WO2016208991A1 - 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치 - Google Patents

무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2016208991A1
WO2016208991A1 PCT/KR2016/006685 KR2016006685W WO2016208991A1 WO 2016208991 A1 WO2016208991 A1 WO 2016208991A1 KR 2016006685 W KR2016006685 W KR 2016006685W WO 2016208991 A1 WO2016208991 A1 WO 2016208991A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
resource
terminal
tti
channel
Prior art date
Application number
PCT/KR2016/006685
Other languages
English (en)
French (fr)
Inventor
곽용준
김영범
여정호
이주호
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/307,999 priority Critical patent/US20180109353A1/en
Publication of WO2016208991A1 publication Critical patent/WO2016208991A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and system for transmitting and receiving data for reducing a transmission time interval.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • D2D Device to Device communication
  • D2D Device to Device communication
  • CoMP Coordinated Multi-Points
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • the wireless communication system has moved away from providing the initial voice-oriented service, for example, 3GPP High Speed Packet Access (HSPA), Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced.
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-Advanced Advances in broadband wireless communication systems that provide high-speed, high-quality packet data services such as LTE-A, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e Doing.
  • an LTE system employs an orthogonal frequency division multiplexing (OFDM) scheme in downlink (DL), and a single carrier frequency division multiple (SC-FDMA) in uplink (UL). Access) method is adopted.
  • Uplink refers to a radio link through which a user equipment (UE) or mobile station (MS) transmits data or a control signal to a base station (eNode B or base station (BS)), and the downlink means a base station is a terminal.
  • UE user equipment
  • MS mobile station
  • eNode B or base station (BS) base station
  • data or control information of each user is classified by assigning and operating such that time-frequency resources for carrying data or control information for each user do not overlap each other, that is, orthogonality is established. do.
  • the LTE system employs a hybrid automatic repeat request (HARQ) scheme in which the data is retransmitted in the physical layer when a decoding failure occurs in the initial transmission.
  • HARQ hybrid automatic repeat request
  • the receiver when the receiver does not correctly decode (decode) the data, the receiver transmits NACK (Negative Acknowledgement) informing the transmitter of the decoding failure so that the transmitter can retransmit the corresponding data in the physical layer.
  • NACK Negative Acknowledgement
  • the receiver combines the data retransmitted by the transmitter with previously decoded data to improve data reception performance.
  • the transmitter may transmit an acknowledgment (ACK) indicating the decoding success to the transmitter so that the transmitter may transmit new data.
  • ACK acknowledgment
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource region in which the data or control channel is transmitted in downlink in an LTE system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the minimum transmission unit in the time domain is an OFDM symbol, Nsymb (102) OFDM symbols are gathered to form one slot 106, two slots are gathered to form one subframe 105.
  • the length of the slot is 0.5ms and the length of the subframe is 1.0ms.
  • the radio frame 114 is a time domain section composed of 10 subframes.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the bandwidth of the entire system transmission bandwidth is composed of NBW 104 subcarriers in total.
  • the basic unit of resource in the time-frequency domain may be represented by an OFDM symbol index and a subcarrier index as a resource element (RE).
  • the resource block 108 (Resource Block; RB or PRB) is defined as Nsymb 102 consecutive OFDM symbols in the time domain and NRB 110 consecutive subcarriers in the frequency domain.
  • one RB 108 is composed of Nsymb x NRB REs 112.
  • the minimum transmission unit of data is the RB unit.
  • the data rate increases in proportion to the number of RBs scheduled for the UE.
  • the LTE system defines and operates six transmission bandwidths.
  • the downlink transmission bandwidth and the uplink transmission bandwidth may be different.
  • the channel bandwidth represents an RF bandwidth corresponding to the system transmission bandwidth.
  • [Table 1] shows the correspondence between the system transmission bandwidth and the channel bandwidth defined in the LTE system. For example, an LTE system with a 10 MHz channel bandwidth consists of 50 RBs in transmission bandwidth.
  • the downlink control information is transmitted within the first N OFDM symbols in the subframe.
  • N ⁇ 1, 2, 3 ⁇ . Therefore, the N value varies in each subframe according to the amount of control information to be transmitted in the current subframe.
  • the control information includes a control channel transmission interval indicator indicating how many control information is transmitted over OFDM symbols, scheduling information for downlink data or uplink data, HARQ ACK / NACK signal, and the like.
  • DCI downlink control information
  • DCI defines various formats to determine whether scheduling information (UL grant) for uplink data or scheduling information (DL grant) for downlink data, whether compact DCI having a small control information size, and multiple antennas. It operates by applying a DCI format determined according to whether spatial multiplexing is applied or whether it is a DCI for power control.
  • DCI format 1 which is scheduling control information (DL grant) for downlink data is configured to include at least the following control information.
  • Resource allocation type 0/1 flag Notifies whether the resource allocation method is type 0 or type 1.
  • Type 0 uses the bitmap method to allocate resources in resource block group (RBG) units.
  • the basic unit of scheduling is an RB represented by time and frequency domain resources, and the RBG is composed of a plurality of RBs to become a basic unit of scheduling in a type 0 scheme.
  • Type 1 allows allocating a specific RB within the RBG.
  • Resource block assignment Notifies the RB allocated for data transmission.
  • the resource to be expressed is determined by the system bandwidth and the resource allocation method.
  • Modulation and coding scheme Notifies the modulation scheme used for data transmission and the size of the transport block that is the data to be transmitted.
  • HARQ process number Notifies the process number of HARQ.
  • New data indicator notifies whether HARQ initial transmission or retransmission.
  • Redundancy version Notifies the redundant version of the HARQ.
  • TPC Transmit Power Control
  • PUCCH Physical Uplink Control Channel
  • the DCI is a physical downlink control channel (PDCCH) (or control information, hereinafter referred to as used interchangeably) or an enhanced PDCCH (EPDCCH) (or enhanced control information), which is a downlink physical control channel through channel coding and modulation processes. To be used interchangeably).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced PDCCH
  • the DCI is independently scrambled with a specific Radio Network Temporary Identifier (RNTI) for each UE, cyclic redundancy check (CRC) is added, channel-coded, and then composed of independent PDCCHs. do.
  • RNTI Radio Network Temporary Identifier
  • CRC cyclic redundancy check
  • the PDCCH is mapped and transmitted during the control channel transmission period.
  • the frequency domain mapping position of the PDCCH is determined by the identifier (ID) of each terminal and spread over the entire system transmission band.
  • the downlink data is transmitted through a physical downlink shared channel (PDSCH) which is a physical channel for downlink data transmission.
  • PDSCH is transmitted after the control channel transmission interval, and scheduling information such as specific mapping positions and modulation schemes in the frequency domain is informed by the DCI transmitted through the PDCCH.
  • the base station informs the UE of the modulation scheme applied to the PDSCH to be transmitted and the size of the data to be transmitted (transport block size (TBS)) through the MCS configured of 5 bits among the control information configuring the DCI.
  • TBS transport block size
  • the TBS corresponds to a size before channel coding for error correction is applied to data (transport block, TB) that the base station intends to transmit.
  • Quadrature Phase Shift Keying QPSK
  • Quadrature Amplitude Modulation (16QAM) Quadrature Amplitude Modulation
  • 64QAM 64QAM.
  • Each modulation order (Qm) corresponds to 2, 4, and 6. That is, 2 bits per symbol for QPSK modulation, 4 bits per symbol for 16QAM modulation, and 6 bits per symbol for 64QAM modulation.
  • FIG. 2 is a diagram illustrating an example of a time-frequency domain transmission structure of a PUCCH in an LTE-A system.
  • FIG. 2 is a diagram illustrating a time-frequency domain transmission structure of a physical uplink control channel (PUCCH), which is a physical control channel for transmitting uplink control information (UCI) to a base station by an LTE-A system. to be.
  • PUCCH physical uplink control channel
  • the UCI includes at least one of the following control information:
  • HARQ-ACK If there is no error in downlink data received from the base station through a physical downlink shared channel (PDSCH), which is a downlink data channel to which a hybrid automatic repeat request (HARQ) is applied, the UE feeds back an acknowledgment (ACK). If there is an error, NACK (Negative Acknowledgment) is fed back.
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat request
  • Channel Status Information Contains a signal indicating a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indicator (RI), or a downlink channel coefficient.
  • CQI represents the Signal to Interference and Noise Ratio (SINR) for the system wideband or some subbands, and is generally a form of MCS to satisfy certain predetermined data reception performance.
  • SINR Signal to Interference and Noise Ratio
  • PMI / RI provides precoding and rank information necessary for a base station to transmit data through multiple antennas in a system supporting multiple input multiple outputs (MIMO).
  • the signal indicating the downlink channel coefficient provides more detailed channel state information than the CSI signal, but increases the uplink overhead.
  • the UE is previously notified of a reporting mode indicating which information is fed back, CSI configuration information on resource information on which resource to use, transmission period, etc. from the base station through higher layer signaling. .
  • the terminal transmits the CSI to the base station using the CSI configuration information notified in advance.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the minimum transmission unit in the time domain is an SC-FDMA symbol 201, where N symb UL SC-FDMA symbols are collected to form one slot 203 or 205. Two slots are gathered to form one subframe 207.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the total system transmission bandwidth 209 is composed of a total of N BW subcarriers. NBW has a value proportional to the system transmission band.
  • the basic unit of resources in the time-frequency domain may be defined as an SC-FDMA symbol index and a subcarrier index as a resource element (RE).
  • Resource blocks 211 and 217 are defined as N symb UL contiguous SC-FDMA symbols in the time domain and N sc RB contiguous subcarriers in the frequency domain. Therefore, one RB is composed of N symb UL x N sc RB Rs .
  • the minimum transmission unit for data or control information is in RB units.
  • PUCCH is mapped to a frequency domain corresponding to 1 RB and transmitted during one subframe.
  • RS uses a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence.
  • the CAZAC sequence is characterized by a constant signal strength and a zero autocorrelation coefficient.
  • the newly constructed CAZAC sequence is cyclically shifted by a predetermined CAZAC sequence by a value larger than the delay spread of the transmission path, thereby maintaining mutually orthogonality with the original CAZAC sequence. Therefore, it is possible to generate a CSed CAZAC sequence from which a maximum L orthogonality is maintained from the CAZAC sequence having a length L.
  • the length of the CAZAC sequence applied to the PUCCH is 12 corresponding to the number of subcarriers constituting one RB.
  • UCI is mapped to an SC-FDMA symbol to which RS is not mapped.
  • FIG. 2 shows an example in which a total of 10 UCI modulation symbols 213 and 215 (d (0), d (1), ..., d (9)) are mapped to SC-FDMA symbols in one subframe, respectively.
  • Each UCI modulation symbol is multiplied with a CAZAC sequence applying a predetermined cyclic shift value for multiplexing with UCI of another UE and then mapped to an SC-FDMA symbol.
  • PUCCH is subjected to frequency hopping in units of slots to obtain frequency diversity. The PUCCH is located outside the system transmission band and enables data transmission in the remaining transmission bands.
  • the PUCCH is mapped to the RB 211 located at the outermost part of the system transmission band in the first slot in the subframe, and is different from the RB 211 located at the outermost part of the system transmission band in the second slot. Mapped to RB 217.
  • the RB locations to which the PUCCH for transmitting HARQ-ACK and the PUCCH for transmitting CSI are mapped do not overlap each other.
  • PUCCH or PUSCH which is an uplink physical channel for transmitting HARQ ACK / NACK corresponding to a PDCCH / EPDDCH including a PDSCH or a semi-persistent scheduling release (SPS release), which is a physical channel for downlink data transmission.
  • SPS release semi-persistent scheduling release
  • the timing relationship of is defined. For example, in an LTE system operating with frequency division duplex (FDD), HARQ ACK / NACK corresponding to PDCCH / EPDCCH including PDSCH or SPS release transmitted in n-4th subframe is PUCCH in nth subframe. Or it is transmitted in PUSCH.
  • FDD frequency division duplex
  • downlink HARQ adopts an asynchronous HARQ scheme in which data retransmission time is not fixed. That is, when the HARQ NACK is fed back from the terminal to the initial transmission data transmitted by the base station, the base station freely determines the transmission time of the retransmission data by the scheduling operation. The UE buffers the data determined to be an error as a result of decoding the received data for the HARQ operation, and then performs combining with the next retransmission data.
  • the uplink HARQ adopts a synchronous HARQ scheme with a fixed data transmission time point. That is, a Physical Hybrid (Physical Uplink Shared Channel), which is a physical channel for transmitting uplink data, a PDCCH, which is a preceding downlink control channel, and a PHICH (Physical Hybrid), which is a physical channel through which downlink HARQ ACK / NACK corresponding to the PUSCH is transmitted.
  • the uplink / downlink timing relationship of the indicator channel is fixed by the following rule.
  • the UE When the UE receives the PDCCH including the uplink scheduling control information transmitted from the base station or the PHICH in which downlink HARQ ACK / NACK is transmitted in subframe n, the UE transmits uplink data corresponding to the control information in subframe n + k. Transmit through PUSCH.
  • k is defined differently according to FDD or time division duplex (TDD) of LTE system and its configuration. For example, in the case of the FDD LTE system, k is fixed to 4.
  • the PHICH When the terminal receives the PHICH carrying downlink HARQ ACK / NACK from the base station in subframe i, the PHICH corresponds to the PUSCH transmitted by the terminal in subframe i-k.
  • k is defined differently according to FDD or time division duplex (TDD) of LTE system and its configuration. For example, in the case of the FDD LTE system, k is fixed to 4.
  • a signal is transmitted and received in units of subframes having a Transmission Time Interval (TTI) of 1 ms.
  • TTI Transmission Time Interval
  • a terminal shortened-TTI / shorter-TTI UE
  • Shortened-TTI terminals are expected to be suitable for services such as voice over LTE (VoLTE) services and remote control where latency is important.
  • the shortened-TTI terminal is expected to be a means for realizing a mission critical Internet of Things (IoT) on a cellular basis.
  • IoT mission critical Internet of Things
  • the base station and the terminal are designed to transmit and receive in a subframe unit having a transmission time interval of 1 ms.
  • a transmission time interval of 1 ms.
  • the TTI length that can be shortest physically may be one symbol length.
  • the present invention proposes a transmission and reception method supporting a TTI of 1 OFDM symbol length in an LTE system.
  • An object of the present invention is to provide a method and apparatus for transmitting and receiving using a reduced transmission time interval in a wireless cellular communication system.
  • Another object of the present invention is to provide a transmission / reception method, apparatus, and system for reducing transmission time.
  • the present invention provides a shortened-TTI terminal and operation method, a method and apparatus for transmitting and receiving for a shortened-TTI terminal, and the terminal, the base station and the system in which the existing terminal and the shortened-TTI terminal coexist in the system; It is to provide a method of operation.
  • the method of transmitting and receiving a signal of a base station determines whether the scheduling target terminal is a first type terminal or a second type of terminal, when the first type terminal
  • the method may include generating control information based on control information for the first type terminal, and transmitting the generated control information.
  • the length of the transmission time interval for the first type terminal may be shorter than the length of the transmission time interval for the second type terminal.
  • the method for transmitting and receiving a signal of a base station in a wireless communication system setting a first transmission timing interval (TTI) in at least one terminal, the at least one terminal Generating a downlink control channel for the at least one channel; mapping a downlink data channel corresponding to the downlink control channel based on the downlink control channel resource mapping position; and mapping the downlink control channel and the downlink data channel And transmitting a signal corresponding to the received first TTI.
  • TTI transmission timing interval
  • a first transmission timing interval is set in a transceiver for transmitting and receiving a signal and at least one terminal, a downlink control channel for the at least one terminal is generated, and the downlink control channel is generated.
  • a controller configured to map a downlink data channel corresponding to the downlink control channel based on a resource mapping position and to transmit a signal corresponding to the first TTI to which the downlink control channel and the downlink data channel are mapped.
  • a base station can be provided.
  • the method for transmitting and receiving a signal of a terminal in a wireless communication system setting a first transmission timing interval (TTI), receiving a signal corresponding to the first TTI Identifying a downlink control channel for a downlink data channel in the first signal; and if the downlink control channel is identified, decoding the downlink data channel based on a resource mapping position of the downlink control channel.
  • TTI transmission timing interval
  • a terminal for transmitting and receiving a signal, a first transmission timing interval (TTI) are set, and a signal corresponding to the first TTI. And confirming a downlink control channel for a downlink data channel in the signal corresponding to the first TTI, and if the downlink control channel is identified, the downlink based on the resource mapping position of the downlink control channel
  • the terminal may include a control unit controlling to decode the link data channel.
  • a method and apparatus for transmitting and receiving using a reduced transmission time interval in a wireless cellular communication system can be provided.
  • a transmission and reception method, apparatus, and system for reducing the transmission time can be provided.
  • a shortened-TTI terminal and operation method a transmission and reception method and apparatus for a shortened-TTI terminal, a terminal, a base station and a system in which the existing terminal and the shortened-TTI terminal coexist in the system and It can provide a method of operation.
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource region in which the data or control channel is transmitted in downlink in an LTE system.
  • FIG. 2 is a diagram illustrating an uplink time-frequency domain transmission structure of an LTE or LTE-A system.
  • 3 is a diagram illustrating a subframe, 1PRB structure, which is a radio resource region in which data or a control channel is transmitted in downlink of an LTE or LTE-A system.
  • FIG. 4 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using 1 OFDM symbol TTI according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an operation of a terminal according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an operation of a base station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using one OFDM symbol TTI according to a second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an operation of a terminal according to the second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an operation of a base station according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using one OFDM symbol TTI according to a third embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an operation of a terminal according to a third embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an operation of a base station according to the third embodiment of the present invention.
  • FIG. 13 illustrates a reverse channel structure according to a further embodiment of the present invention.
  • 17 is a diagram illustrating a 1 OFDM symbol TTI uplink transmission method of a terminal according to an embodiment of the present invention.
  • FIG. 18 is a block diagram showing the structure of a terminal according to an embodiment of the present invention.
  • 19 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (EPDCCH), a physical downlink shared channel (PDSCH), and a physical hybrid ARQ indicator channel at each transmission time (PHICH), a downlink physical channel including a physical control format indicator channel (PCFICH), a uplink physical channel including a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) need to be defined.
  • HARQ transmission method in uplink In an LTE or LTE-A system supporting a short transmission time period, a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (EPDCCH), a physical downlink shared channel (PDSCH), and a physical hybrid ARQ indicator channel at each transmission time (PHICH), a downlink physical channel including a physical control format indicator channel (PCFICH), a uplink physical channel including a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) need to be defined.
  • PCFICH physical control format indicator channel
  • Various embodiments of the present invention in the LTE or LTE-A system supporting a transmission time interval of 1 OFDM symbol length in the PDCCH, EPDCCH, PDSCH, PHICH, PCFICH, PUCCH, PUSCH and downlink and uplink It defines a HARQ transmission method, and provides a resource allocation method and apparatus for the physical channels and HARQ transmission.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of an eNode B, a Node B, a base station (BS), a wireless access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • DL downlink
  • UL uplink of a signal transmitted from a terminal to a base station.
  • the following describes an embodiment of the present invention using an LTE or LTE-A system as an example, but the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel form.
  • the embodiment of the present invention may be applied to other communication systems through some modifications within the scope of the present invention without departing from the scope of the present invention by the judgment of those skilled in the art.
  • the shortened-TTI terminal described below may be referred to as a first type terminal, and a normal-TTI terminal may be referred to as a second type terminal.
  • the first type terminal may include a terminal having a transmission time interval shorter than 1 ms
  • the second type terminal may include a terminal having a transmission time interval of 1 ms.
  • the shortened-TTI terminal and the first type terminal are mixed and used, and the normal-TTI terminal and the second type terminal are mixed and used.
  • the TTI of the first type terminal is 1 OFDM symbol.
  • the TTI of the first type terminal is not limited thereto, and the TTI of the first type terminal may be applied to signal transmission having a transmission time shorter than 1 ms.
  • a normal-TTI terminal refers to a terminal that transmits and receives control information and data information in units of 1 ms or one subframe.
  • the control information for the normal-TTI terminal is transmitted on a PDCCH mapped to up to 3 OFDM symbols in one subframe, or transmitted on an EPDCCH mapped to a specific resource block in one subframe.
  • the Shortened-TTI terminal refers to a terminal that may transmit and receive in units of subframes as in a normal-TTI terminal or may transmit and receive in units smaller than a subframe.
  • the shortened-TTI terminal may be a terminal supporting only transmission and reception of a unit smaller than a subframe.
  • the basic resource allocation is determined by the operation of the PDCCH and PDSCH, PDCCH and PUSCH. That is, the base station informs the terminal of control information for data reception using DCI information included in the PDCCH for data transmission to the terminal in the forward direction, and receives the PDSCH as indicated by the DCI information. In addition, in order to transmit data to the base station in the reverse direction, the base station first informs the terminal of control information for data transmission using DCI information included in the PDCCH, and transmits a PUSCH as indicated by the DCI information.
  • FIG. 1 is a diagram illustrating a subframe, 1PRB structure, which is a radio resource region in which data or a control channel is transmitted in downlink of an LTE or LTE-A system.
  • FIG. 3 shows a structure for resource allocation and forward channel scheduling.
  • One subframe is a resource allocation unit, and the PDCCH 306 is transmitted in the first 1 to 4 OFDM symbols in the subframe, and the PDSCH 307 is transmitted in the other symbols.
  • Each symbol exists over the entire system band 303, and the frequency band is divided into physical resource blocks (PRBs) 304, which are basic units, so that a plurality of PRBs exist in one system band.
  • PRBs physical resource blocks
  • Radio resources are determined by the PRB and OFDM symbols, and a common reference signal or a cell specific reference signal (CRS) is transmitted at a predetermined position such as 305 within the resource.
  • the PDCCH is transmitted in the first 1 to 4 OFDM symbols.
  • the number of OFDM symbols in which the PDCCH is transmitted can be known through the reception of the PCFICH, and the PCFICH is transmitted in the first OFDM symbol in the subframe.
  • the UE receives the PCFICH to determine the number of OFDM symbols to which the PDCCH is transmitted, and then performs the PDCCH reception at a predetermined location based on the number of OFDM symbols to which the PDCCH is transmitted.
  • CRC masking is performed on the PDCCH using the ID information of the UE.
  • the DCI is given to the UE having the ID.
  • the terminal having the ID can read the DCI information included in the PDCCH.
  • the terminal reading the DCI information determines the DCI format based on the length and information of the DCI based on the information included in the DCI, and determines whether the DCI is for forward PDSCH allocation or backward PUSCH allocation.
  • the PDSCH is received at the designated resource location.
  • the PDSCH is changed depending on the number of OFDM symbols for the PDCCH determined by the PCFICH. That is, the PDSCH is received in the remaining OFDM symbols except for the PDCCH OFDM symbols designated by the PCFICH in all OFDM symbols belonging to one subframe.
  • the PUSCH is transmitted at the designated resource location at a predetermined time.
  • One aspect of the present invention is to provide a channel structure and an operation method of a PDCCH and a PDSCH when data is transmitted and received with a TTI of one OFDM symbol length in a subframe rather than a TTI of one subframe length.
  • a data transmission / reception operation of a TTI of one OFDM symbol length will be described using the preferred embodiment.
  • the control channel and the data channel are named PDCCH and PUSCH.
  • the control channel and the data channel may have a structure and a function different from those of the PDCCH and PUSCH of 1 ms TTI.
  • the first embodiment it is assumed that only one UE is scheduled in the forward and reverse directions in one TTI in order to utilize 1 OFDM symbol TTI.
  • a forward direction for one terminal and a reverse direction for one terminal may be scheduled, and the terminal that is forward scheduling and the terminal that is backward scheduling may be the same or different.
  • the length of the TTI is 1 OFDM symbol, the total number of resources of the system included in the TTI is limited. Therefore, when several terminals are simultaneously scheduled in one TTI, many resources are often insufficient because a limited resource needs to be transmitted and received by several terminals. Therefore, in the present embodiment, one PDSCH exists in the forward direction and only one PUSCH exists in the reverse direction in one OFDM symbol TTI.
  • PDCCHs up to two PDCCHs exist in one TTI. Possible PDCCH combinations include 0 PDCCHs when no UEs are scheduled, 1 PDCCH when one forward UE is scheduled, and 1 PDCCH when one backward UE is scheduled, and finally there is one PDCCH. When one forward terminal and one reverse terminal are scheduled, there are two PDCCHs, which is the most PDCCH.
  • FIG. 4 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using 1 OFDM symbol TTI according to the first embodiment of the present invention.
