WO2018129651A1 - 中性电极互联压敏浪涌过电压保护电路 - Google Patents

中性电极互联压敏浪涌过电压保护电路 Download PDF

Info

Publication number
WO2018129651A1
WO2018129651A1 PCT/CN2017/070742 CN2017070742W WO2018129651A1 WO 2018129651 A1 WO2018129651 A1 WO 2018129651A1 CN 2017070742 W CN2017070742 W CN 2017070742W WO 2018129651 A1 WO2018129651 A1 WO 2018129651A1
Authority
WO
WIPO (PCT)
Prior art keywords
varistor
series
protection circuit
overvoltage protection
group
Prior art date
Application number
PCT/CN2017/070742
Other languages
English (en)
French (fr)
Inventor
肖小驹
Original Assignee
深圳市辰驹电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市辰驹电子科技有限公司 filed Critical 深圳市辰驹电子科技有限公司
Priority to PCT/CN2017/070742 priority Critical patent/WO2018129651A1/zh
Publication of WO2018129651A1 publication Critical patent/WO2018129651A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention belongs to the field of electronic technology, and particularly relates to an overvoltage protection related technology.
  • the current industrial production varistor has a residual voltage ratio of 2.2 to 2.7 at the nominal discharge current. That is to say, the adjustment range of the residual pressure of the material formulation and production process is only about 23%.
  • a varistor connected in parallel with the supply voltage can be divided into three operating states throughout its useful life, depending on the electrical stress acting on it:
  • the object of the present invention is to provide a shunt and shunting action of the inrush current by the series-parallel structure of the pressure sensitive device, and to realize the relative spatial geometric position of the pressure sensitive device.
  • the balance between the impedance and the electromagnetic field on the network circuit is protected, and the pressure-sensitive split-crossing technique is used to achieve the balance between the parameter fluctuation pressure sensitivity.
  • Neutral electrode interconnection varistor surge overvoltage protection circuit that improves the resistance of the varistor and the ability to withstand the inrush current, reduces the residual voltage, greatly reduces the cost of the protected circuit, and prolongs the life of the protection circuit.
  • the object of the present invention can be achieved by the following technical solution, a neutral electrode interconnection varistor surge overvoltage protection circuit, the circuit comprising two or more varistors comprising parallel, series or series and parallel, Reached separately:
  • each varistor in the same combination is subjected to a pulse current ⁇ , the current unevenness coefficient ⁇ ⁇ ⁇ 0.1 in each element;
  • the varistor voltage center value is used as the peak value of the applied AC test voltage, and 8 hours of aging screening is performed.
  • the chip is not pierced or the varistor voltage after testing is not lower than the initial value as a qualification criterion;
  • the neutral electrode interconnects the varistor surge overvoltage protection circuit, and the surge overvoltage protection circuit comprises two sets of varistor connected in series, and the varistor of each series group is more than three, two The series group is connected in parallel, and the two parallel terminals are the input and output ends of the surge overvoltage protection circuit; the connection ends of the two varistor at the bottom of one series group are connected with the two varistor at the top of the other group Electrical connection at the top; connection of two varistor at the top of one series group, electrically connected to the connection of a varistor at the bottom of the other group
  • the neutral electrode interconnects the varistor surge overvoltage protection circuit, and the surge overvoltage protection circuit comprises two sets of varistor connected in series, and the varistor of each series group is more than three, two One end of the series is connected as an input, and the other end is used as an input of the surge overvoltage protection circuit;
  • the connection ends of the two varistor are electrically connected to the connection ends of the other two varistor at the top; the connection ends of the two varistor at the top of one series group, and the bottom of the other series group
  • the terminals of the two varistor are electrically connected; a cross-connect combination is formed.
  • the neutral electrode interconnects the varistor surge overvoltage protection circuit, and the surge overvoltage protection circuit comprises two sets of varistor connected in series, and the varistor of each series group is more than three, two One end of the series group is connected as the input end, and the other end is used as the input end of the surge overvoltage protection circuit respectively; the connection end of the two varistor at the bottom of one series group, and the two varistor at the bottom of the other group Electrical connection of the connector
  • connection ends of the two varistor at the top of one series group are electrically connected to the connection ends of the two varistor at the top of the other series group; a parallel connection combination is formed.
  • the neutral electrode interconnection varistor surge overvoltage protection circuit comprises two sets of varistor connected in series, and the varistor of each series group is more than three, two One end of the series group is connected as the input end, and the other end is used as the input end of the surge overvoltage protection circuit respectively; the connection end of the two varistor at the bottom of one series group, and the two varistor at the top of the other group Electrical connection of the connector
  • connection end of two varistor at the top of one series group is electrically connected to the connection end of two varistor at the bottom of another series group; the connection end of two varistor at the top of one series group, and the other
  • the inputs of a series of series are electrically connected, and the inputs of a series of series are electrically connected to the terminals of the two varistor at the top of the other series.
  • the present invention has an advantage in that the resistance of the pressure sensitive device and the ability to withstand current are improved, the residual voltage is reduced, the cost of the protected circuit is greatly reduced, and the life of the protection circuit is prolonged.
  • FIG. 1 is a schematic diagram of a circuit principle of the present invention
  • FIG. 2 is a schematic diagram of another circuit principle of the present invention.
  • FIG. 3 is a schematic diagram of still another circuit principle of the present invention.
  • FIG. 5 is a schematic diagram of a specific application circuit principle of a surge overvoltage protection circuit network according to the present invention.
  • the present invention is to improve the resistance of the pressure sensitive device and the ability to withstand surge current, and to reduce the residual voltage, greatly reduce the cost of the protected circuit, and prolong the life of the protection circuit.
  • the principle involved in the surge overvoltage protection circuit of the varistor should be understood, that is, the concentrated effect of the current and the negative thermal resistance effect.
  • the so-called concentrated effect of current means that in the L-type lead varistor, current flows through the center line to the periphery, and the center point current is concentrated.
  • the so-called negative thermal resistance effect means that the flow rate of the varistor is larger, and the higher the local temperature, the smaller the resistance.
