WO2018128105A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2018128105A1
WO2018128105A1 PCT/JP2017/046301 JP2017046301W WO2018128105A1 WO 2018128105 A1 WO2018128105 A1 WO 2018128105A1 JP 2017046301 W JP2017046301 W JP 2017046301W WO 2018128105 A1 WO2018128105 A1 WO 2018128105A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
line
lpp
draft
intersection
Prior art date
Application number
PCT/JP2017/046301
Other languages
French (fr)
Japanese (ja)
Inventor
俊太郎 江川
智 藤田
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN201780082500.6A priority Critical patent/CN110234566A/en
Publication of WO2018128105A1 publication Critical patent/WO2018128105A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/16Shells

Definitions

  • the present invention relates to a ship, and more particularly to a ship that can widen the range of ports that can be entered while ensuring high propulsion performance.
  • fenders When a ship berths at a port or the like for loading and unloading, the impact when landing and the impact caused by hull shaking during mooring are buffered by fenders. For this reason, mooring is carried out by contacting a plurality of fenders installed on the quay or pier with a plane portion on the ship side of the main hull at several places.
  • a low-speed enlargement ship such as a tanker or a bulker is a enlargement ship type to ensure the weight of the cargo, and the side flat is relatively secured. It was easy and there were few problems.
  • a mid-speed and thin ship type such as an LNG ship or LPG ship, it is necessary to reduce the resistance and secure the ship speed, so it is necessary to make the bow and stern thin, and as a result, the side flat is slow. There was a tendency to be smaller than that of a full-sized ship.
  • the hull resistance is required to be small.
  • Froude number V / ⁇ (Lpp ⁇ g): ship speed V (m / s), perpendicular length Lpp (m), gravity acceleration g (m / s 2 )
  • V (m / s) perpendicular length Lpp (m)
  • gravity acceleration g (m / s 2 ) exceeds 0.10
  • the wave resistance becomes a level that cannot be ignored in the resistance of the hull, it is one of the important issues in ship design to reduce the wave resistance as much as possible in a ship having a fluid number exceeding 0.10.
  • the side flat length Ls in the conventional ship is at most “Lpp ⁇ B / (0.57B / (Lpp ⁇ (1 ⁇ Cb)) + 0.10) in the summer full load state. In the normal ballast state, it was “Lpp ⁇ B / (0.57B / (Lpp ⁇ (1 ⁇ Cb)) + 0.055)”. As described above, the side flat length is remarkably limited in accordance with the main eyes of the ship, so that the conventional ship has lost versatility.
  • the conventional restriction on the side flat length is a particularly serious problem for liquefied gas carriers such as LNG and LPG. Due to the physical and economic characteristics of cargo, the required speed of liquefied gas carriers is relatively high, and the maximum fluid number is usually 0.17 or more, but liquefied gas is used so that wave resistance does not become excessive even at that speed.
  • the bow of the carrier ship has a relatively thin shape, and the enlargement degree ⁇ of the bow tail submerged part in the summer full draft is usually 0.82 or less. Conventionally, as described above, the side flat has been limited to a short one corresponding to this ⁇ .
  • a liquefied gas carrier ship must have a cargo handling device on the ship, that is, a cargo manifold, connected to a land device in a stable and reliable manner so that the liquefied gas can be transferred to and from the land without leakage.
  • a cargo handling device on the ship that is, a cargo manifold
  • the armor be in contact with a plurality of fenders and moored in a stable state.
  • the present invention is to provide a ship capable of widening the range of ports that can enter a port while maintaining the minimum propulsion ship type and ensuring the propulsion performance necessary for operation and maintaining good fuel efficiency.
  • the ship according to the present invention is a self-navigating ship having a fluid number larger than 0.10, the length between vertical lines of the ship is Lpp, the mold width is B, and the square coefficient in the summer full draft is Cbl.
  • ⁇ l is set to a size satisfying “0.57 ⁇ l + 0.10 ⁇ l ⁇ 0.66 ⁇ l + 0.12”.
  • the square coefficient in the normal ballast draft is Cbb
  • the length of the plane part on the ship side in the normal ballast draft is Lsb
  • the fore tail water line enlargement degree ⁇ b in the normal waterline is set to a length satisfying “0.57 ⁇ b + 0.055 ⁇ b ⁇ 0.66 ⁇ b + 0.065”.
  • the above configuration can increase the versatility of the ship by extending the side flat in a wide draft range from the full load state to the normal ballast state.
  • the intersection on the bow side where the side flat line serving as the boundary line between the plane portion and the curved surface portion on the ship side of the main hull and the summer full load draft line is defined as the first intersection
  • the bow perpendicular line and the stern perpendicular line Lsfl is the distance from the midship to the first intersection
  • the enlargement of the bow that affects wave resistance is considered as a practical range, and the plane of the bow is enlarged to widen the range of ports that can enter the port. be able to.
  • a curved surface portion that is a portion excluding the flat surface portion of the hull surface below the summer full load water line is configured in a streamlined manner, and the flat surface portion and the curved surface portion below the summer full water load line. If is connected without breaking, the following effects can be exhibited.
  • the intersection point on the bow side where the side flat line that becomes the boundary line between the flat surface portion and the curved surface portion on the ship side of the main hull and the summer full load water line is a first intersection point
  • the side flat line and the When the intersection on the stern side where the summer full load water line intersects is the second intersection
  • the horizontal distance between the cargo handling position which is the center position of the cargo handling equipment for transporting cargo to the land side
  • the first intersection in the direction of the captain is
  • the horizontal distance between the cargo handling position and the second intersection is 15% or more and 40% or less of the length between the vertical lines of the ship
  • the horizontal distance between the cargo handling position and the second intersection point is 15% or more and 40% or less.
  • the cargo handling equipment is a cargo manifold.
  • the horizontal distance between the cargo handling position at the center of the cargo handling facility for transferring cargo to the land side and the third intersection with respect to the captain direction is the ship concerned.
  • the following effect is obtained when the horizontal distance between the vertical position of the ship is 10% to 35% and the horizontal distance between the loading position and the fourth intersection is 10% to 35% of the vertical length of the ship. Can be demonstrated.
  • the bow tail submergence degree ⁇ l in the summer full draft is 0.82 or less.
  • the bow-snipping section enlargement ⁇ 1 is 0.82 or less, so the bow-spillline enlargement ⁇ is “0.57 ⁇ + 0.10” or less in the summer full load state, and “ Even in the case of a conventional ship that is limited to 0.57 ⁇ + 0.055 ”or less, even if the side flat length is significantly shortened, this restriction can be relaxed and the side flat can be lengthened. Can greatly improve the performance.
  • the fluid number is greater than 0.17, the following effects can be exhibited.
  • the fluid number exceeds 0.17, when the bow tail is enlarged, the wave-making resistance exceeds the allowable value. Therefore, the bow tail submerged portion enlargement degree in order to lengthen the side flat. Even for ships that cannot increase ⁇ , the side flatness can be lengthened by increasing the bow tailwaterline enlargement ⁇ beyond the conventional upper limit without changing ⁇ . Can be greatly improved.
  • any of the above ships can exhibit the following effects when the fluid number is 0.24 or less.
  • the bow tailwater line enlargement ⁇ is less than “0.66 ⁇ + 0.12” in the summer full draft, and less than “0.66 ⁇ + 0.065” in the normal ballast state, so that The increase in wave resistance due to the longer side flat is relatively small, but the increase in wave resistance is particularly slight when the Froude number does not exceed 0.24, and therefore almost increases the energy consumption during propulsion. Without increasing the length of the side flat, the versatility of the ship can be improved.
  • the liquefied gas can be loaded as cargo, and a cargo manifold that transfers the liquefied gas between the ship and the ship by connecting to a land device is provided as a cargo handling facility.
  • a cargo manifold that transfers the liquefied gas between the ship and the ship by connecting to a land device is provided as a cargo handling facility.
  • a liquefied gas carrier needs to stably and securely connect the cargo handling device on the ship, that is, the cargo manifold, to the onshore device and transfer the liquefied gas to and from the land without leakage. It is particularly strongly required to be in contact with the fender and moored in a stable state. Therefore, when the flat part of the main hull cannot be brought into contact with the fender, cargo handling is often impossible, and the loss of versatility of the ship due to the short side flat is particularly large in liquefied gas carriers. However, since the side flat can be made longer than before by increasing the above-mentioned bow tailwater line enlargement ⁇ beyond the conventional upper limit, the number of ports where the liquefied gas carrier can handle cargo increases, and versatility is significantly improved. .
  • the length between the perpendiculars of the ship is Lpp
  • the mold width is B
  • the square coefficient in the summer full load draft is Cbl
  • the length of the plane portion on the ship side in the summer full load draft line is Lsl
  • the condition“ 0.57 ⁇ l + 0.10 ⁇ l ⁇ 0.66 ⁇ l + 0.12 ” is satisfied, and it is necessary for operation by maintaining the minimum length of the hull form by ensuring the length of the flat part corresponding to the conditions in
  • the length between the perpendiculars of the ship is Lpp
  • the mold width , B the square coefficient in the normal ballast draft, Csb
  • the length of the plane portion on the ship side in the normal ballast draft line is Lsb
  • the minimum By maintaining the slim ship shape, it is possible to wide
  • FIG. 1 is a side view schematically showing the configuration of a ship according to an embodiment of the present invention.
  • FIG. 2 is a plan view of FIG.
  • FIG. 3 is a front view of FIG.
  • a main hull 2 of a ship 1 is configured to be surrounded by an upper deck (upper deck) 3, a ship bottom 4, and a ship side 5.
  • the outer plate 6 forming the ship bottom 4 and the ship side 5 includes a flat portion (side flat portion) 6a constituting a part of the outer plate 6 on the ship side 5, and a curved surface portion 6b constituting the outer plate 6 other than the flat portion 6a. It consists of and.
  • the ship 1 has a residential area 8 and a bridge 7 on the bow 1b side.
  • the bridge 7 is provided with bridge wings 7a so as to project on both sides, and the bridge wings 7a are formed to have the full width (maximum width) Bm of the main hull 2.
  • the ship 1 also has a cargo handling facility 9 that transfers cargo to the land side at the ship side end on the upper deck 3.
  • the cargo handling equipment 9 is, for example, a cargo manifold when the ship 1 is a tanker or a liquefied gas carrier (such as an LNG ship or an LPG ship).
  • the cargo handling facilities 9 are arranged at three locations at intervals in the captain direction of the ship 1.
  • the ship 1 further includes a propeller (propulsion unit) 10 and a rudder 11 on the stern 1a side.
  • the total length of the ship 1 is LOA
  • the length between perpendiculars is Lpp
  • the mold width is B
  • the square factor in the summer full load draft is Cbl
  • the length between the perpendiculars of the ship 1 is Lpp
  • the mold width is B
  • the square coefficient in the normal ballast draft is Cbb
  • the normal ballast draft of the ship 1 is defined.
  • the intersection on the bow 1b side where the side flat line serving as the boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the summer full load water line ds intersect. Is the first intersection P1, and the bow perpendicular F.F. P. And Stern perpendicular line A. P.
  • Lsfl is the distance from the midship that is the midpoint to the first intersection P1
  • the range of ports that can enter the port is widened by enlarging the flat part of the bow part while making the enlargement degree of the bow part particularly affecting the wave-making resistance within a practical range. be able to.
  • the curved surface portion 6b which is a portion excluding the flat surface portion of the hull surface below the summer full load water line ds is configured in a streamlined manner, and the flat surface portion 6a and the curved surface portion below the summer full water load line ds. 6b is connected without breaking.
  • the intersection on the bow 1b side where the side flat line S serving as a boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the summer full load water line ds intersects.
  • the position of the center of the cargo handling facility 9 that transports cargo to the land side with respect to the captain direction when the intersection point on the stern 1a side where the side flat line S and the summer full load water line ds intersect is the second intersection point P2.
  • the horizontal distance X2 between the cargo handling position 9a and the first intersection P1 is not less than 15% and not more than 40% of the inter-perpendicular length Lpp of the ship 1, and the horizontal distance X3 between the cargo handling position 9a and the second intersection P2 is It is set as the structure which is 15% or more and 40% or less of the length Lpp between perpendicular
  • FIG. In the case of a tanker or a liquefied gas carrier (such as an LNG ship or an LPG ship), the cargo handling equipment 9 is a cargo manifold.
  • the plane portions 6 a are secured sufficiently wide on both sides with respect to the position where the cargo handling equipment 9 is disposed in the captain direction. can do.
  • abutting location of the plane part 6a and the fender 21 can fully be ensured in the vicinity of the cargo handling equipment 9 used as the junction with the land side, cargo handling work can be performed in a more stable berthing state. Can do.
  • the plane part 6a does not become excessive, the deterioration of the propulsion performance or the maneuvering performance of the ship 1 can be suppressed in the cargo loading state.
  • the intersection on the bow 1b side where the side flat line S serving as the boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the normal ballast draft line NB intersect is first.
  • the intersection point on the stern 1a side where the side flat line S and the normal ballast draft line NB intersect is defined as the fourth intersection point P4
  • the horizontal distance X5 between the cargo handling position 9a and the third intersection point P3 is about the ship length direction.
  • the plane portions 6a are sufficiently wide on both sides with respect to the position where the loading facility 9 is disposed in the captain direction. Can be secured. Thereby, since the contact
  • the degree of enlargement ⁇ l of the bow tail submerged portion in the summer full draft is 0.82 or less.
  • the fluid number is larger than 0.17.
  • the bow submerged portion enlargement degree
  • the side flat can be lengthened. Can greatly improve the performance.
  • the fluid number is 0.24 or less, more preferably 0.22 or less.
  • the increase in the wave-making resistance by making the side flat longer than that of the conventional ship is particularly slight. Therefore, the side flat is made longer without increasing the energy consumption during propulsion, and the versatility of the ship 1 is improved. be able to.
  • the liquefied gas can be loaded as cargo, and the cargo handling apparatus which can transfer liquefied gas between the land without leakage by connecting to a shore apparatus as a cargo handling apparatus. 9 or a cargo manifold. Since the ship 1 of this embodiment has a relatively long side flat than the conventional ship, even if the distance between the fenders 21 is long, the plane portion of the main hull is brought into contact with the plurality of fenders 21. Since the ship 1 can be moored in a stable state, the cargo handling device 9 on the ship can be stably and securely connected to the onshore device, and the liquefied gas can be transferred to and from the land without leakage. Ports where cargo can be handled will increase and versatility will be significantly improved.
  • the third intersection P3 is a position closer to the bow 1b side than the bow end 9c of the cargo handling facility 9 in the ship direction
  • the fourth intersection P4 is the stern side end 9b of the cargo handling equipment 9. Rather than the stern 1a side.
  • the fifth intersection point P5 is more than the first intersection point P1.
  • the sixth intersection point P6 is closer to the stern 1a side than the second intersection point P2 in the captain direction.
  • the stern perpendicular line A. P. It is the composition which is the position of the bow 1b side rather than.
  • the side flat length on the water surface can be sufficiently secured, so that the preliminary buoyancy is increased and the stability can be expected to be improved.
  • the space which has the full width Bm of the ship 1 can be ensured widely on the upper deck 3 regarding the ship length direction, the range which can arrange
  • position the bridge wing 7a can be widened.
  • a space having the full width Bm of the ship 1 can be secured on the upper deck 3 and is particularly effective when applied to a MOSS type LNG ship having a spherical tank.
  • the ship 1 of the present invention for example, even when mooring with the assistance of a berthing from a tugboat (a dredger or a trawler) at the time of berthing, it is possible to secure a wide flat surface portion 6a that can be pushed by the tugboat.
  • a tag push mark indicating the place is painted on the hull at a location reinforced so that the ship 1 side is not damaged even if pushed by the tugboat.

