WO2018128507A1 - 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치 - Google Patents

무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치 Download PDF

Info

Publication number
WO2018128507A1
WO2018128507A1 PCT/KR2018/000370 KR2018000370W WO2018128507A1 WO 2018128507 A1 WO2018128507 A1 WO 2018128507A1 KR 2018000370 W KR2018000370 W KR 2018000370W WO 2018128507 A1 WO2018128507 A1 WO 2018128507A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
retransmission
field
grant
subframe
Prior art date
Application number
PCT/KR2018/000370
Other languages
English (en)
French (fr)
Inventor
이승민
양석철
김선욱
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/473,319 priority Critical patent/US11283551B2/en
Priority to EP18736601.8A priority patent/EP3547583B1/en
Priority to CN201880005756.1A priority patent/CN110140312B/zh
Priority to JP2019533523A priority patent/JP7118066B2/ja
Priority to KR1020197017085A priority patent/KR102299126B1/ko
Publication of WO2018128507A1 publication Critical patent/WO2018128507A1/ko
Priority to US17/675,782 priority patent/US11539469B2/en
Priority to US17/989,418 priority patent/US11962415B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1832Details of sliding window management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling

Definitions

  • the present invention relates to wireless communication, and more particularly, to a data retransmission method of a terminal in a wireless communication system and a communication apparatus using the method.
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • Next-generation wireless access technology considering improved mobile broadband communication, Massive MTC, Ultra-Reliable and Low Latency Communication (URLLC), etc. May be referred to as new radio access technology (RAT) or new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • HARQ hybrid automatic repeat request
  • PHICH physical HARQ indicator channel
  • the present invention uses downlink control information (DCI) as a retransmission indicator to provide a method for the UE to perform data retransmission.
  • DCI downlink control information
  • An object of the present invention is to provide a data retransmission method of a terminal in a wireless communication system and a communication device using the method.
  • DCI downlink control information
  • ACK / NACK acknowledgment / not-acknowledgement
  • the retransmission may be non-adaptive retransmission.
  • the DCI may instruct retransmission for each HARQ process ID (hybrid automatic repeat request process identifier).
  • the DCI may indicate retransmission for each subframe in the subframe window.
  • the DCI may signal the last counter value when a counter field indicating the number of scheduling on an uplink grant (UL grant) is defined.
  • the counter value may be initialized when the DCI is received.
  • the target UL grant may be a UL grant received during a period from the reception of the closest polling UL grant before the Nth subframe to the N-1th subframe.
  • the DCI may be a terminal specific DCI or a terminal common DCI.
  • the DCI includes at least one of a non-adaptive retransmission on / off field, a non-adaptive retransmission timing field, a redundancy version (RV) field, and aperiodic channel state information (CSI) transmission request field. It may include one.
  • the detection-related Radio Network Temporary Identifier (RNTI) value of the DCI may be independently signaled.
  • the transmission-related parameters on the search space for the DCI may be set in advance.
  • retransmission may be performed according to the UL grant.
  • an HARQ acknowledgment (ACK) transmission timing field may be configured for each HARQ process ID in the DCI.
  • an acknowledgment / not-acknowledgement resource indicator (A / N RESOURCE INDICATOR; ARI) field is configured for each HARQ process ID in the DCI, and a physical uplink control channel is based on the ARI. channel (PUCCH) resource may be allocated.
  • a communication apparatus includes a Radio Frequency (RF) unit for transmitting and receiving a radio signal and a processor operatively coupled to the RF unit, wherein the processor includes downlink control information from a network.
  • RF Radio Frequency
  • the processor includes downlink control information from a network.
  • a downlink control information (DCI) is received and data is retransmitted based on the DCI, wherein the DCI includes an acknowledgment / not-acknowledgement (ACK / NACK) field.
  • the terminal when the terminal performs data retransmission, more efficient retransmission is possible by using DCI as a retransmission indicator.
  • FIG. 1 illustrates a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 5 shows a structure of a downlink subframe in 3GPP LTE.
  • FIG. 6 shows an example of a method of performing uplink HARQ in 3GPP LTE.
  • FIG. 7 illustrates a system structure of a new generation radio access network (NG-RAN) to which NR is applied.
  • NG-RAN new generation radio access network
  • 8 illustrates functional partitioning between NG-RAN and 5GC.
  • FIG 9 shows an example of a frame structure for a new radio access technology.
  • FIG. 10 shows an example of a multiplexing technique in one slot in NR.
  • FIG. 11 is a flowchart illustrating a data retransmission method of a terminal according to an embodiment of the present invention.
  • FIG. 12 schematically illustrates a data retransmission method of a terminal according to an embodiment of the present invention.
  • FIG. 13 schematically illustrates a method for retransmitting data of a terminal according to an embodiment of the present invention.
  • FIG. 14 schematically illustrates a data retransmission method of a terminal according to an embodiment of the present invention.
  • 16 is a block diagram illustrating a communication device in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the UE may not simultaneously transmit or simultaneously transmit PUCCH and PUSCH according to configuration.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • the uplink control information transmitted on the PUCCH includes ACK / NACK, channel state information (CSI) indicating a downlink channel state, and a scheduling request (SR) that is an uplink radio resource allocation request.
  • the CSI includes a precoding matrix index (PMI) indicating a precoding matrix, a rank indicator (RI) indicating a rank value preferred by the UE, a channel quality indicator (CQI) indicating a channel state, and the like.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI, ACK / NACK, RI, and the like.
  • the uplink data may consist of control information only.
  • 5 shows a structure of a downlink subframe in 3GPP LTE.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP.
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
  • PDSCH refers to a channel through which a base station or node transmits data to a terminal.
  • Control channels transmitted in the control region include a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a control format indicator (CFI), which is information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH. Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries an acknowledgment (ACK) / not-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK acknowledgment
  • NACK not-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the PDCCH is a control channel for transmitting downlink control information (DCI).
  • DCI can be used for resource allocation of PDSCH (also referred to as downlink grant (DL grant)), resource allocation for physical uplink shared channel (PUSCH) (also referred to as uplink grant (UL grant)), arbitrary A set of transmit power control commands and / or activation of Voice over Internet Protocol (VoIP) for individual terminals in the terminal group.
  • DL grant downlink grant
  • PUSCH physical uplink shared channel
  • VoIP Voice over Internet Protocol
  • FIG. 6 shows an example of a method of performing uplink HARQ in 3GPP LTE.
  • the terminal receives an initial uplink resource allocation on the PDCCH 310 in the nth subframe from the base station.
  • the UE transmits an uplink transmission block more specifically uplink data on the PUSCH 320 using the initial uplink resource allocation.
  • the base station sends an ACK / NACK signal for the uplink transport block on the PHICH 331 in the n + 8th subframe.
  • An ACK / NACK signal indicates an acknowledgment for the uplink transport block, an ACK signal indicates a reception success, and a NACK signal indicates a reception failure.
  • the terminal receiving the NACK signal transmits a retransmission block on the PUSCH 340 in the n + 12th subframe.
  • the base station transmits an ACK / NACK signal for the uplink transport block on the PHICH 351 in the n + 16th subframe.
  • HARQ is performed using 8 subframes as the HARQ period.
  • Eight HARQ processes may be performed in 3GPP LTE, and each HARQ process is indexed from 0 to 7.
  • the above example shows that HARQ is performed at HARQ process index 4.
  • new radio access technology new RAT
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • communication system design considering services / terminals that are sensitive to reliability and latency has been discussed.
  • next-generation wireless access technologies in consideration of such an extended mobile broadband communication, massive MTC, Ultra-Reliable and Low Latency Communication (URLLC), and the like, are discussed in the present invention for convenience. Is called new RAT or NR.
  • NG-RAN 7 illustrates a system structure of a new generation radio access network (NG-RAN) to which NR is applied.
  • NG-RAN new generation radio access network
  • the NG-RAN may include a gNB and / or an eNB providing a user plane and a control plane protocol termination to the terminal.
  • 4 illustrates a case of including only gNB.
  • gNB and eNB are connected to each other by Xn interface.
  • the gNB and eNB are connected to a 5G Core Network (5GC) through an NG interface.
  • 5GC 5G Core Network
  • AMF access and mobility management function