  • the pressure sensitive crystals form a temperature gradient from the inside to the outside, resulting in the highest temperature at the center.
  • the motion charge from the lead has the highest dispersion of the momentum distribution caused by the structural change at the end of the lead, that is, the highest and lowest moving charges are more, and the strongest motion charge of the individual impact momentum has the strongest damage to the grain boundary.
  • the electric field at the end of the lead is the strongest due to the tip effect, so most of the thermal breakdown occurs at the end of the lead near the center of the wafer.
  • the current concentration is concentrated on a pressure sensitive current concentration effect, and the neutral electrode also functions to block the heat penetration effect and enhance heat dissipation.
  • Proper structural arrangement can also change part of the pressure sensitivity from one-way impact to two-way impact, greatly improving the resistance of the protection circuit.
  • the neutral electrode interconnection varistor surge overvoltage protection circuit of the present technology is composed of two or more varistors connected in parallel, series or series and parallel.
  • the varistor and the wave formed thereby The surge voltage protection circuit should meet the following two aspects: [0043] First, the screening of the varistor should satisfy:
  • each of the parallel elements in the same combination must undergo characteristic matching to ensure that the current difference in each element is not greater than a specified value when subjected to a pulsed current. Otherwise, components that withstand large currents will fail prematurely during use.
  • the surge overvoltage protection circuit should meet the following requirements:
  • each varistor in the surge overvoltage protection circuit is symmetrical;
  • the inrush current in the surge overvoltage protection circuit generates zero induced electric potential through the integrated magnetic field of each loop of the network, or the induced electromotive force generated on each sub-varistor is equal.
  • the network has crystal-like symmetry and periodicity, and guarantees relative equivalence in spatial position. This prevents the skin-like effect in the network environment and achieves the minimum impedance.
  • the impedance encountered by each branch current is equal.
  • the varistor of each corresponding position in the surge overvoltage protection circuit has the same length of the connecting lead, and the diameter The same, the impedance is the same.
  • the structure of the circuit network composed of the varistor also plays a large role in the distribution of the varistor voltage and current. Assuming that the impedance of a certain lead is 0.1 ohm, the voltage drop across the impedance is 100V at an inrush current of 1000A. Second, if the varistor network is subjected to a magnetic field that is consistent with the direction of the current, it will also have a skin effect; that is, in the case of the same serial-to-parallel structure, a random overcurrent varistor-protected network The pressure is 100 ⁇ 300V higher than the pressure-sensitive protection net carefully designed considering the above factors.
  • the surge overvoltage protection circuit includes two series connected in series by varistor R1, R2, R3 and R4, R5, and R6.
  • the varistor device has three or more varistors in each series, two series and then parallel, and the two parallel ends are respectively the L terminal and the N terminal of the surge overvoltage protection circuit;
  • the connection ends of the varistor R2 and R3 are electrically connected to the connection ends of the other two varistor R4 and R5 at the top; the connection ends of the two varistor R1 and R2 at the top of the series group, and
  • the varistor R5 at the bottom of the other group is electrically connected to the connection end of R6; a cross-connection combination is formed.
  • This circuit realizes the uniformity of the passing current by combining one-to-three pressure-sensitive cross-combination to achieve the uniform resistance of the left and right surge channels. At the same time, even if a certain sub-pressure is thermally broken down, the separation electrode can prevent the occurrence of the heat penetration effect and prolong the life of the overall protection circuit.
  • the surge overvoltage protection circuit includes two groups of varistor R1, R2, R3 and R4, R5, and R6 connected in series.
  • the series varistor device has three or more varistors in each series group, one end of the two series groups is connected to be the PE end, and the other end is the L terminal and the N end respectively as the surge overvoltage protection circuit;
  • the connection ends of two varistor R2 and R3 at the bottom of one series are electrically connected to the connection ends of the two varistor R4 and R5 of the other group; the top two varistor R1 of the series group and
  • the connection end of R2 is electrically connected to the connection ends of two varistor R5 and R6 at the bottom of another series group; a cross-connection combination is formed.
  • the surge overvoltage protection circuit includes two groups of varistor R1, R2, R3 and R4, R5, and R6 connected in series.
  • the series varistor device has three or more varistors in each series, one end of the two series groups is connected as a PE end, and the other end is respectively used as an L end and an N end of the surge overvoltage protection circuit;
  • the connection ends of two varistor R2 and R3 at the bottom of one series group are electrically connected with the connection ends of two varistor R5 and R6 at the bottom of the other group;
  • the connection ends of the two varistor R1 and R2 at the top of the group are electrically connected to the connection ends of the two varistor R4 and R5 at the top of the other series group; a parallel connection combination is formed.
  • the surge overvoltage protection circuit includes two groups of varistor R1, R2, R3 and R4, R5, and R6 connected in series.
  • the series varistor device has three or more varistors in each series, one end of the two series groups is connected as the PE end, and the other end is used as the L end and the N end of the surge overvoltage protection circuit respectively;
  • the connection ends of the two varistor R2 and R3 at the bottom of the series group are electrically connected to the connection ends of the two varistor R4 and R5 of the other group; the top two varistor R1 and R2 of one series group
  • the connection end is electrically connected to the connection ends of the two varistor R5 and R6 at the bottom of another series group; the connection end of the two varistor R1 and R2 at the top of one series group, and the N of the other series group
  • the terminals are electrically connected, the L terminal of a series group is electrically connected to the connection terminals of the two varistor R4 and
  • FIG. 5 it is a specific application of a surge overvoltage protection circuit network.
  • 12 14D68 1 varistors R are used to form a protection network.
  • the inrush current is 5000A ⁇
  • the residual voltage of the L ⁇ N differential mode reaches 1230V.
  • 14 D681 has a residual pressure of 1680V.
  • the residual pressure ratio has dropped from 1.8 to 1.8.
  • the number of impact resistances has increased from 10 to 70 times, and the surface temperature has decreased by nearly 30 ° C (see attached table experimental data).
  • the lengths of the connecting lines and the line diameters between the nodes and the pressure sensitive are the same, and the geometric positions are symmetric with each other.