Abstract

A ship in which the Froude number is larger than 0.10, wherein when Lpp is the length between perpendiculars, B is the interior breadth, Cbl is the block coefficient in summer load water, and Lsl is the length of the flat surface portion on the side of the ship in terms of the summer load water line, the degree of enlargement αl of the submerged portion of the bow and stern of a ship in summer load water is defined as "αl=B/(Lpp×(1-Cbl))", and the degree of enlargement βl at the water line of the bow and stern of a ship in summer load water is defined as "βl=B/(Lpp×(1-Lsl/Lpp))", such that the degree of enlargement β1 at the water line of the bow and stern of a ship is set to be large so as to satisfy "0.57αl+0.10<βl<0.66α l+0.12". As a result, the ship maintains excellent fuel efficiency performance while securing the necessary propulsive performance during operation by maintaining a form that is as slender as possible, and widening the flat surface portion allows for the broadening of the range of ports in which the ship is capable of docking.

Description

船舶Ship
 本発明は、船舶に関し、より詳細には、高い推進性能を確保しつつ、入港可能な港湾の範囲を広くできる船舶に関する。 The present invention relates to a ship, and more particularly to a ship that can widen the range of ports that can be entered while ensuring high propulsion performance.
 船舶が揚荷役や積荷役をするために港湾等で接岸する場合には、着岸する際の衝撃及び係船時の船体動揺による衝撃を防舷材(フェンダー)によって緩衝している。そのため、岸壁や桟橋に設置された複数の防舷材に対して主船体の船側における平面部を数か所で当接して係船している。 When a ship berths at a port or the like for loading and unloading, the impact when landing and the impact caused by hull shaking during mooring are buffered by fenders. For this reason, mooring is carried out by contacting a plurality of fenders installed on the quay or pier with a plane portion on the ship side of the main hull at several places.
 この接岸時に、主船体の平面部と防舷材との取り合い即ち位置関係が悪く、平面部と防舷材との当接箇所を十分に確保できない場合には、安定した状態に係留できないので、接岸が許可されない場合がある。この防舷材の配置や数などの条件は港湾によってそれぞれ異なるため、主船体の平面部が狭いと着岸できる港湾は少なくなり、船舶の汎用性が損なわれることとなる。 At the time of this berthing, the relationship between the flat part of the main hull and the fender is poor, and if the contact part between the flat part and the fender cannot be secured sufficiently, it cannot be moored in a stable state. There are cases where berthing is not permitted. Since the conditions such as the arrangement and number of fenders differ depending on the port, if the main hull is narrow, the number of ports that can be docked is reduced and the generality of the ship is impaired.
 日本出願の特開平8-216972号公報に記載されているように、タンカーやバルカーのような低速肥大船では、載貨重量を確保するために肥大船型になっており、サイドフラットは比較的確保しやすく、問題になることは少なかった。一方、LNG船やLPG船のように中速で痩せ型船型の場合は、抵抗を低減し船速を確保する必要があるため、船首、船尾を痩せさせる必要があり、結果としてサイドフラットは低速肥大船に比べて小さくなる傾向にあった。 As described in Japanese Patent Application Laid-Open No. 8-216972, a low-speed enlargement ship such as a tanker or a bulker is a enlargement ship type to ensure the weight of the cargo, and the side flat is relatively secured. It was easy and there were few problems. On the other hand, in the case of a mid-speed and thin ship type such as an LNG ship or LPG ship, it is necessary to reduce the resistance and secure the ship speed, so it is necessary to make the bow and stern thin, and as a result, the side flat is slow. There was a tendency to be smaller than that of a full-sized ship.
 他方、海運における省エネルギーの観点から、船体の抵抗は小さい事が求められる。フルード数(フルード数=V/√(Lpp×g):船速V(m/s)、垂線間長Lpp(m)、重力加速度g(m/s2))が0.10 を超える場合、船体の抵抗の中でも造波抵抗が無視できない大きさとなるため、フルード数が0.10を超える船舶ではなるべく造波抵抗を少なくすることが船舶設計上の重要課題の一つである。 On the other hand, from the viewpoint of energy saving in shipping, the hull resistance is required to be small. When the Froude number (Froude number = V / √ (Lpp × g): ship speed V (m / s), perpendicular length Lpp (m), gravity acceleration g (m / s 2 )) exceeds 0.10, Since the wave resistance becomes a level that cannot be ignored in the resistance of the hull, it is one of the important issues in ship design to reduce the wave resistance as much as possible in a ship having a fluid number exceeding 0.10.
 造波抵抗を減らすためには、前進する船体によって水面が急激に撹乱されることは避けなければならず、そのため船首尾端からサイドフラットへ向けて喫水線が急激に広がることは避けるべきであるが、従来の設計法ではこの点が過度に強調されており、当該船舶の没水部の肥大度に応じて、喫水線の広がりは著しく制限され、結果としてサイドフラット長さも著しく制限され、船舶の汎用性が損なわれていた。 In order to reduce the wave resistance, the water surface must not be abruptly disturbed by the advancing hull, and therefore the droop of the water line from the bow tail toward the side flat should be avoided. In the conventional design method, this point is excessively emphasized, and the spread of the waterline is remarkably restricted according to the degree of enlargement of the submerged part of the ship, and as a result, the side flat length is remarkably restricted. Sex was impaired.
 より具体的に述べると次の通りである。当該船舶の垂線間長をLpp、型幅をB、方形係数をCb、喫水線におけるサイドフラット長さをLsとしたとき、当該船舶の船首尾の没水部肥大度αは「α=B/(Lpp×(1-Cb))」によって表すことができ、船首尾における水線の広がり具合すなわち船首尾水線肥大度βは「β=B/(Lpp×(1-Ls/Lpp))」によって表すことができる。従来、船首尾水線肥大度βが夏季満載状態においては、「0.57α+0.10」、ノーマルバラスト状態に置いては「0.57α+0.055」を超えることは無かった。 More specifically, it is as follows. When the vertical length of the ship is Lpp, the mold width is B, the square coefficient is Cb, and the side flat length of the waterline is Ls, the submerged portion enlargement degree α at the bow of the ship is “α = B / ( Lpp × (1−Cb)) ”, and the extent of the water line at the stern, ie, the degree of enlargement of the stern water line β is expressed by“ β = B / (Lpp × (1−Ls / Lpp)) ”. Can be represented. Conventionally, the bow sway line enlargement β does not exceed “0.57α + 0.10” in the summer full state and “0.57α + 0.055” in the normal ballast state.
 従って、式変形によって明らかである通り、従来の船舶ではサイドフラット長さLsは夏季満載状態に置いて高々「Lpp-B/(0.57B/(Lpp×(1-Cb))+0.10)」、ノーマルバラスト状態に置いて高々「Lpp-B/(0.57B/(Lpp×(1-Cb))+0.055)」であった。このようにサイドフラット長さが船舶の主要目に対応して著しく制限されることによって、従来の船舶は汎用性を損なわれていた。 Therefore, as is apparent from the equation modification, the side flat length Ls in the conventional ship is at most “Lpp−B / (0.57B / (Lpp × (1−Cb)) + 0.10) in the summer full load state. In the normal ballast state, it was “Lpp−B / (0.57B / (Lpp × (1−Cb)) + 0.055)”. As described above, the side flat length is remarkably limited in accordance with the main eyes of the ship, so that the conventional ship has lost versatility.
 サイドフラット長さに対する従来のこうした制約がとりわけ大きな問題となるのは、LNG、LPGなどの液化ガス運搬船である。貨物の物理的・経済的特性から、液化ガス運搬船の要求速力は比較的高く、最高フルード数は通常0.17以上であるが、その速力においても造波抵抗が過大とならないように、液化ガス運搬船の船首尾は比較的痩せた形状となり、夏季満載喫水における船首尾没水部肥大度αは通常0.82以下である。従来はこのαに対応して、前記の通りサイドフラットは短いものに制限されていた。 The conventional restriction on the side flat length is a particularly serious problem for liquefied gas carriers such as LNG and LPG. Due to the physical and economic characteristics of cargo, the required speed of liquefied gas carriers is relatively high, and the maximum fluid number is usually 0.17 or more, but liquefied gas is used so that wave resistance does not become excessive even at that speed. The bow of the carrier ship has a relatively thin shape, and the enlargement degree α of the bow tail submerged part in the summer full draft is usually 0.82 or less. Conventionally, as described above, the side flat has been limited to a short one corresponding to this α.
 一方、液化ガス運搬船は船上の荷役装置すなわちカーゴマニホールドを陸上の装置と安定して確実に接続させ、陸上との間で液化ガスを漏れなく移送する必要があり、このために主船体の平面部を複数の防舷材に当接させ、安定した状態で係留させることが特に強く要求される。 On the other hand, a liquefied gas carrier ship must have a cargo handling device on the ship, that is, a cargo manifold, connected to a land device in a stable and reliable manner so that the liquefied gas can be transferred to and from the land without leakage. In particular, it is strongly demanded that the armor be in contact with a plurality of fenders and moored in a stable state.
 従来、液化天然ガスを取り扱う港湾の多くは、大型液化天然ガス運搬船を想定し、防舷材の位置・間隔やカーゴマニホールドの接続位置も大型液化天然ガス船が当接できることを考慮して港湾としての所要サイドフラット長さが決められていた。大型液化天然ガス船であれば、この所要サイドフラット長さを確保することは比較的容易に出来るものの、中・小型液化天然ガス船の場合は、主要目が小さいため所要サイドフラット長さを確保することは難しくなる。所要サイドフラット長さを確保できない場合は、当該港での荷役が出来ないため、船舶の汎用性が著しく低下するという問題が生じる。 Conventionally, many ports handling liquefied natural gas are assumed to be large liquefied natural gas carriers, and considering the position and spacing of fenders and the connection position of cargo manifolds as large liquefied natural gas vessels can contact The required side flat length was determined. While it is relatively easy to ensure the required side flat length for large liquefied natural gas ships, the required side flat length is ensured for medium and small liquefied natural gas ships because the main item is small. It becomes difficult to do. When the required side flat length cannot be ensured, cargo handling at the port cannot be performed, which causes a problem that the versatility of the ship is significantly reduced.
日本出願の特開平8-216972号公報Japanese Patent Application Laid-Open No. 8-216972 filed in Japan
 本発明は、最低限の痩せ船型を維持することで運航に必要な推進性能を確保して良好な燃費性能を保持しつつ、入港可能な港湾の範囲を広くできる船舶を提供することにある。 The present invention is to provide a ship capable of widening the range of ports that can enter a port while maintaining the minimum propulsion ship type and ensuring the propulsion performance necessary for operation and maintaining good fuel efficiency.
 上記の目的を達成するため本発明の船舶は、フルード数が0.10よりも大きい自航する船舶において、当該船舶の垂線間長をLpp、型幅をB、夏季満載喫水における方形係数をCbl、夏季満載喫水線における船側の平面部の長さをLslとし、当該船舶の夏季満載喫水における船首尾没水部肥大度αlを「αl=B/(Lpp×(1-Cbl))」と定義し、当該船舶の夏季満載喫水における船首尾水線肥大度βlを「βl=B/(Lpp×(1-Lsl/Lpp))」と定義したときに、前記夏季満載喫水線における船首尾水線肥大度βlが、「0.57αl+0.10<βl<0.66αl+0.12」を満たす大きさに設定されていることを特徴とする船舶である。 In order to achieve the above object, the ship according to the present invention is a self-navigating ship having a fluid number larger than 0.10, the length between vertical lines of the ship is Lpp, the mold width is B, and the square coefficient in the summer full draft is Cbl. The length of the plane part on the ship side in the summer full load water line is defined as Lsl, and the enlargement degree αl of the bow tail submerged part in the summer full load draft of the ship is defined as “αl = B / (Lpp × (1-Cbl))”. , The bow tail water line enlargement degree βl in the summer full load draft of the ship is defined as “βl = B / (Lpp × (1−Lsl / Lpp))”. βl is set to a size satisfying “0.57αl + 0.10 <βl <0.66αl + 0.12”.
