WO2018128312A1 - 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2018128312A1
WO2018128312A1 PCT/KR2017/015471 KR2017015471W WO2018128312A1 WO 2018128312 A1 WO2018128312 A1 WO 2018128312A1 KR 2017015471 W KR2017015471 W KR 2017015471W WO 2018128312 A1 WO2018128312 A1 WO 2018128312A1
Authority
WO
WIPO (PCT)
Prior art keywords
grant
terminal
resource
free
uplink
Prior art date
Application number
PCT/KR2017/015471
Other languages
English (en)
French (fr)
Inventor
변일무
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/473,740 priority Critical patent/US11540311B2/en
Publication of WO2018128312A1 publication Critical patent/WO2018128312A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present disclosure relates to wireless communication, and more particularly, to a method for transmitting grant-free uplink data in a wireless communication system and a device using the same.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • the purpose of a wireless communication system is to allow a large number of terminals to perform reliable communication regardless of location and mobility.
  • the base station appropriately allocates radio resources to terminals in the cell through scheduling.
  • the terminal may transmit control information or user data to the base station by using the allocated radio resource.
  • the control information transmission method and the user data transmission method may be different.
  • a radio resource allocation scheme for control information and a radio resource allocation scheme for user data may also be different. Therefore, the radio resource for the control information and the radio resource for the user data may be different.
  • the base station may manage a radio resource reserved for control information and a radio resource reserved for user data.
  • data is transmitted and received through a base station scheduling-based resource allocation process in order to maximize resource utilization, which may cause a delay of uplink data transmission of the terminal. Accordingly, a method of performing a multi-level scheduling request for minimizing a delay of a terminal is proposed.
  • the present specification provides a method and apparatus for transmitting grant-free uplink data in a wireless communication system.
  • the present specification proposes a method and apparatus for transmitting grant-free uplink data in a wireless communication system.
  • the apparatus includes a radio frequency (RF) unit for transmitting and receiving radio signals and a processor coupled to the RF unit.
  • RF radio frequency
  • a terminal group (a plurality of terminals) transmits uplink data through a grant-free UL resource, which is a pre-scheduled terminal common resource.
  • Grant-free UL transmission may correspond to a scheme for transmitting uplink data without an uplink grant. Therefore, there is an advantage that can transmit data faster than the uplink grant-based uplink transmission scheme.
  • different terminals since data is transmitted from a common resource of a terminal, different terminals may simultaneously transmit signals from the same resource, thereby causing a collision phenomenon. In this case, the terminal may belong to the terminal group.
  • the terminal receives allocation information on grant-free uplink resources allocated semi-statically from the base station.
  • the terminal receives allocation information for the first reference signal used for the initial transmission of the uplink data and allocation information for the second reference signal used for the retransmission of the uplink data from the base station.
  • the first reference signal is allocated to the terminal common and the second reference signal is allocated to the terminal specific.
  • the reference signal may correspond to a demodulation reference signal (DMRS).
  • the UE may allocate a reference signal to be used in the 1 st to L th transmissions as described above.
  • the different UEs may be assigned a reference signal allocation pattern such that at least one of L transmissions is allocated with orthogonal reference signals.
  • the terminal transmits the uplink data through the grant free uplink resource using the first reference signal.
  • the terminal 1 may transmit the uplink data through the grant-free uplink resources allocated semi-statically using the DMRS 1.
  • the base station may attempt to decode uplink data received from the terminal. At this time, if the decoding succeeds, the communication is completed as it is, but the case where the decoding fails is a problem.
  • the failure of the decoding is because a collision occurs because different terminals simultaneously transmit signals. According to the embodiment described above, since both UE 1 and UE 2 transmit uplink data on the same resource at the same time using DMRS 1, collision may occur.
  • the terminal receives an uplink grant corresponding to the second reference signal from the base station.
  • the terminal retransmits the uplink data using the second reference signal based on the uplink grant.
  • the base station may transmit an uplink grant 1 corresponding to DMRS 1 and an uplink grant 2 corresponding to DMRS 2 for retransmission of uplink data.
  • UE 1 can receive uplink grant 1 and retransmit uplink data based on UL grant 1
  • UE 2 can receive UL grant 2 and retransmit uplink data based on UL grant 2.
  • DMRS 1 and DMRS 2 are orthogonal to each other. That is, the second reference signal may be orthogonal to each other for each terminal (terminal 1 and terminal 2) belonging to the terminal group.
  • the uplink grant may be received through a terminal common control channel. Since the uplink grant is transmitted to various terminals having a signal collision, a common terminal control channel (for example, common downlink control information (DCI)) may be used. However, the terminal receiving the uplink grant through the terminal common channel will retransmit the uplink data using the terminal specific second reference signal.
  • the uplink grant may be defined in the form of a reference signal specific uplink grant without being received through the UE common control channel.
  • Cyclic Redundancy Check (CRC) of the uplink grant may be masked by a temporary identifier according to the first reference signal. That is, the base station may mask the CRC by using different temporary identifiers (eg, C-RNTI) for each reference signal used by the terminal for initial transmission of the uplink data so that the terminal can identify the uplink grant.
  • CRC Cyclic Redundancy Check
  • the grant-free uplink resource may be composed of N resources, and the uplink data may be transmitted through one of the N resources. That is, the grant-free uplink resource may be divided into N transmission units.
  • N is greater than 1, the UE may randomly select one of the N resources and transmit uplink data.
  • the number of first reference signals orthogonal to each other in each of the N resources may be M.
  • the number of temporary identifiers may be N * M.
  • the temporary identifier may be received from the base station through RRC (Radio Resource Control) or MAC (Medium Access Control) signaling.
  • the grant-free uplink resource may be allocated periodically. If the grant-free uplink resource is deactivated in a specific subframe, a scheduling request resource may be allocated. Since the grant-free uplink resource is a terminal common resource, the base station may allocate the grant-free uplink resource to a specific terminal group and also allocate a common scheduling request resource. That is, the scheduling request resource may be a resource commonly allocated to a terminal group.
  • a grant free uplink resource may be allocated before a next period according to a scheduling request transmitted through the scheduling request resource. That is, when the scheduling request is detected, the base station may allocate a grant-free uplink resource by transmitting a common uplink grand of the terminal group.
  • the terminal may retransmit the uplink data through a dedicated resource allocated from the base station.
  • MCS modulation and coding scheme
  • grant-free retransmission may be performed without receiving an uplink grant for retransmission of uplink data. If decoding of the uplink data fails, the terminal may retransmit the uplink data through the grant-free uplink resource using the second reference signal.
  • FIG. 1 illustrates a wireless communication system to which the present specification is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol structure for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol architecture for a control plane.
  • FIG. 4 is a diagram illustrating a dynamic radio resource allocation method.
  • 5 is a diagram for explaining a semi-static scheduling method.
  • FIG. 7 illustrates an example of resource utilization when URLLC data and eMBB data are multiplexed and transmitted in the same frequency resource of the same cell.
  • FIG. 8 illustrates an example in which the maximum number of transmissions of grant-free UL resources is changed according to a resource interval according to an embodiment of the present specification.
  • FIG 9 illustrates an example in which a packet arrival interval and a grant-free UL resource are mapped according to an embodiment of the present specification.
  • FIG. 10 illustrates an example of setting a grant-free UL resource and a transmission unit within a resource according to an embodiment of the present specification.
  • 11 shows an example in which the terminal repeatedly transmits the same signal in a plurality of grant-free UL transmission intervals according to an embodiment of the present specification.
  • FIG. 12 is a diagram illustrating a procedure for transmitting uplink data through a grant-free UL resource according to an embodiment of the present specification.
  • FIG. I s a diagram illustrating a procedure for performing a scheduling request for uplink data transmission.
  • FIG. 13 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • the radio interface between the terminal and the base station is called a Uu interface.
  • Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • OSI Open System Interconnection
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
  • the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to the upper layer MAC (Medium Access Control) layer through a transport channel. Data moves between the MAC layer and the physical layer through the transmission channel. Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transmission channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transmission channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
  • a downlink transmission channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • Logical channels above the transmission channel which are mapped to the transmission channel, include Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), and MTCH (Multicast Traffic). Channel).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic
  • Next-generation wireless communication systems require semi-static scheduling for many terminals.
  • Next-generation wireless communication systems are expected to introduce Internet of Things (IoT) services from various industries.
  • Representative services include cars and drones, and location information is expected to be updated every 100ms to 1 second for autonomous driving management and accident prevention.
  • location information is expected to be updated every 100ms to 1 second for autonomous driving management and accident prevention.
  • the location information is updated periodically, it is common to apply the SPS to reduce unnecessary control channel overhead.
  • 4 is a diagram illustrating a dynamic radio resource allocation method.
  • 5 is a diagram for explaining a semi-static scheduling method.
  • the terminal can request the base station the radio resource necessary for the transmission of the generated data (S401). Accordingly, the base station may allocate a radio resource through a control signal according to the radio resource request of the terminal (S402).
  • resource allocation of a base station for uplink data transmission of a terminal may be transmitted in the form of an uplink grant (UL grant) transmitted through a PDCCH. Accordingly, the terminal may transmit data to the base station through the allocated radio resource (S403).
  • the radio resource request of the terminal, the resource allocation of the base station and uplink data transmission of the terminal corresponding thereto may be repeated if necessary (S408-S410).
  • the base station when the base station transmits the downlink data to the terminal by transmitting a DL assignment (DL Assignment) to the terminal through the PDCCH may inform which radio resources are transmitted to the terminal through (S404), The base station may transmit data to the terminal through a radio resource corresponding to the downlink assignment message (S405).
  • downlink allocation information transmission and downlink data transmission through radio resources corresponding thereto may be performed within the same transmission time interval (TTI).
  • TTI transmission time interval
  • such a downlink data transmission process may be repeated as shown in FIG.
  • the semi-static scheduling scheme uses the first and second steps in three steps of transmitting data to the base station ((1) resource request of the terminal, (2) resource allocation of the base station, and (3) data transmission of the terminal according to resource allocation). It is omitted. Accordingly, the terminal may perform a process of directly transmitting data without the request step of the radio resource and the step of allocating the radio resource according to the radio resource setting. 5 conceptually illustrates such a semi-static scheduling scheme. That is, in the semi-static scheduling method, the base station does not need to transmit radio resource allocation information every time through the PDCCH.
  • next-generation RAT is referred to herein as a new RAT for convenience.
  • eMBB enhanced mobile broadband communication
  • mMTC massive MTC
  • URLLC ultra-reliable and low latency communication
  • the proposed scheme will be described based on the new RAT system.
  • the scope of the system to which the proposed method is applied can be extended to other systems such as 3GPP LTE / LTE-A system in addition to the new RAT system.
  • the New RAT system uses an OFDM transmission scheme or a similar transmission scheme and may typically have the OFDM numerology of Table 1. Or follow the existing LTE / LTE-A's new technology but have a larger system bandwidth (eg, 100 MHz). Alternatively, one cell may support a plurality of numerologies. That is, UEs operating with different numerologies may coexist in one cell. Table 1 below shows OFDM parameters of the new RAT system.
  • the new RAT In order to minimize data transmission delay in the TDD system, the new RAT considers a self-contained subframe structure as shown in FIG. 6.
  • the region 610 in front of the self-contained subframe indicates a transmission region of a physical channel PDCCH for downlink control information (DCI) transmission.
  • the region 620 behind the self-contained subframe indicates a transmission region of a physical channel PUCCH for uplink control information (UCI) transmission.
  • the control information transmitted by the eNB to the UE through the DCI includes information on cell configuration that the UE needs to know, DL specific information such as DL scheduling, and UL specific information such as UL grant.
  • the UE includes an ACK / NACK report of HARQ for DL data, a CSI report for DL channel state, and a scheduling request (SR).
  • SR scheduling request
  • a physical channel PDSCH may be used for downlink data transmission or a physical channel PUSCH may be used for uplink data transmission.
  • the feature of this structure is to sequentially perform DL transmission and UL transmission in one subframe, send DL data in a subframe, and receive UL ACK / NACK. As a result, when a data transmission error occurs, the time taken to retransmit data is reduced, thereby minimizing the delay of the final data transfer.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the self-contained subframe structure are set to a guard period (GP).
  • mmW millimeter waves
  • the wavelength is shortened, allowing the installation of multiple antenna elements in the same area. That is, in the 30 GHz band, the wavelength is 1 cm, and a total of 100 antenna elements can be installed in a 2-dimensional array in a 0.5 lambda interval on a 5 by 5 cm panel. Therefore, mmW uses multiple antenna elements to increase the beamforming gain to increase coverage or to increase throughput.
  • TXRU Transceiver Unit
  • having a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element enables independent beamforming for each frequency resource.
  • TXRU Transceiver Unit
  • a method of mapping a plurality of antenna elements to one TXRU and adjusting the beam direction by an analog phase shifter is considered.
  • the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
  • a hybrid BF with B TXRUs which is less than Q antenna elements in the form of digital BF and analog BF, can be considered.
  • the direction of beams that can be transmitted simultaneously is limited to B or less.
  • a channel for transmitting downlink data is called a PDSCH
  • a channel for transmitting uplink data is called a PUSCH.
  • the contents of the present invention will be described based on a downlink environment (transmission of a PDSCH), but it is obvious that the contents of the present specification may be applied to an uplink environment (transmission of a PUSCH).
  • FIG. 7 illustrates an example of resource utilization when URLLC data and eMBB data are multiplexed and transmitted in the same frequency resource of the same cell.
  • delay-sensitive data e.g., URLLC data
  • relatively low delayed data e.g., eMBB data
  • PDSCH2 the data whose delay is important
  • PDSCH 1 the less delay-sensitive data
  • PDSCH 2 the less delay-sensitive data
  • the area is punctured for transmission of data (PDSCH 2) where delay is more important.
  • Grant-free UL transmission scheme is a scheme in which the UE transmits uplink data in the UE common resources scheduled in advance. Since the UE transmits uplink data in a pre-scheduled resource, there is an advantage in that data can be transmitted faster than a triggered SR-triggered UL transmission scheme that transmits a signal after receiving a UL grant. However, since the UE transmits a signal in common resources, there is a disadvantage in that a contention phenomenon may occur in which different UEs transmit signals in the same resource.
  • Grant-free UL resources also need to be reallocated. Grant-free UL resources have a feature that the base station allocates resources to the terminal by predicting the necessary resources before the terminal data occurs. If the base station allocates more grant-free UL resources than necessary, the probability of collision is reduced but resources are wasted. On the other hand, allocating grant-free UL resources less than necessary reduces resource consumption, but increases the probability of impulse to meet the target reliability. Therefore, it is necessary to adjust the grant-free UL resource in consideration of the number of terminals, terminal traffic characteristics, channel conditions, and the like. Factors to consider when allocating Grant-free UL resources to satisfy the target reliability are as follows.
  • Signal collision probability The probability that a signal impulses in a grant-free UL resource is determined according to the number of terminals and the amount of traffic generated by the terminal.
  • the number of terminals can be determined by the base station, but it is difficult to accurately predict the traffic generated by each terminal. Traffic generation of the terminal generally uses the statistical characteristics of the traffic.
  • a technique of increasing the grant-free UL resource when the collision occurrence probability is high and decreasing the grant-free UL resource amount by the collision probability is low.
  • Channel change-It is necessary to increase the amount of grant-free UL resources in consideration of the case where the uplink channel between the terminal and the base station is degraded.
  • the base station may request the terminal to transmit an uplink reference signal (eg, SRS) to estimate the uplink channel.
  • SRS uplink reference signal
  • a semi-static resource allocation technique and a dynamic resource allocation technique may be considered.
  • the semi-static resource allocation scheme can reduce physical layer signaling overhead and bring high signaling reliability, but it does not solve all the above-mentioned problems.
  • DL and UL may be determined in every subframe, and thus, even if grant-free UL resources are allocated semi-statically, a function for adaptively changing whether or not scheduling is applied to each subframe is required.
  • reliability is important in URLLC, it is necessary to dynamically change resources according to channel characteristics.
  • when a certain event occurs and suddenly the traffic is crowded there may be a case where the resource is rapidly increased to resolve the collision. Therefore, there is a need for dynamic allocation of grant-free UL resources.
  • the present specification proposes a scheme for dynamically scheduling grant-free UL resources and a scheme for activating and deactivating semi-static grant-free UL resources.
  • a term used to express a transmission unit is used as a mini slot, a slot, and a subframe.
  • Each term herein may be replaced with a different term.
  • the eMBB subframe of the following embodiment may be replaced with an eMBB slot.
  • the contents of the present specification may be applied to other embodiments to which the same concept is applied as an embodiment.
  • the first method is to adjust the MCS level according to the interval of grant-free UL transmission resources in order to maintain constant reliability.
  • Second in order to maintain a constant impulse probability, a technique of changing the amount of resources allocated to a subframe or limiting the packet arrival time that can be transmitted according to the grant-free UL transmission resource interval.
  • the third is a technique for configuring a group SR so that the UE can request allocation of grant-free UL transmission resources.
  • FIG. 8 illustrates an example in which the maximum number of transmissions of grant-free UL resources is changed according to a resource interval according to an embodiment of the present specification.
  • a change in the grant-free UL transmission resource interval occurs. If the interval of grant-free UL transmission resources increases, this means that the maximum packet latency increases. This reduces the number of transmissions that can be made within a given maximum allowable latency. As the maximum number of transmissions decreases, the reliability required for each transmission increases, so it is necessary to change the MCS level and transmission power to satisfy this. 8 is an example of the case where the maximum number of transmissions within the time limit decreases from 3 to 2 due to the change in the interval of grant-free UL transmission.
  • the base station semi-statically informs the MCS level and / or transmission power to be applied by the terminal according to the time interval of the preceding grant-free UL resource and the latter grant-free UL resource.
  • the time interval means the maximum waiting time of the packet.