Abstract

一种中性电极互联压敏浪涌过电压保护电路,包括两个以上压敏电阻器通过并联、串联或串并联组成,其分别达到:1)、压敏电阻器满足规定要求;2)、浪涌过电压保护电路满足规定要求。该浪涌过电压保护电路可以提高压敏器件的耐受性和抗冲击电流的能力,极大的降低残压,大幅度地减少被保护电路的成本,延长了保护电路寿命。

Description

中性电极互联压敏浪涌过电压保护电路 技术领域
[0001] 本发明属于电子技术领域, 特别涉及过电压保护相关技术。
背景技术
[0002] 电子产品离不幵浪涌电压防护, 作为当今浪涌电压防护的主要元件, ZnO压敏 电阻器在上世纪 60年代末问世后, 用量就随着电子信息产品同步增长。 在 220 ( 240) V工频电源电路中, 人们一幵始用的是压敏电压 (Un) 为 470V的压敏电阻 器, 它在标称放电电流下的残压 (限制电压) 大体为 1100V。 但它们在使用现场 起火, 造成严重后果的事故吋有发生。 于是 220 (240) V电路中的压敏电阻器的 规格逐步提高到 Un为 620V、 680V。 这个措施是有效的, 极大地减低了起火事故 的概率, 但残压相应地提高到 1400V、 1500V。 残压的增大意味着其他方面成本 加大和整个产品体积增加。 近年来, 在电子产品小型化和降成本的压力下, "降 残压"成为压敏电阻制造和应用领域的共同热门课题。
[0003] 降低残压的意义至少有以下方面:
[0004] 第一、 被保护器件的耐电压等级降低,成本下降,几何尺寸减小,例如图 1的例子, [0005] 第二、 压敏电阻安装部位的空气间隙, 爬电距离和耐电压试验电压相应减小, 表 1的数据说明了这一点, 这将使整个设备的成本下降,几何尺寸减小。
[0006] 第三,有利于整个产品小型化。
[0007] 降低压敏电阻在一定脉冲电流下的残压, 目前主要有三个技术途径:
[0008] 1、 减小流过压敏电阻器的脉冲电流密度; 也就是说, 在脉冲电流给定的条件 下, 增大压敏电阻器的电极面积。 这可以有两种做法: 第一, 采用单只大尺寸 压敏电阻器; 第二, 采用多个小尺寸压敏电阻器的并联组合。
[0009] 2、 选用压敏电压 (Un) 低的压敏电阻器, 这包含两层含义; 低标称电压的规 格, 或同一规格中的负公差 Un产品。
[0010] 3、 改变制造技术; 通过调整瓷料配方和生产工艺来改变规定电流下的残压比
。 现行的工业生产压敏电阻器, 在标称放电电流下的残压比大体为 2.2〜2.7, 也 就是说, 料配方和生产工艺对残压的调整范围, 只有 23%左右。
[0011] 压敏电阻的三种工作状态和选择 Un的一个基本矛盾:
[0012] 在考虑压敏电阻器的低残压应用吋, 必须了解其工作状态, 以及残压与压敏电 压 Un的关系。 并联在电源电压上的压敏电阻器, 在其整个使用寿命期中, 按照 作用在它上面的电应力的不同, 可以区分为三种工作状态:
[0013] 1、 等待状态: 只有电源系统电压应力, 按最大连续工作电压 (MCOV) 计算 , 应力强度取决于"加压比 Rap=MCOV/Un"。 Rap越大应力越严酷, 表现为老化 加快, 寿命缩短。 从这一点出发, 总希望减小 Rap值, 即提高 Un值。
[0014] 2、 浪涌抑制状态: "MCOV+脉冲电流"两种电应力同吋作用。 对于这个工作状 态, 人们最关心的是一定脉冲电流下的残压 UCla=RClaxUn。 从尽可能降低残压 U cla这一点出发, 总希望降低 Un值。
[0015] 3、 暂吋过电压耐受状态: 电应力是暂吋过电压 UTOV; 应力强度取决于"电压 比 RTOV=UTOV/Un",RTOV越大应力越严酷,压敏电阻越容易热失控而损坏。 从 这一点出发, 总希望减小 RTOV值, 即提高 Un值。
技术问题
上面的分析表明, 压敏电阻的三种工作状态对于压敏电压 Un的期望值是不同的 , 等待状态和暂吋过电压耐受状态期望 Un取大值, 而浪涌抑制状态期望 Un取小 值。 这是压敏电阻应用设计中面临的一个基本矛盾。 在降残压的设计中, 必须 折中处理好这个矛盾, 达到既能降残压, 又能保证要求的 MTTF (平均无故障吋 间) 和预定 TOV应力下的安全性。
问题的解决方案
技术解决方案
