,开关单元的控制端133与触发单元120的输出端相连,开关单元130用于在开关单元的控制端133接收到触发单元120的触发信号时改变开关单元的输入端131和开关单元的输出端132之间的连通状态。
当本公开提供的控制电路应用于显示设备的开关电源控制装置中时,设置在电源硬开关和电源模块之间。该控制电路在接收到触发信号时能够通过改变开关单元的连通状态实现对交流电源与电源模块之间通断的控制,当接收到的触发信号使得该控制电路中的开关单元断开时,能够实现交流电源与电源模块的断开,这种结构的控制电路能够使得显示设备在待机状态时仅存在很小的工作电流,从而降低了显示设备的待机功耗。
具体地,触发单元120用于接收触发信号,当触发单元120接收到所述触发信号后,将所述触发信号发送至开关单元130。当开关单元130处于导通状态时,接收到所述触发信号后,开关单元130会改变状态,由导通状态变为断开状态,相反,当开关单元130处于断开状态时,接收到所述触发信号后,由断开状态变为导通状态。由于开关单元的输入端131与控制电路的电源输入端101连接,开关单元的输出端132与控制电路的输出端102连接,所以当开关单元130接收到所述触发信号后由导通状态转变为断开状态时,控制电路的电源输入端101与控制电路的输出端102也相应的由导通状态变为断开状态,相反,当开关单元130接收到所述触发信号后由断开状态变为 导通状态时,控制电路的电源输入端101与控制电路的输出端102也相应的由断开状态变为导通状态。
可以理解的是,储能单元110与电源输入端101连接,能够通过电源输入端101的电流输入进行充电储能,并将存储的能量用于控制电路100的正常工作。
上述结构的控制电路100在应用于开关电源控制装置中时,设置在电源硬开关和电源模块之间,当控制电路100断开时,能够断开电源模块与交流电源之间的连接,这样控制电路100中只流通有很小的给电容充电的电流,而此时电源模块则处于未工作状态,因此能够很好地降低显示设备的待机功耗。
作为触发单元120的一种具体地实施方式,如图3所示,触发单元120包括信号接收模块122和控制模块121。当控制模块121带电工作时,信号接收模块122将接收到的所述触发信号通过信号接收模块122的输出端传递至控制模块121,控制模块121能够在接收到信号接收模块122发出的信号后对接收到的信号进行解码,当解码后的信号为关断信号时,将解码后的信号传递至触发单元120的输出端,使得开关单元的控制端133在接收到所述关断信号后控制开关单元的输入端131和开关单元的输出端132断开,储能单元110的输入端通过与电源输入端101连接进行储能充电;
当控制模块121不带电时,信号接收模块122能够将接收到的所述触发信号通过信号接收模块122的输出端直接传递至触发单元120的输出端,开关单元130的控制端在接收到所述触发信号后,开关单元130控制开关单元的输入端131和开关单元的输出端132连通。
具体地,控制电路100通过触发单元120接收触发信号来控制开关单元130的通断,触发单元120具体可以包括控制模块121和信号接收模块122,控制电路100通过信号接收模块122接收所述触发信号,并根据控制模块121是否带电对所述触发信号进行处理,从而实现对开关单元130的通断控制。
作为信号接收模块122的一种具体地实施方式,信号接收模块 122包括:储能子模块和接收子模块,所述储能子模块的输出端与所述接收子模块的电源端连接,所述储能子模块的输入端与所述储能单元的输出端电连接,所述接收子模块的接地端与第一接地端连接,所述接收子模块的输出端与所述信号接收模块的输出端连接。
具体地,所述储能子模块通过与储能单元110连接,能够进行充电并储存能量,并与接收子模块的电源端连接,为接收子模块的工作提供电源供应。如图6所示,所述接收子模块可以为红外接收器IR1,所述触发信号可以为红外信号,在所述储能子模块给红外接收器IR1提供工作电源且控制模块121处于带电状态的情况下,红外接收器IR1将接收到的红外信号发送至控制模块121,控制模块121对该红外信号进行处理,当该红外信号为关断信号时,发送至开关单元130,以控制开关单元130断开。
作为所述储能子模块的具体实施方式,如图6所示,所述储能子模块包括第五电容CA2和第五二极管ZD3,所述第五电容CA2的正极与所述第五二极管ZD3的阴极连接,所述第五电容CA2的负极与所述第五二极管ZD3的阳极连接并均与第一接地端连接,所述第五电容CA2的正极和所述第五二极管ZD3的阴极均为所述储能子模块的输入端和输出端。
具体地,如图6所示,第五电容CA2作为充放电电容,可以为电解电容,第五电容CA2通过与储能单元110连接,能够进行充电,充电完成后通过放电为红外接收器IR1提供工作电源,为了使得红外接收器IR1的工作电源能够稳定供应,在第五电容CA2的两端并联一个第五二极管ZD3进行稳压,第五二极管ZD3可以为稳压二极管。
