WO2018127179A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2018127179A1
WO2018127179A1 PCT/CN2018/071782 CN2018071782W WO2018127179A1 WO 2018127179 A1 WO2018127179 A1 WO 2018127179A1 CN 2018071782 W CN2018071782 W CN 2018071782W WO 2018127179 A1 WO2018127179 A1 WO 2018127179A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
feedback information
information
access network
block
Prior art date
Application number
PCT/CN2018/071782
Other languages
English (en)
French (fr)
Inventor
官磊
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22185984.6A priority Critical patent/EP4145739A1/en
Priority to CA3049605A priority patent/CA3049605C/en
Priority to EP18735823.9A priority patent/EP3567773B1/en
Priority to BR112019014075A priority patent/BR112019014075A2/pt
Priority to JP2019537125A priority patent/JP6908711B2/ja
Publication of WO2018127179A1 publication Critical patent/WO2018127179A1/zh
Priority to US16/505,149 priority patent/US10897331B2/en
Priority to ZA2019/04926A priority patent/ZA201904926B/en
Priority to US17/132,185 priority patent/US11581987B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/0081Formats specially adapted to avoid errors in the feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and apparatus for data transmission.
  • LTE (Long Term Evolution) system downlink and uplink are based on OFDMA (Orthogonal Frequency Division Multiplexing Access) and SC-FDMA (Single Carrier-Frequency Division Multiplexing Access). Use multiple access).
  • the time-frequency resources are divided into OFDM (Orthogonal Frequency Division Multiplexing) symbols or SC-FDMA symbols (OFDM symbols or SC-FDMA symbols, also called time domain symbols) in the time domain dimension and frequency domain dimensions.
  • the minimum resource granularity into which the time-frequency resources are divided is called an RE (Resource Element), that is, a time-frequency symbol representing a time domain symbol in the time domain and a sub-carrier on the frequency domain.
  • RE Resource Element
  • a typical time-frequency resource basic structure in an LTE system is a subcarrier spacing of 15 kHz, a time domain symbol duration of approximately 70 s, and a cyclic prefix duration of approximately 4 ⁇ 6 s.
  • the transmission of services in the LTE system is based on base station scheduling.
  • the upper layer data packet is scheduled at the physical layer, it is divided into small data packets in units of transport blocks (TBs).
  • the basic time unit of scheduling is generally one subframe, the duration of one subframe is 1 ms, one subframe generally includes two slots, and one slot generally includes seven time domain symbols.
  • the LTE evolution system will also consider introducing shorter time scheduling units, such as scheduling in units of one time slot or even several time domain symbols.
  • the specific scheduling process includes: the base station sends a control channel, such as a PDCCH (Physical Downlink Control Channel); the UE detects the control channel in the subframe, and performs the scheduling information according to the detected control channel.
  • a control channel such as a PDCCH (Physical Downlink Control Channel)
  • the UE detects the control channel in the subframe, and performs the scheduling information according to the detected control channel.
  • the control channel may carry scheduling information of a downlink data channel (such as a physical downlink shared channel, a physical downlink shared channel, a PDSCH) or an uplink data channel (such as a physical uplink shared channel, a physical uplink shared channel, a PUSCH), and the scheduling information includes, for example, a resource. Assign information, modulation and coding methods, and control information such as HARQ.
  • the LTE system supports two duplex modes: FDD (Frequency Duplexing Division) and TDD (Time Duplexing Division).
  • FDD Frequency Duplexing Division
  • TDD Time Duplexing Division
  • the downlink and uplink are transmitted on different carriers.
  • the uplink and the downlink are transmitted at different times of the same carrier, and specifically include a downlink subframe, an uplink subframe, and a special subframe on one carrier.
  • the special subframe includes three parts: DwPTS (Downlink Pilot Time Slot), GP (Guard Period), and UpPTS (Uplink Pilot Time Slot). Compensation for device conversion time and propagation delay from downstream to upstream.
  • the LTE system currently supports seven different TDD uplink and downlink configurations. The number of uplink and downlink subframes in different uplink and downlink configurations is generally different.
  • LTE adopts the HARQ mechanism, and ACK or NACK feedback and HARQ retransmission in the LTE system are all in units of transport blocks.
  • the UE after the UE receives the transport block carried in the PDSCH, if the receiving is correct, the UE feeds back an ACK on the uplink; if not, it feeds back a NACK on the uplink.
  • the base station may retransmit the transport block carried in the last PDSCH transmission to the UE, and the UE may receive the received information of the transport block in the PDSCH that is received again.
  • the received information of the transport block is HARQ merged to improve reception performance.
  • the 5G (Fifth Generation) technology has been discussed.
  • the 5G can be divided into two branches from the perspective of compatibility. One of them is compatible with LTE 4G (Fourth Generation, fourth generation) and the other is not.
  • New wireless NR compatible with LTE.
  • 5G includes mobile broadband continuous enhanced eMBB (Enhanced Mobi le Broad Band) and ultra-reliable low latency communication URLLC (Ultra Reliable Low Latency Communication).
  • eMBB Enhanced Mobi le Broad Band
  • URLLC Ultra-reliable Low Latency Communication
  • one TB in 5G will be divided into a larger number of CBs (Code Blocks) than 4G.
  • CBs Code Blocks
  • URLLC the burst transmission of URLLC has higher priority than eMBB in order to meet its delay and reliability requirements. Therefore, URLLC is likely to punct the transport block of eMBB that has started to transmit for a short time, thus causing eMBB. A small portion of the CBs in the TB cannot be correctly received by the eMBB UE due to being punctured by the URLLC.
  • one TB can be divided into more CBs, and a bursty URLLC emergency service can punct eMBB services that have already been transmitted.
  • the existing TB-based HARQ feedback and retransmission mechanism reduces data transmission efficiency, which in turn affects system transmission efficiency.
  • the present application describes a method and apparatus for data transmission that provides a more efficient method of data transmission processing.
  • the data transmission method provided by the embodiment of the present invention includes:
  • the radio access network device sends a first transport block to the terminal device, where the first transport block includes at least two coding blocks, and the at least two coding blocks are divided into at least two different coded block sets according to a division manner.
  • Each of the coded block sets includes at least one of the at least two coded blocks;
  • the radio access network device Receiving, by the radio access network device, the first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are respectively used for A reception status of at least two coded block sets is indicated.
  • the method further includes: the radio access network device sending a retransmission coding block to the terminal device, where the retransmission coding block includes a coding block corresponding to the denial information in the first feedback information. a part or all of the coded blocks included in the set; the radio access network device receives second feedback information sent by the terminal device, where the second feedback information includes a status corresponding to the retransmission coded block for indicating a receiving status Feedback information.
  • the method further includes: the radio access network device sending retransmission indication information to the terminal device, where the retransmission indication information is used to determine the retransmission coding block.
  • the at least two coding blocks occupy a first time-frequency resource
  • the first time-frequency resource includes at least two resource regions
  • the at least two resource regions correspond to the at least two coded block sets
  • the coding block included in each of the coding block sets occupies a resource region corresponding to the coded block set; wherein the division mode is one of the following multiple division manners:
  • the at least two resource regions are located in different time domains
  • the at least two resource regions are located in different frequency domains
  • the time domain and/or frequency domain resources occupied by the at least two resource regions are not completely the same;
  • the at least two resource regions include at least one first class region and at least one second class region, where the first class region corresponds to a specific coded block set, and the second type region does not correspond to the specific coded block set,
  • the specific set of coding blocks belongs to the at least two coded block sets;
  • the at least two resource areas include at least one first type area and at least one second type area, the first type of area supports transmission of a first type of service, and the second type of area does not support the first type of service transmission.
  • the time domain resources occupied by the resource region in time are more than the time domain resources occupied by the resource region in time.
  • the at least two coding block sets include a first type coding block set and a second type coding block set, where the first type coding block set and the second type coding block set include at least one identical Encoding block.
  • the method further includes:
  • the radio access network device sends, to the terminal device, first scheduling information for scheduling the first transport block, where the first scheduling information includes a splitting indication, where the splitting indication is used to indicate the multiple One; or
  • the radio access network device sends high layer signaling to the terminal device, where the high layer signaling includes a split indication, and the split indication is used to indicate one of the multiple split modes.
  • the method further includes: the radio access network device sending, to the terminal device, second scheduling information for scheduling the retransmission coding block, where the second scheduling information includes the retransmission indication information.
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the method further includes:
  • the first feedback information further includes feedback information indicating a receiving status of the first transport block; and/or,
  • the second feedback information further includes feedback information for indicating a reception status of the first transport block.
  • the data transmission method provided by the embodiment of the present invention includes:
  • a first transport block sent by the radio access network device where the first transport block includes at least two coding blocks, and the at least two coding blocks are divided into at least two different coded block sets according to a division manner.
  • Each of said coded block sets includes at least one of said at least two coded blocks;
  • the terminal device Transmitting, by the terminal device, the first feedback information to the radio access network device, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are respectively used for A reception status of at least two coded block sets is indicated.
  • the method further includes: the terminal device receives a retransmission coded block sent by the radio access network device, where the retransmission coded block includes a code corresponding to the negative information in the first feedback information. a part or all of the coding blocks included in the block set; and, the terminal device sends second feedback information to the radio access network device, where the second feedback information includes an indication for the retransmission code block Receive status feedback information.
  • the method further includes: receiving, by the terminal device, retransmission indication information sent by the radio access network device, where the retransmission indication information is used to determine the retransmission coding block; The mode and the retransmission indication information receive the retransmission coding block.
  • the at least two coding blocks occupy a first time-frequency resource
  • the first time-frequency resource includes at least two resource regions
  • the at least two resource regions correspond to the at least two coded block sets
  • the coding block included in each of the coding block sets occupies a resource region corresponding to the coded block set; wherein the division mode is one of the following multiple division manners:
  • the at least two resource regions are located in different time domains
  • the at least two resource regions are located in different frequency domains
  • the time domain and/or frequency domain resources occupied by the at least two resource regions are not completely the same;
  • the at least two resource regions include at least one first class region and at least one second class region, where the first class region corresponds to a specific coded block set, and the second type region does not correspond to the specific coded block set,
  • the specific set of coding blocks belongs to the at least two coded block sets;
  • the at least two resource areas include at least one first type area and at least one second type area, the first type of area supports transmission of a first type of service, and the second type of area does not support the first type of service transmission.
  • the time domain resources occupied by the resource region in time are more than the time domain resources occupied by the resource region in time.
  • the at least two coding block sets include a first type coding block set and a second type coding block set, where the first type coding block set and the second type coding block set include at least one identical Encoding block.
  • the method further includes:
  • the terminal device Receiving, by the terminal device, the first scheduling information that is used by the radio access network device to schedule the first transport block, where the first scheduling information includes a splitting indication, where the splitting indication is used to indicate the multiple One of the division manners; or, the terminal device receives the high layer signaling sent by the radio access network device, where the high layer signaling includes a division indication, where the division indication is used to indicate the multiple division manners One.
  • the method further includes: receiving, by the terminal device, second scheduling information that is sent by the radio access network device and used to schedule the retransmission coded block, where the second scheduling information includes the retransmission indication information.
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • a radio access network device provided by an embodiment of the present invention includes:
  • a processing unit configured to divide, according to a partitioning manner, at least two coding blocks included in the first transport block into at least two different coding block sets, each of the coding block sets including at least one of the at least two coding blocks a coding block;
  • a sending unit configured to send the first transport block to the terminal device
  • a receiving unit configured to receive, by the terminal device, first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are used to indicate at least The reception status of two coded block sets.
  • the sending unit is further configured to send a retransmission coding block to the terminal device, where the retransmission coding block includes a code block set corresponding to the denial information in the first feedback information. Part or all of the coding block; the receiving unit is further configured to receive second feedback information sent by the terminal device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission coding block .
  • the sending unit is further configured to send retransmission indication information to the terminal device, where the retransmission indication information is used to determine the retransmission encoded block.
  • the at least two coding blocks occupy a first time-frequency resource
  • the first time-frequency resource includes at least two resource regions
  • the at least two resource regions correspond to the at least two coded block sets
  • the coding block included in each of the coding block sets occupies a resource region corresponding to the coded block set; wherein the division mode is one of the following multiple division manners:
  • the at least two resource regions are located in different time domains
  • the at least two resource regions are located in different frequency domains
  • the time domain and/or frequency domain resources occupied by the at least two resource regions are not completely the same;
  • the at least two resource regions include at least one first class region and at least one second class region, where the first class region corresponds to a specific coded block set, and the second type region does not correspond to the specific coded block set,
  • the specific set of coding blocks belongs to the at least two coded block sets;
  • the at least two resource areas include at least one first type area and at least one second type area, the first type of area supports transmission of a first type of service, and the second type of area does not support the first type of service transmission.
  • the time domain resources occupied by the resource region in time are more than the time domain resources occupied by the resource region in time.
  • the at least two coding block sets include a first type coding block set and a second type coding block set, where the first type coding block set and the second type coding block set include at least one identical Encoding block.