[0017] 本发明的目的是针对现有技术的不足, 提供一种由压敏器件的串并联结构实现 对冲击电流的分流分压匀流作用, 又通过压敏器件的相对空间几何位置, 实现 保护网络电路上阻抗与的电磁场的平衡, 同吋使用压敏剖分交叉技术, 实现参 数波动压敏间的平衡。 提高了压敏器件的耐受性和抗冲击电流的能力, 并降低 了残压, 大幅度地减少被保护电路的成本, 延长保护电路寿命的中性电极互联 压敏浪涌过电压保护电路。 [0018] 本发明目的可以通过以下技术方案实现, 一种中性电极互联压敏浪涌过电压 保护电路, 其所述电路包括两个以上压敏电阻器通过并联、 串联或串并联组成 , 其分别达到:
[0019] 1) 、 压敏电阻器满足以下要求:
[0020] (1) 、 同一组合中的各压敏电阻器在经受脉冲电流吋, 每只元件中的电流不 均匀系数 δΙ< 0.1 ;
[0021] (2) 、 同一组合中的各压敏电阻器的宽波脉冲电流筛选, 使用 2ms方波, 每平 方厘米承受 20A, 作为筛选条件, 正反各一次, 芯片不击穿或破裂作为合格判据
[0022] (3) 、 同一组合中的各压敏电阻器的电压〜温度应力筛选,以 125°C为筛选温度
, 压敏电压中心值作为外加交流试验电压峰值, 进行 8小吋老化筛选, 芯片不穿 孔或测试后压敏电压不低于初始值作为合格判据;
[0023] 2) 、 浪涌过电压保护电路满足以下要求:
[0024] (1) 、 浪涌过电压保护电路中各压敏电阻器的空间位置对称;
[0025] (2) 、 浪涌过电压保护电路中各对应位置压敏电阻器的阻抗平衡;
[0026] (3) 、 浪涌过电压保护电路中各对应位置压敏电阻器的冲击电流产生的感生 电动势在各压敏电阻器上平衡;
[0027] (4) 、 浪涌过电压保护电路中各对应位置的压敏电阻器连接引线长度相等, 直径相同, 阻抗相同。
[0028] 所述的中性电极互联压敏浪涌过电压保护电路, 其浪涌过电压保护电路包括两 组串联的压敏电阻器, 各串联组的压敏电阻器为三个以上, 两串联组再并联, 两并联端为该浪涌过电压保护电路的输入、 输出端; 一串联组底部两个压敏电 阻器的连接端, 与另一联组顶部两个压敏电阻器的连接端电连接; 一串联组顶 部两个压敏电阻器的连接端, 与另一联组底部的个压敏电阻器的连接端电连接
; 形成交叉连接组合。
[0029] 所述的中性电极互联压敏浪涌过电压保护电路, 其浪涌过电压保护电路包括两 组串联的压敏电阻器, 各串联组的压敏电阻器为三个以上, 两串联组一端连接 , 做为输入端, 另一端分别作为该浪涌过电压保护电路的输入端; 一串联组底 部两个压敏电阻器的连接端, 与另一联组顶部两个压敏电阻器的连接端电连接 ; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组底部的两个压敏电阻 器的连接端电连接; 形成交叉连接组合。
[0030] 所述的中性电极互联压敏浪涌过电压保护电路, 其浪涌过电压保护电路包括两 组串联的压敏电阻器, 各串联组的压敏电阻器为三个以上, 两串联组一端连接 , 做为输入端, 另一端分别作为该浪涌过电压保护电路的输入端; 一串联组底 部两个压敏电阻器的连接端, 与另一联组底部两个压敏电阻器的连接端电连接
; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组顶部的两个压敏电阻 器的连接端电连接; 形成平行连接组合。
[0031] 所述的中性电极互联压敏浪涌过电压保护电路, 其浪涌过电压保护电路包括两 组串联的压敏电阻器, 各串联组的压敏电阻器为三个以上, 两串联组一端连接 , 做为输入端, 另一端分别作为该浪涌过电压保护电路的输入端; 一串联组底 部两个压敏电阻器的连接端, 与另一联组顶部两个压敏电阻器的连接端电连接
; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组底部的两个压敏电阻 器的连接端电连接; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组的 输入端电连接, 一串联组的输入端, 与另一串联组顶部两个压敏电阻器的连接 端电连接。
发明的有益效果
有益效果
[0032] 本发明优点在于, 提高了压敏器件的耐受性和抗冲击电流的能力, 并降低了残 压, 大幅度地减少被保护电路的成本, 延长了保护电路寿命。
对附图的简要说明
附图说明
[0033] 图 1为本发明的一种电路原理示意图;
[0034] 图 2为本发明的另一种电路原理示意图;
[0035] 图 3为本发明的又一种电路原理示意图;