  • one subframe 401 is divided into a PDCCH region 402 and a PDSCH region 403 in the LTE structure. Since a base station supporting one OFDM symbol TTI must also support one subframe TTI terminal at the same time, it is also possible to simultaneously support one subframe TTI and one OFDM symbol TTI in the same subframe.
  • One OFDM symbol TTI may be applied to one symbol among OFDM symbols included in the PDSCH region 403, and one OFDM symbol TTI is included in the PDCCH region 402 in a subframe in which one subframe TTI terminal does not exist. It can be applied in the OFDM symbol of.
  • the resource of 1 OFDM symbol TTI as shown in 404 of FIG.
  • the size of the frequency resource for which one OFDM symbol TTI can be used may be preset by higher signaling or MAC signaling or dynamically allocated to physical layer signaling. Of course, one OFDM symbol TTI can use all of the frequency resources.
  • the base station may perform PDSCH allocation to one of the 1 OFDM symbol support terminals and PUSCH allocation to another terminal, and may assign both the PDSCH and the PUSCH to the same terminal.
  • frequency multiplexing of a resource for a PDCCH and a resource for a PDSCH in one symbol it is assumed that frequency multiplexing of a resource for a PDCCH and a resource for a PDSCH in one symbol.
  • PDCCH and PDSCH since PDCCH and PDSCH must be transmitted in one OFDM symbol, it is impossible to multiplex in time and frequency multiplexing is performed. Therefore, resources in which a PDCCH is transmitted and resources in which a PDSCH is transmitted must be divided within one OFDM symbol.
  • a PDCCH resource and a PDSCH resource are dynamically divided according to the utilization of the PDCCH, and a method for determining whether the PDCCH resource and the PDSCH resource are divided according to the PDCCH blind detection is provided. do.
  • resource allocation information that is, resource block assignment information
  • PDCCH PDCCH
  • PDCCH_UL PDCCH
  • the amount of information of resource allocation information among the PDCCH information occupies a very large portion.
  • the amount of information of the PDCCH is reduced, so that the PDCCH can be transmitted with higher reliability with less resources.
  • other information such as process number, new data indicator, redundancy verion or transport block related information, modulation and coding scheme information, frequency related information (CA) related information, or power control information may be included in the PDCCH. May be included.
  • scheduling is performed for one OFDM symbol terminal in an OFDM symbol of 404 and a PDCCH is transmitted.
  • PDCCHs for one OFDM symbol terminal in one OFDM symbol are possible.
  • One PDCCH (PDCCH_DL) for the PDSCH and one PDCCH (PDCCH_UL) for the PUSCH are possible. Since PDCCH_DL and PDCCH_UL may have different sizes, the UE performs blind detection based on the size of PDCCH_DL and PDCCH_UL.
  • the resources of the PDCCH are first utilized for PDCCH_UL transmission, and then, the PDCCH_DL transmission is provided.
  • the frequency resource means a logical resource, and logically defines the order of the frequency resources, it is assumed that the base station and the terminal share the logical order of the frequency resources.
  • the logical frequency resource may be mapped to a physical frequency resource by any rule, and it is assumed that a base station and a terminal share a rule mapped to the physical frequency resource.
  • the base station allocates PDCCH_UL to the most advanced logical frequency resource as shown in 411 of FIG. 4, and allocates PDCCH_DL to the logical frequency resource immediately following it as shown in 412 of FIG. 4. As shown in 413 of FIG. 4, one PDSCH is transmitted in all remaining portions of the entire frequency resource that can be used by the PDCCH and the PDSCH.
  • PDCCH_UL and PDCCH_DL each have a constant number of transmitted information, but the aggregation level of the PDCCH varies depending on the location or channel state of the UE.
  • the aggregation level means the amount of resources for transmitting the PDCCH, and if the terminal is located close to the base station and the forward channel situation is good, the terminal does not have a problem in receiving the PDCCH even if the PDCCH is transmitted using only minimal resources. . However, when the terminal is located far from the base station and the forward channel situation is not good, the terminal should increase the amount of resources to impose a more coding gain of the PDCCH so that the terminal does not have a problem in receiving the PDCCH. It is assumed that a plurality of aggregation levels of the PDCCH is used. In the case of 1 OFDM symbol TTI, the number of aggregation levels will not be very large because the bit information of the information transmitted on the PDCCH is not large.
  • the terminal having a good channel condition transmits the PDCCH in an arbitrary resource unit (CCE_1S: Control Channel Element 1 Symbol) only, and the terminal having a poor channel condition maps and transmits two CCE_1S resources, and has the best channel. If not, the UE maps and transmits 4 CCE_1S resources. Since the base station arbitrarily determines the size of CCE_1S when transmitting the PDCCH, the UE assumes CCE_1S of all sizes in PDCCH reception and performs PDCCH blind detection. That is, blind detection should be performed assuming three CCE_1S for PDCCH_UL, and blind detection should be performed assuming three CCE_1S for PDCCH_DL.
  • CCE_1S Control Channel Element 1 Symbol
  • PDCCH_UL, PDCCH_DL, and CCE_1S are the same as 410 of FIG. 4. That is, if there is no PDCCH (421), if there is only PDCCH_DL and is transmitted in 1 CCE_1S (422), if there is only PDCCH_DL and is transmitted in 2 CCE_1S (423), if there is only PDCCH_DL and is transmitted in 4 CCE_1S (424),
  • PDCCH_UL is transmitted to 1 CCE_1S and PDCCH_DL is transmitted to 1 CCE_1S (425)
  • PDCCH_UL is transmitted to 1 CCE_1S
  • PDCCH_DL is transmitted to 2 CCE_1S (426)
  • PDCCH_UL is transmitted to 1 CCE_1S and PDCCH_DL to 4 CCE_1S.
  • PDCCH_UL is transmitted to 2 CCE_1S and PDCCH_DL is transmitted to 1 CCE_1S (428), PDCCH_UL is transmitted to 2 CCE_1S and PDCCH_DL is transmitted to 2 CCE_1S (429), PDCCH_UL to 2 CCE_1S
  • PDCCH_UL is transmitted at 4 CCE_1S
  • PDCCH_UL is transmitted at 4 CCE_1S
  • PDCCH_DL is transmitted at 1 CCE_1S
  • PDCCH_UL is transmitted at 4 CCE_1S
  • PDCCH_DL is transmitted at 2 CCE_1S (432).
  • PDCCH_UL is transmitted in 4 CCE_1S and PDCCH_DL is transmitted in 4 CCE_1S (43 3) 13 combinations will come out.
  • the terminal performs blind detection on the 13 combinations.
  • the blind detection required by the terminal is as follows. First, it is assumed that there is no PDCCH_UL, and four blind detections are required according to blind detection on the assumption of 1 CCE_1S, 2 CCE_1S, and 4 CCE_1S. Four blind detections are required according to blind detection assuming PDCCH_UL as 1 CCE_1S and subsequent PDCCH_DL as 1 CCE_1S, 2 CCE_1S, and 4 CCE_1S. In addition, four blind detections are required according to blind detection assuming PDCCH_UL as 2 CCE_1S and subsequent PDCCH_DL as 1 CCE_1S, 2 CCE_1S, and 4 CCE_1S.
  • blind detection assuming PDCCH_UL as 4 CCE_1S and subsequent PDCCH_DL as 1 CCE_1S, 2 CCE_1S, and 4 CCE_1S. That is, a total of 16 blind detections are required.
  • the number of possible CCE_1S is assumed to be 3, but the number of CCE_1S may be any value, and the number of blind detections to be performed by the UE may vary according to the number of CCE_1S.
  • a PDSCH transmission resource using one OFDM symbol may be dynamically changed according to a PDCCH resource. Therefore, when a PDSCH is scheduled to a certain UE, the UE needs to know how much resource the PDCCH is using. In this embodiment, the UE determines a location where all PDCCH resources are used based on blind detection of PDCCH_DL. To judge. That is, after the UE performs blind detection on the PDCCH_DL, the CRC check is performed using the ID of the UE. If the CRC check is successful, it may be determined that the PDCCH_DL for the PDSCH transmission is transmitted to the UE.
  • PDCCH_DL is located at the end of the PDCCH region in the logical frequency resource as shown at 410 of FIG. 4, when PDCCH_DL is received, the position at which the PDCCH region and the PDSCH region indicated by 410 are distinguished is known. Accordingly, it is determined that the resource is for the PDSCH in the remaining region after subtracting the resource up to the last position of the PDCCH region from all resources, and thus receives the PDSCH. That is, a resource located after the PDCCH region in all resources of a symbol used for one OFDM symbol TTI may be determined to be a resource for a PDSCH used for one OFDM symbol TTI.
  • the UE may know a position (resource, subcarrier) where the PDCCH and the PDSCH are divided, a position where the PDCCH ends, or a position where the PDSCH starts based on the detection of the PDCCH.
  • the UE may know the start position of the PDSCH in the symbol used for the OFDM symbol TTI based on this and may receive or decode the PDSCH.
  • PHICH transmission may be required for HARQ operation for PUSCH transmission, which is a reverse data channel within 1 OFDM symbol.
  • some resources may be allocated in advance for PHICH channel transmission in all resources (414 in FIG. 4). Therefore, the PICHCH is first mapped to the remaining resources after the PHICH resource is preset in all resources, and the last remaining resources are mapped to the PDSCH.
  • the base station and the terminal should also include the process of determining the amount of resources that can be transmitted PDCCH, PDSCH, PHICH in the same manner.
  • the CRS structure may use the structure shown in FIG. 4 and introduce other new CRS structures.
  • mapping logical resources to frequency resources of physical resources There are several possible methods of physical resource mapping.
  • the easiest way is to map logical resources to frequency resources of physical resources in order. That is, logical resource 1 is mapped to physical resource 1, and logical resource 2 to physical resource 2, and so on.
  • Another way is to spread and map logical resources within physical resources to obtain frequency diversity. That is, a method of mapping adjacent logical resources to physical resources as far as possible, such as mapping logical resource 1 to physical resource 1, logical resource 2 to 101 physical resource, and logical resource 3 to 201 physical resource. It is also possible.
  • the mapping between logical resources and physical resources can be performed in various ways, and the technique proposed in this embodiment can be used for all possible logical-physical resource mapping methods.
  • FIG. 5 is a diagram illustrating an operation of a terminal according to the first embodiment of the present invention.
  • a UE reception operation is started.
  • the UE sets whether 1 OFDM symbol TTI is used. Whether one OFDM symbol TTI is used may be determined according to signaling between the UE and the base station. For example, whether to use one OFDM symbol TTI may be set using a system information block (SIB) or an RRC signaling between the terminal and the base station.
  • SIB system information block
  • RRC radio resource control
  • step 503 reception of one OFDM symbol is performed on a resource set to one OFDM TTI.
  • step 504 the UE performs blind detection on the received symbol set to 1 OFDM TTI.
  • the UE performs blind detection on all combinations of the PDCCHs described with reference to FIG. 4.
  • step 505 the UE identifies whether PDCCH_DL is detected.
  • step 506 the UE may determine the resource location of the PDSCH based on the PDCCH_DL identification authority of 505. This is because, as described in FIG. 4, the base station maps and transmits the PDSCH to the next position of the resource to which the PDCCH_DL is mapped.
  • the terminal may know that the last position of the resource to which the PDCCH_DL is transmitted is the last position of all the PDCCH resources.
  • the UE determines the PDSCH resource from the resource after the last position of the entire PDCCH resources to the last resource in the same OFDM symbol.
  • the UE receives the PDSCH using the determined PDSCH resource. That is, the terminal may decode the PDSCH in the corresponding symbol based on the PDSCH resource location identified from the detection of the PDCCH.
  • step 508 the UE identifies whether PDCCH_UL is detected. If the terminal detects the PDCCH_UL in step 508, the process proceeds to step 509. In step 509, the PUSCH is transmitted using one OFDM symbol TTI in the first backward OFDM symbol after a predetermined time point, that is, after a predetermined TTI length. In step 510, the terminal operation is terminated.
  • the forward channel detection and reception process of 505 to 507 and the reverse channel detection and reception process of 509 to 509 are shown in FIG. 5 as performing priority in the forward direction and then performing the reverse direction in FIG. 5. It is assumed that the method can be performed in any order, such as the method of performing the method and the method of simultaneously performing the reverse and forward processes.
  • FIG. 6 is a diagram illustrating a base station procedure according to a second embodiment of the present invention.
  • the base station first starts operation of the base station in step 601.
  • the base station sets one OFDM symbol TTI.
  • the configuration of one OFDM symbol TTI may be determined according to the signaling of the base station.
  • one OFDM symbol TTI may be configured using a system information block (SIB) or RRC signaling transmitted by a base station.
  • SIB system information block
  • RRC Radio Resource Control
  • the base station performs scheduling on at least one terminal in which one OFDM symbol TTI is set in step 603 to determine a terminal to allocate a PDSCH, a terminal to allocate a PUSCH, and a format of each channel.
  • the base station generates a PDCCH_UL for PUSCH resource allocation in step 604.
  • the base station configures the PDCCH_UL after setting the CCE_1S to an appropriate value in consideration of the forward channel state of the terminal to transmit the PDCCH_UL. For example, one, two, four CCE_1S may be used according to the forward channel state of the terminal.
  • the base station generates PDCCH_DL for PDSCH resource allocation in step 605.
  • the base station configures the PDCCH_DL after setting the CCE_1S to an appropriate value in consideration of the forward channel state of the terminal to which the PDCCH_DL is to be transmitted. For example, one, two, four CCE_1S may be used according to the forward channel state of the terminal.
  • the order of steps 604 and 605 are interchangeable. That is, after generating a PDCCH for PDSCH resource allocation, a PDCCH for PUSCH resource allocation may be generated. In addition, when there is no downlink control signal to transmit in step 604 or step 605, each operation may be omitted.
  • the base station maps resources of the PDCCH to logical resources at 606.
  • the base station may use the mapping method of the PDCCH described in FIG.
  • the base station first maps PDCCH_UL to the first location of the resource for one OFDM symbol TTI, and then maps PDCCH_DL to the next location.
  • the base station maps the PDCCH in all resources and uses the remaining resources to map the PDSCH.
  • PDSCH may be mapped using all remaining resources after PDCCH mapping.
  • the base station may transmit a mapped 1 OFDM symbol TTI symbol.
  • the second embodiment it is assumed that only one UE is scheduled in the forward and reverse directions in one TTI in order to utilize 1 OFDM symbol TTI.
  • a forward direction for one terminal and a reverse direction for one terminal may be scheduled, and the terminal that is forward scheduling and the terminal that is backward scheduling may be the same or different.
  • the length of the TTI is 1 OFDM symbol, the total number of resources of the system included in the TTI is limited. Therefore, when several terminals are simultaneously scheduled in one TTI, many resources are often insufficient because a limited resource needs to be transmitted and received by several terminals. Therefore, in the present embodiment, one PDSCH exists in the forward direction and only one PUSCH exists in the reverse direction in one OFDM symbol TTI.
  • PDCCHs up to two PDCCHs exist in one TTI. Possible PDCCH combinations include 0 PDCCHs when no UEs are scheduled, 1 PDCCH when one forward UE is scheduled, and 1 PDCCH when one backward UE is scheduled, and finally there is one PDCCH. When one forward terminal and one reverse terminal are scheduled, there are two PDCCHs, which is the most PDCCH.
  • resource allocation information that is, resource block assignment information
  • PDCCH PDCCH
  • PDCCH_UL PDCCH
  • the amount of information of resource allocation information among the PDCCH information occupies a very large portion.
  • the amount of information of the PDCCH is reduced, so that the PDCCH can be transmitted with higher reliability with less resources.
  • other information such as process number, new data indicator, redundancy verion or transport block related information, modulation and coding scheme information, frequency related information (CA) related information, or power control information may be included in the PDCCH. May be included.
  • FIG. 7 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using one OFDM symbol TTI according to a second embodiment of the present invention.
  • one subframe 701 is divided into a PDCCH region 702 and a PDSCH region 703. Since the base station supporting one OFDM symbol TTI must also support the existing one subframe TTI terminal at the same time, it is also possible to simultaneously support one subframe TTI and one OFDM symbol TTI in the same subframe.
  • One OFDM symbol TTI may be applied to one symbol among OFDM symbols included in the PDSCH region 703, and one OFDM symbol TTI is included in the PDCCH region 702 in a subframe in which one subframe TTI terminal does not exist. It can be applied in the OFDM symbol of.
  • the resource of 1 OFDM symbol TTI as shown in 704 of FIG. 7, some frequency resources in one OFDM symbol are used, so that the remaining frequency resources are allocated to the existing 1ms TTI terminal.
  • the size of the frequency resource for which one OFDM symbol TTI can be used may be preset by higher signaling or MAC signaling or dynamically allocated to physical layer signaling.
  • one OFDM symbol TTI can use all of the frequency resources.
  • the base station may perform PDSCH allocation to one of the 1 OFDM symbol support terminals and PUSCH allocation to another terminal, and may assign both the PDSCH and the PUSCH to the same terminal.
  • frequency multiplexing of a resource for a PDCCH and a resource for a PDSCH in one symbol it is assumed that frequency multiplexing of a resource for a PDCCH and a resource for a PDSCH in one symbol.
  • PDCCH and PDSCH since PDCCH and PDSCH must be transmitted in one OFDM symbol, it is impossible to multiplex in time and frequency multiplexing is performed. Therefore, resources in which a PDCCH is transmitted and resources in which a PDSCH is transmitted must be divided within one OFDM symbol.
  • a PDCCH resource and a PDSCH resource are dynamically divided according to the use of the PDCCH, and the UE provides a method of determining whether the PDCCH resource and the PDSCH resource are divided according to the PDCCH blind detection.
  • scheduling is performed for 1 OFDM symbol UE in 704 OFDM symbols and a PDCCH is transmitted.
  • PDCCHs for one OFDM symbol terminal in one OFDM symbol are possible.
  • One PDCCH (PDCCH_DL) for the PDSCH and one PDCCH (PDCCH_UL) for the PUSCH are possible. Since PDCCH_DL and PDCCH_UL may have different sizes, the UE performs blind detection based on the size of PDCCH_DL and PDCCH_UL.
  • the frequency resource means a logical resource, and logically defines the order of the frequency resources, it is assumed that the base station and the terminal share the logical order of the frequency resources.
  • the logical frequency resource may be mapped to a physical frequency resource by any rule, and it is assumed that a base station and a terminal share a rule mapped to the physical frequency resource.
  • the base station allocates physical channels as shown in 710 of FIG. 7.
  • the PCFICH 711 and the PHICH 714 are allocated to the determined resource location, and the PDCCH and PDSCH are allocated to the remaining resources.
  • the resources of the PDCCH and PDSCH can separate the resources allocated by the PCFICH.
  • the location of the resources is divided 720 is determined by determining the amount of PDCCH resources in consideration of the number of required PDCCHs and the size of the CCE_1S. .
  • the PCFICH may be an indicator indicating a position (resource, subcarrier) where the PDCCH and the PDSCH are divided in one OFDM symbol TTI, or at least one of a position where the PDCCH ends and a position where the PDSCH starts.
  • the PCFICH is assumed to be 2 bits, and according to the information of the PCFICH, four PDCCH resources can be determined as shown in 721, 722, 723, and 724.
  • the size of the PCFICH and the number of possible PDCCH resource regions may be set to different values. If the number is different, the number of bits of the PCFICH may be larger.
  • the number of possible PDCCH resource regions may be determined based on the number of possible blind decoding cases of the first embodiment.
  • PCFICH information is transmitted as a physical layer signal
  • a method of presetting PCFICH information to higher signaling a method of setting one value in a standard, or a method of setting it to another method such as MAC signaling May also be used.
  • the CRS exists depending on the position of the OFDM symbol, and there may be a case where it is not.
  • other symbols of the same subframe 701 as well as 704 symbols may be used for one OFDM symbol TTI transmission.
  • CRS is present in the fifth OFDM symbol in one subframe and CRS is not present in the sixth OFDM symbol. Therefore, the amount of resources to which the PDCCH, PDSCH, and PHICH can be transmitted varies depending on the OFDM symbol position. Since the transmission of the CRS is information shared by both the base station and the terminal, the amount of resources must be taken differently depending on the existence of the CRS.
  • the base station and the terminal should also include the process of determining the amount of resources that can be transmitted PDCCH, PDSCH, PHICH in the same manner.
  • the CRS structure may use the structure of the existing LTE as shown in FIG. 7 and introduce a new CRS structure.
  • mapping logical resources to frequency resources of physical resources There are several possible methods of physical resource mapping.
  • the easiest way is to map logical resources to frequency resources of physical resources in order. That is, logical resource 1 is mapped to physical resource 1, and logical resource 2 to physical resource 2, and so on.
  • Another way is to spread and map logical resources within physical resources to obtain frequency diversity. That is, a method of mapping adjacent logical resources to physical resources as far as possible, such as mapping logical resource 1 to physical resource 1, logical resource 2 to 101 physical resource, and logical resource 3 to 201 physical resource. It is also possible.
  • the mapping between logical resources and physical resources can be performed in various ways, and the technique proposed in this embodiment can be used for all possible logical-physical resource mapping methods.
  • FIG. 8 is a diagram illustrating a terminal operation according to a second embodiment of the present invention.
  • step 801 a terminal reception operation is started.
  • the UE sets whether 1 OFDM symbol TTI is used. Whether one OFDM symbol TTI is used may be determined according to signaling between the UE and the base station. For example, whether to use one OFDM symbol TTI may be set using a system information block (SIB) or an RRC signaling between the terminal and the base station.
  • SIB system information block
  • RRC Radio Resource Control
  • step 803 reception of one OFDM symbol is performed on a resource set to one OFDM TTI.
  • the UE may obtain indicator information for distinguishing the PDCCH resource region and the PDSCH resource region from the received 1 OFDM symbol.
  • the indicator may be PCFICH.
  • step 805 the UE determines the PDCCH resource region.
  • the UE may determine the PDCCH resource region based on the PCFICH.
  • the determining of the PDCCH resource region may include determining a position of a last resource allocated to the PDCCH, a position of a starting resource allocated to the PDSCH, and a position (resource, subcarrier) for distinguishing the PDCCH resource from the PDSCH resource.
  • the PCFICH process of 804 may be omitted when the resource configuration allocated to the PDCCH is set not earlier than the PCFICH.
  • step 806 the UE performs blind detection on the PDCCH to determine whether PDCCH_DL is transmitted to the UE. If PDCCH_DL is detected, the UE receives the PDSCH based on the determined PDCCH information in step 807. The location of the PDSCH resource is determined based on the information obtained from the PCFICH. The UE may perform reception and decoding of the PDSCH based on the PDCCH information and the PDSCH resource location.
  • step 808 the UE identifies whether the PUCCH_UL is detected. If the UE detects the PDCCH_UL in step 808, the process proceeds to step 809. In step 809, the PUSCH is transmitted using one OFDM symbol TTI in the first backward OFDM symbol after a predetermined time point, that is, after a predetermined TTI length. In step 810, the terminal operation is terminated.
  • the forward processes 805 to 807 and the reverse processes 808 to 809 may be reversed, or may be performed simultaneously.
  • FIG. 9 is a diagram illustrating an operation of a base station according to a second embodiment of the present invention.
  • the base station first starts operation of the base station in step 901.
  • the base station sets one OFDM symbol TTI.
  • the configuration of one OFDM symbol TTI may be determined according to the signaling of the base station.
  • one OFDM symbol TTI may be configured using a system information block (SIB) or RRC signaling transmitted by a base station.
  • SIB system information block
  • the base station performs scheduling on at least one terminal in which one OFDM symbol TTI is set in step 903 to determine a terminal to allocate a PDSCH, a terminal to allocate a PUSCH, and a format of each channel.
  • the base station generates PDCCH_UL for PUSCH resource allocation in step 904.
  • the base station configures the PDCCH_UL after setting the CCE_1S to an appropriate value in consideration of the forward channel state of the terminal to transmit the PDCCH_UL.
  • the base station generates a PDCCH_DL for PDSCH resource allocation in step 905.
  • the CDC_1S is set to an appropriate value in consideration of the forward channel state of the terminal to which the PDCCH_DL is transmitted, and then the PDCCH_DL is configured.
  • the order of steps 904 and 905 is interchangeable. That is, after generating a PDCCH for PDSCH resource allocation, a PDCCH for PUSCH resource allocation may be generated.
  • each operation may be omitted.
  • the base station sets the PCFICH to enable the PDCCH with a resource size equal to or greater than the size of the PDCCH.
  • the PCFICH process of 906 may be omitted when the resource configuration allocated to the PDCCH is not set through the PCFICH but before.