  • the sending unit is further configured to send, to the terminal device, first scheduling information for scheduling the first transport block, where
  • the first scheduling information includes a dividing indication, where the dividing indication is used to indicate one of the multiple dividing manners; or the sending unit is further configured to send high layer signaling to the terminal device, where the high layer signaling includes dividing Instructing, the dividing indication is used to indicate one of the plurality of dividing modes.
  • the sending unit is further configured to send, to the terminal device, second scheduling information, that is used to schedule the retransmission encoded block, where the second scheduling information includes the retransmission indication information.
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • a terminal device provided by an embodiment of the present invention includes:
  • a receiving unit configured to receive a first transport block sent by the radio access network device, where the first transport block includes at least two coding blocks, and the at least two coding blocks are divided into at least two different ones according to a division manner.
  • a coded block set each of the coded block sets comprising at least one of the at least two coded blocks;
  • a processing unit configured to generate first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are respectively used to indicate at least two coded block sets Receiving state;
  • a sending unit configured to send the first feedback information to the radio access network device.
  • the receiving unit is further configured to receive, by the radio access network device, a retransmission coded block, where the retransmission coded block includes a corresponding one of the at least two pieces of first feedback information Part or all of the coded blocks included in the coded block set;
  • the sending unit is further configured to send second feedback information to the radio access network device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission encoded block.
  • the receiving unit is further configured to receive retransmission indication information that is sent by the radio access network device, where the retransmission indication information is used to determine the retransmission coding block, and the receiving unit is configured according to a division manner. And the retransmission indication information is received by the retransmission coding block.
  • the at least two coding blocks occupy a first time-frequency resource
  • the first time-frequency resource includes at least two resource regions
  • the at least two resource regions correspond to the at least two coded block sets
  • the coding block included in each of the coding block sets occupies a resource region corresponding to the coded block set; wherein the division mode is one of the following multiple division manners:
  • the at least two resource regions are located in different time domains
  • the at least two resource regions are located in different frequency domains
  • the time domain and/or frequency domain resources occupied by the at least two resource regions are not completely the same;
  • the at least two resource regions include at least one first class region and at least one second class region, where the first class region corresponds to a specific coded block set, and the second type region does not correspond to the specific coded block set,
  • the specific set of coding blocks belongs to the at least two coded block sets;
  • the at least two resource areas include at least one first type area and at least one second type area, the first type of area supports transmission of a first type of service, and the second type of area does not support the first type of service transmission.
  • the time domain resources occupied by the resource region in time are more than the time domain resources occupied by the resource region in time.
  • the at least two coding block sets include a first type coding block set and a second type coding block set, where the first type coding block set and the second type coding block set include at least one identical Encoding block.
  • the receiving unit is further configured to receive, by using the radio access network device, a first, a scheduling information, the first scheduling information includes a dividing indication, where the dividing indication is used to indicate one of the multiple dividing modes; or the receiving unit is further configured to receive, by the wireless access network device, High layer signaling, the high layer signaling includes a partitioning indication, the partitioning indication being used to indicate one of the plurality of partitioning modes.
  • the receiving unit is further configured to receive second scheduling information that is sent by the radio access network device and that is used to schedule the retransmission coded block, where the second scheduling information includes the retransmission indication information. .
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • an embodiment of the present invention provides a communication system, including the radio access network device and the terminal device in the foregoing aspect.
  • Yet another aspect of the present application is directed to a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the terminal device since the transport block is divided into at least two different coded block sets, the terminal device respectively feeds back the reception states of the at least two different coded block sets, and the radio access network device can only retransmit and is not correctly received.
  • the coded block set avoids HARQ retransmission of all coded block sets in the transport block due to erroneous reception of the partially coded block set, improving data transmission efficiency.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention
  • 2(a) and 2(b) are schematic diagrams showing a plurality of coding blocks in a transport block
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a data transmission method according to the present invention.
  • FIG. 4 is a schematic diagram of dividing a first time-frequency resource according to a time dimension according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of dividing a first time-frequency resource according to a frequency dimension according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of adopting a non-equal time division manner for a first time-frequency resource according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of partial overlapping of different coding block groups according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of feedback of feedback information of different coding block groups at different times according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a radio access network device according to the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of a radio access network device according to the present invention.
  • FIG. 11 is a schematic structural diagram of an embodiment of a terminal device according to the present invention.
  • FIG. 12 is a schematic structural diagram of another embodiment of a terminal device provided by the present invention.
  • FIG. 1 shows a communication system 100 to which an embodiment of the present invention is applied.
  • the communication system 100 can include at least one radio access network device 110 and a plurality of terminal devices 120 located within the coverage of the radio access network device 110.
  • FIG. 1 exemplarily shows one radio access network device and two terminal devices.
  • the communication system 100 may include multiple radio access network devices and each radio access network device may have coverage within This embodiment of the present invention does not limit the number of other terminal devices.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • the communication system used in the embodiments of the present invention may be a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, or a Wideband Code Division Multiple Access (Wideband Code Division Multiple Access).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division duplex
  • UMTS Universal Mobile Telecommunication System
  • OFDM orthogonal frequency division
  • the radio access network device involved in the embodiment of the present invention may be used to provide a wireless communication function for the terminal device.
  • the radio access network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the radio access network device may be a base station (Base T access network station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station in LTE ( The Evolutional Node B, eNB or e-NodeB), and may be the corresponding device gNB in the 5G network.
  • BTS Base T access network station
  • NodeB, NB base station
  • LTE The Evolutional Node B, eNB or e-NodeB
  • the foregoing apparatus for providing a wireless communication function for a terminal device is collectively referred to as a radio access network device.
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal device may be wirelessly accessed.
  • the Radio Access Network (RAN) communicates with one or more core networks.
  • the terminal device may be a mobile phone (or “cellular” phone), a computer with a mobile terminal, etc., for example, the terminal device may also be Portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • the embodiment of the invention is not specifically limited.
  • the ACK or NACK feedback and the HARQ retransmission in the LTE system are all in units of transport blocks.
  • one transport block TB can be divided into multiple code blocks CB for channel coding.
  • the maximum number of bits of the largest CB is 6144. That is, if the number of bits of a TB exceeds 6144, the TB needs to be split into multiple CB codecs; for LDPC (Low-Density Parity-Check) , low-density parity check), generally the maximum number of CB bits is about 2000, that is, it can support splitting into more CBs for parallel coding.
  • each CB has an independent check function.
  • each CB adds a CB CRC (cyclic redundancy check) before encoding, so that the UE is in each After the CB performs decoding, it can be determined whether the current CB is correctly decoded by the CRC check; for the LDPC, each CB can also add a CB CRC, or the LDPC coding matrix itself has a check function, that is, each of the LDPCs. CB can also have verification functions.
  • CB CRC cyclic redundancy check
  • the UE feeds back a NACK to the base station, and the base station subsequently performs HARQ retransmission on the entire TB (including all CBs in the TB).
  • one TB can be divided into more CBs, and if a small number of CBs are not correctly received, and other CBs are correctly received, the existing TB-based HARQ feedback and retransmission are performed. The efficiency is reduced, which in turn affects the system transmission efficiency.
  • the bursty URLLC emergency service can punct the eMBB service that has already been transmitted, and the part of the CB that is punctured is most likely to receive errors compared to the reception of other CBs. If the TB is also based on HARQ feedback and Retransmission, such as retransmitting all CBs in the TB, also affects system transmission efficiency.
  • the UE cannot correctly receive the TB by means of HARQ combining, because the UE cannot know which CB is punctured by the URLLC during the last transmission, so the UE feeds back the NACK while the UE itself
  • the HARQ buffer may store the URLLC service instead of its own CB. Therefore, the HARQ merge with the retransmitted CB may not obtain the HARQ merge gain, but the CB may not receive the correct call again, and eventually the RLC may be triggered. Layer retransmission, resulting in a significant drop in system efficiency.
  • the base station configures the TB division mode for the UE and sends the TB; specifically, the method of dividing the TB into N CB groups (CBG), for example, is divided into several groups, from what dimension (time domain and/or frequency) Domains, or other dimensions, are divided into groups, and each group is equally divided into unequal points.
  • the base station performs TB retransmission or CBG retransmission; the UE performs CBG-based HARQ-ACK feedback according to the foregoing TB division manner.
  • the basic time unit of scheduling is one subframe (for example, the duration is 1 ms, which is not limited herein).
  • the present invention does not exclude the granularity of other time domain scheduling, for example, introducing slot-based or mini-slot-based scheduling, that is, a specific scheduling duration that is less than or far less than 1 ms.
  • the baseband transmission process of a general downlink transport block includes:
  • the UE For the non-MIMO mode, the UE generally generates 1 codeword; and for the MIMO mode, the UE can generate 2 codewords, that is, the original payload information in the 2 codewords are independent of each other; if not specifically stated, the present invention Assuming a case of 1 codeword, the scheme can be directly extended to 2 codewords independently.
  • the scrambling may be based on a cell identity and/or an initialization state of the UE identity and a random or pseudo-random function; the constellation modulation generally includes QPSK, 16QAM, 64QAM or 256QAM, etc. .
  • the HARQ feedback and retransmission in current LTE systems is for TB. Specifically, only when all the CBs in the TB are correctly received by the UE (the correct reception mentioned in the present invention is generalized, that is, the original payload information is successfully decoded), the UE will feed back 1 ACK bit; otherwise As long as one CB is not received correctly, the UE will feed back 1 NACK bit for the TB. After the base station receives the NACK feedback, even if the UE correctly receives most of the CBs, the base station will perform HARQ retransmission for all CBs in the TB, because the base station does not know which CBs the UE specifically and incorrectly received.
  • the system bandwidth of wireless communication will become wider and wider (the current one LTE carrier is 20 MHz at the widest, and a wider bandwidth carrier will be introduced in the future), so the frequency domain is adjacently larger.
  • the channels between the resources are irrelevant, ie outside each other's associated bandwidth of the channel. That is to say, the channel frequency domain selective fading of each frequency band is independent, such as the channel fading in the frequency band of CB1/5/9 and the channel fading in the frequency band such as CB1/6/10, as shown in Fig. 2(a).
  • the situation is independent, so the two sets of CBs are also independent of whether they can be correctly received by the UE.
  • a similar situation can be extended to the time domain.
  • the channel time domain fading at the time of CB1/5/9 and so on may be independent of the channel time domain fading at the time of CB13/17/21. (assuming a high speed scene).
  • neighboring cells may have different interferences for different frequency bands and/or times of the own cell, and similarly, the reception correlation between CBs may be different.
  • the URLLC data in the cell is used to play the eMBB data.
  • the short-term burst interference that the hole, or the short-term URLLC of the neighboring cell sends to the local cell also affects the reception correlation between the CBs.
  • the so-called puncturing that is to say, the data transmission mapping of the URLLC covers a part of resources in the resource where the data channel of the eMBB that has started to transmit is covered by the time-frequency resource.
  • puncturing there is also a way that the data transmission of URLLC does not cover the data transmission of eMBB, but the base station sends both at the same time.
  • the present application introduces a CBG (Code Block Group) based partition and a corresponding HARQ feedback and retransmission mechanism.
  • an embodiment of a data transmission method provided by the present invention includes:
  • the radio access network device sends a first transport block to the terminal device, where the first transport block includes at least two coding blocks.
  • the at least two coding blocks are divided into at least two different coding block sets in a division manner, and each of the coding block sets includes at least one coding block of the at least two coding blocks.
  • the access network device sends the first scheduling information and the first transport block scheduled by the first scheduling information to the terminal device.
  • the first scheduling information may be carried in the control channel;
  • the transport block TB scheduled by the first scheduling information may be a HARQ initial transmission, or may be a HARQ retransmission (in this case, an overall TB retransmission), in the present invention
  • the TB is described as an example of the HARQ initial transmission, and the TB includes at least two coding blocks CB.
  • the TB shown in FIG. 2 includes 48 CBs.
  • the terminal device receives the first transport block sent by the radio access network device.
  • the terminal device receives the first transport block according to the first scheduling information.
  • the first scheduling information may include at least one of a modulation and coding mode, a time-frequency resource allocation, and a HARQ process number corresponding to the first transport block.
  • the terminal device obtains a division manner of the first transport block, for example, the division manner includes a number of CBGs into which the first transport block is divided, and CBs included in each CBG.
  • the division manner may be pre-defined by the standard, or may be obtained by the terminal device receiving the signaling configuration of the access network device.
  • the division manner may be divided according to the logical sequence number of the CB, for example, CB 1 to 12 form CBG1, CB 13 to 24 form CBG2, CB 25 to 36 form CBG3, and CB 37 to 48 form CBG4; or, the division manner may be based on
  • the time-frequency resources occupied by the CBs in the first transport block are divided, for example, according to a time domain division manner or a frequency domain division manner.
  • the terminal device generates first feedback information, and sends the first feedback information to the radio access network device, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, The at least two feedback information are respectively used to indicate the reception status of the at least two coding block sets.
  • the terminal device obtains the receiving states of the at least two coded block sets respectively, and sends the first feedback information to the radio access network device.