  • UPF user plane function
  • 8 illustrates functional partitioning between NG-RAN and 5GC.
  • the gNB may configure inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control, radio admission control, and measurement setup and provision. (Measurement configuration & provision), dynamic resource allocation, and the like can be provided.
  • AMF can provide functions such as NAS security, idle state mobility handling, and the like.
  • the UPF may provide functions such as mobility anchoring and PDU processing.
  • the Session Management Function (SMF) may provide functions such as terminal IP address allocation and PDU session control.
  • FIG 9 shows an example of a frame structure for a new radio access technology.
  • a structure in which a control channel and a data channel are TDM within one TTI may be considered as one of the frame structures.
  • the hatched area represents a downlink control area, and the black part represents an uplink control area.
  • An area without an indication may be used for downlink data (DL data) transmission or may be used for uplink data (UL data) transmission.
  • the characteristics of this structure is that downlink (DL) transmission and uplink (UL) transmission are sequentially performed in one subframe, and DL data is transmitted in a subframe, and UL ACK / NACK is also transmitted. I can receive it. As a result, when a data transmission error occurs, it takes less time to retransmit data, thereby minimizing the latency of the final data transmission.
  • a time gap may be required for a base station and a terminal to switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in a self-contained subframe structure may be configured as a guard period (GP).
  • the PUCCH format in NR may have the following characteristics.
  • the PUCCH may carry uplink control information (UCI).
  • the PUCCH format may be divided by duration / payload size.
  • the PUCCH format may be classified into a short duration uplink control channel (SHD_PUCCH) and a long duration uplink control channel (LONG DURATION UPLINK CONTROL CHANNEL: LGD_PUCCH).
  • SHD_PUCCH may be referred to as short PUCCH (short PUCCH) for convenience, and may correspond to format 0 ( ⁇ 2 bits) and format 2 (> 2 bits).
  • LGD_PUCCH may be referred to as a long PUCCH, and a long PUCCH has a format 1 ( ⁇ 2 bits), format 3 (> 2, [> N] bits), and format 4 (> 2, [ ⁇ N] bits). This may be the case.
  • the transmit diversity scheme for the PUCCH may not be supported in Rel-15.
  • simultaneous physical uplink shared channel (PUSCH) PUCCH transmission of the terminal may not be supported in Rel-15.
  • the PUCCH format in NR may be defined as shown in Table 1 below.
  • Uplink (UL) signal / channel multiplexing in NR may have the following characteristics.
  • the following technique may be supported.
  • a time division multiplexing (TDM) technique between a short PUCCH (eg, format 0/2) and a PUSCH may be supported.
  • frequency division multiplexing between a short PUCCH (eg, format 0/2) and a PUSCH for a slot having a short UL part of one UE (rather than Rel-15) frequency division multiplexing (FDM) technology may be supported.
  • TDM / FDM technology between short PUCCH (for example, format 0/2) and long PUCCH (for example, format 1/3/4) of different terminals may be supported.
  • TDM technology between short PUCCHs (eg, formats 0/2) on the same slot of one UE may be supported.
  • a TDM technology between short PUCCH (for example, format 0/2) and long PUCCH (for example, format 1/3/4) on the same slot of one UE may be supported.
  • FIG. 10 illustrates an example of a multiplexing technique within one slot in NR, as described above.
  • a long-PUCCH is located in different frequency bands from symbols # 3 to # 7 and # 8 to # 11 in an UL region in one slot.
  • beta-offset indication a plurality of sets of beta-offset values may be configured by RRC signaling, and the UL grant may dynamically indicate an index to the set.
  • each set includes a plurality of entries, and each entry may correspond to a respective UCI type (including two-part CSI if applicable).
  • PUSCH may be rate matched for HARQ-ACK of more than 2 bits, and PUSCH may be punctured for HARQ-ACK of 2 bits or less.
  • DL assignment may not support a case where it is later than a UL grant mapped to the same time instance for HARQ-ACK transmission on a PUSCH.
  • UCI eg, HARQ-ACK or CSI piggybacked on the PUSCH may be mapped to distributed REs distributed over the RBs allocated to the PUSCH.
  • the same RE mapping rule may be applied to the HARQ-ACK piggyback on the PUSCH.
  • the NR may have the following characteristics for scheduling / HARQ timing.
  • slot timing between A and B is indicated by a field in the DCI from a set of values, which set of values may be configured by terminal specific RRC signaling. .
  • all Rel. 15 UE may support a minimum value of K0 equal to 0.
  • K0 to K2 for A and B may be defined as shown in Table 2 below.
  • the terminal processing time capability may be represented as symbols N1 and N2.
  • N1 may refer to the number of OFDM symbols required for processing of the terminal, from the end of NR-PDSCH reception to the earliest possible start of the corresponding ACK / NACK transmission from the terminal perspective.
  • N2 may refer to the number of OFDM symbols required for the processing of the terminal, from the end of the NR-PDCCH including UL grant reception, from the terminal perspective to the earliest possible start of the corresponding NR-PUSCH transmission.
  • the minimum value of (K1, K2) of the terminal may be determined based on (N1, N2), a timing advance value (TA value), terminal DL / UL switching, and the like.
  • two types of UE processing time capability may be defined for slot-based scheduling in a non-CA case using a single numerology for at least PDCCH, PDSCH, and PUSCH.
  • the terminal is based on the entry of the corresponding N1 (or N2) from the two tables (Tables 3 and 4) below, one for N1 (or N2). Only capability can be indicated.
  • the time granularity indicated in DCI is equal to the scheduled transmission when KN or K2 differs between the transmissions scheduled by PDCCH and PDCCH. It can be based on the numerology of.
  • HARQ-ACK transmission associated with a plurality of DL component carriers operating with the same or different numerologies may be supported.
  • the temporal granularity for K1 indicated in the DCI scheduling PDSCH may be based on the neurology of the PUCCH transmission.
  • the retransmission unit may be a code block (CB) group (CBG).
  • CB code block
  • DCI overhead can be increased.
  • Code block group (CBG) configuration The UE may be semi-statically configured to enable CBG-based retransmission by RRC signaling, and the configuration may be distinguished for DL and UL.
  • the maximum value N of CBGs per TB may be set by RRC signaling.
  • the maximum configurable value of CBG per TB may be eight.
  • the maximum value of the set CBG per TB is 4, and the maximum value of the set CBG per TB may be the same for each TB.
  • the number M of CBGs in TB is equal to min (C, N), where C can be the number of CBs in the TB.
  • the first Mod (C, M) CBG of the total M CBGs may include ceil (C / M) CBs per CBG.
  • the remaining M-Mod (C, M) CBGs may include floor (C / M) CBs per CBG.
  • CBG transmission information CBGTI
  • CBG flushing out information CBGFI
  • CBGTI CBG may be (re) transmitted and may be N bits of CBGTI set by RRC.
  • CBGFI CBG may be handled differently for soft-buffer / HARQ combining and may be another 1 bit (at least for a single CW) for CBGFI.
  • CBGTI and CBGFI may be included in the same DCI.
  • the DCI may include CBGTI.
  • the DCI may include both CBGTI and CBGFI.
  • the CBGTI may be configured to be included in the DCI.
  • the DCI may include CBGTI.
  • each CBG of TB may have the same set of CB (s).
  • the UE may use TB level HARQ-ACK feedback when there is no HARQ-ACK multiplexing on the PDSCH scheduled by the PDCCH using the fallback DCI. This may mean that the fallback DCI does not support CBG level HARQ-ACK feedback.
  • the HARQ-ACK codebook may include a HARQ-ACK corresponding to all configured CBGs (including unscheduled CBGs). If the same CBG was successfully decoded, an ACK may be reported for the CBG. If the TB CRC check is not passed while the CB CRC check is passed for all CBs, a NACK may be reported for all CBGs. If the number of CBs for TB is smaller than the set maximum number of CBGs, the NACK may be mapped to an empty CBG index.
  • HARQ hybrid automatic repeat request
  • PHICH physical HARQ indicator channel
  • the present invention uses downlink control information (DCI) as a retransmission indicator to provide a method for the UE to perform data retransmission.
  • DCI downlink control information
  • the following proposed schemes propose a method for efficiently (simultaneously) triggering retransmission for a plurality of (uplink / downlink) data under a NEW RAT (NR) system.
  • (some) proposed schemes of the present invention may be used for uplink communication (and / or downlink communication) and / or “NON-ADAPTIVE RETRANSMISSION (NA-RETX)” (eg, data
  • NA-RETX NON-ADAPTIVE RETRANSMISSION
  • the retransmission operation may be performed based on the HARQ feedback channel related to the successful reception, that is, the retransmission scheduling GRANT is not (additionally) transmitted and the initial transmission scheduling information is interpreted as being used (in whole or in part) for retransmission.
  • A-RETX ADAPTIVE RETRANSMISSION
  • FIG. 11 is a flowchart illustrating a data retransmission method of a terminal according to an embodiment of the present invention.
  • the terminal receives downlink control information (DCI) from the network (S1110).
  • the DCI includes an acknowledgment / not-acknowledgement (ACK / NACK) field or a retransmission indication field.
  • the terminal retransmits the data based on the DCI (S1120).
  • the retransmission may be non-adaptive retransmission.