  • the base station maps the PDCCH to the resource set as the PDCCH resource, maps the PDSCH in the remaining resources, and transmits the mapped 1 OFDM symbol TTI symbol. The base station operation ends (908).
  • a method in which the base station informs the resources of the PDCCH and PDSCH used for 1 OFDM symbol TTI through higher signaling may be considered.
  • the PCFICH is not needed, and the UE determines how resources of the PDCCH and the PDSCH are allocated through higher signaling. The other process is performed the same.
  • the present embodiment proposes a method of determining the maximum possible number of UEs that can be scheduled at the same time, and thus performing scheduling and PDCCH transmission accordingly.
  • the N value may be set to one value in the standard, the base station may be set through higher signaling, or may be set to the terminal using MAC signaling, physical layer signaling, and the like.
  • the number of scheduling terminals of the PDSCH and the number of PUSCH scheduling terminals may be the same or different. For convenience of description, the following assumes an N value of 4 in both the reverse and forward directions.
  • this embodiment classifies resources according to the number of terminals allocated at the same time, and assumes that the resource allocation information is transmitted to the PDCCH by utilizing the differentiated resources. By dividing the resource in advance, by minimizing the amount of resource allocation information, it is possible to reduce the amount of information of the PDCCH and to transmit the PDCCH to be more reliable with fewer resources.
  • the first bit is allocated whether the first resource is allocated among the divided resources
  • the second bit is allocated whether the second resource is allocated from the divided resources
  • the third bit is the third resource of the third resource.
  • the fourth bit indicates whether the fourth resource is allocated among the divided resources.
  • the bitmap of the resource allocation information is 1000
  • the bitmap of the resource allocation information is 1101, the first, second, and last resource among the divided resources. It means only assigned to the terminal.
  • FIG. 10 is a diagram illustrating a resource allocation method of a PDCCH and a PUSCH using one OFDM symbol TTI according to a third embodiment of the present invention.
  • one subframe 1001 is divided into a PDCCH region 1002 and a PDSCH region 1003. Since the base station supporting one OFDM symbol TTI must also support the existing one subframe TTI terminal at the same time, it is also possible to simultaneously support one subframe TTI and one OFDM symbol TTI in the same subframe.
  • One OFDM symbol TTI may be applied to one symbol among OFDM symbols included in the PDSCH region 1003, and one OFDM symbol TTI is included in the PDCCH region 702 in a subframe in which one subframe TTI terminal does not exist. It can be applied in the OFDM symbol of.
  • scheduling is performed for one OFDM symbol terminal in an OFDM symbol of 1004 and PDCCH is transmitted.
  • some frequency resources are used as one OFDM symbol TTI in one OFDM symbol, so that the remaining frequency resources are allocated to the existing 1ms TTI terminal.
  • the size of the frequency resource for which one OFDM symbol TTI can be used may be preset by higher signaling or MAC signaling or dynamically allocated to physical layer signaling. Of course, one OFDM symbol TTI can use all of the frequency resources.
  • the number of PDCCHs that can be transmitted in the PDCCH region is PDCCH_DL for up to four forward channels and PDCCH_UL for four reverse channels, such as eight PDCCHs. Transmission is possible. Since the PDCCH_DL and PDCCH_UL may have different sizes, the UE performs blind detection based on the size of the PDCCH_DL and PDCCH_UL and the number of simultaneous scheduling terminals.
  • the frequency resource means a logical resource, and logically defines the order of the frequency resources, it is assumed that the base station and the terminal share the logical order of the frequency resources.
  • the logical frequency resource may be mapped to a physical frequency resource by any rule, and it is assumed that a base station and a terminal share a rule mapped to the physical frequency resource.
  • the base station allocates physical channels as shown in 1010 of FIG. 10.
  • the PCFICH 1011 and the PHICH 1014 are allocated to the determined resource location, and the PDCCH and PDSCH are allocated to the remaining resources.
  • the resources of the PDCCH and PDSCH can separate the resources allocated by the PCFICH.
  • the amount of PDCCH resources is determined in consideration of the number of required PDCCHs and the size of the CCE_1S. .
  • the PCFICH is assumed to be 2 bits, and thus four PDCCH resources may be determined as shown in 1021, 1022, 1023, and 1024 according to the information of the PCFICH.
  • the size of the PCFICH and the number of possible PDCCH resource regions may be set to different values.
  • the remaining region may be used as the PDSCH.
  • the PDSCH region is divided by the number of configured terminals.
  • the PDSCH region 1013 is determined in FIG. 10
  • the PDSCH region is divided into N equal size resources, which are the maximum number of simultaneous scheduling capable items.
  • the PDSCH region after the PDCCH region may be divided into four equal size resources.
  • the PDSCH resource region for a specific UE may be indicated by bitmap information included in the corresponding PDCCH. According to the size of the PDSCH resource region, the size of one divided resource is also changed.
  • the downlink PUSCH resource is also divided into N equal size resources, which are the maximum number of terminals that can be simultaneously scheduled for the resource allocated for one OFDM symbol TTI.
  • the PUSCH resource for a specific UE may be indicated by bitmap information included in the corresponding PUCCH.
  • the CRS exists depending on the position of the OFDM symbol, and there may be a case where it is not. Assuming that the existing CRS structure is used as it is, CRS is present in the fifth OFDM symbol in one subframe and CRS is not present in the sixth OFDM symbol. Therefore, the amount of resources to which the PDCCH, PDSCH, and PHICH can be transmitted varies depending on the OFDM symbol position. Since the transmission of the CRS is information shared by both the base station and the terminal, the amount of resources must be taken differently depending on the existence of the CRS. In addition to the CRS, other channels for the system may exist in any OFDM channel.
  • the base station and the terminal should also include the process of determining the amount of resources that can be transmitted PDCCH, PDSCH, PHICH in the same manner.
  • the CRS structure may use the structure of the existing LTE as shown in FIG. 10 and may introduce a new CRS structure.
  • mapping logical resources to frequency resources of physical resources There are several possible methods of physical resource mapping.
  • the easiest way is to map logical resources to frequency resources of physical resources in order. That is, logical resource 1 is mapped to physical resource 1, and logical resource 2 to physical resource 2, and so on.
  • Another way is to spread and map logical resources within physical resources to obtain frequency diversity. That is, a method of mapping adjacent logical resources to physical resources as far as possible, such as mapping logical resource 1 to physical resource 1, logical resource 2 to 101 physical resource, and logical resource 3 to 201 physical resource. It is also possible.
  • the mapping between logical resources and physical resources can be performed in various ways, and the technique proposed in this embodiment can be used for all possible logical-physical resource mapping methods.
  • FIG. 11 is a diagram illustrating an operation of a terminal according to a third embodiment of the present invention.
  • step 1101 a terminal receiving operation is started.
  • the UE sets the number of divided frequency resources determined according to whether 1 OFDM symbol TTI is used and the maximum number of scheduled terminals. Whether the 1 OFDM symbol TTI is used and / or the maximum number of scheduled terminals may be determined according to the signaling of the base station. For example, whether one OFDM symbol TTI is used and the maximum number of scheduling terminals may be configured using a system information block (SIB) or RRC signaling of the base station.
  • SIB system information block
  • the UE performs reception on one OFDM symbol with respect to a resource set to one OFDM TTI.
  • the UE may obtain indicator information for distinguishing the PDCCH resource region and the PDSCH resource region from the received 1 OFDM symbol.
  • the indicator may be PCFICH.
  • the base station receives the PCFICH at 1104, determines the PDCCH resource region at 1105, and receives the PDCCH.
  • the PCFICH process of 1104 may be omitted when the resource configuration allocated to the PDCCH is not previously set through the PCFICH but previously set.
  • step 1106 the UE performs blind detection on the PDCCH_DL to determine whether the PDCCH_DL is transmitted.
  • the frequency resource to which the PDSCH is transmitted is identified using the bitmap format resource allocation information included in the PDCCH received in step 1107.
  • the UE receives and decodes a PDSCH using the determined PDSCH resource.
  • the UE may decode the PDSCH resource by identifying the frequency resource obtained from the resource allocation information in the bitmap format in the PDSCH region divided by the maximum number of scheduling allowable terminals.
  • step 1109 the UE identifies whether the PUCCH_UL is detected. If the UE detects the PDCCH_UL in step 1109, the terminal proceeds to step 1110.
  • step 1110 the frequency resource for transmitting the PUSCH is identified using the resource allocation information in the bitmap format included in the received PDCCH.
  • the UE transmits the PUSCH by using the frequency resource determined in step 1111 using a 1 OFDM symbol TTI in the first backward OFDM symbol after a predetermined time point, that is, after the determined TTI length in step 1111.
  • the terminal identifies the frequency resource obtained from the resource allocation information in the bitmap format in the PUSCH region divided by the maximum number of scheduling allowable terminals, and transmits the PUSCH.
  • step 1112 the terminal operation is terminated.
  • the forward operations 1106 to 1108 and the reverse operations 1109 to 1111 may be reversed or may be performed simultaneously.
  • FIG. 12 is a diagram illustrating an operation of a base station according to the third embodiment of the present invention.
  • the base station first starts operation of the base station in step 1201.
  • one OFDM symbol TTI is set.
  • the base station sets the number of divided frequency resources determined according to whether the TTI is used and the number of maximum scheduled terminals when used.
  • the configuration of one OFDM symbol TTI and the maximum number of scheduled terminals may be determined according to the signaling of the base station. For example, one OFDM symbol TTI and / or the number of maximum scheduled terminals may be set using a system information block (SIB) or RRC signaling transmitted by a base station.
  • SIB system information block
  • RRC Radio Resource Control
  • the base station performs scheduling on a plurality of terminals for which one OFDM symbol TTI is set, and determines a terminal to allocate a PDSCH, a terminal to allocate a PUSCH, and a format of each channel.
  • the base station generates PDCCH_UL for PUSCH resource allocation in step 1204.
  • the base station determines and includes a bitmap for the frequency resource allocated to the terminal.
  • the PDCCH_UL is configured after setting the CCE_1S to an appropriate value in consideration of the forward channel state of the UE to which the PDCCH_UL is to be transmitted.
  • the base station generates PDCCH_DL for PDSCH resource allocation, and includes a bitmap for the frequency resource allocated to the terminal.
  • the PDCCH_DL is configured after setting the CCE_1S to an appropriate value in consideration of the forward channel state of the UE to which the PDCCH_DL is to be transmitted. Meanwhile, the order of steps 1204 and 1205 may be exchanged. That is, after generating a PDCCH for PDSCH resource allocation, a PDCCH for PUSCH resource allocation may be generated. In addition, when there is no downlink control signal to transmit in step 1204 or 1205, each operation may be omitted.
  • step 1206 the base station considers the size of the PDCCH and sets the PCFICH to enable the PDCCH with a resource size equal to or larger than that.
  • step 1207 the PDCCH is mapped to the resource configured as the PDCCH resource, and the PDSCH is mapped from the remaining resources and then transmitted. And the base station operation ends. (1208)
  • a method of notifying the resources of the PDCCH and PDSCH used for the 1OFDM symbol TTI by the higher signaling may be considered.
  • the PCFICH is not needed, and the UE determines how resources of the PDCCH and the PDSCH are allocated through higher signaling. The other process is performed the same.
  • the PDCCH transmission method for 1 OFDM symbol TTI has been described above. In the following, a structure of a reverse channel having 1 OFDM symbol TTI is shown.
  • FIG. 13 illustrates a reverse channel structure according to a further embodiment of the present invention.
  • one subframe 1301 consists of two slots 1302 on one time axis, and one slot consists of six or seven OFDM symbols. Twelve resource elements constitute one resource block (RB) 1303 on the frequency axis, and a plurality of RBs constitute one system. As an example, a 10 MHz system includes 50 RBs, and a 20 MHz system includes 100 RBs.
  • RB resource block
  • a plurality of RBs located at both ends of the entire frequency band (1304, 1305) are allocated to PUCCH resources transmitted by a terminal having an existing 1 ms TTI length, and the remaining resources are allocated to PUSCH resources transmitted by a terminal having an existing 1 ms TTI length.
  • the PUCCH resources 1304 and 1305 are not easy to allocate dynamically, one OFDM symbol TTI channel may utilize a resource to which a PUSCH channel can be allocated. Therefore, a portion 1306 of the region where the PUCCH is not transmitted may be allocated as a PUSCH resource for a terminal having a conventional 1 ms TTI length and the remaining resource 1307 may be allocated as a resource for a 1 OFDM symbol TTI channel.
  • One OFDM symbol TTI channels may be transmitted in a resource of 1310.
  • a PUCCH for control information and a PUSCH for data information exist in a channel transmitted with one OFDM symbol TTI.
  • a multiplexing method of a PUCCH and a PUSCH is described using the following examples.
  • a method of allocating a PUCCH and a PUSCH channel through frequency multiplexing in a resource allocated to 1 OFDM symbol TTI is presented.
  • 13 shows a possible multiplexing method.
  • a resource 1310 allocated to one OFDM symbol TTI a portion of both end resources may be allocated to the PUCCH as in 1311 and the remaining resources may be allocated to the PUSCH.
  • the first resource portion may be allocated to the PUCCH and the remaining resources may be allocated to the PUSCH.
  • the PUCCH may be mapped by allocating resources at regular intervals over the entire 1 OFDM symbol TTI like the distributed resources, and the PUSCH may be mapped to the remaining resources.
  • Embodiment 4 a multiplexing method of a PUCCH resource and a PUSCH resource has been described.
  • the PUSCH resource requires a resource to which data information is mapped and a resource to which a reference signal is mapped, and multiplexing of two pieces of information requires frequency multiplexing.
  • LTE reverse transmission uses the SC-FDMA scheme to reduce the peak to average power ratio (PAPR). In the case of 1 OFDM symbol TTI, the pure SC-FDMA scheme can be difficult to minimize the PAPR increase and improve performance. There is a need for a transmission scheme.
  • the following examples suggest a method for frequency multiplexing a data signal and a reference signal while reducing PAPR.
  • a multiplexing method for the present embodiment is provided.
  • data (DFT input) 1401 is input to the DFT block 1402.
  • the DFT encoded output 1404 is input to the IFFT block 1408 to perform the IFFT.
  • the IFFT input is considered frequency domain.
  • Frequency multiplexing is essential to multiplex data and reference signals in one OFDM symbol.
  • reference signals are multiplexed in the time domain, but frequency multiplexing is essential to multiplex reference signals and data in one symbol in one OFDM symbol TTI. Therefore, the reference signal must be multiplexed with the data signal at the IFFT input.
  • the reference signals are mapped at regular intervals at random intervals. That is, a DMRS block 1403 generates a DeModulation Reference Signal (DMRS) and inputs the IF signal at regular intervals in the IFFT input like the DMRS coded output 1405.
  • DMRS DeModulation Reference Signal
  • the interval is described as five subcarrier intervals, but the interval may be any number.
  • Data may be mapped to four subcarriers, and reference signals may be mapped to one subcarrier to perform mapping at five subcarrier intervals. The data signal is mapped to the remaining region to which the reference signal is mapped. As shown in 1404, the subcarrier to which the reference signal is mapped is mapped in the IFFT input.
  • the frequency domain in which the data signal and the reference signal are input is a frequency domain allocated to the PUSCH transmission to the terminal, and a value 0 is input in the remaining regions, that is, 1406 and 1407. That is, the inputs of 1404, 1405, 1406, and 1407 are inputs of the total system frequency resource size.
  • the output of the IFFT block of 1408 a 1409 signal in a time domain is output, and the UE sequentially transmits a 1409 signal in the time domain.
  • the formal relationship is
  • IFFT total input / output (system-wide subcarriers, e.g. 1200 for 20 MHz BW systems): K
  • a multiplexing method for the present embodiment is provided.
  • data is input to a plurality of DFT blocks 1501 and 1502, and a DFT coded output 1504 is input to an IFFT block 1508, where one DFT output sequence has a certain period P and is constant. Map the data signal to the IFFT input signal at intervals. The output of the next DFT block is mapped to the IFFT input signal at regular intervals with the same period (P).
  • a DeModulation Reference Signal (DMRS) is similarly inputted to the IFFT block at 1505 with the same period P at regular intervals.
  • the frequency domain in which the data signal and the reference signal are input is a frequency domain allocated for PUSCH transmission to the terminal, and a value 0 is input in the remaining regions, that is, 1506 and 1507. That is, the inputs of 1504, 1505, 1506, and 1507 are the inputs of the total system frequency resource size.
  • the output of the IFFT block of 1508 outputs a 1509 signal in the time domain, and the terminal sequentially transmits the 1509 signal in the time domain.
  • the formal relationship is as follows.
  • IFFT total input / output (system-wide subcarriers, e.g. 1200 for 20 MHz BW systems): K
  • a multiplexing method for the present embodiment is provided.
  • data is input to the DFT blocks 1601 and 1602, and the DFT coded output 1604 is input to the IFFT block 1608 to perform IFFT.
  • the number of DFT-coded outputs 1604 and the number of IFFT block inputs of 1608, that is, the number of allocated subcarriers are the same.
  • the IFFT input is considered frequency domain. Frequency multiplexing is essential to multiplex data and reference signals in one OFDM symbol. Therefore, in the IFFT input, the reference signal must be multiplexed with the data signal. In FIG. 16, the reference signal is mapped at a predetermined interval with an arbitrary period.
  • a reference signal is generated at 1603 and input at regular intervals in the IFFT input as shown in 1605.
  • the interval is described as five subcarrier intervals, but the interval may be any number.
  • the data signal is not transmitted to the IFFT input terminal to which the reference signal is mapped. That is, when the DFT output of the data signal is input to the IFFT block, the data signal corresponding to the input to which the reference signal is mapped is discarded, and the data signal is input only to the input to which the reference signal is not mapped.
  • the frequency domain in which the data signal and the reference signal are input is a frequency domain allocated to the terminal, and a value of 0 is input in the remaining regions, that is, the 1606 and 1607 regions.
  • the inputs of 1604, 1605, 1606, and 1607 are inputs of the total system frequency resource size.
  • a 1609 signal in the time domain is output, and the UE sequentially transmits the 1607 signal in the time domain.
  • IFFT total input / output (system-wide subcarriers, e.g. 1200 for 20 MHz BW systems): K
  • 17 is a diagram illustrating a 1 OFDM symbol TTI uplink transmission method of a terminal according to an embodiment of the present invention.
  • step 1701 the UE starts an operation.
  • the terminal receives the PDCCH in the frequency band and the symbol corresponding to the configuration.
  • the UE identifies 1 OFDM symbol TTI PUCCH for itself in step 1702.
  • the terminal terminates the operation for uplink transmission. If 1 OFDM symbol TTI PUCCH allocated to the terminal is identified, the terminal generates uplink data in step 1703.
  • the UE maps uplink data to PUSCH resources based on uplink scheduling information of the 1 OFDM symbol TTI PUCCH.
  • the uplink data resource mapping method described with reference to FIG. 14, FIG. 15, or FIG. 16 may be used.
  • step 1705 the UE transmits a PUSCH.
  • the terminal 1806 of the present invention may include a terminal receiver 1800, a terminal transmitter 1804, and a terminal processor 1802.
  • the terminal receiver 1800 and the terminal transmitter 1804 may be collectively referred to as a transmitter / receiver in an embodiment of the present invention.
  • the transceiver may transmit and receive a signal with the base station.
  • the signal may include control information and at least one of data and pilot.
  • the terminal processor 1802 may be called a controller or a controller.
  • the transceiver may include an RF transmitter for upconverting and amplifying a frequency of a transmitted signal, and an RF receiver for low noise amplifying and downconverting a received signal.
  • the transceiver may receive a signal through a wireless channel, output the signal to the terminal processor 1802, and transmit a signal output from the terminal processor 1802 through a wireless channel.
  • the terminal processing unit 1802 sets a transmission timing interval (TTI) less than one subframe, receives a TTI resource less than one subframe, and receives a TTI resource less than one subframe.
  • TTI transmission timing interval
  • the downlink control channel for the downlink data channel is identified, and when the downlink control channel is identified, it may be controlled to decode the downlink data channel based on the resource mapping position of the downlink control channel.
  • a TTI less than one subframe may be referred to as a first TTI.
  • the TTI less than one subframe may indicate one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the terminal processor 1802 may control to decode the downlink data channel from the next frequency resource of the last frequency resource to which the downlink control channel is mapped in the same symbol.
  • the terminal processor 1802 may identify indication information indicating a position where the downlink control information and the downlink data channel are divided, and control to decode the downlink data channel based on the indication information. .
  • the terminal processing unit 1802 controls the controller to check information indicating a resource allocation position of the downlink data channel from the downlink control information, and to decode the downlink data channel based on the information. Can be controlled.
  • the information may indicate a resource allocation position for the terminal in the downlink data region divided by the maximum number of schedulable terminals n.
  • the terminal processor 1802 may control a series of processes to operate the terminal according to the above-described embodiment of the present invention.
  • the base station 1907 of the present invention may include a base station receiver 1901, a base station transmitter 1905, and a base station processor 1803.
  • the base station receiving unit 1901 and the base station transmitting unit 1905 may be collectively referred to as a transmitting and receiving unit in the embodiment of the present invention.
  • the transceiver may transmit and receive a signal with the terminal.
  • the signal may include control information and at least one of data and pilot.
  • the base station processor 1802 may be called a controller or a controller.
  • the transceiver may include an RF transmitter for upconverting and amplifying a frequency of a transmitted signal, and an RF receiver for low noise amplifying and downconverting a received signal.
  • the transceiver may receive a signal through a wireless channel, output the signal to the base station processor 1901, and transmit a signal output from the base station processor 1901 through a wireless channel.
  • the base station processor 1903 sets a transmission timing interval (TTI) less than one subframe in at least one terminal and generates a downlink control channel for the at least one terminal. And mapping a downlink data channel corresponding to the downlink control channel based on the downlink control channel resource mapping position, and corresponding to a TTI of less than one subframe to which the downlink control channel and the downlink data channel are mapped. It can be controlled to transmit a signal.
  • TTI less than one subframe may be referred to as a first TTI.
  • the TTI less than one subframe may indicate one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the base station processor 1901 may map indication information indicating a position at which the downlink control information and the downlink data channel are divided.
  • the base station processor 1903 may map the downlink data channel from the next frequency resource of the last frequency resource to which the downlink control channel is mapped in the same symbol.
  • the base station processor 1903 may set the maximum number of schedulable terminals n in the TTI less than one subframe, and control to divide the downlink data areas into n based on the maximum number of schedulable terminals n. have.
  • the downlink control information for a specific terminal may include information indicating a resource allocation position for the specific terminal in the n divided downlink data areas.
  • the base station processing unit 1903 may control a series of processes for operating the base station according to the above-described embodiment of the present invention.
  • embodiments of the present invention disclosed in the specification and the drawings may be used to describe the technical contents of the present invention. It is merely presented specific examples for ease of explanation and understanding of the present invention, and is not intended to limit the scope of the present invention. That is, it will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be implemented. In addition, each of the above embodiments can be combined with each other if necessary to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선통신 시스템에 대한 것으로서, 특히 1ms보다 작은 전송시간구간으로의 송수신을 지원하는 시스템에서 하향링크 및 상향링크 제어채널 전송을 운용하는 방법 및 장치에 관한 것이다. 구체적으로, 1ms보다 작은 전송시간구간, 특히 1 OFDM 심볼 길이의 TTI를 가지는 경우에 있어서 필요한 물리채널들을 정의하고, 자원할당 및 리소스 블록에 매핑하는 방법을 제공한다.

Description

무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
본 발명은 무선통신 시스템에 대한 것으로서, 보다 구체적으로 전송시간구간을 감소시키기 위한 데이터 송수신 방법 및 시스템에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 혹은 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 혹은 MS(Mobile Station))이 기지국(eNode B, 혹은 base station(BS))으로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 혹은 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 혹은 제어정보를 구분한다.
LTE 시스템은 초기 전송에서 복호 실패가 발생된 경우, 물리 계층에서 해당 데이터를 재전송하는 HARQ (Hybrid Automatic Repeat reQuest) 방식을 채용하고 있다. HARQ 방식이란 수신기가 데이터를 정확하게 복호화(디코딩)하지 못한 경우, 수신기가 송신기에게 디코딩 실패를 알리는 정보(NACK; Negative Acknowledgement)를 전송하여 송신기가 물리 계층에서 해당 데이터를 재전송할 수 있게 한다. 수신기는 송신기가 재전송한 데이터를 이전에 디코딩 실패한 데이터와 결합하여 데이터 수신성능을 높이게 된다. 또한, 수신기가 데이터를 정확하게 복호한 경우 송신기에게 디코딩 성공을 알리는 정보(ACK; Acknowledgement)를 전송하여 송신기가 새로운 데이터를 전송할 수 있도록 할 수 있다.