  • the terminal device needs to obtain feedback information of each coded block set separately.
  • the feedback information of the coded block set is acknowledgement information (ACK); when the coded block set is not correctly received, the feedback information of the coded block set is negative information (NACK).
  • the first feedback information includes feedback information of all coded block sets in the first transport block.
  • the first feedback information needs to be generated according to the foregoing division manner. Specifically, the terminal device needs to generate ACK or NACK feedback information for the CBGs 1, 2, 3, and 4 respectively according to the division manner of the logical CB sequence number. For example, if all CBs in a certain CBG are correctly decoded, the corresponding device corresponds to The feedback information of the CBG is ACK. Otherwise, if at least one CB in the CBG is not correctly decoded, the feedback information corresponding to the CBG is NACK.
  • S304 The access network device receives the first feedback information sent by the terminal device.
  • the radio access network device may only retransmit the call that is not correctly received.
  • the coding block set avoids HARQ retransmission of all coding block sets in the transmission block due to the erroneous reception of the partial coding block set, thereby improving data transmission efficiency.
  • the method of the foregoing embodiment may further include:
  • the radio access network device sends the retransmission coding block and the retransmission indication information to the terminal device, where the retransmission coding block includes a coding block set corresponding to the denial information in the at least two first feedback information. Part or all of the code blocks included.
  • the radio access network device sends the retransmission coding block to the terminal, where the retransmission coding block includes part or all of the coding included in the first coding block set. Piece.
  • S306 The terminal device receives the retransmission coded block.
  • the receiving may refer to receiving certain information, and may also refer to receiving and decoding processing or demodulating processing of the received information. For example, if the downlink data is correctly received, the ACK is fed back.
  • the receiving here actually includes receiving the downlink data and performing a correct decoding operation on the downlink data.
  • the access network device sends, to the terminal device, a second scheduling information terminal device for scheduling the retransmission coding block, to receive the second scheduling information, where the second scheduling information further includes a modulation and coding mode of the retransmission coding block, Resource allocation information, etc.
  • the terminal device receives the retransmission coded block according to the second scheduling information.
  • the terminal device generates second feedback information, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission coding block.
  • the terminal device generates second feedback information according to the reception status of the retransmission code block.
  • the terminal device obtains the receiving state of the retransmission coded block, and performs feedback of the second feedback information according to the receiving state, that is, the second feedback information corresponds to the decoding state of the retransmitted coding block. Specifically, if all the coding blocks in the retransmission coding block are correctly decoded, ACK is fed back; otherwise, if at least one coding block in the retransmission coding block is not correctly decoded, NACK is fed back.
  • the terminal device sends the second feedback information to the radio access network device.
  • the radio access network device After receiving the second feedback information, the radio access network device determines whether the retransmission coding block needs to be retransmitted according to whether the second feedback information includes the denial information.
  • the radio access network device may have a retransmission according to different states of the received first feedback information and the second feedback information, and may also have multiple retransmissions until the first transport block is correctly received by the terminal device.
  • the method of the foregoing embodiment may further include:
  • the radio access network device sends retransmission indication information to the terminal device, where the terminal device receives the retransmission indication information.
  • the retransmission indication information is used to determine the retransmission coded block.
  • step S306 the terminal device receives and decodes the retransmission coded block according to the division manner and the retransmission indication information.
  • the radio access network device may further send retransmission indication information to the terminal device, where the retransmission indication information is used by the terminal device to determine the retransmission coded block according to the retransmission indication information.
  • the retransmission indication information can be used to indicate a variety of information.
  • the retransmission indication information may include at least one of the following: first indication information, second indication information, third indication information, and fourth indication information. It should be noted that the retransmission indication information may be configured as long as the identification information of the retransmission coding block can be indicated.
  • the first indication information is used to indicate the coded block set corresponding to the retransmission coded block.
  • the at least two coding blocks are divided into at least two different coding block sets according to a division manner, and the first feedback information respectively corresponds to each of the coded block sets that are divided, that is, according to the terminal device.
  • the first indication information is used to indicate a time-frequency resource occupied by the coded block set corresponding to the retransmission coded block.
  • the terminal device determines, according to the first indication information, a part of the time-frequency resource in the time-frequency resource of the transport block occupied by the first transport block, where the part of the time-frequency resource is a certain (several) CBG or some (several) codes The time-frequency resource occupied by the block set.
  • the time-frequency resource of the transport block occupied by the first transport block is divided into a plurality of sub-time-frequency resources, and each sub-time-frequency resource is occupied by each of the CBGs or the coded block sets. Time-frequency resources.
  • the second indication information is used to indicate an identifier of the retransmission coded block in the first transport block, or a position in the first transport block, or a sequence number in the first transport block ;
  • the second indication information indicates one or some coding blocks in the first transport block as a retransmission code block, such as specifically indicating a sequence number, a location, or a location of the retransmission code block in the first transport block.
  • a retransmission code block such as specifically indicating a sequence number, a location, or a location of the retransmission code block in the first transport block.
  • the third indication information is used to indicate that the retransmission coding block includes all coding blocks or partial coding blocks in the first transmission block;
  • the third indication information is used to indicate a partial coding block retransmission mode from the retransmission mode set, where the retransmission mode set includes all coding block retransmission modes and the partial coding block retransmission mode. If the indication is all coded block retransmission mode, it is equivalent to the retransmission of the entire first transmission block; and at this time, the partial coding block retransmission mode is indicated, that is, the partial coding block in the first transmission block is retransmitted. Next, the terminal device needs to continue to determine which part of the CBG or the foregoing coded block set is retransmitted at this time, and may specifically be based on those CBGs or coded block sets corresponding to the NACK information in the first feedback information.
  • the fourth indication information is used to indicate HARQ retransmission corresponding to all or part of the coded block set in the at least two different coded block sets.
  • the fourth indication information is used to indicate a HARQ retransmission mode from the set of HARQ transmission modes, where the HARQ transmission mode set includes the HARQ initial transmission mode and the HARQ retransmission mode.
  • the NDI New Data Indication
  • the NDI may be indicated by new data in the scheduling information, or indicated by the NDI and the HARQ process ID.
  • the terminal device needs to continue to determine which part of the CBG or the foregoing coded block set is retransmitted at this time, and may specifically be based on those CBGs or coded block sets corresponding to the NACK information in the first feedback information.
  • step 306 includes: before receiving or decoding the retransmitted coding block, the terminal device needs to first determine which retransmission coding block is the coding block in the CBG or which (a) number of coding block sets. Specifically, the retransmission coding block needs to be determined according to the foregoing division manner, that is, the resolution of the retransmission coding block is different for different division manners; and the retransmission coding block needs to be determined according to the retransmission indication information, for details. A description of various indications as follows.
  • the manner in which the terminal device receives the retransmission coded block is also different.
  • the terminal device determines, according to the foregoing division manner and the retransmission indication information, a first coding block set in the at least two different coding block sets, where the retransmission coding block belongs to The first coding block set, the reception status of the feedback information corresponding to the first coding block set in the first feedback information is a denial information; specifically, the retransmission indication information may indicate the first coding block set
  • the sequence number may also indicate the time-frequency resource occupied by the first coded block set.
  • the terminal device determines one or some of the coding blocks in the first transport block according to the foregoing division manner and the retransmission indication information, and determines the certain code or codes.
  • the block acts as a retransmission code block, such as specifically indicating the sequence number, location or identity of the retransmission code block in the first transport block.
  • the terminal device determines a partial coding block retransmission mode from the retransmission mode set according to the division manner and the retransmission indication information, where the retransmission mode set includes the partial coding a block retransmission mode and a total coded block retransmission mode, the terminal device determining, according to the division manner, a second coding block set corresponding to the feedback information in the first feedback information that is received as a negative information, the retransmission coding The block belongs to the second set of coding blocks.
  • the terminal device determines a HARQ retransmission mode from the HARQ transmission mode set according to the retransmission indication information, where the HARQ transmission mode set includes the HARQ retransmission mode and the HARQ initial In the transmission mode, the terminal device determines, according to the division manner, a third coding block set corresponding to the feedback information in which the reception status is the negative information in the first feedback information, where the retransmission coding block belongs to the third coding block set. .
  • the radio access network device can retransmit only the coded block set that is not correctly received by the CBG-based HARQ feedback and retransmission, thereby avoiding a small amount.
  • the CB is incorrectly received, resulting in HARQ retransmission of all CBs in the overall TB, improving data transmission efficiency, thereby improving system transmission efficiency.
  • the coding block in the first transport block may be divided into multiple manners.
  • the first transport block may be logically divided according to the logical sequence number of the CB. 2.
  • the other manner may be based on
  • the time-frequency resources occupied by the CBs in the first transport block are divided into the coded blocks according to the occupied resources.
  • the at least two coding blocks occupy a first time-frequency resource
  • the first time-frequency resource includes at least two resource regions
  • the at least two resource regions correspond to the at least two coded block sets
  • the coding block included in each of the coding block sets occupies a resource region corresponding to the coded block set; wherein the division mode is one of the following multiple division manners:
  • the at least two resource regions are located in different time domains
  • the at least two resource regions are located in different frequency domains
  • the time domain and/or frequency domain resources occupied by the at least two resource regions are not completely the same;
  • the at least two resource regions include at least one first class region and at least one second class region, where the first class region corresponds to a specific coded block set, and the second type region does not correspond to the specific coded block set,
  • the specific set of coding blocks belongs to the at least two coded block sets;
  • the at least two resource areas include at least one first type area and at least one second type area, the first type of area supports transmission of a first type of service, and the second type of area does not support the first type of service transmission.
  • the first time-frequency resources are divided according to the time dimension and the frequency dimension, respectively.
  • the CB included in the first TB is the 48 CBs with CB numbers from 1 to 48, then the 48 CBs are taken.
  • the four time-frequency resources are divided into four CBGs according to the time dimension, which are CB1 to 12 resources, CB13 to 24 resources, CB25 to 36 resources, and CB37 to 48 resources.
  • corresponding to at least two resource regions are located in different frequency domains.
  • the CB included in the first TB is the 48 CBs with CB numbers from 1 to 48, then the 48 CBs are used.
  • the occupied time-frequency resources are divided into four CBGs according to the frequency dimension, which are resources of CB ⁇ 1,5,9,13,17,21,25,29,33,37,41,45 ⁇ , CB ⁇ 2,6,10,14,18,22,26,30,34,38,42,46 ⁇ resources, CB ⁇ 3,7,11,15,19,23,27,31,35, 39,43,47 ⁇ , and the resources of CB ⁇ 4,8,12,16,20,24,28,32,36,40,44,48 ⁇ .
  • the division according to the time domain and the frequency domain association is similar, that is, the combination of the above time domain and frequency domain embodiments.
  • the present invention may also consider introducing a further partitioning manner for a scenario in which eMBB and URLLC resources are multiplexed.
  • the specific CBG includes a CB that is punctured or interfered by the URLLC, such as CB17. If the time domain symbol is punctured by URLLC, the punctured CB belongs to the CBG or coded block set of CB13 to 24, and the other coded block set other than the specific coded block set is the other 3 CBG or coded block. set.
  • the non-equal time division mode can be adopted, and the time resource occupied by the CB with the transmission time can be longer than the CB of the transmission time.
  • Time resources Referring to FIG. 6, in an implementation manner, the first TB is divided into three CBGs or coded block sets, which are ⁇ CB1 to 20, CB21 to 36, CB37 to 48 ⁇ or ⁇ CB1 to 20, respectively, and CB21 to 36 resources, CB37 to 48 accounted for resources ⁇ .
  • inter-CB interleaving may be introduced inside each element, for example, CB1 to 20 are interleaved within five time-domain symbols occupied by them, so that the influence of puncturing can be flattened. Spread to each of the 20 CB CBs.
  • the advantage of non-equal length division and the introduction of inter-CB interleaving in the element, in addition to resisting puncturing, can also cause the CB that takes the long time to be transmitted to be cached first, and then start decoding in advance, and then the latter is generated. After a short CB is buffered and then decoded, a longer decoding processing time is reserved for the CB that takes a long time, and a compromised short decoding processing time is reserved for the CB that takes a short time.
  • the delay of HARQ feedback can be reduced to improve system transmission efficiency.
  • CB4 spans the first CBG and the second CBG, that is, CB4 is CBG ⁇ A public CB of CB1, 2, 3, 4 ⁇ and CBG ⁇ CB4, 5, 6, 7 ⁇ .
  • the above public CB scheme is also applicable to other division methods.
  • the method of the foregoing embodiment may further include: the access network device sends a division indication to the terminal device, where the division indication is used to indicate the multiple divisions One of the ways.
  • the terminal device receives the division indication, and obtains a division manner corresponding to the division indication.
  • the division indication may be carried in the first scheduling information.
  • the partitioning indication can be carried in higher layer signaling.
  • the access network device may notify the terminal device of the current specific division manner by using RRC signaling;
  • the access network device may notify the terminal device of the current specific division manner by using physical layer signaling, for example, by using a PDCCH, or the division signaling is directly carried in the first scheduling information. Further, the terminal device may determine the current specific division manner according to the division signaling. Alternatively, the terminal device may further determine the current specific division manner according to the division signaling and the preset rule, for example, according to the current TB bit number or according to the current TB. The number of time-frequency resources occupied by all CBs included in the current TB is used to resolve the split signaling.
