WO2018128289A1 - 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 - Google Patents

변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 Download PDF

Info

Publication number
WO2018128289A1
WO2018128289A1 PCT/KR2017/014424 KR2017014424W WO2018128289A1 WO 2018128289 A1 WO2018128289 A1 WO 2018128289A1 KR 2017014424 W KR2017014424 W KR 2017014424W WO 2018128289 A1 WO2018128289 A1 WO 2018128289A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
weight
conjugated diene
polymer
modified conjugated
Prior art date
Application number
PCT/KR2017/014424
Other languages
English (en)
French (fr)
Inventor
이로미
김노마
김유진
이호영
김선근
나수민
나육열
최흥열
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17890580.8A priority Critical patent/EP3567062A4/en
Priority to CN201780066661.6A priority patent/CN109923135B/zh
Priority to JP2019536306A priority patent/JP7225102B2/ja
Priority to US16/339,227 priority patent/US11427668B2/en
Publication of WO2018128289A1 publication Critical patent/WO2018128289A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a modified conjugated diene-based polymer, and more particularly, to a modified conjugated diene-based polymer prepared by continuous polymerization, having excellent processability, and having a narrow molecular weight distribution and excellent physical properties, and a rubber composition comprising the same.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • As an evaluation index of the vulcanized rubber a repulsive elasticity of 50 ° C. to 80 ° C., tan ⁇ , Goodrich heat generation and the like are used. That is, a rubber material having a high resilience at the above temperature, or a small tan ⁇ and good rich heat generation is preferable.
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be adjusted by coupling or modification. It can be adjusted. Therefore, it is easy to change the structure of the final manufactured SBR or BR, and can reduce the movement of the chain end by the binding or modification of the chain end and increase the bonding strength with the filler such as silica or carbon black. It is used a lot as a rubber material.
  • solution polymerization SBR When such a solution polymerization SBR is used as a rubber material for tires, by increasing the vinyl content in the SBR, the glass transition temperature of the rubber can be increased to not only control tire demand properties such as running resistance and braking force, but also increase the glass transition temperature. Proper adjustment can reduce fuel consumption.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers. For example, US Pat. No.
  • 4,397,994 discloses a technique in which the active anion at the chain end of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, which is a monofunctional initiator, is bound using a binder such as a tin compound. It was.
  • the polymerization of the SBR or BR may be carried out by batch (batch) or continuous polymerization, by the batch polymerization, the molecular weight distribution of the polymer produced is advantageous in terms of improving the physical properties, but the productivity is low and There is a problem of poor workability, and in case of the continuous polymerization, the polymerization is continuously made, thus the productivity is excellent, and there is an advantage in terms of processability improvement.
  • the productivity is excellent, and there is an advantage in terms of processability improvement.
  • there is a problem of poor physical properties due to wide molecular weight distribution Thus, in the production of SBR or BR, the situation is constantly being researched to improve both productivity, processability and physical properties at the same time.
  • the present invention has been made in order to solve the problems of the prior art, a modified conjugated diene-based polymer prepared by continuous polymerization and excellent in processability, excellent physical properties such as tensile properties, excellent viscoelastic properties, and the like It is an object to provide a rubber composition.
  • the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, molecular weight distribution (PDI; A modified conjugated diene-based polymer having a MWD) of less than 1.7, a Si content of 100 ppm or more based on weight, and including at least 15 wt% to less than 30 wt% of an aromatic vinyl monomer-derived repeating unit is provided.
  • GPC gel permeation chromatography
  • the present invention also provides a rubber composition comprising the modified conjugated diene-based polymer and a filler.
  • the modified conjugated diene-based polymer according to the present invention is produced for continuous polymerization, it has excellent processability and has a narrow molecular weight distribution that is equivalent to or higher than that of the modified conjugated diene-based polymer produced by batch polymerization. It is excellent in physical properties and excellent in viscoelastic properties.
  • Figure 1 shows the molecular weight distribution curve by gel permeation chromatography (GPC) of the modified conjugated diene-based polymer of Example 1 according to an embodiment of the present invention.
  • Figure 2 shows the molecular weight distribution curve by gel permeation chromatography (GPC) of the modified conjugated diene-based polymer of Comparative Example 2 according to an embodiment of the present invention.
  • the modified conjugated diene-based polymer according to the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, a molecular weight distribution (PDI; MWD) is less than 1.7, Si content It may be 100 ppm or more based on this weight, and may include from 15% by weight to less than 30% by weight of an aromatic vinyl monomer-derived repeating unit.
  • GPC gel permeation chromatography
  • the modified conjugated diene-based polymer may include a repeating unit derived from a conjugated diene monomer and a functional group derived from a modifier.
  • the conjugated diene-based monomer-derived repeating unit may mean a repeating unit formed when the conjugated diene-based monomer is polymerized, and the modifier-derived functional group is present at one end of the active polymer through a reaction or coupling between the active polymer and the modifying agent. It can mean a functional group derived from.
  • the conjugated diene monomer is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, 2 It may be at least one selected from the group consisting of -phenyl-1,3-butadiene and 2-halo-1,3-butadiene (halo means halogen atom).
  • the modified conjugated diene-based polymer is a copolymer containing an aromatic vinyl monomer-derived repeating unit, it may include an aromatic vinyl monomer-derived repeating unit in an amount of 15% by weight or less to less than 30% by weight, the rolling resistance within this range And an excellent balance between wet road resistance.
  • the aromatic vinyl monomer is, for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, 1 -Vinyl-5-hexylnaphthalene, 3- (2-pyrrolidino ethyl) styrene, 3- (2-pyrrolidino ethyl) styrene, 4- (2-pyrrolidino ethyl) styrene ) styrene) and 3- (2-pyrrolidino-1-methyl ethyl) - ⁇ -methylstyrene (3- (2-pyrrolidino-1-methyl ethyl) styrene).
  • the modified conjugated diene-based polymer may be a copolymer further comprising a diene-based monomer derived from C 1 to 10 together with the repeating unit derived from the conjugated diene monomer.
  • the diene monomer-derived repeating unit may be a repeating unit derived from a diene monomer different from the conjugated diene monomer, and the diene monomer different from the conjugated diene monomer may be, for example, 1,2-butadiene. .
  • the modified conjugated diene-based polymer is a copolymer further comprising a diene monomer
  • the modified conjugated diene-based polymer is more than 0% to 1%, more than 0% to 0.1% by weight of the repeating unit derived from the diene monomer, It may be included in more than 0% by weight to 0.01% by weight, or more than 0% by weight to 0.001% by weight, there is an effect of preventing the gel production within this range.
  • the copolymer may be a random copolymer, in this case there is an excellent balance between the physical properties.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention has a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol, 10,000 g / mol to 1,000,000 g / mol, or 100,000 g / mol to 800,000 g / mol, the weight average molecular weight (Mw) may be 1,000 g / mol to 3,000,000 g / mol, 10,000 g / mol to 2,000,000 g / mol, or 100,000 g / mol to 2,000,000 g / mol, within this range Cloud resistance and wet road resistance is excellent effect.
  • Mn number average molecular weight
  • the modified conjugated diene-based polymer may have a molecular weight distribution (PDI; MWD; Mw / Mn) of less than 1.7, 1.0 or more and less than 1.7, or 1.1 or more and less than 1.7, and tensile and viscoelastic properties within this range. It is excellent in this and there exists an effect which is excellent in the balance between each physical property.
  • PDI molecular weight distribution
  • the modified conjugated diene-based polymer has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, which is a molecular weight distribution appearing in the polymer polymerized by continuous polymerization
  • GPC gel permeation chromatography
  • the modified conjugated diene-based polymer has a uniform characteristic. That is, the modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by continuous polymerization, and may have a molecular weight distribution curve of less than 1.7 while having a unimodal molecular weight distribution curve.
  • the modified conjugated diene-based polymer may have a Si content of 100 ppm or more, 100 ppm to 10,000 ppm, or 100 ppm to 5,000 ppm by weight, and includes a modified conjugated diene-based polymer within this range.
  • the Si content may refer to the content of Si atoms present in the modified conjugated diene-based polymer.
  • the Si atom may be derived from a modifier-derived functional group.
  • the Si content may be measured by, for example, an ICP analysis method, and the ICP analysis method may be measured using an inductively coupled plasma emission analyzer (ICP-OES; Optima 7300DV).
  • ICP-OES inductively coupled plasma emission analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr).
  • the modified conjugated diene-based polymer has a polymer component of at least 100,000 g / mol of molecular weight in terms of standard polystyrene converted by gel permeation chromatography, unimodal, a molecular weight distribution (PDI; MWD) of 2.0 or less, and a number average molecular weight.
  • PDI molecular weight distribution
  • the modified conjugated diene-based polymer may have a Mooney viscosity at 100 ° C., 30 or more, 40 to 150, or 40 to 140, and excellent workability and productivity within this range.
  • the modified conjugated diene-based polymer may have a vinyl content of 5% by weight or more, 10% by weight or more, or 10% by weight to 60% by weight.
  • the vinyl content may refer to the content of 1,2-added conjugated diene-based monomers, not 1,4-addition, based on 100% by weight of the conjugated diene-based copolymer composed of a monomer having a vinyl group and an aromatic vinyl monomer. Can be.
  • the modifier according to the present invention may be a modifier for modifying the terminal of the conjugated diene-based polymer, and may be, for example, a silica affinity modifier.
  • the silica affinity modifier may mean a modifier containing a silica affinity functional group in a compound used as a modifier, the silica affinity functional group is excellent in affinity with the filler, in particular silica-based filler, It may mean a functional group capable of interaction between the functional group derived from the denaturant.
  • the modifier may be, for example, an alkoxy silane modifier, and specifically, may be an alkoxy silane modifier containing one or more hetero atoms such as a nitrogen atom, an oxygen atom, or a sulfur atom.
  • modification may be performed in a form in which one end of the active polymer is bonded to the silyl group through a substitution reaction between an anion active site located at one end of the active polymer and an alkoxy group of the alkoxy silane-based modifier.
  • the denaturant may be to include a compound represented by the following formula (1).
  • R 1 may be a single bond, or an alkylene group having 1 to 10 carbon atoms
  • R 2 and R 3 may each independently be an alkyl group having 1 to 10 carbon atoms
  • R 4 may be hydrogen or 1 to carbon atoms.
  • R 21 is a single bond, an alkylene group having 1 to 10 carbon atoms , Or- [R 42 O] j- , R 42 may be an alkylene group having 1 to 10 carbon atoms, a and m may be each independently an integer selected from 1 to 3, n is 0, 1, Or an integer of 2, j may be an integer selected from 1 to 30.
  • R 1 may be a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 2 and R 3 may be each independently hydrogen, an alkyl group having 1 to 5 carbon atoms
  • R 4 is Hydrogen, a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, or a heterocyclic group having 2 to 5 carbon atoms
  • R 21 is a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 42 may be an alkylene group having 1 to 5 carbon atoms
  • a may be an integer of 2 or 3
  • m may be an integer selected from 1 to 3
  • j may be an integer selected from 1 to 10
  • the heterocyclic group when R 4 is a heterocyclic group, the heterocyclic group may be unsubstituted or substituted with a trisubstituted alkoxy silyl group, and when the heterocyclic group is substituted with a trisubstituted alkoxy silyl group, the trisubstituted alkoxy silyl group It may be substituted by being connected to the heterocyclic group by an alkylene group having 1 to 10 carbon atoms, the tri-substituted alkoxy silyl group may mean an alkoxy silyl group substituted with an alkoxy group having 1 to 10 carbon atoms.
  • the compound represented by Chemical Formula 1 is N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (dimethoxy (methyl)) silyl) propyl) -methyl-1-amine), N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (diethoxy (methyl)) silyl) propyl) -methyl-1-amine), N, N-bis (3- (trimethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (trimethoxysilyl) propyl) -methyl -1-amine), N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine), N, N-diethyl-3- (trimethoxy
  • the denaturant may include a compound represented by Formula 2 below.
  • R 5 , R 6 and R 9 may be each independently an alkylene group having 1 to 10 carbon atoms
  • R 7 , R 8 , R 10 and R 11 are each independently an alkyl group having 1 to 10 carbon atoms.
  • R 12 may be hydrogen or an alkyl group having 1 to 10 carbon atoms
  • b and c may each independently be 0, 1, 2 or 3
  • b + c ⁇ 1 and A may be or
  • R 13 , R 14 , R 15 and R 16 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by Chemical Formula 2 may be N- (3- (1H-imidazol-1-yl) propyl) -3 (triethoxysilyl) -N- (3- (triethoxysilyl) propyl Propan-1-amine (N- (3- (1H-imidazol-1-yl) propyl)-(triethoxysilyl) -N- (2- (tritehoxysilyl) propyl) propan-1-amine) and 3- ( 4,5-dihydro-1H-imidazol-1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine (3- (4,5-dihydro-1H- imidazol-1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine) may be one selected from the group consisting of.
  • the denaturant may include a compound represented by Formula 3 below.
  • a 1 and A 2 may each independently be a divalent hydrocarbon group having 1 to 20 carbon atoms, including or without an oxygen atom, and R 17 to R 20 are each independently monovalent having 1 to 20 carbon atoms. It may be a hydrocarbon group, L 1 to L 4 are each independently a divalent, trivalent or tetravalent alkylsilyl group substituted with an alkyl group having 1 to 10 carbon atoms, or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or L 1 and L 2 and L 3 and L 4 may be linked to each other to form a ring having 1 to 5 carbon atoms, and when L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring, the ring formed may be It may include one to three heteroatoms selected from the group consisting of N, O and S.
  • a 1 and A 2 may be each independently an alkylene group of 1 to 10
  • R 17 to R 20 may be each independently an alkyl group having 1 to 10 carbon atoms
  • L 1 to L 4 is independently a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring having 1 to 3 carbon atoms
  • the ring formed may include one or more heteroatoms selected from the group consisting of N, O, and S; It can contain three.