  • the DCI may indicate retransmission for each HARQ process ID.
  • the DCI may indicate retransmission for each subframe in the subframe window.
  • the DCI may signal the last counter value when a counter field indicating how many scheduling is scheduled on an uplink grant (UL Grant).
  • the link grant may be an uplink grant received during a period from the time of receiving the nearest polling uplink grant before the Nth subframe to the N-1th subframe.
  • the DCI may be a UE specific DCI or a UE common DCI.
  • the DCI may include at least one of a non-adaptive retransmission on / off field, an non-adaptive retransmission timing field, a redundancy version (RV) field, and aperiodic channel state information (CSI) transmission request field.
  • a radio network temporary identifier (RNTI) value related to detection of the DCI may be independently signaled.
  • transmission related parameters on the search space for the DCI may be set in advance.
  • RNTI radio network temporary identifier
  • retransmission may be performed according to the uplink grant.
  • a HARQ ACK transmission timing field may be configured for each HARQ process ID in the DCI.
  • an acknowledgment / not-acknowledgement resource indicator (ARI) field may be configured for each HARQ process ID in the DCI.
  • the terminal receives downlink control information (DCI) from the network and retransmits data based on the DCI, wherein the DCI is an acknowledgment / not-acknowledgement (ACK / NACK).
  • DCI downlink control information
  • ACK / NACK acknowledgment / not-acknowledgement
  • Field may be included.
  • the terminal receives the ACK / NACK on the PHICH, in the present invention, the terminal receives the DCI including the acknowledgment field in place of this, and proceeds the HARQ process for the data based on this .
  • the retransmission may be non-adaptive retransmission.
  • specific examples thereof are as follows.
  • NA-RETX for a plurality of (uplink) data is one indicator (predefined) (for example, "Downlink Control Information (DCI)").
  • DCI Downlink Control Information
  • the DCI may instruct retransmission for each HARQ process ID (hybrid automatic repeat request process identifier).
  • HARQ process ID hybrid automatic repeat request process identifier
  • NA-RETX may be indicated for each Hybrid ARQ process (group) ID (Hybrid Automatic Repeat reQuest PROCESS (GROUP) Identifier; HARQ PROCESS (GROUP) ID).
  • group ID Hybrid ARQ process
  • GROUP Hybrid Automatic Repeat reQuest PROCESS
  • GROUP HARQ PROCESS
  • field (s) for NA-RETX indication for each HARQ PROCESS (GROUP) ID may be defined on NA-RETXINDI.
  • the associated HARQ PROCESS (GROUP) ID per field (index) is set according to a predefined rule (e.g., a relatively low (or high) HARQ PROCESS (GROUP) for a relatively low field index).
  • the ID may be (implicitly mapped) and / or signaled (eg, from a base station) (eg, RRC signaling).
  • the DCI may indicate retransmission for each subframe in the subframe window.
  • the DCI may signal the last counter value when a counter field indicating the number of scheduling on an uplink grant (UL grant) is defined.
  • UL grant uplink grant
  • the UE may be subject to retransmission triggering by the UL grant equal to the counter value. In this case, the network does not consider whether retransmission of uplink data is required.
  • the counter value may be initialized when the DCI is received.
  • retransmission of data actually received by the network may be excessively required.
  • excessive retransmission as in the above example can be prevented through the DCI for initializing the counter value.
  • a polling on / off field is defined on a UL grant
  • an indication object of the DCI received after the Nth subframe time point is received.
  • the UL grant may be a UL grant received during a period from the time of receiving the nearest polling UL grant before the Nth subframe to the N-1th subframe.
  • the data retransmission interval may be adjusted by adjusting the interval between two polling on UL grants received by the terminal.
  • NA-RETX may be indicated for each subframe (group) in the subframe window (RETX_SFWIN).
  • field (s) for NA-RETX indication for each subframe (group) index may be defined on NA-RETXINDI.
  • subframe (group) index may be interpreted as a final derived index after re-indexing for subframes included in RETX_SFWIN.
  • the associated subframe (group) index per field (index) is set according to a predefined rule (eg, a relatively low (or high) subframe (group) relative to a relatively low field index).
  • the index may be (implicitly mapped) and / or signaled (eg, from RRC SIGNALING).
  • NA-RETX indication target subframe window size (RETX_SFWINSIZE) is signaled (eg, RRC SIGNALING) (eg, from the base station) and / or NA-RETXINDI (field defined for that purpose on) (or newly created). Defined indicator).
  • a counter (SCH_CNT) field indicating the number of scheduling on an uplink grant (UL GRANT) (eg, the (existing) "DOWNLINK ASSIGNMENT INDEX (DAI)" field).
  • UL GRANT uplink grant
  • DAI DownLINK ASSIGNMENT INDEX
  • signaling the last counter value (LAST_CVAL) (for retransmission triggering) (via a predefined field) on NA-RETXINDI (for example, in this case) “0 to (LAST_CVAL -1) ”UL GRANT of the counter value can be NA-RETX (simultaneous) triggering).
  • the SCH_CNT value may be initialized after NA-RETXINDI transmission / reception.
  • (A) dynamic change (/ indication) of RETX_SFWIN (and / or RETX_SFWINSIZE) and / or (B) (if applicable) NA-RETX (whether) is indicated via NA-RETXINDI (whole) ) HARQ PROCESS (GROUP) ID (or subframe (group)) number information signaling is possible.
  • HARQ process IDs # 0, # 1, # 2, # 3, # 4, and # 5 there may be six HARQ process IDs of HARQ process IDs # 0, # 1, # 2, # 3, # 4, and # 5.
  • the terminal may receive the DCI in subframe N.
  • data retransmission for subframes K, K + 1, K + 2, K + 3, K + 4, and K + 5 may be considered through the DCI.
  • HARQ process IDs # 0 to # 5 may be sequentially mapped to subframes K to K + 5.
  • the terminal may perform retransmission for the HARQ process ID # 2 and # 4.
  • a section from subframe K to K + 5 may be set as a subframe window through the received DCI, and retransmission may be ordered for each subframe within the window through the received DCI.
  • FIG. 13 schematically illustrates a data retransmission method according to an embodiment of the present invention.
  • the UE may receive DCI in the Nth subframe.
  • it may be scheduled by an uplink grant for the K th subframe to the K + 4 th subframe.
  • the counter field indicating the number of scheduling on the uplink grant is defined, 0, 1,... From subframe K to subframe K + 4, respectively.
  • a counter value of 5 may be assigned.
  • retransmission may be performed on all data transmitted from the Kth subframe to the K + 4th subframe by signaling the last counter value in the received DCI.
  • the terminal receives a polling UL grant in the Nth subframe.
  • a subframe that receives the closest poll on UL grant before the Nth subframe may be a K (K ⁇ N) th subframe.
  • the subframe that receives the nearest DCI after the Nth subframe may be a P (P> N) th subframe.
  • the UL grant that is the object of retransmission indicated by the DCI received in the P-th subframe is a UL received during the interval from the K-th subframe time point to the N-1 (N-1> K) th subframe time point. It may be a grant.
  • the DCI may be a UE specific DCI or a UE common DCI.
  • specific examples thereof are as follows.
  • the NA-RETXINDI may be configured (/ defined) in the form of a “UE-SPECIFIC DCI”.
  • the payload size of the corresponding NA-RETXINDI is configured (/ defined) as (normal) UL GRANT (e.g., DCI FORMAT 0 (/ 4)) (e.g., in this case)
  • the (general) UL GRANT acknowledgment or NA-RETXINDI may be distinguished via a predefined “FLAG FIELD” (on NA-RETXINDI) and / or may be configured (/ defined) independently. .
  • NA-RETXINDI may be configured (/ defined) in the form of "UE (GROUP) -COMMON DCI)".
  • UE GROUP
  • NA-RETXINDI is a (multi-bit) different MULTI-BIT in one DCI, similar to (old) "DCI FORMAT 3 / 3A"
  • the DCI includes a non-adaptive retransmission on / off field, a non-adaptive retransmission timing field, a redundancy version (RV) field, and aperiodic channel state information (CSI) transmission request field. It may include at least one. In addition, specific examples thereof are as follows.
  • Example # 1-3 As an example, the following (some) fields may be defined (per terminal) on NA-RETXINDI.
  • NA-RETXINDI As an example, according to the number of data transmissions (of different HARQ PROCESS (GROUP) ID) actually performed in RETX_SFWIN, the (total) number of specific fields to be defined on NA-RETXINDI is changed (for example, in RETX_SFWIN In the case where actual "N" data transfers (of different HARQ PROCESS (GROUP) ID) have been performed, (N) "N” "NA-RETX ON / OFF" fields are defined (/ configured) on NA-RETXINDI. It can be).
  • NA-RETX ON / OFF e.g., equivalent to a physical HARQ Indicator Channel Acknowledgment / not-acknowledgement (PHICH A / N)" field
  • “1-BIT” may be allocated for each HARQ PROCESS (GROUP) ID (or subframe (group)).
  • the (individual) “NA-RETX TIMING” field is configured (/ defined) for each HARQ PROCESS (GROUP) ID (or subframe (group)) and / or (B) one (representative) ) Only the “NA-RETX TIMING” field is configured (/ defined) and in ascending (or descending) form of the HARQ PROCESS (GROUP) ID (or subframe (group) index) based on the indicated (NA-RETX) timing. It is also possible to allow NR-RETX to be performed sequentially (on the time domain).
  • a fixed ((semi) static) setting (/ signaling (e.g. RRC SIGNALING)) is performed in advance, without a separate "NA-RETX TIMING" field configuration (/ definition) in NA-RETXINDI. You can also apply (NA-RETX) timing.
  • the corresponding (NA-RETX) timing may be specified differently (or identically) for each HARQ PROCESS (GROUP) ID (or subframe (group) index).