  • the terminal changes the MCS level and / or transmission power to be used when uplink is applied according to a time interval of grant-free UL resources allocated to the terminal.
  • the base station informs two transmission powers to be used in the semi-statically allocated grant-free UL resources. One is the transmit power when no resources are deactivated and the other is the transmit power applied when one of the periodic resources is deactivated.
  • the UE determines that the grant-free UL resource is deactivated in a specific subframe, the UE transmits a signal by increasing the transmission power in the next grant-free UL resource. This is to increase the signal transmission reliability.
  • the base station may consider the case of dynamically allocating Grant-free UL resources in every subframe.
  • the base station transmits a UL grant as terminal common information but does not include MCS level information for each terminal.
  • the UE selects the MCS level to be used for UL transmission by calculating the time interval between the grant-free UL resource previously allocated and the newly allocated grant-free UL resource (the terminal directly determines the MCS level).
  • the signaling transmitted by the base station to the terminal to apply the above technique may select a basic MCS or transmission power based on the basic interval, and may inform the MCS or transmission powers according to the interval based on this. For example, assume that the default interval is T and the MCS at this time is MCS 7. At this time, when the interval increases by t1, MCS increases by L1, and when the interval increases by t2, MCS increases by t2.
  • the terminal may be allocated a plurality of grant-free UL resources. For example, when the terminal 1 has been allocated the resource 1 and the resource 2, there may be a case where the terminal 2 is assigned to the resource 1 and the terminal 3 is assigned to the resource 2. If UE 1 receives resource 1 at time T1, then resource 2 at time T2, and then resource 1 at time T3, the time interval used by UE to select the MCS level is T3-T2. do.
  • the time interval between the previous grant-free UL resource and the subsequent grant-free UL resource means a maximum waiting time of a packet.
  • the base station semi-statically informs the terminal of the MCS level and / or transmission power according to the maximum number of retransmissions within the target time, and the terminal derives the maximum number of retransmissions from the time interval of the grant-free UL resource and / or transmits it. Select power.
  • the method of deriving the maximum number of retransmissions by the terminal may be derived using a formula or a table.
  • An example of the case derived using a table is as follows. If the interval is 1 to 3 mini slots (or subframes), the maximum number of retransmissions is 1 in 1 ms. If the interval is 4 to 6 mini slots, the maximum number of retransmissions is 1, and if the interval is 7 or more, maximum retransmission is 1. The number can be zero.
  • An example derived using the equation is as follows. Assume that the time required for initial transmission is T, the time required for retransmission after initial transmission is called RTT, and the target time is 1 ms. At this time, the maximum number of retransmissions according to the waiting time W can be calculated as follows.
  • T and RTT may be a predefined value in the system, or the base station may inform the terminal by RRC signaling.
  • the base station dynamically allocates grant-free UL resources.
  • the base station transmits information indicating the terminal common MCS level and / or transmission power together with the grant-free UL resource using the terminal common UL grant.
  • the information indicating the MCS level and the transmission power may be expressed as a resource interval, a waiting time or a maximum possible number of retransmissions, or a virtual MCS level.
  • Each terminal receiving the corresponding information increases or decreases the MCS and the transmit power according to the information based on the default MCS and the transmit power.
  • the above technology is designed in consideration of a case in which some terminals do not receive the UL grant for grant-free UL resource allocation.
  • a terminal that has not received a UL grant for grant-free UL resource allocation may set transmission power based on grant-free UL resources earlier than that.
  • the corresponding terminal transmits a signal with higher transmission power than other terminals, there may be difficulty in signal decoding of another terminal transmitting a signal in the same RB. Therefore, information indicating the increase or decrease of the MCS level and the transmission power can be transmitted as the terminal common information for every UL grant.
  • terminal 1 is semi-statically allocated to P0, p2, p3 as the transmission power according to the resource interval based on p1, and terminal 2 is assigned to P0, P2 as the transmission power according to the resource interval based on P1. . If the common UL grant for grant-free UL transmission is instructed to increase the transmission power by one step, UE 1 uses p2 and UE 2 transmits an uplink signal using P2.
  • the base station semi-statically transmits signaling indicating the increase of resources according to the MCS to the terminal.
  • the terminal identifies the grant-free UL resource allocated to itself according to the MCS using the received information. This means that the UE grasps the amount of resource change according to the time interval (eg, subframe interval) of the grant-free UL resource.
  • a case may be considered in which a UE is allocated resource 1 as a grant-free UL resource.
  • the terminal changes the amount of resources used for signal transmission in resource 1 according to the MCS level of the signal.
  • the lower the MCS level the greater the amount of resources for signal transmission.
  • the code rate indicated by the MCS is 1/3
  • six RBs may be used in resource 1 and when the code rate is 2/3, signals may be transmitted using only three RBs in resource 1.
  • the size of resource 1 is small, it is necessary to increase the size of resource 1 as the MCS level is lowered.
  • the maximum RB of resource 1 is 3 RBs, it is necessary to increase the number of RBs of resource 1 so that the UE can transmit a signal using 1/3 code rate.
  • a grant-free UL transmission resource When a grant-free UL transmission resource is dynamically allocated or some of the semi-statically allocated grant-free UL resources are deactivated, a change in the grant-free UL transmission resource interval occurs. As the interval of grant-free UL transmission resources increases, the average number of packets arriving between allocated resources increases. This increases the collision probability of the signal during grant-free UL transmission. Therefore, a technique for maintaining the collision probability is required.
  • the base station periodically allocates grant-free UL transmission resources to the terminal periodically. In addition, it indicates the amount of resources to be applied during activation according to the number of resources continuously deactivated.
  • the terminal determines the amount of resources to be used during activation according to the number of resources continuously deactivated. For example, the base station may consider a case in which resource 1, resource 2, resource 3 is semi-statically allocated to the UE as a grant-free UL transmission resource. Resource 1 is the default resource.
  • the UE When resource 1 is continuously activated, the UE performs grant-free UL transmission only on resource 1. If it is activated after being deactivated once, grant-free UL transmission is performed on resource 1 and resource 2. If it is activated after being deactivated twice, grant-free UL transmission is performed on resources 1 to 3.
  • a signal for indicating deactivation or activation should be transmitted in a mini slot (or subframe or slot) to which Grant-free UL resources are allocated.
  • the deactivation indicator is transmitted in accordance with the grant-free UL resource allocation period, but the following scheme can be applied to take the transmission time more dynamically.
  • the operation of the base station and the terminal is as follows.
  • the base station typically transmits the deactivation indicator in the mini slot to which the grant-free UL resource is allocated and does not transmit the deactivation or activation indicator. If the grant-free UL resource is deactivated, an indicator indicating activation or deactivation is transmitted for every mini slot.
  • the terminal receiving the deactivation indicator attempts to detect the activation or deactivation indicator for every mini slot until receiving the activation indicator. If the UE detects an activation indicator, grant-free UL transmission is performed on a frequency resource (eg, a resource block) that is semi-statically assigned in advance.
  • a frequency resource eg, a resource block
  • the same sequence may be used as an activation indicator and a deactivation indicator for performing the above operation.
  • the sequence 1 when the sequence 1 is transmitted in a semi-slot allocated mini-slot, when the terminal detects the sequence 1, it is determined that the grant-free UL resource is deactivated. After the grant-free UL resource is deactivated, if the UE detects sequence 1 in the mini slot other than the mini slot to which the grant-free UL resource is periodically allocated, the grant-free UL resource may be determined to be activated.
  • the amount of resources applied at the time of activation increases in proportion to the time interval of the activated resources or the number of previously deactivated resources.
  • the probability that the signal transmitted by the terminal collides is proportional to the number of packets arriving between the previous grant-free UL resource and the latter grant-free UL resource.
  • the average number of packets arriving increases in proportion to the resource interval, and the collision probability decreases in inverse proportion to the amount of resources. Therefore, to keep the collision probability constant, it is necessary to increase the amount of resources in proportion to the time interval.
  • FIG 9 illustrates an example in which a packet arrival interval and a grant-free UL resource are mapped according to an embodiment of the present specification.
  • the base station sets the packet arrival interval to the terminal, and instructs the terminal to transmit in different grant-free UL resources by different RRC signaling when the packet arrival interval is different.
  • the base station may inform the grant-free UL resources corresponding to each packet arrival interval of the terminal. This can be indicated by a rule or in an explicit table.
  • the terminal receiving the packet arrival interval setting indicator from the base station may set the packet arrival interval as shown in FIG. 9.
  • the terminal sets the packet arrival interval to T. Since the encoding time may be different for each terminal, the time interval between the packet arrival interval and the grant-free UL resource may be arbitrarily set by the terminal.
  • the terminal may transmit the packet arriving in the fourth section of FIG. 9 in the third grant-free UL resource 930, the terminal transmits the packet in the fourth grant-free UL resource 940 according to the prior appointment.
  • the above technique has a feature in which a packet arrival interval and a grant-free UL resource correspond one-to-one. In consideration of this, it is necessary to allocate a grant-free UL resource corresponding to each packet arrival interval. Therefore, in case of dynamically allocating grant-free UL resources, the average number of time per UL grant and packet arrival interval must be the same.
  • the terminal may attempt retransmission in the grant-free UL resource.
  • the terminal may generate a separate control signal including a new data indicator (NDI) and retransmission process ID (PCID) information and transmit the same with uplink data.
  • the base station receiving the same may combine the corresponding signal if the NDI transmitted by the terminal is the same as the PCID.
  • the base station should store the data signal that failed in decoding for a time t in the buffer. Therefore, the UE must perform retransmission using grant-free UL resource within time t.
  • the base station may inform the terminal of the time t information by RRC or L2 / L3 signaling.
  • the control signal needs to be transmitted in a resource that is distinguished from the data signal so that the base station can grasp before decoding the data signal. For example, transmitting the control signal in adjacent REs of the DMRS in a subframe and transmitting a data signal in another RE may be applied.
  • the base station transmits a UL grant common to the terminal group and allocates a grant-free UL transmission resource common to the terminal group.
  • Grant-free UL resources may be further divided into N transmission units, and when N is greater than 1, the UE may randomly select one of the N resources to perform UL transmission.
  • the terminal may be included in a plurality of terminal groups to be allocated a plurality of grant-free UL resources.
  • the base station may semi-statically designate a reference signal (for example, DMRS) for data transmission of each terminal or allow the terminal to select arbitrarily.
  • a reference signal for example, DMRS
  • each terminal selects only reference signals that are orthogonal to each other, there is a disadvantage in that the maximum number of terminals that can be allocated to grant-free UL resources is limited by the number of orthogonal reference signals.
  • Terminals of the same terminal group attempt to decode the UL grant signal using the same temporary identifier (eg, C-RNTI). Therefore, a terminal allocated with a plurality of grant-free UL resources may be assigned a plurality of temporary identifiers. If the UL grant for grant-free UL resource scheduling is masked with the C-RNTI, the common C-RNTI is used when checking the CRC.
  • the same temporary identifier eg, C-RNTI
  • FIG. 10 illustrates an example of setting a grant-free UL resource and a transmission unit within a resource according to an embodiment of the present specification.
  • FIG. 10 illustrates an example in which grant-free UL resources are divided into N orthogonal resources.
  • a total of 12 RBs are allocated as grant-free UL resources, and they are divided into three resources, each of 4 RBs in size.
  • a total of 12 RBs are allocated as grant-free UL resources and divided into two grant-free UL transmission units having a size of 6 RBs.
  • a total of 18 RBs are allocated as grant-free UL resources and divided into 3 resources having a size of 6 RBs. If the terminal 1 and the terminal 2 selects a different transmission unit and transmits a signal, the base station can receive both the reference signal and the data signal of the terminal 1 and the terminal 2 without collision.
  • MCS level information according to a resource unit in order for the terminal to select the MCS, MCS level information according to a resource unit must be received in advance from the base station. For example, when the UE receives the MCS level when the grant-free UL resource unit is 4RB, the MCS level when the RCS is 6RB may be estimated therefrom. If the terminal intends to transmit a signal in an MCS lower than an MCS provided by a single transmission unit or transmit data of a size larger than a predetermined data, the terminal may transmit a signal using a plurality of transmission units. However, there is a disadvantage that the collision probability is increased by using this technique.
  • the base station sets a plurality of grant-free UL resources semi-statically to the terminal group. Then, the base station dynamically transmits information indicating activation and deactivation information of each resource in every mini slot (or subframe or slot) in a UL grant form. For example, after the base station semi-statically allocates N grant-free UL transmission resources, the UL grant may indicate whether to activate or deactivate each resource in the form of a bitmap using N bits.
  • the allocation period of the semi-statically allocated grant-free UL resource is set to 1, it is possible to set the grant-free UL resource for every mini slot.
  • each terminal separately transmits an indicator for notifying the base station whether to transmit data.
  • the base station may explicitly or implicitly inform the resource for transmitting the indicator to the UL grant.
  • the base station can identify the terminal that has transmitted the signal even when the base station fails to decode the signal. Therefore, when retransmitting, it is possible to allocate dedicated resources for uplink signal transmission to each terminal. If the base station has previously assigned DMRSs orthogonal to each other, the base station can determine which UE has attempted to transmit a signal, but in this case, grant-free UL transmission units are assigned to more terminals than orthogonal DMRSs. There is a disadvantage that cannot be assigned to.
  • the resource allocation information for transmitting the indicator to the UL grant for grant-free UL resource allocation The terminal transmits an indicator on some resources of the uplink data channel.
  • the number of UEs sharing grant-free UL resources is X
  • the number of orthogonal resources that can be generated to transmit an indicator in a single RB is Y.
  • double L ceil (X / Y) RBs are used for transmitting indicators and grant-only in ZL RBs. It is used for free UL transmission.
  • the L RBs that transmit the indicator among the Z RBs may be L resources having the lowest index among the Z logical resources.
  • the terminal In order to perform the above operation, the terminal must be in a state of identifying the number of terminals in the terminal group through RRC signaling in advance.
  • the number of RBs included in each transmission unit is (Z-L) / N.
  • the base station allocates a common SR resource to a terminal group assigned the same grant-free UL resource. If the scheduling request is detected in the SR resource, the base station transmits a UL grant common to the UE group and allocates a grant-free UL transmission resource.
  • the base station may allocate the grant-free UL resource before receiving the request from the terminal.
  • resource allocation may be requested using the signal.
  • grant-free UL resources of a specific subframe are deactivated in a situation in which grant-free UL resources are semi-statically and periodically configured. If, after deactivation, only when there is a request for grant-free UL resource using the common SR resource, the base station may operate to allocate the grant-free UL resource before the next period.
  • Group SR resources are allocated only when the semi-static grant-free UL resources periodically allocated by the base station are deactivated.
  • the base station transmits different UL grants according to a reference signal (eg, DMRS) used by the terminal when transmitting a signal in a single grant-free UL resource.
  • a reference signal eg, DMRS
  • the UE uses a different temporary identifier (eg, C-RNTI) for each reference signal used by the UE (eg, masking the C-RNTI in the CRC or including the information in the UL grant).
  • C-RNTI temporary identifier for each reference signal used by the UE
  • the base station transmits the C-RNTI for each DMRS of the grant-free UL resource to the terminal through RRC or MAC signaling.
  • UEs 1 and 2 transmit a signal using DMRS 1, and UE 3 transmits a signal using DMRS 2, but the base station fails to decode the signal.
  • UEs 1 and 2 receive the UL grant with the CRC masked with the same C-RNTI, and UE 3 receives the UL grant with the CRC masked with the separate C-RNTI.
  • Using this technique has the effect of reducing the probability of collision during retransmission.
  • a case in which random selection of a reference signal used by the terminal for data transmission may be considered in every transmission.
  • terminals 1 and 2 are allocated to the same resource, but terminal 3 is allocated to different resources, and thus, when retransmission, the probability that the DMRS used by the terminal 1 is the same as the DMRS used by another terminal is lower than that of the first transmission. .
  • the UE arbitrarily selects the reference signal, there is still a probability that the reference signal collides even during retransmission, so that the technique described below may be used.
  • the base station transmits the first transmission, the second transmission (first retransmission),.
  • the RRC or MAC signaling indicates a reference signal (eg, DMRS) for grant-free UL transmission to be used in each transmission, such as the N-th retransmission.
  • a reference signal eg, DMRS
  • the base station allocates the reference signal 1 to the terminals 1 to 4, the reference signal 2 to the terminals 5 to 8, the reference signal 3 to the terminals 9 to 12, and the reference signal 4 to the terminals 13 to 16 for the first transmission. Assigns a reference signal.
  • the base station allocates reference signals 1 to terminals 1, 5, 9, and 13, and assigns reference signals 2 to terminals 2, 6, 10, and 14, and transmits reference signals 3 to terminals 3, 7, 11, and 15 for the second transmission.
  • the reference signal 4 is allocated to the terminals 4, 8, 12, and 16. In the following table, an example of allocating the reference signals during the first transmission and the retransmission (second transmission) described above is shown.
  • the base station can identify 16 terminals (4 ⁇ 2) in total through two transmissions.
  • terminals 1 and 2 transmit a signal using reference signal 1 and terminal 9 transmits a signal using reference signal 2.
  • the base station receives the reference signals 1 and 2 but fails in the data decoding of the two signals, the base station transmits the UL grant 1 and the UL grant 2 corresponding to the reference signals 1 and 2 for retransmission.
  • each UL grant allocates different retransmission resources, a signal collision does not occur between a terminal transmitting a signal using reference signal 1 and a terminal transmitting a signal using reference signal 2.
  • the terminal 1 uses the reference signal 1 and the terminal 2 transmits the signal using the reference signal 2 in the resource allocated by the UL grant 1, the base station can determine that the terminal 1 and the terminal 2 have transmitted the signal. If the base station fails to decode the signal even during retransmission, the base station may allocate dedicated resources without collision to each of the terminal 1 and the terminal 2. Thus, all terminals within the third transmission will be able to transmit data without collision.