 つまり、夏季満載喫水において前記の船首尾水線肥大度βを「0.57α+0.10」より大きくするが、「0.66α+0.12」未満に抑える。この構成によれば、「β>0.57α+0.10」であることから、従来の船舶より相対的にサイドフラットが長くなり、船舶の汎用性が高まる。 That is, in the summer full draft, the above-mentioned bow sway line enlargement β is made larger than “0.57α + 0.10”, but is kept below “0.66α + 0.12.” According to this configuration, since “β> 0.57α + 0.10”, the side flat becomes relatively longer than the conventional ship, and the versatility of the ship is enhanced.
 このような構成は従来採用されてこなかったが、本発明者らは水槽実験および数値解析を用いた研究を実施し、「β>0.57α+0.10」であっても「β<0.66α+0.12」であれば、造波抵抗の増加は比較的小さく抑えられ、結果としてエネルギー消費の増大は船舶の実用性を失うほどではなく、したがって港湾条件によっては従来の設計に反して「β>0.57α+0.10」としてサイドフラットを長くしたほうが総合的に有用な船舶となることが明らかになっている。 Although such a configuration has not been adopted in the past, the present inventors conducted research using a tank experiment and numerical analysis, and even if “β> 0.57α + 0.10”, “β <0.66α + 0 .12 ”, the increase in wave resistance is relatively small, and as a result, the increase in energy consumption is not so much that the utility of the ship is lost. Therefore, depending on the port conditions,“ β> It has been clarified that a longer side flat as “0.57α + 0.10” is a more useful ship.
 上記の船舶において、ノーマルバラスト喫水における方形係数をCbb、ノーマルバラスト喫水線における船側の平面部の長さをLsbとし、当該船舶のノーマルバラスト喫水における船首尾没水部肥大度αbを「αb=B/(Lpp×(1-Cbb))」と定義し、当該船舶のノーマルバラスト喫水における船首尾水線肥大度βbを「βb=B/(Lpp×(1-Lsb/Lpp))」と定義したときに、前記ノーマル喫水線における船首尾水線肥大度βbが、「0.57αb+0.055<βb<0.66αb+0.065」を満たす長さに設定されている。 In the above-mentioned ship, the square coefficient in the normal ballast draft is Cbb, the length of the plane part on the ship side in the normal ballast draft is Lsb, and the enlargement degree αb of the bow tail submerged part in the normal ballast draft of the ship is “αb = B / (Lpp × (1−Cbb)) ”and when the bow sway line enlargement βb in the normal ballast draft of the ship is defined as“ βb = B / (Lpp × (1−Lsb / Lpp)) ” In addition, the fore tail water line enlargement degree βb in the normal waterline is set to a length satisfying “0.57αb + 0.055 <βb <0.66αb + 0.065”.
 上記の構成にすると、満載状態からノーマルバラスト状態までの広い喫水範囲で、サイドフラットを長くし、船舶の汎用性をより高めることができる。 The above configuration can increase the versatility of the ship by extending the side flat in a wide draft range from the full load state to the normal ballast state.
 上記のいずれかの船舶において、主船体の船側における平面部と曲面部との境界線となるサイドフラットラインと前記夏季満載喫水線とが交わる船首側の交点を第1交点とし、船首垂線と船尾垂線との中間点であるミッドシップから第1交点までの距離をLsflとし、前記夏季満載喫水における船首水線肥大度βflを「βfl=B/(Lpp×(1-Lsfl/(0.5Lpp)))」と定義したときに、前記夏季満載喫水線における船首水線肥大度βflが、「0.57αl+0.075<βfl<0.66αl+0.08」を満たす大きさに設定されている。 In any of the above vessels, the intersection on the bow side where the side flat line serving as the boundary line between the plane portion and the curved surface portion on the ship side of the main hull and the summer full load draft line is defined as the first intersection, and the bow perpendicular line and the stern perpendicular line Lsfl is the distance from the midship to the first intersection, and the degree of bowline enlargement βfl in the summer full draft is “βfl = B / (Lpp × (1−Lsfl / (0.5Lpp))) ”Is set to a size satisfying“ 0.57αl + 0.075 <βfl <0.66αl + 0.08 ”in the summer full load waterline.
 上記の構成にすることで、特に造波抵抗に影響のある船首部の肥大度を実用性のある範囲としつ、船首部の平面部を大きくすることで、入港可能な港湾の範囲を広くすることができる。 By using the above configuration, the enlargement of the bow that affects wave resistance, in particular, is considered as a practical range, and the plane of the bow is enlarged to widen the range of ports that can enter the port. be able to.
 上記のいずれかの船舶において、前記夏季満載喫水線以下の船体表面のうち平面部を除いた部分である曲面部が流線形で構成され、かつ、前記夏季満載喫水線以下において前記平面部と前記曲面部が折れることなく接続されていると、次の効果を発揮できる。 In any of the above ships, a curved surface portion that is a portion excluding the flat surface portion of the hull surface below the summer full load water line is configured in a streamlined manner, and the flat surface portion and the curved surface portion below the summer full water load line. If is connected without breaking, the following effects can be exhibited.
 この構成にすると、船体が前進する際に、船体付近で水(海水)が急激に速度を変えることなく円滑に移動することになるため、静圧の変化も急激でなく、水面の高さの変化も急激でないから、船体が発生させる水面波は小さく、結果的にサイドフラットを伸ばしたことによる造波抵抗の増加はより軽微なものとなる。 With this configuration, when the hull moves forward, water (seawater) moves smoothly without changing the speed suddenly in the vicinity of the hull, so the change in static pressure is not abrupt and the height of the water surface is high. Since the change is not abrupt, the water surface waves generated by the hull are small, and as a result, the increase in wave resistance due to the extension of the side flats is less severe.
 上記のいずれかの船舶において、主船体の船側における平面部と曲面部との境界線となるサイドフラットラインと夏季満載喫水線とが交わる船首側の交点を第1交点とし、前記サイドフラットラインと前記夏季満載喫水線とが交わる船尾側の交点を第2交点としたときに、船長方向に関して、陸上側に貨物を移送する荷役設備の中央の位置である荷役位置と前記第1交点との水平距離が当該船舶の垂線間長の15%以上40%以下であり、かつ、前記荷役位置と前記第2交点との水平距離が当該船舶の垂線間長の15%以上40%以下である構成にすると次の効果を発揮できる。なお、タンカーや液化ガス運搬船(LNG船やLPG船等)の場合には、この荷役設備はカーゴマニホールドである。 In any of the above-mentioned vessels, the intersection point on the bow side where the side flat line that becomes the boundary line between the flat surface portion and the curved surface portion on the ship side of the main hull and the summer full load water line is a first intersection point, and the side flat line and the When the intersection on the stern side where the summer full load water line intersects is the second intersection, the horizontal distance between the cargo handling position, which is the center position of the cargo handling equipment for transporting cargo to the land side, and the first intersection in the direction of the captain is Next, if the horizontal distance between the cargo handling position and the second intersection is 15% or more and 40% or less of the length between the vertical lines of the ship, the horizontal distance between the cargo handling position and the second intersection point is 15% or more and 40% or less. The effect of can be demonstrated. In the case of a tanker or a liquefied gas carrier (such as an LNG ship or LPG ship), the cargo handling equipment is a cargo manifold.
 この構成にすると、貨物積載状態で港湾に接岸した状態で揚荷荷役作業を行なう場合において、船長方向に関して、荷役設備が配置される位置に対して両側に平面部を十分に広く確保することができる。これにより、陸側との接合点となる荷役設備近辺において平面部と防舷材との当接箇所を十分に確保することができるので、より安定した接岸状態で荷役作業を行なうことができる。また、平面部が過大とならないため、貨物積載状態において船舶の推進性能や操縦性能の悪化を抑制することができる。 With this configuration, when unloading work is performed with the cargo loaded and berthed at the port, it is possible to secure a sufficiently large flat portion on both sides with respect to the position where the loading facility is placed in the captain direction. it can. Thereby, since the contact | abutting location of a plane part and a fender can be fully ensured in the vicinity of the cargo handling equipment used as the junction with the land side, cargo handling work can be performed in the more stable berthing state. Further, since the flat portion does not become excessive, it is possible to suppress the deterioration of the propulsion performance and the maneuvering performance of the ship in the cargo loading state.
 上記のいずれかの船舶において、主船体の船側における平面部と曲面部との境界線となるサイドフラットラインとノーマルバラスト喫水線とが交わる船首側の交点を第3交点とし、前記サイドフラットラインと前記ノーマルバラスト喫水線とが交わる船尾側の交点を第4交点としたときに、船長方向に関して、陸上側に貨物を移送する荷役設備の中央である荷役位置と前記第3交点との水平距離が当該船舶の垂線間長の10%以上35%以下であり、かつ、前記荷役位置と前記第4交点との水平距離が当該船舶の垂線間長の10%以上35%以下である構成にすると次の効果を発揮できる。 In any of the above vessels, the intersection on the bow side where the side flat line and the normal ballast water line that serve as the boundary line between the plane portion and the curved surface portion on the ship side of the main hull intersect with each other as the third intersection, and the side flat line and the When the intersection at the stern side where the normal ballast water line intersects is the fourth intersection, the horizontal distance between the cargo handling position at the center of the cargo handling facility for transferring cargo to the land side and the third intersection with respect to the captain direction is the ship concerned. The following effect is obtained when the horizontal distance between the vertical position of the ship is 10% to 35% and the horizontal distance between the loading position and the fourth intersection is 10% to 35% of the vertical length of the ship. Can be demonstrated.
 この構成にすると、ノーマルバラスト状態で港湾に接岸した状態で積荷荷役作業を行なう場合において、船長方向に関して、荷役設備が配置される位置に対して両側に平面部を十分に広く確保することができる。これにより、陸側との接合点となる荷役設備近辺において平面部と防舷材との当接箇所を十分に確保することができるので、より安定した接岸状態で荷役作業を行なうことができる。また、平面部が過大とならないため、ノーマルバラスト状態において船舶の推進性能や操縦性能の悪化を抑制することができる。 With this configuration, when performing loading / unloading work in a state of being in contact with the harbor in a normal ballast state, it is possible to secure a sufficiently large plane portion on both sides with respect to the position where the loading / unloading facility is arranged in the captain direction. . Thereby, since the contact | abutting location of a plane part and a fender can be fully ensured in the vicinity of the cargo handling equipment used as the junction with the land side, cargo handling work can be performed in the more stable berthing state. Further, since the flat portion is not excessive, it is possible to suppress the deterioration of the propulsion performance and the maneuvering performance of the ship in the normal ballast state.