도 1은 LTE 시스템에서 하향링크에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 1에서 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 OFDM 심볼로서, Nsymb (102)개의 OFDM 심볼이 모여 하나의 슬롯(106)을 구성하고, 2개의 슬롯이 모여 하나의 서브프레임(105)을 구성한다. 상기 슬롯의 길이는 0.5ms 이고, 서브프레임의 길이는 1.0ms 이다. 그리고 라디오 프레임(114)은 10개의 서브프레임으로 구성되는 시간영역구간이다. 주파수영역에서의 최소 전송단위는 서브캐리어(subcarrier)로서, 전체 시스템 전송 대역 (Transmission bandwidth)의 대역폭은 총 NBW (104)개의 서브캐리어로 구성된다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(112, Resource Element; RE)로서 OFDM 심볼 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(108, Resource Block; RB 혹은 Physical Resource Block; PRB)은 시간영역에서 Nsymb (102)개의 연속된 OFDM 심볼과 주파수 영역에서 NRB (110)개의 연속된 서브캐리어로 정의된다. 따라서, 하나의 RB(108)는 Nsymb x NRB 개의 RE(112)로 구성된다. 일반적으로 데이터의 최소 전송단위는 상기 RB 단위이다. LTE 시스템에서 일반적으로 상기 Nsymb = 7, NRB=12 이고, NBW 및 NRB 는 시스템 전송 대역의 대역폭에 비례한다. 단말에게 스케쥴링되는 RB 개수에 비례하여 데이터 레이트가 증가하게된다. LTE 시스템은 6개의 전송 대역폭을 정의하여 운영한다. 하향링크와 상향링크를 주파수로 구분하여 운영하는 FDD 시스템의 경우, 하향링크 전송 대역폭과 상향링크 전송 대역폭이 서로 다를 수 있다. 채널 대역폭은 시스템 전송 대역폭에 대응되는 RF 대역폭을 나타낸다. [표 1]은 LTE 시스템에 정의된 시스템 전송 대역폭과 채널 대역폭 (Channel bandwidth)의 대응관계를 나타낸다. 예를 들어, 10MHz 채널 대역폭을 갖는 LTE 시스템은 전송 대역폭이 50개의 RB로 구성된다.
[표 1]
Figure PCTKR2016006685-appb-I000001
하향링크 제어정보의 경우 상기 서브프레임 내의 최초 N 개의 OFDM 심볼 이내에 전송된다. 일반적으로 N = {1, 2, 3} 이다. 따라서 현재 서브프레임에 전송해야 할 제어정보의 양에 따라 상기 N 값이 서브프레임마다 가변하게 된다. 상기 제어정보로는 제어정보가 OFDM 심볼 몇 개에 걸쳐 전송되는지를 나타내는 제어채널 전송구간 지시자, 하향링크 데이터 혹은 상향링크 데이터에 대한 스케쥴링 정보, HARQ ACK/NACK 신호 등을 포함한다.
LTE 시스템에서 하향링크 데이터 혹은 상향링크 데이터에 대한 스케줄링 정보는 하향링크 제어정보(Downlink Control Information; DCI)를 통해 기지국으로부터 단말에게 전달된다. DCI 는 여러 가지 포맷을 정의하여, 상향링크 데이터에 대한 스케줄링 정보 (UL grant) 인지 하향링크 데이터에 대한 스케줄링 정보 (DL grant) 인지 여부, 제어정보의 크기가 작은 컴팩트 DCI 인지 여부, 다중안테나를 사용한 공간 다중화 (spatial multiplexing)을 적용하는지 여부, 전력제어 용 DCI 인지 여부 등에 따라 정해진 DCI 포맷을 적용하여 운용한다. 예컨대, 하향링크 데이터에 대한 스케줄링 제어정보(DL grant)인 DCI format 1 은 적어도 다음과 같은 제어정보들을 포함하도록 구성된다.
- 자원 할당 유형 0/1 플래그(Resource allocation type 0/1 flag): 리소스 할당 방식이 유형 0 인지 유형 1 인지 통지한다. 유형 0 은 비트맵 방식을 적용하여 RBG (resource block group) 단위로 리소스를 할당한다. LTE 시스템에서 스케줄링의 기본 단위는 시간 및 주파수 영역 리소스로 표현되는 RB이고, RBG 는 복수개의 RB로 구성되어 유형 0 방식에서의 스케줄링의 기본 단위가 된다. 유형 1 은 RBG 내에서 특정 RB를 할당하도록 한다.
- 자원 블록 할당(Resource block assignment): 데이터 전송에 할당된 RB를 통지한다. 시스템 대역폭 및 리소스 할당 방식에 따라 표현하는 리소스가 결정된다.
- 변조 및 코딩 방식(Modulation and coding scheme; MCS): 데이터 전송에 사용된 변조방식과 전송하고자 하는 데이터인 transport block 의 크기를 통지한다.
- HARQ 프로세스 번호(HARQ process number): HARQ 의 프로세스 번호를 통지한다.
- 새로운 데이터 지시자(New data indicator): HARQ 초기전송인지 재전송인지를 통지한다.
- 중복 버전(Redundancy version): HARQ 의 중복 버전(redundancy version) 을 통지한다.
- PUCCH를 위한 전송 전력 제어 명령(TPC(Transmit Power Control) command for PUCCH(Physical Uplink Control Channel): 상향링크 제어 채널인 PUCCH 에 대한 전송 전력 제어 명령을 통지한다.
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH (Physical downlink control channel)(또는, 제어 정보, 이하 혼용하여 사용하도록 한다) 혹은 EPDCCH (Enhanced PDCCH)(또는, 향상된 제어 정보, 이하 혼용하여 사용하도록 한다)를 통해 전송된다.
일반적으로 상기 DCI는 각 단말에 대해 독립적으로 특정 RNTI (Radio Network Temporary Identifier)(또는, 단말 식별자)로 스크램블 되어 CRC(cyclic redundancy check)가 추가되고 채널 코딩된 후, 각각 독립적인 PDCCH로 구성되어 전송된다. 시간영역에서 PDCCH는 상기 제어채널 전송구간 동안 매핑되어 전송된다. PDCCH 의 주파수영역 매핑 위치는 각 단말의 식별자(ID) 에 의해 결정되고, 전체 시스템 전송 대역에 퍼뜨려진다.
하향링크 데이터는 하향링크 데이터 전송용 물리채널인 PDSCH (Physical Downlink Shared Channel) 를 통해 전송된다. PDSCH는 상기 제어채널 전송구간 이후부터 전송되는데, 주파수 영역에서의 구체적인 매핑 위치, 변조 방식 등의 스케줄링 정보는 상기 PDCCH 를 통해 전송되는 DCI가 알려준다
상기 DCI 를 구성하는 제어정보 중에서 5 비트로 구성되는 MCS 를 통해서, 기지국은 단말에게 전송하고자 하는 PDSCH에 적용된 변조방식과 전송하고자 하는 데이터의 크기 (transport block size; TBS)를 통지한다. 상기 TBS 는 기지국이 전송하고자 하는 데이터 (transport block, TB)에 오류정정을 위한 채널코딩이 적용되기 이전의 크기에 해당한다.
LTE 시스템에서 지원하는 변조방식은 QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM 으로서, 각각의 변조오더(Modulation order) (Qm) 는 2, 4, 6 에 해당한다. 즉, QPSK 변조의 경우 심볼 당 2 비트, 16QAM 변조의 경우 심볼 당 4 비트, 64QAM 변조의 경우 심볼 당 6 비트를 전송할 수 있다.
도 2는 LTE-A 시스템에서 PUCCH의 시간-주파수영역 전송 구조의 일례를 나타낸 도면이다. 다시 말해 도 2는 LTE-A 시스템에서 단말이 기지국으로 상향링크 제어정보(UCI; Uplink Control Information)를 전송하기 위한 물리제어채널인 PUCCH(Physical Uplink Control Channel)의 시간-주파수영역 전송 구조를 나타낸 도면이다.
그리고 UCI는 다음 제어정보를 적어도 하나 포함한다:
- HARQ-ACK: 단말이 기지국으로부터 HARQ(Hybrid Automatic Repeat request)가 적용되는 하향링크 데이터 채널인 PDSCH(Physical Downlink Shared Channel)를 통해 수신한 하향링크 데이터에 대해 오류가 없으면, ACK(Acknowledgement)을 피드백하고, 오류가 있으면 NACK(Negative Acknowledgement)을 피드백한다.
- 채널상태정보(Channel Status Information; CSI): CQI (Channel Quality Indicator), 혹은 PMI (Precoding Matrix Indicator), 혹은 RI(Rank Indicator), 혹은 하향링크 채널계수(channel coefficient)를 나타내는 신호를 포함한다. 기지국은 단말로부터 획득한 CSI로부터 단말에게 전송할 데이터에 대한 변조 및 코딩 방식(Modulation and Coding Scheme; MCS) 등을 적절한 값으로 설정하여, 데이터에 대한 소정의 수신 성능을 만족시킨다. CQI는 시스템 전대역(wideband) 혹은 일부 대역(subband)에 대한 신호 대 간섭 및 잡음 비(Signal to Interference and Noise Ratio; SINR)를 나타내는데, 일반적으로 소정의 미리 정해진 데이터 수신 성능을 만족시키기 위한 MCS의 형태로 표현된다. PMI/RI는 다중안테나 입출력(Multiple Input Multiple Output; MIMO)을 지원하는 시스템에서 기지국이 다중안테나를 통해 데이터 전송할 때 필요한 precoding 및 rank 정보를 제공한다. 하향링크 채널계수를 나타내는 신호는 CSI 신호보다 상대적으로 상세한 채널상태정보를 제공하지만, 상향링크 오버헤드를 증가시킨다. 여기서 단말은 구체적으로 어떤 정보를 피드백할지를 나타내는 리포팅 모드(reporting mode), 어떤 자원을 사용할지에 대한 자원 정보, 전송 주기 등에 대한 CSI 설정 정보를 상위계층 시그널링(higher layer signaling)을 통해 기지국으로부터 미리 통지받는다. 그리고 단말은 미리 통지된 CSI 설정 정보를 이용하여 기지국에 CSI를 전송한다.
도 2를 참조하면, 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다.
시간영역에서의 최소 전송단위는 SC-FDMA 심볼(201)로서, Nsymb UL 개의 SC-FDMA 심볼이 모여 하나의 슬롯(203, 205)을 구성한다. 그리고 2개의 슬롯이 모여 하나의 서브프레임(207)을 구성한다. 주파수영역에서의 최소 전송단위는 서브캐리어로서, 전체 시스템 전송 대역(transmission bandwidth; 209)은 총 NBW개의 서브캐리어로 구성된다. NBW는 시스템 전송 대역에 비례하여 값을 갖는다.
시간-주파수영역에서 자원의 기본 단위는 자원 요소(Resource Element; RE)로서 SC-FDMA 심볼 인덱스 및 서브캐리어 인덱스로 정의할 수 있다. 자원 블록(211, 217, Resource Block; RB)은 시간영역에서 Nsymb UL 개의 연속된 SC-FDMA 심볼과 주파수 영역에서 Nsc RB 개의 연속된 서브캐리어로 정의된다. 따라서, 하나의 RB는 Nsymb UL x Nsc RB 개의 RE로 구성된다. 일반적으로 데이터 혹은 제어정보의 최소 전송단위는 RB 단위이다. PUCCH 의 경우 1 RB에 해당하는 주파수 영역에 매핑되어 1 서브프레임 동안 전송된다.
도 2를 참조하면, 구체적으로 Nsymb UL = 7, Nsc RB =12 이고, 한 슬롯 내에 채널추정을 위한 RS(Reference Signal)의 개수가 NRS PUCCH = 2 인 예를 나타낸다. RS는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용한다. CAZAC 시퀀스는 신호세기가 일정하고 자기 상관계수가 0 인 특징을 갖는다. 소정의 CAZAC 시퀀스를 전송경로의 지연 스프레드(delay spread) 보다 큰 값만큼 순환 시프트(Cyclic Shift, CS) 하여 새로 구성된 CAZAC 시퀀스는 원래 CAZAC 시퀀스와 상호 직교성이 유지된다. 따라서 길이 L 인 CAZAC 시퀀스로부터 최대 L 개의 직교성이 유지되는 CS된 CAZAC 시퀀스를 생성할 수 있다. PUCCH에 적용되는 CAZAC 시퀀스의 길이는 하나의 RB를 구성하는 서브케리어 개수에 해당하는 12이다.
RS가 매핑되지 않는 SC-FDMA 심볼에 UCI가 매핑된다. 도 2는 총 10개의 UCI 변조심볼(213, 215; d(0), d(1), … , d(9))이 한 서브프레임 내의 SC-FDMA 심볼에 각각 매핑되는 예를 나타낸다. 각각의 UCI 변조심볼은 다른 단말의 UCI와의 다중화를 위해 소정의 cyclic shift 값을 적용한 CAZAC 시퀀스와 곱해진 후 SC-FDMA 심볼에 매핑된다. PUCCH는 주파수 다이버시티를 얻기 위해 슬롯 단위로 주파수 도약(frequency hopping)이 적용된다. 그리고 PUCCH는 시스템 전송대역의 외곽에 위치하며 나머지 전송대역에서 데이터 전송이 가능하게 한다. 즉, PUCCH는 서브프레임 내의 첫번째 슬롯에서 시스템 전송대역의 최 외곽에 위치하는 RB(211)에 매핑되고, 두번째 슬롯에서 시스템 전송대역의 또 다른 최 외곽에 위치하는 RB(211)과 다른 주파수 영역인 RB(217)에 매핑된다. 일반적으로 HARQ-ACK을 전송하기 위한 PUCCH와 CSI를 전송하기 위한 PUCCH는 매핑되는 RB 위치는 서로 겹치지 않는다.
LTE 시스템에서는 하향링크 데이터 전송용 물리채널인 PDSCH 혹은 반영구적 스케줄링 해제(semi-persistent scheduling release; SPS release)를 포함하는 PDCCH/EPDDCH에 대응하는 HARQ ACK/NACK이 전송되는 상향링크 물리채널인 PUCCH 혹은 PUSCH의 타이밍 관계가 정의되어 있다. 일례로 FDD(frequency division duplex)로 동작하는 LTE 시스템에서는 n-4번째 서브프레임에서 전송된 PDSCH 혹은 SPS 해제(release)를 포함하는 PDCCH/EPDCCH에 대응하는 HARQ ACK/NACK가 n번째 서브프레임에서 PUCCH 혹은 PUSCH로 전송된다.
LTE 시스템에서 하향링크 HARQ는 데이터 재전송시점이 고정되지 않은 비동기(asynchronous) HARQ 방식을 채택하고 있다. 즉, 기지국이 전송한 초기전송 데이터에 대해 단말로부터 HARQ NACK을 피드백 받은 경우, 기지국은 재전송 데이터의 전송시점을 스케줄링 동작에 의해 자유롭게 결정한다. 단말은 HARQ 동작을 위해 수신 데이터에 대한 디코딩 결과, 오류로 판단된 데이터에 대해 버퍼링을 한 후, 다음 재전송 데이터와 컴바이닝을 수행한다.
LTE 시스템에서 하향링크 HARQ 와 달리 상향링크 HARQ는 데이터 전송시점이 고정된 동기(synchronous) HARQ 방식을 채택하고 있다. 즉, 상향링크 데이터 전송용 물리채널인 PUSCH(Physical Uplink Shared Channel)와 이에 선행하는 하향링크 제어채널인 PDCCH, 그리고 상기 PUSCH에 대응되는 하향링크 HARQ ACK/NACK이 전송되는 물리채널인 PHICH(Physical Hybrid Indicator Channel)의 상/하향링크 타이밍 관계가 다음과 같은 규칙에 의해 고정되어 있다.
단말은 서브프레임 n에 기지국으로부터 전송된 상향링크 스케줄링 제어정보를 포함하는 PDCCH 혹은 하향링크 HARQ ACK/NACK이 전송되는 PHICH를 수신하면, 서브프레임 n+k에 상기 제어정보에 대응되는 상향링크 데이터를 PUSCH를 통해 전송한다. 이 때 상기 k는 LTE의 시스템의 FDD 또는 TDD(time division duplex)와 그 설정에 따라 다르게 정의되어 있다. 일례로 FDD LTE 시스템의 경우에는 상기 k가 4로 고정된다.
그리고 단말은 서브프레임 i에 기지국으로부터 하향링크 HARQ ACK/NACK을 운반하는 PHICH를 수신하면, 상기 PHICH는 서브프레임 i-k에 단말이 전송한 PUSCH에 대응된다. 이 때 상기 k는 LTE의 시스템의 FDD 또는 TDD(time division duplex)와 그 설정에 따라 다르게 정의되어 있다. 일례로 FDD LTE 시스템의 경우에는 상기 k가 4로 고정된다.
셀룰러 무선통신 시스템 성능의 중요한 기준 중에 하나는 패킷 데이터 지연시간(latency)이다. 이를 위해 LTE 시스템에서는 1ms의 전송시간구간 (Transmission Time Interval; TTI)를 갖는 서브프레임 단위로 신호의 송수신이 이루어진다. 상기와 같이 동작하는 LTE 시스템에서 1ms보다 짧은 전송시간구간을 갖는 단말(shortened-TTI/shorter-TTI UE)을 지원할 수 있다. Shortened-TTI 단말은 지연시간(latency)이 중요한 Voice over LTE (VoLTE) 서비스, 원격조종과 같은 서비스에 적합할 것으로 예상된다. 또한 shortened-TTI 단말은 셀룰러 기반에서 미션 크리티컬(mission critical)한 사물인터넷 (IoT; Internet of Things)을 실현할 수 있는 수단으로 기대된다.
현재의 LTE 및 LTE-A 시스템은 전송시간구간이 1ms인 서브프레임 단위로 송수신이 되도록 기지국과 단말이 설계되어 있다. 1ms보다 짧은 전송시간구간으로 동작하는 shortened-TTI 단말을 지원하기 위해서는 일반적인 LTE 및 LTE-A 단말과는 차별화되는 송수신 동작을 정의할 필요가 있다. 도 1, 도 2와 같은 현재의 LTE 구조에서 물리적으로 가장 짧게 줄일 수 있는 TTI 길이는 하나의 심볼 길이가 될 수 있다. 하나의 슬롯(도 1의 106 혹은 도 2의 206)에는 6개 혹은 7개의 OFDM 심볼, 혹은 SC-FDMA 심볼이 포함되는 데 (하기부터 OFDM 심볼과 SC-FDMA 심볼을 통일하여 ‘OFDM 심볼’, 혹은 ‘심볼’로 대표하여 기술한다.), 각각의 OFDM심볼을 하나의 TTI로 사용하게 되면, 가장 크게 전송 지연 시간을 줄일 수 있게 된다. 본 발명은 LTE 시스템 내에서 1 OFDM 심볼 길이의 TTI를 지원하는 송수신 방법을 제안한다.
본 발명이 이루고자 하는 기술적 과제는 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치를 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 전송 시간을 감소시키기 위한 송수신 방법, 장치, 및 시스템을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 shortened-TTI 단말 및 동작 방법, shortened-TTI 단말을 위한 송수신 방법 및 장치 제공하고, 기존 단말과 상기 shortened-TTI 단말이 시스템 내에 공존하는 단말, 기지국 및 시스템과 그 동작 방법을 제공하는 것이다.
상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 기지국의 신호 송수신 방법은 스케쥴링 대상 단말이 제1 타입 단말 또는 제2 타입 단말 중 어느 타입의 단말인지 결정하는 단계, 제1 타입 단말인 경우, 상기 제1 타입 단말을 위한 제어 정보에 기반하여 제어 정보를 생성하는 단계, 및 상기 생성된 제어 정보를 전송하는 단계를 포함할 수 있다. 이 경우, 상기 제1 타입 단말에 대한 전송시간구간의 길이는 상기 제2 타입 단말에 대한 전송시간구간의 길이보다 짧은 것을 특징으로 할 수 있다.
또한, 본 발명의 실시 예에 따르면, 무선 통신 시스템에서 기지국의 신호 송수신 방법에 있어서, 적어도 하나의 단말에 제1 전송시간구간(transmission timing interval, TTI)을 설정하는 단계, 상기 적어도 하나의 단말에 대한 하향링크 제어 채널을 생성하는 단계, 상기 하향링크 제어 채널 자원 매핑 위치에 기반하여 상기 하향링크 제어 채널에 대응하는 하향링크 데이터 채널을 매핑하는 단계 및 상기 하향링크 제어 채널 및 하향링크 데이터 채널이 매핑된 제1 TTI에 대응하는 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법을 제공할 수 있다.
또한 본 발명의 실시 예에 따르면, 무선 통신 시스템에서 기지국에 있어서,
신호를 송신 및 수신하는 송수신부 및 적어도 하나의 단말에 제1 전송시간구간(transmission timing interval, TTI)을 설정하고, 상기 적어도 하나의 단말에 대한 하향링크 제어 채널을 생성하며, 상기 하향링크 제어 채널 자원 매핑 위치에 기반하여 상기 하향링크 제어 채널에 대응하는 하향링크 데이터 채널을 매핑하고, 상기 하향링크 제어 채널 및 하향링크 데이터 채널이 매핑된 제1 TTI에 대응하는 신호를 전송하도록 제어하는 제어부를 포함하는 기지국을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면, 무선 통신 시스템에서 단말의 신호 송수신 방법에 있어서, 제1 전송시간구간(transmission timing interval, TTI)을 설정하는 단계, 제1 TTI에 대응하는 신호를 수신하는 단계, 상기 제1 신호에서 하향링크 데이터 채널을 위한 하향링크 제어 채널을 확인하는 단계 및 상기 하향링크 제어 채널이 확인되면, 상기 하향링크 제어 채널의 자원 매핑 위치에 기반하여 상기 하향링크 데이터 채널을 디코딩하는 단계를 포함하는 것을 특징으로 하는 방법을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면, 무선 통신 시스템에서 단말에 있어서, 신호를 송신 및 수신하는 송수신부 및 제1 전송시간구간(transmission timing interval, TTI)을 설정하고, 제1 TTI에 대응하는 신호를 수신하며, 상기 제1 TTI에 대응하는 신호에서 하향링크 데이터 채널을 위한 하향링크 제어 채널을 확인하고, 상기 하향링크 제어 채널이 확인되면, 상기 하향링크 제어 채널의 자원 매핑 위치에 기반하여 상기 하향링크 데이터 채널을 디코딩하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 단말을 제공할 수 있다.
본 발명의 실시 예에 따르면, 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치를 제공할 수 있다. 또한, 본 발명의 실시 예에 따르면 전송 시간을 감소시키기 위한 송수신 방법, 장치, 및 시스템을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면 shortened-TTI 단말 및 동작 방법, shortened-TTI 단말을 위한 송수신 방법 및 장치 제공하고, 기존 단말과 상기 shortened-TTI 단말이 시스템 내에 공존하는 단말, 기지국 및 시스템과 그 동작 방법을 제공할 수 있다.
도 1은 LTE 시스템에서 하향링크에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 2는 LTE 또는 LTE-A 시스템의 상향링크 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 3은 LTE 또는 LTE-A 시스템의 하향링크에서 데이터 혹은 제어채널이 전송되는 무선자원영역인 한 서브프레임, 1PRB 구조를 나타낸 도면이다.
도 4는 본 발명의 제1 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다.
도 5는 본 발명의 제1 실시 예에 따른 단말의 동작을 도시하는 도면이다.
도 6은 본 발명의 제1 실시 예에 따른 기지국의 동작을 도시하는 도면이다.
도 7는 본 발명의 제2 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다.
도 8은 본 발명의 제2 실시 예에 따른 단말의 동작을 도시하는 도면이다.
도 9는 본 발명의 제2 실시 예에 따른 기지국의 동작을 도시하는 도면이다.
도 10은 본 발명의 제3 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다.
도 11은 본 발명의 제3 실시 예에 따른 단말의 동작을 도시하는 도면이다.
도 12는 본 발명의 제3 실시 예에 따른 기지국의 동작을 도시하는 도면이다.
도 13은 본 발명의 추가 실시 예에 따른 역방향 채널 구조를 나타내는 도면이다.
도 14는 본 발명의 제5 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 15는 본 발명의 제6 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 15은 본 발명의 제7 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 17은 본 발명의 추가 실시 예에 따른 단말의 1 OFDM 심볼 TTI 상향링크 전송 방법을 설명하는 도면이다.
도 18은 본 발명의 실시예에 따른 단말의 구조를 도시하는 블록도이다.
도 19는 본 발명의 실시예에 따른 기지국의 구조를 도시하는 블록도이다.