  • the base station when the maximum number of times that the terminal can transmit within the target time is L times, the base station indicates only the reference signal up to the L-1 th transmission.
  • the number of orthogonal reference signals in the grant-free UL resource is M
  • the number of UEs that the base station can allocate to a single grant-free UL resource is M ⁇ (L-1).
  • the base station In order to satisfy the high reception reliability of URLLC, it is necessary to cancel the collision probability or make it close to zero once in a total of L transmissions.
  • the temporary identifier (for example, C-RNTI) used for the UL grant for the grant-free UL resource transmitted by the base station is assigned to the grant-free UL resource and the reference signal for transmitting the signal.
  • C-RNTI for example, C-RNTI
  • the base station may inform the terminal of the N * M temporary identifier information by RRC or MAC signaling.
  • signaling for specifying MCS and transmission power of each UE is transmitted in a downlink data channel separately from the UL grant for grant-free UL resource allocation.
  • the length of a DL control signal (DL grant) for transmitting the signal is set to the same length as the UL grant for grant-free UL resource allocation.
  • the UL grant for grant-free UL resource allocation and the DL grant for notifying the transmission resource of the MCS and the transmission power information may be distinguished by a flag field in a control signal or may be distinguished by masking the CRC with different temporary identifiers.
  • multiple terminals may be allocated the same resource in duplicate. For example, when the packet arrival rate of each terminal is low, the collision probability is low, so that 20 or more terminals may be simultaneously allocated resources to one RB. In this case, transmitting MCS and uplink power information whenever resource allocation for grant-free UL transmission is severely waste of resources, so it is necessary to use separate signaling (downlink data channel) in order to transmit them. Do. By generating separate signaling, a signal may be transmitted at a frequency lower than that of an UL grant for resource allocation. In addition, when transmitting MCS and power information of a plurality of terminals at one time, since the amount of information is large, it is possible to transmit a signal using a data channel instead of a downlink control channel.
  • the base station transmits a plurality of MCS and transmit power information for each terminal.
  • the base station may transmit the A MCS and the transmission power information to the terminal.
  • the type of L may be semi-statically designated by the base station to the terminal by RRC or MAC signaling.
  • the terminal determines the MCS and transmission power to be applied in grant-free UL transmission according to the value of L.
  • the base station delivers a total of A * B MCS and transmission power information to the terminal.
  • the embodiment assumes that the number of information bits for indicating the MCS and the transmission power in the system is specified in advance. In this case, when the base station notifies each terminal of the order in which the MCS and the transmission power are to be transmitted, each terminal can determine the location of its own MCS and the transmission power information.
  • the terminal when the size of data received by the terminal increases, the terminal should increase the MCS in order to transmit data on the designated resource. Therefore, MCS and transmit power information may be additionally transmitted in this case.
  • 11 shows an example in which the terminal repeatedly transmits the same signal in a plurality of grant-free UL transmission intervals according to an embodiment of the present specification.
  • the terminal is based on transmitting a signal in one grant-free UL transmission interval, but it is possible for the terminal to repeatedly transmit the same signal in a plurality of grant-free UL transmission intervals Do.
  • the terminal transmits a signal using the same reference signal (for example, DMRS) even in different transmission intervals.
  • a section in which the same signal can be repeatedly transmitted may be instructed or systematically designated by the base station to the terminal through RRC and L2 / L3 signaling in advance.
  • the terminal may repeatedly transmit a signal twice using resources 1,2 in a specific transmission interval A.
  • the terminal may repeatedly transmit a signal twice using resources 3 and 4 in a specific transmission interval A.
  • the terminal may repeatedly transmit a signal four times using resources 1,2,3,4 in a specific transmission interval A.
  • the DMRS of the signal repeatedly transmitted by the terminal is always the same. Since the base station does not know the number of times the terminal repeatedly transmits, it can be seen how many times the terminal repeatedly transmits a signal through the same DMRS.
  • the base station receiving the same signal may attempt to decode the signal by combining different signals.
  • the base station can stably decode a signal in a portion where the collision does not occur.
  • the decoding probability can be maintained by increasing the SNR.
  • the base station Since the base station does not know the number of times the terminal repeatedly transmits, the base station must determine this through blind decoding. In order to reduce the decoding complexity of the base station, a signal repeatedly transmitted by the same terminal is always the same in the DMRS, and may limit in advance resources capable of repeatedly transmitting the same signal.
  • the terminal needs to transmit the uplink signal using more resources. If the terminal lacks a previously allocated resource, the terminal needs to transmit a signal requesting an increase in resource allocation to the base station.
  • the base station allocates a resource for transmitting an indicator indicating the increase in data size to the terminal.
  • the data size increase indicator may be allocated to the terminal in common. Therefore, terminals may be allocated data transmission indicators and data size increase indicators in common.
  • the terminal 1 to the terminal 3 transmits a data transmission indicator with the data
  • the terminal 1 transmits a data size increase indicator to the base station. If the base station successfully decodes the data of the terminal 2 and the data of the terminal 1 and the terminal 3 fails to decode, the base station does not know the terminal transmitting the data size increase indicator among the terminal 1 and the terminal 3, so the data is transmitted to both the terminal 1 and the 3. Allocate retransmission resources, assuming that the size has increased.
  • FIG. 12 is a diagram illustrating a procedure for transmitting uplink data through a grant-free UL resource according to an embodiment of the present specification.
  • a terminal group (a plurality of terminals) transmits uplink data through a grant-free UL resource, which is a pre-scheduled terminal common resource.
  • Grant-free UL transmission may correspond to a scheme for transmitting uplink data without an uplink grant. Therefore, there is an advantage that can transmit data faster than the uplink grant-based uplink transmission scheme.
  • different terminals since data is transmitted from a common resource of a terminal, different terminals may simultaneously transmit signals from the same resource, thereby causing a collision phenomenon. In this case, the terminal may belong to the terminal group.
  • step S1210 the terminal receives the allocation information for the grant-free uplink resources allocated semi-static from the base station.
  • step S1220 the terminal receives from the base station allocation information for the first reference signal used for the initial transmission of the uplink data and allocation information for the second reference signal used for the retransmission of the uplink data.
  • the first reference signal is allocated to the terminal common and the second reference signal is allocated to the terminal specific.
  • the reference signal may correspond to a demodulation reference signal (DMRS).
  • the UE may allocate a reference signal to be used in the 1 st to L th transmissions as described above.
  • the different UEs may be assigned a reference signal allocation pattern such that at least one of L transmissions is allocated with orthogonal reference signals.
  • the reference signals may be allocated in the following pattern.
  • the number of UEs that can be allocated to grant-free uplink resources is limited to the number of reference signals M.
  • M L terminals may be distinguished using M reference signals in L transmissions.
  • the base station may allocate the initial transmission reference signal and the retransmission reference signal as different from the terminal.
  • step S1230 the terminal transmits the uplink data through the grant-free uplink resource using the first reference signal.
  • the terminal 1 may transmit the uplink data through the grant-free uplink resources allocated semi-statically using the DMRS 1.
  • step S1240 the base station may attempt to decode uplink data received from the terminal. At this time, if the decoding succeeds, the communication is completed as it is, but the case where the decoding fails is a problem.
  • the failure of the decoding is because a collision occurs because different terminals simultaneously transmit signals. According to the embodiment described above, since both UE 1 and UE 2 transmit uplink data on the same resource at the same time using DMRS 1, collision may occur.
  • step S1250 when decoding of the uplink data fails, the terminal receives an uplink grant corresponding to the second reference signal from the base station.
  • step S1260 the terminal retransmits the uplink data using the second reference signal based on the uplink grant.
  • the base station may transmit an uplink grant 1 corresponding to DMRS 1 and an uplink grant 2 corresponding to DMRS 2 for retransmission of uplink data.
  • UE 1 can receive uplink grant 1 and retransmit uplink data based on UL grant 1
  • UE 2 can receive UL grant 2 and retransmit uplink data based on UL grant 2.
  • DMRS 1 and DMRS 2 are orthogonal to each other. That is, the second reference signal may be orthogonal to each other for each terminal (terminal 1 and terminal 2) belonging to the terminal group.
  • the uplink grant may be received through a terminal common control channel. Since the uplink grant is transmitted to various terminals having a signal collision, a common terminal control channel (for example, common downlink control information (DCI)) may be used. However, the terminal receiving the uplink grant through the terminal common channel will retransmit the uplink data using the terminal specific second reference signal.
  • the uplink grant may be defined in the form of a reference signal specific uplink grant without being received through the UE common control channel.
  • Cyclic Redundancy Check (CRC) of the uplink grant may be masked by a temporary identifier according to the first reference signal. That is, the base station may mask the CRC by using different temporary identifiers (eg, C-RNTI) for each reference signal used by the terminal for initial transmission of the uplink data so that the terminal can identify the uplink grant.
  • CRC Cyclic Redundancy Check
  • the grant-free uplink resource may be composed of N resources, and the uplink data may be transmitted through one of the N resources. That is, the grant-free uplink resource may be divided into N transmission units.
  • N is greater than 1, the UE may randomly select one of the N resources and transmit uplink data.
  • the number of first reference signals orthogonal to each other in each of the N resources may be M.
  • the number of temporary identifiers may be N * M.
  • the temporary identifier may be received from the base station through RRC (Radio Resource Control) or MAC (Medium Access Control) signaling.
  • the grant-free uplink resource may be allocated periodically. If the grant-free uplink resource is deactivated in a specific subframe, a scheduling request resource may be allocated. Since the grant-free uplink resource is a terminal common resource, the base station may allocate the grant-free uplink resource to a specific terminal group and also allocate a common scheduling request resource. That is, the scheduling request resource may be a resource commonly allocated to a terminal group.
  • a grant free uplink resource may be allocated before a next period according to a scheduling request transmitted through the scheduling request resource. That is, when the scheduling request is detected, the base station may allocate a grant-free uplink resource by transmitting a common uplink grand of the terminal group.
  • the terminal may retransmit the uplink data through a dedicated resource allocated from the base station.
  • MCS modulation and coding scheme
  • grant-free retransmission may be performed without receiving an uplink grant for retransmission of uplink data. If decoding of the uplink data fails, the terminal may retransmit the uplink data through the grant-free uplink resource using the second reference signal.
  • FIG. 13 is a block diagram illustrating a device in which an embodiment of the present specification is implemented.
  • the wireless device 1300 may include a processor 1310, a memory 1320, and a radio frequency (RF) unit 1330.
  • the processor 1310 may be configured to implement the above-described functions, procedures, and methods. Layers of a radio interface protocol may be implemented in a processor. The processor 1310 may perform a procedure for driving the above-described operation.
  • the memory 1320 is operatively connected to the processor 1310, and the RF unit 1350 is operatively connected to the processor 1310.
  • the processor 1310 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • the memory 1320 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 1330 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 1320 and executed by the processor 1310.
  • the memory 1320 may be inside or outside the processor 1310 and may be connected to the processor 1310 through various well-known means.

Abstract

무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 기기가 제공된다. 구체적으로, 단말은 기지국으로부터 반정적으로 할당되는 그랜트 프리 상향링크 자원에 대한 할당 정보를 수신한다. 단말은 기지국으로부터 상향링크 데이터의 초기 전송에 사용되는 제1 참조 신호에 대한 할당 정보 및 상향링크 데이터의 재전송에 사용되는 제2 참조 신호에 대한 할당 정보를 수신한다. 단말은 제1 참조 신호를 사용하여 그랜트 프리 상향링크 자원을 통해 상향링크 데이터를 전송한다. 상향링크 데이터의 복호가 실패한 경우, 단말은 기지국으로부터 제2 참조 신호에 대응하는 상향링크 그랜트를 수신한다. 단말은 상향링크 그랜트를 기반으로 제2 참조 신호를 사용하여 상향링크 데이터를 재전송한다. 제1 참조 신호는 단말 공통으로 할당되고, 제2 참조 신호는 단말 특정하게 할당된다.

Description

무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치
본 명세서는 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 이를 사용한 기기에 관한 것이다.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템의 목적은 다수의 단말이 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
기지국은 스케줄링을 통해 셀 내 단말들마다 무선 자원을 적절히 할당한다. 단말은 할당 받은 무선 자원을 이용하여 기지국에게 제어정보를 전송하거나, 사용자 데이터를 전송할 수 있다. 그런데, 제어정보 전송 방식과 사용자 데이터 전송 방식은 다를 수 있다. 또, 제어정보를 위한 무선 자원 할당 방식과 사용자 데이터를 위한 무선 자원 할당 방식 역시 다를 수 있다. 따라서, 제어정보를 위한 무선 자원과 사용자 데이터를 위한 무선 자원은 서로 다를 수 있다. 기지국은 제어정보를 위해 예약된 무선 자원과 사용자 데이터를 위해 예약된 무선 자원을 구분하여 관리할 수 있다.
이동 통신 시스템에서는 자원 활용을 최대화하기 위하여 기지국 스케줄링 기반의 자원 할당 과정을 통해 데이터를 송수신하고, 이는 단말의 상향링크 데이터 전송의 지연(latency)을 증가시키는 원인이 될 수 있다. 따라서, 단말의 지연을 최소화하기 위한 다중 레벨 스케줄링 요청을 수행하는 방법이 제안된다.
본 명세서는 무선통신시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치를 제공한다.
본 명세서는 무선통신시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치를 제안한다.
상기 장치는 무선신호를 송신 및 수신하는 RF(radio frequency)부 및 상기 RF부에 연결되는 프로세서를 포함한다.
본 실시예는 단말 그룹(복수의 단말)이 사전에 스케줄링된 단말 공통 자원인 grant-free UL 자원을 통해 상향링크 데이터를 전송하는 것을 가정한다. Grant-free UL 전송은 상향링크 그랜트 없이 상향링크 데이터를 전송하는 방식에 대응할 수 있다. 따라서, 상향링크 그랜트 기반 상향링크 전송 방식보다는 빠르게 데이터를 전송할 수 있는 장점이 있다. 그러나, 단말 공통 자원에서 데이터를 전송하므로 서로 다른 단말이 동일 자원에서 동시에 신호를 전송하여 충돌 현상이 발생할 수 있다. 여기서, 단말은 상기 단말 그룹에 속할 수 있다.
먼저, 단말은 기지국으로부터 반정적(semi-static)으로 할당되는 그랜트 프리(grant-free) 상향링크 자원에 대한 할당 정보를 수신한다.
단말은 기지국으로부터 상기 상향링크 데이터의 초기 전송에 사용되는 제1 참조 신호에 대한 할당 정보 및 상기 상향링크 데이터의 재전송에 사용되는 제2 참조 신호에 대한 할당 정보를 수신한다.
이때, 상기 제1 참조 신호는 단말 공통(common)으로 할당되고, 상기 제2 참조 신호는 단말 특정(specific)하게 할당된다. 여기서, 참조 신호는 DMRS(Demodulation Reference Signal)에 대응할 수 있다.
즉, 서로 다른 단말이 동시에 신호를 전송하여 충돌이 발생하는 것을 극복하기 위해 단말이 1~L번째 전송에서 사용할 참조 신호를 상기와 같이 할당할 수 있다. 여기서, 서로 다른 UE는 L번의 전송 중 최소 한 번은 서로 직교하는 참조 신호가 할당되도록 참조 신호 할당 패턴이 지정될 수 있다.
단말은 상기 제1 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 전송한다. 여기서, 단말이 단말 1이라고 가정하면, 단말 1은 DMRS 1을 사용하여 반정적으로 할당된 그랜트 프리 상향링크 자원을 통해 상향링크 데이터를 전송할 수 있다.
기지국은 단말로부터 수신한 상향링크 데이터의 복호를 시도할 수 있다. 이때, 복호가 성공하면 이대로 통신이 완료된 것이나, 복호가 실패한 경우가 문제가 된다. 복호가 실패하였다는 것은 서로 다른 단말이 동시에 신호를 전송하여 충돌이 발생하였기 때문이다. 상술한 실시예에 따르면, 단말 1과 단말 2가 모두 DMRS 1을 사용하여 동일 자원에서 동시에 상향링크 데이터를 전송하였으므로 충돌이 발생하였다고 볼 수 있다.
상기 상향링크 데이터의 복호가 실패한 경우, 단말은 기지국으로부터 상기 제2 참조 신호에 대응하는 상향링크 그랜트(uplink grant)를 수신한다.
단말은 상기 상향링크 그랜트를 기반으로 상기 제2 참조 신호를 사용하여 상기 상향링크 데이터를 재전송한다.
상술한 실시예에 따르면, 기지국은 상향링크 데이터의 재전송을 위해 DMRS 1에 대응하는 상향링크 그랜트 1과 DMRS 2에 대응하는 상향링크 그랜트 2를 전송할 수 있다. 이로써, 단말 1은 상향링크 그랜트 1을 수신하여 상향링크 그랜트 1 기반의 상향링크 데이터의 재전송이 가능해지고, 단말 2는 상향링크 그랜트 2를 수신하여 상향링크 그랜트 2 기반의 상향링크 데이터의 재전송이 가능해진다. 각각의 상향링크 그랜트가 서로 다른 재전송 자원을 할당하였으므로, DMRS 1을 사용해서 상향링크 데이터를 재전송한 단말 1과 DMRS 2를 사용해서 상향링크 데이터를 재전송한 단말 2 간에는 신호 충돌이 발생하지 않게 된다. 이는, DMRS 1과 DMRS 2가 서로 직교하기 때문이다. 즉, 상기 제2 참조 신호는 상기 단말 그룹에 속하는 단말 각각(단말 1과 단말 2)에 대해 서로 직교할 수 있다.