 上記のいずれかの船舶において、夏季満載喫水における前記船首尾没水部肥大度αlが0.82以下であると、次の効果を発揮できる。この構成にすると、船首尾没水部肥大度αlが0.82以下であるために船首尾水線肥大度βが夏季満載状態においては「0.57α+0.10」以下、ノーマルバラスト状態においては「0.57α+0.055」以下に制約される従来の船舶ではサイドフラット長さが著しく短くなってしまう場合であっても、この制約を緩和してサイドフラットを長くすることができるので、船舶の汎用性を大きく改善することができる。 In any of the above-described vessels, the following effects can be exhibited when the bow tail submergence degree αl in the summer full draft is 0.82 or less. In this configuration, the bow-snipping section enlargement α1 is 0.82 or less, so the bow-spillline enlargement β is “0.57α + 0.10” or less in the summer full load state, and “ Even in the case of a conventional ship that is limited to 0.57α + 0.055 ”or less, even if the side flat length is significantly shortened, this restriction can be relaxed and the side flat can be lengthened. Can greatly improve the performance.
 上記のいずれかの船舶において、フルード数が0.17よりも大きいと、次の効果を発揮できる。この構成にすると、フルード数が0.17を超えているために、船首尾を肥大にすると造波抵抗が許容値を上回ってしまい、したがってサイドフラットを長くするために船首尾没水部肥大度αを大きくすることができない船舶であっても、αを変えずに船首尾水線肥大度βを従来の上限を超えて大きくすることでサイドフラットを長くすることができるため、船舶の汎用性を大きく改善することができる。 In any of the above vessels, if the fluid number is greater than 0.17, the following effects can be exhibited. In this configuration, since the fluid number exceeds 0.17, when the bow tail is enlarged, the wave-making resistance exceeds the allowable value. Therefore, the bow tail submerged portion enlargement degree in order to lengthen the side flat. Even for ships that cannot increase α, the side flatness can be lengthened by increasing the bow tailwaterline enlargement β beyond the conventional upper limit without changing α. Can be greatly improved.
 上記のいずれかの船舶において、フルード数が0.24以下であると、次の効果を発揮できる。この構成によると、船首尾水線肥大度βを夏季満載喫水においては「0.66α+0.12」未満、ノーマルバラスト状態においては「0.66α+0.065」未満にすることで、従来の船舶よりもサイドフラットを長くすることによる造波抵抗の増加は比較的小さくなるが、フルード数が0.24を超えない場合は造波抵抗の増加は特に軽微であり、したがって推進時のエネルギー消費をほとんど増やさずにサイドフラットを長くし、船舶の汎用性を高めることができる。 Any of the above ships can exhibit the following effects when the fluid number is 0.24 or less. According to this configuration, the bow tailwater line enlargement β is less than “0.66α + 0.12” in the summer full draft, and less than “0.66α + 0.065” in the normal ballast state, so that The increase in wave resistance due to the longer side flat is relatively small, but the increase in wave resistance is particularly slight when the Froude number does not exceed 0.24, and therefore almost increases the energy consumption during propulsion. Without increasing the length of the side flat, the versatility of the ship can be improved.
 上記のいずれかの船舶において、液化ガスを貨物として積載可能に構成すると共に、陸上の装置と接続することで前記液化ガスを陸上と当該船舶との間で移送するカーゴマニホールドを荷役設備として備えていると、次の効果を発揮できる。 In any one of the above ships, the liquefied gas can be loaded as cargo, and a cargo manifold that transfers the liquefied gas between the ship and the ship by connecting to a land device is provided as a cargo handling facility. The following effects can be exhibited.
 液化ガス運搬船は船上の荷役装置すなわちカーゴマニホールドを陸上の装置と安定して確実に接続させ、陸上との間で液化ガスを漏れなく移送する必要があり、このために主船体の平面部を複数の防舷材に当接させ、安定した状態で係留させることが特に強く要求される。従って、防舷材に主船体の平面部を当接できない場合、荷役が不可能となる場合が多く、サイドフラットが短いことによる船舶の汎用性の逸失は、液化ガス運搬船において特に大きい。しかし、上記の船首尾水線肥大度βを従来の上限を超えて大きくすることでサイドフラットを従来よりも長くできるため、当該液化ガス運搬船が荷役を行える港湾が増え、汎用性が著しく向上する。 A liquefied gas carrier needs to stably and securely connect the cargo handling device on the ship, that is, the cargo manifold, to the onshore device and transfer the liquefied gas to and from the land without leakage. It is particularly strongly required to be in contact with the fender and moored in a stable state. Therefore, when the flat part of the main hull cannot be brought into contact with the fender, cargo handling is often impossible, and the loss of versatility of the ship due to the short side flat is particularly large in liquefied gas carriers. However, since the side flat can be made longer than before by increasing the above-mentioned bow tailwater line enlargement β beyond the conventional upper limit, the number of ports where the liquefied gas carrier can handle cargo increases, and versatility is significantly improved. .
 この構成にすると、中・小型液化天然ガス運搬船であっても、従来の設計による同積載容量の中・小型液化天然ガス運搬船よりもサイドフラットが長くなり、すなわち大型液化天然ガス運搬船と同等かそれに近いサイドフラット長さを有することになるから、大型液化天然ガス運搬船用に防舷材と荷役装置の位置・間隔が設定された港湾であって、従来の設計による同積載容量の中・小型液化天然ガス運搬船が荷役を行えない港湾であっても、当該中・小型液化天然ガス運搬船であれば荷役が可能である場合が多く、したがって上記の構成による中・小型液化天然ガス運搬船は従来にない高い汎用性を備えた船舶となる。 With this configuration, even medium- and small-sized liquefied natural gas carriers have longer side flats than conventional medium- and small-sized liquefied natural gas carriers with the same loading capacity. Because it has a close side flat length, it is a port where the position and spacing of fenders and cargo handling equipment are set for large liquefied natural gas carriers, and the medium and small liquefaction of the same loading capacity by conventional design Even in a port where a natural gas carrier cannot handle, there are many cases where the medium / small liquefied natural gas carrier can handle cargo, so there is no medium / small liquefied natural gas carrier with the above configuration. A ship with high versatility.
 本発明の船舶によれば、推進動力を有し反復的に運輸事業に供される船舶であってフルード数が0.10を超えるものについて、当該船舶の垂線間長をLpp、型幅をB、夏季満載喫水における方形係数をCbl、夏季満載喫水線における船側の平面部の長さをLslとし、当該船舶の夏季満載喫水における船首尾没水部肥大度αlを「αl=B/(Lpp×(1-Cbl))」と定義し、当該船舶の夏季満載喫水における船首尾水線肥大度βlを「βl=B/(Lpp×(1-Lsl/Lpp))」と定義したときに、条件「0.57αl+0.10<βl<0.66αl+0.12」を満たすようにし、夏季満載喫水線において当該条件に対応する平面部長さを確保することで、最低限の痩せ船型を維持することで運航に必要な推進性能を確保しつつ、平面部をできるだけ拡大して入港可能な港湾の範囲を広くできる。それ故、非常に汎用性の高い船舶にすることができる。 According to the ship of the present invention, with respect to a ship having propulsion power and being repeatedly used in the transportation business and having a fluid number exceeding 0.10, the length between the perpendiculars of the ship is Lpp, and the mold width is B , The square coefficient in the summer full load draft is Cbl, the length of the plane portion on the ship side in the summer full load draft line is Lsl, and the enlargement degree αl of the stern submerged portion in the summer full load draft of the ship is expressed as “αl = B / (Lpp × ( 1−Cbl)) ”, and when defining the bow tailwater line enlargement βl in the summer full draft of the ship as“ βl = B / (Lpp × (1−Lsl / Lpp)) ”, the condition“ 0.57αl + 0.10 <βl <0.66αl + 0.12 ”is satisfied, and it is necessary for operation by maintaining the minimum length of the hull form by ensuring the length of the flat part corresponding to the conditions in the summer full load waterline. Reliable propulsion performance And while, it can widen the range of port entry can harbor enlarged as possible flat portion. Therefore, it can be a very versatile ship.
 また、本発明の船舶によれば、推進動力を有し反復的に運輸事業に供される船舶であってフルード数が0.10を超えるものについて、当該船舶の垂線間長をLpp、型幅をB、ノーマルバラスト喫水における方形係数をCbb、ノーマルバラスト喫水線における船側の平面部の長さをLsbとし、当該船舶のノーマルバラスト喫水における船首尾没水部肥大度αbを「αb=B/(Lpp×(1-Cbb))」と定義し、当該船舶のノーマルバラスト喫水における船首尾水線肥大度βb を「βb=B/(Lpp×(1-Lsb/Lpp))」と定義したときに、条件「0.57αb+0.055<βb<0.66αb+0.065」を満たすようにし、ノーマルバラスト喫水線において当該条件に対応する平面部長さを確保することで、最低限の痩せ船型を維持することで運航に必要な推進性能を確保しつつ、平面部をできるだけ拡大して入港可能な港湾の範囲を広くできる。それ故、非常に汎用性の高い船舶にすることができる。 Further, according to the ship of the present invention, for a ship that has propulsion power and is repeatedly used in the transportation business and has a fluid number exceeding 0.10, the length between the perpendiculars of the ship is Lpp, the mold width , B, the square coefficient in the normal ballast draft, Csb, the length of the plane portion on the ship side in the normal ballast draft line is Lsb, and the degree of enlargement αb of the stern in the normal ballast draft of the ship is expressed as “αb = B / (Lpp × (1-Cbb)) ”, and when defining the stern enlargement degree βb in the normal ballast draft of the ship as“ βb = B / (Lpp × (1-Lsb / Lpp)) ”, By satisfying the condition “0.57αb + 0.055 <βb <0.66αb + 0.065” and securing the plane length corresponding to the condition in the normal ballast waterline, the minimum By maintaining the slim ship shape, it is possible to widen the range of ports that can enter the port by enlarging the flat part as much as possible while ensuring the propulsion performance necessary for operation. Therefore, it can be a very versatile ship.
図1は、本発明に係る実施の形態の船舶の構成を模式的に示す側面図である。FIG. 1 is a side view schematically showing the configuration of a ship according to an embodiment of the present invention. 図2は、図1の平面図である。FIG. 2 is a plan view of FIG. 図3は、図1の正面図である。FIG. 3 is a front view of FIG.
 以下、本発明に係る実施の形態の船舶を図面を参照しながら説明する。図1~図3に示すように、本発明に係る実施の形態の船舶1の主船体2は、アッパーデッキ(上甲板)3と船底4と船側5とで囲われて構成されている。船底4と船側5とを形成する外板6は、船側5の外板6の一部を構成する平面部(サイドフラット部)6aと、平面部6a以外の外板6を構成する曲面部6bとで構成されている。 Hereinafter, a ship according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, a main hull 2 of a ship 1 according to an embodiment of the present invention is configured to be surrounded by an upper deck (upper deck) 3, a ship bottom 4, and a ship side 5. The outer plate 6 forming the ship bottom 4 and the ship side 5 includes a flat portion (side flat portion) 6a constituting a part of the outer plate 6 on the ship side 5, and a curved surface portion 6b constituting the outer plate 6 other than the flat portion 6a. It consists of and.
 船舶1は、船首1b側に居住区8と船橋7とを有している。船橋7には、両側に張り出すようにブリッジウィング7aが設けられており、このブリッジウィング7aは主船体2の全幅(最大幅)Bmを有するように形成されている。 The ship 1 has a residential area 8 and a bridge 7 on the bow 1b side. The bridge 7 is provided with bridge wings 7a so as to project on both sides, and the bridge wings 7a are formed to have the full width (maximum width) Bm of the main hull 2.
 また、この船舶1は、アッパーデッキ3上の船側端に陸上側に貨物を移送する荷役設備9を有している。この荷役設備9は、例えば、船舶1がタンカーや液化ガス運搬船(LNG船やLPG船等)の場合にはカーゴマニホールドである。この実施の形態では、船舶1の船長方向に間隔をあけて3ヶ所に荷役設備9が配置されている。そして、さらに、この船舶1は、船尾1a側にプロペラ(推進器)10と舵11を備えている。 The ship 1 also has a cargo handling facility 9 that transfers cargo to the land side at the ship side end on the upper deck 3. The cargo handling equipment 9 is, for example, a cargo manifold when the ship 1 is a tanker or a liquefied gas carrier (such as an LNG ship or an LPG ship). In this embodiment, the cargo handling facilities 9 are arranged at three locations at intervals in the captain direction of the ship 1. Further, the ship 1 further includes a propeller (propulsion unit) 10 and a rudder 11 on the stern 1a side.