[0036] 图 4为本发明的再一种电路原理示意图;
[0037] 图 5为本发明一种浪涌过电压保护电路网络的具体应用电路原理示意图。 本发明的实施方式
[0038] 本发明是为了提高了压敏器件的耐受性和抗冲击电流的能力, 并降低了残压 , 大幅度地减少被保护电路的成本, 延长保护电路寿命。
[0039] 所以应该了解压敏电阻器在浪涌过电压保护电路中涉及的原理, 即电流的集中 效应及负热阻效应。 所谓电流的集中效应, 是指在 L型引线压敏阻中, 电流通过 中心线向四周扩散电流, 中心点电流比较集中。 所谓的负热阻效应, 是指压敏 电阻通流量越大, 局部温度越高, 电阻越小。 当散热能力小于生热能力吋, 正 反馈将导致压敏电阻融化贯穿。 热击穿的烧融过程幵始于通流密度较大的晶粒 或缺陷, 然后以之为原点逐步扩张, 电流方向扩张更快。 当其直径达到或接近 压敏厚度吋, 就发生贯穿式热击穿, 形成略小于或近似等于厚度的通孔, 严重 的会引起拉弧或燃烧, 这就是热贯穿效应。 由于散热的需要, 压敏晶体会形成 由内向外的温度梯度, 导致中心部位温度最高。 而来自引线的运动电荷在引线 终端由结构变化导致的动量分布的离散性最高, 即速度最高和最低的运动电荷 都多些, 个别冲击动量最强的运动电荷, 对晶界的破坏能力最强; 引线末端的 电场由于尖端效应又最强, 所以热击穿点绝大部分都发生在晶片靠近中心的引 线端点。
[0040] 通常, 人们为了提高保护压敏电阻器的工作寿命并降低残压, 也采用多压敏并 联来进行分流的电路。 但是由于各压敏参数不完全相同, 电流在集中效应的作 用下, 还是会逐渐向过流较大的压敏集中, 最后使其烧毁。 接着也会使第二个 压敏烧毁, 燃烧的过程对电路及安全产生严重的危害。
[0041] 本发明的技术, 由于总体压敏参数的平衡, 电流集中于一个压敏的电流集中效 应得到遏制, 中性电极还起到了阻挡热贯穿效应发生和加强散热的作用。 恰当 的结构安排, 还能使部分压敏由承受单向冲击改为承受双向冲击, 大幅度地提 高防护电路的耐受性。
[0042] 本技术的中性电极互联压敏浪涌过电压保护电路, 由两个以上压敏电阻器通过 并联、 串联或串并联组成, 鉴于上述分析, 其压敏电阻器及所组成的浪涌过电 压保护电路应达到以下两方面的满足: [0043] 第一, 压敏电阻器的筛选, 应满足:
[0044] 1、 同一组合中的各压敏电阻器在经受脉冲电流吋, 每只元件中的电流不均匀 系数 δΙ < 0.1 ;
[0045] 同一组合中的各并联元件必须经过特性配对, 保证在经受脉冲电流吋, 每只 元件中的电流差别不大于规定值。 否则在使用过程中, 承受电流大的元件会提 前失效。 为此这里定义一个参数"不均匀系数 δΙ=(ηΔΙ)/Ι t",它等于各并联元件电流 的极差 ΔΙ, 对于平均电流 I t/n的比值 (I t是总电流, n是并联元件数) 。 在没有 特别规定的情况下, 要求 δΙ < 0.1。
[0046] 2、 同一组合中的各压敏电阻器的宽波脉冲电流筛选, 使用 2ms方波, 每平方厘 米承受 20A, 作为筛选条件, 正反各一次, 芯片不击穿或破裂作为合格判据; [0047] 3、 同一组合中的各压敏电阻器的电压〜温度应力筛选,以 125°C为筛选温度, 压 敏电压中心值作为外加交流试验电压峰值, 进行 8小吋老化筛选, 芯片不穿孔或 测试后压敏电压不低于初始值作为合格判据;
[0048] 第二、 浪涌过电压保护电路应满足以下要求:
[0049] 1、 浪涌过电压保护电路中各压敏电阻器的空间位置对称;
[0050] 在浪涌过电压保护电路网络中的耐受性方面, 我们要充分使所有的压敏参与 工作, 共同分担电流; 另一方面, 我们还要使每个压敏所承受的电流密度相同 , 为使相互的感应平衡, 要使涌过电压保护电路中各压敏电阻器的空间位置对 称。
[0051] 2、 浪涌过电压保护电路中各对应位置压敏电阻器的阻抗平衡;
[0052] 3、 浪涌过电压保护电路中各对应位置压敏电阻器的冲击电流产生的感应电动 势在各压敏电阻器上平衡;
[0053] 浪涌过电压保护电路中冲击电流通过吋网络各环路的综合磁场产生的感应电动 势为零, 或者各子压敏电阻器上产生的感应电动势相等。 表现在结构上, 该网 络具有类似晶体的对称性和周期性, 并保证空间位置上的相对等同。 从而防止 网络环境下的类趋肤效应, 取得最小的阻抗。 使冲击电流流过吋, 各分支电流 遇到的阻抗相等。