  • the specific analysis method may be, for example, when the number of bits of the TB is small or the resources occupied are small, the indication granularity of the division signaling is small; conversely, when the number of bits of the TB is large or the resources are occupied, The indication of dividing signaling is larger.
  • the access network device may notify the terminal device of the current specific division manner by using physical layer signaling and RRC signaling.
  • a limited number of division manners are configured for the terminal device by using RRC signaling, and then one of the limited division manners is determined by the PDCCH as the current division manner.
  • the retransmission indication information may be carried in the second scheduling information. That is, the second scheduling information includes the retransmission indication information.
  • the dividing indicating the first field in the downlink control information format used by the retransmission indication information includes at least one identical field.
  • the DCI (Downlink Control Information) format of the initial transmission and the retransmission is the same, such as the DCI of the format 1.
  • the format here refers to one of multiple DCI formats of the PDCCH. Different DCI formats may be used for different data transmission modes of the scheduled data channel. For example, single channel and multiple antenna data channel scheduling generally use different DCI formats, but this The invention does not limit which DCI format to use.
  • the first scheduling information of the foregoing first TB scheduling includes a first field, where the first field indicates a division mode, and the first scheduling information may not include the retransmission indication information; and the retransmission coding block scheduling is performed.
  • the second scheduling information includes a second field, where the second field is used as the retransmission indication information, and the second scheduling information may not indicate the division manner.
  • the first field and the second field may use the same field in the DCI format, for example, all of 2 bits; of course, the first field and the second field may be included in each other, that is, the two include the same Field, such as the first field is 2 bits, the second field is 3 bits, and the second field includes the first field; or it may be partially overlapping, such as the first field and the second field are 3 bits, but only overlap 2 of them, that is, each has a different bit from each other.
  • the access network device when the access network device sends the HARQ initial transmission of the transport block to the terminal device, scheduling a control channel of the initial transmission block a first field (such as some 2 indication bits) in the first scheduling information (such as the control signaling of the downlink control format DCI format 1) carried in the medium is used as the foregoing transmission block division indication; when the access network When the device sends the retransmission coded block to the terminal device, scheduling the second scheduling information carried in the control channel of the retransmission coding block (such as control signaling of the downlink control format DCI format 1 or other format control)
  • the second field in the signaling such as DCI format 1A
  • DCI format 1A such as some of the above two indication bits
  • the two indication bits of the first field are used to divide from the four division manners (for example, including time division at the first granularity, time division at the second granularity, and frequency division at the third granularity, to In the frequency division of the four-grained frequency, a division mode is indicated; when the partial retransmission of the retransmission coding block is performed, based on the selected one of the division manners, the two indication bits of the second field may be reused first when the initial transmission is performed.
  • the same 2-bit field of the field is used to further indicate which coding block is the current retranscoded block in this division mode.
  • the first scheduling information (such as downlink control) carried in the control channel of the initial transmission block is scheduled.
  • a certain first field (such as some 2 indication bits) of the format DCI format 1 is used as the above-mentioned transport block division indication;
  • the second scheduling information (such as the control signaling of the downlink control format DCI format 1 or other format control signaling, such as DCI format 1A) carried in the control channel of the retransmission coding block is scheduled.
  • the second field (such as the two indicator bits of the first field described above) is further combined with an additional few bits (such as another one of the indicator bits) to be used as the retransmission indication information, that is, 3 bits of the retransmission indication information.
  • the second field contains 2 bits of the first field described above.
  • the second field may include all or part of the status in the MCS field.
  • the MCS field in the second scheduling information may be multiplexed.
  • Table 1 shows the parsing rules of the current MCS field. It can be seen that the current MCS field is 5 bits representing 32 states, and the state indexes 0-28 respectively represent 29 MCS levels and are used for the load index query. The three states of the MCS indexes 29 to 31 are mainly used to change the modulation order when the scheduling is retransmitted.
  • the MCS index 0-28 and the time-frequency resource allocation field in the control information are used in combination to determine the payload size of the transport block or the coding block.
  • the retransmission scheduling since the payload of the coding block is consistent with the corresponding initial transmission time, and the time-frequency resource occupied by the current HARQ retransmission has a special field in the control information, therefore, for the retransmission scheduling, at least The MCS indexes 0-28 are redundant, and the MCS indexes 29 to 31 only serve to change the modulation order during retransmission. Generally, the requirement for retransmission of the modulation order is small, so it can be counted as redundant. I.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the second field or the additional field is used to further indicate whether to perform HARQ merging, and the HARQ cache pollution problem can be avoided when the eMBB is punctured or interfered with by the URLLC.
  • the retransmission indication information further includes a partial coding block retransmission mode or a full coding block retransmission mode.
  • This scheme can achieve dynamic switching of the entire retransmission of the transport block and retransmission of the partial coded block in the transport block, and the former can be indicated when a large number of coded blocks are received incorrectly.
  • the first feedback information further includes feedback information corresponding to the first transport block for indicating a receiving state; and/or,
  • the second feedback information further includes feedback information corresponding to the first transport block for indicating a receiving status.
  • a CRC process is added before a plurality of CBs included in the TB are separately encoded. Specifically, the original information bits of the TB are first added with TB CRC bits (generally 24 TB CRC bits), then segmented into multiple CBs, and then CB CRC is added to each CB (generally CBs need to add 24 CB CRC bits respectively).
  • This two-layer CRC addition process is to prevent all CB decoding from passing the CB CRC check, but some of the CB decoding is actually wrong, that is, some CB decoding has a false alarm. The probability increases as the number of CBs into which TB is divided increases.
  • the terminal device further needs to feed back feedback information corresponding to the first transport block in the first feedback information, that is, the first feedback information further includes feedback information corresponding to the first transport block for indicating a receiving status.
  • the feedback is based on the divided CBG for the division manner of the initial transmission block, for example, it is assumed that the TB includes 4 CBs and is divided into 2 CBGs, where CB1 and 2 are CBG1.
  • CB3 and 4 are CBG2, and the terminal device decodes each CB separately and performs CB CRC check, and then generates CBG1 feedback information for CB1 and CB2 decoding and CRC check conditions, for example, CB1 and 2 pass If the CB CRC is checked, the ACK is fed back, otherwise the NACK is fed back, which is similar to CBG2.
  • the terminal device also looks at the decoding of the entire TB through the TB CRC to generate an additional one. Corresponding to the overall TB CRC feedback information, such as all CB CRC check that CBG1 and CBG2 pass, but the TB CRC does not pass.
  • the terminal device generates a NACK for the feedback information corresponding to the TB CRC and sends it to the access network device.
  • the remaining two feedback bits for CBG1 and CBG2 are not important regardless of feedback ACK or NACK, because the access network device thinks that the entire TB is not correctly transmitted.
  • both the access network device and the terminal device are It is impossible to tell which one or which CB CRC has a false alarm.
  • the optimal feedback state of the above situation is that the feedback states for ⁇ CBG1, CBG2, TB ⁇ are ⁇ ACK, ACK, ACK ⁇ , ⁇ ACK, NACK, NACK ⁇ , ⁇ NACK, ACK, NACK ⁇ , respectively.
  • ⁇ NACK, NACK, NACK ⁇ and ⁇ ACK, ACK, NACK ⁇ pay attention to the last state, that is, all the partial CB corresponding feedback information is ACK, only TB corresponds to NACK, which represents the appearance of CB CRC false alarm
  • the access network device generally cannot assume that any CB is correctly received.
  • This special state is to inform the access network device that a CB CRC has occurred. False alarm; for other feedback states, the access network device can assume that the CBG of the ACK is actually received correctly.
  • the first feedback information may not include the feedback information corresponding to the first transport block, that is, the first feedback information does not include the first transport block corresponding to the first transport block.
  • Feedback information indicating the status of the reception.
  • the UE may not feed back the TB-based ACK/NACK, but formulate a rule.
  • the rule specifically includes: as long as the UE side finds that the TB CRC has not passed, the UE feeds back NACK to all CBGs regardless of the reception status of the multiple CBGs divided by the TB.
  • the UE only feeds back 1 bit for CBG1 and CBG2, respectively, for 2 bits, without feedback feedback information corresponding to the TB CRC, but as long as the TB CRC fails, regardless of CBG1 and CBG2.
  • the UE receives feedback ⁇ NACK, NACK ⁇ at this time.
  • the terminal device determines that the receiving states corresponding to all the CBs included in all the CBGs are correctly received, that is, the decoding states of the CB or the CBG are respectively verified, for example, by CB or CBG CRC or by the school.
  • the terminal device sets the decoding status corresponding to all CBGs to NACK and reports it. For example, a TB is divided into two CBGs. If the terminal device determines that each CBG passes the check through the CB or CBG CRC, that is, it can obviously feed back two ACKs, but how the TB CRC fails, the terminal device needs to report. Two NACKs, without the need for other information reported for TB.
  • the terminal device and the base station are unable to determine which CB or which CBG has a false alarm. Therefore, it is reasonable for the terminal device to report a NACK for each CBG at this time, that is, a full NACK.
  • the base station After receiving the report of the full NACK, the base station does not need to distinguish the following two states: the CBG is correctly verified but the TB is not verified correctly, and all CBGs are decoded and failed; at this time, for the base station, the preferred operations are all It is a HARQ retransmission for all CBGs.
  • the first feedback information includes CBG feedback information for each CBG and TB feedback information for the TB, and may also be implemented by channel selection. Specifically, if all CBGs are decoded correctly or all decoding fails or all CBGs pass the check but the TB CRC check fails, the terminal device sends feedback information for the TB, such as ACK or NACK, on the first feedback channel resource.
  • the feedback information for the CBG is not transmitted on the second feedback channel resource; if a part of the CBG decoding is correct but another part of the CBG decoding fails, the terminal device transmits feedback information for each CBG on the second feedback channel resource, instead of the first Feedback information for the TB is sent on the feedback channel resource and the second feedback channel resource.
  • the determining rules of the first feedback channel resource and the second feedback channel resource are different, for example, the former is determined by an implicit rule, and the latter is determined according to a display rule.
  • the implicit rule includes implicitly indicating a corresponding first feedback channel resource by scheduling resources of a downlink control channel of the TB or the CBG, where the display rule includes indicating the second feedback channel resource by using a high layer and/or physical layer signaling.
  • the base station side needs to perform blind detection on the first feedback channel resource and the second feedback channel resource, because the base station does not know the specific decoding status of the TB and the CBG on the terminal device side.
  • the above solution can be extended to the method of transmitting the second feedback information.
  • the terminal device further needs to feed back feedback information corresponding to the first transport block in the second feedback information, that is, the second feedback information further includes feedback information corresponding to the first transport block for indicating a receiving status.
  • the embodiment may be combined with the foregoing two embodiments of the first feedback information, that is, the first feedback information includes feedback information of the first transport block, or the first feedback information does not include feedback information of the first transport block.
  • the codebook size of the second feedback information may be equal to or smaller than the codebook size of the first feedback information.
  • the codebook size mentioned here corresponds to the number of bits of the ACK/NACK before encoding for the feedback information of the first transport block or the retransmission coded block of the first transport block.
  • the TB includes 6 CBs and is divided into 3 CBGs, which are ⁇ CB1 and 2 ⁇ , ⁇ CB3 and 4 ⁇ , and ⁇ CB5 and 6 ⁇ , respectively, assuming that the terminal device does not have a virtual state when the feedback of the first feedback information occurs.
  • the access network device assumes that CBG 3 is correctly received, and CBG1 and 2 are not correctly received; after that, the access network device to the terminal device A partial CB retransmission of CBG1 and 2 is transmitted, and when the access network device performs the coding of the partial retransmission, the CRC terminal device that does not add TB on the basis of CB1 to CB4 will be directed to CBG1, CBG2 and the first TB. Feedback of the feedback information is respectively performed.
  • the terminal device can perform the TB CRC calibration in addition to the feedback information of the CBG1 and 2, and the previous CBG3. Check and feed back the ACK/NACK corresponding to the entire first TB.
  • the second feedback information must include the feedback information corresponding to the first TB, and cannot adopt the manner of the predetermined rule as the first feedback information. Specifically, if the second feedback information does not include the feedback information corresponding to the first TB, and the foregoing predetermined rule of the first feedback information is used, that is, after decoding the retransmission code block, if it is determined that the TB CRC does not pass, NACK is fed back to all retranscoded blocks without feedback of the feedback information corresponding to the first TB, so if this is done, the access network device cannot distinguish that all retranscoded blocks are NACK (in this case, the access network device) Subsequent only need to retransmit these retransmission code blocks), or all retranscoded blocks are ACK but the TB CRC does not pass. In this case, the access network device needs to retransmit all the coding blocks in the first TB, because a false alarm problem occurs.
  • the codebook size of the second feedback information is equal to the codebook size of the first feedback information, and all the foregoing CBGs are verified to pass but the TB check fails to report the full NACK.