이하 본 발명의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
짧은 전송시간구간을 지원하는 LTE 혹은 LTE-A 시스템에서 각 전송시간에서의 physical downlink control channel (PDCCH), enhanced physical downlink control channel (EPDCCH), physical downlink shared channel (PDSCH), physical hybrid ARQ indicator channel (PHICH), physical control format indicator channel (PCFICH)을 포함하는 하향링크 물리채널, physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH)을 포함하는 상향링크 물리채널을 정의할 필요가 있고, 하향링크 및 상향링크에서의 HARQ 전송 방법을 정의할 필요가 있다. 본 발명의 다양한 실시 예는 1 OFDM 심볼 길이의 전송시간구간을 지원하는 LTE 혹은 LTE-A 시스템에서 각 전송시간에서의 PDCCH, EPDCCH, PDSCH, PHICH, PCFICH, PUCCH, PUSCH와 하향링크 및 상향링크에서의 HARQ 전송 방법을 정의하고, 상기 물리채널들과 HARQ 전송에 대한 자원할당 방법 및 장치를 제공한다.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 본 발명에서 하향링크(Downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(Uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다.
또한, 이하에서 LTE 혹은 LTE-A 시스템을 일례로서 본 발명의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시예가 적용될 수 있다. 또한, 본 발명의 실시예는 숙련된 기술적 지식을 가진자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
이하에서 기술되는 shortened-TTI 단말은 제1 타입 단말이라 칭하고, normal-TTI 단말은 제2 타입 단말이라 칭할 수도 있다. 상기 제1 타입 단말은 1ms보다 짧은 전송시간구간을 가지는 단말을 포함할 수 있고, 상기 제2 타입 단말은 1ms의 전송시간구간을 가지는 단말을 포함할 수 있다. 한편, 이하에서는 shortened-TTI 단말과 제1 타입 단말을 혼용하여 사용하고, normal-TTI 단말과 제2 타입 단말을 혼용하여 사용하도록 한다. 하기 본 발명의 실시 예에서는 제1 타입 단말의 TTI를 1 OFDM 심볼로 가정하여 설명한다. 하지만 제1 타입 단말의 TTI를 이에 한정하는 것은 아니며, 제1 타입 단말의 TTI는 1ms 보다 짧은 전송 시간의 신호 전송에 적용될 수 있다.
본 발명은 상술한 바와 같이, shortened-TTI 단말과 기지국의 송수신 동작을 정의하고, 기존 단말과 shortened-TTI 단말을 동일 시스템 내에서 함께 운영하기 위한 구체적인 방법을 제안한다. 본 발명에서 노말(normal)-TTI 단말은 제어정보와 데이터정보를 1ms 혹은 한 서브프레임 단위로 송수신 하는 단말을 가리킨다. 상기 노멀-TTI 단말을 위한 제어정보는 한 서브프레임에서 최대 3 OFDM 심볼에 매핑되는 PDCCH에 실려 전송되거나, 혹은 한 서브프레임 전체에서 특정 리소스 블록에 매핑되는 EPDCCH에 실려 송신된다. Shortened-TTI 단말은 노멀-TTI 단말과 같이 서브프레임 단위로 송수신할 수도 있고, 서브프레임보다 작은 단위로 송수신할 수도 있는 단말을 가리킨다. 혹은 shortened-TTI 단말은 서브프레임보다 작은 단위의 송수신만 지원하는 단말일 수도 있다.
LTE 시스템은 기본적인 자원 할당이 PDCCH와 PDSCH, PDCCH와 PUSCH의 동작으로 결정된다. 즉 기지국이 순방향으로 단말에게 데이터 전송을 위해서 기지국은 PDCCH에 포함되는 DCI정보를 이용하여 단말에게 데이터 수신을 위한 제어 정보를 알려주고, DCI정보에서 지시하는 대로 PDSCH를 수신하게 된다. 또한 역방향으로 단말이 기지국에게 데이터 전송을 위해서는 기지국이 우선 PDCCH에 포함되는 DCI정보를 이용하여 단말에게 데이터 송신을 위한 제어 정보를 알려주고, DCI정보에서 지시하는 대로 PUSCH를 송신한다.
도 은 LTE 또는 LTE-A 시스템의 하향링크에서 데이터 또는 제어채널이 전송되는 무선자원영역인 한 서브프레임, 1PRB 구조를 나타내는 도면이다.
도 3을 참조하면, 도 3은 자원 할당 및 순방향 채널 스케쥴링을 위한 구조를 보여주고 있다. 하나의 서브프레임 (301) 내에 두 개의 슬롯(302)가 존재하고 하나의 슬롯은 6개 혹은 7개의 OFDM 심볼로 구성된다. 하나의 서브프레임이 자원 할당 단위이며, 서브프레임 내에서 첫번째 1개 내지 4개의 OFDM 심볼은 PDCCH (306)이 전송되며, 나며지 심볼에서는 PDSCH(307)이 전송된다. 각 심볼은 전체 시스템 대역 (303)에 걸쳐서 존재하며, 주파수 대역은 기본 단위인 PRB (Physical Resource Block: 304)로 나누어져서 복수개의 PRB가 하나의 시스템 대역에 존재하게 된다.
PRB와 OFDM 심볼로 무선 자원이 정해지게 되고, 자원 안에서 305와 같이 정해진 위치에서 CRS(common reference signal 또는 cell specific reference signal)가 전송되게 된다. 상기에서 첫번째 1개 내지 4개의 OFDM 심볼에 PDCCH가 전송된다고 언급하였는데, PDCCH가 전송되는 OFDM 심볼의 개수는 PCFICH의 수신을 통해서 알 수 있으며, PCFICH는 서브프레임 내에서 첫번째 OFDM 심볼에서 전송된다. 단말은 PCFICH를 수신하여 PDCCH가 전송되는 OFDM 심볼의 개수를 파악한 후에 PDCCH가 전송되는 OFDM 심볼의 개수를 기반으로 정해진 위치에서 PDCCH 수신을 수행한다.
PDCCH에는 단말의 ID 정보를 이용하여 CRC 마스킹이 수행되어 있는데, 단말이 수신을 시도한 PDCCH에서 상기 단말의 ID를 적용하여 CRC check가 성공적으로 진행되면, 상기 DCI는 상기 ID를 가지고 있는 단말에게 주어지는 정보이며, 이에 상기 ID를 가지고 있는 단말은 상기 PDCCH에 포함되어 전송된 DCI 정보를 읽을 수 있게 된다. 상기 DCI 정보를 읽은 단말은 DCI에 포함된 정보를 바탕으로 DCI의 길이 및 정보를 바탕으로 DCI 포맷을 판단하고 DCI가 순방향의 PDSCH 할당에 대한 내용인지, 역방향의 PUSCH 할당에 대한 내용이지 판단한다.
DCI 포맷이 순방향의 PDSCH 할당에 대한 내용으로 판단된 경우는 지정된 자원 위치에서의 PDSCH를 수신하게 되는데, 상기 PDSCH는 PCFICH에서 정한 PDCCH를 위한 OFDM 심볼 수 에 따라서 달라지게 된다. 즉, 1개의 서브프레임에 속하는 전체 OFDM 심볼에서 PCFICH에서 지정한 PDCCH용 OFDM 심볼을 제외한 나머지 OFDM 심볼에서 PDSCH를 수신하게 된다. 반면 DCI 포맷이 역방향의 PUSCH 할당에 대한 내용으로 판단된 경우는 정해진 시점에서 지정된 자원 위치에서의 PUSCH를 전송한다.
본 발명의 한가지 요지는 1개의 서브프레임 길이의 TTI가 아닌, 서브프레임 내에 한 개의 OFDM 심볼 길이의 TTI로 데이터의 송수신을 하는 경우에 있어서 PDCCH와 PDSCH의 채널 구조 및 동작 방법을 제공하는 것이다. 아래 바람직한 실시예를 이용하여 한 개의 OFDM 심볼 길이의 TTI의 데이터 송수신 동작을 기술한다. 이하 하나의 OFDM 심볼 TTI의 경우 제어 채널과 데이터 채널을 PDCCH, PUSCH로 명명하지만, 이는 1ms TTI의 PDCCH, PUSCH와 다른 구조, 기능을 가질 수 있음을 가정한다.
<제 1 실시 예>
제 1 실시예에서는 1 OFDM 심볼 TTI를 활용하기 위하여 하나의 TTI에서 순방향과 역방향에서 하나의 단말만이 스케쥴링 되는 것을 가정한다. 하나의 TTI에서 하나의 단말에 대한 순방향과 하나의 단말에 대한 역방향이 스케쥴링될 수 있고, 순방향 스케쥴링이되는 단말과 역방향 스케쥴링이되는 단말은 동일할 수 있고, 상이할 수도 있다. TTI의 길이가 1 OFDM 심볼의 경우는 TTI내에 포함되는 시스템의 전체 자원의 수가 제한이 된다. 따라서 하나의 TTI에 여러 단말을 동시에 스케쥴링 하게 되면, 제한된 자원을 여러 단말이 나누어서 송수신해야 하므로 하나의 단말이 전송하는 데이터의 양이 충분하지 않은 경우가 많이 발생하게 된다. 따라서 본 실시예에서는 1 OFDM 심볼 TTI에서는 순방향으로 하나의 PDSCH가 존재하고, 역방향으로 하나의 PUSCH만 존재하며, 따라서 하나의 TTI에는 최대 2개까지의 PDCCH만이 존재하게 된다. 가능한 PDCCH 조합은 아무 단말도 스케쥴링 되지 않는 경우 PDCCH는 0개가 존재하고, 하나의 순방향 단말이 스케쥴링 된 경우 PDCCH는 1개가 존재하고, 하나의 역방향 단말이 스케쥴링 된 경우 PDCCH는 1개가 존재하고, 마지막으로 하나의 순방향 단말과 하나의 역방향 단말이 스케쥴링 된 경우 PDCCH는 2개가 존재하며 이것이 가장 많은 PDCCH가 된다.
도 4는 본 발명의 제1 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다.
도 4를 참조하면, LTE 구조에서 1개의 서브프레임(401)에는 PDCCH 영역(402)과 PDSCH 영역(403)으로 나누어진다. 1 OFDM 심볼 TTI를 지원하는 기지국은 동시에 1 서브프레임 TTI 단말도 지원해야 하므로 동일 서브프레임에서 1 서브프레임 TTI와 1 OFDM 심볼 TTI가 동시에 지원되는 것도 가능하다. 1 OFDM 심볼 TTI는 PDSCH 영역(403)에 포함되는 OFDM 심볼 중에서 하나의 심볼에 적용될 수 있고, 1서브프레임 TTI 단말이 존재하지 않는 서브프레임에서는 1 OFDM 심볼 TTI는 PDCCH 영역(402)에 포함되는 하나의 OFDM 심볼에서 적용될 수 있다. 또한 1 OFDM 심볼 TTI의 자원은 도 4의 404와 같이 하나의 OFDM 심볼 내의 일부 주파수 자원이 사용되게 되는데, 이는 나머지 주파수 자원은 기존 1ms TTI 단말에게 할당하기 위해서이다. 1 OFDM 심볼 TTI가 사용될 수 있는 주파수 자원의 크기는 상위 시그널링 혹은 맥 시그널링 등으로 미리 설정될 수도 있고 동적으로 물리 계층 시그널링으로 할당될 수도 있다. 물론 1 OFDM 심볼 TTI가 전체 주파수 자원을 모두 사용할 수 있다.
임의의 OFDM 심볼에서 기지국은 1 OFDM 심볼 지원 단말 중에서 하나의 단말에게 PDSCH 할당을, 그리고 또 하나의 단말에게 PUSCH 할당을 수행할 수 있으며, 동일 단말에게 PDSCH와 PUSCH 모두를 할당할 수도 있다. 본 실시예에서는 PDCCH에 대한 자원과 PDSCH의 자원을 하나의 심볼 내에서 주파수 다중화 하는 것을 가정한다. 1 OFDM 심볼의 경우는 PDCCH와 PDSCH가 하나의 OFDM 심볼 내에서 전송이 되어야 하므로 시간적으로 다중화하는 것은 불가능하고 주파수 다중화를 수행하게 된다. 따라서 하나의 OFDM 심볼 내에서 PDCCH가 전송되는 자원과 PDSCH가 전송되는 자원이 나누어져야 한다. 본 실시예에서는 PDCCH의 활용에 따라서 PDCCH자원과 PDSCH 자원이 동적으로 나누어지고 이에 대하여 단말을 PDCCH 블라인드 검출(blind detection)에 따라서 PDCCH자원과 PDSCH 자원이 어떻게 나누어져 있는지를 판단할 수 있는 방법을 제공한다.
따라서 본 실시예에서 제시하는 PDCCH에는 순방향 채널 할당을 위한 PDCCH(PDCCH_DL)와 역방향 채널 할당을 위한 PDCCH(PDCCH_UL) 모두 자원 할당 정보, 즉 resource block assignment 정보가 필요 없게 된다. 일반적으로 PDCCH 정보 중에서 자원 할당 정보의 정보량이 매우 큰 비중을 차지하게 되는데, 상기 자원 할당 정보를 보내지 않음으로써 PDCCH의 정보의 양을 줄여서 좀 더 적은 자원으로 더 신뢰성이 높도록 PDCCH를 전송할 수 있게 된다. 물론 PDCCH에는 이 외의 정보들, 즉, HARQ 관련 정보인 process number, new data indicator, redundancy verion 혹은 transport block 관련 정보인 modulation and coding scheme 정보, 혹은 주파수 집접(CA) 관련 정보, 혹은 전력 제어 정보 등이 포함될 수 있다.
도 4에서 404의 OFDM 심볼에서 1 OFDM 심볼 단말에 대해 스케쥴링을 수행하고 PDCCH를 전송한다. 전술한 바와 같이 하나의 OFDM 심볼 내에서 1 OFDM 심볼 단말을 위한 PDCCH는 0개 1개 2개가 가능하다고 하였다. PDSCH를 위한 하나의 PDCCH(PDCCH_DL)와 PUSCH를 위한 하나의 PDCCH(PDCCH_UL)가 가능하다. 상기 PDCCH_DL과 PDCCH_UL은 크기가 다를 수 있어서 단말은 PDCCH_DL과 PDCCH_UL 크기를 바탕으로 blind detectiond를 수행하게 된다.
본 실시예에서는 PDCCH의 자원을 우선 PDCCH_UL 전송에 활용하고, 이어서 PDCCH_DL 전송에 활용하는 것을 제공한다. 본 실시예에서 주파수 자원은 논리적 자원을 의미하며, 논리적으로 주파수 자원의 순서를 정의하여 기지국과 단말이 주파수 자원의 논리적 순서를 공유하고 있음을 가정한다. 상기 논리적 주파수 자원은 물리적 주파수 자원에 임의의 규칙으로 매핑될 수 있으며, 기지국과 단말은 상기 물리적 주파수 자원에 매핑되는 규칙을 서로 공유하고 있음을 가정한다.
하나의 OFDM 심볼 내에서 기지국은 도 4의 411과 같이 PDCCH_UL을 가장 앞선 논리 주파수 자원에 할당하고, 도 4의 412와 같이 PDCCH_DL을 바로 뒤에 이어지는 논리 주파수 자원에 할당한다. 그리고 도 4의 413과 같이 PDCCH와 PDSCH가 사용할 수 있는 전체 주파수 자원에서 나머지 부분 모두에서 하나의 PDSCH를 전송한다. PDCCH_UL과 PDCCH_DL은 각각 전송되는 정보의 수가 일정하지만 단말의 위치 혹은 채널 상태에 따라서 PDCCH의 aggregation level(집합 수준)이 달라지게 된다.
상기 집합 수준은 PDCCH를 전송하는 자원의 양을 의미하여, 단말이 기지국에서 가까운 곳에 위치하여 순방향 채널 상황이 좋은 경우는 최소한의 자원만을 이용하여 PDCCH를 전송해도 상기 단말은 PDCCH 수신에 문제가 없게 된다. 하지만, 단말이 기지국에서 먼 곳에 위치하여 순방향 채널 상황이 좋지 않은 경우는 자원의 양을 늘여서 PDCCH의 부호화 이득 (coding gain)을 좀 더 부과하여 상기 단말이 PDCCH 수신에 문제가 없도록 해야 한다. PDCCH의 집합 수준은 복수 개를 가정할 수 있는데, 1 OFDM 심볼 TTI의 경우는 PDCCH로 전송하는 정보의 비트 정보가 크지 않기 때문에 집합 수준의 개수는 아주 많지 않을 것이다.
본 실시예에서는 PDCCH의 집합 수준을 3개로 가정하였다. 즉 채널 상황이 좋은 단말은 PDCCH를 임의의 자원 단위 (CCE_1S: Control Channel Element 1 Symbol)만으로 전송하고, 그보다 채널 상황이 좋지 않은 단말은 2개의 CCE_1S만큼의 자원에 매핑하여 전송하고, 채널이 가장 좋지 않은 단말은 4개의 CCE_1S만큼의 자원에 매핑하여 전송한다. 기지국은 PDCCH를 전송할 때 CCE_1S의 크기를 임의로 정하기 때문에 단말은 PDCCH수신에 있어서 모든 크기의 CCE_1S를 가정하여 PDCCH blind detection을 수행한다. 즉 PDCCH_UL에 대하여 3가지의 CCE_1S를 가정하여 blind detection을 수행하고, 또 PDCCH_DL에 대하여 3가지의 CCE_1S를 가정하여 blind detection을 수행해야 한다.
PDCCH_UL, PDCCH_DL, CCE_1S을 고려한 모든 가능한 PDCCH 조합을 보면 도 4의 410과 같다. 즉, 아무 PDCCH도 없는 경우(421), PDCCH_DL만 있으며 1 CCE_1S로 전송되는 경우(422), PDCCH_DL만 있으며 2 CCE_1S로 전송되는 경우(423), PDCCH_DL만 있으며 4 CCE_1S로 전송되는 경우(424), PDCCH_UL은 1 CCE_1S로 전송되고 PDCCH_DL은 1 CCE_1S로 전송되는 경우(425), PDCCH_UL은 1 CCE_1S로 전송되고 PDCCH_DL은 2 CCE_1S로 전송되는 경우(426), PDCCH_UL은 1 CCE_1S로 전송되고 PDCCH_DL은 4 CCE_1S로 전송되는 경우(427), PDCCH_UL은 2 CCE_1S로 전송되고 PDCCH_DL은 1 CCE_1S로 전송되는 경우(428), PDCCH_UL은 2 CCE_1S로 전송되고 PDCCH_DL은 2 CCE_1S로 전송되는 경우(429), PDCCH_UL은 2 CCE_1S로 전송되고 PDCCH_DL은 4 CCE_1S로 전송되는 경우(430), PDCCH_UL은 4 CCE_1S로 전송되고 PDCCH_DL은 1 CCE_1S로 전송되는 경우(431), PDCCH_UL은 4 CCE_1S로 전송되고 PDCCH_DL은 2 CCE_1S로 전송되는 경우(432), PDCCH_UL은 4 CCE_1S로 전송되고 PDCCH_DL은 4 CCE_1S로 전송되는 경우(433) 이렇게 13가지의 조합이 나오게 된다.
단말은 상기 13가지의 조합에 대하여 blind detection을 수행하게 된다. 단말이 필요한 blind detection은 다음과 같다. 우선 PDCCH_UL가 없다고 가정한 후에, PDCCH_DL을 1 CCE_1S, 2 CCE_1S, 4 CCE_1S을 가정하여 blind detection 함에 따른 4가지의 blind detection이 필요하다. 그리고 PDCCH_UL을 1 CCE_1S를 가정하여 blind detection 하고 이어서 PDCCH_DL을 1 CCE_1S, 2 CCE_1S, 4 CCE_1S을 가정하여 blind detection 함에 따른 4가지의 blind detection이 필요하다. 또한 PDCCH_UL을 2 CCE_1S를 가정하여 blind detection 하고 이어서 PDCCH_DL을 1 CCE_1S, 2 CCE_1S, 4 CCE_1S을 가정하여 blind detection 함에 따른 4가지의 blind detection이 필요하다. 마지막으로 PDCCH_UL을 4 CCE_1S를 가정하여 blind detection 하고 이어서 PDCCH_DL을 1 CCE_1S, 2 CCE_1S, 4 CCE_1S을 가정하여 blind detection 함에 따른 4가지의 blind detection이 필요하다. 즉, 도합 16번의 blind detection이 필요하게 된다. 본 실시예에서는 가능한 CCE_1S의 개수를 3으로 가정하였지만, CCE_1S 개수는 임의의 값이 가능하며, CCE_1S 개수에 따라서 단말이 수행해야 하는 blind detection 수가 달라질 수 있다.
또한 본 실시예에서 1 OFDM 심볼을 사용하는 PDSCH 전송 자원이 PDCCH자원에 따라서 동적으로 바뀔 수 있음을 가정하였다. 따라서 임의의 단말에게 PDSCH가 스케쥴링 된 경우는 PDCCH가 어느 정도의 자원을 사용하고 있는지를 상기 단말이 알아야 하는데, 본 실시예에서는 단말이 PDCCH_DL에 대한 blind detection을 바탕으로 PDCCH 전체 자원이 사용되는 위치를 판단한다. 즉, 단말이 PDCCH_DL에 대한 blind detection을 하고 나면, 단말의 ID를 이용한 CRC 확인을 수행하게 되는데, CRC 확인이 성공되면, 상기 PDSCH 전송을 위한 PDCCH_DL이 상기 단말에게 전송된 것으로 판단할 수 있다. 도 4의 410과 같이 PDCCH_DL이 논리적 주파수 자원에서 PDCCH영역의 맨 뒤에 위치하기 때문에 PDCCH_DL을 수신하게 되면, 410이 지시하는 PDCCH 영역과 PDSCH 영역이 구분되는 위치를 알게 되는 것이다. 따라서 전체 자원에서 상기 PDCCH 영역의 마지막 위치까지의 자원을 뺀 나머지 영역에서 PDSCH을 위한 자원이라고 판단하고 이에 따라서 PDSCH의 수신을 수행하게 된다. 즉, 1 OFDM 심볼 TTI에 사용되는 심볼의 전체 자원에서 상기 PDCCH 영역의 이후에 위치하는 자원을 1 OFDM 심볼 TTI에 사용되는 PDSCH을 위한 자원이라고 판단할 수 있다. OFDM 심볼 TTI에 사용되는 심볼에서 단말은 PDCCH의 검출에 기반하여 PDCCH와 PDSCH가 나누어지는 위치(자원, subcarrier) 또는 PDCCH가 끝나는 위치, PDSCH가 시작하는 위치를 알 수 있다. 단말은 이에 기반하여 OFDM 심볼 TTI에 사용되는 심볼에서 PDSCH의 시작 위치를 알 수 있고, PDSCH의 수신 또는 디코딩을 수행할 수 있다.
추가적으로 1 OFDM 심볼 내에 역방향 데이터 채널인 PUSCH 전송에 대한 HARQ 동작을 위하여 PHICH의 전송이 필요할 수 있다. 이 경우는 전체 자원에서 일부 자원을 미리 PHICH 채널 전송을 위해서 할당 할 수 있다 (도 4의 414). 따라서 전체 자원 내에서 PHICH 자원을 미리 설정하고 남은 자원에 대하여 PDCCH를 우선 매핑하고, 최종 남은 자원을 PDSCH에 매핑하게 된다.
또한 OFDM 심볼의 위치에 따라서 CRS가 존재하는 경우가 있고, 그렇지 않은 경우가 있을 수 있다. 도4 에서 404 심볼뿐만 아니라 동일한 서브프레임(401)의 다른 심볼도 1 OFDM 심볼 TTI 전송에 이용될 수 있다. 도 4와 같은 CRS 구조를 사용한다고 가정하였을 때, 하나의 서브프레임에서 5번재 OFDM 심볼에는 CRS가 존재하고 6번째 OFDM 심볼에는 CRS가 존재하지 않는다. 따라서 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양이 OFDM 심볼 위치에 따라서 달라지게 된다. CRS의 전송 여부는 기지국과 단말이 모두 공유하는 정보이기 때문에, 자원의 양을 CRS의 존재 여부에 따라서 다르게 가져가야 한다. CRS 뿐 아니라 시스템을 위한 다른 채널들이 임의의 OFDM 채널에 존재할 수 있는데, 이에 따라서 동일한 방법으로 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양을 결정하는 과정도 기지국과 단말은 포함하고 있어야 한다. 물론 CRS 구조는 도 4와 같은 구조를 사용할 수 있고, 기타 새로운 CRS 구조를 도입할 수 있다.