  • the compound represented by Formula 3 is 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine), 3,3'-(1,1,3,3- Tetraethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl) bis ( N, N-dimethylpropan-1-amine), 3,3 '-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-t
  • the denaturant may include a compound represented by the following Formula 4.
  • R 22 and R 23 are each independently an alkylene group having 1 to 20 carbon atoms, or -R 28 [OR 29 ] f-
  • R 24 to R 27 are each independently an alkyl group having 1 to 20 carbon atoms or It may be an aryl group having 6 to 20 carbon atoms
  • R 28 and R 29 may be each independently an alkylene group having 1 to 20 carbon atoms
  • R 47 and R 48 may be each independently a divalent hydrocarbon group having 1 to 6 carbon atoms
  • d and e are each independently 0, or an integer selected from 1 to 3
  • d + e is an integer of 1 or more
  • f may be an integer of 1 to 30.
  • R 22 and R 23 may be each independently an alkylene group having 1 to 10 carbon atoms, or -R 28 [OR 29 ] f- , and R 24 to R 27 are each independently 1 It may be an alkyl group of 10 to 10, R 28 and R 29 may be each independently an alkylene group having 1 to 10 carbon atoms, d and e are each independently 0, or an integer selected from 1 to 3, d + e is It may be an integer of 1 or more, f may be an integer selected from 1 to 30.
  • the compound represented by Chemical Formula 4 may be a compound represented by Chemical Formula 4a, Chemical Formula 4b, or Chemical Formula 4c.
  • R 22 to R 27 , d, and e are as described above.
  • the compound represented by Chemical Formula 4 may be selected from 1,4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine (1,4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine, 1,4-bis (3- (triethoxysilyl) propyl) piperazine (1,4-bis (3- (triethoxysilyl) propyl) piperazine), 1,4-bis (3- (Trimethoxysilyl) propyl) piperazine (1,4-bis (3- (trimethoxysilyl) propyl) piperazine), 1,4-bis (3- (dimethoxymethylsilyl) propyl) piperazine (1,4- bis (3- (dimethoxymethylsilyl) propyl) piperazine), 1- (3- (ethoxydimethylsilyl) propyl) -4- (3- (triethoxysilyl) propyl) piperazine (1- (3- (ethoxy
  • the denaturant may include a compound represented by the following Formula 5.
  • R 30 may be a monovalent hydrocarbon group having 1 to 30 carbon atoms
  • R 31 to R 33 may each independently be an alkylene group having 1 to 10 carbon atoms
  • R 34 to R 37 may each independently be carbon atoms. It may be an alkyl group of 1 to 10, g and h are each independently 0, or an integer selected from 1 to 3, g + h may be an integer of 1 or more.
  • the denaturant may include a compound represented by the following Formula 6.
  • a 3 and A 4 may each independently be an alkylene group having 1 to 10
  • R 38 to R 41 may be each independently an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • i may be an integer selected from 1 to 30.
  • the denaturing agent is 3,4-bis (2-methoxydeoxy) -N- (4- (triethoxysilyl) butyl) aniline (3,4-bis (2-methoxyethoxy) -N- ( 4- (trimethylsilyl) butyl) aniline), N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine (N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine), 2,4-bis (2-methoxyde Methoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine (2,4-bis (2-methoxyethoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine) And 3,14-dimethoxy-3,8,8,13
  • the denaturant may include a compound represented by the following Formula 7.
  • R 43 , R 45, and R 46 may be each independently an alkyl group having 1 to 10 carbon atoms, R 44 may be an alkylene group having 1 to 10 carbon atoms, and k may be an integer selected from 1 to 4 have.
  • the compound represented by Chemical Formula 7 is 8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13- Disila-8-stanpentadecane (8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-dimethyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3
  • the term 'monovalent hydrocarbon group' refers to a monovalent atomic group in which carbon and hydrogen are bonded, such as a monovalent alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkyl group and an aryl group including one or more unsaturated bonds.
  • the minimum number of carbon atoms of the substituent represented by the monovalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'bivalent hydrocarbon group' is a two-membered carbon and hydrogen, such as a divalent alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, a cycloalkylene group including one or more unsaturated bonds, and an arylene group. It may mean a valence atom group, and the minimum number of carbon atoms of a substituent represented by a divalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'alkyl group' may mean a monovalent aliphatic saturated hydrocarbon, and may be linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, tertiary, It may be meant to include all branched alkyl groups such as tert-butyl and neo-pentyl.
  • alkylene group may refer to a divalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene and butylene.
  • alkenyl group' may refer to an alkyl group including one or two or more double bonds.
  • alkynyl group' may refer to an alkyl group including one or two or more triple bonds.
  • cycloalkyl group may mean both cyclic saturated hydrocarbons or cyclic unsaturated hydrocarbons containing one or two or more unsaturated bonds.
  • the term 'aryl group' may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are combined. hydrocarbons) can be included.
  • heterocyclic group' may mean both a cycloalkyl group or an aryl group in which a carbon atom in a cycloalkyl group or an aryl group is substituted with one or more hetero atoms.
  • the present invention provides a method for producing a modified conjugated diene-based polymer in order to produce the modified conjugated diene-based polymer.
  • the modified conjugated diene-based polymer manufacturing method comprises the steps of polymerizing a conjugated diene-based monomer and an aromatic vinyl monomer in the presence of an organometallic compound in a hydrocarbon solvent to prepare an active polymer combined with an organic metal (S1); And reacting or coupling the active polymer prepared in the step (S1) with the denaturant (S2), wherein the step (S1) is carried out continuously in two or more polymerization reactors, and the first of the polymerization reactors.
  • the polymerization conversion rate in the reactor may be 50% or less.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organometallic compound is 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, 0.1 mmol to 1 mmol, or 0.15 to 0.8 mmol based on 100 g of the total monomers
  • the organometallic compound include methyllithium, ethyllithium, propyllithium, isopropyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n-decyllithium, t-octylithium and phenyllithium.
  • the polymerization of the step (S1) may be, for example, anionic polymerization, and specifically, may be living anion polymerization having an anion active site at the end of the polymerization by a growth polymerization reaction by anion.
  • the polymerization of the step (S1) may be a temperature increase polymerization, isothermal polymerization or constant temperature polymerization (thermal insulation polymerization)
  • the constant temperature polymerization may include the step of polymerization by the heat of reaction without the addition of heat after the addition of the organometallic compound optionally
  • the temperature polymerization may mean a polymerization method in which the temperature is increased by optionally adding heat after the organometallic compound is added, and the isothermal polymerization is heat after adding the organometallic compound. By adding to increase the heat or take the heat may mean a polymerization method for maintaining a constant temperature of the polymer.
  • the polymerization in the step (S1) may be carried out by further comprising a diene-based compound having 1 to 10 carbon atoms in addition to the conjugated diene-based monomer, in this case, gel on the reactor wall surface for a long time operation It is effective to prevent this from being formed.
  • a diene-based compound having 1 to 10 carbon atoms in addition to the conjugated diene-based monomer, in this case, gel on the reactor wall surface for a long time operation It is effective to prevent this from being formed.
  • the diene compound may be 1,2-butadiene.
  • the polymerization of the step (S1) may be carried out at a temperature range of 80 ° C or less, -20 ° C to 80 ° C, 0 ° C to 80 ° C, 0 ° C to 70 ° C, or 10 ° C to 70 ° C, for example.
  • a temperature range of 80 ° C or less 80 ° C or less, -20 ° C to 80 ° C, 0 ° C to 80 ° C, 0 ° C to 70 ° C, or 10 ° C to 70 ° C, for example.
  • the active polymer prepared by the step (S1) may refer to a polymer in which a polymer anion and an organic metal cation are combined.
  • the active polymer prepared by the polymerization of the step (S1) may be a random copolymer, in this case, the balance between the physical properties is excellent effect.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer manufacturing method may be carried out by a continuous polymerization method in a plurality of reactors including two or more polymerization reactors and a modified reactor.
  • the step (S1) may be carried out continuously in two or more polymerization reactors including the first reactor, and the number of the polymerization reactors may be elastically determined according to the reaction conditions and environment.
  • the continuous polymerization method may mean a reaction process of continuously supplying a reactant to the reactor and continuously discharging the generated reaction product. In the case of the continuous polymerization method, it is excellent in productivity and processability and excellent in uniformity of the polymer to be produced.
  • the polymerization conversion rate in the first reactor may be 50% or less, 10% to 50%, or 20% to 50%, After the polymerization reactor is initiated within this range, it is possible to induce a polymer having a linear structure during polymerization by suppressing side reactions generated while the polymer is formed, and thus it is possible to narrowly control the molecular weight distribution of the polymer. The improvement is excellent.
  • the polymerization conversion may be adjusted according to the reaction temperature, the reactor residence time.
  • the polymerization conversion rate may be determined, for example, by measuring a solid concentration on a polymer solution containing a polymer when polymerizing the polymer.
  • a cylindrical container may be mounted at the outlet of each polymerization reactor. After filling the cylindrical solution with the positive polymer solution, and separating the cylindrical container from the reactor to measure the weight (A) of the cylinder filled with the polymer solution, the polymer solution filled in the cylindrical container was replaced with an aluminum container, As an example, the weight (B) of the cylindrical container, which is transferred to an aluminum dish and free of the polymer solution, is measured, the aluminum container containing the polymer solution is dried in an oven at 140 ° C. for 30 minutes, and the weight (C) of the dried polymer is measured. After the measurement, it may be calculated according to the following equation (1).
  • the polymerized in the first reactor is sequentially transferred to the polymerization reactor before the modification reactor, the polymerization may proceed until the polymerization conversion rate is at least 95%, and after the polymerization in the first reactor, the second reactor.
  • the polymerization conversion rate of each reactor from the second reactor to the polymerization reactor before the modified reactor may be carried out by appropriately adjusting the respective reactors to control the molecular weight distribution.
  • the polymer residence time in the first reactor may be 1 minute to 70 minutes, 1 minute to 50 minutes, or 5 minutes to 40 minutes, within this range, polymerization It is easy to control the conversion rate, and thus it is possible to narrowly adjust the molecular weight distribution of the polymer, whereby there is an effect of excellent physical property improvement.
  • the term 'polymer' is carried out in each reactor during the step (S1), before the step (S1) or (S2) is completed to obtain an active polymer or a modified conjugated diene-based polymer. It can mean an intermediate in the form of a polymer being used, and can mean a polymer having a polymerization conversion of less than 99% in which polymerization is being carried out in the reactor.
  • the molecular weight distribution (PDI, polydispersed index; MWD, molecular weight distribution; Mw / Mn) of the active polymer prepared in step (S1) is less than 1.5, 1.0 or more to less than 1.5, or 1.1
  • the molecular weight distribution of the modified conjugated diene-based polymer prepared through the modification reaction or coupling with the modifier within this range may be less than or equal to 1.5, thereby improving the physical properties.
  • the polymerization of the (S1) step may be carried out including a polar additive
  • the polar additive is 0.001g to 50g, 0.001g to 10g, 0.005g to 5g, or 0.005g to 4g based on a total of 100g monomer It can be added at a ratio of.
  • the polar additive may be added in a ratio of 0.001 mol to 100 mol, or 0.01 mol to 10 mol based on a total of 1 mol of the organometallic compound.
  • the polar additive may be, for example, tetrahydrofuran, 2,2-di (2- (tetrahydrofuryl) propane, diethyl ether, cycloamal ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl Ether, tert-butoxyethoxyethane, bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, N, N, N ', N'-tetra It may be at least one selected from the group consisting of methyl ethylene diamine, sodium mentholate and 2-ethyl tetrahydrofurfuryl ether, preferably triethylamine, N, N, N ', N'-tetramethylethylenediamine, sodium mentholate or 2-ethyl tetrahydr
  • the reaction or coupling of the step (S2) may be carried out in a modification reactor, wherein the denaturant is used in an amount of 0.01 mmol to 10 mmol based on 100 g of the total monomer.
  • the denaturant may be used in a molar ratio of 1: 0.1 to 10, 1: 0.1 to 5, or 1: 0.1 to 1: 3, based on 1 mole of the organometallic compound of step (S1).
  • the denaturant may be added to the modification reactor, the step (S2) may be carried out in the modification reactor.
  • the denaturant may be added to the transfer unit for transferring the active polymer prepared in the step (S1) to the modification reactor for performing the step (S2), and the mixture of the active polymer and the modifier in the transfer unit Reaction or coupling may proceed.
  • a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition may include the modified conjugated diene-based polymer in an amount of 10 wt% or more, 10 wt% to 100 wt%, or 20 wt% to 90 wt%, and within this range, tensile strength, wear resistance, and the like. It is excellent in the mechanical properties of and excellent in the balance between each physical property.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the other rubber component may be included in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based polymer.
  • the rubber component may be, for example, natural rubber or synthetic rubber, and specific examples include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene Co-diene),
  • the rubber composition may include, for example, 0.1 part by weight to 200 parts by weight, or 10 parts by weight to 120 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer of the present invention.
  • the filler may be, for example, a silica-based filler, and specific examples may be wet silica (silicate silicate), dry silica (silicate anhydrous), calcium silicate, aluminum silicate, colloidal silica, and the like.
  • the wet silica may be the most compatible of the grip (wet grip).
  • the rubber composition may further include a carbon-based filler as needed.
  • silica when silica is used as the filler, a silane coupling agent for improving reinforcement and low heat generation may be used together.
  • the silane coupling agent may include bis (3-triethoxysilylpropyl) tetrasulfide.
  • the compounding amount of the silane coupling agent is conventional.