상기 상향링크 그랜트는 단말 공통 제어 채널을 통해 수신될 수 있다. 상향링크 그랜트가 신호 충돌이 발생한 여러 단말에게 전송되므로 단말 공통 제어 채널(예를 들어, 공통 DCI(downlink control information))이 사용될 수 있다. 다만, 단말 공통 채널을 통해 상향링크 그랜트를 수신한 단말은 단말 특정한 제2 참조 신호를 이용해서 상향링크 데이터를 재전송할 것이다. 또한, 상기 상향링크 그랜트는 단말 공통 제어 채널로 수신되지 않고 참조 신호 특정 상향링크 그랜트의 형태로 정의될 수도 있다.
상기 상향링크 그랜트의 CRC(Cyclic Redundancy Check)는 상기 제1 참조 신호에 따른 임시 식별자에 의해 마스킹(masking)될 수 있다. 즉, 단말이 상향링크 그랜트를 구분할 수 있도록, 기지국은 단말이 상향링크 데이터 초기 전송에 이용한 참조 신호 별로 서로 다른 임시 식별자(예를 들어, C-RNTI)를 이용하여 CRC를 마스킹할 수 있다.
또한, 상기 그랜트 프리 상향링크 자원은 N개의 자원으로 구성될 수 있고, 상기 N개의 자원 중 하나의 자원을 통해 상기 상향링크 데이터가 전송될 수 있다. 즉, 그랜트 프리 상향링크 자원은 N개의 전송 단위로 구분될 수 있으며, N이 1보다 큰 경우 단말은 N개의 자원 중 하나를 임의로 선택하여 상향링크 데이터를 전송할 수 있다. 상기 N개의 자원 각각에서 서로 직교하는 제1 참조 신호의 개수는 M개일 수 있다.
그렇다면, 상기 임시 식별자의 개수는 N*M개일 수 있다. 상기 임시 식별자는 상기 기지국으로부터 RRC(Radio Resource Control) 또는 MAC(Medium Access Control) 시그널링으로 수신될 수 있다.
또한, 상기 그랜트 프리 상향링크 자원은 주기적으로 할당될 수 있다. 상기 그랜트 프리 상향링크 자원이 특정 서브프레임에서 비활성화된 경우 스케줄링 요청 자원이 할당될 수 있다. 그랜트 프리 상향링크 자원은 단말 공통 자원이므로, 기지국은 특정 단말 그룹에게 그랜트 프리 상향링크 자원을 할당하고, 또한 공통 스케줄링 요청 자원도 할당할 수 있다. 즉, 상기 스케줄링 요청 자원은 단말 그룹에 공통으로 할당되는 자원일 수 있다.
상기 스케줄링 요청 자원을 통해 전송된 스케줄링 요청에 따라 다음 주기 전에 그랜트 프리 상향링크 자원이 할당될 수 있다. 즉, 기지국은 상기 스케줄링 요청이 감지되면 단말 그룹의 공통 상향링크 그랜드를 전송하여 그랜트 프리 상향링크 자원을 할당할 수 있다.
상기 재전송된 상향링크 데이터의 복호가 실패한 경우, 단말은 기지국으로부터 할당된 전용 자원을 통해 상기 상향링크 데이터를 재전송할 수 있다.
또한, 상기 단말 그룹에 속하는 단말 각각에 대한 MCS(Modulation and Coding Scheme) 레벨 및 송신 전력에 대한 정보는 하향링크 데이터 채널을 통해 수신할 수 있다. 이는, 그랜트 프리 상향링크 자원을 할당할 때마다 MCS 레벨 및 송신 전력에 대한 정보를 전송하는 것은 자원 낭비가 심할 수 있다. 따라서, 하향링크 데이터 채널을 통한 별도의 시그널링을 이용하여 자원 낭비를 줄일 수 있다.
또한, 상향링크 데이터의 재전송을 위해 상향링크 그랜트를 수신하지 않고 그랜트 프리 기반의 재전송을 할 수도 있다. 상기 상향링크 데이터의 복호가 실패한 경우, 단말은 상기 제2 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 재전송할 수 있다.
제안하는 기법을 이용하면, grant-free UL 자원을 다이나믹하게 할당할 때 충돌 확률 및 수신 신뢰도를 일정하게 유지하는 것이 가능하다. 또한, 단말과 기지국간의 채널 상태 변화 및 단말 송신 데이터의 크기가 변화하는 경우에도 수신 신뢰도를 보다 일정하게 유지하는 것이 가능하다.
도 1은 본 명세서가 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 3은 제어 평면에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 동적 무선자원할당 방식을 설명하기 위한 도면이다.
도 5는 반정적 스케줄링 방식을 설명하기 위한 도면이다.
도 6은 self-contained 서브프레임 구조를 나타낸다.
도 7은 URLLC 데이터와 eMBB 데이터가 동일한 셀의 동일 주파수 자원에서 다중화되어 전송되는 경우 자원 활용의 일례를 나타낸다.
도 8은 본 명세서의 실시예에 따라 자원 간격에 따른 Grant-free UL 자원의 최대 전송 횟수가 변화되는 일례를 나타낸다.
도 9는 본 명세서의 실시예에 따른 패킷 도착 구간과 grant-free UL 자원이 매핑되는 일례를 나타낸다.
도 10은 본 명세서의 실시예에 따른 grant-free UL 자원과 자원 내 전송 단위를 설정하는 일례를 나타낸다.
도 11은 본 명세서의 실시예에 따른 단말이 복수의 grant-free UL 전송 구간에서 동일한 신호를 반복해서 전송하는 일례를 나타낸다.
도 12는 본 명세서의 실시예에 따른 grant-free UL 자원을 통해 상향링크 데이터를 전송하는 절차를 도시화한 도면이다.
상향링크 데이터 전송을 위한 스케줄링 요청을 수행하는 절차를 도시화한 도면이다.
도 13은 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier-frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보송신서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 송신을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 송신을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 송신 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 송신채널(transport channel)을 통해 연결되어 있다. 송신채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 송신채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 송신되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 송신채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 송신채널 상으로 물리채널로 제공되는 송신블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 RB들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다.
RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 송신하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 송신하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 아이들 상태(RRC idle state)에 있게 된다.
네트워크에서 단말로 데이터를 송신하는 하향링크 송신채널로는 시스템정보를 송신하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 송신하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 송신될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향링크 송신채널로는 초기 제어메시지를 송신하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 송신하는 상향링크 SCH(Shared Channel)가 있다.
송신채널 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast 트래픽 Channel) 등이 있다.
이하에서는 반정적 스케줄링(Semi-Static Scheduling) 또는 반영속적 스케줄링(Semi-Persistent Scheduling)에 대해 설명한다. 이하에서는, 반정적 스케줄링으로 용어를 통일해서 설명한다.
차세대 무선 통신 시스템에서는 다수 단말을 위해 반정적 스케줄링이 필요하다. 차세대 무선 통신 시스템에서는 다양한 산업의 IoT(Internet of Things) 서비스가 도입될 것으로 여겨진다. 대표적인 서비스로는 자동차와 드론 등이 있으며, 이들 서비스에서는 자율 주행 관리 및 사고 예방을 위해 위치 정보가 100ms에서 1초 단위로 업데이트될 것으로 예상된다. 주기적으로 위치 정보가 업데이트되는 경우에는 불필요한 제어 채널의 오버헤드를 감소시킬 수 있도록 SPS를 적용하는 것이 일반적이다.
도 4는 동적 무선자원할당 방식을 설명하기 위한 도면이다. 도 5는 반정적 스케줄링 방식을 설명하기 위한 도면이다.
일반적으로 단말이 기지국으로 데이터를 전송하는 과정(동적 무선자원할당 방식)을 도 4를 참조하여 살펴보면 다음과 같다. 먼저 단말은 생성된 데이터의 전송을 위해 필요한 무선자원을 기지국에게 요청할 수 있다(S401). 이에 따라, 기지국은 단말의 무선자원 요청에 따라 제어신호를 통해 무선자원을 할당할 수 있다(S402). LTE 시스템에서 단말의 상향링크 데이터 전송을 위한 기지국의 자원 할당은 PDCCH를 통해 전송되는 상향링크 그랜트(UL grant) 형태로 전송될 수 있다. 이에 따라 단말은 할당받은 무선자원을 통해 기지국으로 데이터를 전송할 수 있다(S403). 이와 같은 단말의 무선자원 요청, 기지국의 자원 할당 및 이에 대응하는 단말의 상향링크 데이터 전송은 필요한 경우 반복될 수 있다(S408-S410).
한편, 기지국이 단말로 하향링크 데이터를 전송하는 경우에는 PDCCH를 통해 단말로 하향링크 할당(DL Assignment)을 전송하여 단말에게 전송된 데이터가 어느 무선 자원을 통해 전송되는지를 알려줄 수 있으며(S404), 이와 같은 하향링크 할당 메시지에 대응하는 무선자원을 통해 기지국은 단말에 데이터를 전송할 수 있다(S405). 이때 하향링크 할당 정보 전송과 이에 대응하는 무선 자원을 통한 하향링크 데이터 전송은 동일한 TTI(Transmission Time Interval) 내에 이루어질 수 있다. 또한, 도 4에 도시된 바와 같이 이와 같은 하향링크 데이터 전송 과정은 반복될 수 있다.
반정적 스케줄링 기법은 기지국으로 데이터를 전송하는 3단계((1)단말의 자원 요청, (2)기지국의 자원 할당, (3)자원 할당에 따른 단말의 데이터 전송)에서 첫 번째와 두 번째 단계들을 생략시키는 방식이다. 이에 따라, 단말은 이러한 무선자원의 설정에 따라서 앞서 설명한 첫 번째와 두 번째 단계인 무선자원의 요청단계 및 무선자원의 할당단계 없이 바로 데이터를 전송하는 과정을 수행할 수 있다. 도 5는 이와 같은 반정적 스케줄링 방식을 개념적으로 도시하고 있다. 즉, 반정적 스케줄링 방법에서는 기지국이 PDCCH를 통해 매번 무선 자원할당정보를 전송할 필요가 없다.
이하에서는, 3GPP 5G(New RAT) 관련된 기술을 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(radio access technology)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), mMTC (massive MTC), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 기술을 new RAT이라고 부른다.
이하에서는 설명의 편의를 위해 new RAT 시스템을 기반으로 제안 방식을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 new RAT 시스템 외에 3GPP LTE/LTE-A 시스템 등 다른 시스템으로도 확장 가능하다.
New RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용하며 대표적으로 표 1의 OFDM 뉴머놀로지(numerology)를 가질 수 있다. 또는 기존의 LTE/LTE-A의 뉴머놀로지를 그대로 따르나 더 큰 시스템 대역폭 (예를 들어, 100MHz)를 지닐 수 있다. 또는 하나의 셀은 복수개의 뉴머놀로지를 지원할 수 있다. 즉, 서로 다른 뉴머놀로지로 동작하는 하는 단말이 하나의 셀 안에서 공존할 수 있다. 이하의 표 1은 new RAT 시스템의 OFDM 파라미터이다.
Figure PCTKR2017015471-appb-T000001
이하에서는 self-contained 서브프레임 구조를 설명한다.
도 6은 self-contained 서브프레임 구조를 나타낸다.
TDD 시스템에서 데이터 전송 지연을 최소화하기 위하여 new RAT에서는 도 6과 같은 self-contained 서브프레임 구조를 고려하고 있다.
도 6에서 self-contained 서브프레임 앞에 있는 영역(610)은 DCI(Downlink Control Information) 전달을 위한 물리채널 PDCCH의 전송 영역을 나타낸다. self-contained 서브프레임 뒤에 있는 영역(620)은 UCI(Uplink Control Information) 전달을 위한 물리채널 PUCCH의 전송 영역을 나타낸다. 여기서 DCI를 통해 eNB가 UE에게 전달하는 제어 정보로서 단말이 알아야 하는 셀 구성(cell configuration)에 관한 정보, DL 스케줄링 등의 DL 특정한 정보, 그리고 UL grant 등과 같은 UL 특정한 정보 등을 포함한다. 또한 UCI를 통해 UE가 eNB에게 전달하는 제어 정보로서 DL 데이터에 대한 HARQ의 ACK/NACK 보고, DL 채널 상태에 대한 CSI 보고, 그리고 SR(Scheduling Request) 등을 포함한다.
도 6에서 self-contained 서브프레임 가운데에 있는 영역(630)은 하향링크 데이터 전송을 위해 물리채널 PDSCH가 사용될 수도 있고, 상향링크 데이터 전송을 위해 물리채널 PUSCH가 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 DL 전송과 UL 전송의 순차적으로 진행되어, 서브프레임 내에서 DL 데이터를 보내고, UL ACK/NACK도 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이러한 self-contained 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간차(time gap)가 필요하다. 이를 위하여 self-contained 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심벌이 GP(guard period)로 설정되게 된다.
이하에서는, 아날로그 빔포밍(analog beamforming)에 대해 설명한다.
밀리미터 웨이브(Millimeter Wave; mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 요소의 설치가 가능해 진다. 즉 30GHz 대역에서 파장은 1cm로써 5 by 5 cm의 판넬에 0.5 람다(lambda, 파장) 간격으로 2차원 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 요소를 사용하여 BF(beamforming) 이득을 높여 커버리지를 증가시키거나, 쓰루풋(throughput)을 높이려고 한다.
이 경우에 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점을 갖는다.
디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 BF를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
본 명세서에서는 설명의 편의를 위해서 하향링크 데이터가 전송되는 채널을 PDSCH라고 명명하고, 상향링크 데이터가 전송되는 채널을 PUSCH라고 명명한다. 본 명세서에서는 설명의 편의를 위해 하향링크 환경 (PDSCH의 전송)을 위주로 발명의 내용을 기술하나, 본 명세서의 내용이 상향링크 환경 (PUSCH의 전송)에도 적용될 수 있음은 자명하다.
도 7은 URLLC 데이터와 eMBB 데이터가 동일한 셀의 동일 주파수 자원에서 다중화되어 전송되는 경우 자원 활용의 일례를 나타낸다.
이 때, 지연이 중요한 데이터(예를 들어, URLLC 데이터)가 상대적으로 지연이 덜 중요한 데이터 (예를 들어, eMBB 데이터)가 동일한 셀의 동일 주파수 자원에서 다중화(multiplexing)되어 전송될 수 있는 경우, 두 데이터의 전송 자원이 충돌하는 경우가 발생할 수 있다. 이 때, 일반적으로 지연(latency)이 중요한 데이터의 전송이 우선시 되므로, 도 7에서와 같이 지연이 중요한 데이터(PDSCH2)가 지연이 덜 중요한 데이터(PDSCH 1) 자원을 펑처링(puncturing)함으로써 전송될 수 있다. 이 경우, 일반적으로 지연이 덜 중요한 데이터(PDSCH 1)는 지연이 더 중요한 데이터(PDSCH 2)에 비해 긴 TTI 길이를 가지고 전송되며, 따라서 일반적으로 지연이 덜 중요한 데이터(PDSCH 1)의 일부 OFDM 심벌 영역이 지연이 더 중요한 데이터(PDSCH 2)의 전송을 위해 펑쳐링되게 된다.
이 경우, 일부 자원 영역이 펑처링된 데이터는 해당 자원에서 간섭을 경험하며 큰 성능 저하가 발생하게 된다. 따라서 다른 데이터의 전송을 위해 펑처링된 데이터의 전송을 수신 성능을 향상시키기 위한 방안이 요구된다.
이하에서는, Grant-free UL 전송에 대해 설명한다.
Grant-free UL 전송 기법은 단말이 사전에 스케줄링된 단말 공통 자원에서 상향링크 데이터를 전송하는 기법이다. 단말이 사전에 스케줄링된 자원에서 상향링크 데이터를 전송하므로 UL grant 수신 후 신호를 전송하는 트리거링된 SR(SR-triggered) UL 전송 기법보다 빠르게 데이터를 전송할 수 있는 장점이 있다. 하지만 단말 공통 자원에서 신호를 전송하므로 서로 다른 단말이 동일 자원에서 신호를 전송하는 충돌(contention)현상이 발생할 수 있는 단점이 있다.
또한, Grant-free UL 자원은 재할당될 필요가 있다. Grant-free UL 자원은 단말 데이터가 발생하기 전에 필요한 자원을 예측하여 기지국이 단말에게 자원을 할당하는 특징을 갖는다. 만약 기지국이 Grant-free UL 자원을 필요보다 많이 할당하면 충돌 확률은 감소하나 자원이 낭비되는 단점이 있다. 반면 Grant-free UL 자원을 필요보다 적게 할당하면 자원 소모는 감소하지만, 충동 확률이 증가하여 목표 신뢰도를 만족시키지 못하게 된다. 그러므로 단말 수, 단말 트래픽 특성, 채널 상태 등을 고려하여 Grant-free UL자원을 조정하는 것이 필요하다. 목표 신뢰도를 만족시키기 위해서 Grant-free UL 자원을 할당할 때 고려해야 할 요소로는 다음과 같은 것들이 있다.
1) 신호 충돌 확률 - Grant-free UL 자원에서 신호가 충동할 확률은 단말의 수와 단말이 발생시킨 트래픽의 양에 따라서 결정된다. 단말의 수는 기지국이 파악할 수 있으나 각 단말이 발생시키는 트래픽을 정확히 예측하기는 어렵다. 단말의 트래픽 발생은 트래픽의 통계적 특징을 이용하는 것이 일반적이다. 또한, 통계적 예측의 한계를 극복하기 위해서 충돌 발생 확률이 높아지면 Grant-free UL 자원의 양을 증가시키고 충돌 발생 확률이 낮아지면 Grant-free UL 자원의 양을 감소시키는 기법을 이용할 수 있다.
2) 데이터 크기 증가 - 데이터 사이즈가 예상보다 증가하면 기 할당된 Grant-free UL 자원에서 신호 전송 시 적용할 수 있는 코드율(code rate)과 심벌 변조 순서(symbol modulation order)가 증가한다. 이로 인해 Grant-free UL 전송의 수신 성공 확률이 감소하게 되므로 이를 극복하기 위한 기법이 필요하다.