  • the first feedback feedback for the initial transmission includes an ACK for CBG1 and a NACK for CBG2; then, the base station performs partial CBG2 retransmission if the terminal device passes the decoding check of CBG2.
  • the TB composed of CBG1 and CBG2 is not decoded and verified, and the codebook still has 2 bits for the HARQ feedback of the retransmission of the part of the CBG, which is also the feedback 2 as in the above embodiment.
  • NACK which is full NACK.
  • the first feedback information ACK/NACK codebook size is greater than or equal to the ACK/NACK codebook size of the second feedback information.
  • BC includes CB1 and 2 as CBG1, CB3 and 4 as CBG2, CB5 and CBG3, CB7 and CBG4 as examples, and does not consider simultaneous feedback of TB-based ACK/NACK as an example, then ACK
  • the /NACK codebook size is 4, such as ⁇ ACK, ACK, ACK, NACK ⁇ for 4 CBGs, respectively.
  • the second feedback information may not need to reserve the bit position in the ACK/NACK codebook of all CBGs, and the codebook size of the second feedback information may be smaller than the codebook size of the first feedback information.
  • the second feedback information further includes a part of the second TB and/or the second TB. Feedback information corresponding to CB.
  • the same ACK/NACK codebook size when the same ACK/NACK codebook size is used, for partial CB retransmission, other TB transmissions may also be performed, assuming that the other TB is TB2 or The second TB, assuming that the TB2 includes two CBGs, the two bits corresponding to the two CBGs of the TB2 can be fed back together while feeding back the CBG4 of the TB1, that is, the three bits of the feedback are ⁇ ACK, DTX, ACK, NACK ⁇ , the feedback position corresponds to CBG4 of TB1, placeholder bit, CBG1 of TB2 and CBG2 of TB2, respectively.
  • the feedback bits corresponding to the two CBGs of TB2 occupy the tail of the ACK/NACK codebook, so that the ACK/NACK position of the CBG of the TB1 can be avoided, and the base station and the UE are avoided for the ACK/NACK codebook.
  • the problem of inconsistent understanding of each bit Other methods of placing ACK/NACK corresponding to TB2 are not excluded, as long as the feedback positions corresponding to different TBs are not mutually dependent, for example, ⁇ ACK, DTX, NACK, ACK ⁇ respectively correspond to CBG4 of TB1, a placeholder bit, CBG2 of TB2 and CBG1 of TB2.
  • the specific feedback information in the first feedback information is an ACK
  • the specific feedback information corresponds to a specific coding block set in the at least two coding block sets
  • the retransmission coding block corresponds to
  • the terminal device does not include the specific coded block set in the coded block set, and the terminal device performs the bit position corresponding to the specific coded block set in the codebook of the second feedback information when performing feedback of the second feedback information.
  • NACK padding Specifically, for the initial ACK/NACK feedback, the CBG that has fed back the ACK performs NACK padding on the CBG of the previous ACK when the CB is retransmitted, mainly considering part of the CB retransmission plus the second TB.
  • the joint feedback of the feedback information causes a problem of TB or CB error feedback in the second TB. For example, if the access network device schedules the second TB, but the terminal device loses the control information for scheduling the second TB, if the location of the specific coded block set is filled with the ACK as the previously fed ACK, it will be accessed. The network device misinterprets the ACK corresponding to the second TB, so that the interpretation of the feedback information by the access network device and the terminal device is inconsistent, and the physical layer packet loss event of the second TB is caused.
  • the feedback information of the at least two coding block sets respectively corresponding to the first feedback information is fed back at different times; and/or the second feedback information corresponds to the feedback information of the retransmission coding block. Feedback at different times.
  • the first feedback information is taken as an example for description, and the second feedback information is similarly processed.
  • a time division manner in which the three time domain symbols are granular is used, and the time division of the first TB is divided into four CBGs, and since the resource mapping rule of the CB is the first frequency and the time domain, Different elements can be decoded in turn according to the order of time buffering, that is, until all CBs are cached and then processed together. Then, the CB corresponding to the element mapped and transmitted first, the terminal device can decode in advance, and the CB corresponding to the element mapped and transmitted later, the terminal device can decode later, so that the terminal device can decode the CB in the previous decoding.
  • the feedback information is sent and sent.
  • the terminal device can generate and send feedback information to the CB that is decoded later, for example, can be sent at different time or transmission time interval TTI, and correspondingly, the access network device side
  • the feedback information sent by the terminal device can be received at different times or in the TTI to speed up the subsequent pipeline processing process on the access network device side.
  • the present invention provides an embodiment of a terminal device and a radio access network device, where the terminal device and the radio access network device can respectively perform the steps in the foregoing method embodiments.
  • an embodiment of a radio access network device provided by the present invention includes:
  • the processing unit 901 is configured to divide, according to a partitioning manner, at least two coding blocks included in the first transport block into at least two different coding block sets, where each of the coding block sets includes the at least two coding blocks. At least one coding block;
  • the sending unit 902 is configured to send the first transport block to the terminal device
  • the receiving unit 903 is configured to receive, by the terminal device, first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are used to indicate The reception status of at least two sets of coded blocks.
  • the sending unit is further configured to send a retransmission coding block to the terminal device, where the retransmission coding block includes a code block set corresponding to the denial information in the first feedback information. Part or all of the coding block; the receiving unit is further configured to receive second feedback information sent by the terminal device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission coding block .
  • the sending unit is further configured to send retransmission indication information to the terminal device, where the retransmission indication information is used to determine the retransmission encoded block.
  • the coded block set, the split mode, and the retransmission code block in this embodiment refer to the above method embodiment.
  • the sending unit is further configured to send, to the terminal device, first scheduling information for scheduling the first transport block, where
  • the first scheduling information includes a dividing indication, where the dividing indication is used to indicate one of the multiple dividing manners; or the sending unit is further configured to send high layer signaling to the terminal device, where the high layer signaling includes dividing Instructing, the dividing indication is used to indicate one of the plurality of dividing modes.
  • the sending unit is further configured to send, to the terminal device, second scheduling information, that is used to schedule the retransmission encoded block, where the second scheduling information includes the retransmission indication information.
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • the retransmission indication information For the definition of the first feedback information, the retransmission indication information, the first scheduling information, the second scheduling information, and the specific implementation manner in this embodiment, reference may be made to the related description of the foregoing method embodiments.
  • the hardware elements of the radio access network device include:
  • the processor 1001 is configured to divide, according to a partitioning manner, at least two coding blocks included in the first transport block into at least two different coding block sets, where each of the coding block sets includes the at least two coding blocks. At least one coding block;
  • the transmitter 1002 is configured to send, to the terminal device, a first transport block.
  • the receiver 1003 is configured to receive, by the terminal device, first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two feedback information are used to indicate The reception status of at least two sets of coded blocks.
  • the transmitter is further configured to send a retransmission coded block to the terminal device, where the retransmission coded block includes a coded block set corresponding to the negative information in the first feedback information.
  • the receiver is further configured to receive second feedback information sent by the terminal device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission coding block .
  • the sender is further configured to send retransmission indication information to the terminal device, where the retransmission indication information is used to determine the retransmission encoded block.
  • the coded block set, the split mode, and the retransmission code block in this embodiment refer to the above method embodiment.
  • the transmitter is further configured to send, to the terminal device, first scheduling information for scheduling the first transport block, where
  • the first scheduling information includes a division indication, where the division indication is used to indicate one of the multiple division manners; or the transmitter is further configured to send high layer signaling to the terminal device, where the high layer signaling includes division Instructing, the dividing indication is used to indicate one of the plurality of dividing modes.
  • the sender is further configured to send, to the terminal device, second scheduling information, configured to schedule the retransmission encoded block, where the second scheduling information includes the retransmission indication information.
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • the retransmission indication information For the definition of the first feedback information, the retransmission indication information, the first scheduling information, the second scheduling information, and the specific implementation manner in this embodiment, reference may be made to the related description of the foregoing method embodiments.
  • a terminal device provided by the present invention includes:
  • the receiving unit 1101 is configured to receive a first transport block that is sent by the radio access network device, where the first transport block includes at least two coding blocks, and the at least two coding blocks are divided into at least two different manners according to a division manner. a set of coded blocks, each of the coded block sets comprising at least one of the at least two coded blocks;
  • the processing unit 1102 is configured to generate first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are respectively used to indicate at least two coded blocks.
  • the sending unit 1103 is configured to send first feedback information to the radio access network device.
  • the receiving unit is further configured to receive, by the radio access network device, a retransmission coded block, where the retransmission coded block includes a corresponding one of the at least two pieces of first feedback information Part or all of the coded blocks included in the coded block set;
  • the sending unit is further configured to send second feedback information to the radio access network device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission encoded block.
  • the receiving unit is further configured to receive retransmission indication information that is sent by the radio access network device, where the retransmission indication information is used to determine the retransmission coding block, and the receiving unit is configured according to a division manner. And the retransmission indication information is received by the retransmission coding block.
  • the coded block set, the split mode, and the retransmission code block in this embodiment refer to the above method embodiment.
  • the receiving unit is further configured to receive, by using the radio access network device, a first, a scheduling information, the first scheduling information includes a dividing indication, where the dividing indication is used to indicate one of the multiple dividing modes; or the receiving unit is further configured to receive, by the wireless access network device, High layer signaling, the high layer signaling includes a partitioning indication, the partitioning indication being used to indicate one of the plurality of partitioning modes.
  • the receiving unit is further configured to receive second scheduling information that is sent by the radio access network device and that is used to schedule the retransmission coded block, where the second scheduling information includes the retransmission indication information. .
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • the retransmission indication information For the definition of the first feedback information, the retransmission indication information, the first scheduling information, the second scheduling information, and the specific implementation manner in this embodiment, reference may be made to the related description of the foregoing method embodiments.
  • the hardware elements of the terminal device include:
  • the receiver 1201 is configured to receive a first transport block sent by the radio access network device, where the first transport block includes at least two coding blocks, and the at least two coding blocks are divided into at least two different manners according to a division manner. a set of coded blocks, each of the coded block sets comprising at least one of the at least two coded blocks;
  • the processor 1202 is configured to generate first feedback information, where the first feedback information includes at least two pieces of feedback information corresponding to the first transport block, where the at least two pieces of feedback information are respectively used to indicate at least two coded blocks.
  • the transmitter 1203 is configured to send the first feedback information to the radio access network device.
  • the receiver is further configured to receive, by the radio access network device, a retransmission coded block, where the retransmission coded block includes a corresponding one of the at least two pieces of first feedback information Part or all of the coded blocks included in the coded block set;
  • the transmitter is further configured to send second feedback information to the radio access network device, where the second feedback information includes feedback information indicating a receiving status corresponding to the retransmission encoded block.
  • the receiver is further configured to receive retransmission indication information sent by the radio access network device, where the retransmission indication information is used to determine the retransmission coding block; And the retransmission indication information is received by the retransmission coding block.
  • the coded block set, the split mode, and the retransmission code block in this embodiment refer to the above method embodiment.
  • the receiver is further configured to receive, by using the radio access network device, a first, a scheduling information, the first scheduling information includes a splitting indication, where the splitting indication is used to indicate one of the multiple splitting manners; or the receiver is further configured to receive, by the radio access network device, High layer signaling, the high layer signaling includes a partitioning indication, the partitioning indication being used to indicate one of the plurality of partitioning modes.
  • the receiver is further configured to receive second scheduling information that is sent by the radio access network device and that is used to schedule the retransmission coded block, where the second scheduling information includes the retransmission indication information. .
  • the first scheduling information and the second scheduling information are carried by a control channel of the same downlink control information format, where the dividing indicates a first field in the downlink control information format used and the The second field in the downlink control information format used by the retransmission indication information includes the same field.
  • the retransmission indication information is further used to indicate whether all or a part of the coding blocks in the retransmission coding block can perform HARQ combining.
  • the first feedback information further includes feedback information indicating a receiving state of the first transport block; and/or the second feedback information further includes a first transport block for indicating the first transport block. Receive status feedback information.