  • the silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight, or 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of silica, and the effect as a coupling agent is within this range. While sufficiently exhibiting, there is an effect of preventing gelation of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the rubber component, while ensuring the required elastic modulus and strength of the vulcanized rubber composition within this range and at the same time low fuel efficiency. Excellent effect.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, specifically, vulcanization accelerators, process oils, antioxidants, plasticizers, anti-aging agents, anti-scoring agents, zincification (zinc) white), stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is, for example, a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • Guanidine-based compounds such as (diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, and may be, for example, a paraffinic, naphthenic, or aromatic compound, and when considering the tensile strength and abrasion resistance, when the aromatic process oil, hysteresis loss and low temperature characteristics are considered.
  • Naphthenic or paraffinic process oils may be used.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, and there is an effect of preventing a decrease in tensile strength and low heat generation (low fuel efficiency) of the vulcanized rubber within this range.
  • the antioxidant may be, for example, 2,6-di-t-butylparacresol or dibutylhydroxytoluene, and may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the anti-aging agent is for example N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6-ethoxy-2 , 2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone, and the like, and may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the compounding formulation, and has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • a styrene solution in which 60% by weight of styrene was dissolved in n-hexane was 3.6 kg / h, and 1,3-butadiene in 60% by weight of n-hexane.
  • the temperature of the first reactor was maintained at 45 ° C, and when the polymerization conversion rate was 48%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 60 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred from the second reactor to the third reactor through a transfer pipe.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • a styrene solution in which 60% by weight of styrene was dissolved in n-hexane was 3.6 kg / h, and 1,3-butadiene in 60% by weight of n-hexane.
  • the temperature of the first reactor was maintained at 55 ° C, and when the polymerization conversion rate was 45%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 65 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
  • N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine N, N-bis ()
  • the temperature of the third reactor was maintained at 65 ° C.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • a styrene solution in which 60% by weight of styrene was dissolved in n-hexane was 3.6 kg / h, and 1,3-butadiene in n-hexane was 60% by weight.
  • the temperature of the first reactor was maintained at 55 ° C, and when the polymerization conversion rate was 50%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 65 °C, when the polymerization conversion was 95% or more, through the transfer pipe, the polymer was transferred to the blend tank from the second reactor.
  • IR1520 BASF, Inc.
  • 30% by weight of an antioxidant into the polymerization solution discharged from the second reactor was injected and stirred at a rate of 170 g / h.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the reaction temperature was maintained at 40 ° C. in the first reactor, and was carried out in the same manner as in Example 1 except that the polymerization product was transferred from the first reactor to the second reactor through a transfer pipe when the polymerization conversion rate reached 38%.
  • Modified conjugated diene-based polymer was prepared.
  • the reaction temperature is maintained at 40 ° C. in the first reactor, and when the polymerization conversion rate reaches 32%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe, and N- (3- ( 1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine (N- (3- (1H-imidazol- 1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine) was subjected to the same procedure as in Example 1 except that the solution was added thereto, followed by a modified conjugate.
  • a styrene solution in which 60% by weight of styrene was dissolved in n-hexane was 3.6 kg / h, and 1,3-butadiene in n-hexane was 60% by weight.
  • the temperature of the first reactor was maintained at 50 ° C, and when the polymerization conversion rate was 50%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 65 °C, when the polymerization conversion was 95% or more, through the transfer pipe, the polymer was transferred to the blend tank from the second reactor.
  • N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3,6,9 as a modifier
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the second reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the temperature of the first reactor was maintained to 50 °C, when the polymerization conversion rate was 41%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 60 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred from the second reactor to the third reactor through a transfer pipe.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the reaction temperature is maintained at 60 ° C. in the first reactor, and when the polymerization conversion rate reaches 49%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe, and 3,13-dimethoxy is n-hexane as a modifier.
  • the above example was added except that a solution containing -3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane was added.
  • the temperature of the first reactor was maintained at 60 °C, when the polymerization conversion rate was 50%, the polymer was transferred from the first reactor to the second reactor through the transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight in n-hexane was injected into the second reactor at a rate of 0.65 kg / h.
  • the temperature of the second reactor was maintained at 65 °C, when the polymerization conversion was 95% or more, through the transfer pipe, the polymer was transferred to the blend tank from the second reactor.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the second reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • N, N, N ' wherein 35% by weight of N, N, N', N'-tetramethylethylenediamine is dissolved in n-hexane instead of 2,2-di (2-tetrahydrofuryl) propane as a polar additive,
  • the N'-tetramethylethylenediamine solution was added at 100 g / h, the reaction temperature was maintained at 70 ° C. in the first reactor, and the polymerization conversion rate was 45% from the first reactor to the second reactor through the transfer pipe.
  • the temperature of the first reactor was maintained at 60 °C, when the polymerization conversion rate was 48%, the polymer was transferred from the first reactor to the second reactor through a transfer pipe.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight of n-hexane was injected into the second reactor at a rate of 2.4 kg / h.
  • the temperature of the second reactor was maintained at 65 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred from the second reactor to the third reactor through the transfer pipe.
  • the polymer was transferred from the second reactor to the third reactor, and N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3,6, as a modifier.
  • the temperature of the third reactor was maintained at 65 ° C.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight of n-hexane was injected into the second reactor at a rate of 2.4 kg / h.
  • the temperature of the second reactor was maintained at 70 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred to the blend tank from the second reactor through the transfer pipe.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the second reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • 1,3-butadiene solution in which 1,3-butadiene was dissolved in 60% by weight of n-hexane was injected into the second reactor at a rate of 2.4 kg / h.
  • the temperature of the second reactor was maintained to 70 °C, when the polymerization conversion rate was 95% or more, the polymer was transferred to the blend tank from the second reactor through the transfer pipe.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the second reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the reaction temperature is maintained at 50 ° C. in the first reactor, and when the polymerization conversion rate is 42%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe, and 3,13-dimethoxy is n-hexane as a modifier.
  • the above example was added except that a solution containing -3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane was added.
  • the reaction temperature was maintained at 55 ° C. in the first reactor, 65 ° C. in the second reactor, and 65 ° C. in the third reactor, and 3,3 ′-(1,1,3,3-tetramethoxydisiloxane-1,3 as a modifier.
  • an antioxidant IR1520 BASF
  • the reaction temperature is maintained at 75 ° C. in the first reactor, 85 ° C. in the second reactor, and 85 ° C. in the third reactor, and when the polymerization conversion rate of the first reactor reaches 68%, A modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the polymer was transferred to two reactors.
  • the reaction temperature is maintained at 75 ° C. in the first reactor, 85 ° C. in the second reactor, and 85 ° C. in the third reactor, and when the polymerization conversion rate of the first reactor reaches 73%, Transfer the polymer to 2 reactors and add N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3,6,9 to n-hexane as the modifier.
  • the reaction temperature is maintained at 70 ° C. in the first reactor, and when the polymerization conversion rate of the first reactor reaches 48%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe, and dimethyldichloro in n-hexane as a modifier.
  • the reaction temperature was maintained at 75 ° C. in the first reactor, and the polymerization was carried out from the first reactor to the second reactor through the transfer pipe when the polymerization conversion rate of the first reactor reached 59%.
  • a modified conjugated diene-based polymer was prepared.
  • the reaction temperature was maintained at 85 ° C. in the first reactor, and the polymerization was carried out from the first reactor to the second reactor through the transfer pipe when the polymerization conversion rate of the first reactor reached 78%.
  • a modified conjugated diene-based polymer was prepared.
  • the reaction temperature is maintained at 75 ° C. in the first reactor, 85 ° C. in the second reactor, and 85 ° C. in the third reactor, and when the polymerization conversion rate of the first reactor reaches 67%,
  • the polymerization product is transferred from the first reactor to the second reactor through a transfer pipe, and transferred to n-hexane as a modifier.
  • Modification was carried out in the same manner as in Example 12, except that the solution containing N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine was continuously injected and polymerized.
  • styrene unit (SM) and vinyl (Vinyl) content in each polymer was measured and analyzed using Varian VNMRS 500 MHz NMR.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatohraph (GPC) analysis, and the molecular weight distribution (PDI, MWD, Mw / Mn) was calculated from the respective measured molecular weights.
  • GPC gel permeation chromatohraph
  • the GPC uses a combination of two PLgel Olexis (Polymer Laboratories) columns and one PLgel mixed-C (Polymer Laboratories) columns and the GPC standard material is PS (polystyrene) when calculating the molecular weight. It was carried out using.
  • GPC measurement solvent was prepared by mixing 2 wt% of an amine compound with tetrahydrofuran.
  • the pattern viscosity (MV, (ML1 + 4, @ 100 °C) MU) was measured using a Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor at 100 °C using MV-2000 (ALPHA Technologies, Inc.), Samples were allowed to stand at room temperature (23 ⁇ 3 ° C.) for at least 30 minutes, and then collected 27 ⁇ 3 g, filled into the die cavity, and platen operated for 4 minutes.
  • the Si content was measured using an inductively coupled plasma luminescence analyzer (ICP-OES; Optima 7300DV) for ICP analysis.
  • ICP-OES inductively coupled plasma luminescence analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr).
  • Modifier A 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-diethylpropan-1-amine)
  • Modifier B N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine
  • Modifier C 3,13-dimethoxy-3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane
  • Modifier D N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3,6,9,12-tetraoxahexadecane-1- Amine
  • Modifier E N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine
  • the modified conjugated diene-based polymer of Examples 1 to 14 according to an embodiment of the present invention are all PDI less than 1.7, Si content is 100 It confirmed that it was more than ppm.
  • the modified conjugated diene-based polymers of Comparative Example 1 and Comparative Examples 3 to 9 all had a PDI of more than 1.7.
  • the modified conjugated diene-based polymer of Example 1 according to an embodiment of the present invention the molecular weight distribution curve by gel permeation chromatography showed a unimodal form (see Fig. 1), Comparative Example 2 prepared by a batch reaction In the modified conjugated diene-based polymer of the molecular weight distribution curve by gel permeation chromatography showed a bimodal form (see Fig. 2).
  • Each modified or unmodified conjugated diene-based polymer of Examples and Comparative Examples was blended under the blending conditions shown in Table 4 below as a raw material rubber.
  • the raw materials in Table 4 are each parts by weight based on 100 parts by weight of the raw rubber.
  • the rubber specimen is kneaded through the first stage kneading and the second stage kneading.
  • the raw rubber, silica (filler), organosilane coupling agent, process oil, galvanizing agent, stearic acid, antioxidant, antioxidant and wax were kneaded using a half-variety mixer attached with a temperature controller.
  • the initial temperature of the kneader was controlled at 70 ° C., and the primary compound was obtained at the discharge temperature of 145 ° C. to 155 ° C. after the completion of the mixing.
  • the primary compound, sulfur, a rubber accelerator, and a vulcanization accelerator were added to the kneader, and it mixed at the temperature of 100 degrees C or less, and obtained the secondary compound. Thereafter, rubber specimens were prepared through a curing process at 160 ° C. for 20 minutes.
  • Tensile properties were prepared in accordance with the tensile test method of ASTM 412 and measured the tensile strength at the cutting of the specimen and the tensile stress (300% modulus) at 300% elongation. Specifically, the tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron) tensile tester.
  • Viscoelastic properties were determined by measuring the viscoelastic behavior for dynamic deformation at 10 Hz frequency and each measurement temperature (-60 °C ⁇ 60 °C) in the film tension mode using a dynamic mechanical analyzer (GABO).
  • GABO dynamic mechanical analyzer
  • each of the results of Examples 1 to 6 and Comparative Examples 2 to 4 was shown by exponential indexing the results of Comparative Example 1 to 100, Examples 7 to 10, Comparative Example 6 and comparison
  • Each result of Example 7 was expressed by exponentially the result value of Comparative Example 5 to 100, each result value of Examples 11 to 14 and Comparative Example 9 is exponentialized by the result value of Comparative Example 8 to 100 Indicated.
  • each secondary blend was left at room temperature (23 ⁇ 3 °C) for 30 minutes or more 27 ⁇ 3 g was taken and filled into the die cavity and platen operated for 4 minutes.
  • Examples 1 to 14 according to an embodiment of the present invention is improved in tensile properties, viscoelastic properties and workability properties compared to Comparative Examples 1 to 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 변성 공액디엔계 중합체에 관한 것으로, 보다 상세하게는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.7 미만이며, Si 함량이 중량을 기준으로 100 ppm 이상이고, 방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 내지 30 중량% 미만으로 포함하는 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물을 제공한다.