作为控制模块121的具体实施方式,如图6所示,控制模块121包括放大子模块、第一光电耦合器U1、第二光电耦合器U2和控制子模块,所述放大子模块的输入端与控制模块121的输入端连接,所述放大子模块的输出端与第一光电耦合器U1的输入端连接,第一光电耦合器U1的第一输出端与所述控制子模块的输入端连接,第一光电耦合器U1的第二输出端与第二接地端连接,第一光电耦合器U1的电源端与储能单元110的输出端连接,所述控制子模块的控制端与 第二光电耦合器U2的输入端连接,第二光电耦合器U2的第一输出端与储能单元110的输出端连接,第二光电耦合器U2的第二输出端与控制模块121的输出端连接,第二光电耦合器U2的电源端与所述电源模块的输出端连接。
具体地,控制模块121是为了根据信号接收模块122接收到的所述触发信号实现对开关单元130的控制,控制模块120具体可以包括放大子模块、第一光电耦合器U1、第二光电耦合器U2和所述控制子模块,所述放大子模块对从信号接收模块122接收到的所述触发信号进行放大,而为了将所述控制子模块和放大子模块进行隔离,经过放大的所述触发信号通过第一光电耦合器U1传输至所述控制子模块,第一光电耦合器U1能够起隔离传输的作用。经过放大的所述触发信号经过所述控制子模块的处理后通过第二光电耦合器U2发送至控制模块121的输出端,同样,第二光电耦合器U2也能够起到隔离传输的作用。
作为所述放大子模块的具体实施方式,如图6所示,所述放大子模块包括第四三极管Q4,第四三极管Q4的控制端与控制模块121的输入端连接,第四三极管Q4的第一端与第一光电耦合器U1的输入端连接,第四三极管Q4的第二端与所述第一接地端连接,所述控制子模块包括控制芯片M1和第五三极管Q5,控制芯片M1的输入端与所述控制子模块的输入端连接,控制芯片M1的控制端与所述控制子模块的控制端连接,第五三极管Q5的控制端与所述控制子模块的控制端连接,第五三极管Q5的第一端与第二光电耦合器U2的输入端连接,第五三极管Q5的第二端与所述第二接地端连接。
具体地,第四三极管Q4的控制端为第四三极管Q4的基极,第四三极管Q4的第一端为第四三极管Q4的集电极,第四三极管Q4的第二端为第四三极管Q4的发射极,第四三极管Q4的基极通过电阻R6与控制模块121的输入端连接,第四三极管Q4的集电极通过第七电阻R7与第一光电耦合器U1的输入端连接,第四三极管Q4的发射极与所述第一接地端连接并通过第九电阻R9与控制模块121的输出端连接。第二光电耦合器U2的第一输出端通过第八电阻R8 与储能单元110的输出端连接。第五三极管Q5的控制端为第五三极管Q5的基极,第五三极管Q5的第一端为第五三极管Q5的集电极,第五三极管Q5的第二端为第五三极管Q5的发射极,因此,第五三极管Q5的集电极与第二光电耦合器U2的输入端连接,第五三极管Q5的发射极与所述第二接地端连接。
可以理解的是,当控制模块121带电工作时,由信号接收模块接收到的所述触发信号要经过控制模块121的处理后发送至开关单元130。具体地,所述信号接收模块122接收到所述触发信号后传输至控制模块121的输入端,由图6可知,控制模块121的输入端与所述放大子模块的输入端连接,所述放大子模块的输入端输入的所述触发信号经过第六电阻R6传输至第四三极管Q4进行放大,然后通过第七电阻R7传输至第一光电耦合器U1。经过放大的所述触发信号经过第一光电耦合器U1传输至控制芯片M1,控制芯片M1对经过放大的所述触发信号进行解码等处理,如果该触发信号为关断信号,则将其通过第五三极管Q5传输至第二光电耦合器U2,并经第二光电耦合器U2传输至控制模块121的输出端。
作为触发单元120的具体实施方式,如图4所示,为了实现对触发单元120接收到的所述触发信号进行放大的功能,触发单元120还包括信号放大模块123,信号放大模块123的输入端分别与信号接收模块122的输出端和控制模块121的输出端连接,信号放大模块123的输出端与触发单元120的输出端连接。
作为信号放大模块123的具体实施方式,信号放大模块123包括多级信号放大,具体地,信号放大模块123包括第一信号放大子模块、第二信号放大子模块和第三信号放大子模块,所述第一信号放大子模块的输入端与信号放大模块123的输入端连接,所述第一信号放大子模块的输出端与所述第二信号放大子模块的输入端连接,所述第二信号放大子模块的输出端与所述第三信号放大子模块的输入端连接,所述第三信号放大子模块的输出端与信号放大模块123的输出端连接。