  • a (individual) "RV" field is configured (/ defined) for each HARQ PROCESS (GROUP) ID (or subframe (group)) and / or (B) one (representative) "RV” Field may be configured (/ defined) and the indicated RV value may be commonly applied to the entire HARQ PROCESS (GROUP) ID (or subframe) related NA-RETX.
  • a fixed ((semi) static) fixed RV value set in advance (/ signaling (eg RRC SIGNALING)) without a separate “RV” field configuration (/ definition) in NA-RETXINDI. It can also be applied.
  • the RV value may be specified differently (or identically) for each HARQ PROCESS (GROUP) ID (or subframe (group) index).
  • APERIODIC CSI APERIODIC Channel Status Information (APERIODIC CSI) (/ Sounding Reference Signal (SRS))
  • APERIODIC CSI (/ SRS) transmission is requested, (A) APERIODIC CSI (/ SRS) transmission is applied to all NA-RETX (S) (triggered (simultaneously) with corresponding NA-RETXINDI). And / or (B) specific (or partial) NA-RETX information to which APERIODIC CSI (/ SRS) transmissions will be applied is signaled via NA-RETXINDI (field defined for that purpose) (or newly defined indicator). And / or (C) APERIODIC CSI (/ SRS) only on a specific (one) NA-RETX (e.g., first (or last) NA-RETX) that has been pre-set (/ signaled (e.g. RRC SIGNALING)). The transmission may be applied.
  • NA-RETX e.g., first (or last) NA-RETX
  • the detection related Radio Network Temporary Identifier (RNTI) value of the DCI may be independently signaled.
  • transmission-related parameters on the search space for the DCI may be set in advance.
  • specific examples thereof are as follows.
  • the NA-RETXINDI blind detection-related Radio Network Temporary Identifier (RNTI) value may be an existing DCI (e.g., DCI FORMAT (of the same payload size). 0 (/ 4)) (used for blind) detection) (Cell-; C-)) may be signaled independently (or differently).
  • NA-RETXINDI transmission (/ detection) related parameters on the search space SEARCH SPACE; SS) (e.g., (enhanced) physical downlink control channel candidate position ( (Enhanced) Physical Downlink Control Channel Candidate Location; (E) PDCCH CANDIDATE LOCATION, (Minimum) Aggregation Level (AL), number of blind decoding per AL, etc.) are set in advance (/ signaling (e.g. RRC SIGNALING)).
  • retransmission may be performed according to the UL grant.
  • specific examples thereof are as follows.
  • the UE is for the same HARQ PROCESS (GROUP) ID (or subframe (group) index), NA-RETXINDI (described above) (indicative of the retransmission) and (general) (A If all of the UL GRANT (eg, DCI FORMAT 0 (/ 4)) is received, retransmission may be performed according to the (A-RETX) UL GRANT (or NA-RETXINDI).
  • GROUP HARQ PROCESS
  • NA-RETXINDI indicator of the retransmission
  • the (A-RETX) UL GRANT may be interpreted as a relatively high (or low) priority (in terms of retransmission indication), compared to NA-RETXINDI.
  • an HARQ acknowledgment (ACK) transmission timing field may be configured for each HARQ process ID in the DCI.
  • specific examples thereof are as follows.
  • the retransmission-related HARQ-ACK transmission timing may be determined according to the following (some) rules.
  • a (individual) "HQTX_TIMING" field is configured (/ defined) for each (A) HARQ PROCESS (GROUP) ID (or subframe (group)) in NA-RETXINDI and / or Or (B) Only one (representative) “HQTX_TIMING” field is configured (/ defined) and ascending order of HARQ PROCESS (GROUP) ID (or subframe (group) index) based on the indicated HARQ-ACK transmission timing.
  • HARQ-ACK transmissions are performed sequentially (on the time domain) and / or (C) only one (representative) “HQTX_TIMING” field is configured (/ defined), and the indicated HARQ-ACK transmissions.
  • a HARQ-ACK fixed ((semi-statically) with a preset (/ signaling (e.g. RRC SIGNALING)) set in advance, without a separate "HQTX_TIMING" field configuration (/ definition) in NA-RETXINDI.
  • the transmission timing may be applied.
  • the HARQ-ACK transmission timing may be specified differently (or identically) for each HARQ PROCESS (GROUP) ID (or subframe (group) index).
  • an Acknowledgment / not-acknowledgement Resource Indicator (A / N RESOURCE INDICATOR; ARI) field is configured for each HARQ process ID in the DCI, and a physical uplink control channel is based on the ARI.
  • uplink control channel (PUCCH) resources may be allocated.
  • PUCCH uplink control channel
  • retransmission-related “Physical Uplink Control Channel Resource (PUCCH RESOURCE (PUCCH_RSC))” may be allocated according to the following (some) rules.
  • HARQ PROCESS (GROUP) ID (or subframe (group)) in the NA-RETXINDI (individual) "Acknowledgement / not-acknowledgement Resource Indicator ; A / N RESOURCE INDICATOR; ARI) ”field is configured (/ defined) and / or (B) only one (representative)“ ARI ”field is configured (/ defined), and the PUCCH_RSC corresponding to the indicated ARI is It can also be assigned to all HARQ PROCESS (GROUP) IDs (or subframe (group) indexes) that are triggered (simultaneously) (retransmitted) with the corresponding NA-RETXINDI.
  • a pre-set ((semi) static) fixed PUCCH_RSC is assigned (/ signaled (eg RRC SIGNALING)) It may be possible.
  • the corresponding PUCCH_RSC may be allocated differently (or identically) for each HARQ PROCESS (GROUP) ID (or subframe (group) index).
  • the terminal transmits uplink data to the base station (S1510).
  • the base station measures whether uplink data is received (S1520).
  • the base station transmits the DCI including the acknowledgment field based on the measurement result to the terminal (S1530).
  • the terminal retransmits data based on the DCI (S1540).
  • the retransmission may be non-adaptive retransmission.
  • the DCI may indicate retransmission for each HARQ process ID.
  • the DCI may indicate retransmission for each subframe in the subframe window.
  • the DCI may signal the last counter value when a counter field indicating how many scheduling is scheduled on an uplink grant (UL Grant).
  • the link grant may be an uplink grant received during a period from the time of receiving the nearest polling uplink grant before the Nth subframe to the N-1th subframe.
  • the DCI may be a UE specific DCI or a UE common DCI.
  • the DCI may include at least one of a non-adaptive retransmission on / off field, an non-adaptive retransmission timing field, a redundancy version (RV) field, and aperiodic channel state information (CSI) transmission request field.
  • a radio network temporary identifier (RNTI) value related to detection of the DCI may be independently signaled.
  • transmission related parameters on the search space for the DCI may be set in advance.
  • RNTI radio network temporary identifier
  • retransmission may be performed according to the uplink grant.
  • a HARQ ACK transmission timing field may be configured for each HARQ process ID in the DCI.
  • an acknowledgment / not-acknowledgement resource indicator (ARI) field may be configured for each HARQ process ID in the DCI.
  • 16 is a block diagram illustrating a communication device in which an embodiment of the present invention is implemented.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the processor 210 may receive the uplink communication related parameter independently set for each analog beam and apply the parameter to perform the uplink communication.
  • uplink communication related parameters set to the specific analog beam may be applied to the uplink communication.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the above-described proposed schemes may be independently implemented, some of the proposed schemes may be implemented in a combination or merge form.
  • the scope of the system to which the proposed method of the present invention is applied may be extended to other systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치를 제공한다. 상기 방법은 네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고, 상기 DCI에 기반하여 데이터를 재전송하되, 상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 라디오 액세스 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템 디자인이 논의되고 있는데, 개선된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(radio access technology) 또는 NR(new radio)이라 칭할 수 있다.
한편, NR에서도, HARQ(hybrid automatic repeat request) 프로세스를 통해 데이터의 재전송을 수행할 수 있다. 그런데, NR에서는, 시스템 대역폭 단위로 퍼지는 채널을 정의함으로써 소모되는 심볼들의 사용에 대한 보다 효율적인 사용 방법에 대해 논의되고 있으며, 이에 따라, 종래 LTE에서의 물리 HARQ 지시자 채널(physical HARQ indicator channel; PHICH)을 도입하지 않고, HARQ 프로세스를 수행하는 방법에 대해 논의되고 있다.
이에, 본 발명에서는 하향링크 제어 정보(downlink control information; DCI)를 재전송 지시자로 사용하여, 단말이 데이터 재전송을 수행하는 방법을 제공하도록 한다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 무선 통신 시스템에서 단말의 데이터 재전송 방법에 있어서, 네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고, 상기 DCI에 기반하여 데이터를 재전송하되, 상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함하는 것을 특징으로 하는 방법이 제공된다.
이 때, 상기 재전송은 비적응형(non-adaptive) 재전송일 수 있다.
이 때, 상기 DCI는 HARQ 프로세스 ID(hybrid automatic repeat request process identifier) 별로 재전송을 지시할 수 있다.
이 때, 상기 DCI는 서브프레임 윈도우 내의 서브프레임 별로 재전송을 지시할 수 있다.
이 때, 상기 DCI는, 상향링크 그랜트(uplink grant; UL grant) 상에 몇 번째 스케줄링인지를 나타내는 카운터 필드가 정의된 경우, 마지막 카운터 값을 시그널링할 수 있다.
이 때, 상기 카운터 값은, 상기 DCI를 수신하면 초기화될 수 있다.
이 때, UL 그랜트 상에 폴링 온/오프(polling on/off) 필드가 정의된 경우, N번째 서브프레임에서 폴링 온 UL 그랜트가 수신되면, 상기 N번째 서브프레임 시점 이후에 수신하는 상기 DCI의 지시 대상이 되는 UL 그랜트는, 상기 N번째 서브프레임 이전의 가장 가까운 폴링 온 UL 그랜트 수신 시점부터 N-1번째 서브프레임까지의 구간 동안 수신된 UL 그랜트일 수 있다.
이 때, 상기 DCI는 단말 특정적 DCI이거나, 또는 단말 공통적 DCI일 수 있다.
이 때, 상기 DCI는 비적응형 재전송 온/오프 필드, 비적응형 재전송 타이밍 필드, 리던던시 버전(redundancy field; RV) 필드, 비주기적 채널 상태 정보(channel state information; CSI) 전송 요청 필드 중 적어도 어느 하나를 포함할 수 있다.
이 때, 상기 DCI의 검출 관련 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI) 값은 독립적으로 시그널링될 수 있다.
이 때, 상기 DCI에 대한 검색 공간 상의 전송 관련 파라미터는 사전에 설정될 수 있다.
이 때, 상기 단말이 동일한 HARQ 프로세스 ID에 대해 상기 DCI와 UL 그랜트를 모두 수신한 경우, 상기 UL 그랜트에 따라 재전송이 수행될 수 있다.
이 때, 상기 DCI 내에 HARQ 프로세스 ID 별로 HARQ 확인응답(acknowledgement; ACK) 전송 타이밍 필드가 구성될 수 있다.
이 때, 상기 DCI 내에 HARQ 프로세스 ID 별로 확인응답 자원 지시자(Acknowledgement/not-acknowledgement Resource Indicator; A/N RESOURCE INDICATOR; ARI) 필드가 구성되고, 상기 ARI에 기반하여 물리 상향링크 제어 채널(physical uplink control channel; PUCCH) 자원이 할당될 수 있다.