3) 다이나믹(Dynamic) TDD - NR에서는 매 서브프레임마다 DL과 UL을 선택할 수 있는 다이나믹 TDD기법이 도입될 것으로 예상된다. Grant-free UL 전송 자원이 반정적(semi-static)하고 주기적으로 스케줄링된 경우를 가정하면, grant-free UL 자원이 기 할당된 서브프레임이 다이나믹 TDD에서는 DL 서브프레임으로 변경되어 grant-free UL 자원이 생략되는 현상이 발생한다. 주기적인 grant-free UL 자원 중 일부가 생략되면 이로 인해 UL 데이터 전송 시 추가 지연이 발생하고, 단말 대기 시간이 길어지므로 이후 grant-free UL 전송 시 데이터 충돌확률이 증가한다. 그러므로 이를 해결하기 위한 기법이 필요하다.
4) 채널 변화 - 단말과 기지국간의 상향링크 채널이 열화된 경우 이를 고려하여 Grant-free UL자원의 양을 증가시키는 것이 필요하다. 기지국이 상향링크 채널을 추정하기 위해서 단말에게 상향링크 참조신호(예를 들어, SRS)를 전송하도록 요청할 수 있다.
따라서, 다이나믹 자원이 할당될 필요가 있다. 상기와 같은 문제를 해결하기 위한 자원할당 기법으로는 반정적 자원할당 기법과 다이나믹 자원할당 기법을 고려할 수 있다. 반정적 자원할당 기법은 물리계층 시그널링 오버헤드를 감소시키고 시그널링의 신뢰도를 높게 가지고 갈 수 있는 장점이 있지만 상기 언급한 문제를 모두 해결하기는 못한다. 일례로, 다이나믹 TDD에서는 매 서브프레임마다 DL과 UL을 결정할 수 있으므로, 반정적으로 grant-free UL 자원을 할당하더라도 서브프레임 마다 스케줄링 적용 여부 및 방식을 적응적으로 변경할 수 있는 기능이 필요하다. 또한, URLLC에서는 신뢰도가 중요하므로 채널 특성에 따라서 자원을 다이나믹하게 변화시키는 것이 필요하다. 이에 더하여, 특정 이벤트가 발생하여 갑자기 트래픽이 몰린 경우에 충돌을 해소하기 위해서 자원을 급격하게 늘리는 경우가 발생할 수 있다. 그러므로 Grant-free UL 자원의 다이나믹 할당 기법이 필요하다.
이에 따라, 본 명세서는 Grant-free UL 자원을 다이나믹하게 스케줄링하는 기법과 반정적 grant-free UL 자원을 활성화 및 비활성화하는 기법을 제안한다.
본 명세서에서는 전송 단위를 표현하는 용어로서 미니 슬랏, 슬랏, 서브프레임을 이용하였다. 본 명세서에서 각각의 용어는 서로 다른 용어로 대체가 가능하다. 일례로 하기 실시 예의 eMBB용 서브프레임은 eMBB용 슬랏으로 대체할 수 있다. 본 명세서의 내용은 실시 예로서 동일한 개념을 적용한 다른 실시 예에도 적용이 가능하다.
본 명세서는 크게 4가지로 구분하여 서술한다. 첫 번째는, 일정한 신뢰도를 유지하기 위해서 Grant-free UL 전송 자원의 간격에 따라 MCS 레벨을 조정하는 기법이다. 두 번째는, 일정한 충동 확률을 유지하기 위해서 Grant-free UL 전송 자원의 간격에 따라 서브프레임에 할당하는 자원의 양을 변경하거나 전송이 가능한 패킷 도착 구간(packet arrival time)을 제한하는 기법이다. 세 번째는, 단말이 Grant-free UL 전송 자원의 할당을 요청할 수 있도록 그룹 SR을 설정하는 기법이다. 네 번째는, 단말이 데이터 크기의 증가를 기지국에 알릴 수 있도록 시그널링을 전송하는 기법이다.
1. Grant-free UL 전송 자원 간격 변경 시 신뢰도 유지 방법
도 8은 본 명세서의 실시예에 따라 자원 간격에 따른 Grant-free UL 자원의 최대 전송 횟수가 변화되는 일례를 나타낸다.
Grant-free UL 전송 자원을 다이나믹하게 할당하거나 반정적으로 할당된 grant-free UL 자원 중 일부가 비활성화된 경우 Grant-free UL 전송 자원 간격의 변화가 발생하게 된다. Grant-free UL 전송 자원의 간격이 증가하면 이는 최대 패킷 대기 시간이 증가함을 의미한다. 이로 인해 주어진 최대 지연 시간(maximum allowable latency)내에 전송할 수 있는 횟수가 감소하게 된다. 최대 전송 횟수가 감소하면 매 전송 시 요구되는 신뢰도가 증가하므로 이를 만족시키기 위해서 MCS 레벨과 송신 전력을 변화시키는 것이 필요하다. 도 8은 grant-free UL 전송의 간격이 변화하여 제한 시간 내 최대 전송 횟수가 3에서 2로 감소한 경우의 일례이다.
제1 실시예로, 기지국은 앞선 grant-free UL 자원과 뒤선 grant-free UL 자원의 시간 간격에 따라 단말이 적용할 MCS 레벨 및/또는 송신 전력을 반정적으로 알려준다. 여기서 시간 간격은 패킷의 최대 대기 시간을 의미한다. 단말은 자신에게 할당된 grant-free UL 자원의 시간 간격에 따라서 상향링크 적용 시 사용할 MCS 레벨 및/또는 송신 전력을 변경한다. 일례로, 기지국은 반정적으로 주기적으로 할당된 grant-free UL 자원에서 사용할 송신 전력을 2개 알려준다. 하나는 비활성화(deactivation)된 자원이 없는 경우의 송신 전력이고 다른 하나는 주기적 자원 중 하나가 비활성화된 경우에 적용하는 송신 전력이다. 이를 수신한 단말은 특정 서브프레임에서 grant-free UL 자원이 비활성화되었다고 판단하면, 다음 grant-free UL 자원에서 송신 전력을 높여서 신호를 전송한다. 신호 전송 신뢰도를 높이기 위함이다.
다른 일례로, 기지국은 매 서브프레임마다 Grant-free UL 자원을 다이나믹하게 할당하는 경우를 고려할 수 있다. 기지국은 단말 공통 정보로서 UL grant를 송신하지만 단말 별 MCS 레벨 정보는 포함하지 않는다. 단말은 이전에 자신이 할당 받은 grant-free UL 자원과 신규로 할당 받은 grant-free UL 자원의 시간 간격을 계산하여 UL 전송 시 사용할 MCS 레벨을 선정한다(단말이 직접 MCS 레벨을 결정).
상기 기법을 적용하기 위해 기지국이 단말에게 전송하는 시그널링은 기본 간격을 기준으로 기본 MCS 또는 송신 전력을 선정하고, 이를 기준으로 간격에 따른 MCS 또는 송신 전력들을 알려줄 수 있다. 일례로, 기본 간격이 T이고 이때의 MCS가 MCS 7이라고 하자. 이때 간격이 t1만큼 증가하면 MCS가 L1만큼 증가하고, 간격이 t2만큼 증가하면 MCS가 t2만큼 증가한다고 할 수 있다.
또한, 단말은 다수 개의 grant-free UL 자원을 할당 받을 수 있다. 일례로, 단말1이 자원 1과 자원 2를 할당 받은 경우, 단말 2는 자원 1을 할당 받고 단말 3은 자원 2를 할당 받은 경우가 존재할 수 있다. 만약 단말 1이 자원 1을 시간 T1에 할당 받고, 이후 자원 2를 시간 T2에 할당 받고, 이후 자원 1을 시간 T3에 할당받은 경우 단말이 MCS level을 선정하기 위해 사용하는 시간 간격은 T3-T2가 된다.
상기 제1 실시예와 관련하여, 앞선 Grant-free UL 자원과 뒤선 grant-free UL 자원의 시간 간격은 패킷의 최대 대기 시간을 의미한다. 패킷의 대기 시간이 증가하면 목표 시간 내 재전송 횟수가 감소한다. 그러므로 기지국은 단말에게 목표 시간 내 최대 재전송 횟수에 따른 MCS 레벨 및/또는 송신 전력을 반정적으로 알려주고 단말은 grant-free UL 자원의 시간 간격으로부터 최대 재전송 횟수를 도출하여 적용할 MCS 레벨 및/또는 송신 전력을 선정한다.
단말이 최대 재전송 횟수를 도출하는 방식은 수식으로 도출되거나 표를 이용하여 도출될 수 있다. 표를 이용하여 도출하는 경우의 일례는 다음과 같다. 간격이 1~3 미니 슬랏(또는 서브프레임) 경우는 1ms내 최대 재전송 횟수가 2이고, 간격이 4~6 미니 슬랏인 경우는 1ms내 최대 재전송 횟수가 1이고, 간격이 7이상인 경우에는 최대 재전송 횟수가 0이될 수 있다. 수식을 이용하여 도출하는 일례는 다음과 같다. 초기 전송에 소요되는 시간을 T라고 하고, 초기 전송 후 재전송까지 소요되는 시간을 RTT라고 하고, 목표 시간이 1ms인 경우를 가정한다. 이때 대기 시간 W에 따라서 최대 재전송 횟수는 다음과 같이 계산될 수 있다.
Figure PCTKR2017015471-appb-M000001
상기 수식은 W+T+m*RTT<1ms로 부터 얻을 수 있다. 여기서 T와 RTT는 시스템에서 사전에 정의된 값일 수도 있고, 기지국이 단말에게 RRC시그날링으로 알려줄 수도 있다.
상기 제1 실시예와 관련하여, 기지국이 Grant-free UL 자원을 다이나믹하게 할당하는 경우를 가정한다. 기지국은 단말 공통 UL grant를 이용하여 grant-free UL 자원과 함께 단말 공통의 MCS 레벨 및/또는 송신 전력을 지시하는 정보를 송신한다. 여기서 MCS 레벨과 송신 전력을 지시하는 정보는 자원 간격, 또는 대기 시간 또는 가능한 최대 재전송 횟수, 또는 가상 MCS 레벨 등으로 표현될 수 있다. 해당 정보를 수신한 각각의 단말은 기본(default) MCS와 송신 전력을 기준으로 정보에 따라 MCS와 송신 전력을 높이거나 낮춘다.
상기 기술은 일부의 단말이 앞선 grant-free UL 자원할당을 위한 UL grant를 수신하지 못하는 경우를 고려하여 설계하였다. 일례로, 앞선 grant-free UL 자원할당을 위한 UL grant를 수신하지 못한 단말은 그보다 더 앞선 grant-free UL 자원을 기준으로 송신 전력을 설정할 수 있다. 이때 해당 단말만 다른 단말보다 높은 송신 전력으로 신호를 송신하면, 동일 RB에서 신호를 전송하는 다른 단말의 신호 복호에 어려움이 존재할 수 있다. 그러므로 매 UL grant마다 MCS 레벨과 송신 전력의 증감을 지시하는 정보를 단말 공통 정보로써 송신할 수 있다.
일례로, 단말 1은 p1을 기준으로 p0, p2, p3를 자원 간격에 따른 송신전력으로 단말 2는 P1을 기준으로 P0, P2를 자원 간격에 따른 송신 전력으로 반정적으로 할당 받은 경우를 가정한다. 만약 Grant-free UL 전송을 위한 공통 UL grant에서 송신 전력을 1단계 증가하도록 지시하면, 단말 1은 p2를 이용하고 단말 2는 P2를 이용하여 상향링크 신호를 전송한다.
상기 제1 실시예와 관련하여, 기지국은 단말에게 MCS에 따라 자원의 증가 정도를 지시하는 시그널링을 반정적으로 전송한다. 단말은 수신한 정보를 이용하여 MCS에 따라 자신에게 할당된 grant-free UL 자원을 파악한다. 이는 곧 단말이 grant-free UL 자원의 시간 간격(예를 들어, 서브프레임 간격)에 따라서 자원의 양 변화를 파악함을 의미한다.
단말이 Grant-free UL 자원으로 자원 1을 할당 받은 경우를 생각해볼 수 있다. 단말은 신호의 MCS 레벨에 따라서 자원 1에서 신호 전송 시 사용하는 자원의 양이 변하게 된다. MCS 레벨이 낮을수록 신호 전송용 자원량은 많아진다. 일례로, MCS가 지시하는 코드율이 1/3일 때는 자원 1에서 6개의 RB를 이용하고 코드율이 2/3인 경우에는 자원 1에서 3개의 RB만을 이용해서 신호를 전송할 수 있다. 만약, 자원 1의 크기가 작은 경우에는 MCS 레벨이 낮아짐에 따라 자원 1의 크기를 증가시킬 필요가 있다. 일례로, 자원 1의 최대 RB가 3 RB인 경우에는 단말이 1/3 코드율을 이용해 신호를 전송할 수 있도록 하기 위해서 자원 1의 RB수를 증가시키는 것이 필요하다.
제1 실시예를 이용하지 않고 grant-free UL 전송의 재전송 시에 신호 성공확률을 높이는 방법을 고려할 수 있으나, 이 경우 재전송의 타겟 BLER(Block Error Rate)이 낮게 설정되므로 재전송 시 보다 많은 자원을 이용해야 하는 단점이 존재한다. 즉, grant-free UL 전송을 재전송하는 것보다 MCS 레벨을 조정하는 것이 더 낫다.
2. Grant-free UL 전송 간격 변경 시 충동 확률유지 방법
Grant-free UL 전송 자원을 다이나믹하게 할당하거나 반정적으로 할당된 grant-free UL 자원 중 일부가 비활성화된 경우 Grant-free UL 전송 자원 간격의 변화가 발생하게 된다. Grant-free UL 전송 자원의 간격이 증가하면 할당된 자원 사이에 도달하는 패킷의 평균 수가 증가한다. 이로 인해 Grant-free UL 전송 시 신호의 충돌 확률이 증가하게 되므로 충돌 확률을 일정하게 유지하기 위한 기법이 필요하다.
제2 실시예로, 기지국은 단말에게 Grant-free UL 전송 자원을 반정적으로 주기적으로 할당한다. 또한, 연속적으로 비활성화된 자원의 개수에 따라 활성화 시 적용하는 자원의 양을 지시한다. 단말은 연속적으로 비활성화된 자원의 수에 따라서 활성화 시 이용할 자원의 양을 파악한다. 일례로, 기지국은 단말에게 Grant-free UL 전송 자원으로 자원 1, 자원 2, 자원 3을 반정적으로 할당하는 경우를 고려할 수 있다. 여기서 자원 1이 기본 자원이 된다. 자원 1이 연속적으로 활성화된 경우 단말은 자원 1에서만 grant-free UL 전송을 수행한다. 만약, 한번 비활성화 된 이후에 활성화된 경우에는 자원 1과 자원 2에서 grant-free UL전송을 수행한다. 만약, 두 번 비활성화된 이후에 활성화된 경우에는 자원 1~3 에서 grant-free UL 전송을 수행한다.
상기 기술을 적용하기 위해서는 Grant-free UL 자원이 할당된 미니 슬랏(또는 서브프레임 또는 슬랏)에서 비활성화 또는 활성화를 지시하기 위한 신호가 전송되어야 한다. Grant-free UL 자원의 할당 주기에 맞춰서 비활성화 지시자가 전송되는 것이 일반적이지만, 전송 시점을 보다 다이나믹하게 가지고 가기 위해서 다음의 기법을 적용할 수 있다.
상기 제2 실시예와 관련하여, 주기적으로 Grant-free UL 자원이 할당된 미니 슬랏(또는 서브프레임 또는 슬랏)에서 grant-free UL 전송 자원이 비활성화된 경우에 기지국과 단말 동작은 다음과 같다. 기지국은 통상적으로 grant-free UL 자원이 할당된 미니 슬랏에서 비활성화 지시자를 전송하고 이외에는 비활성화 또는 활성화 지시자를 전송하지 않는다. 만약, grant-free UL 자원이 비활성화된 경우에는 매 미니 슬랏마다 활성화 또는 비활성화를 나타내는 지시자를 전송한다. 비활성화 지시자를 수신한 단말은 활성화 지시자를 수신할 때까지 매 미니 슬랏마다 활성화 또는 비활성화 지시자의 검출을 시도한다. 만약 단말이 활성화 지시자를 검출한 경우 사전에 반정적으로 할당된 주파수 자원(예를 들어, 자원 블록)에서 grant-free UL 전송을 수행한다.
상기 동작을 수행하기 위한 활성화 지시자와 비활성화 지시자로 동일한 시퀀스를 이용할 수 있다. 일례로, 시퀀스 1이 반정적으로 할당된 미니 슬랏에서 전송되는 경우에는 단말이 시퀀스 1을 검출하면 grant-free UL 자원이 비활성화 되었다고 판단한다. Grant-free UL 자원이 비활성화된 이후 grant-free UL 자원이 주기적으로 할당된 미니 슬랏이 아닌 미니 슬랏에서 시퀀스 1을 단말이 검출하면 grant-free UL 자원이 활성화 되었다고 판단할 수 있다.
상기 제2 실시예와 관련하여, 활성화된 자원의 시간 간격 또는 앞서 연속적으로 비활성화된 자원의 수에 비례해서 활성화 시 적용하는 자원의 양이 증가한다.
단말이 송신한 신호가 충돌할 확률은 앞선 grant-free UL 자원과 뒤선 grant-free UL자원 사이에 도착한 패킷의 수에 비례한다. 일반적으로 패킷이 도달하는 평균 개수는 자원 간격에 비례하여 증가하고, 충돌 확률은 자원의 양에 반비례하여 감소한다. 그러므로 충돌 확률을 일정하게 유지시키기 위해서는 시간 간격에 비례해서 자원의 양을 증가시키는 것이 필요하다.
도 9는 본 명세서의 실시예에 따른 패킷 도착 구간과 grant-free UL 자원이 매핑되는 일례를 나타낸다.