进一步具体地,如图6所示,所述第一信号放大子模块包括第 一三极管Q1,第一三极管Q1的控制端与所述第一信号放大子模块的输入端连接,第一三极管Q1的第一端与所述第二信号放大子模块的输入端以及储能单元110的输出端连接,所述第二信号放大子模块包括第二三极管Q2,第二三极管Q2的控制端与所述第二信号放大子模块的输入端连接,第二三极管Q2的第一端与储能单元110的输出端连接,第二三极管Q2的第二端与第一三极管Q1的第二端连接,所述第三信号放大子模块包括第三三极管Q3、第三电容C3和第六二极管D3,第三三极管Q3的控制端与第一三极管Q1的第二端和第二三极管Q2的第二端连接,第三三极管Q3的第一端与信号放大模块123的输出端连接,第三三极管Q3的第一端还与第六二极管D3的阳极连接,第六二极管D3的阴极与储能单元110的输出端连接,第三三极管Q3的第二端与所述第一接地端连接,第三电容C3的一端与第一三极管Q1的第二端和第二三极管Q2的第二端连接,第三电容C3的另一端与所述第一接地端连接。
可以理解的是,从信号放大模块123的输入端输入的触发信号首先经过第一信号放大子模块进行放大,然后传输至第二信号放大子模块,经所述第二信号放大子模块放大后传输至第三信号放大子模块,最终由所述第三信号放大子模块的输出端传输至信号放大模块123的输出端。
作为开关单元130的具体实施方式,如图6所示,开关单元130包括继电器S1,所述继电器S1的控制端包括第一控制端和第二控制端,所述继电器S1的第一控制端与储能单元110的输出端连接,所述继电器S1的第二控制端与信号放大模块123的输出端连接。
由于控制电路的电源输入端101接通的是交流电,而控制电路100的正常工作需要直流电,如图5所示,所以控制电路100还包括整流单元140,所述整流单元140的输入端与电源输入端101连接,所述整流单元140的输出端与储能单元110的输入端连接,所述整流单元140能够将电源输入端101输入的交流电转换为直流电。
作为所述整流单元140的具体实施方式,如图6所示,所述整流单元140的输入端包括第一交流输入端和第二交流输入端,所述第 一交流输入端与开关单元130的输入端连接,所述整流单元140具体可以包括:第一电容C1、第二电容C2、第一二极管ZD1、第二二极管D1、第三二极管ZD2和第四二极管D2,所述第一电容C1的一端与所述整流单元的第一交流输入端连接,所述第一电容C1的另一端与所述第一二极管ZD1的阴极连接,所述第二电容C2的一端与所述第一二极管ZD1的阴极连接,所述第二电容C2的另一端与所述开关单元130的输出端连接,所述第一二极管ZD1的阳极与所述第一接地端连接,所述第二二极管D1的阳极与所述第一二极管ZD1的阴极连接,所述第二二极管D1的阴极与所述整流单元140的输出端连接,所述第三二极管ZD2的阳极与所述第一接地端连接,所述第三二极管ZD2的阴极与所述整流单元的第二交流输入端连接,所述第四二极管D2的阳极与所述第三二极管ZD2的阴极连接,所述第四二极管D2的阴极与所述整流单元140的输出端连接。
需要说明的是,为了在整流的同时起到稳压的作用,第一二极管ZD1和第三二极管ZD2优选为稳压二极管。
作为储能单元110的具体实施方式,如图6所示,储能单元110包括第四电容CA1和第十电阻R10,所述第十电阻R10的一端与所述储能单元110的输入端连接,所述第十电阻R10的另一端与所述第四电容CA1的正极连接,所述第四电容CA1的负极与第一接地端连接,所述第四电容CA1的正极为储能单元110的输出端。
下面结合附图6对控制电路100的工作原理进行详细说明。如图6所示,当接通电源硬开关K1时,交流市电首先进入所述整流单元140,通过第一电容C1耦合给整流二极管D1、ZD1、D2、ZD2组成的整流电路进行整流,整流后的最大输出电压即为稳压二极管ZD1、ZD2的击穿电压,一般取值大于10V。经过整流后的输出电压进入到储能单元110,先通过第十电阻R10给第四电容CA1进行充电,第四电容CA1优选为电解电容,储能的同时还能起到滤波的作用,直至第四电容CA1充满电后其两端电压达到整流输出电压,此时第四电容CA1就可以看成是一个储能电源,其电压能提供给整个控制电路100使用。同时整流后的输出电压也经过第二电阻R2给 第五电容CA2充电,第五电容CA2优选为电解电容,在储能的同时还能够起到滤波的作用,直至第五电容CA2充满电后其两端电压达到第五二极管ZD3的击穿电压,第五二极管ZD3优选为稳压二极管,第五电容CA2两端电压提供给所述接收子模块使用,所述接收子模块具体可以为红外遥控接收电路,一般取值5V。所述红外遥控接收电路能够接收遥控器发送的红外信号,例如当用户需要显示设备开机时,即可按下遥控器上的任意键,所述红外遥控接收电路接收到红外信号,并将其转化为脉冲电信号输出,触发控制电路100开始工作。
此遥控脉冲信号具体可以分为2路,一路经电阻R1发送到信号放大模块123,即第一三极管Q1的基极,经过第一三极管Q1、第二三极管Q2和第三三极管Q3的三级放大后由第三三极管Q3的集电极输出信号驱动继电器S1的接触开关闭合,从而接通交流市电通道给电源模块SP1供电,使显示设备正常工作。继电器S1的1和2管脚(所述第一控制端和第二控制端)需并联一反向的续流二极管,即图6中的第六二极管D3,起到保护第三三极管Q3不被感应高电压击穿损坏的作用。