본 발명의 다른 실시예에 따르면, 통신 장치는, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고, 상기 DCI에 기반하여 데이터를 재전송하되, 상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함하는 것을 특징으로 하는 통신 장치가 제공된다.
본 발명에 따르면, 단말이 데이터 재전송을 수행함에 있어서, DCI를 재전송 지시자로 사용함으로써 보다 효율적인 재전송이 가능하게 된다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템을 예시한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 5는 3GPP LTE에서 하향링크 서브프레임의 구조를 나타낸다.
도 6은 3GPP LTE에서 상향링크 HARQ 수행 방법의 일 예를 나타낸다.
도 7은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 8은 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 9는 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
도 10은 NR에서 하나의 슬롯 내에서의 멀티플렉싱 기법의 일례를 도시한 것이다.
도 11은 본 발명의 일 실시예에 따른, 단말의 데이터 재전송 방법의 순서도다.
도 12는 본 발명의 일 실시예에 따른, 단말의 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 13은 본 발명의 일 실시예에 따른, 단말의 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 14는 본 발명의 일 실시예에 따른, 단말의 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 15는 도 11의 방법을 적용하는 구체적인 예를 나타낸다.
도 16은 본 발명의 실시예가 구현되는 통신 장치를 나타낸 블록도이다.
도 1은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 4는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단말은 설정에 따라 PUCCH와 PUSCH를 동시에 전송하지 않거나, 동시에 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(diversity) 이득을 얻을 수 있다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 ACK/NACK, 하향링크 채널 상태를 나타내는 CSI(Channel State Information), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다. CSI에는 프리코딩 행렬을 지시하는 PMI(precoding matrix index), 단말이 선호하는 랭크 값을 나타내는 RI(rank indicator), 채널 상태를 나타내는 CQI(channel quality indicator) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI, ACK/NACK, RI 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 5는 3GPP LTE에서 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. PDSCH는 기지국 또는 노드가 단말에게 데이터를 전송하는 채널을 의미한다.
제어 영역에서 전송되는 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel), PDCCH(Physical Downlink Control Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 개수(즉, 제어영역의 크기)에 관한 정보인 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(acknowledgement)/ NACK(not-acknowledgement) 신호를 나른다. 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH는 하향링크 제어정보(downlink control information, DCI)를 전송하는 제어 채널이다. DCI는 PDSCH의 자원 할당(이를 하향링크 그랜트(downlink grant : DL 그랜트)라고도 한다), PUSCH(physical uplink shared channel)의 자원 할당(이를 상향링크 그랜트(uplink grant : UL 그랜트)라고도 한다), 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
도 6은 3GPP LTE에서 상향링크 HARQ 수행 방법의 일 예를 나타낸다.
단말은 기지국으로부터 n번째 서브프레임에서 PDCCH(310) 상으로 초기 상향링크 자원 할당을 수신한다.
단말은 n+4번째 서브프레임에서 상기 초기 상향링크 자원 할당을 이용하여 PUSCH(320) 상으로 상향링크 데이터 보다 구체적으로는 상향링크 전송 블록(transmission block)을 전송한다.
기지국은 n+8번째 서브프레임에서 PHICH(331)상으로 상기 상향링크 전송 블록에 대한 ACK/NACK 신호를 보낸다. ACK/NACK 신호는 상기 상향링크 전송 블록에 대한 수신 확인을 나타내며, ACK 신호는 수신 성공을 나타내고, NACK 신호는 수신 실패를 나타낸다.
NACK 신호를 수신한 단말은 n+12번째 서브프레임에서 PUSCH(340) 상으로 재전송 블록을 보낸다.
기지국은 n+16번째 서브프레임에서 PHICH(351) 상으로 상기 상향링크 전송 블록에 대한 ACK/NACK 신호를 보낸다.
n+4번째 서브프레임에서의 초기 전송 후, n+12번째 서브프레임에서 재전송이 이루어지므로, 8 서브프레임을 HARQ 주기로 하여 HARQ가 수행된다.
3GPP LTE에서는 8개의 HARQ 프로세스가 수행될 수 있으며, 각 HARQ 프로세스는 0부터 7까지의 인덱스가 매겨진다. 전술한 예는, HARQ 프로세스 인덱스 4에서, HARQ가 수행되는 것을 보이고 있다.
이하, 새로운 무선 접속 기술(new radio access technology; new RAT; NR)에 대해 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC(massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
도 7은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network; NG-RAN)의 시스템 구조를 예시한다.
도 7을 참조하면, NG-RAN은, 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 8은 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 8을 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 9는 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
NR에서는 레이턴시(latency)를 최소화 하기 위한 목적으로 도 9와 같이, 하나의 TTI내에, 제어 채널과 데이터 채널이 TDM 되는 구조가 프레임 구조(frame structure)의 한가지로서 고려될 수 있다.
도 9에서 빗금 친 영역은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분은 상향링크 제어(uplink control) 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터(downlink data; DL data) 전송을 위해 사용될 수도 있고, 상향링크 데이터(uplink data; UL data) 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임(subframe) 내에서 하향링크(DL) 전송과 상향링크(UL) 전송이 순차적으로 진행되어, 서브프레임(subframe) 내에서 DL data를 보내고, UL ACK/NACK도 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 레이턴시(latency)를 최소화할 수 있다.
이러한 셀프 컨테인드 서브프레임(self-contained subframe) 구조에서 기지국과 단말이 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 타임 갭(time gap)이 필요할 수 있다. 이를 위하여 셀프 컨테인드 서브프레임(self-contained subframe)구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 보호 구간(guard period; GP)로 설정될 수 있다.
한편, NR의 상향링크와 관련하여 다음 기술들이 적용될 수 있다.
<NR에서의 PUCCH 포맷>
NR에서의 PUCCH 포맷은 다음과 같은 특징을 가질 수 있다.
PUCCH는 상향링크 제어정보(uplink control information: UCI)를 전달할 수 있다. 또한, PUCCH 포맷은 지속기간/페이로드 크기에 의해 구분될 수 있다. 예를 들어, PUCCH 포맷은 짧은 구간 상향링크 제어 채널(SHORT DURATION UPLINK CONTROL CHANNEL: SHD_PUCCH)”과 “긴 구간 상향링크 제어 채널(LONG DURATION UPLINK CONTROL CHANNEL: LGD_PUCCH)”로 구분될 수 있다. SHD_PUCCH를 편의상 짧은 PUCCH(short PUCCH)라 칭할 수 있는데, 포맷 0(≤2비트), 포맷2(>2비트)가 해당될 수 있다. LGD_PUCCH는 긴 PUCCH로 칭할 수 있으며, 긴 PUCCH(long PUCCH)는 포맷1(≤2비트), 포맷3(>2, [>N]비트), 포맷4(>2, [≤N]비트)가 해당될 수 있다.
한편, PUCCH에 대한 전송 다이버시티 기법은 Rel-15에서 지원되지 않을 수 있다. 또한, 단말의 동시 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH), PUCCH 전송은 Rel-15에서 지원되지 않을 수 있다.
한편, NR에서의 PUCCH 포맷은 다음 표 1과 같이 정의될 수 있다.
Figure PCTKR2018000370-appb-T000001
<상향링크(UL) 신호/채널 다중화(멀티플렉싱, multiplexing)>
NR에서 상향링크(UL) 신호/채널 멀티플렉싱은 다음 특징을 지닐 수 있다.
PUCCH와 PUSCH의 멀티플렉싱에 대하여, 다음 기술이 지원될 수 있다. 예를 들어, short PUCCH(예를 들어, 포맷 0/2)와 PUSCH 간 시간 분할 다중화(time division multiplexing: TDM) 기술이 지원될 수 있다. 또한, 예를 들어, (Rel-15가 아닌) 하나의 단말의 짧은 상향링크 파트(UL-part)을 갖는 슬롯에 대한 short PUCCH(예를 들어, 포맷 0/2)와 PUSCH간 주파수 분할 다중화(frequency division multiplexing: FDM) 기술이 지원될 수 있다.
PUCCH와 PUSCH의 멀티플렉싱에 대하여, 다음 기술이 지원될 수 있다. 예를 들어, 서로 다른 단말의 short PUCCH(예를 들어, 포맷 0/2)와 long PUCCH(예를 들어, 포맷 1/3/4) 간 TDM/FDM 기술이 지원될 수 있다. 또한, 예를 들어, 하나의 단말의 동일 슬롯 상 short PUCCH(예를 들어, 포맷 0/2)들 간 TDM 기술이 지원될 수 있다. 또한, 예를 들어, 하나의 단말의 동일 슬롯 상 short PUCCH(예를 들어, 포맷 0/2)와 long PUCCH(예를 들어, 포맷 1/3/4) 간 TDM 기술이 지원될 수 있다.
도 10은 전술한 바와 같이, NR에서 하나의 슬롯 내에서의 멀티플렉싱 기법의 일례를 도시한 것이다.
도 10을 참조하면, 하나의 슬롯 안에서, 상향링크 영역(UL region)에 long-PUCCH가 심볼 #3부터 #7까지, #8부터 #11까지 서로 다른 주파수 대역에 위치하는 예를 나타내고 있다. 그리고, short PUCCH가 각각 심볼 #12와 #13에 위치하는 예를 나타내고 있다. 즉, short PUCCH들 간에 TDM, short PUCCH와 long PUCCH 간에 TDM/FDM되고 있는 예를 나타내고 있다.
<제어 정보 변조 및 부호화 기법(modulation and coding scheme: MCS) 오프셋(offset)>
NR에서는, 베타-오프셋(beta-offset)을 위한 반-정적 및 동적 지시가 모두 지원될 수 있다. 또한, 동적 베타-오프셋 지시에 대하여, RRC 시그널링에 의해 복수 개의 베타-오프셋 값의 세트가 구성될 수 있고, UL 그랜트는 동적으로 세트에 대한 인덱스(index)를 지시할 수 있다. 여기서, 각각의 세트는 복수의 항목(entry)을 포함하고, 각 항목은 각각의 UCI 유형(2-파트 CSI(two-part CSI)가 적용 가능할 경우, 포함)에 대응할 수 있다.
<UCI 맵핑>
슬롯 기반의 스케줄링에 대하여, 2비트가 넘는 HARQ-ACK에 대하여 PUSCH는 레이트 매칭되고, 또한, 2비트 이하의 HARQ-ACK에 대하여 PUSCH는 펑처링될 수 있다.
NR에서는, 하향링크 할당(DL assignment)이 PUSCH 상에서 HARQ-ACK 전송을 위한 동일한 시간 인스턴스(time instance)에 맵핑된 UL 그랜트보다 늦는 경우를 지원하지 않을 수 있다.
또한, PUSCH 상에 피기백되는 UCI(예를 들어, HARQ-ACK 또는 CSI)는, PUSCH에 할당된 RB들에 걸쳐 분산 분포된 RE들에 맵핑될 수 있다.
HARQ-ACK 펑처링이나 PUSCH 레이트 매칭에 관계 없이, 동일한 RE 맵핑 규칙이 PUSCH 상의 HARQ-ACK 피기백에 적용될 수 있다. 예를 들어, 시간 영역 상에서 DM-RS에 인접하게 국부적으로(localized) 맵핑이 되거나 또는 분산 맵핑이 될 수 있다.
<스케줄링/HARQ 타이밍>
NR에서 스케줄링/HARQ 타이밍에 대해 다음 특징을 지닐 수 있다.
스케줄링/HARQ 타이밍에 대한 동적 지시에 대하여, A와 B 간 슬롯 타이밍은 일련의 값들의 세트로부터 DCI 내의 필드에 의해 지시되고, 상기 일련의 값들의 세트는 단말 특정적 RRC 시그널링에 의해 구성될 수 있다. 여기서, 모든 Rel. 15 단말은 0과 같은 K0의 최소값을 지원할 수 있다.
한편, 상기 A, B에 대한 K0 내지 K2는 다음 표 2와 같이 정의될 수 있다.
Figure PCTKR2018000370-appb-T000002
단말 프로세싱 시간 능력을 기호 (N1, N2)과 같이 나타낼 수 있다. 여기서, N1은 NR-PDSCH 수신의 종료로부터, 단말 관점에서, 대응하는 ACK/NACK 전송의 가능한 가장 빠른 시작까지의, 단말의 프로세싱에 필요한 OFDM 심볼의 개수를 의미할 수 있다. N2는 UL 그랜트 수신을 포함하는 NR-PDCCH의 종료로부터, 단말 관점에서, 대응하는 NR-PUSCH 전송의 가능한 가장 빠른 시작까지의, 단말의 프로세싱에 필요한 OFDM 심볼의 개수를 의미할 수 있다.
단말의 (K1, K2)의 최소 값은 (N1, N2), 타이밍 어드밴스 값(timing advance value: TA value), 단말 DL/UL 스위칭, 기타 등등에 기반하여 결정될 수 있다.
한편, NR에서는, 적어도 PDCCH, PDSCH 및 PUSCH에 대한 단일 뉴머롤로지(numerology)를 사용하는 non-CA 경우의 슬롯 기반 스케줄링에 대한 두 가지 유형의 단말 프로세싱 시간 능력이 정의될 수 있다.
예컨대, 주어진 설정과 뉴머롤로지에 대해, 단말은 아래의 2개의 표(표3, 표4)로부터 대응하는 N1(또는 N2)의 항목(entry)을 기반으로, N1(또는 N2)에 대해 하나의 능력(capability)만을 지시할 수 있다.
능력#1(표 3): 단말 프로세싱 시간 능력
Figure PCTKR2018000370-appb-T000003
능력#2(표 4): 적극적 단말 프로세싱 시간 능력
Figure PCTKR2018000370-appb-T000004
혼합 뉴머롤로지와 스케줄링/HARQ 타이밍에 대하여, PDCCH와 PDCCH에 의하여 스케줄링된 전송 간 뉴머롤로지가 다를 때, K0 또는 K2에 대해, DCI에서 지시된 시간 그래뉼래리티(time granularity)는 상기 스케줄링된 전송의 뉴머롤로지에 기반할 수 있다.
동일하거나 다른 뉴머롤로지로 동작하는 복수 개의 DL 요소 반송파에 관련된 HARQ-ACK 전송이 지원될 수 있다. PDSCH를 스케줄링하는 DCI에서 지시된 K1에 대한 시간 그래뉼래리티는 PUCCH 전송의 뉴머롤로지에 기반할 수 있다.
<코드 블록 그룹(code block group: CBG) 기반 (재)전송>
동기: 부분 전송블록(partial transport block: partial TB) 재전송은 효율적인 자원 활용을 유도할 수 있다. 재전송 단위는 코드블록(code block: CB) 그룹(CBG)일 수 있다. 그러나, 이 방법을 사용할 때, HARQ-ACK 피드백 비트와 DCI 오버헤드는 증가할 수 있다.
코드블록 그룹(CBG) 구성: 단말은 RRC 시그널링에 의해 CBG 기반의 재전송이 가능하도록 반-정적으로 설정될 수 있고, 상기 설정은 DL과 UL에 대해 구분될 수 있다. TB 당 CBG의 최대값 N은 RRC 시그널링에 의해 설정될 수 있다. 단일 코드워드(codeword: CW)의 경우, TB 당 CBG의 설정 가능한 최대값은 8일 수 있다. 복수의 CW의 경우, TB 당 CBG의 설정 가능한 최대값은 4이고, 설정된 TB 당 CBG의 최대값은 TB마다 동일할 수 있다.
적어도 단일 CW의 경우, TB에서 CBG의 개수 M은 min(C, N)과 같고, 여기서 C는 상기 TB 내의 CB 개수일 수 있다. 총 M CBG 중 첫 번째 Mod(C, M) CBG는 CBG 당 ceil(C/M) CB를 포함할 수 있다. 나머지 M-Mod(C, M) CBG는 CBG 당 floor(C/M) CB를 포함할 수 있다.
DCI와 관련하여, 코드블록 그룹 전송 정보 (CBG transmission information: CBGTI)와 코드블록 그룹 플러싱 아웃 정보 (CBG flushing out information: CBGFI)가 도입될 수 있다. CBGTI: CBG가 (재)전송될 수 있으며, RRC에 의해 설정된 CBGTI의 N 비트일 수 있다. CBGFI: 소프트-버퍼(soft-buffer)/HARQ 컴바이닝(HARQ combining)에 대해 CBG가 다르게 처리될 수 있으며, CBGFI에 대한 다른 1비트(적어도 단일 CW의 경우)일 수 있다.
하향링크 데이터에 대해, CBGTI와 CBGFI는 동일한 DCI에 포함될 수 있다. 모드 1에서, DCI는 CBGTI를 포함할 수 있다. 모드 2에서, DCI는 CBGTI와 CBGFI를 모두 포함할 수 있다.
상향링크 데이터에 대해, CBGTI는 DCI에 포함되도록 구성될 수 있다. 모드 1에서 DCI는 CBGTI를 포함할 수 있다.
HARQ-ACK 피드백에서, 최초 전송 및 재전송에 대해, TB의 각 CBG에는 동일한 CB(들)의 집합이 있을 수 있다. 단말은, CBG 기반의 재전송이 설정되면, 폴백 DCI를 사용하는 PDCCH에 의해 스케줄링된 PDSCH에 대하여, 적어도 HARQ-ACK 멀티플렉싱이 없는 경우에, TB 레벨 HARQ-ACK 피드백을 사용할 수 있다. 이는 폴백(fallback) DCI는 CBG 레벨 HARQ-ACK 피드백을 지원하지 않는다는 것을 의미할 수 있다.
반-정적 HARQ-ACK 코드북에 대해, HARQ-ACK 코드북은 구성된 모든 CBG들(스케줄링되지 않은 CBG 포함)에 상응하는 HARQ-ACK를 포함할 수 있다. 만약 동일 CBG가 성공적으로 디코딩되었다면, CBG에 대해 ACK가 보고될 수 있다. 만약 CB CRC 체크가 모든 CB에 대해 통과되는 동안 TB CRC 체크가 통과되지 않으면, 모든 CBG에 대해 NACK이 보고될 수 있다. 만약 TB에 대한 CB의 개수가 CBG의 설정된 최대 개수보다 작다면, NACK은 빈 CBG 인덱스(index)에 맵핑될 수 있다.