Description

변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
[관련출원과의 상호인용]
본 출원은 2017.01.03자 한국 특허 출원 제10-2017-0000749호 및 2017.07.31자 한국 특허 출원 제10-2017-0097189에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 변성 공액디엔계 중합체에 관한 것으로, 보다 상세하게는 연속 중합에 의해 제조되어, 가공성이 뛰어나면서도, 분자량 분포가 좁아 물성이 우수한 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 젖은 노면 저항성으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ, 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 젖은 노면 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 중합체 또는 공중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액중합에 의한 SBR이 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우, 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다. 상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다. 예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매 하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.
한편, 상기 SBR 또는 BR의 중합은 회분식(batch) 또는 연속식 중합에 의해 실시될 수 있는데, 회분식 중합에 의하는 경우, 제조된 중합체의 분자량 분포가 좁아 물성 개선 측면에서 장점이 있으나, 생산성이 낮고, 가공성이 열악한 문제점이 있고, 연속식 중합에 의하는 경우, 중합이 연속적으로 이루어져 생산성이 뛰어나고, 가공성 개선 측면에서 장점이 있으나, 분자량 분포가 넓어 물성이 열악한 문제점이 있다. 이에, SBR 또는 BR 제조 시, 생산성, 가공성 및 물성을 모두 동시에 개선시키기 위한 연구가 지속적으로 요구되고 있는 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 연속식 중합에 의해 제조되어 가공성이 뛰어나면서도, 인장 특성 등의 물성이 우수하고, 점탄성 특성이 뛰어난 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.7 미만이며, Si 함량이 중량을 기준으로 100 ppm 이상이고, 방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 내지 30 중량% 미만으로 포함하는 변성 공액디엔계 중합체를 제공한다.
또한, 본 발명은 상기 변성 공액디엔계 중합체 및 충진제를 포함하는 고무 조성물을 제공한다.
본 발명에 따른 변성 공액디엔계 중합체는, 연속식 중합에 제조되기 때문에, 가공성이 뛰어나면서도, 회분식 중합에 의해 제조된 변성 공액디엔계 중합체와 동등 이상 수준의 좁은 분자량 분포를 가짐으로써, 인장 특성 등의 물성이 우수하고, 점탄성 특성이 뛰어난 효과가 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안된다.
도 1은, 본 발명의 일 실시예에 따른 실시예 1의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른 비교예 2의 변성 공액디엔계 중합체의 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선을 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고, 분자량 분포(PDI; MWD)가 1.7 미만이며, Si 함량이 중량을 기준으로 100 ppm 이상이고, 방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 내지 30 중량% 미만으로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위 및 변성제 유래 작용기를 포함할 수 있다. 상기 공액디엔계 단량체 유래 반복 단위는 공액디엔계 단량체가 중합 시 이루는 반복 단위를 의미할 수 있고, 상기 변성제 유래 작용기는 활성 중합체와 변성제 간의 반응 또는 커플링을 통해 활성 중합체의 일측 말단에 존재하는 변성제로부터 유래된 작용기를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌, 2-페닐-1,3-부타디엔 및 2-할로-1,3-부타디엔(할로는 할로겐 원자를 의미한다)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
한편, 상기 변성 공액디엔계 중합체는 방향족 비닐 단량체 유래 반복 단위를 포함하는 공중합체로서, 방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 내지 30 중량% 미만으로 포함할 수 있고, 이 범위 내에서 구름 저항 및 젖은 노면 저항성 간의 밸런스가 뛰어난 효과가 있다.
상기 방향족 비닐 단량체는 일례로 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌, 1-비닐-5-헥실나프탈렌, 3-(2-피롤리디노 에틸)스티렌(3-(2-pyrrolidino ethyl)styrene), 4-(2-피롤리디노 에틸)스티렌(4-(2-pyrrolidino ethyl)styrene) 및 3-(2-피롤리디노-1-메틸 에틸)-α-메틸스티렌(3-(2-pyrrolidino-1-methyl ethyl)styrene)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는, 상기 공액디엔계 단량체 유래 반복 단위와 함께 탄소수 1 내지 10의 디엔계 단량체 유래 반복 단위를 더 포함하는 공중합체일 수 있다. 상기 디엔계 단량체 유래 반복 단위는 상기 공액디엔계 단량체와는 상이한 디엔계 단량체로부터 유래된 반복 단위일 수 있고, 상기 공액디엔계 단량체와는 상이한 디엔계 단량체는 일례로 1,2-부타디엔일 수 있다. 상기 변성 공액디엔계 중합체가 디엔계 단량체를 더 포함하는 공중합체인 경우, 상기 변성 공액디엔계 중합체는 디엔계 단량체 유래 반복 단위를 0 중량% 초과 내지 1 중량%, 0 중량% 초과 내지 0.1 중량%, 0 중량% 초과 내지 0.01 중량%, 또는 0 중량% 초과 내지 0.001 중량%로 포함할 수 있고, 이 범위 내에서 겔 생성을 방지하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 공중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런스가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol, 10,000 g/mol 내지 1,000,000 g/mol, 또는 100,000 g/mol 내지 800,000 g/mol일 수 있고, 중량평균 분자량(Mw)가 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 2,000,000 g/mol일 수 있으며, 이 범위 내에서 구름 저항 및 젖은 노면 저항성이 우수한 효과가 있다. 또 다른 예로, 상기 변성 공액디엔계 중합체는 분자량 분포(PDI; MWD; Mw/Mn)가 1.7 미만, 1.0 이상 내지 1.7 미만, 또는 1.1 이상 내지 1.7 미만일 수 있고, 이 범위 내에서 인장특성 및 점탄성 특성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다. 이와 동시에, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖는 것으로, 이는 연속식 중합에 의해 중합된 중합체에서 나타나는 분자량 분포로써, 변성 공액디엔계 중합체가 균일할 특성을 갖는 것을 의미할 수 있다. 즉, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 연속식 중합에 의해 제조되어, 유니모달 형태의 분자량 분포 곡선을 가지면서도, 분자량 분포가 1.7 미만인 것일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 Si 함량이 중량을 기준으로, 100 ppm 이상, 100 ppm 내지 10,000 ppm, 또는 100 ppm 내지 5,000 ppm일 수 있고, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 Si 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 Si 원자의 함량을 의미할 수 있다. 한편, 상기 Si 원자는 변성제 유래 작용기로부터 유래된 것일 수 있다.
상기 Si 함량은 일례로 ICP 분석 방법을 통해 측정된 것일 수 있고, 상기 ICP 분석 방법은 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정된 것일 수 있다. 상기 유도 결합 플라즈마 발광 분석기를 이용하는 경우, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr).
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정한 것일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피에 의한 표준 폴리스티렌 환산 분자량에 있어서 분자량 100,000 g/mol 이상의 중합체 성분이 유니모달이고, 분자량 분포(PDI; MWD)가 2.0 이하이고, 수평균 분자량(Mn)이 250,000 g/mol 내지 700,000 g/mol이고, 부타디엔 단위의 비닐 함유량이 20 몰% 내지 80 몰% 이하이고, Si 함량이 중량을 기준으로 100 ppm 이상이고, 관능기를 갖는 중합체 성분의 함유량이 50 중량% 이상이며, 방향족 비닐 단량체 유래 반복 단위를 0 중량% 초과 내지 15 중량% 미만으로 포함하는 것일 수 있다.
상기 변성 공액디엔계 중합체는 무니 점도(Mooney viscosity)가 100℃에서, 30 이상, 40 내지 150, 또는 40 내지 140일 수 있고, 이 범위 내에서 가공성 및 생산성이 우수한 효과가 있다.
또한, 상기 변성 공액디엔계 중합체는 비닐 함량이 5 중량% 이상, 10 중량% 이상, 또는 10 중량% 내지 60 중량%일 수 있다. 여기에서, 상기 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 공액디엔계 공중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 의미할 수 있다.
본 발명에 따른 상기 변성제는 공액디엔계 중합체의 말단을 변성시키기 위한 변성제일 수 있고, 구체적인 예로 실리카 친화성 변성제일 수 있다. 상기 실리카 친화성 변성제는 변성제로 이용되는 화합물 내에 실리카 친화성 작용기를 함유하는 변성제를 의미하는 것일 수 있고, 상기 실리카 친화성 작용기는 충진제, 특히 실리카계 충진제와 친화성이 우수하여, 실리카계 충진제와 변성제 유래 작용기 간의 상호작용이 가능한 작용기를 의미하는 것일 수 있다.
상기 변성제는 일례로 알콕시 실란계 변성제일 수 있고, 구체적인 예로 질소 원자, 산소 원자, 또는 황 원자 등의 헤테로 원자를 1개 이상 함유하는 알콕시 실란계 변성제일 수 있다. 상기 알콕시 실란계 변성제를 이용하는 경우, 활성 중합체의 일측 말단에 위치한 음이온 활성 부위와, 알콕시 실란계 변성제의 알콕시기 간의 치환 반응을 통해, 활성 중합체의 일측 말단이 실릴기와 결합한 형태로 변성이 실시될 수 있고, 이에 따라 변성 공액디엔계 중합체의 일측 말단에 존재하는 상기 변성제 유래 작용기로부터 무기 충진제 등과의 친화성이 향상되어 변성 공액디엔계 중합체를 포함하는 고무 조성물의 기계적 물성이 향상되는 효과가 있다. 아울러, 상기 알콕시 실란계 변성제가 질소 원자를 함유하는 경우에는, 상기 실릴기로부터 유래되는 효과 이외에도, 질소 원자로부터 유래되는 부가적인 물성 상승 효과를 기대할 수 있다.
본 발명의 일 실시예에 따르면, 상기 변성제는 하기 화학식 1로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2017014424-appb-I000001
상기 화학식 1에서, R1은 단일 결합, 또는 탄소수 1 내지 10의 알킬렌기일 수 있고, R2 및 R3은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R4는 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알킬기로 치환된 2가, 3가 또는 4가의 알킬실릴기, 또는 탄소수 2 내지 10의 헤테로 고리기일 수 있고, R21은 단일 결합, 탄소수 1 내지 10의 알킬렌기, 또는 -[R42O]j-일 수 있으며, R42는 탄소수 1 내지 10의 알킬렌기일 수 있고, a 및 m은 각각 독립적으로 1 내지 3에서 선택된 정수일 수 있으며, n은 0, 1, 또는 2의 정수일 수 있고, j는 1 내지 30에서 선택된 정수일 수 있다.
구체적인 예로, 상기 화학식 1에서, R1은 단일 결합, 또는 탄소수 1 내지 5의 알킬렌기일 수 있고, R2 및 R3은 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기일 수 있고, R4는 수소, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 알킬기로 치환된 4가의 알킬실릴기, 또는 탄소수 2 내지 5의 헤테로 고리기일 수 있으며, R21은 단일 결합, 또는 탄소수 1 내지 5의 알킬렌기, 또는 -[R42O]j-일 수 있으며, R42는 탄소수 1 내지 5의 알킬렌기일 수 있고, a는 2 또는 3의 정수일 수 있고, m은 1 내지 3에서 선택된 정수일 수 있으며, n은 0, 1, 또는 2의 정수일 수 있으며, 이 때, m+n=3일 수 있고, n이 2인 경우 복수의 R9는 서로 동일하거나 상이할 수 있으며, j는 1 내지 10에서 선택된 정수일 수 있다.
상기 화학식 1에서, R4가 헤테로 고리기인 경우, 상기 헤테로 고리기는 3치환 알콕시 실릴기로 치환 또는 비치환된 것일 수 있고, 상기 헤테로 고리기가 3치환 알콕시 실릴기로 치환된 경우, 상기 3치환 알콕시 실릴기는 탄소수 1 내지 10의 알킬렌기에 의해 상기 헤테로 고리기에 연결되어 치환된 것일 수 있으며, 상기 3치환 알콕시 실릴기는 탄소수 1 내지 10의 알콕시기로 치환된 알콕시 실릴기를 의미할 수 있다.
보다 구체적인 예로, 상기 화학식 1로 표시되는 화합물은 N,N-비스(3-(디메톡시(메틸)실릴)프로필) -메틸-1-아민(N,N-bis(3-(dimethoxy(methyl)silyl)propyl)-methyl-1-amine), N,N-비스(3-(디에톡시(메틸)실릴)프로필)- 메틸-1-아민(N,N-bis(3-(diethoxy(methyl)silyl)propyl)-methyl-1-amine), N,N-비스(3-(트리메톡시실릴)프로필)-메틸-1-아민(N,N-bis(3-(trimethoxysilyl)propyl)-methyl-1-amine), N,N-비스(3-(트리에톡시실릴)프로필)-메틸-1-아민(N,N-bis(3-(triethoxysilyl)propyl)-methyl-1-amine), N,N-디에틸-3-(트리메톡시실릴)프로판-1-아민(N,N-diethyl-3-(trimethoxysilyl)propan-1-amine), N,N-디에틸-3-(트리에톡시실릴)프로판-1-아민(N,N-diethyl-3-(triethoxysilyl)propan-1-amine), 트리(트리메톡시실릴)아민(tri(trimethoxysilyl)amine), 트리(3-(트리메톡시실릴)프로필)아민(tri-(3-(trimethoxysilyl)propyl)amine), N,N-비스(3-(디에톡시(메틸)실릴)프로필)-1,1,1-트리메틸실란아민(N,N-bis(3-(diethoxy(methyl)silyl)propyl)-1,1,1-trimethlysilanamine), N,N-비스(3-(1H-이미다졸-1-일)프로필)-(트리에톡시실릴)메탄-1-아민(N,N-bis(3-(1H-imidazol-1-yl)propyl)-(triethoxysilyl)methan-1-amine), N-(3-(1H-1,2,4-트리아졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-1,2,4-triazole-1-yl)propyl)-3-(trimethoxysilyl)-N-(trimethoxysilyl)propyl)propan-1-amine), 3-(트리메톡시실릴)-N-(3-트리메톡시실릴)프로필)-N-(3-(1-(3-(트리메톡시실릴)프로필)-1H-1,2,4-트리아졸-3-일)프로필)프로판-1-아민(3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)-N-(3-(1-(3-(trimehtoxysilyl)propyl)-1H-1,2,4-triazol-3-yl)propyl)propan-1-amine), N,N-비스(2-(2-메톡시에톡시)에틸)-3-(트리에톡시실릴)프로판-1-아민(N,N-bis(2-(2-methoxyethoxy)ethyl)-3-(triethoxysilyl)propna-1-amine), N,N-비스(3-(트리에톡시실릴)프로필)-2,5,8,11,14-펜타옥사헥사데칸-16-아민(N,N-bis(3-(triethoxysilyl)propyl)-2,5,8,11,14-pentaoxahexadecan-16-amine), N-(2,5,8,11,14-펜타옥사헥사데칸-16-일)-N-(3-(트리에톡시실릴)프로필)-2,5,8,11,14-펜타옥사헥사데칸-16-아민(N-(2,5,8,11,14-pentaoxahexadecan-16-yl)-N-(3-(triethoxysilyl)propyl)-2,5,8,11,14-pentaoxahexadecan-16-amine) 및 N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라d옥사헥사데칸-1-아민(N-(3,6,9,12-tetraoxahexadecyl)-N-(3-(triethoxysilyl)propyl)-3,6,9,12-tetraoxahexadecan-1-amine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 2로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2017014424-appb-I000002
상기 화학식 2에서, R5, R6 및 R9는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있고, R7, R8, R10 및 R11은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R12는 수소 또는 탄소수 1 내지 10의 알킬기일 수 있고, b 및 c는 각각 독립적으로 0, 1, 2 또는 3이고, b+c≥1일 수 있으며, A는
Figure PCTKR2017014424-appb-I000003
또는
Figure PCTKR2017014424-appb-I000004
일 수 있으며, 이 때, R13, R14, R15 및 R16은 각각 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기일 수 있다.