需要注意的是,要保证第四电容CA1的容量要足够大,这样控制电路100工作时第四电容CA1两端的电压才能够持续,才能使继电器S1的接触开关持续闭合导通。同时,为了保证在用于使显示设备开机的触发信号结束以后,第三三极管Q3还能够稳定饱和导通,需要在第三三极管Q3的基极加一积分电容,即图6中所示的第三电容C3,它能把用于使显示设备开机的触发信号进行积分、并滤去交流保留直流,并且由第三电容C3和第五电阻R5形成的电路的时间常数很大,从而使得第三三极管Q3持续导通,才能保证继电器S1的接触开关持续闭合导通。当交流市电通道接通后,第二电容C2也被接通,它和与其并联的第一电容C1一起向整流电路供电,并给控制电路100提供足够的电流,从而保证继电器S1能够长时间工作。
当交流市电通道接通后,显示设备的电源模块SP1才能开始工作,此时,控制模块121才被完全上电开始正常工作,控制模块121的控制芯片M1有一I/O控制脚(POWER-ON/OFF)会输出一个高电平 (5V)控制信号,用来使电源模块SP1的各路直流电压输出(即图6中的DC1、DC2、DC3)接通。同时此高电平控制信号也通过第二光电耦合器U2进行放大,并被送到第一三极管Q1的基极,使得第一三极管Q1、第二三极管Q2和第三三极管Q3等放大电路继续工作,其作用与用于使显示设备开机的触发信号一样,持续触发继电器,使继电器S1的接触开关持续保持导通,形成自锁状态。
当电视正常工作时,用户触按遥控器上的功能键,红外信号被所述红外遥控接收电路转化为遥控电信号,通过第六电阻R6送到第四三极管Q4的基极,经第四三极管Q4放大,经第七电阻R7输出给第一光电耦合器U1进一步放大并隔离,再由第一光电耦合器U1的第一输出端(3脚(即集电极))输出给控制芯片M1,由控制芯片M1进行译码,并实现各种功能操作。当需要遥控显示设备关机时,用户通过遥控器给控制芯片M1发送一组关机信号,先经控制芯片M1进行译码,然后由控制芯片M1的POWER-ON/OFF引脚输出一个低电平(0V)控制信号,从而使电源模块SP1的各路直流输出电压关断。此低电平控制信号通过第二光电耦合放大器U2后的输出信号也是低电平,使第一三极管Q1、第二三极管Q2和第三三极管Q3等放大电路全部截止从而停止工作,从而继电器S1不工作、并且其接触开关恢复到断开状态,也就意味着显示设备回到待机状态。
显示设备在待机状态时,第一三极管Q1、第二三极管Q2、第三三极管Q3、第四三极管Q4都不工作,整个控制电路100的工作电流很小,并且只有相当小的电流用来给第四电容CA1充电,使其两端电压维持不变。按电流为10毫安,电压为15伏计算,当该控制电路应用于显示设备中时,由于在显示设备待机时电源模块不工作,因此显示设备的待机功耗就是0.15瓦。与现有技术中除了控制电路之外其他配置相同的显示设备的0.5瓦的功耗相比,大大降低了显示设备的待机功耗,且本公开的控制电路100成本并未增加,因此,本公开的控制电路具有低成本且能够降低待机功耗的优势。
作为本公开的第二个方面,提供一种显示设备,如图8所示,所述显示设备包括开关电源控制装置、处理器400、以及与该处理器 400电连接的周边电路500(包括调谐器501、伴音放大电路502、扬声器503、显示屏504、按键505和闪存506)和遥控器(未示出)。如图7所示,所述开关电源控制装置包括电源模块300和电源硬开关200,并且所述开关电源控制装置还包括前文所述的控制电路100,所述电源硬开关200与交流电源连接,所述控制电路的电源输入端101与所述电源硬开关200连接,所述控制电路的输出端102与所述电源模块300的输入端连接,所述控制电路100通过改变所述开关单元的输入端131和开关单元的输出端132之间的连通状态,来控制所述电源模块300的输入端与所述交流电源之间的连接或断开。所述开关电源控制装置的输出端与所述处理器400的电源输入端连接,用于为所述处理器400的工作提供电源。
本公开提供的开关电源控制装置通过前文所述的控制电路来控制电源模块与交流电源之间的导通和断开,当该开关电源控制装置应用于显示设备中时,能够降低显示设备的待机功耗。
本公开提供的显示设备通过所述的开关电源控制装置实现对显示设备的开机关机控制,由于前文所述的开关电源控制装置在关机时能够将电源模块的输入切断,以及输出也关断,所以能够使得显示设备在关机状态时的损耗降低,节省了待机功耗。
所述显示设备可以是电视机、电脑显示器等显示设备。