 本発明の船舶1は、当該船舶1の全長をLOA、垂線間長をLpp、型幅をB、夏季満載喫水における方形係数をCbl、夏季満載喫水線dsにおける船側5の平面部6aの長さをLsl(=X1)とし、当該船舶1の夏季満載喫水における船首尾没水部肥大度αlを「αl=B/(Lpp×(1-Cbl))」と定義し、当該船舶1の夏季満載喫水における船首尾水線肥大度βlを「βl=B/(Lpp×(1-Lsl/Lpp))」と定義したときに、条件「0.57αl+0.10<βl<0.66αl+0.12」を満たすように、より好ましくは条件「0.57αl+0.11<βl<0.62αl+0.11」を満たすように構成されていて、これによって夏季満載喫水線dsにおいて当該条件に対応する平面部長さLsl(=X1)が確保されている。 In the ship 1 of the present invention, the total length of the ship 1 is LOA, the length between perpendiculars is Lpp, the mold width is B, the square factor in the summer full load draft is Cbl, and the length of the flat portion 6a on the ship side 5 in the summer full load draft ds is Lsl (= X1) is defined, and the enlargement degree αl of the bow tail submerged portion in the summer full draft of the ship 1 is defined as “αl = B / (Lpp × (1-Cbl))”, and the summer full draft of the ship 1 is defined. Satisfies the condition “0.57αl + 0.10 <βl <0.66αl + 0.12” when the stern enlargement degree βl is defined as “βl = B / (Lpp × (1−Lsl / Lpp))” More preferably, it is configured to satisfy the condition “0.57αl + 0.11 <βl <0.62αl + 0.11”, whereby the plane portion length Lsl (= X1) corresponding to the condition in the summer full load water line ds. ) It is secured.
 このような構成は従来採用されてこなかったが、「β>0.57α+0.10」であっても「β<0.66α+0.12」であれば、より好ましくは「β<0.62α+0.11」であれば、造波抵抗の増加は比較的小さく抑えられ、結果としてエネルギー消費の増大は船舶の実用性を失うほどではなく、したがって港湾条件によっては従来の設計に反して「β>0.57α+0.10 」として、より好ましくは「β>0.57α+0.11」として、サイドフラットを長くしたほうが総合的に有用な船舶となる。 Although such a configuration has not been conventionally adopted, even if “β> 0.57α + 0.10”, if “β <0.66α + 0.12”, more preferably “β <0.62α + 0.11”. ”, The increase in wave resistance is kept relatively small, and as a result, the increase in energy consumption is not such that the utility of the ship is lost. Therefore, depending on the port conditions,“ β> 0. 57α + 0.10 ”, more preferably“ β> 0.57α + 0.11 ”, and a longer side flat makes the ship more useful.
 この実施の形態の本発明の船舶1では、当該船舶1の垂線間長をLpp、型幅をB、ノーマルバラスト喫水における方形係数をCbb、ノーマルバラスト喫水線NBにおける船側5の平面部6aの長さをLsb(=X4)とし、当該船舶のノーマルバラスト喫水における船首尾没水部肥大度αb を「αb=B/(Lpp×(1-Cbb))」と定義し、当該船舶1のノーマルバラスト喫水における船首尾水線肥大度βb を「βb=B/(Lpp×(1-Lsb/Lpp))」と定義したときに、条件「0.57αb+0.055<βb<0.66αb+0.065」を満たすように、より好ましくは条件「0.57αb+0.055<βb<0.62αb+0.055」を満たすように構成されていて、これによってノーマルバラスト喫水線NBにおいて当該条件に対応する平面部長さLsb(=X4)が確保されている。この構成でも上記の構成と同様の理由で、総合的に有用な船舶となる。 In the ship 1 of the present invention of this embodiment, the length between the perpendiculars of the ship 1 is Lpp, the mold width is B, the square coefficient in the normal ballast draft is Cbb, and the length of the flat portion 6a on the ship side 5 in the normal ballast draft NB. Is defined as Lsb (= X4), and the degree of enlargement αb 部 of the bow tail submerged portion in the normal ballast draft of the ship is defined as “αb = B / (Lpp × (1-Cbb))”, and the normal ballast draft of the ship 1 is defined. Satisfies the condition “0.57αb + 0.055 <βb <0.66αb + 0.065” when the stern enlargement degree βb is defined as “βb = B / (Lpp × (1−Lsb / Lpp))” More preferably, it is configured to satisfy the condition “0.57αb + 0.055 <βb <0.62αb + 0.055”, whereby the normal ballast waterline NB In FIG. 5, the plane portion length Lsb (= X4) corresponding to the condition is secured. This configuration is also a comprehensively useful ship for the same reason as the above configuration.
 さらに、この実施の形態の本発明の船舶1では、主船体2の船側5における平面部6aと曲面部6bとの境界線となるサイドフラットラインと夏季満載喫水線dsとが交わる船首1b側の交点を第1交点P1とし、船首垂線F.P.と船尾垂線A.P.との中間点であるミッドシップから第1交点P1までの距離をLsflとし、夏季満載喫水dsにおける船首水線肥大度βflを「βfl=B/(Lpp×(1-Lsfl/(0.5Lpp)))」と定義したときに、夏季満載喫水線dsにおける船首水線肥大度βflが、「0.57αl+0.075<βfl<0.66αl+0.08」を満たす大きさに設定されている。 Furthermore, in the ship 1 of the present invention of this embodiment, the intersection on the bow 1b side where the side flat line serving as the boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the summer full load water line ds intersect. Is the first intersection P1, and the bow perpendicular F.F. P. And Stern perpendicular line A. P. Lsfl is the distance from the midship that is the midpoint to the first intersection P1, and the bowline enlargement degree βfl at the summer full draft ds is “βfl = B / (Lpp × (1−Lsfl / (0.5Lpp))” ) ”Is set to a size satisfying“ 0.57αl + 0.075 <βfl <0.66αl + 0.08 ”on the summer full waterline ds.
 上記の構成とすることで、特に造波抵抗に影響のある船首部の肥大度を実用性のある範囲としつつ、船首部の平面部を大きくすることで、入港可能な港湾の範囲を広くすることができる。 With the above configuration, the range of ports that can enter the port is widened by enlarging the flat part of the bow part while making the enlargement degree of the bow part particularly affecting the wave-making resistance within a practical range. be able to.
 この実施の形態の船舶1では、夏季満載喫水線ds以下の船体表面のうち平面部を除いた部分である曲面部6bが流線形で構成され、かつ夏季満載喫水線ds以下において平面部6aと曲面部6bが折れることなく接続されている。これによって、船体が前進する際に、船体付近で水(海水)が急激に速度を変えることなく円滑に移動することになるため、静圧の変化も急激でなく、水面の高さの変化も急激でないから、船体が発生させる水面波は小さく、結果的にサイドフラットを伸ばしたことによる造波抵抗の増加はより軽微なものとなる。 In the ship 1 of this embodiment, the curved surface portion 6b which is a portion excluding the flat surface portion of the hull surface below the summer full load water line ds is configured in a streamlined manner, and the flat surface portion 6a and the curved surface portion below the summer full water load line ds. 6b is connected without breaking. As a result, when the hull moves forward, water (seawater) moves smoothly without changing the speed suddenly in the vicinity of the hull, so the change in static pressure is not abrupt and the height of the water surface Since it is not abrupt, the water surface wave generated by the hull is small, and as a result, the increase in the wave-making resistance due to the extension of the side flat becomes smaller.
 また、この実施の形態の船舶1では、主船体2の船側5における平面部6aと曲面部6bとの境界線となるサイドフラットラインSと夏季満載喫水線dsとが交わる船首1b側の交点を第1交点P1とし、サイドフラットラインSと夏季満載喫水線dsとが交わる船尾1a側の交点を第2交点P2としたときに、船長方向に関して、陸上側に貨物を移送する荷役設備9の中央の位置である荷役位置9aと第1交点P1との水平距離X2が当該船舶1の垂線間長Lppの15%以上40%以下であり、かつ、荷役位置9aと第2交点P2との水平距離X3が当該船舶1の垂線間長Lppの15%以上40%以下である構成にする。なお、タンカーや液化ガス運搬船(LNG船やLPG船等)の場合には、この荷役設備9はカーゴマニホールドである。 Further, in the ship 1 according to this embodiment, the intersection on the bow 1b side where the side flat line S serving as a boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the summer full load water line ds intersects. The position of the center of the cargo handling facility 9 that transports cargo to the land side with respect to the captain direction when the intersection point on the stern 1a side where the side flat line S and the summer full load water line ds intersect is the second intersection point P2. The horizontal distance X2 between the cargo handling position 9a and the first intersection P1 is not less than 15% and not more than 40% of the inter-perpendicular length Lpp of the ship 1, and the horizontal distance X3 between the cargo handling position 9a and the second intersection P2 is It is set as the structure which is 15% or more and 40% or less of the length Lpp between perpendicular | vertical of the said ship 1. FIG. In the case of a tanker or a liquefied gas carrier (such as an LNG ship or an LPG ship), the cargo handling equipment 9 is a cargo manifold.
 この構成にすると、貨物積載状態で岸壁20に接岸した状態で揚荷荷役作業を行なう場合において、船長方向に関して、荷役設備9が配置される位置に対して両側に平面部6aを十分に広く確保することができる。これにより、陸側との接合点となる荷役設備9近辺において平面部6aと防舷材21との当接箇所を十分に確保することができるので、より安定した接岸状態で荷役作業を行なうことができる。また、平面部6aが過大とならないため、貨物積載状態において船舶1の推進性能や操縦性能の悪化を抑制することができる。 With this configuration, when unloading work is performed with the cargo loaded in contact with the quay 20, the plane portions 6 a are secured sufficiently wide on both sides with respect to the position where the cargo handling equipment 9 is disposed in the captain direction. can do. Thereby, since the contact | abutting location of the plane part 6a and the fender 21 can fully be ensured in the vicinity of the cargo handling equipment 9 used as the junction with the land side, cargo handling work can be performed in a more stable berthing state. Can do. Moreover, since the plane part 6a does not become excessive, the deterioration of the propulsion performance or the maneuvering performance of the ship 1 can be suppressed in the cargo loading state.
 また、この実施の形態の船舶1では、主船体2の船側5における平面部6aと曲面部6bとの境界線となるサイドフラットラインSとノーマルバラスト喫水線NBとが交わる船首1b側の交点を第3交点P3とし、サイドフラットラインSとノーマルバラスト喫水線NBとが交わる船尾1a側の交点を第4交点P4としたときに、船長方向に関して、荷役位置9aと第3交点P3との水平距離X5が船舶1の垂線間長Lppの10%以上35%以下であり、かつ、荷役位置9aと第4交点P4との水平距離X6が船舶1の垂線間長Lppの10%以上35%以下である構成となっている。 Further, in the ship 1 of this embodiment, the intersection on the bow 1b side where the side flat line S serving as the boundary line between the flat surface portion 6a and the curved surface portion 6b on the ship side 5 of the main hull 2 and the normal ballast draft line NB intersect is first. When the intersection point on the stern 1a side where the side flat line S and the normal ballast draft line NB intersect is defined as the fourth intersection point P4, the horizontal distance X5 between the cargo handling position 9a and the third intersection point P3 is about the ship length direction. A configuration in which the vertical distance Lpp of the ship 1 is 10% or more and 35% or less and the horizontal distance X6 between the cargo handling position 9a and the fourth intersection P4 is 10% or more and 35% or less of the vertical length Lpp of the ship 1 It has become.