마지막으로 상기에서 논리 자원을 가정하여 설명하였고, 상기 논리 자원은 최종적으로 물리적인 주파수 자원에 매핑되어야 한다. 물리 자원 매핑은 여러가지 가능한 방법이 있는데, 가장 쉬운 방법이 논리 자원을 순서대로 물리 자원의 주파수 자원에 매핑하는 방법이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 2번 물리 자원에, 이렇게 매핑하는 것이다. 다른 방법은 주파수 다이버시티를 얻기 위하여 논리 자원을 물리 자원 내에서 퍼뜨려서 매핑하는 것이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 101번 물리 자원에, 3번 논리 자원을 201번 물리 자원에 매핑하는 등, 인접한 논리 자원을 최대한 멀리 떨어진 물리 자원에 매핑하는 방법도 가능하다. 논리 자원과 물리 자원의 매핑은 다양한 방법이 가능하며, 본 실시예에서 제시하는 기술은 모든 가능한 논리-물리 자원 매핑 방법에 대하여 활용할 수 있다.
하기 도 5와 6을 이용하여 본 발명의 제1 실시 예에 따른 단말과 기지국의 동작을 설명한다.
도 5는 본 발명의 제1 실시 예에 따른 단말의 동작을 도시하는 도면이다. 도 5를 참조하면, 도 5의 501 과정에서 단말 수신 동작을 시작한다. 502 과정에서 상기 단말이 1 OFDM 심볼 TTI가 사용될지의 여부를 설정한다. 1 OFDM 심볼 TTI의 사용 여부는 단말과 기지국 사이의 시그널링에 따라 결정될 수 있다. 예를 들어, 단말과 기지국 사이의 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI의 사용 여부를 설정할 수 있다.
이어 503 과정에서 1 OFDM TTI로 설정된 자원에 대하여 1 OFDM 심볼에 대한 수신을 수행한다. 504 과정에서 단말은 1 OFDM TTI로 설정된 수신 심볼에 대한 블라인드 검출(blind detection)을 수행한다. 단말은 도 4에서 설명한 PDCCH 모든 조합에 대하여 blind detection을 수행한다. 505 과정에서 단말은 PDCCH_DL의 검출 여부를 식별한다. 506 과정에서 단말은 505의 PDCCH_DL 식별 기관에 기반하여 PDSCH의 자원 위치를 판단할 수 있다. 이는 도 4에서 설명한 바와 같이, 기지국이 PDCCH_DL이 매핑된 자원의 다음 위치에 PDSCH를 매핑하여 전송하기 때문이다. PDCCH_DL이 검출된 경우단말은 PDCCH_DL이 전송된 자원의 마지막 위치가 PDCCH 전체 자원의 마지막 위치임을 알 수 있다. 단말은 PDCCH 전체 자원의 마지막 위치 다음 자원부터 동일 OFDM 심볼 내의 마지막 자원까지를 PDSCH 자원으로 판단한다. 507 과정에서 단말은 상기 판단한 PDSCH 자원을 이용하여 PDSCH를 수신한다. 즉, 단말은 PDCCH의 검출로부터 식별한 PDSCH 자원 위치에 기반하여, 해당 심볼에서의 PDSCH를 디코딩 할 수 있다.
추가로 508 과정에서 단말은 PDCCH_UL의 검출 여부를 식별한다. 상기 단말이 508 과정에서 PDCCH_UL을 검출하게 되면, 509 과정으로 진행한다. 509 과정에서 임의의 정해진 시점 이후, 즉 정해진 TTI 길이 이후에 첫 역방향 OFDM 심볼에서 1 OFDM 심볼 TTI를 이용하여 PUSCH를 송신한다. 510 과정에서 단말 동작을 종료한다.
상기 505에서 507의 순방향 채널 검출 및 수신 과정과 508에서 509의 역방향 채널 검출 및 수신 과정은 도 5에서는 순방향을 우선 수행하고 역방향을 다음에 수행하는 것으로 도시하였으나 발명에서는 역방향을 우선 수행하고 순방향을 다음에 수행하는 방법, 그리고 역방향과 순방향 과정을 동시에 수행하는 방법 등 순서에 상관없이 수행될 수 있음을 가정한다.
도 6은 본 발명의 제 2 실시 예에 따른 기지국 절차를 나타낸 도면이다.
도 6을 참조하면, 기지국은 우선 601 과정에서 기지국 동작을 시작한다. 602 과정에서 기지국은 1 OFDM 심볼 TTI를 설정한다. 1 OFDM 심볼 TTI의 설정은 기지국의 시그널링에 따라 결정될 수 있다. 예를 들어, 기지국이 전송하는 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI를 설정할 수 있다.
이어서 상기 기지국은 603 과정에서 1 OFDM 심볼 TTI를 설정한 적어도 하나의 단말에 대하여 스케쥴링을 수행하여 PDSCH를 할당할 단말, PUSCH를 할당할 단말과 각 채널의 형식을 결정한다. 기지국은 604 과정에서 PUSCH 자원 할당을 위한 PDCCH_UL을 생성한다. 이때 기지국은 PDCCH_UL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_UL을 구성한다. 예를 들어, 단말의 순방향 채널 상태에 따라 1, 2, 4개의 CCE_1S를 사용할 수 있다. 기지국은 605 과정에서 PDSCH 자원 할당을 위한 PDCCH_DL을 생성한다. 이때 기지국은 PDCCH_DL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_DL을 구성한다. 예를 들어, 단말의 순방향 채널 상태에 따라 1, 2, 4개의 CCE_1S를 사용할 수 있다. 한편, 604 과정과 605 과정의 순서는 교환 가능하다. 즉, PDSCH 자원 할당을 위한 PDCCH를 생성한 이후에 PUSCH 자원 할당을 위한 PDCCH를 생성할 수도 있다. 또한, 604 과정 또는 605 과정 중 전송할 하향링크 제어 신호가 존재하지 않는 경우 각 동작은 생략될 수 있다.
606에서 기지국은 PDCCH의 자원을 논리 자원에 매핑한다. 기지국은 도 4에서 설명한 PDCCH의 매핑 방법을 이용할 수 있다. 기지국은 우선 PDCCH_UL을 1 OFDM 심볼 TTI를 위한 자원의 첫번째 위치에 매핑하고, 이어서 PDCCH_DL을 다음 위치로 매핑한다. 607과정에서 기지국은 전체 자원에서 PDCCH를 매핑하고 남은 자원을 활용하여 PDSCH을 매핑한다. PDCCH 매핑후 남은 자원 모두를 활용하여 PDSCH를 매핑할 수 있다. 608 동작에서 기지국은 매핑된 1 OFDM 심볼 TTI 심볼을 전송할 수 있다. 그리고 기지국 동작을 종료한다(609).
<제 2 실시 예>
제 2 실시예에서는 1 OFDM 심볼 TTI를 활용하기 위하여 하나의 TTI에서 순방향과 역방향에서 하나의 단말만이 스케쥴링 되는 것을 가정한다. 하나의 TTI에서 하나의 단말에 대한 순방향과 하나의 단말에 대한 역방향이 스케쥴링될 수 있고, 순방향 스케쥴링이되는 단말과 역방향 스케쥴링이되는 단말은 동일할 수 있고, 상이할 수도 있다. TTI의 길이가 1 OFDM 심볼의 경우는 TTI내에 포함되는 시스템의 전체 자원의 수가 제한이 된다. 따라서 하나의 TTI에 여러 단말을 동시에 스케쥴링 하게 되면, 제한된 자원을 여러 단말이 나누어서 송수신해야 하므로 하나의 단말이 전송하는 데이터의 양이 충분하지 않은 경우가 많이 발생하게 된다. 따라서 본 실시예에서는 1 OFDM 심볼 TTI에서는 순방향으로 하나의 PDSCH가 존재하고, 역방향으로 하나의 PUSCH만 존재하며, 따라서 하나의 TTI에는 최대 2개까지의 PDCCH만이 존재하게 된다. 가능한 PDCCH 조합은 아무 단말도 스케쥴링 되지 않는 경우 PDCCH는 0개가 존재하고, 하나의 순방향 단말이 스케쥴링 된 경우 PDCCH는 1개가 존재하고, 하나의 역방향 단말이 스케쥴링 된 경우 PDCCH는 1개가 존재하고, 마지막으로 하나의 순방향 단말과 하나의 역방향 단말이 스케쥴링 된 경우 PDCCH는 2개가 존재하며 이것이 가장 많은 PDCCH가 된다.
본 실시예도 하나의 TTI에는 하나의 단말만을 스케쥴링 하는 것을 가정하므로 순방향 채널 할당을 위한 PDCCH(PDCCH_DL)와 역방향 채널 할당을 위한 PDCCH(PDCCH_UL) 모두 자원 할당 정보, 즉 resource block assignment 정보가 필요 없게 된다. 일반적으로 PDCCH 정보 중에서 자원 할당 정보의 정보량이 매우 큰 비중을 차지하게 되는데, 상기 자원 할당 정보를 보내지 않음으로써 PDCCH의 정보의 양을 줄여서 좀 더 적은 자원으로 더 신뢰성이 높도록 PDCCH를 전송할 수 있게 된다. 물론 PDCCH에는 이 외의 정보들, 즉, HARQ 관련 정보인 process number, new data indicator, redundancy verion 혹은 transport block 관련 정보인 modulation and coding scheme 정보, 혹은 주파수 집접(CA) 관련 정보, 혹은 전력 제어 정보 등이 포함될 수 있다.
도 7는 본 발명의 제2 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다.
도 7을 참조하면, 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내고 있다. LTE 구조에서 1개의 서브프레임(701)에는 PDCCH 영역(702)과 PDSCH 영역(703)으로 나누어진다. 1 OFDM 심볼 TTI를 지원하는 기지국은 동시에 기존 1 서브프레임 TTI 단말도 지원해야 하므로 동일 서브프레임에서 1 서브프레임 TTI와 1 OFDM 심볼 TTI가 동시에 지원되는 것도 가능하다. 1 OFDM 심볼 TTI는 PDSCH 영역(703)에 포함되는 OFDM 심볼 중에서 하나의 심볼에 적용될 수 있고, 1서브프레임 TTI 단말이 존재하지 않는 서브프레임에서는 1 OFDM 심볼 TTI는 PDCCH 영역(702)에 포함되는 하나의 OFDM 심볼에서 적용될 수 있다.
또한 1 OFDM 심볼 TTI의 자원은 도 7의 704와 같이 하나의 OFDM 심볼 내의 일부 주파수 자원이 사용되게 되는데, 이는 나머지 주파수 자원은 기존 1ms TTI 단말에게 할당하기 위해서이다. 1 OFDM 심볼 TTI가 사용될 수 있는 주파수 자원의 크기는 상위 시그널링 혹은 맥 시그널링 등으로 미리 설정될 수도 있고 동적으로 물리 계층 시그널링으로 할당될 수도 있다. 물론 1 OFDM 심볼 TTI가 전체 주파수 자원을 모두 사용할 수 있다.
임의의 OFDM 심볼에서 기지국은 1 OFDM 심볼 지원 단말 중에서 하나의 단말에게 PDSCH 할당을, 그리고 또 하나의 단말에게 PUSCH 할당을 수행할 수 있으며, 동일 단말에게 PDSCH와 PUSCH 모두를 할당할 수도 있다. 본 실시예에서는 PDCCH에 대한 자원과 PDSCH의 자원을 하나의 심볼 내에서 주파수 다중화 하는 것을 가정한다. 1 OFDM 심볼의 경우는 PDCCH와 PDSCH가 하나의 OFDM 심볼 내에서 전송이 되어야 하므로 시간적으로 다중화하는 것은 불가능하고 주파수 다중화를 수행하게 된다. 따라서 하나의 OFDM 심볼 내에서 PDCCH가 전송되는 자원과 PDSCH가 전송되는 자원이 나누어져야 한다. 본 실시예에서는 PDCCH의 활용에 따라서 PDCCH자원과 PDSCH 자원이 동적으로 나누어지고 이에 대하여 단말을 PDCCH blind detection에 따라서 PDCCH자원과 PDSCH 자원이 어떻게 나누어져 있는지를 판단할 수 있는 방법을 제공한다.
도 7에서 704의 OFDM 심볼에서 1 OFDM 심볼 단말에 대해 스케쥴링을 수행하고 PDCCH를 전송한다. 전술한 바와 같이 하나의 OFDM 심볼 내에서 1 OFDM 심볼 단말을 위한 PDCCH는 0개 1개 2개가 가능하다고 하였다. PDSCH를 위한 하나의 PDCCH(PDCCH_DL)와 PUSCH를 위한 하나의 PDCCH(PDCCH_UL)가 가능하다. 상기 PDCCH_DL과 PDCCH_UL은 크기가 다를 수 있어서 단말은 PDCCH_DL과 PDCCH_UL 크기를 바탕으로 blind detectiond를 수행하게 된다.
본 실시예에서는 PDCCH의 자원을 설정하고 설정된 자원 내에서 PDCCH를 전송하는 방법을 제시한다. 본 실시예에서 주파수 자원은 논리적 자원을 의미하며, 논리적으로 주파수 자원의 순서를 정의하여 기지국과 단말이 주파수 자원의 논리적 순서를 공유하고 있음을 가정한다. 상기 논리적 주파수 자원은 물리적 주파수 자원에 임의의 규칙으로 매핑될 수 있으며, 기지국과 단말은 상기 물리적 주파수 자원에 매핑되는 규칙을 서로 공유하고 있음을 가정한다.
하나의 OFDM 심볼 내에서 기지국은 도 7의 710과 같이 물리 채널들을 할당한다. 정해진 자원 위치에 PCFICH(711)과 PHICH(714)를 할당하고 남은 자원에 PDCCH와 PDSCH를 할당한다. PDCCH와 PDSCH의 자원은 PCFICH에 의해서 할당된 자원을 분리할 수 있는데, 필요한 PDCCH의 개수, CCE_1S 크기를 고려하여 PDCCH 자원의 양을 결정하여 자원이 나누어지는 위치(720)을 정하고, 이를 PCFICH로 알려준다. 본 실시 예에서 PCFICH는 1 OFDM 심볼 TTI에서 PDCCH와 PDSCH가 나누어지는 위치(자원, subcarrier)를 지시하건, PDCCH가 끝나는 위치, PDSCH가 시작하는 위치 중 적어도 하나를 지시하는 지시자 일 수 있다.
본 실시예에서 PCFICH는 2비트로 가정하였고, 따라서 PCFICH의 정보에 따라서 721, 722, 723, 724에서 보이는 바와 같이 4가지의 PDCCH 자원을 결정할 수 있다. 물론 PCFICH의 사이즈와 가능한 PDCCH 자원 영역의 가지 수는 다른 값으로 정해질 수 있다. 다른 수를 가질 경우 PCFICH의 비트 수가 더 커질 수 있다. 예를 들어, 제1 실시 예의 가능한 blind decoding 경우의 수에 기반하여 가능한 PDCCH 자원 영역의 가지 수가 결정될 수도 있다. 본 실시예에서는 PCFICH 정보를 물리 계층 신호로 전송하는 것을 가정하여 설명하고 있지만, PCFICH 정보를 상위 시그널링으로 미리 설정하는 방법, 규격에서 하나의 값으로 정하는 방법, 혹은 맥 시그널링 같은 다른 방법으로 설정하는 방법도 사용될 수 있다.
OFDM 심볼의 위치에 따라서 CRS가 존재하는 경우가 있고, 그렇지 않은 경우가 있을 수 있다. 도7 에서 704 심볼뿐만 아니라 동일한 서브프레임(701)의 다른 심볼도 1 OFDM 심볼 TTI 전송에 이용될 수 있다. 기존 CRS 구조를 그대로 사용한다고 가정하였을 때, 하나의 서브프레임에서 5번재 OFDM 심볼에는 CRS가 존재하고 6번째 OFDM 심볼에는 CRS가 존재하지 않는다. 따라서 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양이 OFDM 심볼 위치에 따라서 달라지게 된다. CRS의 전송 여부는 기지국과 단말이 모두 공유하는 정보이기 때문에, 자원의 양을 CRS의 존재 여부에 따라서 다르게 가져가야 한다. CRS 뿐 아니라 시스템을 위한 다른 채널들이 임의의 OFDM 채널에 존재할 수 있는데, 이에 따라서 동일한 방법으로 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양을 결정하는 과정도 기지국과 단말은 포함하고 있어야 한다. 물론 CRS 구조는 도 7과 같이 기존 LTE에서의 구조를 그대로 사용할 수 있고, 새로운 CRS 구조를 도입할 수 있다.
마지막으로 상기에서 논리 자원을 가정하여 설명하였고, 상기 논리 자원은 최종적으로 물리적인 주파수 자원에 매핑되어야 한다. 물리 자원 매핑은 여러가지 가능한 방법이 있는데, 가장 쉬운 방법이 논리 자원을 순서대로 물리 자원의 주파수 자원에 매핑하는 방법이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 2번 물리 자원에, 이렇게 매핑하는 것이다. 다른 방법은 주파수 다이버시티를 얻기 위하여 논리 자원을 물리 자원 내에서 퍼뜨려서 매핑하는 것이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 101번 물리 자원에, 3번 논리 자원을 201번 물리 자원에 매핑하는 등, 인접한 논리 자원을 최대한 멀리 떨어진 물리 자원에 매핑하는 방법도 가능하다. 논리 자원과 물리 자원의 매핑은 다양한 방법이 가능하며, 본 실시예에서 제시하는 기술은 모든 가능한 논리-물리 자원 매핑 방법에 대하여 활용할 수 있다.
하기 도 8과 9을 이용하여 단말과 기지국의 동작을 설명한다.
도 8은 본 발명의 제2 실시 예에 따른 단말 동작을 나타내는 도면이다.
도 8을 참조하면, 801 과정에서 단말 수신 동작을 시작한다. 802 과정에서 상기 단말이 1 OFDM 심볼 TTI가 사용될지의 여부를 설정한다. 1 OFDM 심볼 TTI의 사용 여부는 단말과 기지국 사이의 시그널링에 따라 결정될 수 있다. 예를 들어, 단말과 기지국 사이의 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI의 사용 여부를 설정할 수 있다.
이어 803 과정에서 1 OFDM TTI로 설정된 자원에 대하여 1 OFDM 심볼에 대한 수신을 수행한다. 804 과정에서 단말은 수신한 1 OFDM 심볼에서 PDCCH 자원 영역과 PDSCH 자원 영역을 구분하기 위한 지시자 정보를 획득할 수 있다. 상기 지시자는 PCFICH 일 수 있다. 805 과정에서 단말은 PDCCH 자원 영역을 판단한다. 단말은 PCFICH에 기반하여 PDCCH 자원 영역을 판단할 수 있다. PDCCH 자원 영역을 판단하는 것은, PDCCH에 할당된 마지막 자원의 위치, PDSCH에 할당된 시작 자원의 위치, PDCCH 자원과 PDSCH 자원을 구분하는 위치(자원, 서브캐리어)를 판단하는 것을 포함할 수 있다. 전술한 바와 같이 804의 PCFICH 과정은 PDCCH로 할당되는 자원 설정이 PCFICH를 통해서가 아니라 그 이전에 설정된 경우는 생략될 수 있다.
이어 806 과정에서 단말은 PDCCH에 대한 blind detection을 수행하여 상기 단말에게 전송된 PDCCH_DL 존재 여부를 판단한다. PDCCH_DL이 검출되면, 과정 807에서 단말은 상기 판단한 PDCCH 정보를 바탕으로 PDSCH를 수신한다. PDSCH 자원의 위치는 PCFICH로부터 획득되는 정보에 기반하여 결정된다. 단말은 PDCCH 정보 및 PDSCH 자원 위치에 기반하여 PDSCH의 수신 및 디코딩을 수행할 수 있다.
추가로 808 과정에서 단말은 PUCCH_UL의 검출 여부를 식별한다. 상기 단말이 808 과정에서 PDCCH_UL을 검출하게 되면, 809과정으로 진행한다. 809 과정에서 임의의 정해진 시점 이후, 즉 정해진 TTI 길이 이후에 첫 역방향 OFDM 심볼에서 1 OFDM 심볼 TTI를 이용하여 PUSCH를 송신한다. 810 과정에서 단말 동작을 종료한다.
상기 805에서 807까지의 순방향 과정과 808에서 809까지의 역방향 과정은 순서가 바뀔 수 있으며, 혹은 동시에 수행될 수 있다.
도 9는 본 발명의 제2 실시 예에 따른 기지국 동작을 나타내는 도면이다.
도 9를 참조하면, 기지국은 우선 901과정에서 기지국 동작을 시작한다. 902 과정에서 기지국은 1 OFDM 심볼 TTI를 설정한다. 1 OFDM 심볼 TTI의 설정은 기지국의 시그널링에 따라 결정될 수 있다. 예를 들어, 기지국이 전송하는 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI를 설정할 수 있다. 이어서 상기 기지국은 903 과정에서 1 OFDM 심볼 TTI를 설정한 적어도 하나의 단말에 대하여 스케쥴링을 수행하여 PDSCH를 할당할 단말, PUSCH를 할당할 단말과 각 채널의 형식을 결정한다. 기지국은 904 과정에서 PUSCH 자원 할당을 위한 PDCCH_UL을 생성한다. 이때 기지국은 PDCCH_UL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_UL을 구성한다. 예를 들어, 단말의 순방향 채널 상태에 따라 1, 2, 4개의 CCE_1S를 사용할 수 있다. 기지국은 905 과정에서 PDSCH 자원 할당을 위한 PDCCH_DL을 생성하는데, 이때에는 PDCCH_DL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_DL을 구성한다. 한편, 904 과정과 905 과정의 순서는 교환 가능한다. 즉, PDSCH 자원 할당을 위한 PDCCH를 생성한 이후에 PUSCH 자원 할당을 위한 PDCCH를 생성할 수도 있다. 또한, 904 과정 또는 905 과정 중 전송할 하향링크 제어 신호가 존재하지 않는 경우 각 동작은 생략될 수 있다.
906에서 기지국은 PDCCH의 크기를 고려하여 그보다 같거나 큰 자원 크기로 PDCCH가 가능하도록 PCFICH를 설정한다. 전술한 바와 같이 906의 PCFICH 과정은 PDCCH로 할당되는 자원 설정이 PCFICH를 통해서가 아니라 그 이전에 설정된 경우는 생략되어질 수 있다. 907 과정에서 기지국은 PDCCH 자원으로 설정된 자원으로 PDCCH를 매핑하고 나머지 자원에서 PDSCH을 매핑한 후 매핑된 1 OFDM 심볼 TTI 심볼을 전송한다. 그리고 기지국 동작을 종료한다 (908).
추가적으로 1 OFDM 심볼 TTI에 사용되는 PDCCH와 PDSCH의 자원을 기지국이 상위 시그널링을 통해서 알려 주는 방법도 고려할 수 있다. 이 경우는 PCFICH가 필요하지 않고, 단말은 상위 시그널링을 통해서 PDCCH와 PDSCH의 자원이 어떻게 할당되었는지 판단한다. 다른 과정은 동일하게 수행한다.
<제 3 실시 예>
본 실시예에서는 하나의 OFDM 심볼에 여러 단말이 동시에 스케쥴링 될 수 있는 상황을 가정한다. 전술한 바와 같이 하나의 OFDM 심볼에는 가용한 자원의 양이 충분하지 않아서 많은 단말을 동시에 스케쥴링 할 필요성이 사라지게 된다. 따라서 아주 유연적인 방법으로 자원 할당을 수행할 필요성이 없게 된다. 따라서 본 실시예에서는 동시에 스케쥴링 할 수 있는 최대 가능한 단말의 수를 정하여, 이에 따라서 스케쥴링과 PDCCH의 전송을 수행하는 방법을 제시한다.
하나의 OFDM 심볼에서 최대 N개의 단말이 동시에 스케쥴링 됨을 가정한다. 상기 N 값은 규격에서 하나의 값으로 설정될 수도 있고, 기지국이 상위 시그널링을 통해서 설정될 수도 있으며, MAC 시그널링, 물리계층 시그널링 등을 이용하여 단말에게 설정할 수도 있다. 또한 PDSCH의 스케쥴링 단말 수와 PUSCH 스케쥴링 단말 수가 같을 수도 있고 다를 수도 있다. 발명을 편리하게 기술하기 위하여 하기에서 일례로 역방향, 순방향 모두 N값을 4로 가정한다.