所述遥控器与所述开关电源控制装置通信连接,所述遥控器用于向所述开关电源控制装置发出触发信号。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种控制电路,包括电源输入端、储能单元、开关单元、触发单元和输出端,所述储能单元的输入端与所述电源输入端相连,所述储能单元用于存储电能后为所述控制电路供电,所述开关单元的输入端与所述电源输入端连接,所述开关单元的输出端与所述控制电路的输出端连接,所述开关单元的控制端与所述触发单元的输出端相连,所述触发单元用于接收触发信号,并将接收到的触发信号发送到所述开关单元,所述开关单元用于在所述开关单元的控制端接收到来自所述触发单元的触发信号时改变所述开关单元的输入端和所述开关单元的输出端之间的连通状态。
  2. 根据权利要求1所述的控制电路,其中,所述触发单元包括信号接收模块和控制模块,
    当所述控制模块带电工作时,所述信号接收模块将接收到的所述触发信号通过所述信号接收模块的输出端传递至所述控制模块,
    所述控制模块能够在接收到所述信号接收模块发出的信号后对接收到的信号进行解码,当解码后的信号为关断信号时,将所述解码后的信号传递至所述触发单元的输出端,使得所述开关单元的控制端在接收到所述关断信号后控制所述开关单元的输入端和所述开关单元的输出端断开,所述储能单元的输入端通过与所述电源输入端连接进行储能充电;
    当所述控制模块不带电时,所述信号接收模块能够将接收到的所述触发信号通过所述信号接收模块的输出端直接传递至所述触发单元的输出端,所述开关单元的控制端在接收到所述触发信号后控制所述开关单元的输入端和所述开关单元的输出端连通。
  3. 根据权利要求2所述的控制电路,其中,所述信号接收模块包括:储能子模块和接收子模块,所述储能子模块的输出端与所述接收子模块的电源端连接,所述储能子模块的输入端与所述储能单元的输出端电连接,所述接收子模块的接地端与第一接地端连接,所述接 收子模块的输出端与所述信号接收模块的输出端连接,
    其中,所述储能子模块能够进行充电并储存能量,为接收子模块的工作提供电源供应,所述接收子模块能够接收所述触发信号,并将所述触发信号发送至所述控制模块或所述开关单元。
  4. 根据权利要求3所述的控制电路,其中,所述储能子模块包括第五电容和第五二极管,所述第五电容的正极与所述第五二极管的阴极连接,所述第五电容的负极与所述第五二极管的阳极连接并均与所述第一接地端连接,所述第五电容的正极和所述第五二极管的阴极均为所述储能子模块的输入端和输出端。
  5. 根据权利要求4所述的控制电路,其中,所述第五电容包括电解电容,以及所述第五二极管包括稳压二极管。
  6. 根据权利要求3至5中任意一项所述的控制电路,其中,所述接收子模块包括红外接收器。
  7. 根据权利要求6所述的控制电路,其中,所述触发信号包括红外信号。
  8. 根据权利要求2至7中任意一项所述的控制电路,其中,所述控制模块包括放大子模块、第一光电耦合器、第二光电耦合器和控制子模块,所述放大子模块的输入端与所述控制模块的输入端连接,所述放大子模块的输出端与所述第一光电耦合器的输入端连接,所述第一光电耦合器的第一输出端与所述控制子模块的输入端连接,所述第一光电耦合器的第二输出端与第二接地端连接,所述第一光电耦合器的电源端与所述储能单元的输出端连接,所述控制子模块的控制端与所述第二光电耦合器的输入端连接,所述第二光电耦合器的第一输出端与所述储能单元的输出端连接,所述第二光电耦合器的第二输出端与所述控制模块的输出端连接,
    其中,所述放大子模块用于对从所述信号接收模块接收到的所述触发信号进行放大,所述第一光电耦合器用于将经过放大的触发信号从所述放大子模块至所述控制子模块进行隔离传输,所述控制子模块用于处理所述经过放大的触发信号,所述第二光电耦合器用于当经过处理的触发信号为所述关断信号时将所述关断信号从所述控制子模块至所述控制模块的输出端进行隔离传输。
  9. 根据权利要求8所述的控制电路,其中,所述放大子模块包括第四三极管,所述第四三极管的控制端与所述控制模块的输入端连接,所述第四三极管的第一端与所述第一光电耦合器的输入端连接,所述第四三极管的第二端与所述第一接地端连接。
  10. 根据权利要求9所述的控制电路,其中,所述第四三极管的控制端为所述第四三极管的基极,所述第四三极管的第一端为所述第四三极管的集电极,所述第四三极管的第二端为所述第四三极管的发射极。
  11. 根据权利要求8至10中任意一项所述的控制电路,其中,所述控制子模块包括控制芯片和第五三极管,所述控制芯片的输入端与所述控制子模块的输入端连接,所述控制芯片的控制端与所述控制子模块的控制端连接,所述第五三极管的控制端与所述控制子模块的控制端连接,所述第五三极管的第一端与所述第二光电耦合器的输入端连接,所述第五三极管的第二端与所述第二接地端连接。
  12. 根据权利要求11所述的控制电路,其中,所述第五三极管的控制端为所述第五三极管的基极,所述第五三极管的第一端为所述第五三极管的集电极,所述第五三极管的第二端为所述第五三极管的发射极。