 このような構成にすると、ノーマルバラスト状態で岸壁20に接岸した状態で積荷荷役作業を行なう場合において、船長方向に関して、荷役設備9が配置される位置に対して両側に平面部6aを十分に広く確保することができる。これにより、荷役設備9近辺において平面部6aと防舷材21との当接箇所を十分に確保することができるので、より安定した接岸状態で荷役作業を行なうことができる。また、平面部6aが過大とならないため、ノーマルバラスト状態において船舶1の推進性能や操縦性能の悪化を抑制することができる。 With such a configuration, when performing loading / unloading work in a state of being in contact with the quay 20 in a normal ballast state, the plane portions 6a are sufficiently wide on both sides with respect to the position where the loading facility 9 is disposed in the captain direction. Can be secured. Thereby, since the contact | abutting location of the plane part 6a and the fender 21 can fully be ensured in the vicinity of the cargo handling equipment 9, cargo handling work can be performed in a more stable berthing state. Moreover, since the plane part 6a does not become excessive, the deterioration of the propulsion performance or the maneuvering performance of the ship 1 can be suppressed in the normal ballast state.
 この実施の形態の船舶1では、夏季満載喫水における船首尾没水部肥大度αlが0.82以下である。αlが小さいほうが、造波抵抗は小さく、船舶1の推進に要するエネルギーは小さい。一方、αl が小さいと、従来の船舶ではサイドフラット長さLsl(=X1)が著しく短くなってしまうが、この実施の形態の船舶1ではサイドフラットを長くすることができるので、船舶1の汎用性を大きく改善することができる。 In the ship 1 of this embodiment, the degree of enlargement αl of the bow tail submerged portion in the summer full draft is 0.82 or less. The smaller αl is, the smaller the wave resistance is, and the energy required for propulsion of the ship 1 is smaller. On the other hand, when αl is small, the side flat length Lsl (= X1) is significantly shortened in the conventional ship, but in the ship 1 of this embodiment, the side flat can be lengthened. Can greatly improve the performance.
 また、この実施の形態の船舶1では、フルード数が0.17よりも大きい。フルード数が0.17を超える船舶では、造波抵抗を許容値以下とするためには船首尾没水部肥大度αを小さくする必要がある。一方、αが小さいと、従来の船舶ではサイドフラット長さLsl(=X1)が著しく短くなってしまうが、この実施の形態の船舶1ではサイドフラットを長くすることができるので、船舶1の汎用性を大きく改善することができる。 Moreover, in the ship 1 of this embodiment, the fluid number is larger than 0.17. In a ship having a fluid number exceeding 0.17, it is necessary to reduce the bow submerged portion enlargement degree α in order to make the wave resistance less than the allowable value. On the other hand, when α is small, the side flat length Lsl (= X1) is significantly shortened in the conventional ship. However, in the ship 1 of this embodiment, the side flat can be lengthened. Can greatly improve the performance.
 さらに、この実施の形態の船舶1では、フルード数が0.24以下であり、より好ましくは0.22以下である。この場合、従来の船舶よりもサイドフラットを長くすることによる造波抵抗の増加は特に軽微であり、したがって推進時のエネルギー消費をほとんど増やさずにサイドフラットを長くし、船舶1の汎用性を高めることができる。 Furthermore, in the ship 1 of this embodiment, the fluid number is 0.24 or less, more preferably 0.22 or less. In this case, the increase in the wave-making resistance by making the side flat longer than that of the conventional ship is particularly slight. Therefore, the side flat is made longer without increasing the energy consumption during propulsion, and the versatility of the ship 1 is improved. be able to.
 そして、この実施の形態の船舶1では、貨物として液化ガスを積載することができ、荷役装置として陸上の装置に接続することで液化ガスを陸上との間で漏れなく移送することができる荷役装置9すなわちカーゴマニホールドを備える。この実施の形態の船舶1は従来の船舶よりも相対的に長いサイドフラットを有するため、防舷材21の間隔が長くても、主船体の平面部を複数の防舷材21に当接させ、安定した状態で係留させる事ができ、船上の荷役装置9を陸上の装置と安定して確実に接続させ、陸上との間で液化ガスを漏れなく移送することができるため、当該船舶1が荷役を行える港湾が増え、汎用性が著しく向上する。 And in the ship 1 of this embodiment, the liquefied gas can be loaded as cargo, and the cargo handling apparatus which can transfer liquefied gas between the land without leakage by connecting to a shore apparatus as a cargo handling apparatus. 9 or a cargo manifold. Since the ship 1 of this embodiment has a relatively long side flat than the conventional ship, even if the distance between the fenders 21 is long, the plane portion of the main hull is brought into contact with the plurality of fenders 21. Since the ship 1 can be moored in a stable state, the cargo handling device 9 on the ship can be stably and securely connected to the onshore device, and the liquefied gas can be transferred to and from the land without leakage. Ports where cargo can be handled will increase and versatility will be significantly improved.
 さらに、この実施の形態では、船長方向に関して、第3交点P3が荷役設備9の船首側端部9cよりも船首1b側の位置であり、第4交点P4が荷役設備9の船尾側端部9bよりも船尾1a側の位置である構成になっている。このような構成にすると、ノーマルバラスト状態で岸壁20に接岸した状態で積荷荷役作業を行なう場合において、船長方向に関して、荷役設備9の全域において平面部6aと防舷材21との当接箇所を十分に確保することができるので、より安定した接岸状態で荷役作業を行なうことができる。 Furthermore, in this embodiment, the third intersection P3 is a position closer to the bow 1b side than the bow end 9c of the cargo handling facility 9 in the ship direction, and the fourth intersection P4 is the stern side end 9b of the cargo handling equipment 9. Rather than the stern 1a side. With such a configuration, when the cargo handling operation is performed in a state of being in contact with the quay 20 in the normal ballast state, the contact portion between the flat portion 6a and the fender 21 in the entire area of the cargo handling equipment 9 in the captain direction. Since it can be secured sufficiently, the cargo handling operation can be carried out in a more stable berthing state.
 この実施の形態の船舶1では、さらに、サイドフラットラインSとアッパーデッキサイドラインUとが交わる船首1b側の交点を第5交点P5としたときに、第5交点P5が第1交点P1よりも船首1b側であり、かつ、船首垂線F.P.よりも船尾1a側の位置である構成となっている。また、サイドフラットラインSとアッパーデッキサイドラインUとが交わる船尾1a側の交点を第6交点P6としたときに、船長方向に関して、第6交点P6が第2交点P2よりも船尾1a側であり、かつ、船尾垂線A.P.よりも船首1b側の位置である構成となっている。また、このような構成にすると、水面上のサイドフラット長さを十分に確保できるので、予備浮力も増大し復原性の改善も期待できる。また、船長方向に関して、アッパーデッキ3上に船舶1の全幅Bmを有するスペースを広く確保することができるので、ブリッジウィング7aを配置できる範囲を広くすることができる。 In the ship 1 of this embodiment, when the intersection point on the bow 1b side where the side flat line S and the upper deck side line U intersect is defined as the fifth intersection point P5, the fifth intersection point P5 is more than the first intersection point P1. On the bow 1b side and on the bow perpendicular F.R. P. Rather than the stern 1a position. Further, when the intersection point on the stern 1a side where the side flat line S and the upper deck side line U intersect is defined as the sixth intersection point P6, the sixth intersection point P6 is closer to the stern 1a side than the second intersection point P2 in the captain direction. And the stern perpendicular line A. P. It is the composition which is the position of the bow 1b side rather than. Further, with such a configuration, the side flat length on the water surface can be sufficiently secured, so that the preliminary buoyancy is increased and the stability can be expected to be improved. Moreover, since the space which has the full width Bm of the ship 1 can be ensured widely on the upper deck 3 regarding the ship length direction, the range which can arrange | position the bridge wing 7a can be widened.
 また、本発明の船舶1では、アッパーデッキ3上に船舶1の全幅Bmを有するスペースを広く確保することができるので、球形タンクを有するMOSS型LNG船に適用する場合に特に有効である。 Further, in the ship 1 of the present invention, a space having the full width Bm of the ship 1 can be secured on the upper deck 3 and is particularly effective when applied to a MOSS type LNG ship having a spherical tank.
 また、本発明の船舶1では、例えば、接岸時に、タグボート(曳船や押船)から接岸の補助を受けて係留する場合においても、タグボートによって押すことができる平面部6aを広く確保できる。つまり、タグボートが船舶1を押す場合に、タグボートに押されても船舶1側が損傷しないように補強した箇所に、その場所を示すタグプッシュマークを船体にペイントするが、このタグプッシュマークは平面上にあって押されるのが望ましくサイドフラットにあることが好ましいので、このタグプッシュマークを設置できる範囲が広くなり、マークの位置の自由度や数量を増やすことができる。そのため、タグボートによる係留作業の作業性を向上させるのにも有利である。 Further, in the ship 1 of the present invention, for example, even when mooring with the assistance of a berthing from a tugboat (a dredger or a trawler) at the time of berthing, it is possible to secure a wide flat surface portion 6a that can be pushed by the tugboat. In other words, when the tugboat pushes the ship 1, a tag push mark indicating the place is painted on the hull at a location reinforced so that the ship 1 side is not damaged even if pushed by the tugboat. In this case, it is desirable that the tag push mark should be pushed on the side flat. Therefore, the range in which the tag push mark can be installed is widened, and the degree of freedom and quantity of the mark position can be increased. Therefore, it is advantageous to improve the workability of mooring work by a tug boat.
1 船舶
1a 船尾
1b 船首
2 主船体
3 アッパーデッキ(上甲板)
4 船底
5 船側
6 外板
6a 平面部(サイドフラット部)
6b 曲面部
7 船橋
7a ブリッジウィング
8 居住区
9 荷役設備(カーゴマニホールド)
9a 荷役位置(荷役設備の中央の位置)
9b 荷役設備の船尾側端部
9c 荷役設備の船首側端部
10 プロペラ
11 舵
20 岸壁
21 防舷材
A.P. 船尾垂線
B 型幅
Bm 船の全幅
C.L. 船体中心線
D 型深さ
ds 夏季満載喫水線
F.P. 船首垂線
LOA 全長
Lpp 垂線間長
NB ノーマルバラスト喫水線
P1 サイドフラットラインと夏季満載喫水線とが交わる船首側の交点
P2 サイドフラットラインと夏季満載喫水線とが交わる船尾側の交点
P3 サイドフラットラインとノーマルバラスト喫水線とが交わる船首側の交点
P4 サイドフラットラインとノーマルバラスト喫水線とが交わる船尾側の交点
P5 サイドフラットラインとアッパーデッキサイドラインとが交わる船首側の交点
P6 サイドフラットラインとアッパーデッキサイドラインとが交わる船尾側の交点
S サイドフラットライン
U アッパーデッキサイドライン
1 Ship 1a Stern 1b Bow 2 Main hull 3 Upper deck (upper deck)
4 Ship bottom 5 Ship side 6 Outer plate 6a Flat part (side flat part)
6b Curved part 7 Funabashi 7a Bridge wing 8 Living area 9 Cargo handling equipment (cargo manifold)
9a Cargo handling position (position at the center of the cargo handling equipment)
9b Stern side end 9c of cargo handling equipment Bow side edge 10 of cargo handling equipment 10 propeller 11 rudder 20 quay 21 fender P. Stern perpendicular B Type width Bm Full width of ship L. Hull center line D type depth ds Summer full load draft line P. Bow vertical line LOA Total length Lpp Vertical line length NB Normal ballast draft line P1 Cross point on the bow side where the side flat line and the summer full load line intersect P2 Cross point on the stern side where the side flat line and the summer full load line cross P3 Side flat line and the normal ballast draft line Crossing point P4 at the bow side where the flat crossing and normal ballast water line intersect with the crossing point P5 Crossing point at the stern side where the flat side line meets the upper deck side line P6 Crossing point at the bow side where the side flat line and upper deck side line cross Stern side intersection S Side flat line U Upper deck side line