  • the retransmission indication information For the definition of the first feedback information, the retransmission indication information, the first scheduling information, the second scheduling information, and the specific implementation manner in this embodiment, reference may be made to the related description of the foregoing method embodiments.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above receivers and transmitters can be physically integrated on one module, such as a transceiver or an antenna.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供了一种数据传输方法和装置。该方法包括:无线接入网设备向终端设备发送第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;和,所述无线接入网设备接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。

Description

一种数据传输的方法和装置
本申请要求于2017年03月21日提交中国专利局、申请号为201710170033.4、发明名称为“一种数据传输的方法和装置”的中国专利申请的优先权,其要求于2017年01月7日提交中国专利局、申请号为201710014619.1、发明名称为“一种数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信领域,尤其涉及一种数据传输的方法和装置。
背景技术
LTE(Long Term Evolution,长期演进)系统下行和上行分别基于OFDMA(Orthogonal Frequency Division Multiplexing Access,正交频分复用多址)和SC-FDMA(Single Carrier-Frequency Division Multiplexing Access,单载波频分复用多址)。时频资源被划分成时间域维度上的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号或SC-FDMA符号(OFDM符号或SC-FDMA符号又称时域符号)和频率域维度上的子载波。时频资源划分成的最小的资源粒度叫做一个RE(Resource Element,资源单位),即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。LTE系统中典型的时频资源基本结构是15KHz的子载波间隔、大约70us的时域符号时长以及4ˉ6us左右的循环前缀时长。
LTE系统中业务的传输是基于基站调度的,上层的数据包在物理层进行调度时被划分成以传输块(Transport Block,TB)为单位的小数据包。调度的基本时间单位一般是一个子帧,一个子帧的时长为1ms,一个子帧一般包括两个时隙,一个时隙一般包括7个时域符号。LTE演进系统中还会考虑引入更短的时间调度单位,比如以一个时隙甚至几个时域符号为单位的调度方式。一般的,具体的调度流程包括基站发送控制信道,比如PDCCH(Physical Downlink Control Channel,物理下行控制信道);UE在子帧中检测控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道中传输块的接收或上行数据信道中传输块的发送。该控制信道可以承载下行数据信道(比如物理下行共享信道,Physical Downlink Shared Channel,PDSCH)或上行数据信道(比如物理上行共享信道,Physical Uplink Shared Channel,PUSCH)的调度信息,该调度信息包括比如资源分配信息,调制编码方式以及HARQ等控制信息。
LTE系统支持FDD(Frequency Duplexing Division,频分双工)和TDD(Time Duplexing Division,时分双工)两种双工方式。对于FDD系统,下行和上行在不同的载波上传输。对于TDD系统,上行和下行在同一载波的不同时间来传输,具体在一个载波上包括下行子帧,上行子帧和特殊子帧。特殊子帧中包括DwPTS(Downlink Pilot Time Slot,下行导频时隙),GP(Guard Period,保护时间)和UpPTS(Uplink Pilot Time Slot,上行导频时隙)三个部分,其中GP主要用于下行到上行的器件转换时间和传播时延的补偿。LTE系统当前支持7种不同的TDD上下行配置,不同上下行配置下的上下行子帧的数量比例一般是不同的。
LTE采用HARQ机制,LTE系统中的ACK或NACK反馈以及HARQ重传都是以传输块为单位的。以下行为例,UE接收到PDSCH中承载的传输块之后,如果接收正确,则UE在上行链路上反馈ACK;如果不正确,则在上行链路上反馈NACK。基站如果接收到UE反馈的是NACK,则基站后续会给UE重新发送上次PDSCH传输中承载的传输块,进而UE可以将再次接收到的PDSCH中的传输块的接收信息与之前没有正确接收的该传输块的接收信息进行HARQ合并来提升接收性能。
5G(Fifth Generation,第五代)技术目前已经开始讨论,5G从兼容性的角度可以分为两条分支,其中一条为兼容LTE 4G(Fourth Generation,第四代)的持续演进,另一条为不兼容LTE的新无线NR。对于上述两个分支,5G都包括移动宽带的持续增强eMBB(Enhanced Mobi le Broad Band,增强的移动宽带)和超可靠低时延通信URLLC(Ultra Reliable Low Latency Communication,超可靠低时延通信)的两个重要技术需求。其中,对于eMBB,5G要做到比4G更高的数据速率,因此很可能引入更大的传输块,再考虑到可能引入并行度更高的LDPC(Low Density Parity Check Code,低密度奇偶校验码),那么相比于4G,5G中的一个TB会被划分成更多数量的CB(Code Block,编码块)。对于URLLC,为了满足其时延和可靠性要求,URLLC的突发传输的优先级要高于eMBB,因此URLLC很可能会对已经开始传输的eMBB的传输块进行短时间的打孔,进而造成eMBB的TB中的一小部分CB由于被URLLC打孔而无法被eMBB UE所正确接收。
因此,5G系统设计中,一个TB可以被划分为更多的CB,突发的URLLC紧急业务可以对于已经发生传输的eMBB业务进行打孔。现有的基于TB进行HARQ反馈和重传的机制,数据传输效率下降,进而影响系统传输效率。
发明内容
本申请描述了一种数据传输的方法和装置,能够提供一种更高效的数据传输处理方法。
一方面,本发明实施例提供的数据传输方法,包括:
无线接入网设备向终端设备发送第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;和
所述无线接入网设备接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
可选的,该方法还包括:所述无线接入网设备向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;所述无线接入网设备接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,该方法还包括:所述无线接入网设备向所述终端设备发送重传指示信息,所 述重传指示信息用于确定所述重传编码块。
可选的,所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
所述至少两个资源区域位于不同的时域;
所述至少两个资源区域位于不同的频域;
所述至少两个资源区域占用的时域和/或频域资源不完全相同;
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
可选的,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
可选的,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述方法还包括:
所述无线接入网设备向终端设备发送用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者
无线接入网设备向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,该方法还包括:所述无线接入网设备向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,该方法还包括:
所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,
所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
又一方面,本发明实施例提供的数据传输方法,包括:
终端设备接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;和
所述终端设备向所述无线接入网设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
可选的,该方法还包括:所述终端设备接收所述无线接入网设备发送的重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;和,所述终端设备向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,该方法还包括:所述终端设备接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;所述终端设备根据划分方式和所述重传指示信息接收所述重传编码块。
可选的,所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
所述至少两个资源区域位于不同的时域;
所述至少两个资源区域位于不同的频域;
所述至少两个资源区域占用的时域和/或频域资源不完全相同;
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
可选的,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
可选的,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述方法还包括:
所述终端设备接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述终端设备接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,该方法还包括:所述终端设备接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
一方面,本发明实施例提供的一种无线接入网设备,包括:
处理单元,用于将第一传输块所包含的至少两个编码块按照划分方式划分成至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
发送单元,用于向终端设备发送第一传输块;
接收单元,用于接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
可选的,所述发送单元,还用于向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;所述接收单元,还用于接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述发送单元,还用于向所述终端设备发送重传指示信息,所述重传指示信息用于确定所述重传编码块。
可选的,所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
所述至少两个资源区域位于不同的时域;
所述至少两个资源区域位于不同的频域;
所述至少两个资源区域占用的时域和/或频域资源不完全相同;
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
可选的,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
可选的,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述发送单元,还用于向终端设备发送用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述发送单元,还用于向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述发送单元,还用于向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
又一方面,本发明实施例提供的一种终端设备,包括:
接收单元,用于接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
处理单元,用于生成第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态;和
发送单元,用于向所述无线接入网设备发送第一反馈信息。
可选的,所述接收单元,还用于接收所述无线接入网设备发送重传编码块,其中,所述重传编码块包括所述至少两个第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
所述发送单元,还用于向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述接收单元,还用于接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;所述接收单元根据划分方式和所述重传指示信息 接收所述重传编码块。
可选的,所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
所述至少两个资源区域位于不同的时域;
所述至少两个资源区域位于不同的频域;
所述至少两个资源区域占用的时域和/或频域资源不完全相同;
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
可选的,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
可选的,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述接收单元,还用于接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的无线接入 网设备和终端设备。
本申请的又一方面提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本发明提供的方案,由于传输块被划分成至少两个不同的编码块集合,终端设备分别反馈至少两个不同的编码块集合的接收状态,无线接入网设备可以只重传未被正确接收的编码块集合,避免了由于部分编码块集合被错误接收而导致传输块中的所有编码块集合的HARQ重传,提高数据传输效率。
附图说明
图1为本发明的一种可能的应用场景示意图;