[0054] 4、 浪涌过电压保护电路中各对应位置的压敏电阻器连接引线长度相等, 直径 相同, 阻抗相同。
[0055] 浪涌过电压保护电路中, 在浪涌电压冲击吋, 由压敏电阻器组成的电路网络 的结构同样对压敏电压和电流的分配起着很大的作用。 假设某一段引线的阻抗 为 0.1欧姆, 在冲击电流为 1000A的情况下, 阻抗上的压降就有 100V。 其二, 压 敏电阻网络如果受到与电流方向一致的磁场的作用, 则同样会产生趋肤效应; 也就是, 在串并结构相同的情况下, 一个随意的过电流压敏保护网产生的残压 要比考虑上述因素精心设计的压敏保护网高出 100~300V。
[0056] 如图 1所示, 是一种浪涌过电压保护电路, 所述浪涌过电压保护电路包括由压 敏电阻器 Rl、 R2、 R3及 R4、 R5、 R6串联组成的两组串联的压敏电阻器件, 各 串联组的压敏电阻器为三个以上, 两串联组再并联, 两并联端分别为该浪涌过 电压保护电路的 L端与 N端; 一串联组底部两个压敏电阻器 R2与 R3的连接端, 与 另一联组顶部两个压敏电阻器 R4与 R5的连接端电连接; 一串联组顶部两个压敏 电阻器 R1与 R2的连接端, 与另一联组底部的个压敏电阻器 R5与 R6的连接端电连 接; 形成交叉连接组合。 本电路通过将一分三压敏交叉组合, 实现左右浪涌通 道的电阻一致, 保证了通过电流的一致性。 同吋, 即使某一子压敏被热击穿, 分隔电极也可以防止其热贯穿效应的发生, 延长了整体防护电路的寿命。
[0057] 如图 2所示, 是另一种浪涌过电压保护电路, 所述浪涌过电压保护电路包括由 压敏电阻器 Rl、 R2、 R3及 R4、 R5、 R6串联组成的两组串联的压敏电阻器件, 各串联组的压敏电阻器为三个以上, 两串联组的一端连接, 为 PE端, 另一端分 别作为该浪涌过电压保护电路的为 L端及 N端; 一串联组底部两个压敏电阻器 R2 与 R3的连接端, 与另一联组顶部两个压敏电阻器 R4与 R5的连接端电连接; 一串 联组顶部两个压敏电阻器 R1与 R2的连接端, 与另一串联组底部的两个压敏电阻 器 R5与 R6的连接端电连接; 形成交叉连接组合。
[0058] 如图 3所示, 是又一种浪涌过电压保护电路, 所述浪涌过电压保护电路包括由 压敏电阻器 Rl、 R2、 R3及 R4、 R5、 R6串联组成的两组串联的压敏电阻器件, 各串联组的压敏电阻器为三个以上, 两串联组的一端连接, 做为 PE端, 另一端 分别作为该浪涌过电压保护电路的 L端及 N端; 一串联组底部两个压敏电阻器 R2 与 R3的连接端, 与另一联组底部两个压敏电阻器 R5与 R6的连接端电连接; 一串 联组顶部两个压敏电阻器 Rl与 R2的连接端, 与另一串联组顶部的两个压敏电阻 器 R4与 R5的连接端电连接; 形成平行连接组合。
[0059] 如图 4所示, 是再一种浪涌过电压保护电路, 所述浪涌过电压保护电路包括由 压敏电阻器 Rl、 R2、 R3及 R4、 R5、 R6串联组成的两组串联的压敏电阻器件, 各串联组的压敏电阻器为三个以上, 两串联组一端连接, 做为 PE端, 另一端分 别作为该浪涌过电压保护电路的 L端及 N端; 一串联组底部两个压敏电阻器 R2与 R3的连接端, 与另一联组顶部两个压敏电阻器 R4与 R5的连接端电连接; 一串联 组顶部两个压敏电阻器 R1与 R2的连接端, 与另一串联组底部的两个压敏电阻器 R5与 R6的连接端电连接; 一串联组顶部两个压敏电阻器 R1与 R2的连接端, 与另 一串联组的 N端电连接, 一串联组的 L端, 与另一串联组顶部两个压敏电阻器 R4 与 R5的连接端电连接。
[0060] 如图 5所示, 是一种浪涌过电压保护电路网络的具体应用, 这里采用 12个 14D68 1压敏电阻器 R构成防护网络。 冲击电流 5000A吋, L~N差模残压达到 1230V。 14 D681的残压为 1680V。 与传统的三角形接法相比, 残压比由以前的 2.2降到了 1.8 。 耐冲击次数, 从 10次提高到 70次以上, 表面温度降低近 30°C (见附表实验数据) 。 在本实施例中, 各节点与压敏之间的连接线长度、 线径相同, 相互间的几何 位置对称。
[0061] 该电路与常规三角接法的对比试验见表一:
[0062] 表一
[]
Figure imgf000011_0001
Figure imgf000011_0002