구체적인 예로, 상기 화학식 2로 표시되는 화합물은 N-(3-(1H-이미다졸-1-일)프로필)- 3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N- (3-(1H-imidazol-1-yl)propyl)- 3-(triethoxysilyl)-N-(2-(tritehoxysilyl)propyl)propan-1-amine) 및 3-(4,5-디하이드로-1H-이미다졸-1-일)-N,N-비스(3-(트리에톡시실릴)프로필)프로판-1-아민(3-(4,5-dihydro-1H-imidazol-1-yl)-N,N-bis(3-(triethoxysilyl)propyl)propan-1-amine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 3으로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 3]
Figure PCTKR2017014424-appb-I000005
상기 화학식 3에서, A1 및 A2는 각각 독립적으로 산소원자를 포함하거나 포함하지 않는 탄소수 1 내지 20의 2가 탄화수소기일 수 있고, R17 내지 R20은 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기일 수 있으며, L1 내지 L4는 각각 독립적으로 탄소수 1 내지 10의 알킬기로 치환된 2가, 3가 또는 4가의 알킬실릴기, 또는 탄소수 1 내지 20의 1가 탄화수소기이거나, L1 및 L2와, L3 및 L4는 서로 연결되어 탄소수 1 내지 5의 고리를 형성할 수 있고, L1 및 L2와, L3 및 L4가 서로 연결되어 고리를 형성하는 경우, 형성된 고리는 N, O 및 S로 이루어진 군으로부터 선택된 1종 이상의 헤테로 원자를 1개 내지 3개 포함할 수 있다.
구체적인 예로, 상기 화학식 3에서, A1 및 A2는 각각 독립적으로 1 내지 10의 알킬렌기일 수 있고, R17 내지 R20은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, L1 내지 L4는 각각 독립적으로 탄소수 1 내지 5의 알킬기로 치환된 4가의 알킬실릴기, 탄소수 1 내지 10의 알킬기이거나, L1 및 L2와, L3 및 L4는 서로 연결되어 탄소수 1 내지 3의 고리를 형성할 수 있고, L1 및 L2와, L3 및 L4가 서로 연결되어 고리를 형성하는 경우, 형성된 고리는 N, O 및 S로 이루어진 군으로부터 선택된 1종 이상의 헤테로 원자를 1개 내지 3개 포함할 수 있다.
보다 구체적인 예로, 상기 화학식 3으로 표시되는 화합물은 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimpropylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dipropylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dipropylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), N,N'-((1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라프로톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), N,N'-((1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), N,N'-((1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라메톡시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetramethoxydisiloxane), 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라에톡시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetraethoxydisiloxane), 및 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라프로폭시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetrapropoxydisiloxane)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 4로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 4]
상기 화학식 4에서, R22 및 R23은 각각 독립적으로 탄소수 1 내지 20의 알킬렌기, 또는 -R28[OR29]f-이고, R24 내지 R27은 각각 독립적으로 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 20의 아릴기일 수 있고, R28 및 R29는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기일 수 있고, R47 및 R48는 각각 독립적으로 탄소수 1 내지 6의 2가 탄화수소기일 수 있으며, d 및 e는 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, d+e는 1 이상의 정수이고, f는 1 내지 30의 정수일 수 있다.
구체적으로, 상기 화학식 4에서, R22 및 R23은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기, 또는 -R28[OR29]f-일 수 있고, R24 내지 R27은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R28 및 R29는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있고, d 및 e는 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, d+e는 1 이상의 정수일 수 있으며, f는 1 내지 30에서 선택된 정수일 수 있다.
보다 구체적으로, 상기 화학식 4로 표시되는 화합물은 하기 화학식 4a, 화학식 4b 또는 화학식 4c로 표시되는 화합물일 수 있다.
[화학식 4a]
Figure PCTKR2017014424-appb-I000007
[화학식 4b]
Figure PCTKR2017014424-appb-I000008
[화학식 4c]
Figure PCTKR2017014424-appb-I000009
상기 화학식 4a, 화학식 4b 및 화학식 4c에서 R22 내지 R27, d 및 e는 전술한 바와 같다.
보다 구체적인 예로, 상기 화학식 4로 표시되는 화합물은 1,4-비스(3-(3-(트리에톡시실릴)프로폭시)프로필)피페라진(1,4-bis(3-(3-(triethoxysilyl)propoxy)propyl)piperazine, 1,4-비스(3-(트리에톡시실릴)프로필)피페라진(1,4-bis(3-(triethoxysilyl)propyl)piperazine), 1,4-비스(3-(트리메톡시실릴)프로필)피페라진(1,4-bis(3-(trimethoxysilyl)propyl)piperazine), 1,4-비스(3-(디메톡시메틸실릴)프로필)피페라진(1,4-bis(3-(dimethoxymethylsilyl)propyl)piperazine), 1-(3-(에톡시디메틸실릴)프로필)-4-(3-(트리에톡시실릴)프로필)피페라진(1-(3-(ethoxydimethlylsilyl)propyl)-4-(3-(triethoxysilyl)propyl)piperazine), 1-(3-(에톡시디메틸)프로필)-4-(3-(트리에톡시실릴)메틸)피페라진(1-(3-(ethoxydimethyl)propyl)-4-(3-(triethoxysilyl)methyl)piperazine), 1-(3-(에톡시디메틸)메틸)-4-(3-(트리에톡시실릴)프로필)피페라진(1-(3-(ethoxydimethyl)methyl)-4-(3-(triethoxysilyl)propyl)piperazine), 1,3-비스(3-(트리에톡시실릴)프로필)이미다졸리딘(1,3-bis(3-(triethoxysilyl)propyl)imidazolidine), 1,3-비스(3-(디메톡시에틸실릴)프로필)이미다졸리딘(1,3-비스(3-(dimethoxyethylsilyl)propyl)imidazolidine), 1,3-비스(3-(트리메톡시실릴)프로필)헥사히드로피리미딘(1,3-bis(3-(trimethoxysilyl)propyl)hexahydropyrimidine), 1,3-비스(3-(트리에톡시실릴)프로필)헥사히드로피리미딘(1,3-bis(3-(triethoxysilyl)propyl)hexahydropyrimidine) 및 1,3-비스(3-(트리부톡시실릴)프로필)-1,2,3,4-테트라히드로피리미딘(1,3-bis(3-(tributoxysilyl)propyl)-1,2,3,4-tetrahydropyrimidine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 5로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 5]
Figure PCTKR2017014424-appb-I000010
상기 화학식 5에서, R30은 탄소수 1 내지 30의 1가 탄화수소기일 수 있고, R31 내지 R33은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있으며, R34 내지 R37은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있고, g 및 h는 각각 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, g+h는 1 이상의 정수일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 6으로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 6]
Figure PCTKR2017014424-appb-I000011
상기 화학식 6에서, A3 및 A4는 각각 독립적으로 1 내지 10의 알킬렌기일 수 있고, R38 내지 R41은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 또는 탄소수 1 내지 10의 알콕시기일 수 있으며, i는 1 내지 30에서 선택된 정수일 수 있다.
또 다른 예로, 상기 변성제는 3,4-비스(2-메톡시데톡시)-N-(4-(트리에톡시실릴)부틸)아닐린(3,4-bis(2-methoxyethoxy)-N-(4-(trimethylsilyl)butyl)aniline), N,N-디에틸-3-(7-메틸-3,6,8,11-테트라옥사-7-실라트리데칸-7-일)프로판-1-아민(N,N-diethyl-3-(7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl)propan-1-amine), 2,4-비스(2-메톡시데톡시)-6-((트리메틸실릴)메틸)-1,3,5-트리아진(2,4-bis(2-methoxyethoxy)-6-((trimethylsilyl)methyl)-1,3,5-triazine) 및 3,14-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트라실라펜타데칸(3,13-dimethoxy-3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 7로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 7]
Figure PCTKR2017014424-appb-I000012
상기 화학식 7에서, R43, R45 및 R46은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있고, R44는 탄소수 1 내지 10의 알킬렌기일 수 있으며, k는 1 내지 4에서 선택된 정수일 수 있다.
보다 구체적인 예로, 상기 화학식 7로 표시되는 화합물은 8,8-디부틸-3,13-디메톡시-3,13-디메틸-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-디메틸-3,13-디메톡시-3,13-디메틸-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dimetyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-디부틸-3,3,13,13-테트라메톡시-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dibutyl-3,3,13,13-tetramethoxy-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane) 및 8-부틸-3,3,13,13-테트라메톡시-8-((3-(트리메톡시실릴)프로필)티오)-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8-butyl-3,3,13,13-tetramethoxy-8-((3-(trimehtoxysilyl)propyl)thio)-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane)로 이루어진 군으로부터 선택된 1종일 수 있다.
본 발명에서 용어 '1가 탄화수소기'는 1가의 알킬기, 알케닐기, 알카이닐기, 시클로알킬기, 불포화 결합을 1 이상 포함하는 시클로알킬기 및 아릴기 등의 탄소와 수소가 결합된 1가의 원자단을 의미할 수 있고, 1가 탄화수소로 표시되는 치환기의 최소 탄소 원자수는 각 치환기의 종류에 따라 결정될 수 있다.
본 발명에서 용어 '2가 탄화수소기'는 2가의 알킬렌기, 알케닐렌기, 알카이닐렌기, 시클로알킬렌기, 불포화 결합을 1 이상 포함하는 시클로알킬렌기 및 아릴렌기 등의 탄소와 수소가 결합된 2가의 원자단을 의미할 수 있고, 2가 탄화수소로 표시되는 치환기의 최소 탄소 원자수는 각 치환기의 종류에 따라 결정될 수 있다.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '알킬렌기(alkylene group)'는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 용어 '알케닐기(alkenyl group)'는 이중 결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.
본 발명에서 용어 '알카이닐기(alkynyl group)'는 삼중 결합을 1개 또는 2개 이상 포함하는 알킬기를 의미할 수 있다.
본 발명에서 용어 '시클로알킬기(cycloalkyl group)'는 환형의 포화 탄화수소, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '아릴기(aryl group)'은 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '헤테로고리기(heterocyclic group)'는 시클로알킬기 또는 아릴기 내의 탄소 원자가 1개 이상의 헤테로 원자로 치환된 시클로알킬기 또는 아릴기를 모두 포함하는 의미일 수 있다.
본 발명은 상기 변성 공액디엔계 중합체를 제조하기 위해, 변성 공액디엔계 중합체 제조방법을 제공한다. 상기 변성 공액디엔계 중합체 제조방법은 탄화수소 용매 중에서, 유기 금속 화합물의 존재 하에, 공액디엔계 단량체 및 방향족 비닐 단량체를 중합하여 유기 금속이 결합된 활성 중합체를 제조하는 단계(S1); 및 상기 (S1) 단계에서 제조된 활성 중합체와 변성제를 반응 또는 커플링시키는 단계(S2)를 포함하고, 상기 (S1) 단계는 2기 이상의 중합 반응기에서 연속적으로 실시되며, 상기 중합 반응기 중 제1 반응기에서의 중합 전환율은 50% 이하인 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol, 0.05 mmol 내지 5 mmol, 0.1 mmol 내지 2 mmol, 0.1 mmol 내지 1 mmol, 또는 0.15 내지 0.8 mmol로 사용할 수 있다. 상기 유기 금속 화합물은 일례로 메틸리튬, 에틸리튬, 프로필리튬, 이소프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 (S1) 단계의 중합은 일례로 음이온 중합일 수 있고, 구체적인 예로 음이온에 의한 성장 중합 반응에 의해 중합 말단에 음이온 활성 부위를 갖는 리빙 음이온 중합일 수 있다. 또한, 상기 (S1) 단계의 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있고, 상기 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 의미할 수 있고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 의미할 수 있으며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 의미할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합은 상기 공액디엔계 단량체 이외에 탄소수 1 내지 10의 디엔계 화합물 더 포함하여 실시될 수 있고, 이 경우 장시간 운전 시 반응기 벽면에 겔이 형성되는 것을 방지하는 효과가 있다. 상기 디엔계 화합물 일례로 1,2-부타디엔일 수 있다.
상기 (S1) 단계의 중합은 일례로 80℃ 이하, -20℃ 내지 80℃, 0℃ 내지 80℃, 0℃ 내지 70℃, 또는 10℃ 내지 70℃의 온도범위에서 실시될 수 있고, 이 범위 내에서 중합체의 분자량 분포를 좁게 조절하여, 물성 개선이 뛰어난 효과가 있다.
상기 (S1) 단계에 의해 제조된 활성 중합체는 중합체 음이온과 유기 금속 양이온이 결합된 중합체를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합에 의해 제조되는 활성 중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체 제조방법은 2기 이상의 중합 반응기 및 변성 반응기를 포함하는 복수의 반응기에서 연속식 중합방법에 의해 실시될 수 있다. 구체적인 예로, 상기 (S1) 단계는 제1 반응기를 포함하여 2기 이상의 중합 반응기에서 연속적으로 실시될 수 있고, 상기 중합 반응기의 수는 반응 조건 및 환경에 따라 탄력적으로 결정될 수 있다. 상기 연속식 중합방법은 반응기에 반응물을 연속적으로 공급하고, 생성된 반응 생성물을 연속적으로 배출하는 반응 공정을 의미할 수 있다. 상기 연속식 중합방법에 의하는 경우, 생산성 및 가공성이 우수하고, 제조되는 중합체의 균일성이 뛰어난 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 중합 반응기에서 연속적으로 활성 중합체 제조 시, 제1 반응기에서의 중합 전환율은 50% 이하, 10% 내지 50%, 또는 20% 내지 50% 일 수 있고, 이 범위 내에서 중합 반응기 개시된 후, 중합체가 형성되면서 발생되는 부반응을 억제하여 중합 시, 선형(linear) 구조의 중합체를 유도할 수 있으며, 이에 따라 중합체의 분자량 분포를 좁게 조절하는 것이 가능하여, 물성 개선이 뛰어난 효과가 있다.
이때, 상기 중합 전환율은 반응온도, 반응기 체류시간 등에 따라 조절될 수 있다.
상기 중합 전환율은 일례로 중합체의 중합 시, 중합체를 포함하는 중합체 용액 상의 고체 농도를 측정하여 결정될 수 있고, 구체적인 예로, 상기 중합체 용액을 확보하기 위해 각 중합 반응기의 출구에 실린더형 용기를 장착하여 일정양의 중합체 용액을 실린더형 용기에 채우고, 상기 실린더형 용기를 반응기로부터 분리하여 중합체 용액이 충진되어 있는 실린더의 무게(A)를 측정한 후, 실린더형 용기에 충진되어 있는 중합체 용액을 알루미늄 용기, 일례로 알루미늄 디쉬에 옮기고 중합체 용액이 제거된 실린더형 용기의 무게(B)를 측정하고, 중합체 용액이 담긴 알루미늄 용기를 140℃의 오븐에서 30분 간 건조시키고, 건조된 중합체의 무게(C)를 측정한 뒤, 하기 수학식 1에 따라 계산한 것일 수 있다.
[수학식 1]
Figure PCTKR2017014424-appb-I000013
한편, 상기 제1 반응기에서 중합된 중합물은 변성 반응기 전의 중합 반응기까지 순차적으로 이송되어 최종적으로 중합 전환율이 95% 이상이 될 때까지 중합이 진행될 수 있고, 제1 반응기에서 중합된 이후, 제2 반응기, 또는 제2 반응기 내지 변성 반응기 전의 중합 반응기까지 각 반응기별 중합 전환율은 분자량 분포의 조절을 위해 각 반응기 별로 적절히 조절하여 실시될 수 있다.