图2(a)和2(b)为传输块中包含多个编码块的示意图;
图3为本发明提供的数据传输方法的一个实施例的流程示意图;
图4为本发明实施例提供的对第一时频资源按照时间维度进行划分的示意图;
图5为本发明实施例提供的对第一时频资源按照频率维度进行划分的示意图;
图6为本发明实施例提供的对第一时频资源采用非等长时间划分方式的示意图;
图7为本发明实施例提供的不同编码块组部分重叠的示意图;
图8为本发明实施例提供的不同编码块组的反馈信息在不同的时刻反馈的示意图;
图9为本发明提供的无线接入网设备一个实施例的结构示意图;
图10为本发明提供的无线接入网设备另一个实施例的结构示意图;
图11为本发明提供的终端设备一个实施例的结构示意图;
图12本发明提供的终端设备另一个实施例的结构示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
图1示出了本发明实施例应用的通信系统100。该通信系统100可以包括至少一个无线接入网设备110和位于无线接入网设备110覆盖范围内的多个终端设备120。图1示例性地示出了一个无线接入网设备和两个终端设备,可选地,该通信系统100可以包括多个无线接入网设备并且每个无线接入网设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例不限于此。
本发明实施例所应用的通信系统可以为全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线 业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS),及其他应用正交频分(OFDM)技术的无线通信系统等。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
在本发明实施例中所涉及的无线接入网设备可用于为终端设备提供无线通信功能。所述无线接入网设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。所述无线接入网设备可以是GSM或CDMA中的基站(Base T接入网sceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或e-NodeB),以及可以是5G网络中对应的设备gNB。为方便描述,本发明所有实施例中,上述为终端设备提供无线通信功能的装置统称为无线接入网设备。
在本发明实施例中,所述终端设备也可称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本发明实施例中不做具体限定。
LTE系统中的ACK或NACK反馈以及HARQ重传都是以传输块为单位的。考虑到编译码复杂度以及快速编译码处理的好处,一个传输块TB可以被分成多个编码块CB分别进行信道编译码。例如,对于Turbo码,一般最大CB的比特数为6144,即如果一个TB的比特数超过了6144,则需要将该TB拆分成多个CB分别编译码;对于LDPC(Low-Density Parity-Check,低密度奇偶校验),一般最大CB的比特数为2000左右,即可以支持拆分为更多CB进行并行编译码。一般来说,每个CB都具有独立的校验功能,比如以Turbo码为例,每个CB在编码前都会加CB CRC(cyclic redundancy check,循环冗余校验),这样UE在对每个CB进行译码后,通过CRC校验就可以确定当前CB是否被正确译码;对于LDPC,每个CB也可以加CB CRC,或者LDPC的编码矩阵本身就具备校验功能,即LDPC的每个CB也都是可以具备校验功能的。因此,可以看到,如果TB中的一部分CB未被正确接收,UE会向基站反馈NACK,基站后续会把上述整体TB(包括该TB中的所有CB)都进行HARQ重传。
LTE持续演进的系统或NR系统中,一个TB可以被划分为更多的CB,如果其中少量CB未被正确接收,而其他CB均被正确接收时,现有的基于TB进行HARQ反馈和重传的效率下降,进而影响系统传输效率。
此外,突发的URLLC紧急业务可以对于已经发生传输的eMBB业务进行打孔,而相比于其他CB的接收,被打孔的这部分CB最易发生接收错误,如果还基于TB进行HARQ反馈和重传,比如重传该TB中的所有CB,同样影响系统传输效率。
进一步的,对于被打孔CB的重传,UE无法通过HARQ合并的方式正确接收该TB,因为UE无法获知哪个CB在上一次传输时被URLLC打孔,因此UE反馈NACK的同时,UE自己的HARQ缓存器中存储的可能是URLLC的业务而非自己的CB,因此与重传的该CB进行HARQ合并不但无法获得HARQ合并增益,反而造成该CB再次无法正确接收,最终会很可能会触发RLC层重传,造成系统效率大幅度下降。
为了解决上述问题,基站为UE配置TB划分方式并发送该TB;具体的,把TB划分为N个CB组(CBG)的方式,比如分为几组,从什么维度(时域和/或频域,或者其他维度)进行划分,每组等分还是不等分。基站进行TB重传或CBG重传;UE根据上述TB划分方式,进行基于CBG的HARQ-ACK反馈。
以下实施例中以调度的基本时间单位是一个子帧(比如时长为1ms,这里不做限定)为例进行描述。本发明不排除其他时域调度的粒度,比如引入基于时隙或微时隙的调度,即具体的时长小于或远小于1ms的调度粒度等。
以下行为例,一般的下行传输块的基带发送流程包括:
1)对TB的原始载荷信息进行分段处理,即按照预定义的规则(比如超过一定的比特数就划分为多个CB,不超过当然就不用划分)划分为多个CB。
2)对每个CB的载荷添加该CB对应的CRC比特,即CB CRC;对所有CB组成的载荷添加CRC,即TB CRC。
3)对每个添加了CRC的CB分别进行信道编码,比如Turbo码或LDPC,形成码字。对于非MIMO模式,UE一般生成1个码字;而对于MIMO模式,UE可以生成2个码字,即该2个码字中的原始载荷信息是彼此独立的;本发明如果没有特别说明,就假设1个码字的情况,方案可以直接独立扩展到2个码字的情况。
4)对码字进行加扰和星座调制形成调制符号;其中,加扰可以基于小区标识和/或UE标识的初始化状态以及随机或伪随机函数;星座调制一般包括QPSK、16QAM、64QAM或256QAM等。
5)将调制符号映射到时间、频率和空间的物理资源上。具体的:为了实现快速编译码,以下行为例,编码后的调制符号在进行物理资源映射时采用先频域后时域的顺序进行映射,且对于CB独立编码后的信息不进行CB间的交织处理,即按照CB的顺序来映射。这样的好处是,UE缓存到一个CB就可以开始译码,而不必等到把该数据信道中所有CB都缓存下来后才能开始译码。
6)最后进行IDFT或IFFT变换到时域并发送。
当前LTE系统中的HARQ反馈和重传是针对TB的。具体的,只有当TB中的所有CB都被UE正确接收(本发明提到的正确接收是一般化的说法,即表示成功译码出原始载荷信息),UE才会反馈1个ACK比特;否则,只要有一个CB未被正确接收,UE都会针对该TB反馈1个NACK比特。基站接收到NACK反馈后,即便UE正确接收到了大部分CB,基站后 续还是会对该TB中的所有CB进行HARQ重传,因为基站不清楚UE具体正确和错误接收了哪些CB。
当前LTE系统中的基于TB的HARQ反馈和重传是不高效的。参照图2(a)和2(b)进行说明,具体的:
1)考虑到时频资源上的各个区域的信道和/或干扰情况可能是不相关的,或者说相关性不大。
从信道的角度来说,一般的,无线通信的系统带宽会越来越宽(当前的一个LTE载波最宽是20MHz,将来还会引入更宽带宽的载波),那么频域上相邻较大的资源间的信道是不相关的,即彼此在信道的相关带宽之外。这就是说,各个频带的信道频域选择性衰落是独立的,比如图2(a)所示,CB1/5/9等所在频带的信道衰落情况与CB2/6/10等所在频带的信道衰落情况是独立的,因此这两组CB对于是否能被UE所正确接收也是独立的。类似的情况可以扩展到时域,比如图2(b)中,CB1/5/9等所在时间的信道时域衰落情况与CB13/17/21等所在时间的信道时域衰落情况可能是独立的(假设高速场景)。
从干扰的角度来说,相邻小区对于本小区的不同频带和/或时间上的干扰可能也是不同的,类似的会导致CB之间的接收相关性是不同的。
2)除了从信道和干扰的角度来分析不同CB的接收相关性之外,还需要考虑URLLC的突发传输给eMBB的数据传输带来的影响,比如本小区内的URLLC数据对于eMBB数据进行打孔,或者邻小区的短时URLLC发送给本小区带来的短时突发干扰,这些也会给CB之间接收相关性带来影响。
所谓打孔,也就是说URLLC的数据传输映射在时频资源时覆盖掉已经开始传输的eMBB的数据信道所在的资源中的一部分资源。这样,虽然保证了URLLC业务的短时延要求,但对eMBB的该次传输造成性能损失,即被打孔影响到的CB很可能不会被UE正确接收。除了打孔,还有一种方式就是URLLC的数据传输不去覆盖eMBB的数据传输,而是基站同时发送两者,这样做对于URLLC来说,不如上述打孔达到的URLLC的性能好;但对于eMBB来说,情况稍微比打孔好些,因为毕竟eMBB的数据还是被传输了,但会受到URLLC的数据传输带来的干扰,此时UE还是有较大概率无法正确接收这些受影响的eMBB的CB。
考虑到LTE系统中的基于TB的HARQ反馈和重传机制在上述CB间接收性能不相关的条件下,出现系统传输效率下降的问题(尤其对于5G系统中的TB相比于4G会被划分为更大量CB的情况),本申请引入基于CBG(Code Block Group,编码块组)的划分以及相应的HARQ反馈和重传机制。
参考图3,本发明提供的数据传输方法的一个实施例,包括:
S301:无线接入网设备向终端设备发送第一传输块,所述第一传输块中包括至少两个编码块;
所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块。
可选的,接入网设备向终端设备发送第一调度信息以及所述第一调度信息所调度的 第一传输块。具体的,第一调度信息可以承载在控制信道中;该第一调度信息调度的传输块TB可以为HARQ初传,也可以为HARQ重传(此时为整体TB的重传),本发明中以该TB为HARQ初传为例进行说明,且该TB包括至少两个编码块CB,比如图2中所示的该TB包括48个CB。
S302:终端设备接收无线接入网设备发送的该第一传输块;
可选的,终端设备根据第一调度信息接收该第一传输块。具体的,该第一调度信息中可以包括该第一传输块对应的调制编码方式、时频资源分配,HARQ进程号等控制信息中的至少一种。
可选的,终端设备获得该第一传输块的划分方式,例如划分方式包括该第一传输块被划分成的CBG的个数以及每个CBG所包括哪些CB等。具体的,该划分方式可以是标准预先定义好的,也可以是终端设备接收接入网设备的信令配置获得的。此外,该划分方式可以根据CB的逻辑序号进行划分,比如CB 1至12组成CBG1,CB 13至24组成CBG2,CB 25至36组成CBG3,CB 37至48组成CBG4;或者,该划分方式可以根据第一传输块中的CB所占的时频资源来划分,比如按照时域划分方式或频域划分方式等。
S303:终端设备生成第一反馈信息并向所述无线接入网设备发送所述第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
终端设备分别获得至少两个编码块集合的接收状态,并向无线接入网设备发送第一反馈信息。终端设备需要分别获得每个编码块集合的反馈信息。当编码块集合被正确接收时,该编码块集合的反馈信息为确认信息(ACK);当编码块集合未被正确接收时,该编码块集合的反馈信息为否认信息(NACK)。所述第一反馈信息包含第一传输块中的所有编码块集合的反馈信息。
可选的,终端设备发送第一反馈信息之前,需要根据上述划分方式来生成该第一反馈信息。具体的,以按照逻辑CB序号的划分方式为例,终端设备需要针对上述CBG 1、2、3和4分别生成ACK或NACK反馈信息,比如某个CBG中的所有CB都解码正确,则对应该CBG的反馈信息为ACK,否则如果该CBG中存在至少一个CB没有被正确解码,这对应该CBG的反馈信息为NACK。
S304:所述接入网设备接收所述终端设备发送第一反馈信息。
本实施例中,由于传输块被划分成至少两个不同的编码块集合,终端设备分别反馈至少两个不同的编码块集合的接收状态,无线接入网设备可以只重传未被正确接收的编码块集合,避免了由于部分编码块集合被错误接收而导致传输块中的所有编码块集合的HARQ重传,提高数据传输效率。
可选的,该方法上述实施例的方法还可以包括:
S305:无线接入网设备向所述终端设备发送重传编码块和重传指示信息;其中,所述重传编码块包括所述至少两个第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块。
当第一反馈信息中包含至少一个第一编码块集合的否认信息,则无线接入网设备向终端发送重传编码块,该重传编码块包含第一编码块集合所包含的部分或全部编码块。
S306:终端设备接收该重传编码块。
具体的,本发明如果没有特别说明,则接收是个一般性的说法,该接收可以指接收到某个信息,也可以指接收到并对接收到的信息进行了解码处理或解调处理等。比如正确接收了下行数据,则反馈ACK,此处的接收其实包含了接收到该下行数据并对该下行数据进行了正确的解码操作。
可选的,接入网设备向终端设备发送用于调度所述重传编码块的第二调度信息终端设备接收该第二调度信息,第二调度信息还包含重传编码块的调制编码方式、资源分配信息等。终端设备根据该第二调度信息接收所述重传编码块。
S308:终端设备生成第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
终端设备根据重传编码块的接收状态,生成第二反馈信息。终端设备获得重传编码块的接收状态,根据接收状态进行该第二反馈信息的反馈,即该第二反馈信息对应于该重传编码块的解码状态。具体的,如果该重传编码块中的所有编码块全部正确解码时,则反馈ACK;反之,如果该重传编码块中至少一个编码块没有被正确解码,则反馈NACK。
S309:该终端设备向所述无线接入网设备发送所述第二反馈信息。
所述无线接入网设备收到第二反馈信息后,根据第二反馈信息中是否包含否认信息确定是否需要对该重传编码块做重传。无线接入网设备根据收到的第一反馈信息和第二反馈信息的不同状态,可能存在重传,也可能存在多次重传直到该第一传输块被终端设备正确接收。
可选的,上述实施例的方法还可以包括:
S307:无线接入网设备向终端设备发送重传指示信息,终端设备接收该重传指示信息。所述重传指示信息用于确定所述重传编码块。
终端设备接收该重传指示信息后,则步骤S306中,终端设备根据上述划分方式和该重传指示信息接收并解码该重传编码块。
无线接入网设备还可以向终端设备发送重传指示信息,该重传指示信息用于该终端设备根据该重传指示信息确定上述重传编码块。
重传指示信息可以用于指示多种信息。例如,该重传指示信息可以包括以下中的至少一个:第一指示信息,第二指示信息,第三指示信息和第四指示信息。需要说明的是,只要能够指示重传编码块的标识信息都可以构成重传指示信息。
1、第一指示信息,用于指示所述重传编码块所对应的所述编码块集合。
具体的,考虑到所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,且上述第一反馈信息分别对应被划分成的各编码块集合,即根据终端设备针对各CBG或各编码块集合的粒度进行的第一反馈信息的反馈,因此,进行重传编码块指示时,接入网设备发送的重传指示信息可以用于指示重传编码块所对应的某个或某几个CBG或编码块集合,这些被指示的CBG或编码块集合对应的反馈信息为NACK。
可选的,第一指示信息,用于指示所述重传编码块所对应的所述编码块集合所占的时频资源。具体的,终端设备根据该第一指示信息确定第一传输块所占的传输块时频 资源中的一部分时频资源,该一部分时频资源为某(几)个CBG或某(几)个编码块集合所占的时频资源。换个角度来说,此时相当于将第一传输块所占的传输块时频资源划分成了多个子时频资源,每个子时频资源即为上述各CBG或各编码块集合所分别占用的时频资源。
2、第二指示信息,用于指示所述重传编码块在所述第一传输块中的标识、或在所述第一传输块中的位置、或在所述第一传输块中的序号;