Claims

权利要求书 [权利要求 1] 一种中性电极互联压敏浪涌过电压保护电路, 其特征在于, 所述电路 包括两个以上压敏电阻器通过并联、 串联或串并联组成, 其分别达到 1) 、 压敏电阻器满足以下要求: (1) 、 同一组合中的各压敏电阻器在经受脉冲电流吋, 每只元件中 的电流不均匀系数 δΐ < 0.1; (2) 、 同一组合中的各压敏电阻器的宽波脉冲电流筛选, 使用 2ms 方波, 每平方厘米承受 20A, 作为筛选条件, 正反各一次, 芯片不击 穿或破裂作为合格判据; (3) 、 同一组合中的各压敏电阻器的电压〜温度应力筛选,以 125°C 为筛选温度, 压敏电压中心值作为外加交流试验电压峰值, 进行 8小 吋老化筛选, 芯片不穿孔或测试后压敏电压不低于初始值作为合格判 据; 2) 、 浪涌过电压保护电路满足以下要求:
(1) 、 浪涌过电压保护电路中各压敏电阻器的空间位置对称;
(2) 、 浪涌过电压保护电路中各对应位置压敏电阻器的阻抗平衡;
(3) 、 浪涌过电压保护电路中各对应位置压敏电阻器的冲击电流产 生的感生电动势在各压敏电阻器上平衡;
(4) 、 浪涌过电压保护电路中各对应位置的压敏电阻器连接引线长 度相等, 直径相同, 阻抗相同。
[权利要求 2] 根据权利要求 1所述的中性电极互联压敏浪涌过电压保护电路, 其特 征在于, 所述浪涌过电压保护电路包括两组串联的压敏电阻器, 各串 联组的压敏电阻器为三个以上, 两串联组再并联, 两并联端为该浪涌 过电压保护电路的输入、 输出端; 一串联组底部两个压敏电阻器的连 接端, 与另一联组顶部两个压敏电阻器的连接端电连接; 一串联组顶 部两个压敏电阻器的连接端, 与另一联组底部的个压敏电阻器的连接 端电连接; 形成交叉连接组合。 根据权利要求 1所述的中性电极互联压敏浪涌过电压保护电路, 其特 征在于, 所述浪涌过电压保护电路包括两组串联的压敏电阻器, 各串 联组的压敏电阻器为三个以上, 两串联组一端连接, 做为输入端, 另 一端分别作为该浪涌过电压保护电路的输入端; 一串联组底部两个压 敏电阻器的连接端, 与另一联组顶部两个压敏电阻器的连接端电连接 ; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组底部的两个 压敏电阻器的连接端电连接; 形成交叉连接组合。
根据权利要求 1所述的中性电极互联压敏浪涌过电压保护电路, 其特 征在于, 所述浪涌过电压保护电路包括两组串联的压敏电阻器, 各串 联组的压敏电阻器为三个以上, 两串联组一端连接, 做为输入端, 另 一端分别作为该浪涌过电压保护电路的输入端; 一串联组底部两个压 敏电阻器的连接端, 与另一联组底部两个压敏电阻器的连接端电连接 ; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组顶部的两个 压敏电阻器的连接端电连接; 形成平行连接组合。
根据权利要求 1所述的中性电极互联压敏浪涌过电压保护电路, 其特 征在于, 所述浪涌过电压保护电路包括两组串联的压敏电阻器, 各串 联组的压敏电阻器为三个以上, 两串联组一端连接, 做为输入端, 另 一端分别作为该浪涌过电压保护电路的输入端; 一串联组底部两个压 敏电阻器的连接端, 与另一联组顶部两个压敏电阻器的连接端电连接 ; 一串联组顶部两个压敏电阻器的连接端, 与另一串联组底部的两个 压敏电阻器的连接端电连接; 一串联组顶部两个压敏电阻器的连接端 , 与另一串联组的输入端电连接, 一串联组的输入端, 与另一串联组 顶部两个压敏电阻器的连接端电连接。
PCT/CN2017/070742 2017-01-10 2017-01-10 中性电极互联压敏浪涌过电压保护电路 WO2018129651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070742 WO2018129651A1 (zh) 2017-01-10 2017-01-10 中性电极互联压敏浪涌过电压保护电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070742 WO2018129651A1 (zh) 2017-01-10 2017-01-10 中性电极互联压敏浪涌过电压保护电路