Claims (10)

  1.  フルード数が0.10よりも大きい自航する船舶において、当該船舶の垂線間長をLpp、型幅をB、夏季満載喫水における方形係数をCbl、夏季満載喫水線における船側の平面部の長さをLslとし、当該船舶の夏季満載喫水における船首尾没水部肥大度αlを「αl=B/(Lpp×(1-Cbl))」と定義し、当該船舶の夏季満載喫水における船首尾水線肥大度βlを「βl=B/(Lpp×(1-Lsl/Lpp))」と定義したときに、前記夏季満載喫水線における船首尾水線肥大度βlが、「0.57αl+0.10<βl<0.66αl+0.12」を満たす大きさに設定されていることを特徴とする船舶。 For a self-navigating ship with a Froude number greater than 0.10, the length between the perpendiculars of the ship is Lpp, the mold width is B, the square factor for the summer full load draft is Cbl, and the length of the plane on the ship side of the summer full load draft is Lsl is defined as “αl = B / (Lpp × (1−Cbl))” for the enlargement of the bow tail submergence section in the summer full draft of the ship, and the bow tail water line enlargement in the summer full draft of the ship. When the degree βl is defined as “βl = B / (Lpp × (1−Lsl / Lpp))”, the stern enlargement degree βl in the summer full load water line is “0.57αl + 0.10 <βl <0. .66αl + 0.12 ”is set.
  2.  ノーマルバラスト喫水における方形係数をCbb、ノーマルバラスト喫水線における船側の平面部の長さをLsbとし、当該船舶のノーマルバラスト喫水における船首尾没水部肥大度αbを「αb=B/(Lpp×(1-Cbb))」と定義し、当該船舶のノーマルバラスト喫水における船首尾水線肥大度βbを「βb=B/(Lpp×(1-Lsb/Lpp))」と定義したときに、前記ノーマル喫水線における船首尾水線肥大度βbが、「0.57αb+0.055<βb<0.66αb+0.065」を満たす大きさに設定されていることを特徴とする請求項1に記載の船舶。 The square coefficient in the normal ballast draft is Cbb, the length of the plane portion on the ship side in the normal ballast draft line is Lsb, and the enlargement degree αb of the stern in the normal ballast draft of the ship is “αb = B / (Lpp × (1 −Cbb)) ”, and the normal waterline when the bow tailwater line enlargement βb in the normal ballast draft of the ship is defined as“ βb = B / (Lpp × (1−Lsb / Lpp)) ” 2. The ship according to claim 1, wherein the stern enlargement degree βb is set to a size satisfying “0.57αb + 0.055 <βb <0.66αb + 0.065”.
  3.  主船体の船側における平面部と曲面部との境界線となるサイドフラットラインと前記夏季満載喫水線とが交わる船首側の交点を第1交点とし、船首垂線と船尾垂線との中間点であるミッドシップから第1交点までの距離をLsflとし、前記夏季満載喫水における船首水線肥大度βflを「βfl=B/(Lpp×(1-Lsfl/(0.5Lpp)))」と定義したときに、前記夏季満載喫水線における船首水線肥大度βflが、「0.57αl+0.075<βfl<0.66αl+0.08」を満たす大きさに設定されていることを特徴とする請求項1または2に記載の船舶。 From the midship that is the midpoint between the bow perpendicular line and the stern perpendicular line, the intersection point on the bow side where the side flat line, which is the boundary line between the plane part and the curved surface part on the ship side of the main hull, and the summer full load draft line intersects When the distance to the first intersection is defined as Lsfl and the bowline enlargement degree βfl in the summer full draft is defined as “βfl = B / (Lpp × (1-Lsfl / (0.5Lpp)))” 3. A ship according to claim 1 or 2, wherein a bow water line enlargement degree βfl in a summer full load water line is set to a size satisfying “0.57αl + 0.075 <βfl <0.66αl + 0.08”. .
  4.  前記夏季満載喫水線以下の船体表面のうち平面部を除いた部分である曲面部が流線形で構成され、かつ、前記夏季満載喫水線以下において前記平面部と前記曲面部が折れることなく接続されていることを特徴とする請求項1~3のいずれか1項に記載の船舶。 Of the hull surface below the summer full load water line, the curved surface portion excluding the flat surface portion is composed of a streamline, and the flat surface portion and the curved surface portion are connected without being bent below the summer full water line. The ship according to any one of claims 1 to 3, wherein
  5.  主船体の船側における平面部と曲面部との境界線となるサイドフラットラインと前記夏季満載喫水線とが交わる船首側の交点を第1交点とし、前記サイドフラットラインと前記夏季満載喫水線とが交わる船尾側の交点を第2交点としたときに、船長方向に関して、陸上側に貨物を移送する荷役設備の中央の位置である荷役位置と前記第1交点との水平距離が当該船舶の垂線間長の15%以上40%以下であり、かつ、前記荷役位置と前記第2交点との水平距離が当該船舶の垂線間長の15%以上40%以下であることを特徴とする請求項1~4のいずれか1項に記載の船舶。 The stern where the side flat line and the summer full load line intersect with the side flat line that forms the boundary line between the flat part and the curved part on the ship side of the main hull, and the intersection on the bow side where the summer full load water line intersects is the first intersection. When the intersection on the side is the second intersection, the horizontal distance between the cargo handling position, which is the center position of the cargo handling equipment for transporting cargo to the land side, and the first intersection with respect to the captain direction is the length between the normals of the ship. The horizontal distance between the cargo handling position and the second intersection point is 15% or more and 40% or less of the length between the normals of the ship. The ship according to any one of the above.
  6.  主船体の船側における平面部と曲面部との境界線となるサイドフラットラインとノーマルバラスト喫水線とが交わる船首側の交点を第3交点とし、前記サイドフラットラインと前記ノーマルバラスト喫水線とが交わる船尾側の交点を第4交点としたときに、船長方向に関して、陸上側に貨物を移送する荷役設備の中央である荷役位置と前記第3交点との水平距離が当該船舶の垂線間長の10%以上35%以下であり、かつ、前記荷役位置と前記第4交点との水平距離が当該船舶の垂線間長の10%以上35%以下であることを特徴とする請求項1~5のいずれか1項に記載の船舶。 The stern side where the side flat line and the normal ballast draft line intersect with the side flat line and the normal ballast draft line at the ship side of the main hull is the third intersection point, and the side flat line and the normal ballast draft line intersect When the 4th intersection is taken as the 4th intersection, the horizontal distance between the cargo handling position, which is the center of the cargo handling facility for transporting cargo to the land side, and the third intersection is 10% or more of the vertical length of the ship. The horizontal distance between the cargo handling position and the fourth intersection is not less than 35% and not more than 35% of the length between the normals of the ship. Ship according to the item.
  7.  夏季満載喫水における前記船首尾没水部肥大度αlが0.82以下であることを特徴とする請求項1~6のいずれか1項に記載の船舶。 The ship according to any one of claims 1 to 6, wherein a degree of enlargement αl of the bow tail submerged part in a summer full draft is 0.82 or less.
  8.  フルード数が0.17よりも大きいことを特徴とする請求項1~7のいずれか1項に記載の船舶。 The ship according to any one of claims 1 to 7, wherein the fluid number is larger than 0.17.
  9.  フルード数が0.24以下であることを特徴とする請求項1~8のいずれか1項に記載の船舶。 The ship according to any one of claims 1 to 8, wherein the fluid number is 0.24 or less.
  10.  液化ガスを貨物として積載可能に構成すると共に、陸上の装置と接続することで前記液化ガスを陸上と当該船舶との間で移送するカーゴマニホールドを荷役設備として備えていることを特徴とする請求項1~9のいずれか1項に記載の船舶。 The liquefied gas can be loaded as cargo, and a cargo manifold is provided as a cargo handling facility for transferring the liquefied gas between the land and the ship by being connected to a land device. The ship according to any one of 1 to 9.
PCT/JP2017/046301 2017-01-06 2017-12-25 Ship WO2018128105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780082500.6A CN110234566A (en) 2017-01-06 2017-12-25 Ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017001015A JP2018108796A (en) 2017-01-06 2017-01-06 Ship
JP2017-001015 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128105A1 true WO2018128105A1 (en) 2018-07-12