제3 실시예로, 기지국은 단말에게 패킷 도착 구간을 설정하고, 패킷이 도착한 구간이 다르면 서로 다른 grant-free UL 자원에서 전송할 것을 RRC 시그널링으로 지시한다. 또한, 기지국은 단말의 각 패킷 도착 구간이 대응되는 grant-free UL 자원을 알려줄 수 있다. 이는 규칙으로 알려주거나, 명시적인 테이블 형태로 알려줄 수 있다. 일례로, 기지국으로부터 패킷 도착 구간 설정 지시자를 수신한 단말은 도 9와 같이 패킷 도착 구간을 설정할 수 있다. 기지국이 단말에게 할당한 반정적 grant-free UL 자원의 할당 주기가 T인 경우 단말은 패킷 도착 구간을 T로 설정한다. 단말마다 인코딩 시간이 다를 수 있으므로, 패킷 도착 구간과 grant-free UL 자원 사이의 시간 간격은 단말이 임의로 설정할 수 있다. 만약, 주기적인 grant-free UL 자원 중 하나가 비활성화된 뒤 n개 후의 미니 슬랏에 스케줄링된 경우의 단말 동작은 도 9와 같다. 단말은 도 9의 네 번째 구간에 도착한 패킷을 세 번째 grant-free UL 자원(930)에서 전송할 수 있더라도, 사전약속에 따라 네 번째 grant-free UL 자원(940)에서 전송한다.
상기 기법은 패킷 도착 구간과 grant-free UL 자원이 일대일 대응되는 특징을 갖는다. 이를 고려하면 각 패킷 도착 구간마다 이에 대응되는 grant-free UL 자원을 할당하는 것이 필요하다. 그러므로 grant-free UL 자원을 다이나믹하게 할당하는 경우에는 UL grant와 패킷 도착 구간의 시간당 평균 숫자가 동일해야 한다.
제4 실시예로, 단말은 UL 신호 송신이 실패했다고 판단하면 grant-free UL 자원에서 재전송을 시도할 수 있다. 단말이 처음에 송신한 신호와 두 번째 송신한 신호를 기지국이 결합할 수 있도록 하기 위해서는 단말이 추가적인 시그널링을 송신하는 것이 필요하다. 일례로, 단말은 NDI(New data indicator)와 재전송 PCID(Process ID) 정보를 포함하는 별도의 제어 신호를 생성해서 상향링크 데이터와 함께 송신할 수 있다. 이를 수신한 기지국은 단말이 송신한 NDI와 PCID가 동일하면 해당 신호를 결합할 수 있다. 이를 위해 기지국이 해당 제어신호의 복호에는 성공하였으나 데이터 복호에는 실패한 경우 시간 t 동안 복호에 실패한 데이터 신호를 버퍼에 저장하고 있어야 한다. 그러므로 단말은 시간 t 이내에 grant-free UL 자원을 이용해 재전송을 수행해야 한다. 기지국은 상기 시간 t 정보를 RRC 또는 L2/L3 시그널링으로 단말에게 알려줄 수 있다.
상기 제어신호는 기지국이 데이터 신호 복호 전에 파악할 수 있도록, 데이터 신호와 구분되는 자원에서 전송하는 것이 필요하다. 일례로, 서브프레임 내 DMRS의 인접 RE들에서 상기 제어신호를 전송하고 다른 RE에서 데이터 신호를 전송하는 것을 적용할 수 있다.
3. Grant-free UL 자원 할당을 위한 UL grant 전송 기법
기지국이 grant-free UL 자원을 다이나믹하게 할당하거나, semi-static grant-free UL 자원이 비활성화 되어서 단말이 추가적인 자원할당을 요청하거나, 재전송을 위해 추가적인 자원을 요청한 경우 grant-free UL 자원을 할당하기 위해서는 신규 UL grant 설계와 신규 SR(scheduling request)도입이 필요하다. 그러므로 이하에서는 grant-free UL 자원 요청을 위한 SR과 UL grant 시그날링을 제안한다.
제5 실시예로, 기지국은 단말 그룹 공통의 UL grant를 전송하여 단말 그룹 공통의 grant-free UL 전송 자원을 할당한다. Grant-free UL 자원은 다시 N개의 전송 단위로 구분될 수 있으며 N이 1보다 큰 경우 단말은 N개 자원 중 하나를 임의로 선택하여 UL 전송을 수행할 수 있다. 또한, 단말은 다수 개의 단말 그룹에 포함되어 다수 개의 grant-free UL 자원을 할당 받을 수 있다.
상기 기술에서 기지국은 각 단말의 데이터 전송용 참조 신호(예를 들어, DMRS)를 반정적으로 지정하거나 단말이 임의로 선택하도록 할 수 있다. 만약, 기지국이 각 단말에게 참조 신호를 서로 직교하도록 사전에 할당하고 N=1인 경우에는, Grant-free UL 전송 시 참조 신호는 항상 직교하게 된다. 그러나 각 단말에게 서로 직교하는 참조신호만을 선택하도록 하면 grant-free UL 자원에 할당할 수 있는 최대 단말의 수가 직교하는 참조신호의 숫자에 의해 제한되는 단점이 존재한다.
동일 단말 그룹의 단말들은 동일한 임시 식별자(예를 들어, C-RNTI)를 이용하여 UL grant 신호의 복호를 시도한다. 그러므로 다수 개의 grant-free UL 자원을 할당 받은 단말은 다수 개의 임시 식별자를 할당 받을 수 있다. 만약 grant-free UL 자원 스케줄링을 위한 UL grant가 C-RNTI로 마스킹된 경우에는 CRC체크 시 공통 C-RNTI를 이용한다.
도 10은 본 명세서의 실시예에 따른 grant-free UL 자원과 자원 내 전송 단위를 설정하는 일례를 나타낸다.
도 10은 grant-free UL자원이 다시 N개의 직교 자원으로 구분되는 경우의 실시 예이다. 그림에서 첫 번째는 총 12개의 RB가 grant-free UL자원으로 할당이 되었고 각각 크기가 4 RB인 3개의 자원으로 구분된 경우이다. 이후에는 총 12개의 RB가 grant-free UL 자원으로 할당이 되었고 크기가 6 RB인 2개의 grant-free UL 전송 단위로 구분된 경우이다. 마지막은 총 18개의 RB가 grant-free UL 자원으로 할당이 되었고 크기가 6 RB인 3개의 자원으로 구분된 경우이다. 만약 단말 1과 단말 2가 서로 다른 전송 단위를 선택해서 신호를 송신하면 기지국은 단말 1과 단말 2의 참조 신호와 데이터 신호를 모두 충돌 없이 수신할 수 있다.
상기 제5 실시예와 관련하여, Grant-free UL 자원을 할당하는 UL grant의 자원 할당 정보는 다음과 같이 구성한다. 해당 단말 그룹이 사용할 수 있는 전체 grant-free UL 자원을 지시하는 정보와 N을 송신한다. 이를 수신한 단말은 해당 정보를 이용하여 grant-free UL 전송 단위의 크기와 grant-free UL 전송 단위에서의 MCS를 파악한다. 일례로, 전체 grant-free UL 자원이 24개의 RB(resource block)로 구성되고 N=4이면, 단말이 grant-free UL 전송을 수행하는 단위는 6 RB가 된다. 만약 N=6이면, 단말이 grant-free UL 전송을 수행하는 자원 단위는 4RB가 된다. 또한, N=4인 경우보다 N=6인 경우에 보다 높은 부호율 또는 변조 순서를 이용해 신호를 전송한다. 즉, grant-free UL 전송을 수행하는 단위가 작아지면, MCS 레벨은 높아진다.
상기 실시 예에서 단말이 MCS를 선정하기 위해서는 자원 단위에 따른 MCS 레벨 정보를 기지국으로부터 사전에 수신해야 한다. 일례로, 단말이 grant-free UL 자원 단위가 4RB인 경우의 MCS 레벨을 수신하였으면 이로부터 6RB인 경우의 MCS 레벨을 추정할 수 있다. 만약, 단말이 단일 전송 단위에서 제공하는 MCS보다 낮은 MCS로 신호를 전송하고자 하거나 예정된 데이터보다 큰 사이즈의 데이터를 전송하고자 하는 경우 단말은 다수 개의 전송 단위를 이용하여 신호를 전송할 수 있다. 하지만, 해당 기법을 이용하면 충돌 확률이 증가하는 단점이 존재한다.
상기 제5 실시예와 관련하여, 기지국이 단말 그룹에게 반정적으로 grant-free UL 자원을 다수 개 설정한다. 이후 기지국은 다이나믹하게 매 미니 슬랏 (또는 서브프레임 또는 슬랏)마다 각 자원의 활성화 및 비활성화 정보를 지시하는 정보를 UL grant 형태로 전송한다. 일례로, 기지국이 N개의 grant-free UL전송 자원을 반정적으로 할당한 뒤, UL grant에서 N개의 비트를 이용해서 비트맵 형태로 각 자원의 활성화 및 비활성화 여부를 지시할 수 있다.
상기 기술에서 반정적으로 할당된 grant-free UL 자원의 할당 주기를 1로 설정하면, grant-free UL 자원을 매 미니 슬랏 마다 설정하는 것이 가능하다.
상기 제5 실시예와 관련하여, 각 단말이 데이터 전송 여부를 기지국에 알리기 위한 지시자를 별도로 전송하는 경우를 고려한다. 기지국은 UL grant에 지시자를 전송하기 위한 자원을 명시적(explicit)으로 알려주거나 암묵적(implicit)으로 알려줄 수 있다.
각 단말이 데이터 전송 여부를 기지국에 알리기 위한 지시자를 별도로 전송하면 기지국이 단말이 송신한 신호의 복호에 실패한 경우에도 신호를 송신한 단말을 파악할 수 있다. 그러므로 재전송 시 각 단말에게 상향링크 신호 전송을 위한 전용 자원을 할당할 수 있다. 만약, 기지국이 각 단말에게 서로 직교하는 DMRS를 사전에 할당한 경우에도 기지국은 어떤 단말이 신호 전송을 시도했는지 파악할 수 있지만, 이 경우에는 직교하는 DMRS보다 많은 수의 단말을 grant-free UL 전송 단위에 할당할 수 없는 단점이 있다.
이때, Grant-free UL 자원 할당을 위한 UL grant에 지시자를 전송하기 위한 자원 할당 정보를 포함한다. 단말은 상향링크 데이터 채널 중 일부의 자원에서 지시자를 전송한다.
Grant-free UL 자원을 공유하는 단말 수가 X개 이고, 단일 RB에서 지시자를 전송하기 위해 생성할 수 있는 직교 자원의 수가 Y개라고 하자. Grant-free UL 자원 할당을 위한 UL grant에서 지시한 데이터 전송용 RB의 수가 Z개이면, 이중 L=ceil(X/Y)개의 RB는 지시자를 전송하기 위한 용도로 이용하고 Z-L개의 RB에서만 grant-free UL전송을 위한 용도로 활용한다. Z개 RB 중 지시자를 전송하는 L개 RB는 Z개의 논리 자원 중 제일 낮은 인덱스를 갖는 L개의 자원일 수 있다.
상기 동작을 수행하기 위해서 단말은 사전에 RRC 시그날링 등을 통해서 단말 그룹 내 단말의 수를 파악한 상태여야 한다. 또한, grant-free UL 자원이 N개의 전송 단위로 구분될 때, 각 전송 단위에 포함하는 RB수는 (Z-L)/N이 된다.
제6 실시예로, 기지국은 동일 Grant-free UL 자원을 할당 받은 단말 그룹에게 공통의 SR 자원을 할당한다. 만약 해당 SR 자원에서 스케줄링 요청이 감지되면 기지국은 단말 그룹 공통의 UL grant를 전송하여 grant-free UL 전송 자원을 할당한다.
기지국은 단말로부터 요청을 받기 전에 Grant-free UL 자원을 할당할 수 있다. 그러나 상향링크 데이터를 보내고자 하는 단말이 지속적으로 grant-free UL 자원을 할당 받지 못하는 경우에 상기 신호를 이용하여 자원 할당을 요청할 수 있다. 또는, grant-free UL 자원이 반정적이고 주기적으로 설정된 상황에서 특정 서브프레임의 grant-free UL자원이 비활성화된 경우가 존재할 수 있다. 만약, 비활성화된 후 공통 SR자원을 이용해 grant-free UL자원의 요청이 있는 경우에만 기지국은 다음 주기 전에 grant-free UL 자원을 할당하도록 동작할 수 있다.
상기 제6 실시예와 관련하여, Group SR 자원은 기지국이 주기적으로 할당한 반정적 grant-free UL 자원이 비활성화된 경우에만 할당된다.
제7 실시예로, 기지국은 단일 Grant-free UL 자원에서 신호 전송 시 단말이 이용한 참조 신호(예를 들어, DMRS)에 따라 서로 다른 UL grant를 전송한다. 단말이 UL grant를 구분할 수 있도록, 단말이 이용한 참조 신호 별로 서로 다른 임시 식별자(예를 들어, C-RNTI)를 이용(예를 들어, C-RNTI를 CRC에 마스킹하거나 또는 UL grant에 정보로 포함한다)하여 UL grant를 송신한다. 이를 위해 기지국은 RRC 또는 MAC 시그널링으로 단말에게 Grant-free UL 자원의 DMRS별 C-RNTI를 전송한다. 일례로, 단말 1과 2가 DMRS 1을 이용하여 신호를 전송하고, 단말 3이 DMRS 2를 이용하여 신호를 전송하였으나 기지국이 신호 복호에 실패한 경우를 고려할 수 있다. 이때, 단말 1과 2는 동일한 C-RNTI로 CRC가 마스킹된 UL grant를 수신하고 단말 3은 별도의 C-RNTI로 CRC가 마스킹된 UL grant를 수신한다.
상기 기술을 이용하면 재전송 시 충돌확률을 감소시키는 효과가 있다. 우선 매 전송 시 단말이 데이터 전송을 위해 이용하는 참조 신호를 임의로 선택(random selection)하는 경우를 고려할 수 있다. 상기 실시 예에서 재전송 시 단말 1과 2는 동일한 자원에 할당이 되지만 단말 3은 서로 다른 자원에 할당이 되므로, 재전송 시 단말 1이용한 DMRS가 다른 단말이 이용한 DMRS와 동일할 확률은 첫 번째 전송보다 낮아진다.
단말이 참조 신호를 임의로 선택하는 경우에는 재전송 시에도 참조 신호가 충돌할 확률이 여전히 존재하므로 하기 설명하는 기법을 이용할 수 있다.
상기 제7 실시예와 관련하여, 기지국은 단말에게 첫 번째 전송, 두 번째 전송(첫 번째 재전송), …, N번째 재전송 등 매 전송에서 이용할 grant-free UL 전송 용 참조 신호(예를 들어, DMRS)를 RRC 또는 MAC 시그널링으로 알려준다. 일례로, grant-free UL 자원에 4개의 직교하는 참조 신호가 존재하고, 총 16개의 단말을 해당 grant-free UL 자원에 할당한 경우를 가정한다. 기지국은 첫 번째 전송을 위해 단말 1~4에는 참조 신호 1을 할당하고 단말 5~8에는 참조 신호 2를 할당하고, 단말 9~12에는 참조 신호 3을 할당하고, 단말 13~16에는 참조 신호 4를 참조신호를 할당한다. 기지국은 두 번째 전송을 위해서는 단말 1,5,9,13에는 참조 신호 1을 할당하고 단말 2,6,10,14에는 참조 신호 2를 할당하고, 단말 3,7,11,15에는 참조 신호 3을 할당하고, 단말 4,8,12,16에는 참조 신호 4를 할당한다. 하기 표에서 상술한 첫 번째 전송과 재전송(두 번째 전송) 시의 참조 신호를 할당하는 일례를 나타낸다.
단말 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
첫 번째 전송시 이용하는 참조 신호 인덱스 1 2 3 4
두 번째 전송 시 이용하는 참조 신호 인덱스 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
상기 기술을 이용하면 직교하는 참조 신호가 M개인 경우 L번의 전송을 통해 총 M^L개의 단말을 구분할 수 있다. 상기 실시 예를 이용하면 기지국은 2번의 전송을 통해 총 16개(4^2)의 단말을 구분할 수 있다.
일례로, 단말 1과 2가 참조 신호 1을 이용해서 신호를 전송하고 단말 9가 참조 신호 2를 이용해 신호를 전송한 경우를 가정한다. 기지국이 참조 신호 1과 2를 수신하였으나 두 신호의 데이터 복호에 신호를 실패한 경우에 기지국은 재전송을 위해 참조 신호 1과 2에 대응되는 UL grant 1과 UL grant 2를 송신한다. 각각의 UL grant가 서로 다른 재전송 자원을 할당한 경우 참조 신호 1을 이용해 신호를 전송한 단말과 참조 신호 2를 이용해 신호를 전송한 단말끼리는 신호 충돌이 발생하지 않는다. 또한, UL grant 1이 할당한 자원에서 단말 1은 참조 신호 1을 이용하고 단말 2는 참조 신호 2를 이용해서 신호를 전송하므로 기지국은 단말 1과 단말 2가 신호를 전송하였음을 파악할 수 있다. 만약, 재전송 시에도 기지국이 신호의 복호에 실패한 경우 기지국은 단말 1과 단말 2 각각에게 충돌이 없는 전용 자원을 할당할 수 있다. 이로써, 세 번째 전송 내에 모든 단말은 충돌 없이 데이터를 전송할 수 있을 것이다.
또한, 단말이 목표 시간 내에 전송할 수 있는 최대 횟수가 L번일 때, 기지국은 L-1번째 전송까지의 참조 신호만 지시한다. Grant-free UL 자원 내 직교하는 참조 신호의 수가 M개 일 때 기지국이 단일 grant-free UL자원에 할당할 수 있는 단말 수는 M^(L-1)가 된다. 상술한 예에 따르면, L=3이고, 참조 신호의 개수 M=4이므로, 기지국이 단일 grant-free UL자원에 할당할 수 있는 단말 수는 4^2=16개가 될 수 있다.