Publications (1)

Publication Number Publication Date
WO2018129651A1 true WO2018129651A1 (zh) 2018-07-19

Family

ID=62839199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070742 WO2018129651A1 (zh) 2017-01-10 2017-01-10 中性电极互联压敏浪涌过电压保护电路

Country Status (1)

Country Link
WO (1) WO2018129651A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157572A (en) * 1988-09-07 1992-10-20 W. J. Furse & Co. Ltd. Apparatus suitable for use in protecting electrical installations from transients
US6226166B1 (en) * 1997-11-28 2001-05-01 Erico Lighting Technologies Pty Ltd Transient overvoltage and lightning protection of power connected equipment
CN201417942Y (zh) * 2009-06-18 2010-03-03 成都兴业雷安电子有限公司 矩阵式压敏浪涌保护模块
CN201975774U (zh) * 2010-10-21 2011-09-14 陕西帕玛斯防雷科技有限公司 电源防雷盒
CN203261026U (zh) * 2013-04-10 2013-10-30 深圳市瑞隆源电子有限公司 带poe功能的百兆网防雷器
CN104319753A (zh) * 2014-09-19 2015-01-28 中山市鸿程科研技术服务有限公司 一种低压电源的防雷保护电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157572A (en) * 1988-09-07 1992-10-20 W. J. Furse & Co. Ltd. Apparatus suitable for use in protecting electrical installations from transients
US6226166B1 (en) * 1997-11-28 2001-05-01 Erico Lighting Technologies Pty Ltd Transient overvoltage and lightning protection of power connected equipment
CN201417942Y (zh) * 2009-06-18 2010-03-03 成都兴业雷安电子有限公司 矩阵式压敏浪涌保护模块
CN201975774U (zh) * 2010-10-21 2011-09-14 陕西帕玛斯防雷科技有限公司 电源防雷盒
CN203261026U (zh) * 2013-04-10 2013-10-30 深圳市瑞隆源电子有限公司 带poe功能的百兆网防雷器
CN104319753A (zh) * 2014-09-19 2015-01-28 中山市鸿程科研技术服务有限公司 一种低压电源的防雷保护电路

Similar Documents

Publication Publication Date Title
US8508326B2 (en) Surge protection device using metal oxide varistors (MOVs) as the active energy control multiple gap discharging chain
CN108242805B (zh) 用于主动过电压保护的装置
US5808850A (en) MOV surge arrester
US11223200B2 (en) Surge protective devices, circuits, modules and systems including same
CN104269835A (zh) 保护装置、电子设备和电源
CN101752858B (zh) 多间隙金属气体放电管电源过电压保护模块
US6930871B2 (en) Lightning arrester device for low-voltage network
EP0414195A2 (en) Protection circuit protected from overvoltage and overcurrent
EP1959533B1 (en) Overvoltage protecting device and method of protecting overvoltage
US3320482A (en) Lightning arrester for high energy switching surges
WO2018129651A1 (zh) 中性电极互联压敏浪涌过电压保护电路
US9601243B2 (en) Contact element for varistor
CN201051668Y (zh) 一种防雷击电路
CN208509350U (zh) 一种具有静电保护功能的静电抑制器
CN207021670U (zh) 中性电极互联压敏浪涌过电压保护电路
CN106684849B (zh) 中性电极互联压敏浪涌过电压保护电路
US2763818A (en) Lighting arrester
CN207098607U (zh) 一种hd高清二合一防雷器
CN206922427U (zh) 网络防雷器
CN206003574U (zh) 一种新型的微型静电抑制器
CN205429713U (zh) 一种过电压保护器
CN204011334U (zh) 一种具保险机制的突波泄放器
KR20180110661A (ko) 칩형 써지 어레스터
KR20120097135A (ko) 고전압용 서지흡수기
JPS589561B2 (ja) バリスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891347

Country of ref document: EP

Kind code of ref document: A1