  13. 根据权利要求2-12中任意一项所述的控制电路,其中,所 述触发单元还包括信号放大模块,所述信号放大模块的输入端分别与所述信号接收模块的输出端和所述控制模块的输出端连接,所述信号放大模块的输出端与所述触发单元的输出端连接,所述信号放大模块用于将从所述信号接收模块或所述控制模块输入的信号进行放大。
  14. 根据权利要求13所述的控制电路,其中,所述信号放大模块包括第一信号放大子模块、第二信号放大子模块和第三信号放大子模块,所述第一信号放大子模块的输入端与所述信号放大模块的输入端连接,所述第一信号放大子模块的输出端与所述第二信号放大子模块的输入端连接,所述第二信号放大子模块的输出端与所述第三信号放大子模块的输入端连接,所述第三信号放大子模块的输出端与所述信号放大模块的输出端连接,其中,所述第一信号放大子模块用于将从所述信号放大模块的输入端输入的信号进行放大并传输至所述第二信号放大子模块,所述第二信号放大子模块用于将接收到的信号放大并传输至所述第三信号放大子模块,所述第三信号放大子模块用于将接收到的信号放大并传输至所述信号放大模块的输出端。
  15. 根据权利要求14所述的控制电路,其中,所述第一信号放大子模块包括第一三极管,所述第一三极管的控制端与所述第一信号放大子模块的输入端连接,所述第一三极管的第一端与所述第二信号放大子模块的输入端以及所述储能单元的输出端连接,所述第二信号放大子模块包括第二三极管,所述第二三极管的控制端与所述第二信号放大子模块的输入端连接,所述第二三极管的第一端与所述储能单元的输出端连接,所述第二三极管的第二端与所述第一三极管的第二端连接,所述第三信号放大子模块包括第三三极管、第三电容和第六二极管,所述第三三极管的控制端与所述第一三极管的第二端和第二三极管的第二端连接,所述第三三极管的第一端与所述信号放大模块的输出端连接,所述第三三极管的第一端还与所述第六二极管的阳极连接,所述第六二极管的阴极与所述储能单元的输出端连接,所述第三三极管的第二端与所述第一接地端连接,所述第三电容的一端与所 述第一三极管的第二端和第二三极管的第二端连接,所述第三电容的另一端与所述第一接地端连接。
  16. 根据权利要求13至15任意一项所述的控制电路,其中,所述开关单元包括继电器,所述继电器的控制端包括第一控制端和第二控制端,所述继电器的第一控制端与所述储能单元的输出端连接,所述继电器的第二控制端与所述信号放大模块的输出端连接。
  17. 根据权利要求1至16中任意一项所述的控制电路,其中,所述控制电路还包括整流单元,所述整流单元的输入端与所述电源输入端连接,所述整流单元的输出端与所述储能单元的输入端连接,所述整流单元能够将从所述电源输入端输入的交流电转换为直流电。
  18. 根据权利要求17所述的控制电路,其中,所述整流单元的输入端包括第一交流输入端和第二交流输入端,所述第一交流输入端与所述开关单元的输入端连接,所述整流单元包括:第一电容、第二电容、第一二极管、第二二极管、第三二极管和第四二极管,所述第一电容的一端与所述整流单元的第一交流输入端连接,所述第一电容的另一端与所述第一二极管的阴极连接,所述第二电容的一端与所述第一二极管的阴极连接,所述第二电容的另一端与所述开关单元的输出端连接,所述第一二极管的阳极与所述第一接地端连接,所述第二二极管的阳极与所述第一二极管的阴极连接,所述第二二极管的阴极还与所述整流单元的输出端连接,所述第三二极管的阳极与所述第一接地端连接,所述第三二极管的阴极与所述整流单元的第二交流输入端连接,所述第四二极管的阳极与所述第三二极管的阴极连接,所述第四二极管的阴极与所述整流单元的输出端连接。
  19. 根据权利要求1至18中任意一项所述的控制电路,其中,所述储能单元包括第四电容和第十电阻,所述第十电阻的一端与所述储能单元的输入端连接,所述第十电阻的另一端与所述第四电容的正 极连接,所述第四电容的负极与第一接地端连接,所述第四电容的正极为所述储能单元的输出端。
  20. 一种显示设备,所述显示设备包括遥控器、处理器、与所述处理器电连接的周边电路和开关电源控制装置,所述开关电源控制装置包括电源模块和电源硬开关,其中,所述开关电源控制装置还包括权利要求1至19中任意一项所述的控制电路,所述电源硬开关与交流电源连接,所述控制电路的电源输入端与所述电源硬开关连接,所述控制电路的输出端与所述电源模块的输入端连接,所述控制电路通过改变所述开关单元的输入端和所述开关单元的输出端之间的连通状态,来控制所述电源模块的输入端与所述交流电源之间的连通或断开,所述开关电源控制装置的输出端与所述处理器的电源输入端连接,用于为所述处理器的工作提供电源,所述遥控器与所述开关电源控制装置通信连接,所述遥控器用于向所述开关电源控制装置发出触发信号。