한편, 상기 (S1) 단계에서, 활성 중합체 제조 시, 제1 반응기에서의 중합물 체류 시간은 1분 내지 70분, 1분 내지 50분, 또는 5분 내지 40분일 수 있고, 이 범위 내에서, 중합 전환율의 조절이 용이하고, 이에 따라 중합체의 분자량 분포를 좁게 조절하는 것이 가능하고, 이에 따라, 물성 개선이 뛰어난 효과가 있다.
본 발명에서 용어 '중합물'은 (S1) 단계 또는 (S2) 단계가 완료되어, 활성 중합체, 또는 변성 공액디엔계 중합체를 수득하기에 앞서, (S1) 단계 실시 중, 각 반응기 내에서 중합이 실시되고 있는 중합체 형태의 중간체를 의미할 수 있고, 반응기 내에서 중합이 실시되고 있는 중합 전환율 99% 미만의 중합체를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계에서 제조된 활성 중합체의 분자량 분포(PDI, polydispersed index; MWD, molecular weight distribution; Mw/Mn)는 1.5 미만, 1.0 이상 내지 1.5 미만, 또는 1.1 이상 내지 1.5 미만일 수 있고, 이 범위 내에서 변성제와의 변성 반응 또는 커플링을 통해 제조되는 변성 공액디엔계 중합체의 분자량 분포가 좁아, 물성 개선이 뛰어난 효과가 있다.
한편, 상기 (S1) 단계의 중합은 극성첨가제를 포함하여 실시될 수 있고, 상기 극성첨가제는 단량체 총 100g을 기준으로 0.001g 내지 50g, 0.001g 내지 10g, 0.005g 내지 5g, 또는 0.005g 내지 4g의 비율로 첨가할 수 있다. 또 다른 예로, 상기 극성첨가제는 유기 금속 화합물 총 1 mol을 기준으로 0.001 mol 내지 100 mol, 또는 0.01 mol 내지 10 mol의 비율로 첨가할 수 있다.
상기 극성첨가제는 일례로 테트라하이드로퓨란, 2,2-디(2-(테트라하이드로퓨릴)프로판, 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민, N,N,N',N'-테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 및 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 트리에틸아민, N,N,N',N'-테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 또는 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether)일 수 있으며, 상기 극성첨가제를 포함하는 경우 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계의 반응 또는 커플링은 변성 반응기에서 실시될 수 있고, 이 때, 상기 변성제는 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol의 양으로 사용할 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계의 유기 금속 화합물 1몰을 기준으로, 1:0.1 내지 10, 1:0.1 내지 5, 또는 1:0.1 내지 1:3의 몰비로 사용할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 변성제는 변성 반응기에 투입될 수 있고, 상기 (S2) 단계는 변성 반응기에서 실시될 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계에서 제조된 활성 중합체를 (S2) 단계를 실시하기 위한 변성 반응기로 이송하기 위한 이송부에 투입될 수 있고, 상기 이송부 내에서 활성 중합체와 변성제의 혼합에 의해 반응 또는 커플링이 진행될 수 있다.
본 발명에 따르면 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물이 제공된다.
상기 고무 조성물은 상기 변성 공액디엔계 중합체를 10 중량% 이상, 10 중량% 내지 100 중량%, 또는 20 중량% 내지 90 중량%의 양으로 포함하는 것일 수 있고, 이 범위 내에서 인장 강도, 내마모성 등의 기계적 물성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있고, 이 때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적인 예로 상기 다른 고무 성분은 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 일례로 천연고무 또는 합성고무일 수 있으며, 구체적인 예로 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 고무 조성물은 일례로 본 발명의 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부, 또는 10 중량부 내지 120 중량부의 충진제를 포함하는 것일 수 있다. 상기 충진제는 일례로 실리카계 충진제일 수 있고, 구체적인 예로 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있으며, 바람직하게는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 뛰어난 습식 실리카일 수 있다. 또한, 상기 고무 조성물은 필요에 따라 카본계 충진제를 더 포함할 수 있다.
또 다른 예로, 상기 충전제로 실리카가 사용되는 경우 보강성 및 저발열성 개선을 위한 실란 커플링제가 함께 사용될 수 있고, 구체적인 예로 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 바람직하게는 보강성 개선 효과를 고려할 때 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은, 고무 성분으로서 활성 부위에 실리카와의 친화성이 높은 작용기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있고, 이에 따라, 상기 실란 커플링제는 실리카 100 중량부에 대하여 1 중량부 내지 20 중량부, 또는 5 중량부 내지 15 중량부로 사용될 수 있으며, 이 범위 내에서 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지하는 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 황 가교성일 수 있고, 가황제를 더 포함할 수 있다. 상기 가황제는 구체적으로 황 분말일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있으며, 이 범위 내에서 가황 고무 조성물의 필요한 탄성률 및 강도를 확보함과 동시에 저연비성이 뛰어난 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 산화 방지제, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 일례로 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
상기 공정유는 고무 조성물 내에서 연화제로서 작용하는 것으로, 일례로 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있고, 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 일례로 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있고, 이 범위 내에서 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지하는 효과가 있다.
상기 산화방지제는 일례로 2,6-디-t-부틸파라크레졸 또는 디부틸히드록시톨루엔일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
상기 노화방지제는 일례로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있고, 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.6 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.6kg/h, n-헥산 47.2kg/h, n-헥산에 1,2-부타디엔이 2.0중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판(DTP) 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이때, 제1 반응기의 온도는 45℃가 되도록 유지하였으며, 중합 전환율이 48%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 60℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 n-헥산에 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine))이 용해된 용액 제3 반응기에 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 60℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 2
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.6 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.6kg/h, n-헥산 47.2 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 36.0 g/h의 속도로 주입하였다.
이 때, 제1 반응기의 온도는 55℃가 되도록 유지하였으며, 중합 전환율이 45%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 n-헥산에 N,N-비스(3-(디에톡시(메틸)실릴)프로필)-메틸-1-아민(N,N-bis(3-(diethoxy(methyl)silyl)propyl)-methyl-1-amine)이 용해된 용액을 제3 반응기에 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 65℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 3
2기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.6 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.6 kg/h, n-헥산 47.2 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이 때, 제1 반응기의 온도는 55℃가 되도록 유지하였으며, 중합 전환율이 50%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 blend Tank로 중합물을 이송하였다.
상기 제2 반응기에서 blend Tank로 중합물 이송 중에, 변성제로 n-헥산에 3,13-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트리실라펜타데칸(3,13-dimethoxy-3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane)이 용해된 용액을 blend Tank로 이송하는 라인에 투입하였다[변성제:act. Li=1:1 mol].
이후, 제2 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 4
반응온도를 제1 반응기에서는 40℃로 유지하고, 중합 전환율이 38%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다.
실시예 5
반응온도를 제1 반응기에서는 40℃로 유지하고, 중합 전환율이 32%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine)이 용액을 투입한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
실시예 6
2기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.6 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 12.6 kg/h, n-헥산 47.2 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이 때, 제1 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 50%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 blend Tank로 중합물을 이송하였다.
상기 제2 반응기에서 blend Tank로 중합물 이송 중에, 변성제로 N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라옥사헥사데칸-1-아민이 용해된 용액을 blend Tank로 이송하는 라인에 투입하였다[변성제:act. Li=1:1 mol].
이 후, 제2 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 7
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 4.58 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 11.5kg/h, n-헥산 47.2kg/h, n-헥산에 1,2-부타디엔이 2.0중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판(DTP) 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이때, 제1 반응기의 온도는 50℃가 되도록 유지하였으며, 중합 전환율이 41%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 60℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 n-헥산에 N,N-비스(3-(디에톡시(메틸)실릴)프로필)-메틸-1-아민이 용해된 용액을 제3 반응기에 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 60℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 8
반응온도를 제1 반응기에서는 60℃로 유지하고, 중합 전환율이 49%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 3,13-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트리실라펜타데칸이 용해된 용액을 투입한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
실시예 9
2기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 4.58 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 11.5 kg/h, n-헥산 47.2 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판 용액을 125.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이 때, 제1 반응기의 온도는 60℃가 되도록 유지하였으며, 중합 전환율이 50%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 0.65 kg/h의 속도로 주입하였다. 이때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 blend Tank로 중합물을 이송하였다.
상기 제2 반응기에서 blend Tank로 중합물 이송 중에, 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민이 용해된 용액을 blend Tank로 이송하는 라인에 투입하였다 [변성제:act. Li=1:1 mol].
이 후, 제2 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 10
극성첨가제로 2,2-디(2-테트라하이드로퓨릴)프로판 대신에 n-헥산에 N,N,N',N'-테트라메틸에틸렌디아민이 35 중량%로 용해된 N,N,N',N'-테트라메틸에틸렌디아민 용액을 100 g/h로 투입하고, 반응온도를 제1 반응기에서는 70℃로 유지하고, 중합 전환율이 45%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민이 용해된 용액을 투입한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
실시예 11
3기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.3 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 10.9 kg/h, n-헥산 39.4 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 테트라메틸에틸렌디아민(TMEDA)이 10 중량%로 용해된 용액을 7.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다.
이 때, 제1 반응기의 온도는 60℃가 되도록 유지하였으며, 중합 전환율이 48%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다. 이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.4 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 제3 반응기로 중합물을 이송하였다.
상기 제2 반응기에서 제3 반응기로 중합물 이송하여, 변성제로 N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라옥사헥사데칸-1-아민이 용해된 용액을 제3 반응기에 투입하였다[변성제:act. Li=1:1 mol]. 제3 반응기의 온도는 65℃가 되도록 유지하였다.
이 후, 제3 반응기에서 배출된 중합 용액에 산화방지제로 30중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 12
2기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.3 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 10.9 kg/h, n-헥산 39.4 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 N,N,N',N'-테트라메틸에틸렌디아민이 10 중량%로 용해된 테 N,N,N',N'-트라메틸에틸렌디아민 용액을 7.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10 중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다. 이 때, 제1 반응기의 온도는 65℃가 되도록 유지하였으며, 중합 전환율이 48%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.4 kg/h의 속도로 주입하였다. 이 때, 제2 반응기의 온도는 70℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 blend Tank로 중합물을 이송하였다.
상기 제2 반응기에서 blend Tank로 중합물 이송 중에, 변성제로 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)이용해된 용액을 blend Tank로 이송하는 라인에 투입하였다[변성제:act. Li=1:1 mol].
이 후, 제2 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 13