동시에 스케쥴링 되는 단말이 4개로 정해지게 되면, 할당되는 자원도 4등분 되게 된다. 따라서 본 실시예는 동시에 할당되는 단말 수에 따라서 자원을 분등하고, 분등된 자원을 활용하여 자원 할당 정보를 PDCCH에 넣어서 전송하는 것을 가정한다. 미리 자원을 분등함으로써, 자원 할당 정보의 양을 최소화 함으로써, PDCCH의 정보의 양을 줄임과 동시에 좀 더 적은 자원으로 더 신뢰성이 높도록 PDCCH를 전송할 수 있게 된다.
구체적으로는 PDSCH와 PUSCH로 할당된 자원을 동일 크기의 자원 4개로 분리한 후에, PDCCH에서 4비트의 비트맵방식으로 할당된 자원을 지시하는 방법이 가능하다. 즉 PDCCH에는 자원 할당 정보로 4비트가 사용되어 첫번째 비트는 분할된 자원 중에서 첫번째 자원의 할당 여부를, 두번째 비트는 분할된 자원 중에서 두번째 자원의 할당 여부를, 세번째 비트는 분할된 자원 중에서 세번째 자원의 할당 여부를, 네번째 비트는 분할된 자원 중에서 네번째 자원의 할당 여부를 알려 주게 된다. 일례로 자원 할당 정보의 비트맵이 1000인 경우는 분할된 자원 중에서 첫번째 자원만 단말에게 할당된 것을 의미하여, 자원 할당 정보의 비트맵이 1101인 경우는 분할된 자원 중에서 첫번째, 두번째, 그리고 마지막 자원만 단말에게 할당된 것을 의미한다. 물론 자원 할당 정보가 1111인 비트맵을 사용하여 전체 1 OFDM TTI 주파수 자원을 하나의 단말에게 할당하는 것도 가능하다.
도 10은 본 발명의 제3 실시 예에 따른 1 OFDM 심볼 TTI를 활용하는 PDCCH, PUSCH의 자원 할당 방법을 나타내는 도면이다. LTE 구조에서 1개의 서브프레임(1001)에는 PDCCH 영역(1002)과 PDSCH 영역(1003)으로 나누어진다. 1 OFDM 심볼 TTI를 지원하는 기지국은 동시에 기존 1 서브프레임 TTI 단말도 지원해야 하므로 동일 서브프레임에서 1 서브프레임 TTI와 1 OFDM 심볼 TTI가 동시에 지원되는 것도 가능하다. 1 OFDM 심볼 TTI는 PDSCH 영역(1003)에 포함되는 OFDM 심볼 중에서 하나의 심볼에 적용될 수 있고, 1서브프레임 TTI 단말이 존재하지 않는 서브프레임에서는 1 OFDM 심볼 TTI는 PDCCH 영역(702)에 포함되는 하나의 OFDM 심볼에서 적용될 수 있다.
도 10에서 1004의 OFDM 심볼에서 1 OFDM 심볼 단말에 대해 스케쥴링을 수행하고 PDCCH를 전송한다. 1004에서 도시하고 있는 바와 같이 하나의 OFDM 심볼 내에서 일부 주파수 자원이 1 OFDM 심볼 TTI로 사용되게 되는데, 이는 나머지 주파수 자원은 기존 1ms TTI 단말에게 할당하기 위해서이다. 1 OFDM 심볼 TTI가 사용될 수 있는 주파수 자원의 크기는 상위 시그널링 혹은 맥 시그널링 등으로 미리 설정될 수도 있고 동적으로 물리 계층 시그널링으로 할당될 수도 있다. 물론 1 OFDM 심볼 TTI가 전체 주파수 자원을 모두 사용할 수 있다.
전술한 바와 같이 다수개의 단말이 1 OFDM 심볼 TTI에 스케쥴링이 가능하므로 PDCCH 영역에 전송될 수 있는 PDCCH의 개수는 최대 4개의 순방향 채널을 위한 PDCCH_DL과 4개의 역방향 채널을 위한 PDCCH_UL, 이렇게 8개의 PDCCH의 전송이 가능하다. 상기 PDCCH_DL과 PDCCH_UL은 크기가 다를 수 있어서 단말은 PDCCH_DL과 PDCCH_UL 크기와 설정된 동시 스케쥴링 단말의 수 등을 바탕으로 blind detection를 수행하게 된다.
본 실시예에서 주파수 자원은 논리적 자원을 의미하며, 논리적으로 주파수 자원의 순서를 정의하여 기지국과 단말이 주파수 자원의 논리적 순서를 공유하고 있음을 가정한다. 상기 논리적 주파수 자원은 물리적 주파수 자원에 임의의 규칙으로 매핑될 수 있으며, 기지국과 단말은 상기 물리적 주파수 자원에 매핑되는 규칙을 서로 공유하고 있음을 가정한다.
하나의 OFDM 심볼 내에서 기지국은 도 10의 1010과 같이 물리 채널들을 할당한다. 정해진 자원 위치에 PCFICH(1011)과 PHICH(1014)를 할당하고 남은 자원에 PDCCH와 PDSCH를 할당한다. PDCCH와 PDSCH의 자원은 PCFICH에 의해서 할당된 자원을 분리할 수 있는데, 필요한 PDCCH의 개수, CCE_1S 크기를 고려하여 PDCCH 자원의 양을 결정하여 자원이 나누어지는 위치(1020)을 정하고, 이를 PCFICH로 알려준다.
본 실시예에서 PCFICH는 2비트로 가정하였고, 따라서 PCFICH의 정보에 따라서 1021, 1022, 1023, 1024에서 보이는 바와 같이 4가지의 PDCCH 자원을 결정할 수 있다. 물론 PCFICH의 사이즈와 가능한 PDCCH 자원 영역의 가지 수는 다른 값으로 정해질 수 있다. 본 실시예에서는 PCFICH 정보를 물리 계층 신호로 전송하는 것을 가정하여 설명하고 있지만, PCFICH 정보를 상위 시그널링으로 미리 설정하는 방법, 규격에서 하나의 값으로 정하는 방법, 혹은 맥 시그널링 같은 다른 방법으로 설정하는 방법도 사용될 수 있다.
PDCCH 영역이 정해지게 되면, 나머지 영역이 PDSCH로 사용될 수 있다. 전술한 바와 같이 본 실시예에서는 PDSCH 영역을 설정된 단말의 수로 분할하는 것을 가정하였다. 도 에서 PDSCH 영역 (1013)이 결정되면, PDSCH 영역은 설정된 동시 스케쥴링 가능항 최대 단말 수인 N개의 동일 크기 자원으로 분할한다. 본 실시 예에서 PDCCH 영역 이후 PDSCH 영역은 4개의 동일 크기 자원으로 분할될 수 있다. 특정 단말에 대한 PDSCH 자원 영역은 대응하는 PDCCH에 포함된 비트맵 정보에 의해 지시될 있다. PDSCH 자원 영역의 크기에 따라서 나누어지는 자원 하나의 크기도 달라지게 된다. 상기에서는 순방향 자원에 대하여 기술하였지만 역방향의 PUSCH 자원도 1 OFDM 심볼 TTI를 위하여 할당된 자원에 대해서 동시 스케쥴링 가능한 최대 단말 수인 N개의 동일 크기 자원으로 분할한다. 특정 단말에 대한 PUSCH 자원은 대응하는 PUCCH에 포함된 비트맵 정보에 의해 지시될 수 있다.
OFDM 심볼의 위치에 따라서 CRS가 존재하는 경우가 있고, 그렇지 않은 경우가 있을 수 있다. 기존 CRS 구조를 그대로 사용한다고 가정하였을 때, 하나의 서브프레임에서 5번재 OFDM 심볼에는 CRS가 존재하고 6번째 OFDM 심볼에는 CRS가 존재하지 않는다. 따라서 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양이 OFDM 심볼 위치에 따라서 달라지게 된다. CRS의 전송 여부는 기지국과 단말이 모두 공유하는 정보이기 때문에, 자원의 양을 CRS의 존재 여부에 따라서 다르게 가져가야 한다. CRS 뿐 아니라 시스템을 위한 다른 채널들이 임의의 OFDM 채널에 존재할 수 있는데, 이에 따라서 동일한 방법으로 PDCCH, PDSCH, PHICH가 전송될 수 있는 자원의 양을 결정하는 과정도 기지국과 단말은 포함하고 있어야 한다. 물론 CRS 구조는 도 10과 같이 기존 LTE에서의 구조를 그대로 사용할 수 있고, 새로운 CRS 구조를 도입할 수 있다.
마지막으로 상기에서 논리 자원을 가정하여 설명하였고, 상기 논리 자원은 최종적으로 물리적인 주파수 자원에 매핑되어야 한다. 물리 자원 매핑은 여러가지 가능한 방법이 있는데, 가장 쉬운 방법이 논리 자원을 순서대로 물리 자원의 주파수 자원에 매핑하는 방법이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 2번 물리 자원에, 이렇게 매핑하는 것이다. 다른 방법은 주파수 다이버시티를 얻기 위하여 논리 자원을 물리 자원 내에서 퍼뜨려서 매핑하는 것이다. 즉 1번 논리 자원을 1번 물리 자원에, 2번 논리 자원을 101번 물리 자원에, 3번 논리 자원을 201번 물리 자원에 매핑하는 등, 인접한 논리 자원을 최대한 멀리 떨어진 물리 자원에 매핑하는 방법도 가능하다. 논리 자원과 물리 자원의 매핑은 다양한 방법이 가능하며, 본 실시예에서 제시하는 기술은 모든 가능한 논리-물리 자원 매핑 방법에 대하여 활용할 수 있다.
하기 도 11과 12를 이용하여 본 발명의 제3 실시 예에 따른 단말과 기지국의 동작을 설명한다.
도 11은 본 발명의 제3 실시 예에 따른 단말의 동작을 도시하는 도면이다.
도 11을 참조하면, 1101 과정에서 단말 수신 동작을 시작한다. 1102 과정에서 상기 단말이 1 OFDM 심볼 TTI가 사용될지 여부 및 사용되는 경우 최대 스케쥴링 되는 단말의 수에 따라서 결정되는 분할된 주파수 자원의 개수를 설정한다. 상기 1 OFDM 심볼 TTI의 사용 여부 및/또는 최대 스케쥴링 되는 단말의 수는 기지국의 시그널링에 따라 결정될 수 있다. 예를 들어, 기지국의 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI의 사용 여부 및 최대 스케쥴링 단말의 수를 설정할 수 있다.
단말은 1103 과정에서 1 OFDM TTI로 설정된 자원에 대하여 1 OFDM 심볼에 대한 수신을 수행한다. 1104 과정에서 단말은 수신한 1 OFDM 심볼에서 PDCCH 자원 영역과 PDSCH 자원 영역을 구분하기 위한 지시자 정보를 획득할 수 있다. 상기 지시자는 PCFICH 일 수 있다. 기지국은 1104에서 PCFICH를 수신하여, 1105에서 PDCCH 자원 영역을 판단하고 PDCCH를 수신한다. 상기 1104의 PCFICH 과정은 PDCCH로 할당되는 자원 설정이 PCFICH를 통해서가 아니라 그 이전에 미리 설정된 경우는 생략될 수 있다.
단말은 1106 과정에서 PDCCH_DL에 대한 blind detection을 수행하여 PDCCH_DL이 전송되었는지를 판단한다. PDCCH_DL이 검출된 경우에는 1107 과정에서 수신된 PDCCH에 포함되는 비트맵 형식의 자원 할당 정보를 이용하여 PDSCH가 전송되는 주파수 자원을 파악한다. 단말은 1108 과정에서 상기 판단한 PDSCH 자원을 이용하여 PDSCH를 수신 및 디코딩을 수행한다. 단말은 최대 스케쥴링 허용 단말 수 n 개로 나누어진 PDSCH 영역에서 비트맵 형식의 자원 할당 정보로부터 획득한 주파수 자원을 파악하여 PDSCH 자원을 디코딩 할 수 있다.
추가로 1109 과정에서 단말은 PUCCH_UL의 검출 여부를 식별한다. 상기 단말이 1109 과정에서 PDCCH_UL을 검출하게 되면, 1110 과정으로 진행한다. 1110 과정에서 수신된 PDCCH에 포함되는 비트맵 형식의 자원 할당 정보를 이용하여 PUSCH를 송신해야 하는 주파수 자원을 식별한다. 단말은 1111 과정에서 임의의 정해진 시점 이후, 즉 정해진 TTI 길이 이후에 첫 역방향 OFDM 심볼에서 1 OFDM 심볼 TTI를 이용하여 상기 1111 과정에서 판단한 주파수 자원을 활용하여 PUSCH를 송신한다. 단말은 최대 스케쥴링 허용 단말 수 n 개로 나누어진 PUSCH 영역에서 비트맵 형식의 자원 할당 정보로부터 획득한 주파수 자원을 파악하여 PUSCH를 송신한다. 1112 과정에서 단말 동작을 종료한다.
상기 1106에서 1108까지의 순방향 동작과 1109에서 1111까지의 역방향 동작은 순서가 바뀔 수 있고, 혹은 동시에 수행될 수 있다.
도 12는 본 발명의 제3 실시 예에 따른 기지국의 동작을 도시하는 도면이다.
도 12를 참조하면, 기지국은 우선 1201과정에서 기지국 동작을 시작한다. 1202 과정에서 1 OFDM 심볼 TTI를 설정한다. 또한, 기지국은 TTI가 사용될지 여부 및 사용되는 경우 최대 스케쥴링 되는 단말의 수에 따라서 결정되는 분할된 주파수 자원의 개수를 설정한다. 1 OFDM 심볼 TTI의 설정 및 최대 스케쥴링되는 단말의 수는 기지국의 시그널링에 따라 결정될 수 있다. 예를 들어, 기지국이 전송하는 SIB(system information block) 또는 RRC signaling을 이용하여 1 OFDM 심볼 TTI 및/또는 최대 스케쥴링되는 단말의 수가 설정될 수 있다.
상기 기지국은 1203 과정에서 1 OFDM 심볼 TTI를 설정한 다수 단말들에 대하여 스케쥴링을 수행하여 PDSCH를 할당할 단말, PUSCH를 할당할 단말과 각 채널의 형식을 결정한다. 기지국은 1204 과정에서 PUSCH 자원 할당을 위한 PDCCH_UL을 생성하는데, 단말에게 할당한 주파수 자원에 대하여 비트맵으로 결정하여 포함시킨다. 그리고 PDCCH_UL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_UL을 구성한다. 기지국은 1205 과정에서 PDSCH 자원 할당을 위한 PDCCH_DL을 생성하는데, 단말에게 할당한 주파수 자원에 대하여 비트맵으로 결정하여 포함시킨다. 그리고 PDCCH_DL을 전송할 단말의 순방향 채널 상태를 고려하여 CCE_1S를 적당한 값으로 정한 후에 PDCCH_DL을 구성한다. 한편, 1204 과정과 1205 과정의 순서는 교환 가능한다. 즉, PDSCH 자원 할당을 위한 PDCCH를 생성한 이후에 PUSCH 자원 할당을 위한 PDCCH를 생성할 수도 있다. 또한, 1204 과정 또는 1205 과정 중 전송할 하향링크 제어 신호가 존재하지 않는 경우 각 동작은 생략될 수 있다.
기지국은 1206 과정에서 PDCCH의 크기를 고려하여 그보다 같거나 큰 자원 크기로 PDCCH가 가능하도록 PCFICH를 설정한다. 1207 과정에서 PDCCH 자원으로 설정된 자원으로 PDCCH를 매핑하고 나머지 자원에서 PDSCH을 매핑한 후에 전송한다. 그리고 기지국 동작을 종료한다. (1208)
추가적으로 1OFDM 심볼 TTI에 사용되는 PDCCH와 PDSCH의 자원을 기지국이 상위 시그널링을 통해서 알려 주는 방법도 고려할 수 있다. 이 경우는 PCFICH가 필요하지 않고, 단말은 상위 시그널링을 통해서 PDCCH와 PDSCH의 자원이 어떻게 할당되었는지 판단한다. 다른 과정은 동일하게 수행한다.
상기에서 1 OFDM 심볼 TTI를 위한 PDCCH 전송 방법을 기술하였다. 하기에는 1 OFDM 심볼 TTI를 가지는 역방향 채널의 구조를 제시한다.
도 13은 본 발명의 추가 실시 예에 따른 역방향 채널 구조를 나타내는 도면이다.
도 13을 참조하면, 시간축으로 하나의 서브프레임(1301)은 두 개의 슬롯(1302)로 구성되고, 하나의 슬롯은 6개 혹은 7개의 OFDM 심볼로 구성된다. 주파수 축으로 12개의 자원 요소 (resource element)가 하나의 자원 블록(resource block, RB, 1303)을 구성하고 복수개의 RB가 하나의 시스템을 구성한다. 일 예로 10MHz 시스템은 50개의 RB를 포함하고, 20MHz 시스템은 100개의 RB를 포함한다.
전체 주파수 대역의 양 끝에 위치한 복수개의 RB들은 (1304, 1305) 기존 1ms TTI 길이를 가지는 단말이 전송하는 PUCCH 자원으로 할당되고, 나머지 자원은 기존 1ms TTI 길이를 가지는 단말이 전송하는 PUSCH 자원으로 할당될 수 있다. 상기 PUCCH 자원(1304, 1305)은 동적 할당이 쉽지 않아서 1 OFDM 심볼 TTI 채널은 PUSCH 채널이 할당될 수 있는 자원을 활용할 수 있다. 따라서 PUCCH가 전송되지 않은 영역 중 일부(1306)를 기존 1ms TTI 길이를 가지는 단말을 위한 PUSCH 자원으로 할당하고 나머지 자원(1307)을 1 OFDM 심볼 TTI 채널을 위한 자원으로 할당할 수 있다. 1310의 자원 안에 1 OFDM 심볼 TTI 채널들을 전송할 수 있다. 1 OFDM 심볼 TTI로 전송하는 채널에는 제어 정보를 위한 PUCCH와 데이터 정보를 위한 PUSCH가 존재한다. 하기 실시예를 이용하여 PUCCH와 PUSCH의 다중화 방법을 기술한다.
<제 4 실시 예>
본 실시예 에서는 1 OFDM 심볼 TTI로 할당된 자원 내에서 주파수 다중화를 통해서 PUCCH와 PUSCH 채널을 할당하는 방법을 제시한다. 도 13에서 가능한 다중화 방법을 도시하고 있다. 1 OFDM 심볼 TTI로 할당된 자원 (1310) 내에서 1311과 같이 양 끝 자원 일부분을 PUCCH로 할당하고, 남은 자원을 PUSCH로 할당하는 방법이 가능하다. 또한 1312와 같이 가장 첫번째 자원 일부분을 PUCCH로 할당하고, 남은 자원을 PUSCH로 할당하는 방법이 가능하다. 그리고 마지막으로 분산자원 처럼 1 OFDM 심볼 TTI 전체 자원에 걸쳐서 일정 간격으로 자원을 할당하여 PUCCH를 매핑하고, 남은 자원에 PUSCH를 매핑하는 것도 가능하다.
상기 실시예 4에서 PUCCH 자원과 PUSCH 자원의 다중화 방법을 기술하였다. PUSCH 자원에는 데이터 정보가 매핑되는 자원과, 기준 신호 (reference signal)이 매핑되는 자원이 필요하게 되는데, 두 정보에 대한 다중화는 주파수 다중화가 필요하게 된다. LTE 역방향 전송은 PAPR(peak to average power ratio)을 줄이기 위한 방법으로 SC-FDMA 방식을 사용하는데, 1 OFDM 심볼 TTI의 경우에는 순수하게 SC-FDMA 방식은 어려울 수 있어서 PAPR 증가를 최소화 하고 성능을 높일 수 있는 전송 방식이 필요하다. 하기 실시예들을 통해서 PAPR을 줄이면서 데이터 신호와 기준 신호의 주파수 다중화가 가능한 방법을 제시한다.
<제 5 실시 예>
도 14는 본 발명의 제5 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 14를 참조하면, 본 실시예를 위한 다중화 방법을 제시한다. 도 14에서 데이터(DFT 입력, 1401)는 DFT 블록(1402)에 입력된다. DFT 부호화된 출력(1404)은 IFFT 블록(1408)에 입력되어 IFFT를 수행하게 된다. IFFT 입력은 주파수 영역으로 간주되는데, 하나의 OFDM 심볼에 데이터와 기준 신호를 다중화하기 위해서는 주파수 다중화가 필수적이다. 종래 상향링크 서브프레임에서 기준 신호는 시간 영역에서 다중화되지만, 1 OFDM 심볼 TTI에서 하나의 심볼에 기준 신호와 데이터를 다중화하기 위해서는 주파수 다중화가 필수적이다. 따라서 IFFT 입력에 있어서 기준 신호를 데이터 신호와 함께 다중화 해야한다.
도 14의 실시 예에서는 임의의 주기를 가지고 일정 간격으로 기준신호를 매핑한다. 즉, DMRS 블록(1403)에서 기준 신호 (DeModulation Reference Signal: DMRS)를 생성하여 DMRS 부호화된 출력(1405)와 같이 IFFT 입력에 있어서 일정 간격으로 입력한다. 도 14에서는 간격을 5개의 서브케리어 간격으로 기술되어 있으나 그 간격은 임의의 수가 될 수 있다. 4개의 서브캐리어에 데이터가 매핑되고 하나의 서브캐리어에 기준 신호를 매핑하여 5개의 서브캐리어 간격으로 매핑을 수행할 수 있다. 기준 신호가 매핑된 나머지 영역에 데이터 신호를 매핑하게 되는데, 1404와 같이 IFFT 입력에 있어서 기준 신호가 매핑되는 서브케리어를 피해서 매핑하게 된다. 상기 데이터 신호와 기준 신호가 입력되는 주파수 영역은 상기 단말에게 PUSCH 전송을 위하여 할당된 주파수 영역이며, 나머지 영역, 즉 1406, 1407 영역에는 0 값이 입력된다. 즉 1404, 1405, 1406, 1407의 입력은 전체 시스템 주파수 자원 크기의 입력이다. 1408의 IFFT 블록의 출력은 시간 영역의 1409 신호가 출력되고 단말은 상기 시간 영역의 1409 신호를 순차적으로 전송한다. 수식적인 관계는 아래와 같다
DFT 입력/출력: L
IFFT 전체 입력/출력 (시스템 전체 서브케리어 수, 예를들어 20MHz BW 시스템의 경우 1200): K
PUSCH 할당 주파수 (서브케리어 수): M
기준 신호 전송 간격: P
위의 변수에 대한 관계식은 아래와 같다.
L + Ceiling (M/P) = M ≤ K
<제 6 실시 예>
도 15는 본 발명의 제6 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 15를 참조하면, 본 실시예를 위한 다중화 방법을 제시한다. 도 15에서 데이터는 다수 개의 DFT 블록(1501, 1502)에 입력되고, DFT 부호화된 출력(1504)은 IFFT 블록(1508)에 입력되는데, 하나의 DFT 출력 시퀀스는 임의의 주기(P)를 가지고 일정 간격으로 데이터 신호를 IFFT 입력 신호에 매핑한다. 그리고 다음 DFT 블록의 출력을 동일 주기(P)를 가지고 일정 간격으로 데이터 신호를 IFFT 입력 신호에 매핑한다.
DMRS 블록(1503)에서 기준 신호 (DeModulation Reference Signal: DMRS)도 마찬가지로 동일 주기(P)를 가지고 일정 간격으로 1505와 같이 IFFT 블록에 입력한다. 상기 데이터 신호와 기준 신호가 입력되는 주파수 영역은 상기 단말에게 PUSCH 전송을 위하여 할당된 주파수 영역이며, 나머지 영역, 즉 1506, 1507 영역에는 0 값이 입력된다. 즉 1504, 1505, 1506, 1507의 입력은 전체 시스템 주파수 자원 크기의 입력이다. 1508의 IFFT 블록의 출력은 시간 영역의 1509 신호가 출력되고 단말은 상기 시간 영역의 1509 신호를 순차적으로 전송한다. 수식적인 관계는 아래와 같다.
수식적인 관계는 아래와 같다
DFT 입력/출력: L
DFT 블록 개수: N
IFFT 전체 입력/출력 (시스템 전체 서브케리어 수, 예를 들어 20MHz BW 시스템의 경우 1200): K
PUSCH 할당 주파수 (서브케리어 수): M
기준 신호 전송 간격: P
위의 변수에 대한 관계식은 아래와 같다.
N = P - 1
L x N + Ceiling (M/P) = M ≤ K
<제 7 실시 예>
도 15은 본 발명의 제7 실시 예에 따른 상향링크 다중화를 나타내는 도면이다.