Family

ID=62789541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046301 WO2018128105A1 (en) 2017-01-06 2017-12-25 Ship

Country Status (3)

Country Link
JP (1) JP2018108796A (en)
CN (1) CN110234566A (en)
WO (1) WO2018128105A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202102521RA (en) * 2018-12-03 2021-04-29 Jgc Corp Method of producing floating facility including natural gas liquefaction apparatus
CN114475908B (en) * 2022-02-25 2023-09-22 广船国际有限公司 Partition dividing method for polar region ship body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247050A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Vessel drag reducing device and vessel
JP2008247322A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Two-shaft twin skeg ship
JP2014054878A (en) * 2012-09-11 2014-03-27 Mitsui Eng & Shipbuild Co Ltd Commercial cargo ship

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210895B2 (en) * 2014-02-05 2017-10-11 商船三井テクノトレード株式会社 Ship
KR20160100727A (en) * 2015-02-16 2016-08-24 대우조선해양 주식회사 Method for drawing calculus for freeboard of a ship and method for calculating freeboard using the freeboard calculus
CN105416505B (en) * 2015-12-09 2018-01-16 中远船务工程集团有限公司 The low-resistance of bow and arrow type waterline wears swingboat bow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247050A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Vessel drag reducing device and vessel
JP2008247322A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Two-shaft twin skeg ship
JP2014054878A (en) * 2012-09-11 2014-03-27 Mitsui Eng & Shipbuild Co Ltd Commercial cargo ship

Also Published As

Publication number Publication date
CN110234566A (en) 2019-09-13
JP2018108796A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6118880B1 (en) Ship
US8347803B2 (en) Roll suppression device for offshore structure
US4763596A (en) Semisubmerged water surface navigation ship
CN106494569A (en) A kind of inland river large-scale energy-saving green container ship
CN201300966Y (en) Semi-submerged ship
WO2018128105A1 (en) Ship
EP3652057B1 (en) Offshore vessel for production and storage of hydrocarbon products
CN205770093U (en) A kind of ballast-free merchant ship
EP2571750B1 (en) Double-ended trimaran ferry
KR102283367B1 (en) Container Ship with slow speed and large full form
WO2022007216A1 (en) Liquefied gas carrier
KR20200083426A (en) Floating Storage Regasification Unit Dedicated Vessel with Slow Speed and Large Full Form
CN105836090A (en) Merchant ship without ballast water
US20180134346A1 (en) Box shaped bilge keel
CN112046700B (en) Combined roll-on/roll-off ferry
CN202107073U (en) Handy-size bulk carrier suitable for Changjiang navigation channel
CN205769991U (en) A kind of broken line type bulkhead being applicable to floating production storage unit
JP2007050814A (en) High-speed container ship
CN217267278U (en) FSRU ship and LNG ship side by side wharf
CN111470000B (en) Line type of MR type oil ship
KR200399050Y1 (en) Twin skeg hull that reduces stern slamming
CN116729539A (en) Three-body semi-submersible ship
US3674042A (en) Method of maritime delivery of crude oil through ice-congested regions
KR20200031948A (en) Floating Storage Regasification Unit Dedicated Vessel with Slow Speed and Large Full Form
CN115402478A (en) Bridging motorboat integrally designed with guide rail bracket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889663

Country of ref document: EP

Kind code of ref document: A1