URLLC의 높은 수신 신뢰도를 만족시키기 위해서는 총 L번의 전송 중 한번은 충돌확률을 없애거나 0에 가깝게 만드는 것이 필요하다. 기지국이 신호를 전송한 단말을 파악하면 해당 단말 전용의 UL grant를 전송할 수 있으므로, 최대 전송 횟수가 L번이라면 마지막 전송 전인 L-1번째 전송에서는 기지국이 단말을 모두 구분할 수 있어야 한다. 일례로, 1ms내 최대 전송 횟수가 3이고 직교하는 DMRS의 개수가 8인 경우에 기지국이 2번째 전송(재전송)까지만 단말의 DMRS를 지정할 수 있다. 이때, 기지국은 재전송 신호까지 수신하면 총 64개의 단말을 구분할 수 있다(8^2=64).
상기 제7 실시예와 관련하여, 기지국이 전송하는 grant-free UL 자원 용 UL grant에 이용하는 임시 식별자(예를 들어, C-RNTI)는 단말이 신호를 전송하는 grant-free UL 자원과 참조 신호에 따라 달라진다. 일례로, grant-free UL자원이 N개의 전송 단위로 구분되고, 각 전송 단위에 직교하는 참조신호의 개수가 M개 일 때 서로 다른 N*M개의 임시 식별자가 필요하다. 기지국은 단말에게 N*M개의 임시 식별자 정보를 RRC 또는 MAC 시그널링으로 알려줄 수 있다.
제8 실시예로, Grant-free UL 자원할당을 위한 UL grant와 별도로 각 단말의 MCS 및 송신 전력을 지정하기 위한 시그널링을 하향링크 데이터 채널에서 전송한다. 상기 신호를 전송하기 위한 하향링크 제어신호(DL grant)의 길이는 grant-free UL 자원할당을 위한 UL grant와 동일한 길이로 설정한다. Grant-free UL 자원할당을 위한 UL grant와 MCS 및 송신전력 정보의 송신 자원을 알리기 위한 DL grant는 제어신호 내 플래그(Flag) 필드로 구분이 되거나 서로 다른 임시 식별자로 CRC를 마스킹해서 구분할 수 있다.
Grant-free UL 전송에서는 다수의 단말이 동일한 자원을 중복해서 할당 받을 수 있다. 일례로, 각 단말의 패킷 도착율(packet arrival rate)이 낮은 경우에는 충돌 확률이 낮으므로 하나의 RB에 20개 이상의 단말이 동시에 자원을 할당 받는 것도 가능하다. 이때, grant-free UL전송을 위한 자원을 할당할 때마다 MCS및 상향링크 전력 정보를 전송하는 것은 자원낭비가 심하므로 이를 전송하기 위해서 별도의 시그널링을 이용(하향링크 데이터 채널을 이용)하는 것이 필요하다. 별도의 시그널링을 생성해서 자원할당을 위한 UL grant보다 낮은 빈도로 신호를 전송할 수 있다. 또한, 한 번에 다수 단말의 MCS 및 전력 정보를 전송하는 경우에는 정보의 양이 많으므로 하향링크 제어 채널이 아니라 데이터 채널을 이용해서 신호를 전송할 수 있다.
상기 제8 실시예와 관련하여, 기지국은 각 단말 별로 다수 개의 MCS 및 송신 전력 정보를 전송한다. 일례로, Grant-free UL 자원의 전체 RB수가 M이고 해당 grant-free UL 자원은 N개의 전송 구간으로 구분되고 각 전송 구간의 RB는 L=M/N개인 경우를 고려할 수 있다. 기지국이 단말에게 할당할 수 있는 L의 종류가 총 A개이면, 기지국은 단말에게 A개의 MCS 및 송신 전력 정보를 전송할 수 있다. 여기서 L의 종류는 RRC 또는 MAC시그널링으로 기지국이 단말에게 반정적으로 지정할 수 있다. 이후 단말은 L의 값에 따라 grant-free UL 전송에서 적용할 MCS와 송신 전력을 결정한다.
상기 실시 예에서 단말의 개수가 총 B개이면 기지국은 단말에게 총 A*B개의 MCS 및 송신 전력 정보를 전달하게 된다. 또한, 상기 실시 예는 시스템에서 MCS 및 송신 전력을 나타내기 위한 정보 비트의 수가 사전에 지정이 된 경우를 가정한다. 이 경우 기지국이 각 단말에게 수신해야 할 MCS 및 송신 전력이 전송 되는 순서를 알리면, 각 단말은 자신의 MCS 및 송신 전력 정보의 위치를 파악할 수 있다.
상기 정보에 더하여 단말이 수신한 데이터의 크기가 증가한 경우 단말은 지정된 자원에서 데이터를 송신하기 위해서 MCS를 증가시켜야 한다. 그러므로 이 경우를 대비한 MCS와 송신 전력 정보가 추가로 전송될 수 있다.
도 11은 본 명세서의 실시예에 따른 단말이 복수의 grant-free UL 전송 구간에서 동일한 신호를 반복해서 전송하는 일례를 나타낸다.
상기 제8 실시예와 관련하여, 단말은 하나의 grant-free UL 전송 구간에서 신호를 전송하는 것을 기본으로 하지만, 단말이 임의로 다수 개의 grant-free UL 전송 구간에서 동일한 신호를 반복해서 전송하는 것이 가능하다. 이때, 단말은 서로 다른 전송 구간에서도 동일한 참조 신호(예를 들어, DMRS)를 이용해서 신호를 전송한다. 또한, 동일한 신호를 반복해서 전송할 수 있는 구간은 기지국이 사전에 RRC 및 L2/L3 시그널링으로 단말에게 지시하거나 시스템적으로 지정될 수 있다.
도 11을 참조하면, 단말은 특정 전송 구간 A에서 자원 1,2를 사용하여 신호를 2번 반복 전송할 수 있다. 또한, 단말은 특정 전송 구간 A에서 자원 3,4를 사용하여 신호를 2번 반복 전송할 수 있다. 또한, 단말은 특정 전송 구간 A에서 자원 1,2,3,4를 사용하여 신호를 4번 반복 전송할 수 있다. 이때, 단말이 반복 전송한 신호의 DMRS는 항상 동일하다. 기지국이 단말이 반복 전송한 횟수를 모르므로 동일한 DMRS를 통해 단말이 몇 번 반복하여 신호를 전송하였는지 알 수 있다.
동일한 신호를 서로 다른 구간에서 반복해서 전송하면 이를 수신한 기지국은 서로 다른 신호를 결합하여 신호의 복호를 시도할 수 있다. 신호를 반복해서 전송하는 경우에는 한 자원에서는 충돌이 일어나고 다른 자원에서는 충돌이 일어나지 않았을 때 기지국이 충돌이 일어나지 않은 부분의 신호를 안정적으로 복호할 수 있는 장점이 있다. 또한, 단말과 기지국간 채널 상태가 나쁠 때 SNR을 증가하여 복호 확률을 유지시킬 수 있다.
기지국이 단말이 반복 전송한 횟수를 모르므로 기지국은 블라인드 디코딩을 통해서 이를 파악해야 한다. 기지국의 복호 복잡도를 낮추기 위해 동일 단말이 반복해서 전송한 신호는 DMRS가 항상 동일하고, 동일 신호를 반복해서 전송할 수 있는 자원을 사전에 제한할 수 있다.
4. 데이터 크기 변경 알림 기법
단말이 grant-free UL 자원에서 전송하고자 하는 데이터의 크기가 기존에 예상했던 크기보다 커진 경우 단말은 보다 많은 자원을 이용해서 상향링크 신호를 전송하는 것이 필요하다. 만약, 단말이 기존에 할당 받은 자원이 부족하다면, 단말은 자원할당 증가를 요구하는 신호를 기지국에 전송하는 것이 필요하다.
제9 실시예로, 기지국은 단말에게 데이터 크기 증가를 알리는 지시자를 전송할 수 있는 자원을 할당한다. 데이터 크기 증가 지시자는 단말 공통으로 할당할 수 있다. 그러므로 단말들이 데이터 송신 지시자는 각각 할당 받고 데이터 크기 증가 지시자는 공통으로 할당 받을 수 있다. 일례로, 단말 1 내지 단말 3이 데이터와 함께 데이터 전송 지시자를 전송하고, 단말 1이 데이터 크기 증가 지시자를 기지국에 전송한다. 기지국이 단말 2의 데이터는 복호에 성공하고 단말 1과 단말 3의 데이터는 복호에 실패한 경우, 기지국은 단말 1과 단말 3중 데이터 크기 증가 지시자를 전송한 단말을 모르기 때문에 단말 1과 3 모두에게 데이터 크기가 증가했다고 가정하고 재전송 자원을 할당 한다.
상기 기법을 적용하면 재전송 신호의 복호 확률을 증가시키는 장점이 있지만 불필요하게 많은 자원을 할당하는 단점이 있다. 그러나 재전송 확률이 0.1이하인 경우에 실제 시스템에서 자원이 낭비되는 비율은 작게 유지된다.
도 12는 본 명세서의 실시예에 따른 grant-free UL 자원을 통해 상향링크 데이터를 전송하는 절차를 도시화한 도면이다.
본 실시예는 단말 그룹(복수의 단말)이 사전에 스케줄링된 단말 공통 자원인 grant-free UL 자원을 통해 상향링크 데이터를 전송하는 것을 가정한다. Grant-free UL 전송은 상향링크 그랜트 없이 상향링크 데이터를 전송하는 방식에 대응할 수 있다. 따라서, 상향링크 그랜트 기반 상향링크 전송 방식보다는 빠르게 데이터를 전송할 수 있는 장점이 있다. 그러나, 단말 공통 자원에서 데이터를 전송하므로 서로 다른 단말이 동일 자원에서 동시에 신호를 전송하여 충돌 현상이 발생할 수 있다. 여기서, 단말은 상기 단말 그룹에 속할 수 있다.
먼저, 단계 S1210에서, 단말은 기지국으로부터 반정적(semi-static)으로 할당되는 그랜트 프리(grant-free) 상향링크 자원에 대한 할당 정보를 수신한다.
단계 S1220에서, 단말은 기지국으로부터 상기 상향링크 데이터의 초기 전송에 사용되는 제1 참조 신호에 대한 할당 정보 및 상기 상향링크 데이터의 재전송에 사용되는 제2 참조 신호에 대한 할당 정보를 수신한다.
이때, 상기 제1 참조 신호는 단말 공통(common)으로 할당되고, 상기 제2 참조 신호는 단말 특정(specific)하게 할당된다. 여기서, 참조 신호는 DMRS(Demodulation Reference Signal)에 대응할 수 있다.
즉, 서로 다른 단말이 동시에 신호를 전송하여 충돌이 발생하는 것을 극복하기 위해 단말이 1~L번째 전송에서 사용할 참조 신호를 상기와 같이 할당할 수 있다. 여기서, 서로 다른 UE는 L번의 전송 중 최소 한 번은 서로 직교하는 참조 신호가 할당되도록 참조 신호 할당 패턴이 지정될 수 있다.
예를 들어, L=2이고, 서로 직교하는 참조 신호도 2개일 때 다음과 같은 패턴으로 참조 신호가 할당될 수 있다.
첫 번째 전송 두 번째 전송
단말1 DMRS 1 DMRS 1
단말2 DMRS 1 DMRS 2
단말3 DMRS 2 DMRS 1
단말4 DMRS 2 DMRS 2
기존에는 그랜트 프리 상향링크 자원에 할당할 수 있는 단말의 수가 참조 신호의 개수 M개로 제한되었다. 그러나, 상기 표에 따른 할당 패턴에 따르면, L번의 전송에서 M개의 참조 신호를 이용해서 ML개의 단말을 구분할 수 있다. 또한, 기지국은 단말에게 초기 전송용 참조 신호와 재전송용 참조 신호를 서로 다른 것으로 할당할 수 있다.
단계 S1230에서, 단말은 상기 제1 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 전송한다. 여기서, 단말이 단말 1이라고 가정하면, 단말 1은 DMRS 1을 사용하여 반정적으로 할당된 그랜트 프리 상향링크 자원을 통해 상향링크 데이터를 전송할 수 있다.
단계 S1240에서, 기지국은 단말로부터 수신한 상향링크 데이터의 복호를 시도할 수 있다. 이때, 복호가 성공하면 이대로 통신이 완료된 것이나, 복호가 실패한 경우가 문제가 된다. 복호가 실패하였다는 것은 서로 다른 단말이 동시에 신호를 전송하여 충돌이 발생하였기 때문이다. 상술한 실시예에 따르면, 단말 1과 단말 2가 모두 DMRS 1을 사용하여 동일 자원에서 동시에 상향링크 데이터를 전송하였으므로 충돌이 발생하였다고 볼 수 있다.
단계 S1250에서, 상기 상향링크 데이터의 복호가 실패한 경우, 단말은 기지국으로부터 상기 제2 참조 신호에 대응하는 상향링크 그랜트(uplink grant)를 수신한다.
단계 S1260에서, 단말은 상기 상향링크 그랜트를 기반으로 상기 제2 참조 신호를 사용하여 상기 상향링크 데이터를 재전송한다.
상술한 실시예에 따르면, 기지국은 상향링크 데이터의 재전송을 위해 DMRS 1에 대응하는 상향링크 그랜트 1과 DMRS 2에 대응하는 상향링크 그랜트 2를 전송할 수 있다. 이로써, 단말 1은 상향링크 그랜트 1을 수신하여 상향링크 그랜트 1 기반의 상향링크 데이터의 재전송이 가능해지고, 단말 2는 상향링크 그랜트 2를 수신하여 상향링크 그랜트 2 기반의 상향링크 데이터의 재전송이 가능해진다. 각각의 상향링크 그랜트가 서로 다른 재전송 자원을 할당하였으므로, DMRS 1을 사용해서 상향링크 데이터를 재전송한 단말 1과 DMRS 2를 사용해서 상향링크 데이터를 재전송한 단말 2 간에는 신호 충돌이 발생하지 않게 된다. 이는, DMRS 1과 DMRS 2가 서로 직교하기 때문이다. 즉, 상기 제2 참조 신호는 상기 단말 그룹에 속하는 단말 각각(단말 1과 단말 2)에 대해 서로 직교할 수 있다.
상기 상향링크 그랜트는 단말 공통 제어 채널을 통해 수신될 수 있다. 상향링크 그랜트가 신호 충돌이 발생한 여러 단말에게 전송되므로 단말 공통 제어 채널(예를 들어, 공통 DCI(downlink control information))이 사용될 수 있다. 다만, 단말 공통 채널을 통해 상향링크 그랜트를 수신한 단말은 단말 특정한 제2 참조 신호를 이용해서 상향링크 데이터를 재전송할 것이다. 또한, 상기 상향링크 그랜트는 단말 공통 제어 채널로 수신되지 않고 참조 신호 특정 상향링크 그랜트의 형태로 정의될 수도 있다.
상기 상향링크 그랜트의 CRC(Cyclic Redundancy Check)는 상기 제1 참조 신호에 따른 임시 식별자에 의해 마스킹(masking)될 수 있다. 즉, 단말이 상향링크 그랜트를 구분할 수 있도록, 기지국은 단말이 상향링크 데이터 초기 전송에 이용한 참조 신호 별로 서로 다른 임시 식별자(예를 들어, C-RNTI)를 이용하여 CRC를 마스킹할 수 있다.
또한, 상기 그랜트 프리 상향링크 자원은 N개의 자원으로 구성될 수 있고, 상기 N개의 자원 중 하나의 자원을 통해 상기 상향링크 데이터가 전송될 수 있다. 즉, 그랜트 프리 상향링크 자원은 N개의 전송 단위로 구분될 수 있으며, N이 1보다 큰 경우 단말은 N개의 자원 중 하나를 임의로 선택하여 상향링크 데이터를 전송할 수 있다. 상기 N개의 자원 각각에서 서로 직교하는 제1 참조 신호의 개수는 M개일 수 있다.
그렇다면, 상기 임시 식별자의 개수는 N*M개일 수 있다. 상기 임시 식별자는 상기 기지국으로부터 RRC(Radio Resource Control) 또는 MAC(Medium Access Control) 시그널링으로 수신될 수 있다.
또한, 상기 그랜트 프리 상향링크 자원은 주기적으로 할당될 수 있다. 상기 그랜트 프리 상향링크 자원이 특정 서브프레임에서 비활성화된 경우 스케줄링 요청 자원이 할당될 수 있다. 그랜트 프리 상향링크 자원은 단말 공통 자원이므로, 기지국은 특정 단말 그룹에게 그랜트 프리 상향링크 자원을 할당하고, 또한 공통 스케줄링 요청 자원도 할당할 수 있다. 즉, 상기 스케줄링 요청 자원은 단말 그룹에 공통으로 할당되는 자원일 수 있다.
상기 스케줄링 요청 자원을 통해 전송된 스케줄링 요청에 따라 다음 주기 전에 그랜트 프리 상향링크 자원이 할당될 수 있다. 즉, 기지국은 상기 스케줄링 요청이 감지되면 단말 그룹의 공통 상향링크 그랜드를 전송하여 그랜트 프리 상향링크 자원을 할당할 수 있다.
상기 재전송된 상향링크 데이터의 복호가 실패한 경우, 단말은 기지국으로부터 할당된 전용 자원을 통해 상기 상향링크 데이터를 재전송할 수 있다.
또한, 상기 단말 그룹에 속하는 단말 각각에 대한 MCS(Modulation and Coding Scheme) 레벨 및 송신 전력에 대한 정보는 하향링크 데이터 채널을 통해 수신할 수 있다. 이는, 그랜트 프리 상향링크 자원을 할당할 때마다 MCS 레벨 및 송신 전력에 대한 정보를 전송하는 것은 자원 낭비가 심할 수 있다. 따라서, 하향링크 데이터 채널을 통한 별도의 시그널링을 이용하여 자원 낭비를 줄일 수 있다.