PCT/CN2018/079127 2017-03-17 2018-03-15 控制电路及显示设备 WO2018166497A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,527 US10658922B2 (en) 2017-03-17 2018-03-15 Control circuit and display apparatus for reduced standby power consumption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720262335.X 2017-03-17
CN201720262335.XU CN206807282U (zh) 2017-03-17 2017-03-17 一种控制电路及显示设备

Publications (1)

Publication Number Publication Date
WO2018166497A1 true WO2018166497A1 (zh) 2018-09-20

Family

ID=60730482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079127 WO2018166497A1 (zh) 2017-03-17 2018-03-15 控制电路及显示设备

Country Status (3)

Country Link
US (1) US10658922B2 (zh)
CN (1) CN206807282U (zh)
WO (1) WO2018166497A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206807282U (zh) 2017-03-17 2017-12-26 京东方科技集团股份有限公司 一种控制电路及显示设备
CN111697848B (zh) * 2019-03-12 2021-09-07 海信视像科技股份有限公司 显示装置及供电控制方法
CN113851067B (zh) * 2020-06-28 2023-07-04 京东方科技集团股份有限公司 充电电路、显示装置、可穿戴设备及显示驱动方法、装置
CN113324773A (zh) * 2021-04-08 2021-08-31 嘉鲁达创业投资管理有限公司 一种机器人监测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755883Y (zh) * 2004-12-17 2006-02-01 康佳集团股份有限公司 低待机功耗的电视机
CN102183899A (zh) * 2011-03-16 2011-09-14 深圳雅图数字视频技术有限公司 零功耗待机电路
CN206807282U (zh) * 2017-03-17 2017-12-26 京东方科技集团股份有限公司 一种控制电路及显示设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499115A (en) * 1966-02-18 1970-03-03 Executone Inf Sys Inc Intercom system in which master station controls operation of staff stations
US20030078685A1 (en) * 2001-10-19 2003-04-24 Taddy Shao Intellegent transmitter receiver system and its operation method
CN100416435C (zh) 2006-03-16 2008-09-03 康佳集团股份有限公司 实现遥控关断交流电源的装置及其方法
CN201349143Y (zh) * 2008-11-27 2009-11-18 比亚迪股份有限公司 一种后备电源控制电路
WO2012051753A1 (zh) * 2010-10-20 2012-04-26 上海东进装饰品有限公司 集成升压控制模块的led灯装置
JP5870278B2 (ja) * 2011-01-05 2016-02-24 パナソニックIpマネジメント株式会社 半導体発光素子の点灯装置およびそれを用いた照明器具
US20120249150A1 (en) * 2011-03-31 2012-10-04 Osram Sylvania Inc. Switch status detection circuit for multiple light level lighting systems
CN104345660B (zh) * 2013-08-08 2018-04-17 鸿富锦精密工业(深圳)有限公司 遥控启动电路
CN103762691B (zh) * 2014-01-28 2015-12-23 广东欧珀移动通信有限公司 电池充电装置及电池充电保护控制方法