이하에서는, 본 발명에 대하여 설명한다.
전술한 바와 같이, NR에서는 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있으며, 또한 URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있다.
한편, NR에서도, HARQ(hybrid automatic repeat request) 프로세스를 통해 데이터의 재전송을 수행할 수 있다. 그런데, NR에서는, 시스템 대역폭 단위로 퍼지는 채널을 정의함으로써 소모되는 심볼들의 사용에 대한 보다 효율적인 사용 방법에 대해 논의되고 있으며, 이에 따라, 종래 LTE에서의 물리 HARQ 지시자 채널(physical HARQ indicator channel; PHICH)을 도입하지 않고, HARQ 프로세스를 수행하는 방법에 대해 논의되고 있다.
이에, 본 발명에서는 하향링크 제어 정보(downlink control information; DCI)를 재전송 지시자로 사용하여, 단말이 데이터 재전송을 수행하는 방법을 제공하도록 한다.
일례로, 아래 제안 방식들은 NEW RAT (NR) 시스템 하에서, 복수개의 (상향링크/하향링크) 데이터에 대한 재전송을 효율적으로 (동시에) 트리거링시키는 방법을 제안한다. 여기서, 일례로, 본 발명의 (일부) 제안 방식들은 상향링크 통신 (그리고/혹은 하향링크 통신) 그리고/혹은 “비적응형 재전송(NON-ADAPTIVE RETRANSMISSION: NA-RETX)” (예를 들어, 데이터 수신 성공 여부 관련 HARQ 피드백 채널을 기반으로 재전송 동작이 수행될 수 있다. 즉, 재전송 관련 스케줄링 GRANT가 (추가적으로) 전송되지 않고, 초기 전송 관련 스케줄링 정보가 재전송에도 (전부 혹은 일부) 활용되는 것으로 해석할 수 있다.) (그리고/혹은 “적응형 재전송(ADAPTIVE RETRANSMISSION: A-RETX)” (예를 들어, 재전송 관련 스케줄링 GRANT (그리고/혹은 데이터 수신 성공 여부 관련 HARQ 피드백 채널)를 기반으로 재전송 동작이 수행될 수 있다. 즉, (추가적으로 전송된) 재전송 관련 스케줄링 GRANT가 재전송에 활용되는 것으로 해석할 수 있다.))에 대해서도 확장 적용될 수 있다. 여기서, 일례로, 본 발명 상에서의 “비적응형 재전송 (NA-RETX)” 워딩은 “적응형 재전송(A-RETX)” 워딩으로 상호 (확대 혹은 교차) 해석될 수 도 있다. 또한, 본 발명 상에서의 “재전송 지시” 워딩은 “새로운 전송 블록(TRANSPORT BLOCK: TB) 지시”로 확장 해석될 수 도 있다.
도 11은 본 발명의 일 실시예에 따른, 단말의 데이터 재전송 방법의 순서도다.
도 11에 따르면, 단말은 네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신한다(S1110). 이 때, 상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드 혹은 재전송 지시 필드를 포함한다.
이후, 단말은 상기 DCI에 기반하여 데이터를 재전송한다(S1120). 여기서 예컨대, 상기 재전송은 비적응형(non-adaptive) 재전송일 수 있다. 또한 예컨대, 상기 DCI는 HARQ 프로세스 ID 별로 재전송을 지시할 수 있다. 또한 예컨대, 상기 DCI는 서브프레임 윈도우 내의 서브프레임 별로 재전송을 지시할 수 있다. 또한 예컨대, 상기 DCI는, 상향링크 그랜트(plink grant; UL Grant) 상에 몇 번째 스케줄링인지를 나타내는 카운터 필드가 정의된 경우, 마지막 카운터 값을 시그널링할 수 있다. 또한 예컨대, 상향링크 그랜트 상에 폴링 온/오프 필드가 정의된 경우, N번째 서브프레임에서 폴링 온 상향링크 그랜트가 수신되면, 상기 N번째 서브프레임 시점 이후에 수신하는 상기 DCI의 지시대상이 되는 상향링크 그랜트는, 상기 N번째 서브프레임 이전의 가장 가까운 폴링 온 상향링크 그랜트 수신 시점부터 N-1번째 서브프레임까지의 구간 동안 수신된 상향링크 그랜트일 수 있다. 또한 예컨대, 상기 DCI는 단말 특정적 DCI이거나, 또는 단말 공통적 DCI일 수 있다. 또한 예컨대, 상기 DCI는 비적응형 재전송 온/오프 필드, 비적응형 재전송 타이밍 필드, 리던던시 버전(redundancy version; RV) 필드, 비주기적 채널 상태 정보(channel state information; CSI) 전송 요청 필드 중 적어도 어느 하나를 포함할 수 있다. 또한 예컨대, 상기 DCI의 검출 관련 무선 네트워크 임시 식별자(radio network temporary identifier; RNTI) 값은 독립적으로 시그널링될 수 있다. 또한 예컨대, 상기 DCI에 대한 검색 공간 상의 전송 관련 파라미터는 사전에 설정될 수 있다. 또한 예컨대, 상기 단말이 동일한 HARQ 프로세스 ID에 대해 상기 DCI와 상향링크 그랜트를 모두 수신한 경우, 상기 상향링크 그랜트에 따라 재전송이 수행될 수 있다. 또한 예컨대, 상기 DCI 내에 HARQ 프로세스 ID 별로 HARQ ACK 전송 타이밍 필드가 구성될 수 있다. 또한 예컨대, 상기 DCI 내에 HARQ 프로세스 ID 별로 확인응답 자원 지시자(Acknowledgement/not-acknowledgement resource indicator; ARI) 필드가 구성될 수 있다.
이하에서는, 도 11에 따른, 단말의 데이터 재전송 방법의 구체적인 예를 설명하도록 한다.
전술한 바와 같이, 상기 단말은 네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고, 상기 DCI에 기반하여 데이터를 재전송하되, 상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함할 수 있다. 다시 말하면, 종래 3GPP LTE에서는 단말이 PHICH 상으로 ACK/NACK을 수신하였으나, 본 발명에서는 이를 대신하여 단말이 확인응답 필드가 포함된 DCI를 수신하고, 이를 기반으로 하여 데이터에 대한 HARQ 프로세스를 진행한다. 또한, 상기 재전송은 비적응형(non-adaptive) 재전송일 수 있다. 아울러, 이에 대한 구체적인 예는 아래와 같다.
[제안 방법#1] 일례로, 복수개의 (상향링크) 데이터에 대한 NA-RETX가 (사전에 정의된) 하나의 지시자 (예를 들어, “하향링크 제어 정보(Downlink Control Information; DCI)”) (NA-RETXINDI)로 (동시에) 트리거링될 때, 아래 (일부) 규칙이 적용될 수 있다.
전술한 바와 같이, 상기 DCI는 HARQ 프로세스 ID(hybrid automatic repeat request process identifier) 별로 재전송을 지시할 수 있다. 아울러, 이에 대한 구체적인 예는 아래와 같다.
(예시#1-1-1) 일례로, 하이브리드 ARQ 프로세스 (그룹) ID(Hybrid Automatic Repeat reQuest PROCESS (GROUP) Identifier; HARQ PROCESS (GROUP) ID) 별로 NA-RETX가 지시될 수 있다.
여기서, 일례로, 해당 규칙이 적용될 경우, NA-RETXINDI 상에 HARQ PROCESS (GROUP) ID 별 NA-RETX 지시를 위한 필드(들)이 정의될 수 있다.
여기서, 일례로, 필드 (인덱스) 별 연동된 HARQ PROCESS (GROUP) ID는 사전에 정의된 규칙에 따라 설정 (예를 들어, 상대적으로 낮은 필드 인덱스에 상대적으로 낮은 (혹은 높은) HARQ PROCESS (GROUP) ID가 (암묵적으로) 맵핑되는 형태) 되거나 그리고/혹은 (기지국으로부터) 시그널링 (예를 들어, RRC 시그널링(SIGNALING)) 될 수 도 있다.
전술한 바와 같이, 상기 DCI는 서브프레임 윈도우 내의 서브프레임 별로 재전송을 지시할 수 있다. 또한, 상기 DCI는, 상향링크 그랜트(uplink grant; UL grant) 상에 몇 번째 스케줄링인지를 나타내는 카운터 필드가 정의된 경우, 마지막 카운터 값을 시그널링할 수 있다. 다시 말하면, 예를 들어, UL 그랜트의 카운터 값이 5일 때, 단말은 상기 카운터 값만큼의 UL 그랜트가 재전송 트리거링의 대상이 될 수 있다. 여기서, 실제로 네트워크가 상향링크 데이터에 대한 재전송이 요구되는지 여부는 고려하지 않는다.
또한, 상기 카운터 값은, 상기 DCI를 수신하면 초기화될 수 있다. 다시 말하면, 전술한 카운터 값에 기반한 재전송의 경우, 실제로 네트워크가 수신한 데이터에 대한 재전송이 과도하게 요구될 수 있다. 여기서, 상기 카운터 값을 초기화시키는 DCI를 통하여, 전술한 예와 같은 과도한 재전송을 방지할 수 있다.
또한, UL 그랜트 상에 폴링 온/오프(polling on/off) 필드가 정의된 경우, N번째 서브프레임에서 폴링 온 UL 그랜트가 수신되면, 상기 N번째 서브프레임 시점 이후에 수신하는 상기 DCI의 지시 대상이 되는 UL 그랜트는, 상기 N번째 서브프레임 이전의 가장 가까운 폴링 온 UL 그랜트 수신 시점부터 N-1번째 서브프레임까지의 구간 동안 수신된 UL 그랜트일 수 있다. 다시 말하면, 단말이 수신하는 2개의 폴링 온 UL 그랜트 간의 간격을 조절함으로써 데이터 재전송 구간을 조절할 수 있다. 아울러, 이에 대한 구체적인 예는 아래와 같다.
(예시#1-1-2) 일례로, 서브프레임 윈도우 (RETX_SFWIN) 내의 서브프레임 (그룹) 별로 NA-RETX가 지시될 수 있다.
여기서, 일례로, 해당 규칙이 적용될 경우, NA-RETXINDI 상에 (RETX_SFWIN 내의) 서브프레임 (그룹) 인덱스 별 NA-RETX 지시를 위한 필드(들)이 정의될 수 있다.
여기서, 일례로, (본 발명에서) “서브프레임 (그룹) 인덱스” 워딩은 RETX_SFWIN 내에 포함된 서브프레임들에 대해, 재인덱싱을 수행한 후, 최종 도출된 인덱스로 해석될 수 도 있다.
여기서, 일례로, 필드 (인덱스) 별 연동된 서브프레임 (그룹) 인덱스는 사전에 정의된 규칙에 따라 설정 (예를 들어, 상대적으로 낮은 필드 인덱스에 상대적으로 낮은 (혹은 높은) 서브프레임 (그룹) 인덱스가 (암묵적으로) 맵핑되는 형태) 되거나 그리고/혹은 (기지국으로부터) 시그널링 (예를 들어, RRC SIGNALING) 될 수 도 있다.
여기서, 일례로, NA-RETX 지시 대상 서브프레임 윈도우 크기 (RETX_SFWINSIZE)는 (기지국으로부터) 시그널링 (예를 들어, RRC SIGNALING) 되거나 그리고/혹은 NA-RETXINDI (상의 해당 용도로 정의된 필드) (혹은 새롭게 정의된 지시자)를 통해 시그널링될 수 도 있다.
또 다른 일례로, 상향링크 그랜트(uplink grant; UL GRANT) 상에 몇번째 스케줄링인지를 나타내는 카운터 (SCH_CNT) 필드 (예를 들어, (기존) “하향링크 할당 인덱스(DOWNLINK ASSIGNMENT INDEX; DAI)” 필드와 유사한 기능)가 정의될 경우, NA-RETXINDI 상에서 (사전에 정의된 필드를 통해) (재전송 트리거링 관련) 마지막 카운터 값 (LAST_CVAL)을 시그널링 (예를 들어, (이와 같은 경우) “0 ~ (LAST_CVAL-1)” 카운터 값의 UL GRANT가 NA-RETX (동시) 트리거링 대상이 됨) 하도록 할 수 도 있다.
여기서, 일례로, SCH_CNT 값은 NA-RETXINDI 송/수신 후에 초기화되도록 할 수 있다.
여기서, 일례로, 이를 통해서, (A) RETX_SFWIN (그리고/혹은 RETX_SFWINSIZE)의 동적 변경(/지시) 그리고/혹은 (B) (해당) NA-RETXINDI을 통해서 NA-RETX (여부)가 지시될 (전체) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 개수 정보 시그널링이 가능하다.
또 다른 일례로, UL GRANT 상에 “폴링 온/오프(POLLING ON/OFF)” 필드 (예를 들어, “1 = ON”, “0 = OFF”)가 정의될 경우, 만약 N번째 서브프레임(SF#N) 시점에서 “UL GRANT with POLLING ON/OFF(UL GRANT W/ POLLING ON/OFF) = 1”가 수신되면, (A) SF#N (혹은 SF#(N+1)) 시점을 포함하여 이후에 (가장 빨리) 수신되는 NA-RETXINDI의 NA-RETX (여부) 지시 대상이 되는 UL GRANT는 SF#N 시점 이전의 가장 가까운 “UL GRANT W/ POLLING ON/OFF = 1” 수신 시점 (SF#K)으로부터 SF#(N-1) 시점까지의 구간 (혹은 SF#(K+1) 시점으로부터 SF#N 시점까지의 구간) 동안에 수신된 (모든) UL GRANT로 정의(/가정)되거나 그리고/혹은 (B) SF#N (혹은 SF#(N+1)) 시점을 포함하여 이후에 (가장 빨리) 수신되는 NA-RETXINDI의 RETX_SFWIN는 SF#K 시점으로부터 SF#(N-1) 시점까지의 구간 (혹은 SF#(K+1) 시점으로부터 SF#N 시점까지의 구간)이 된다.
도 12는 본 발명의 일 실시예에 따른, 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 12에 따르면, 예를 들어, HARQ 프로세스 ID #0, #1, #2, #3, #4, #5의 6개의 HARQ 프로세스 ID가 있을 수 있다. 여기서, 단말은 서브프레임 N에서 DCI를 수신할 수 있다. 여기서, 예를 들어, 상기 DCI를 통하여 서브프레임 K, K+1, K+2, K+3, K+4, K+5에 대한 데이터 재전송이 고려될 수 있다. 여기서, 서브프레임 K 부터 K+5에 대하여 순서대로 HARQ 프로세스 ID #0부터 #5까지 대응시킬 수 있다. 여기서, 예를 들어, 단말은 상기 수신한 DCI를 통하여 001010의 비트 열을 수신하면, 단말은 HARQ 프로세스 ID #2 및 #4에 대한 재전송을 수행할 수 있다.
또는 여기서, 예를 들어, 상기 수신한 DCI를 통하여 서브프레임 K부터 K+5까지의 구간을 서브프레임 윈도우로 설정하고, 상기 수신한 DCI를 통하여 상기 윈도우 내의 서브프레임 별로 재전송을 지시할 수 있다.
도 13은 본 발명의 일 실시예에 따른, 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 13에 따르면, 단말은 N번째 서브프레임에서 DCI를 수신할 수 있다. 여기서, 예를 들어, K번째 서브프레임부터 K+4번째 서브프레임까지에 대하여 상향링크 그랜트에 의해 스케줄링될 수 있다. 여기서, 상향링크 그랜트 상에 몇 번째 스케줄링인지 나타내는 카운터 필드가 정의된 경우, 서브프레임 K부터 서브프레임 K+4까지 각각 0, 1, … , 5의 카운터 값이 할당될 수 있다. 여기서, 상기 수신한 DCI에서 마지막 카운터 값을 시그널링하여 K번째 서브프레임부터 K+4번째 서브프레임까지 전송한 모든 데이터에 대하여 재전송을 수행할 수 있다.
여기서, 재전송하는 데이터가 실제로 네트워크에서 수신하지 못했는지 여부는 고려 대상이 아니다. 여기서, 예를 들어, 상기 DCI 수신 후에 상기 카운터 값을 초기화시키고, 상기 DCI의 전송 시점을 조절함으로써 과도한 데이터의 재전송을 억제할 수 있다.
도 14는 본 발명의 일 실시예에 따른, 데이터 재전송 방법을 개략적으로 도시한 것이다.
도 14에 따르면, 단말은 N번째 서브프레임에서 폴링 온 UL 그랜트를 수신한다. 여기서, N번째 서브프레임 이전의 가장 가까운 폴링 온 UL 그랜트를 수신한 서브프레임이 K(K<N)번째 서브프레임일 수 있다. 또한 여기서, N번째 서브프레임 이후의 가장 가까운 DCI를 수신한 서브프레임이 P(P>N)번째 서브프레임일 수 있다. 여기서, 상기 P번째 서브프레임에서 수신한 DCI가 지시하는 재전송의 대상이 되는 UL 그랜트는, K번째 서브프레임 시점부터 N-1(N-1>K)번째 서브프레임 시점까지의 구간 동안 수신된 UL 그랜트일 수 있다.
전술한 바와 같이, 상기 DCI는 단말 특정적 DCI이거나, 또는 단말 공통적 DCI일 수 있다. 아울러, 이에 대한 구체적인 예는 아래와 같다.
(예시#1-2) 일례로, NA-RETXINDI는 “단말 특정적 DCI(UE-SPECIFIC DCI)” 형태로 구성(/정의)될 수 있다.
여기서, 일례로, 해당 NA-RETXINDI의 패이로드 크기는 (일반) UL GRANT (예를 들어, DCI FORMAT 0(/4))와 동일하게 구성(/정의) (예를 들어, (이와 같은 경우) (일반) UL GRANT 인지 혹은 NA-RETXINDI 인지는 (NA-RETXINDI 상에) 사전에 정의된 “플래그 필드(FLAG FIELD)”를 통해서 구분됨) 되거나 그리고/혹은 독립적으로 구성(/정의)될 수 도 있다.
일례로, NA-RETXINDI는 “단말(그룹) 공통 DCI(UE (GROUP)-COMMON DCI)” 형태로 구성(/정의)될 수 도 있다. 여기서, 일례로, 해당 규칙이 적용될 경우, NA-RETXINDI는 (기존) “DCI 포맷 3/3A(DCI FORMAT 3/3A)”와 유사하게, 하나의 DCI 내 서로 다른 복수 비트들(MULTI-BIT)을 복수 단말에게 할당한 상태에서, NA-RETX을 단말 별로 독립적으로 트리거링할 수 있다.
전술한 바와 같이, 상기 DCI는 비적응형 재전송 온/오프 필드, 비적응형 재전송 타이밍 필드, 리던던시 버전(redundancy field; RV) 필드, 비주기적 채널 상태 정보(channel state information; CSI) 전송 요청 필드 중 적어도 어느 하나를 포함할 수 있다. 아울러, 이에 대한 구체적인 예시는 아래와 같다.
(예시#1-3) 일례로, NA-RETXINDI 상에 (단말 별로) 아래 (일부) 필드가 정의될 수 있다.
여기서, 일례로, RETX_SFWIN 내에서 실제 수행된 (상이한 HARQ PROCESS (GROUP) ID의) 데이터 전송 횟수에 따라, NA-RETXINDI 상에 정의될 특정 필드의 (총) 개수가 변경 (예를 들어, RETX_SFWIN 내에서 실제 “N”번의 (상이한 HARQ PROCESS (GROUP) ID의) 데이터 전송이 수행된 경우, NA-RETXINDI 상에 (총) “N”개의 “NA-RETX ON/OFF” 필드가 정의(/구성)될 수 있음) 될 수 도 있다.
-“NA-RETX ON/OFF (예를 들어, 동작상 물리 HARQ 지시자 채널 긍정 확인응답/부정 확인응답(Physical HARQ Indicator Channel Acknowledgement/not-acknowledgement; PHICH A/N)과 등가)” 필드
여기서, 일례로, HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 별로 “1-BIT”가 할당될 수 있다.
-“NA-RETX 타이밍(TIMING)” 필드
여기서, 일례로, (A) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 별로 (개별적인) “NA-RETX TIMING” 필드가 구성(/정의)되거나 그리고/혹은 (B) 하나의 (대표) “NA-RETX TIMING” 필드만 구성(/정의)되고, 지시된 (NA-RETX) 타이밍을 기준으로, HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)의 오름차순 (혹은 내림차순) 형태로, (시간 영역 상에서) 순차적으로 NR-RETX가 수행되도록 할 수 도 있다.
또 다른 일례로, NA-RETXINDI 내에 별도의 “NA-RETX TIMING” 필드 구성(/정의)없이, 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))된 ((반)정적으로) 고정된 (NA-RETX) 타이밍을 적용하도록 할 수 도 있다.
여기서, 일례로, 해당 (NA-RETX) 타이밍은 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스) 별로 상이하게 (혹은 동일하게) 지정될 수 있다.
-“리던던시 버전(REDUNDANCY VERSION; RV)” 필드
여기서, 일례로, (A) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 별로 (개별적인) “RV” 필드가 구성(/정의)되거나 그리고/혹은 (B) 하나의 (대표) “RV” 필드만 구성(/정의)되고, 지시된 해당 RV 값을 전체 HARQ PROCESS (GROUP) ID (혹은 서브프레임) 관련 NA-RETX에 공통적으로 적용하도록 할 수 도 있다.