또한, 상향링크 데이터의 재전송을 위해 상향링크 그랜트를 수신하지 않고 그랜트 프리 기반의 재전송을 할 수도 있다. 상기 상향링크 데이터의 복호가 실패한 경우, 단말은 상기 제2 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 재전송할 수 있다.
도 13은 본 명세서의 실시예가 구현되는 기기를 나타낸 블록도이다.
무선장치(1300)는 프로세서(1310), 메모리(1320), RF(radio frequency) 유닛(1330)을 포함할 수 있다.
프로세서(1310)는 상술한 기능, 절차, 방법들을 구현하도록 설정될 수 있다. 라디오 인터페이스 프로토콜(radio interface protocol)의 계층(layer)들은 프로세서에 구현될 수 있다. 프로세서(1310)는 상술한 동작을 구동하기 위한 절차를 수행할 수 있다. 메모리(1320)는 동작적으로 프로세서(1310)에 연결되고, RF 유닛(1350)은 프로세서(1310)에 동작적으로 연결된다.
프로세서(1310)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(1320)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1330)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1320)에 저장되고, 프로세서(1310)에 의해 실행될 수 있다. 메모리(1320)는 프로세서(1310) 내부 또는 외부에 있을 수 있고, 널리 알려진 다양한 수단으로 프로세서(1310)와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위을 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (16)

  1. 단말 그룹을 포함하는 무선통신시스템에서 상향링크 데이터를 전송하는 방법에 있어서,
    상기 단말 그룹에 속한 단말이, 기지국으로부터 반정적(semi-static)으로 할당되는 그랜트 프리(grant-free) 상향링크 자원에 대한 할당 정보를 수신하는 단계;
    상기 단말이, 상기 기지국으로부터 상기 상향링크 데이터의 초기 전송에 사용되는 제1 참조 신호에 대한 할당 정보 및 상기 상향링크 데이터의 재전송에 사용되는 제2 참조 신호에 대한 할당 정보를 수신하는 단계;
    상기 단말이, 상기 제1 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 전송하는 단계;
    상기 상향링크 데이터의 복호가 실패한 경우, 상기 단말이, 상기 기지국으로부터 상기 제2 참조 신호에 대응하는 상향링크 그랜트(uplink grant)를 수신하는 단계; 및
    상기 단말이, 상기 상향링크 그랜트를 기반으로 상기 제2 참조 신호를 사용하여 상기 상향링크 데이터를 재전송하는 단계를 포함하되,
    상기 제1 참조 신호는 단말 공통(common)으로 할당되고,
    상기 제2 참조 신호는 단말 특정(specific)으로 할당되는
    방법.
  2. 제1항에 있어서,
    상기 상향링크 그랜트의 CRC(Cyclic Redundancy Check)는 상기 제1 참조 신호에 따른 임시 식별자에 의해 마스킹(masking)되는
    방법.
  3. 제2항에 있어서,
    상기 제2 참조 신호는 상기 단말 그룹에 속한 단말 각각에 대해 서로 직교하는
    방법.
  4. 제3항에 있어서,
    상기 그랜트 프리 상향링크 자원은 N개의 자원으로 구성되고,
    상기 N개의 자원 중 하나의 자원을 통해 상기 상향링크 데이터가 전송되고,
    상기 N개의 자원 각각에서 서로 직교하는 제1 참조 신호의 개수는 M개이고,
    상기 임시 식별자의 개수는 N*M개이고,
    상기 임시 식별자는 상기 기지국으로부터 RRC(Radio Resource Control) 또는 MAC(Medium Access Control) 시그널링으로 수신되는
    방법.
  5. 제1항에 있어서,
    상기 그랜트 프리 상향링크 자원은 주기적으로 할당되고,
    상기 그랜트 프리 상향링크 자원이 특정 서브프레임에서 비활성화된 경우 스케줄링 요청 자원이 할당되고,
    상기 스케줄링 요청 자원을 통해 전송된 스케줄링 요청에 따라 다음 주기 전에 그랜트 프리 상향링크 자원이 할당되는
    방법.
  6. 제1항에 있어서,
    상기 재전송된 상향링크 데이터의 복호가 실패한 경우, 상기 단말이, 상기 기지국으로부터 할당된 전용 자원을 통해 상기 상향링크 데이터를 재전송하는 단계를 더 포함하는
    방법.
  7. 제1항에 있어서,
    상기 단말 그룹에 속한 단말 각각에 대한 MCS(Modulation and Coding Scheme) 레벨 및 송신 전력에 대한 정보는 하향링크 데이터 채널을 통해 수신되는
    방법.
  8. 제1항에 있어서,
    상기 상향링크 데이터의 복호가 실패한 경우, 상기 단말이, 상기 제2 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 재전송하는 단계를 더 포함하는
    방법.
  9. 단말 그룹을 포함하는 무선통신시스템에서 상향링크 데이터를 전송하는 장치에 있어서,
    무선 신호를 송신하거나 수신하는 RF부; 및
    상기 RF부를 제어하는 프로세서를 포함하되, 상기 프로세서는:
    기지국으로부터 반정적(semi-static)으로 할당되는 그랜트 프리(grant-free) 상향링크 자원에 대한 할당 정보를 수신하고,
    상기 기지국으로부터 상기 상향링크 데이터의 초기 전송에 사용되는 제1 참조 신호에 대한 할당 정보 및 상기 상향링크 데이터의 재전송에 사용되는 제2 참조 신호에 대한 할당 정보를 수신하고,
    상기 제1 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 전송하고,
    상기 상향링크 데이터의 복호가 실패한 경우, 상기 기지국으로부터 상기 제2 참조 신호에 대응하는 상향링크 그랜트(uplink grant)를 수신하고, 및
    상기 상향링크 그랜트를 기반으로 상기 제2 참조 신호를 사용하여 상기 상향링크 데이터를 재전송하되,
    상기 제1 참조 신호는 단말 공통(common)으로 할당되고,
    상기 제2 참조 신호는 단말 특정(specific)으로 할당되는
    장치.
  10. 제9항에 있어서,
    상기 상향링크 그랜트의 CRC(Cyclic Redundancy Check)는 상기 제1 참조 신호에 따른 임시 식별자에 의해 마스킹(masking)되는
    장치.
  11. 제10항에 있어서,
    상기 제2 참조 신호는 상기 단말 그룹에 속한 단말 각각에 대해 서로 직교하는
    장치.
  12. 제11항에 있어서,
    상기 그랜트 프리 상향링크 자원은 N개의 자원으로 구성되고,
    상기 N개의 자원 중 하나의 자원을 통해 상기 상향링크 데이터가 전송되고,
    상기 N개의 자원 각각에서 서로 직교하는 제1 참조 신호의 개수는 M개이고,
    상기 임시 식별자의 개수는 N*M개이고,
    상기 임시 식별자는 상기 기지국으로부터 RRC(Radio Resource Control) 또는 MAC(Medium Access Control) 시그널링으로 수신되는
    장치.
  13. 제9항에 있어서,
    상기 그랜트 프리 상향링크 자원은 주기적으로 할당되고,
    상기 그랜트 프리 상향링크 자원이 특정 서브프레임에서 비활성화된 경우 스케줄링 요청 자원이 할당되고,
    상기 스케줄링 요청 자원을 통해 전송된 스케줄링 요청에 따라 다음 주기 전에 그랜트 프리 상향링크 자원이 할당되는
    장치.
  14. 제9항에 있어서, 상기 프로세서는,
    상기 재전송된 상향링크 데이터의 복호가 실패한 경우, 상기 기지국으로부터 할당된 전용 자원을 통해 상기 상향링크 데이터를 재전송하는
    장치.
  15. 제9항에 있어서,
    상기 단말 그룹에 속한 단말 각각에 대한 MCS(Modulation and Coding Scheme) 레벨 및 송신 전력에 대한 정보는 하향링크 데이터 채널을 통해 수신되는
    장치.
  16. 제9항에 있어서, 상기 프로세서는,
    상기 상향링크 데이터의 복호가 실패한 경우, 상기 제2 참조 신호를 사용하여 상기 그랜트 프리 상향링크 자원을 통해 상기 상향링크 데이터를 재전송하는
    장치.
PCT/KR2017/015471 2017-01-04 2017-12-26 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치 WO2018128312A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,740 US11540311B2 (en) 2017-01-04 2017-12-26 Method and apparatus for transmitting grant-free based uplink data in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762441976P 2017-01-04 2017-01-04
US62/441,976 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018128312A1 true WO2018128312A1 (ko) 2018-07-12

Family

ID=62791395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015471 WO2018128312A1 (ko) 2017-01-04 2017-12-26 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치

Country Status (2)

Country Link
US (1) US11540311B2 (ko)
WO (1) WO2018128312A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417801A (zh) * 2018-09-29 2019-03-01 北京小米移动软件有限公司 传输信息的方法、装置及基站
CN111294859A (zh) * 2019-05-24 2020-06-16 展讯通信(上海)有限公司 数据分组的传输方法及装置、存储介质、终端
CN113273298A (zh) * 2018-11-01 2021-08-17 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2022502900A (ja) * 2018-09-28 2022-01-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 超高信頼低遅延通信(urllc)トラフィックのための予約リソースをシグナリングする方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738135B (zh) * 2017-04-13 2019-12-24 华为技术有限公司 上行信息发送方法、接收方法和装置
KR102395189B1 (ko) * 2017-08-17 2022-05-06 삼성전자주식회사 무선 통신 시스템에서 비-승인 통신을 위한 장치 및 방법
WO2019140681A1 (en) * 2018-01-22 2019-07-25 Zte Corporation Configuring multiple transmissions
CN110225589B (zh) * 2018-03-01 2022-04-01 大唐移动通信设备有限公司 一种数据传输方法、装置及设备
US20210266876A1 (en) * 2020-02-25 2021-08-26 Qualcomm Incorporated Consolidated feedback indication and feedback transmission
US11627592B2 (en) 2021-04-05 2023-04-11 Ultralogic 6G, Llc Resource-efficient polling and scheduling of 5G/6G uplink messages
US11425744B2 (en) * 2021-04-05 2022-08-23 Ultralogic 6G, Llc Cascaded scheduling requests for resource-efficient 5G and 6G

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282577B2 (en) * 2011-08-05 2016-03-08 Panasonic Intellectual Property Corporation Of America Efficient transmission of a response signal for a random access preamble transmitted from legacy or extension carrier capable devices
WO2016085621A1 (en) * 2014-11-25 2016-06-02 Qualcomm Incorporated Techniques for reducing latency in a wireless communication system
KR20160102448A (ko) * 2014-02-28 2016-08-30 엘지전자 주식회사 무선 통신 시스템에서 낮은 지연을 가지는 상향링크 데이터 전송 방법 및 장치
US20160353452A1 (en) * 2015-05-26 2016-12-01 Qualcomm Incorporated Non-orthogonal multiple access between a unicast signal and a single-cell point-to-multipoint signal
KR20160140504A (ko) * 2015-05-29 2016-12-07 한국전자통신연구원 이동통신 시스템에서 경쟁기반 상향링크 데이터 송신 방법 및 경쟁기반 상향링크 자원 할당 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171765B2 (ja) * 2008-09-30 2013-03-27 創新音▲速▼股▲ふん▼有限公司 スケジューリングリクエストプロシージャとランダムアクセスプロシージャーの間の相互作用を改善する方法及び装置
EP2237633A1 (en) * 2009-04-03 2010-10-06 Panasonic Corporation Buffer status reporting in a mobile communication system
EP2452535A1 (en) * 2009-07-07 2012-05-16 Telefonaktiebolaget LM Ericsson (publ) Random access procedure utilizing cyclic shift of demodulation reference signal
CN104469923B (zh) * 2009-08-12 2018-06-01 交互数字专利控股公司 Wtru、用于在上行链路物理信道上传送信息的方法和基站
US20140036859A1 (en) * 2010-01-11 2014-02-06 Texas Instruments Incorporated Methods to Increase Sounding Capacity for LTE-Advanced Systems
EP3125461A1 (en) * 2010-04-22 2017-02-01 LG Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
US9585156B2 (en) * 2011-11-14 2017-02-28 Qualcomm Incorporated Supporting different LTE-TDD configurations in neighboring regions and/or adjacent carriers
US8929319B2 (en) * 2011-12-23 2015-01-06 Blackberry Limited Updating scheduling request resources
US10129858B2 (en) * 2014-11-25 2018-11-13 Qualcomm Incorporated Low latency physical layer design for contention-based uplink channels
EP3372041B1 (en) * 2015-11-06 2021-01-06 Telefonaktiebolaget LM Ericsson (publ) Scheduling and accessing of uplink resources
AU2017345518B2 (en) * 2016-10-21 2020-07-02 Telefonaktiebolaget L M Ericsson (Publ) HARQ feedback for unscheduled uplink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282577B2 (en) * 2011-08-05 2016-03-08 Panasonic Intellectual Property Corporation Of America Efficient transmission of a response signal for a random access preamble transmitted from legacy or extension carrier capable devices
KR20160102448A (ko) * 2014-02-28 2016-08-30 엘지전자 주식회사 무선 통신 시스템에서 낮은 지연을 가지는 상향링크 데이터 전송 방법 및 장치
WO2016085621A1 (en) * 2014-11-25 2016-06-02 Qualcomm Incorporated Techniques for reducing latency in a wireless communication system
US20160353452A1 (en) * 2015-05-26 2016-12-01 Qualcomm Incorporated Non-orthogonal multiple access between a unicast signal and a single-cell point-to-multipoint signal
KR20160140504A (ko) * 2015-05-29 2016-12-07 한국전자통신연구원 이동통신 시스템에서 경쟁기반 상향링크 데이터 송신 방법 및 경쟁기반 상향링크 자원 할당 방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022502900A (ja) * 2018-09-28 2022-01-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 超高信頼低遅延通信(urllc)トラフィックのための予約リソースをシグナリングする方法
JP7202453B2 (ja) 2018-09-28 2023-01-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 超高信頼低遅延通信(urllc)トラフィックのための予約リソースをシグナリングする方法
CN109417801A (zh) * 2018-09-29 2019-03-01 北京小米移动软件有限公司 传输信息的方法、装置及基站
CN109417801B (zh) * 2018-09-29 2023-12-12 北京小米移动软件有限公司 传输信息的方法、装置及基站
CN113273298A (zh) * 2018-11-01 2021-08-17 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111294859A (zh) * 2019-05-24 2020-06-16 展讯通信(上海)有限公司 数据分组的传输方法及装置、存储介质、终端
WO2020238519A1 (zh) * 2019-05-24 2020-12-03 展讯通信(上海)有限公司 数据分组的传输方法及装置、存储介质、终端
CN111294859B (zh) * 2019-05-24 2021-09-07 展讯通信(上海)有限公司 数据分组的传输方法及装置、存储介质、终端
US11424863B2 (en) 2019-05-24 2022-08-23 Spreadtrum Communications (Shanghai) Co., Ltd. Data packet transmission method and device, storage medium and terminal
US11722253B2 (en) 2019-05-24 2023-08-08 Spreadtrum Communications (Shanghai) Co., Ltd. Data packet transmission method and device, storage medium and terminal

Also Published As

Publication number Publication date
US11540311B2 (en) 2022-12-27
US20210289539A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2018128312A1 (ko) 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치
WO2018203657A1 (ko) 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
WO2018169355A1 (ko) 무선 통신 시스템에서 단말의 데이터 수신 방법 및 장치
WO2018004320A1 (ko) 데이터 수신 방법 및 수신 장치와, 데이터 전송 방법 및 전송 장치
WO2018226065A1 (ko) Nr에서 이중 연결을 지원하는 방법 및 장치
WO2018143738A1 (ko) 무선 통신 시스템에서 grant-free 리소스에 관련된 신호 송수신 방법 및 장치
WO2018128507A1 (ko) 무선 통신 시스템에서 단말의 데이터 재전송 방법 및 상기 방법을 이용하는 통신 장치
WO2016153137A1 (ko) Short tti의 주파수 대역에 다이나믹하게 자원을 할당하는 방법 및 이를 사용한 기기
WO2018128501A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 채널 전송 방법 및 상기 방법을 이용하는 통신 장치
WO2018143741A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2017217829A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018199691A1 (ko) 무선 통신 시스템에서 전력을 공유하는 방법 및 장치
WO2018143637A1 (ko) 무선 통신 시스템에서 그랜트 프리 기반 상향링크 데이터를 전송하는 방법 및 장치
WO2017217827A1 (ko) 데이터 전송 방법 및 전송 장치와, 데이터 수신 방법 및 수신 장치
WO2016190592A1 (en) Method for performing an ack/nack indication based on the uplink grants over multiple subframes in a wireless communication system and a device therefor
WO2012165875A2 (en) Apparatus and method for defining physical channel transmit/receive timings and resource allocation in tdd communication system supporting carrier aggregation
WO2017078425A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
WO2016021983A1 (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치
WO2011004989A2 (ko) 공유 무선 자원을 이용한 기지국의 상향링크 수신 방법 및 단말기의 상향링크 송신 방법
AU2018262995B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
WO2017018618A1 (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
WO2018174473A1 (ko) 무선 통신 시스템에서 상향링크 전송 블록을 전송하는 방법 및 장치
WO2018203671A1 (ko) 무선 통신 시스템에서 단말의 물리 사이드링크 제어 채널의 블라인드 디코딩 수행 방법 및 상기 방법을 이용하는 단말
WO2017204595A1 (ko) Nr 시스템을 위한 제어 채널 및 데이터 채널 송수신 방법 및 장치
WO2017222257A1 (ko) 다중 전송 기법이 적용된 무선통신시스템에서 신호를 수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890644

Country of ref document: EP

Kind code of ref document: A1