도 16을 참조하면, 본 실시예를 위한 다중화 방법을 제시한다. 도 16에서 데이터는 DFT 블록(1601, 1602)에 입력되고, DFT 부호화된 출력(1604)은 IFFT 블록(1608) 입력되어 IFFT를 수행하게 된다. 이때 DFT 부호화된 출력(1604)의 개수와 1608의 IFFT 블록 입력 수, 즉 할당된 서브케리어 수는 동일하다. IFFT 입력은 주파수 영역으로 간주되는데, 하나의 OFDM 심볼에 데이터와 기준 신호를 다중화하기 위해서는 주파수 다중화가 필수적이다. 따라서 IFFT 입력에 있어서 기준 신호를 데이터 신호와 함께 다중화 해야 하는데, 도 16에서는 임의의 주기를 가지고 일정 간격으로 기준신호를 매핑한다.
즉, 1603에서 기준 신호 (DeModulation Reference Signal: DMRS)를 생성하여 1605와 같이 IFFT 입력에 있어서 일정 간격으로 입력한다. 도 16에서는 간격을 5개의 서브케리어 간격으로 기술되어 있으나 그 간격은 임의의 수가 될 수 있다. 기준 신호가 매핑된 IFFT 입력단에는 데이터 신호는 전송하지 않는다. 즉 데이터 신호의 DFT 출력을 IFFT 블록에 입력할 때 기준 신호가 매핑된 입력에 해당하는 데이터 신호는 버리고 기준 신호가 매핑되지 않은 입력에만 데이터 신호를 입력한다. 상기 데이터 신호와 기준 신호가 입력되는 주파수 영역은 상기 단말에게 할당된 주파수 영역이며, 나머지 영역, 즉 1606, 1607 영역에는 0 값이 입력된다. 즉 1604, 1605, 1606, 1607의 입력은 전체 시스템 주파수 자원 크기의 입력이다. 1608의 IFFT 블록의 출력은 시간 영역의 1609 신호가 출력되고 단말은 상기 시간 영역의 1607 신호를 순차적으로 전송한다. 수식적인 관계는 아래와 같다
DFT 입력/출력: L
IFFT 전체 입력/출력 (시스템 전체 서브케리어 수, 예를들어 20MHz BW 시스템의 경우 1200): K
PUSCH 할당 주파수 (서브케리어 수): M
기준 신호 전송 간격: P
위의 변수에 대한 관계식은 아래와 같다.
L = M ≤ K
도 17은 본 발명의 추가 실시 예에 따른 단말의 1 OFDM 심볼 TTI 상향링크 전송 방법을 설명하는 도면이다.
도 17을 참조하면, 1701 과정에서 단말은 동작을 시작한다. 단말은 1 OFDM 심볼 TTI가 설정된 경우, 설정에 대응하는 주파수 대역 및 심볼에서 PDCCH를 수신한다. 단말은 1702 과정에서 자신에 대한 1 OFDM 심볼 TTI PUCCH를 식별한다.
단말에 할당된 1 OFDM 심볼 TTI PUCCH가 없으면 단말은 상향링크 전송을 위한 동작을 종료한다. 단말에 할당된 1 OFDM 심볼 TTI PUCCH가 식별되면, 1703 과정에서 단말은 상향링크 데이터를 생성한다.
1704 과정에서 단말은 상기 1 OFDM 심볼 TTI PUCCH의 상향링크 스케쥴링 정보에 기반하여 상향링크 데이터를 PUSCH 자원에 매핑한다. 예를 들어, 도 14, 도 15 또는 도 16에서 설명한 상향링크 데이터 자원 매핑 방법을 사용할 수 있다.
1705 과정에서 단말은 PUSCH를 전송한다.
도 18은 본 발명의 실시예에 따른 단말의 구조를 도시하는 블록도이다. 도 18과 같이, 본 발명의 단말기(1806)는 단말기 수신부(1800), 단말기 송신부(1804), 단말기 처리부(1802)를 포함할 수 있다. 단말기 수신부(1800)와 단말기 송신부(1804)를 통칭하여 본 발명의 실시예에서는 송수신부라 칭할 수 있다. 송수신부는 기지국과 신호를 송수신할 수 있다. 상기 신호는 제어 정보와 데이터 및 파일럿 중 적어도 하나를 포함할 수 있다. 상기 단말기 처리부(1802)는 제어부 또는 제어기라 명명할 수 있다.
송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(1802)로 출력하고, 단말기 처리부(1802)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
본 발명의 실시 예에 따르면 상기 단말기 처리부(1802)는 1 서브프레임 미만 전송시간구간(transmission timing interval, TTI)을 설정하고, 1 서브프레임 미만 TTI 자원을 수신하며, 상기 1 서브프레임 미만 TTI 자원에서 하향링크 데이터 채널을 위한 하향링크 제어 채널을 확인하고, 상기 하향링크 제어 채널이 확인되면, 상기 하향링크 제어 채널의 자원 매핑 위치에 기반하여 상기 하향링크 데이터 채널을 디코딩하도록 제어할 수 있다. 1 서브프레임 미만 TTI는 제1 TTI라 지칭할 수 있다.
상기 1 서브프레임 미만 TTI는 1 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)을 지시할 수 있다. 이때, 하향링크 제어 채널과 하향링크 데이터 채널은 동일한 심볼에서 수신될 수 있다.
또한, 상기 단말기 처리부(1802)는 동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 디코딩하도록 제어할 수 있다.
또한, 상기 단말기 처리부(1802)는 상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보 확인하고, 상기 지시 정보에 기반하여 상기 하향링크 데이터 채널을 디코딩하도록 제어할 수 있다.
또한, 상기 단말기 처리부(1802)는 상기 제어부는 상기 하향링크 제어 정보로부터 상기 하향링크 데이터 채널의 자원 할당 위치를 지시하는 정보를 확인하도록 제어하고, 상기 정보에 기반하여 상기 하향링크 데이터 채널을 디코딩하도록 제어할 수 있다. 상기 정보는 최대 스케쥴링 가능 단말 수 n으로 구분된 하향링크 데이터 영역에서 상기 단말에 대한 자원 할당 위치를 지시할 수 있다.
단말기 처리부(1802)는 상술한 본 발명의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다.
도 19는 본 발명의 실시예에 따른 기지국의 구조를 도시하는 블록도이다. 도 19와 같이, 본 발명의 기지국(1907)은 기지국 수신부(1901), 기지국 송신부(1905), 기지국 처리부(1903)를 포함할 수 있다.
기지국 수신부(1901)와 기지국 송신부(1905)를 통칭하여 본 발명의 실시예에서는 송수신부라 칭할 수 있다. 송수신부는 단말과 신호를 송수신할 수 있다. 상기 신호는 제어 정보와 데이터 및 파일럿 중 적어도 하나를 포함할 수 있다. 상기 기지국 처리부(1802)는 제어부 또는 제어기라 명명할 수 있다.
송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(1903)로 출력하고, 기지국 처리부(1903)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
본 발명의 실시 예에 따르면 상기 기지국 처리부(1903)는 적어도 하나의 단말에 1 서브프레임 미만 전송시간구간(transmission timing interval, TTI)을 설정하고, 상기 적어도 하나의 단말에 대한 하향링크 제어 채널을 생성하며, 상기 하향링크 제어 채널 자원 매핑 위치에 기반하여 상기 하향링크 제어 채널에 대응하는 하향링크 데이터 채널을 매핑하고, 상기 하향링크 제어 채널 및 하향링크 데이터 채널이 매핑된 1 서브프레임 미만 TTI에 대응하는 신호를 전송하도록 제어할 수 있다. 1 서브프레임 미만 TTI는 제1 TTI라 지칭할 수 있다.
상기 1 서브프레임 미만 TTI는 1 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)을 지시할 수 있다. 이때, 하향링크 제어 채널과 하향링크 데이터 채널은 동일한 심볼에서 전송될 수 있다.
또한, 상기 기지국 처리부(1903)는 상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보를 매핑할 수 있다.
또한, 상기 기지국 처리부(1903)는 동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 매핑할 수 있다.
또한, 상기 기지국 처리부(1903)는 상기 1 서브프레임 미만 TTI에서의 최대 스케쥴링 가능 단말 수 n을 설정하고, 상기 최대 스케쥴링 가능 단말 수 n에 기반하여, 하향링크 데이터 영역을 n개로 구분하도록 제어할 수 있다. 특정 단말에 대한 하향링크 제어 정보는 상기 n 개로 구분된 하향링크 데이터 영역에서 상기 특정 단말에 대한 자원 할당 위치를 지시하는 정보를 포함할 수 있다.
기지국 처리부(1903)는 상술한 본 발명의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다.한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 즉 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 기지국의 신호 송수신 방법에 있어서,
    적어도 하나의 단말에 제1 전송시간구간(transmission timing interval, TTI)을 설정하는 단계;
    상기 적어도 하나의 단말에 대한 하향링크 제어 채널을 생성하는 단계;
    상기 하향링크 제어 채널 자원 매핑 위치에 기반하여 상기 하향링크 제어 채널에 대응하는 하향링크 데이터 채널을 매핑하는 단계; 및
    상기 하향링크 제어 채널 및 하향링크 데이터 채널이 매핑된 제1 TTI에 대응하는 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 제1 TTI는 1 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)을 지시하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 매핑하는 단계는,
    동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 매핑하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 매핑하는 단계는,
    상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보를 매핑하는 단계를 포함하는 것을 특징으로 하는 방법.
  5. 무선 통신 시스템에서 기지국에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    적어도 하나의 단말에 제1 전송시간구간(transmission timing interval, TTI)을 설정하고, 상기 적어도 하나의 단말에 대한 하향링크 제어 채널을 생성하며, 상기 하향링크 제어 채널 자원 매핑 위치에 기반하여 상기 하향링크 제어 채널에 대응하는 하향링크 데이터 채널을 매핑하고, 상기 하향링크 제어 채널 및 하향링크 데이터 채널이 매핑된 제1 TTI에 대응하는 신호를 전송하도록 제어하는 제어부를 포함하는 기지국.
  6. 제5항에 있어서, 상기 제어부는,
    동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 매핑하는 것을 특징으로 하는 기지국.
  7. 제5항에 있어서, 상기 제어부는,
    상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보를 매핑하는 것을 특징으로 하는 기지국.
  8. 제5항에 있어서, 상기 제어부는,
    상기 제1 TTI에서의 최대 스케쥴링 가능 단말 수 n을 설정하고, 상기 최대 스케쥴링 가능 단말 수 n에 기반하여, 하향링크 데이터 영역을 n개로 구분하도록 제어하고,
    특정 단말에 대한 하향링크 제어 정보는 상기 n 개로 구분된 하향링크 데이터 영역에서 상기 특정 단말에 대한 자원 할당 위치를 지시하는 정보를 포함하는 것을 특징으로 하는 기지국.
  9. 무선 통신 시스템에서 단말의 신호 송수신 방법에 있어서,
    제1 전송시간구간(transmission timing interval, TTI)을 설정하는 단계;
    제1 TTI에 대응하는 신호를 수신하는 단계;
    상기 제1 신호에서 하향링크 데이터 채널을 위한 하향링크 제어 채널을 확인하는 단계; 및
    상기 하향링크 제어 채널이 확인되면, 상기 하향링크 제어 채널의 자원 매핑 위치에 기반하여 상기 하향링크 데이터 채널을 디코딩하는 단계를 포함하는 것을 특징으로 하는 방법.
  10. 제9항에 있어서, 상기 디코딩하는 단계는,
    동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 디코딩하는 것을 특징으로 하는 방법.
  11. 제9항에 있어서,
    상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보를 확인하는 단계를 더 포함하고,
    상기 지시 정보에 기반하여 상기 하향링크 데이터 채널을 디코딩하는 것을 특징으로 하는 방법.
  12. 무선 통신 시스템에서 단말에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    제1 전송시간구간(transmission timing interval, TTI)을 설정하고, 제1 TTI에 대응하는 신호를 수신하며, 상기 제1 TTI에 대응하는 신호에서 하향링크 데이터 채널을 위한 하향링크 제어 채널을 확인하고, 상기 하향링크 제어 채널이 확인되면, 상기 하향링크 제어 채널의 자원 매핑 위치에 기반하여 상기 하향링크 데이터 채널을 디코딩하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 단말.
  13. 제12항에 있어서, 상기 제어부는,
    동일한 심볼에서 상기 하향링크 제어 채널이 매핑된 마지막 주파수 자원의 다음 주파수 자원부터 상기 하향링크 데이터 채널을 디코딩하는 것을 특징으로 하는 단말.
  14. 제12항에 있어서, 상기 제어부는,
    상기 하향링크 제어 정보와 상기 하향링크 데이터 채널이 나누어지는 위치를 지시하는 지시 정보 확인하고,
    상기 지시 정보에 기반하여 상기 하향링크 데이터 채널을 디코딩하는 것을 특징으로 하는 단말.
  15. 제12항에 있어서,
    상기 제어부는 상기 하향링크 제어 정보로부터 상기 하향링크 데이터 채널의 자원 할당 위치를 지시하는 정보를 확인하도록 제어하고, 상기 정보에 기반하여 상기 하향링크 데이터 채널을 디코딩하며,
    상기 정보는 최대 스케쥴링 가능 단말 수 n으로 구분된 하향링크 데이터 영역에서 상기 단말에 대한 자원 할당 위치를 지시하는 정보인 것을 특징으로 하는 단말.
PCT/KR2016/006685 2015-06-26 2016-06-23 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치 WO2016208991A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/307,999 US20180109353A1 (en) 2015-06-26 2016-06-23 Method and apparatus for transmission and reception with reduced transmission time interval in wireless cellular communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0091565 2015-06-26
KR1020150091565A KR102278389B1 (ko) 2015-06-26 2015-06-26 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2016208991A1 true WO2016208991A1 (ko) 2016-12-29

Family

ID=57585926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006685 WO2016208991A1 (ko) 2015-06-26 2016-06-23 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치

Country Status (3)

Country Link
US (1) US20180109353A1 (ko)
KR (1) KR102278389B1 (ko)
WO (1) WO2016208991A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091777B1 (en) 2017-03-31 2018-10-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
WO2018228137A1 (zh) * 2017-06-15 2018-12-20 电信科学技术研究院有限公司 一种数据中转方法、装置、网络功能实体及smf实体
US10257836B1 (en) 2017-09-15 2019-04-09 At&T Intellectual Property I, L.P. Joint procedure for beam management and partial control beam failure recovery
CN110383924A (zh) * 2017-03-08 2019-10-25 三星电子株式会社 无线蜂窝通信系统中的控制和数据信息资源映射方法和装置
CN110463311A (zh) * 2017-03-22 2019-11-15 三星电子株式会社 用于在无线蜂窝通信系统中发送上行链路控制信道的方法和装置
CN110547021A (zh) * 2017-04-26 2019-12-06 三星电子株式会社 用于确定无线通信系统中的上行链路发送定时的方法和设备
US10505697B2 (en) 2016-11-03 2019-12-10 At&T Intellectual Property I, L.P. Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
CN110583082A (zh) * 2017-05-04 2019-12-17 三星电子株式会社 识别无线通信系统中的上行链路信号传送时机的方法和装置
CN113056882A (zh) * 2018-09-07 2021-06-29 三星电子株式会社 在无线通信系统中使用多个mcs的数据通信方法和设备
RU2760212C2 (ru) * 2017-05-03 2021-11-22 Хуавей Текнолоджиз Ко., Лтд. Система и способ для совместимости систем связи с низкой задержкой и устойчивой к задержке
US11329710B2 (en) 2019-11-08 2022-05-10 At&T Intellectual Property I, L.P. Facilitation of beam failure indication for multiple transmission points for 5G or other next generation network
US11395319B2 (en) 2019-03-29 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Method for differentiating multiple physical downlink shared channel (PDSCH) transmission schemes

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420138B2 (en) * 2015-07-24 2019-09-17 Lg Electronics Inc. Method and apparatus for performing communication in wireless communication system
CN106664702B (zh) * 2015-08-12 2020-09-04 华为技术有限公司 一种数据传输方法、装置及系统
WO2017166245A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 一种资源管理方法及相关设备
US10728922B2 (en) 2016-04-12 2020-07-28 Motorola Mobility Llc Scheduling of transmission time intervals
US10278167B2 (en) 2016-08-12 2019-04-30 Qualcomm Incorporated Downlink control channel structure for low latency applications
US10440731B2 (en) * 2016-10-13 2019-10-08 Qualcomm Incorporated Mission critical and autonomous uplink transmission support
RU2755360C2 (ru) * 2017-01-06 2021-09-15 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
CN108282880B (zh) * 2017-01-06 2019-11-08 电信科学技术研究院 一种确定下行数据信道的起始位置的方法及装置
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US11006413B2 (en) 2017-12-06 2021-05-11 Google Llc Narrow-band communication
US10779303B2 (en) 2017-12-12 2020-09-15 Google Llc Inter-radio access technology carrier aggregation
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
US10868654B2 (en) 2017-12-15 2020-12-15 Google Llc Customizing transmission of a system information message
US11246143B2 (en) * 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
CN111480305B (zh) 2017-12-15 2022-04-19 谷歌有限责任公司 基于卫星的窄带通信
US10772104B2 (en) 2017-12-21 2020-09-08 Samsung Electronics Co., Ltd. Wireless communication device and symbol-based processing method for downlink signals thereof
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
WO2020055602A1 (en) 2018-09-10 2020-03-19 Google Llc Fast beam tracking
KR20200077895A (ko) * 2018-12-21 2020-07-01 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어 채널 블라인드 디코딩 방법 및 장치
CN111436095B (zh) * 2019-01-11 2024-04-16 华为技术有限公司 一种通信方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062347A1 (ko) * 2011-10-26 2013-05-02 엘지전자 주식회사 무선 통신 시스템에서 제어 채널을 할당하는 방법 및 장치
US20140071954A1 (en) * 2012-09-12 2014-03-13 Futurewei Technologies, Inc. System and Method for Adaptive Transmission Time Interval (TTI) Structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816858B8 (en) * 2013-06-17 2018-05-02 Alcatel Lucent Base station and method of operating a base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062347A1 (ko) * 2011-10-26 2013-05-02 엘지전자 주식회사 무선 통신 시스템에서 제어 채널을 할당하는 방법 및 장치
US20140071954A1 (en) * 2012-09-12 2014-03-13 Futurewei Technologies, Inc. System and Method for Adaptive Transmission Time Interval (TTI) Structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "E)PDCCH for LAA Downlink", R1-152648, 3GPP TSG RAN WG1 MEETING #81, 16 May 2015 (2015-05-16), XP050972877 *
NOKIA NETWORKS: "On Data Transmission in Partial Subframe for LBE Type of Operation", R1-152824, 3GPP TSG RAN WG1 MEETING #81, 13 May 2015 (2015-05-13), XP050968360 *
S ONY: "Issues with Dynamically Allocating the PDSCH Narrowband Region for MTC via DCI", R1-153082, 3GPP TSG RAN WG1 MEETING #81, 16 May 2015 (2015-05-16), XP050972580 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505697B2 (en) 2016-11-03 2019-12-10 At&T Intellectual Property I, L.P. Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
US11296854B2 (en) 2016-11-03 2022-04-05 At&T Intellectual Property I, L.P. Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
CN110383924A (zh) * 2017-03-08 2019-10-25 三星电子株式会社 无线蜂窝通信系统中的控制和数据信息资源映射方法和装置
US11638285B2 (en) 2017-03-08 2023-04-25 Samsung Electronics Co., Ltd Method and apparatus for control and data information resource mapping in wireless cellular communication system
CN110383924B (zh) * 2017-03-08 2023-09-08 三星电子株式会社 无线蜂窝通信系统中的控制和数据信息资源映射方法和装置
CN110463311A (zh) * 2017-03-22 2019-11-15 三星电子株式会社 用于在无线蜂窝通信系统中发送上行链路控制信道的方法和装置
CN110463311B (zh) * 2017-03-22 2023-11-10 三星电子株式会社 无线蜂窝通信系统发送上行链路控制信道的方法和装置
US10652880B2 (en) 2017-03-31 2020-05-12 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
US10342009B2 (en) 2017-03-31 2019-07-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
US10091777B1 (en) 2017-03-31 2018-10-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
CN110547021B (zh) * 2017-04-26 2023-11-03 三星电子株式会社 用于确定无线通信系统中的上行链路发送定时的方法和设备
CN110547021A (zh) * 2017-04-26 2019-12-06 三星电子株式会社 用于确定无线通信系统中的上行链路发送定时的方法和设备
US11683828B2 (en) 2017-05-03 2023-06-20 Huawei Technologies Co., Ltd. System and method for coexistence of low latency and latency tolerant communications
RU2760212C2 (ru) * 2017-05-03 2021-11-22 Хуавей Текнолоджиз Ко., Лтд. Система и способ для совместимости систем связи с низкой задержкой и устойчивой к задержке
CN110583082A (zh) * 2017-05-04 2019-12-17 三星电子株式会社 识别无线通信系统中的上行链路信号传送时机的方法和装置
CN110583082B (zh) * 2017-05-04 2023-12-05 三星电子株式会社 识别无线通信系统中的上行链路信号传送时机的方法和装置
US10973063B2 (en) 2017-06-15 2021-04-06 China Academy Of Telecommunications Technology Data forwarding method and device, network function entity, and session management function entity
WO2018228137A1 (zh) * 2017-06-15 2018-12-20 电信科学技术研究院有限公司 一种数据中转方法、装置、网络功能实体及smf实体
US10827498B2 (en) 2017-09-15 2020-11-03 At&T Intellectual Property I, L.P. Joint procedure for beam management and partial control beam failure recovery
US10484995B2 (en) 2017-09-15 2019-11-19 At&T Intellectual Property I, L.P. Joint procedure for beam management and partial control beam failure recovery
US10257836B1 (en) 2017-09-15 2019-04-09 At&T Intellectual Property I, L.P. Joint procedure for beam management and partial control beam failure recovery
CN113056882A (zh) * 2018-09-07 2021-06-29 三星电子株式会社 在无线通信系统中使用多个mcs的数据通信方法和设备
US12120713B2 (en) 2018-09-07 2024-10-15 Samsung Electronics Co., Ltd. Data communication method and device using multiple MCS in wireless communication system
US11395319B2 (en) 2019-03-29 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Method for differentiating multiple physical downlink shared channel (PDSCH) transmission schemes
US11329710B2 (en) 2019-11-08 2022-05-10 At&T Intellectual Property I, L.P. Facilitation of beam failure indication for multiple transmission points for 5G or other next generation network

Also Published As

Publication number Publication date
KR20170001489A (ko) 2017-01-04
US20180109353A1 (en) 2018-04-19
KR102278389B1 (ko) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2016208991A1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
WO2020197220A1 (en) Scheduling in communication systems with multiple service types
WO2018208087A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018203657A1 (ko) 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
WO2018174450A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격, 또는 복수의 프로세싱 시간을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2018203720A1 (en) Method and apparatus for control information searching and data information transmission in a communication system
WO2017078425A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
WO2016204456A1 (ko) 무선 셀룰라 통신 시스템에서 협대역을 이용한 신호 전송을 위한 송수신 방법 및 장치
WO2016093556A1 (ko) 5개를 초과하는 셀을 반송파 집성에 따라 사용하는 경우 하향링크 데이터에 대한 harq ack/nack를 전송하는 방법 및 사용자 장치
WO2020045935A1 (ko) 무선 통신 시스템에서 제어 정보 반복 전송 방법 및 장치
WO2019143131A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송신하는 방법 및 장치
WO2017196042A1 (ko) 무선 셀룰러 통신 시스템의 동기신호 송수신 방법 및 장치
AU2018262995B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
WO2017196059A1 (ko) 무선 통신 시스템에서 상향링크 데이터 및 제어신호 전송 타이밍 결정 방법 및 장치
WO2017014613A1 (ko) 무선 셀룰러 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
WO2018038517A1 (ko) 다수의 배열 안테나를 사용하는 이동통신 시스템에서 상향링크 전송을 위한 프리코딩 정보 시그날링 방법 및 장치
WO2021100981A1 (ko) 하향링크 제어 정보를 전송하는 방법 및 기지국, 그리고 하향링크 제어 정보를 수신하는 사용자기기, 장치 및 저장 매체
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2020167080A1 (en) Method and apparatus for transmitting and receiving uplink reference signal in wireless communication system
WO2021025543A1 (en) Method and apparatus for performing dual connectivity for ues in wireless communication system
WO2021107631A1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널의 반복 전송 방법 및 장치
WO2021107265A1 (en) Method and apparatus for measuring interference in wireless communication system
EP3850903A1 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
WO2018147568A1 (ko) 무선 셀룰라 통신 시스템에서 랜덤 억세스를 수행하는 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15307999

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814704

Country of ref document: EP

Kind code of ref document: A1