또 다른 일례로, NA-RETXINDI 내에 별도의 “RV” 필드 구성(/정의)없이, 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))된 ((반)정적으로) 고정된 RV 값을 적용하도록 할 수 도 있다.
여기서, 일례로, 해당 RV 값은 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스) 별로 상이하게 (혹은 동일하게) 지정될 수 있다.
-“비주기적 채널 상태 정보(APERIODIC Channel Status Information; APERIODIC CSI)(/사운딩 참조 신호(Sounding Reference Signal; SRS)) 전송 요청” 필드
여기서, 일례로, APERIODIC CSI(/SRS) 전송이 요청되었을 경우, (A) (해당 NA-RETXINDI로 (동시에) 트리거링되는) 모든 NA-RETX(S)에 APERIODIC CSI(/SRS) 전송이 적용되도록 하거나 그리고/혹은 (B) APERIODIC CSI(/SRS) 전송이 적용될 특정 (혹은 일부) NA-RETX 정보가 NA-RETXINDI (상의 해당 용도로 정의된 필드) (혹은 새롭게 정의된 지시자)를 통해서 시그널링되도록 하거나 그리고/혹은 (C) 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))된 특정 (하나의) NA-RETX (예를 들어, 첫번째 (혹은 마지막) NA-RETX)에만 APERIODIC CSI(/SRS) 전송이 적용되도록 할 수 도 있다.
-“(NA-RETX 관련) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)” 필드
-“(NA-RETXINDI 상에서) NA-RETX (여부) 지시될 전체 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 개수” 필드
-“(NA-RETX 관련) 복조 참조 신호 사이클릭 시프트 인덱스(Demodulation Reference Signal Cyclic Shift Index; DM-RS CYCLIC SHIFT (CS) INDEX)” 필드 (그리고/혹은 “(NA-RETX 관련) 전송 전력 명령(TRANSMISSION POWER COMMAND)” 필드 그리고/혹은 “(NA-RETX 관련) (아날로그) 빔 관련 정보((ANALOG) BEAM RELATED INFORMATION)” 필드 그리고/혹은 “(NA-RETX 관련) 캐리어(CARRIER) (혹은 (서브)밴드 (인덱스) 지시자(((SUB)BAND)) (INDEX) INDICATOR)” 필드 (그리고/혹은 “(재전송 관련) 변조 코딩 기법(Modulation Coding Scheme; MCS)” 필드 그리고/혹은 “(재전송) 관련 (주파수) 자원 할당(RESOURCE ALLOCATION)” 필드))
전술한 바와 같이, 상기 DCI의 검출 관련 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI) 값은 독립적으로 시그널링될 수 있다. 또한, 상기 DCI에 대한 검색 공간 상의 전송 관련 파라미터는 사전에 설정될 수 있다. 아울러, 이에 대한 구체적인 예시는 아래와 같다.
(예시#1-4) 일례로, NA-RETXINDI (블라인드) 검출 관련 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI) 값은 (((동일한 패이로드 크기의) 기존 DCI (예를 들어, DCI FORMAT 0(/4)) (블라인드) 검출에 이용되는) (셀(Cell-; C-))RNTI 값과) 독립적으로 (혹은 상이하게) 시그널링될 수 있다. 일례로, (UE-SPECIFIC 혹은 (UE GROUP) COMMON) 검색 공간 (SEARCH SPACE; SS) 상의 NA-RETXINDI 전송(/검출) 관련 파라미터 (예를 들어, (강화된) 물리 하향링크 제어 채널 후보 위치((Enhanced) Physical Downlink Control Channel Candidate Location;(E)PDCCH CANDIDATE LOCATION), (최소) 집성 레벨(AGGREGATION LEVEL; AL), AL 별 블라인드 디코딩 개수 등)는 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))될 수 도 있다.
전술한 바와 같이, 상기 단말이 동일한 HARQ 프로세스 ID에 대해 상기 DCI와 UL 그랜트를 모두 수신한 경우, 상기 UL 그랜트에 따라 재전송이 수행될 수 있다. 아울러, 이에 대한 구체적인 예시는 아래와 같다.
(예시#1-5) 일례로, 단말이 동일 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)에 대해, (재전송을 지시하는) (상기 설명한) NA-RETXINDI와 (일반) (A-RETX) UL GRANT (예를 들어, DCI FORMAT 0(/4))을 모두 수신한 경우, (A-RETX) UL GRANT (혹은 NA-RETXINDI)에 따라 재전송을 수행하도록 할 수 있다.
여기서, 일례로, 해당 규칙이 적용될 경우, (A-RETX) UL GRANT가 NA-RETXINDI에 비해, (재전송 지시 관점에서) 상대적으로 높은 (혹은 낮은) 우선 순위로 해석될 수 있다.
전술한 바와 같이, 상기 DCI 내에 HARQ 프로세스 ID 별로 HARQ 확인응답(acknowledgement; ACK) 전송 타이밍 필드가 구성될 수 있다. 아울러, 이에 대한 구체적인 예시는 아래와 같다.
[제안 방법#2] 일례로, 상기 설명한 (일부) 제안 방식들이 복수개의 하향링크 데이터에 대한 NA-RETX (그리고/혹은 A-RETX)에 적용될 경우, 아래 (일부) 규칙이 (추가적으로) 적용될 수 있다.
(예시#2-1) 일례로, 재전송 관련 HARQ-ACK 전송 타이밍 (HQTX_TIMING)은 아래 (일부) 규칙에 따라 결정될 수 있다.
(규칙#2-1-1) 일례로, NA-RETXINDI 내에 (A) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 별로 (개별적인) “HQTX_TIMING” 필드가 구성(/정의)되거나 그리고/혹은 (B) 하나의 (대표) “HQTX_TIMING” 필드만 구성(/정의)되고, 지시된 HARQ-ACK 전송 타이밍을 기준으로, HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)의 오름차순 (혹은 내림차순) 형태로, (시간 영역 상에서) 순차적으로 HARQ-ACK 전송이 수행되도록 하거나 그리고/혹은 (C) 하나의 (대표) “HQTX_TIMING” 필드만 구성(/정의)되고, 지시된 HARQ-ACK 전송 타이밍에 (해당 NA-RETXINDI로 (동시에) (재전송) 트리거링되는) 모든 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)에 대응되는 HARQ-ACK을 “집성(AGGREGATION)”하여 전송하도록 할 수 도 있다.
또 다른 일례로, NA-RETXINDI 내에 별도의 “HQTX_TIMING” 필드 구성(/정의)없이, 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))된 ((반)정적으로) 고정된 HARQ-ACK 전송 타이밍을 적용하도록 할 수 도 있다. 여기서, 일례로, 해당 HARQ-ACK 전송 타이밍은 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스) 별로 상이하게 (혹은 동일하게) 지정될 수 있다.
전술한 바와 같이, 상기 DCI 내에 HARQ 프로세스 ID 별로 확인응답 자원 지시자(Acknowledgement/not-acknowledgement Resource Indicator; A/N RESOURCE INDICATOR; ARI) 필드가 구성되고, 상기 ARI에 기반하여 물리 상향링크 제어 채널(physical uplink control channel; PUCCH) 자원이 할당될 수 있다. 아울러, 이에 대한 구체적인 예시는 아래와 같다.
(예시#2-2) 일례로, 재전송 관련 “물리 상향링크 제어 채널 자원(Physical Uplink Control Channel Resource; PUCCH RESOURCE (PUCCH_RSC))”은 아래 (일부) 규칙에 따라 할당될 수 있다.
(규칙#2-2-1) 일례로, NA-RETXINDI 내에 (A) HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹)) 별로 (개별적인) “확인응답 자원 지시자(Acknowledgement/not-acknowledgement Resource Indicator; A/N RESOURCE INDICATOR; ARI)”” 필드가 구성(/정의)되거나 그리고/혹은 (B) 하나의 (대표) “ARI” 필드만 구성(/정의)되고, 지시된 ARI에 대응되는 PUCCH_RSC가 (해당 NA-RETXINDI로 (동시에) (재전송) 트리거링되는) 모든 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스)에 공통적으로 할당되도록 할 수 도 있다.
또 다른 일례로, NA-RETXINDI 내에 별도의 “ARI” 필드 구성(/정의)없이, 사전에 설정(/시그널링 (예를 들어, RRC SIGNALING))된 ((반)정적으로) 고정된 PUCCH_RSC가 할당되도록 할 수 도 있다.
여기서, 일례로, 해당 PUCCH_RSC는 HARQ PROCESS (GROUP) ID (혹은 서브프레임 (그룹) 인덱스) 별로 상이하게 (혹은 동일하게) 할당될 수 있다.
도 15는 도 11의 방법을 적용하는 구체적인 예를 나타낸다.
도 15에 따르면, 단말은 기지국으로 상향링크 데이터를 전송한다(S1510).
이후, 기지국은 상향링크 데이터의 수신 여부를 측정한다(S1520).
이후, 기지국은 상기 측정 결과에 기반한 확인응답 필드가 포함된 DCI를 단말에게 전송한다(S1530).
이후, 단말은 상기 DCI에 기반하여 데이터를 재전송한다(S1540). 여기서 예컨대, 상기 재전송은 비적응형(non-adaptive) 재전송일 수 있다. 또한 예컨대, 상기 DCI는 HARQ 프로세스 ID 별로 재전송을 지시할 수 있다. 또한 예컨대, 상기 DCI는 서브프레임 윈도우 내의 서브프레임 별로 재전송을 지시할 수 있다. 또한 예컨대, 상기 DCI는, 상향링크 그랜트(plink grant; UL Grant) 상에 몇 번째 스케줄링인지를 나타내는 카운터 필드가 정의된 경우, 마지막 카운터 값을 시그널링할 수 있다. 또한 예컨대, 상향링크 그랜트 상에 폴링 온/오프 필드가 정의된 경우, N번째 서브프레임에서 폴링 온 상향링크 그랜트가 수신되면, 상기 N번째 서브프레임 시점 이후에 수신하는 상기 DCI의 지시대상이 되는 상향링크 그랜트는, 상기 N번째 서브프레임 이전의 가장 가까운 폴링 온 상향링크 그랜트 수신 시점부터 N-1번째 서브프레임까지의 구간 동안 수신된 상향링크 그랜트일 수 있다. 또한 예컨대, 상기 DCI는 단말 특정적 DCI이거나, 또는 단말 공통적 DCI일 수 있다. 또한 예컨대, 상기 DCI는 비적응형 재전송 온/오프 필드, 비적응형 재전송 타이밍 필드, 리던던시 버전(redundancy version; RV) 필드, 비주기적 채널 상태 정보(channel state information; CSI) 전송 요청 필드 중 적어도 어느 하나를 포함할 수 있다. 또한 예컨대, 상기 DCI의 검출 관련 무선 네트워크 임시 식별자(radio network temporary identifier; RNTI) 값은 독립적으로 시그널링될 수 있다. 또한 예컨대, 상기 DCI에 대한 검색 공간 상의 전송 관련 파라미터는 사전에 설정될 수 있다. 또한 예컨대, 상기 단말이 동일한 HARQ 프로세스 ID에 대해 상기 DCI와 상향링크 그랜트를 모두 수신한 경우, 상기 상향링크 그랜트에 따라 재전송이 수행될 수 있다. 또한 예컨대, 상기 DCI 내에 HARQ 프로세스 ID 별로 HARQ ACK 전송 타이밍 필드가 구성될 수 있다. 또한 예컨대, 상기 DCI 내에 HARQ 프로세스 ID 별로 확인응답 자원 지시자(Acknowledgement/not-acknowledgement resource indicator; ARI) 필드가 구성될 수 있다.
여기서, 단말이 데이터를 재전송하는 구체적인 예는 전술한 바와 같으므로, 중복되는 예는 생략한다.
도 16은 본 발명의 실시예가 구현되는 통신 장치를 나타낸 블록도이다.
도 16을 참조하면, 기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고 상기 파라미터를 적용하여 상기 상향링크 통신을 수행할 수 있다. 이 때, 상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 혹은 병합 형태로 구현될 수 도 있다. 일례로, 본 발명의 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 데이터 재전송 방법에 있어서,
    네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고, 및
    상기 DCI에 기반하여 데이터를 재전송하되,
    상기 DCI는 확인응답(Acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 재전송은 비적응형(non-adaptive) 재전송인 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 DCI는 HARQ 프로세스 ID(hybrid automatic repeat request process identifier) 별로 재전송을 지시하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 DCI는 서브프레임 윈도우 내의 서브프레임 별로 재전송을 지시하는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 DCI는, 상향링크 그랜트(uplink grant; UL grant) 상에 몇 번째 스케줄링인지를 나타내는 카운터 필드가 정의된 경우, 마지막 카운터 값을 시그널링하는 것을 특징으로 하는 방법.
  6. 제5항에 있어서,
    상기 카운터 값은, 상기 DCI를 수신하면 초기화되는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    UL 그랜트 상에 폴링 온/오프(polling on/off) 필드가 정의된 경우, N번째 서브프레임에서 폴링 온 UL 그랜트가 수신되면, 상기 N번째 서브프레임 시점 이후에 수신하는 상기 DCI의 지시 대상이 되는 UL 그랜트는, 상기 N번째 서브프레임 이전의 가장 가까운 폴링 온 UL 그랜트 수신 시점부터 N-1번째 서브프레임까지의 구간 동안 수신된 UL 그랜트인 것을 특징으로 하는 방법.
  8. 제1항에 있어서,
    상기 DCI는 단말 특정적 DCI이거나, 또는 단말 공통적 DCI인 것을 특징으로 하는 방법.
  9. 제1항에 있어서,
    상기 DCI는 비적응형 재전송 온/오프 필드, 비적응형 재전송 타이밍 필드, 리던던시 버전(redundancy version; RV) 필드, 비주기적 채널 상태 정보(channel state information; CSI) 전송 요청 필드 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 방법.
  10. 제1항에 있어서,
    상기 DCI의 검출 관련 무선 네트워크 임시 식별자(radio network temporary identifier; RNTI) 값은 독립적으로 시그널링되는 것을 특징으로 하는 방법.
  11. 제1항에 있어서,
    상기 DCI에 대한 검색 공간 상의 전송 관련 파라미터는 사전에 설정되는 것을 특징으로 하는 방법.
  12. 제1항에 있어서,
    상기 단말이 동일한 HARQ 프로세스 ID에 대해 상기 DCI와 UL 그랜트를 모두 수신한 경우, 상기 UL 그랜트에 따라 재전송이 수행되는 것을 특징으로 하는 방법.
  13. 제1항에 있어서,
    상기 DCI 내에 HARQ 프로세스 ID 별로 HARQ 확인응답(acknowledgement; ACK) 전송 타이밍 필드가 구성되는 것을 특징으로 하는 방법.
  14. 제1항에 있어서,
    상기 DCI 내에 HARQ 프로세스 ID 별로 확인응답 자원 지시자(Acknowledgement/not-acknowledgement resource indicator; ARI) 필드가 구성되고, 상기 ARI에 기반하여 물리 상향링크 제어 채널(physical uplink control channel; PUCCH) 자원이 할당되는 것을 특징으로 하는 방법.
  15. 통신 장치는,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    네트워크로부터 하향링크 제어 정보(downlink control information; DCI)를 수신하고,
    상기 DCI에 기반하여 데이터를 재전송하되,
    상기 DCI는 확인응답(acknowledgement/not-acknowledgement; ACK/NACK) 필드를 포함하는 것을 특징으로 하는 통신 장치.
PCT/KR2018/000370 2017-01-07 2018-01-08 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치 WO2018128507A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/473,319 US11283551B2 (en) 2017-01-07 2018-01-08 Method for terminal resending data in wireless communication system, and communication device using same
EP18736601.8A EP3547583B1 (en) 2017-01-07 2018-01-08 Method for terminal resending data in wireless communication system, and communication device using same
CN201880005756.1A CN110140312B (zh) 2017-01-07 2018-01-08 无线通信系统中的终端重发数据的方法和使用该方法的通信设备
JP2019533523A JP7118066B2 (ja) 2017-01-07 2018-01-08 無線通信システムにおける端末のデータ再送信方法及び前記方法を利用する通信装置
KR1020197017085A KR102299126B1 (ko) 2017-01-07 2018-01-08 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치
US17/675,782 US11539469B2 (en) 2017-01-07 2022-02-18 Method for terminal resending data in wireless communication system, and communication device using same
US17/989,418 US11962415B2 (en) 2017-01-07 2022-11-17 Method for terminal resending data in wireless communication system, and communication device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762443649P 2017-01-07 2017-01-07
US62/443,649 2017-01-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/473,319 A-371-Of-International US11283551B2 (en) 2017-01-07 2018-01-08 Method for terminal resending data in wireless communication system, and communication device using same
US17/675,782 Continuation US11539469B2 (en) 2017-01-07 2022-02-18 Method for terminal resending data in wireless communication system, and communication device using same