CN105187748B (zh) * 2015-07-30 2019-04-26 北京京东方多媒体科技有限公司 待机控制电路及显示装置
US10015434B2 (en) * 2016-04-22 2018-07-03 Shenzhen Skyworth-Rgb Electronic Co., Ltd Switched-mode power supply for outputting a steady voltage and current and television including the same
CN106655809B (zh) * 2016-10-11 2019-05-03 深圳创维-Rgb电子有限公司 一种降低电源功耗的方法、自动降低功耗的电源及电视机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755883Y (zh) * 2004-12-17 2006-02-01 康佳集团股份有限公司 低待机功耗的电视机
CN102183899A (zh) * 2011-03-16 2011-09-14 深圳雅图数字视频技术有限公司 零功耗待机电路
CN206807282U (zh) * 2017-03-17 2017-12-26 京东方科技集团股份有限公司 一种控制电路及显示设备

Also Published As

Publication number Publication date
US20190222114A1 (en) 2019-07-18
CN206807282U (zh) 2017-12-26
US10658922B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2018166497A1 (zh) 控制电路及显示设备
KR100376131B1 (ko) 대기전원 절전형 전원장치 및 그 제어방법
US6107698A (en) Power supply circuit for electric devices
KR101411433B1 (ko) 대기 전력 절감 회로
US8933592B2 (en) Power supply circuit for remotely turning-on electrical appliances
US20130285638A1 (en) Wake-up circuit and electronic device
US7839661B2 (en) Power supply control circuit having controllable switch and liquid crystal display using the same
CN103066690B (zh) 低功耗待机电路
CN113568360B (zh) 电源控制电路和手持设备
CN110099234B (zh) 一种电源启动装置及电视机
US20130272037A1 (en) Power supply circuit for remotely turning-on electrical appliances
US9673714B2 (en) Power supply apparatus for an electrical appliance
KR20130003254A (ko) 대기전력 감소 장치
CN102183899B (zh) 零功耗待机电路
CN2755883Y (zh) 低待机功耗的电视机
CN103986204A (zh) 一种零待机节电装置及其工作方法
CN107707230B (zh) 智控联控电源开关
US20150194876A1 (en) Wirelessly activated power supply for an electronic device
KR100804742B1 (ko) 전자기기의 대기전력 소모 절감 장치
CN201985834U (zh) 数字电视遥控节能开关
CN111049384A (zh) 用于控制面板的低功耗电力转换电路
CN110881112B (zh) 电视机及其关联设备的待机断电节能器
CN203894565U (zh) 一种智能节电装置
KR20120054427A (ko) 전기기기의 전원 제어 장치 및 그 제어 방법
CN218162232U (zh) 一种低功耗供电系统及控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768569

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18768569

Country of ref document: EP

Kind code of ref document: A1