2기의 반응기가 직렬로 연결된 연속 반응기 중 제1 반응기에, n-헥산에 스티렌이 60 중량%로 용해된 스티렌 용액을 3.3 kg/h, n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 10.9 kg/h, n-헥산 39.4 kg/h, n-헥산에 1,2-부타디엔이 2.0 중량%로 용해된 1,2-부타디엔 용액을 40 g/h, 극성첨가제로 n-헥산에 2,2-디(2-테트라하이드로퓨릴)프로판이 10 중량%로 용해된 2,2-디(2-테트라하이드로퓨릴)프로판 용액을 2.0 g/h, 중합 개시제로 n-헥산에 n-부틸리튬이 10중량%로 용해된 n-부틸리튬 용액을 46.0 g/h의 속도로 주입하였다. 이 때, 제1 반응기의 온도는 55℃가 되도록 유지하였으며, 중합 전환율이 50%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하였다.
이어서, 제2 반응기에 n-헥산에 1,3-부타디엔이 60 중량%로 용해된 1,3-부타디엔 용액을 2.4 kg/h의 속도로 주입하였다. 이 때, 제2기 반응기의 온도는 70℃가 되도록 유지하였으며, 중합 전환율이 95% 이상이 되었을 때, 이송 배관을 통해, 제2 반응기에서 blend Tank로 중합물을 이송하였다.
상기 제2 반응기에서 blend Tank로 중합물 이송 중에, 변성제로 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)이 용해된 용액을 blend Tank로 이송하는 라인에 투입하였다[변성제:act. Li=1:1 mol].
이 후, 제2 반응기에서 배출된 중합 용액에 산화방지제로 30 중량%로 용해된 IR1520(BASF社) 용액을 170 g/h의 속도로 주입하여 교반하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 변성 공액디엔계 중합체를 제조하였다.
실시예 14
반응온도를 제1 반응기에서는 50℃로 유지하고, 중합 전환율이 42%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 3,13-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트리실라펜타데칸이 용해된 용액을 투입한 것을 제외하고는 상기 실시예 11과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
비교예 1
반응온도를 제1 반응기에서는 55℃, 제2 반응기에서는 65℃, 제3 반응기에서는 65℃로 유지하고 변성제로 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민) 대신 n-헥산에 디메틸디클로로실란(dimethyl dichlorosilane)이 용해된 용액을 투입한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
비교예 2
20 L 오토클레이브 반응기에 스티렌 100 g, 1,3-부타디엔 880 g, n-헥산 5000 g 및 극성첨가제로 2,2-디(2-테트라하이드로퓨릴)프로판 0.89 g을 넣은 후 반응기 내부 온도를 40℃로 승온하였다. 반응기 내부 온도가 40℃에 도달했을 때, 중합개시제로 활성화된 n-부틸리튬 4.7 mmol을 투입하여 단열 승온 반응을 진행시켰다. 20 여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 사슬 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후, N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민 4.7 mmol을 투입하여 15분 간 반응시켰다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 IR1520(BASF社)가 n-헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거하여 공액디엔계 중합체를 제조하였다.
비교예 3
반응온도를 제1 반응기에서는 75℃, 제2 반응기에서는 85℃, 제3 반응기에서는 85℃로 유지하고, 제1 반응기의 중합 전환율이 68%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송한 것을 제외하고는 상기 실시예 1 과 동일하게 실시하여, 변성 공액 디엔계 중합체를 제조하였다.
비교예 4
반응온도를 제1 반응기에서는 75℃, 제2 반응기에서는 85℃, 제3 반응기에서는 85℃로 유지하고, 제1 반응기의 중합 전환율이 73%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라옥사헥사데칸-1-아민이 용해된 용액을 투입하여 중합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
비교예 5
반응온도를 제1 반응기에서는 70℃로 유지하고, 제1 반응기의 중합 전환율이 48%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 디메틸디클로로실란이 용해된 용액을 투입하여 중합한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
비교예 6
반응온도를 제1 반응기에서는 75℃로 유지하고, 제1 반응기의 중합 전환율이 59%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하여 중합한 것을 제외하고는 상기 실시예 10과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다.
비교예 7
반응온도를 제1 반응기에서는 85℃로 유지하고, 제1 반응기의 중합 전환율이 78%가 되었을 때 이송 배관을 통해 제1 반응기에서 제2 반응기로 중합물을 이송하여 중합한 것을 제외하고는 상기 실시예 9과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다.
비교예 8
반응온도를 제1 반응기에서는 75℃, 제2 반응기에서는 85℃, 제3 반응기에서는 85℃로 유지하고, 제1 반응기의 중합 전환율이 67%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 디메틸디클로로실란이 용해된 용액을 연속적으로 주입하여 중합한 것을 제외하고는 상기 실시예 11과 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
비교예 9
반응온도를 제1 반응기에서는 90℃로 유지하고, 제1 반응기의 중합 전환율이 82%가 되었을 때, 이송 배관을 통해, 제1 반응기에서 제2 반응기로 중합물을 이송하고, 변성제로 n-헥산에 N,N-비스(3-(디에톡시(메틸)실릴)프로필)-메틸-1-아민이 용해된 용액을 연속적으로 주입하여 중합한 것을 제외하고는 상기 실시예 12와 동일하게 실시하여, 변성 공액디엔계 중합체를 제조하였다[변성제:act. Li=1:1 mol].
실험예
실험예 1
상기 실시예 및 비교예에서 제조된 각 변성 또는 미변성 공액디엔계 중합체에 대하여 각각 중합체 내 스티렌 단위 및 비닐 함량과 중량평균분자량(Mw, X103g/mol), 수평균분자량(Mn, X103 g/mol), 분자량 분포(PDI, MWD), 무늬 점도(MV), 및 Si의 함량을 각각 측정하였다. 결과를 하기 표 1 내지 표 5에 나타내었다. 또한, 상기 실시예 1 내지 14 및 비교예 1 내지 9에서의 반응조건 및 사용된 극성첨가제, 변성제를 정리하면 하기 표 1에 나타낸 바와 같다.
1) 스티렌 단위 및 비닐 함량(중량%)
상기 각 중합체 내 스티렌 단위(SM) 및 비닐(Vinyl) 함량은 Varian VNMRS 500 MHz NMR을 이용하여 측정 및 분석하였다.
NMR 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐, 5.1~4.5 ppm은 1,2-비닐의 피크로 하여 스티렌 단위 및 비닐 함량을 계산하였다.
2) 중량평균분자량(Mw, X103 g/mol), 수평균분자량(Mn, X103 g/mol) 및 분자량 분포(PDI, MWD)
상기 중량평균분자량(Mw), 수평균분자량(Mn)은 GPC(Gel permeation chromatohraph) 분석을 통하여 측정하였으며, 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 상기 각 분자량으로부터 계산하여 얻었다. 구체적으로, 상기 GPC는 PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용하고 분자량 계산시 GPC 기준물질 (Standard material)은 PS(polystyrene)을 사용하여 실시하였다. GPC 측정 용매는 테트라하이드로퓨란에 2 wt%의 아민 화합물을 섞어서 제조하였다.
3) 무니점도
상기 무늬 점도(MV, (ML1+4, @100℃) MU)는 MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여 측정하였으며, 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.
4) Si 함량
상기 Si 함량은 ICP 분석 방법은 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정되었다. 상기 유도 결합 플라즈마 발광 분석기를 이용하는 경우, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr).
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정하였다.
구분 실시예 비교예
1 2 3 4 5 6 1 2 3 4
반응조건 반응기 개수 3 3 2 3 3 2 3 배치 3 3
극성첨가제 DTP DTP DTP DTP DTP DTP DTP DTP DTP DTP
변성제 A B C A E D F E A D
M:PI 1:1
제1 반응기 온도(℃) 45 55 55 50 50 50 55 40->80 75 75
제1 반응기 중합 전환율(%) 48 45 50 38 32 50 48 - 68 73
NMR(중량%) SM 21 21 21 21 21 21 21 21 21 21
Vinyl 50 50 51 50 49 50 50 50 50 50
GPC Mw(X103 g/mol) 530 490 574 745 604 482 589 514 723 768
Mn(X103 g/mol) 337 310 350 490 380 307 310 317 330 328
PDI 1.57 1.58 1.64 1.52 1.59 1.57 1.90 1.62 2.19 2.34
무니점도(MV) 68 63 73 78 70 69 68 65 70 78
Si 함량(ppm) 200 150 201 232 195 180 30 210 150 80
구분 실시예 비교예
7 8 9 10 5 6 7
반응조건 반응기 개수 3 3 2 3 3 3 2
극성첨가제 DTP DTP DTP TMEDA DTP TMEDA DTP
변성제 B C E E F E E
M:PI 1:1
제1 반응기 온도(℃) 50 60 60 70 70 75 85
제1 반응기 중합 전환율(%) 41 49 30 45 48 59 78
NMR(중량%) SM 27 27 27 27 27 27 27
Vinyl 43 43 43 43 43 43 43
GPC Mw(X103 g/mol) 502 561 583 618 574 671 675
Mn(X103 g/mol) 317 332 362 368 302 298 266
PDI 1.58 1.69 1.61 1.68 1.90 2.25 2.54
무니점도(MV) 65 67 72 74 70 75 76
Si 함량(ppm) 223 180 205 192 75 159 145
구분 실시예 비교예
11 12 13 14 8 9
반응조건 반응기 개수 3 2 2 3 3 2
극성첨가제 TMEDA TMEDA DTP DTP TMEDA TMEDA
변성제 B A A C F B
M:PI 1:1
제1 반응기 온도(℃) 60 65 55 50 75 90
제1 반응기 중합 전환율(%) 48 48 50 42 67 82
NMR(중량%) SM 18 18 18 18 18 18
Vinyl 10 10 10 10 10 10
GPC Mw(X103 g/mol) 624 643 596 551 760 870
Mn(X103 g/mol) 400 420 403 330 400 380
PDI 1.56 1.53 1.48 1.67 1.90 2.29
무니점도(MV) 73 75 75 68 72 84
Si 함량(ppm) 93 187 180 198 69 48
상기 표 1 내지 표 3에서, 극성첨가제 및 변성제의 구체적인 물질 및 사용 비율은 하기와 같다.
* M:PI=변성제와 중합 개시제(act. Li)의 몰비
* DTP: 2,2-디(2-테트라하이드로퓨릴)프로판
* TMEDA: N,N,N',N'-테트라메틸에틸렌디아민
* 변성제 A: 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)
* 변성제 B: N,N-비스(3-(디에톡시(메틸)실릴)프로필)-메틸-1-아민
* 변성제 C: 3,13-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트리실라펜타데칸
* 변성제 D: N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라옥사헥사데칸-1-아민
* 변성제 E: N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필)프로판-1-아민
* 변성제 F: 디메틸디클로로실란
상기 표 1 내지 표 3에 나타난 바와 같이, 상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 14의 변성 공액디엔계 중합체는 모두 PDI가 1.7 미만이고, Si 함량이 100 ppm 이상인 것을 확인하였습니다. 반면에, 비교예 1 및 비교예 3 내지 비교예 9의 변성 공액디엔계 중합체는 모두 PDI가 1.7을 초과하였습니다. 또한, 본 발명의 일 실시예에 따른 실시예 1의 변성 공액디엔계 중합체는 겔 투과 크로마토그래피에 의한 분자량 분포 곡선이 유니모달 형태를 나타내었으나(도 1 참고), 배치 반응으로 제조된 비교예 2의 변성 공액디엔계 중합체는 겔 투과 크로마토그래피에 의한 분자량 분포 곡선이 바이모달 형태를 나타내었습니다(도 2 참고).
실험예 2
상기 실시예 및 비교예에서 제조된 각 변성 또는 미변성 공액디엔계 공중합체를 포함하는 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 인장특성, 점탄성 특성을 각각 측정하여 그 결과를 하기 표 5 내지 표 7에 나타내었다.
1) 고무 시편의 제조
실시예 및 비교예의 각 변성 또는 미변성 공액디엔계 중합체를 원료 고무로 하여 하기 표 4에 나타낸 배합 조건으로 배합하였다. 표 4 내의 원료는 원료 고무 100 중량부 기준에 대한 각 중량부이다.
구분 원료 함량(중량부)
제1단 혼련 고무 100
실리카 70
커플링제(X50S) 11.2
공정유 37.5
아연화제 3
스테아르산 2
산화 방지제 2
노화 방지제 2
왁스 1
제2단 혼련 1.5
고무촉진제 1.75
가황촉진제 2
구체적으로 상기 고무시편은 제1단 혼련 및 제2단 혼련을 통해 혼련된다. 제1단 혼련에서는 온도제어장치를 부속한 반바리 믹서를 사용하여 원료 고무, 실리카(충진제), 유기실란 커플링제, 공정유, 아연화제, 스테아르산, 산화 방지제, 노화 방지제 및 왁스를 혼련하였다. 이때, 혼련기의 초기 온도를 70℃로 제어하고, 배합 완료 후 145℃ 내지 155℃의 배출온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후, 혼련기에 1차 배합물, 황, 고무촉진제 및 가황촉진제를 가하고, 100℃ 이하의 온도에서 믹싱하여 2차 배합물을 얻었다. 이후, 160 ℃에서 20분간 큐어링 공정을 거쳐 고무시편을 제조하였다.
2) 인장특성
인장특성은 ASTM 412의 인장 시험법에 준하여 각 시험편을 제조하고 상기 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)를 측정하였다. 구체적으로, 인장특성은 Universal Test Machin 4204(Instron 社) 인장 시험기를 이용하여 실온에서 50 cm/min의 속도로 측정하였다.
3) 점탄성 특성
점탄성 특성은 동적 기계 분석기(GABO 社)를 이용하여 Film Tension 모드로 주파수 10 Hz, 각 측정온도(-60℃~60℃)에서 동적 변형에 대한 점탄성 거동을 측정하여 tan δ값을 확인하였다. 결과값에서 저온 0℃ tan δ의 지수값이 높은 것일수록 젖은 노면저항성이 우수하고, 고온 60℃ tan δ의 지수값이 높을수록 히스테리시스 손실이 적고, 저주행저항성(연비성)이 우수함을 나타낸다. 이때, 실시예 1 내지 실시예 6 및 비교예 2 내지 비교예 4의 각 결과값은 비교예 1의 결과값을 100으로하여 지수화하여 나타내었고, 실시예 7 내지 실시예 10, 비교예 6 및 비교예 7의 각 결과값은 비교예 5의 결과값을 100으로하여 지수화하여 나타내었으며, 실시예 11 내지 실시예 14 및 비교예 9의 각 결과값은 비교예 8의 결과값을 100으로하여 지수화하여 나타내었다.
4) 가공성 특성
상기 1) 고무 시편 제조 시 얻어진 2차 배합물의 무늬 점도(MV, (ML1+4, @100℃) MU)를 측정하여 각 중합체의 가공성 특성을 비교분석하였으며, 이때 무니점도 측정값이 낮은 것일수록 가공성 특성이 우수함을 나타낸다.
구체적으로, MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여, 각 2차 배합물은 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.
구분 실시예 비교예
1 2 3 4 5 6 1 2 3 4
가공성 특성 62 59 63 67 52 63 75 79 71 67
인장특성 인장강도(kgf/cm2) 175 172 211 183 215 180 172 167 175 190
300% 모듈러스(kgf/cm2) 160 150 145 179 196 155 128 112 150 135
점탄성 특성(Index) tan δ(at 0℃) 102 100 101 102 102 103 100 99 101 101
tan δ(at 60℃) 121 120 117 127 123 119 100 120 113 109
구분 실시예 비교예
7 8 9 10 5 6 7
가공성 특성 61 59 64 66 79 70 72
인장특성 인장강도(kgf/cm2) 179 196 176 175 173 194 195
300% 모듈러스(kgf/cm2) 142 134 126 129 118 112 107
점탄성 특성(Index) tan δ(at 0℃) 101 103 102 102 100 102 103
tan δ(at 60℃) 119 116 115 114 100 106 104
구분 실시예 비교예
11 12 13 14 8 9
가공성 특성 68 70 71 65 76 72
인장특성 인장강도(kgf/cm2) 200 210 205 217 207 185
300% 모듈러스(kgf/cm2) 80 72 74 81 60 150
점탄성 특성(Index) tan δ(at 0℃) 103 102 103 102 100 101
tan δ(at 60℃) 129 127 125 119 100 112
상기 표 5 내지 표 7에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 14가 비교예 1 내지 비교예 9 대비 인장특성, 점탄성 특성 및 가공성 특성이 개선된 것을 확인하였다.
한편, 점탄성 특성에 있어서 통상 0℃에서의 tan δ 값이 향상되면서 동시에 60℃에서의 tan δ 값이 향상되는 특성을 갖는 것은 매우 어려운 것으로 알려져 있다. 따라서, 비교예 1 내지 비교예 9 대비 0℃에서의 tan δ 값은 동등 이상의 우수한 수준을 나타내면서 60℃에서의 tan δ 값에서 현저한 개선효과를 나타내는 실시예 1 내지 실시예 14는 점탄성 특성이 매우 우수한 것을 알 수 있다.