Publications (1)

Publication Number Publication Date
WO2018128507A1 true WO2018128507A1 (ko) 2018-07-12

Family

ID=62791086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000370 WO2018128507A1 (ko) 2017-01-07 2018-01-08 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치

Country Status (6)

Country Link
US (3) US11283551B2 (ko)
EP (1) EP3547583B1 (ko)
JP (1) JP7118066B2 (ko)
KR (1) KR102299126B1 (ko)
CN (1) CN110140312B (ko)
WO (1) WO2018128507A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022522A1 (en) 2018-07-26 2020-01-30 Sharp Kabushiki Kaisha Base stations and methods
WO2020164606A1 (en) * 2019-02-14 2020-08-20 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment processing timeline enhancement in mobile communications
RU2795823C2 (ru) * 2018-07-26 2023-05-11 Шарп Кабусики Кайся Базовые станции и способы

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417430B (zh) * 2016-06-07 2020-01-24 Oppo广东移动通信有限公司 数据传输的方法及装置
EP3547583B1 (en) * 2017-01-07 2023-12-20 LG Electronics Inc. Method for terminal resending data in wireless communication system, and communication device using same
EP3579611A4 (en) * 2017-02-01 2020-12-23 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
WO2018145115A1 (en) * 2017-02-06 2018-08-09 Intel IP Corporation Resource mapping and multiplexing of uplink control channel and uplink data channel
US10721756B2 (en) * 2017-02-13 2020-07-21 Qualcomm Incorporated Repetition-based uplink for low latency communications in a new radio wireless communication system
CN110463102B (zh) * 2017-03-24 2022-06-21 瑞典爱立信有限公司 用于harq-ack反馈的方法、设备和介质
EP3639426B1 (en) * 2017-06-14 2024-05-29 SHARP Kabushiki Kaisha Procedures, user equipments and base stations for code block group-based transmission
KR102352364B1 (ko) * 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
WO2019138149A1 (en) * 2018-01-12 2019-07-18 Nokia Technologies Oy Uplink channel scheduling to retain channel occupancy for unlicensed wireless spectrum
US10925087B2 (en) * 2018-03-20 2021-02-16 Qualcomm Incorporated Methods and apparatuses for communications of a flexible transport block
US10813116B2 (en) * 2018-05-11 2020-10-20 Apple Inc. Support of advanced user equipment (UE) minimum processing times in new radio (NR) systems
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems
WO2020019118A1 (en) * 2018-07-23 2020-01-30 Lenovo (Beijing) Limited Cbg-based retransmission
US10924225B2 (en) * 2018-08-03 2021-02-16 Mediatek Inc. Group-based hybrid automatic repeat request (HARQ) acknowledgement feedback
CN116094659A (zh) * 2018-08-09 2023-05-09 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
US11785608B2 (en) * 2018-08-17 2023-10-10 Qualcomm Incorporated Techniques for downlink control information (DCI) feedback in wireless communications
US20200106569A1 (en) 2018-09-27 2020-04-02 Mediatek Inc. Mechanisms for postponing hybrid automatic repeat request acknowledgement (harq-ack) feedback
US11412497B2 (en) * 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
US20200404541A1 (en) * 2019-06-19 2020-12-24 Qualcomm Incorporated System and method for flow control and acknowledgement transmission
KR102249912B1 (ko) * 2019-07-12 2021-05-11 엘지전자 주식회사 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치
CN113472487B (zh) * 2020-03-30 2023-04-28 维沃移动通信有限公司 Harq-ack反馈方法及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007374A1 (en) * 2013-02-21 2016-01-07 Lg Electronics Inc. Method for transmitting and receiving control information in wireless communications system and apparatus therefor

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119184A (zh) * 2006-08-02 2008-02-06 华为技术有限公司 混合自适应重传请求方法及其实体
PT2137865E (pt) * 2007-03-19 2016-01-28 Ericsson Telefon Ab L M (h)arq para agendamento semi-persistente
WO2010141618A1 (en) * 2009-06-02 2010-12-09 Research In Motion Limited System and method for power control for carrier aggregation using single power control message for multiple carriers
CN101998507A (zh) * 2009-08-14 2011-03-30 中兴通讯股份有限公司 一种下行控制信令的传输方法和系统
EP2306665A1 (en) * 2009-10-02 2011-04-06 Panasonic Corporation Relay backhaul uplink HARQ protocol
CN104079388B (zh) * 2009-12-03 2017-10-17 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
KR101866577B1 (ko) * 2010-01-11 2018-06-11 삼성전자주식회사 통신 시스템의 업링크에서 낮은 레이턴시 송신을 가능하게 하는 장치 및 방법
US9008021B2 (en) * 2010-03-19 2015-04-14 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, mobile station apparatus and communication method
KR101468767B1 (ko) * 2010-06-08 2014-12-08 한국전자통신연구원 다중 캐리어 무선 통신 시스템에서의 송수신 방법 및 장치
KR101867311B1 (ko) * 2010-12-21 2018-07-19 주식회사 골드피크이노베이션즈 Ack/nack 자원 할당 방법 및 장치와 이를 이용한 ack/nack 신호 전송 방법
CN102055577B (zh) * 2011-01-24 2014-04-02 大唐移动通信设备有限公司 一种处理harq反馈比特的方法及装置
US9165074B2 (en) * 2011-05-10 2015-10-20 Uber Technologies, Inc. Systems and methods for performing geo-search and retrieval of electronic point-of-interest records using a big index
WO2013006010A2 (ko) * 2011-07-06 2013-01-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 송수신 방법 및 장치
CN103733549B (zh) * 2011-07-26 2017-02-15 Lg电子株式会社 无线通信系统中发送控制信息的方法和设备
WO2013105837A1 (ko) * 2012-01-15 2013-07-18 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2013180521A1 (ko) * 2012-05-31 2013-12-05 엘지전자 주식회사 제어 신호 송수신 방법 및 이를 위한 장치
CN104854924B (zh) * 2012-12-14 2019-04-12 Lg电子株式会社 在无线通信系统中支持传输效率的方法和设备
KR101798740B1 (ko) * 2013-03-15 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서 ack/nack 수신 방법 및 장치
CN104113924B (zh) * 2013-04-17 2019-04-16 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统
CN104518856B (zh) * 2013-09-30 2018-04-27 展讯通信(上海)有限公司 基站和lte系统中处理下行harq反馈的方法、装置
CN105993200B (zh) * 2014-03-20 2020-05-26 夏普株式会社 终端装置、基站装置、集成电路以及通信方法
JP2016048881A (ja) * 2014-08-28 2016-04-07 日本電気株式会社 無線局におけるユーザデータ管理方法、無線局、無線通信システム、及びプログラム
US10149318B2 (en) 2014-09-02 2018-12-04 Qualcomm Incorporated Techniques for transmitting and receiving downlink control information for a set of NOMA downlink transmissions
US20170353272A1 (en) * 2014-11-06 2017-12-07 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
US10555345B2 (en) * 2015-01-30 2020-02-04 Qualcomm Incorporated Random access procedure and broadcast prioritization for machine type communications (MTC)
US10306615B2 (en) * 2015-12-09 2019-05-28 Mediatek Inc. Control-less data transmission for narrow band internet of things
US10531452B2 (en) * 2016-07-11 2020-01-07 Qualcomm Incorporated Hybrid automatic repeat request feedback and multiple transmission time interval scheduling
EP3547583B1 (en) * 2017-01-07 2023-12-20 LG Electronics Inc. Method for terminal resending data in wireless communication system, and communication device using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007374A1 (en) * 2013-02-21 2016-01-07 Lg Electronics Inc. Method for transmitting and receiving control information in wireless communications system and apparatus therefor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Explicit HARQ and scheduling timing design for LTE sTTI", 3GPP TSG RAN WG1 MEETING #87, no. R1-1611360, 5 November 2016 (2016-11-05), XP051189894 *
CATT: "NR HARQ operation", 3GPP TSG RAN WG1 MEETING #87, no. R1-1611397, 5 November 2016 (2016-11-05), XP051189931 *
ERICSSON: "Asynchronous HARQ for PUSCH", 3GPP TSG RAN WG1 MEETING #86, no. R1-167500, 12 August 2016 (2016-08-12), XP051132381 *
ERICSSON: "Asynchronous HARQ for PUSCH", 3GPP TSG RAN WG1 MEETING #87, no. R1-1611506, 4 November 2016 (2016-11-04), XP051189104 *
See also references of EP3547583A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022522A1 (en) 2018-07-26 2020-01-30 Sharp Kabushiki Kaisha Base stations and methods
CN112470514A (zh) * 2018-07-26 2021-03-09 夏普株式会社 基站和方法
EP3827613A4 (en) * 2018-07-26 2022-04-27 Sharp Kabushiki Kaisha BASE STATIONS AND PROCEDURES
RU2795823C2 (ru) * 2018-07-26 2023-05-11 Шарп Кабусики Кайся Базовые станции и способы
US11849479B2 (en) 2018-07-26 2023-12-19 Sharp Kabushiki Kaisha Base stations and methods
WO2020164606A1 (en) * 2019-02-14 2020-08-20 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment processing timeline enhancement in mobile communications

Also Published As

Publication number Publication date
KR102299126B1 (ko) 2021-09-06
US11283551B2 (en) 2022-03-22
US20220173841A1 (en) 2022-06-02
JP7118066B2 (ja) 2022-08-15
US11962415B2 (en) 2024-04-16
US20230092203A1 (en) 2023-03-23
EP3547583B1 (en) 2023-12-20
KR20190082906A (ko) 2019-07-10
EP3547583A1 (en) 2019-10-02
CN110140312A (zh) 2019-08-16
CN110140312B (zh) 2022-01-11
EP3547583A4 (en) 2020-04-22
JP2020502942A (ja) 2020-01-23
US11539469B2 (en) 2022-12-27
US20190372720A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018128507A1 (ko) 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치
WO2018128501A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 채널 전송 방법 및 상기 방법을 이용하는 통신 장치
WO2018169355A1 (ko) 무선 통신 시스템에서 단말의 데이터 수신 방법 및 장치
WO2018174450A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격, 또는 복수의 프로세싱 시간을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2019098700A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2018128363A1 (ko) 펑처링된 데이터의 재전송 방법 및 이를 위한 장치
WO2018131880A1 (ko) 무선 통신 시스템에서, harq-ack 신호를 전송하는 방법 및 이를 위한 장치
WO2019139411A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 장치
WO2016021983A1 (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치
WO2014046374A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2012165875A9 (en) Apparatus and method for defining physical channel transmit/receive timings and resource allocation in tdd communication system supporting carrier aggregation
WO2018199691A1 (ko) 무선 통신 시스템에서 전력을 공유하는 방법 및 장치
WO2018226054A1 (ko) 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
WO2016068542A2 (ko) Mtc 기기의 pucch 전송 방법
WO2016208991A1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
WO2016093556A1 (ko) 5개를 초과하는 셀을 반송파 집성에 따라 사용하는 경우 하향링크 데이터에 대한 harq ack/nack를 전송하는 방법 및 사용자 장치
WO2016108657A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2015076627A1 (ko) Harq ack/nack의 전송방법 및 장치
WO2013162247A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2012091490A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2011004989A2 (ko) 공유 무선 자원을 이용한 기지국의 상향링크 수신 방법 및 단말기의 상향링크 송신 방법
WO2013129868A1 (en) Mobile communication system and channel transmission/reception method thereof
WO2019117688A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017085

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019533523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736601

Country of ref document: EP

Effective date: 20190627