Claims (10)

  1. 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태를 갖고,
    분자량 분포(PDI; MWD)가 1.7 미만이며,
    Si 함량이 중량을 기준으로 100 ppm 이상이고,
    방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 30 중량% 미만으로 포함하는 변성 공액디엔계 중합체.
  2. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위 및 변성제 유래 작용기를 포함하는 것인 변성 공액디엔계 중합체.
  3. 제2항에 있어서,
    상기 변성제는 실리카 친화성 변성제인 변성 공액디엔계 중합체.
  4. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol이고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol인 변성 공액디엔계 중합체.
  5. 제1항에 있어서,
    상기 분자량 분포(PDI; MWD)는 1.0 이상 1.7 미만인 변성 공액디엔계 중합체.
  6. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 100℃에서의 무니점도(Mooney viscosity)가 30 이상인 것인 변성 공액디엔계 중합체.
  7. 겔 투과 크로마토그래피에 의한 표준 폴리스티렌 환산 분자량에 있어서 분자량 100,000 g/mol 이상의 중합체 성분이 유니모달이고,
    분자량 분포(PDI; MWD)가 2.0 이하이고,
    수평균 분자량(Mn)이 250,000 g/mol 내지 700,000 g/mol이고,
    부타디엔 단위의 비닐 함유량이 20 몰% 내지 80 몰% 이하이고,
    Si 함량이 중량을 기준으로 100 ppm 이상이고,
    관능기를 갖는 중합체 성분의 함유량이 50 중량% 이상이며,
    방향족 비닐 단량체 유래 반복 단위를 15 중량% 이상 30 중량% 미만으로 포함하는 변성 공액디엔계 중합체.
  8. 제1항 또는 제7항에 따른 변성 공액디엔계 중합체 및 충진제를 포함하는 고무 조성물.
  9. 제8항에 있어서,
    상기 고무 조성물은 상기 변성 공액디엔계 중합체 100 중량부에 대하여, 0.1 중량부 내지 200 중량부의 충진제를 포함하는 것인 고무 조성물.
  10. 제9항에 있어서,
    상기 충진제는 실리카계 충진제 또는 카본블랙계 충진제인 고무 조성물.
PCT/KR2017/014424 2017-01-03 2017-12-08 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 WO2018128289A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17890580.8A EP3567062A4 (en) 2017-01-03 2017-12-08 MODIFIED CONJUGATED SERVICE-BASED POLYMER AND RUBBER COMPOSITION THEREFOR
CN201780066661.6A CN109923135B (zh) 2017-01-03 2017-12-08 改性共轭二烯类聚合物和包含其的橡胶组合物
JP2019536306A JP7225102B2 (ja) 2017-01-03 2017-12-08 変性共役ジエン系重合体、およびそれを含むゴム組成物
US16/339,227 US11427668B2 (en) 2017-01-03 2017-12-08 Modified conjugated diene-based polymer and rubber composition including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170000749 2017-01-03
KR10-2017-0000749 2017-01-03
KR10-2017-0097189 2017-07-31
KR1020170097189A KR101865797B1 (ko) 2017-01-03 2017-07-31 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Publications (1)

Publication Number Publication Date
WO2018128289A1 true WO2018128289A1 (ko) 2018-07-12

Family

ID=62600727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014424 WO2018128289A1 (ko) 2017-01-03 2017-12-08 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Country Status (6)

Country Link
US (1) US11427668B2 (ko)
EP (1) EP3567062A4 (ko)
JP (1) JP7225102B2 (ko)
KR (1) KR101865797B1 (ko)
CN (1) CN109923135B (ko)
WO (1) WO2018128289A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705502B1 (en) 2018-07-11 2023-05-17 Lg Chem, Ltd. Modified conjugated diene-based polymer and rubber composition comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548378B1 (ko) * 2019-09-27 2023-06-28 주식회사 엘지화학 변성제, 이를 포함하는 변성 공액디엔계 중합체 및 상기 중합체의 제조방법
KR20220017737A (ko) * 2020-08-05 2022-02-14 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR100932356B1 (ko) * 2001-09-27 2009-12-16 제이에스알 가부시끼가이샤 공액 디올레핀 (공)중합 고무, (공)중합 고무의 제조방법, 고무 조성물, 복합체 및 타이어
KR20110007087A (ko) * 2008-02-14 2011-01-21 신에쯔 한도타이 가부시키가이샤 워크의 양두 연삭 장치 및 워크의 양두 연삭 방법
KR101600722B1 (ko) * 2011-08-26 2016-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
KR20160140624A (ko) * 2014-03-31 2016-12-07 제온 코포레이션 변성 공액 디엔계 고무의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271706A (ja) 1993-03-22 1994-09-27 Bridgestone Corp トレッドゴム組成物
JP4316004B2 (ja) 2006-07-24 2009-08-19 旭化成ケミカルズ株式会社 変性共役ジエン系重合体およびその製造方法
JP5520829B2 (ja) 2008-10-14 2014-06-11 旭化成ケミカルズ株式会社 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ
US9085653B2 (en) * 2011-09-08 2015-07-21 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, modified conjugated diene-based polymer composition, rubber composition and tire
CN104271608B (zh) * 2013-04-25 2016-08-31 Lg化学株式会社 制备共轭二烯聚合物的方法,包含所述共轭二烯聚合物的组合物和包含所述组合物的轮胎
EP3070105B1 (en) * 2013-11-15 2021-06-23 LG Chem, Ltd. Modified conjugated diene polymer, method for preparing same, and rubber composition containing same
KR101800496B1 (ko) * 2014-06-16 2017-11-22 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
KR101668567B1 (ko) * 2014-11-13 2016-10-24 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016093496A1 (ko) 2014-12-11 2016-06-16 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
KR102099923B1 (ko) * 2016-08-12 2020-04-10 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR100932356B1 (ko) * 2001-09-27 2009-12-16 제이에스알 가부시끼가이샤 공액 디올레핀 (공)중합 고무, (공)중합 고무의 제조방법, 고무 조성물, 복합체 및 타이어
KR20110007087A (ko) * 2008-02-14 2011-01-21 신에쯔 한도타이 가부시키가이샤 워크의 양두 연삭 장치 및 워크의 양두 연삭 방법
KR101600722B1 (ko) * 2011-08-26 2016-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
KR20160140624A (ko) * 2014-03-31 2016-12-07 제온 코포레이션 변성 공액 디엔계 고무의 제조 방법
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567062A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705502B1 (en) 2018-07-11 2023-05-17 Lg Chem, Ltd. Modified conjugated diene-based polymer and rubber composition comprising same

Also Published As

Publication number Publication date
JP7225102B2 (ja) 2023-02-20
JP2020504213A (ja) 2020-02-06
CN109923135B (zh) 2021-12-28
EP3567062A4 (en) 2020-01-15
US11427668B2 (en) 2022-08-30
US20200223969A1 (en) 2020-07-16
CN109923135A (zh) 2019-06-21
EP3567062A1 (en) 2019-11-13
KR101865797B1 (ko) 2018-06-11

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2019112260A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019112262A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2021107717A1 (ko) 변성 공액디엔계 중합체
WO2019225824A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021060815A1 (ko) 변성제, 이를 포함하는 변성 공액디엔계 중합체 및 상기 중합체의 제조방법
WO2019112261A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020130738A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2022103060A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2022103042A1 (ko) 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890580

Country of ref document: EP

Effective date: 20190805