具体的,该第二指示信息在第一传输块中指示其中的某个或某些编码块作为重传编码块,比如具体指示该重传编码块在该第一传输块中的序号、位置或标识。
3、第三指示信息,用于指示所述重传编码块包括所述第一传输块中全部编码块或部分编码块;
具体的,相当于第三指示信息用于从重传模式集合中指示部分编码块重传模式,该重传模式集合中包括全部编码块重传模式和该部分编码块重传模式。如果指示为全部编码块重传模式,相当于整个第一传输块的重传;而此时指示了部分编码块重传模式,即对第一传输块中的部分编码块进行重传。接下来,终端设备需要继续确定哪部分的上述CBG或上述编码块集合此时被重传了,具体可以根据上述第一反馈信息中对应NACK信息的那些CBG或编码块集合。
4、第四指示信息,用于指示所述至少两个不同的编码块集合中的全部或部分编码块集合所对应的HARQ重传。
具体的,相当于第四指示信息用于从HARQ传输模式集合中指示HARQ重传模式,该HARQ传输模式集合中包括HARQ初传模式和该HARQ重传模式。可选的,可以通过调度信息中的新数据指示NDI(New Data Indication),或者通过NDI和HARQ进程号来指示。如果NDI相对于之前的NDI的状态变化(比如由0变到1),则此时指示为HARQ初传模式,此时相当于之前的传输块被正确接收了;或者,如果NDI相对于之前的NDI的状态无变化(比如之前是0,当前还是0),则此时指示了HARQ重传模式。接下来,终端设备需要继续确定哪部分的上述CBG或上述编码块集合此时被重传了,具体可以根据上述第一反馈信息中对应NACK信息的那些CBG或编码块集合。
此外,步骤306的具体步骤包括,接收或解码该重传编码块之前,终端设备需要先确定该重传编码块为上述哪(几)个CBG或哪(几)个编码块集合中的编码块,具体需要根据上述划分方式来确定该重传编码块,即对于不同的划分方式,对于重传编码块的解析是不同的;还需要根据重传指示信息来确定该重传编码块,具体见如下多种指示信息的描述。
对于重传指示信息包含不同信息时,终端设备接收该重传编码块的方式也不同。
当重传指示信息包含第一指示信息时,终端设备根据上述划分方式和上述重传指示信息确定所述至少两个不同的编码块集合中的第一编码块集合,所述重传编码块属于所述第一编码块集合,所述第一反馈信息中对应于所述第一编码块集合的反馈信息的接收状态为否认信息;具体的,该重传指示信息可以指示第一编码块集合的序号,也可以指示该第一编码块集合所占的时频资源。
当重传指示信息包含第二指示信息时,终端设备根据上述划分方式和上述重传指示 信息在第一传输块中确定其中的某个或某些编码块,确定的这某个或某些编码块作为重传编码块,比如具体指示该重传编码块在该第一传输块中的序号、位置或标识。
当重传指示信息包含第三指示信息时,终端设备根据所述划分方式和所述重传指示信息从重传模式集合中确定部分编码块重传模式,所述重传模式集合包括所述部分编码块重传模式和全部编码块重传模式,所述终端设备根据所述划分方式确定所述第一反馈信息中接收状态为否认信息的反馈信息对应的第二编码块集合,所述重传编码块属于所述第二编码块集合。
当重传指示信息包含第四指示信息时,终端设备根据所述重传指示信息从HARQ传输模式集合中确定HARQ重传模式,所述HARQ传输模式集合中包括所述HARQ重传模式和HARQ初传模式,所述终端设备根据所述划分方式确定所述第一反馈信息中接收状态为否认信息的反馈信息对应的第三编码块集合,所述重传编码块属于所述第三编码块集合。
本实施例中,在TB中包括大量CB的情况下,通过基于CBG的HARQ反馈和重传,无线接入网设备可以只向终端设备重传未被正确接收的编码块集合,避免了由于少量CB被错误接收而导致整体TB中的所有CB的HARQ重传,提高数据传输效率,从而提升了系统传输效率。
以下对上述实施例中的第一传输块中的划分方式进行描述。
可以采用多种方式对第一传输块中的编码块进行划分,1、一种方式可以对第一传输块根据CB的逻辑序号进行划分对编码块做逻辑划分;2、另一种方式可以根据第一传输块中的CB占用的时频资源来划分对编码块按照占用的资源做划分。
对于按照CB占用的资源的划分方式,又可以有多种方式。可选的,所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
所述至少两个资源区域位于不同的时域;
所述至少两个资源区域位于不同的频域;
所述至少两个资源区域占用的时域和/或频域资源不完全相同;
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
可选的,提供几种具体的候选划分方式。图4和5所示,分别为对第一时频资源按照时间维度、频率维度进行的划分。
参考图4,对应于至少两个资源区域位于不同的时域,在一种实现方式中,例如第一TB包括的CB为CB标号从1至48的这48个CB,那么把这48个CB所占的时频资源按照时间维度划分成的4个CBG,分别为CB1至12所占的资源、CB13至24所占的资源、CB25 至36所占的资源、以及CB37至48所占的资源。参考图5,对应于至少两个资源区域位于不同的频域,另一种实现方式中,例如第一TB包括的CB为CB标号从1至48的这48个CB,那么把这48个CB所占的时频资源按照频率维度划分成的4个CBG,分别为CB{1,5,9,13,17,21,25,29,33,37,41,45}所占的资源、CB{2,6,10,14,18,22,26,30,34,38,42,46}所占的资源、CB{3,7,11,15,19,23,27,31,35,39,43,47}、以及CB{4,8,12,16,20,24,28,32,36,40,44,48}所占的资源。此外,按照时域和频域联合的划分方式是类似的,即上述时域与频域实施例的组合。
此外,本发明还可以考虑引入又一划分方式,针对eMBB和URLLC资源复用的场景。对应于特定编码块集合和上述至少两个编码块集合中除特定编码块集合之外的其他编码块集合,另一种实现方式中,该特定CBG包含被URLLC打孔或干扰的CB,比如CB17至20这个时域符号被URLLC打孔,则被打孔的CB属于CB13至24的CBG或编码块集合,而除该特定编码块集合之外的其他编码块集合为其他3个CBG或编码块集合。
对于按照时间维度的划分方式,从缩短反馈时延的角度来考虑,可以采用非等长时间划分方式,发送时间在先的CB所占的时间资源可以依次长于发送时间在后的CB所占的时间资源。参考图6,一种实现方式中,第一TB被划分为3个CBG或编码块集合,分别为{CB1至20,CB21至36,CB37至48}或{CB1至20所占资源,CB21至36所占资源,CB37至48所占资源}。进一步的,为了降低打孔对eMBB造成的影响,可以在每个元素内部引入CB间交织,比如CB1至20在其所占的5个时域符号内部进行交织,这样可以将打孔的影响平摊到这20个CB的每个CB上。
非等长划分方式并结合元素内引入CB间交织的好处除了抵抗打孔之外,还可以使得在先发送的所占时间较长的CB先被缓存,进而提前开始解码,而后发的所占时间短的CB后被缓存且后被解码,由于为所占时间长的CB预留了较长的解码处理时间,而折中的为所占时间短的CB预留了较短的解码处理时间,可以HARQ反馈的时延降低,提高系统传输效率。
对于上述划分方式中,考虑到多个CB的先频率后时间的映射,更可能出现的情况是一个CB所占资源会跨越不同的时域符号,进而很可能跨越元素间的资源。参考图7,假设第一TB被划分为12个CBG或编码块集合,分别对应12个时域符号,那么可以看到CB4横跨了第一个CBG和第二个CBG,即CB4为CBG{CB1,2,3,4}和CBG{CB4,5,6,7}的一个公共CB。上述公共CB的方案对于其他划分方式也同样适用。
可选的,当所述接入网设备支持多种所述划分方式时,上述实施例的方法还可以包括:接入网设备向终端设备发送划分指示,划分指示用于指示所述多个划分方式中的一个。终端设备接收该划分指示,获得划分指示对应的划分方式。
一种方式,划分指示可以携带在第一调度信息中。另一种方式,划分指示可以携带在高层信令中。
接入网设备可以通过RRC信令向终端设备通知当前具体的划分方式;
可选的,接入网设备可以通过物理层信令向终端设备通知当前具体的划分方式,比如通过PDCCH,或者该划分信令直接承载在所述第一调度信息中。进而,终端设备可以直接根据该划分信令确定当前具体的划分方式;或者,终端设备还可以根据该划分 信令和预置规则来确定当前具体的划分方式,比如根据当前TB的比特数或根据当前TB包括的所有CB所占的时频资源的多少来解析该划分信令。具体的解析方法可以为,例如当TB的比特数较少时或所占资源较少时,划分信令的指示粒度较小;反之,例如当TB的比特数较多时或所占资源较多时,划分信令的指示粒度较大。
可选的,接入网设备可以通过物理层信令和RRC信令向终端设备通知当前具体的划分方式。具体的,先通过RRC信令为终端设备配置有限的几种划分方式,再通过PDCCH来从上述有限的几种划分方式中确定一种作为当前的划分方式。
可选的,上述实施例中,重传指示信息可以携带在所述第二调度信息中。即所述第二调度信息包括所述重传指示信息。
可选的,当所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载时,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段至少包含一个相同字段。具体的,一般来说,调度初传和重传的下行控制信息DCI(Downlink Control Information)格式是相同的,比如格式1的DCI。这里的格式是指PDCCH的多种DCI格式之一,不同的DCI格式用于调度的数据信道的传输模式可以不同,比如单天线和多天线的数据信道调度一般会使用不同的DCI格式,但本发明对于使用哪种DCI格式并不做限定。进行上述第一TB调度的第一调度信息包括第一字段,该第一字段指示划分方式,此时第一调度信息中可以不包括上述重传指示信息;而进行上述重传编码块调度的第二调度信息包括第二字段,该第二字段用作重传指示信息,此时第二调度信息可以不指示划分方式。因此,优选的,第一字段和第二字段可以使用DCI格式中的相同的字段,比如都是2比特;当然也可以是第一字段和第二字段是彼此包含的关系,即两者包括相同的字段,比如第一字段为2个比特,第二字段为3个比特,此时该第二字段包括第一字段;或者,也可以是部分交叠,比如第一字段和第二字段都是3比特,但只交叠其中的某2个比特,即各自还有彼此不同的一个比特。
对于上述第一字段和第二字段的指示方式,在一个实施例中,当所述接入网设备向所述终端设备发送所述传输块的HARQ初传时,调度初传传输块的控制信道中承载的上述第一调度信息(比如下行控制格式DCI format 1的控制信令)中的某个第一字段(比如某2个指示比特)用作上述传输块划分指示;当所述接入网设备向所述终端设备发送所述重传编码块时,调度该重传编码块的控制信道中承载的上述第二调度信息(比如还是下行控制格式DCI format 1的控制信令或者其他格式的控制信令,比如DCI format1A)中的所述第二字段(比如还是上述某2个指示比特)用作上述重传指示信息。例如,初传时,第一字段的2个指示比特用于从4种划分方式(比如包括以第一粒度的时间划分,以第二粒度的时间划分,以第三粒度的频率划分,以第四粒度的频率划分)中指示一种划分方式;进行重传编码块的部分重传时,基于上述选中的那一种划分方式,上述第二字段的2个指示比特可以重用初传时第一字段的相同的2个比特的字段,用于进一步指示这种划分方式下哪些编码块为当前的重传编码块。
在另一个实施例中,当所述接入网设备向所述终端设备发送所述传输块的HARQ初传时,调度初传传输块的控制信道中承载的上述第一调度信息(比如下行控制格式DCI  format 1的控制信令)中的某个第一字段(比如某2个指示比特)用作上述传输块划分指示;当所述接入网设备向所述终端设备发送所述重传编码块时,调度该重传编码块的控制信道中承载的上述第二调度信息(比如还是下行控制格式DCI format 1的控制信令或者其他格式的控制信令,比如DCI format 1A)中的所述第二字段(比如还是上述第一字段的2个指示比特)再联合额外的几个比特(比如另外某1个指示比特)用作上述重传指示信息,即重传指示信息的3个比特的第二字段包含上述第一字段的2个比特。相比于上述第一字段和第二字段相同的好处是,可以细化重传编码块的指示粒度,或者增加几种重传编码块的指示情况。
优选的,上述第二字段可以包括MCS字段中的全部或部分状态。对于部分重传指示信息的设计,可以复用第二调度信息中的MCS字段。表1所示的为当前MCS字段的解析规则,可以看到,当前MCS字段为5个比特表示32种状态,其中状态索引0-28分别表示29种MCS级别且用于载荷索引的查询,而MCS索引29至31这3个状态主要用于重传调度时来变更调制阶数。此外,对于初传调度,MCS索引0-28和控制信息中的时频资源分配字段联合起来用于确定传输块或编码块的载荷大小。而对于重传调度,由于编码块的载荷要与对应的初传时保持一致,而当前HARQ重传所占的时频资源在控制信息中有专门的字段来指示,因此对于重传调度,至少MCS索引0-28是冗余的,MCS索引29至31也只是起到重传时变更调制阶数的作用,而一般来说重传变更调制阶数的需求不大,因此也可以算作冗余。
表1.MCS解析规则
Figure PCTCN2018071782-appb-000001
Figure PCTCN2018071782-appb-000002
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。比如用上述第二字段或额外的字段来进一步指示是否进行HARQ合并,可以在eMBB被URLLC打孔或干扰场景下,避免HARQ缓存污染问题。
可选的,所述重传指示信息还包括用于指示部分编码块重传模式或全部编码块重传模式。此方案可以做到传输块整体重传和传输块中部分编码块重传的动态切换,前者可以在大量编码块被错误接收的情况下来指示。
可选的,所述第一反馈信息还包括对应于所述第一传输块用于指示接收状态的反馈信息;和/或,
所述第二反馈信息还包括对应于所述第一传输块用于指示接收状态的反馈信息。
现有LTE系统中,TB包含的多个CB进行分别编码前,要进行添加CRC处理。具体的,TB的原始信息比特要先加上TB CRC比特(一般是24个TB CRC比特),然后再分段分为多个CB,接着对于每个CB还要分别加上CB CRC(一般每个CB需要分别添加24个CB CRC比特)。这种两层CRC添加处理是为了预防所有的CB解码都通过了CB CRC校验时,但其中某些CB的解码其实是错误的,即某些CB的解码发生了虚警,这种虚警概率随着TB被划分成的CB数量的增加而增加。因此,CB CRC之外还有一层整体的TB CRC作为再一层保护,这样,即使所有的CB CRC都通过校验,但一旦某些CB发生虚警,最终的TB CRC也不会通过校验。
这种类似的思想同样有理由用于上述部分CB反馈和重传的情况下。具体的:
可选的,终端设备还需要在第一反馈信息中反馈对应于第一传输块的反馈信息,即第一反馈信息还包括对应于所述第一传输块用于指示接收状态的反馈信息。对于第一反馈信息,由于其针对于初传传输块的划分方式来进行的基于被划分的CBG来进行反馈,比如假设TB包括4个CB,且分为2个CBG,其中CB1和2为CBG1,CB3和4为CBG2, 终端设备会分别对每个CB进行译码并进行CB CRC校验,然后针对CB1和CB2的译码和CRC校验情况生成CBG1的反馈信息,比如CB1和2都通过CB CRC校验的话就反馈ACK,否则就反馈NACK,对于CBG2是类似处理;为了避免CB或CBG的虚警问题,终端设备还会通过TB CRC来看整个TB的译码情况,来额外生成一个对应于整体TB CRC的反馈信息,比如即使CBG1和CBG2都通过的所有的CB CRC校验,但TB CRC没有通过,这终端设备对于TB CRC对应的反馈信息会生成NACK并发送给接入网设备,而此时其余分别对于CBG1和CBG2的2个反馈比特无论反馈ACK或NACK都不重要了,因为接入网设备会认为整个TB没有正确传输,此时接入网设备和终端设备都无法分清楚是由于哪个或哪几个CB CRC出现了虚警。
具体的,上述情况的最优反馈状态为分别对于{CBG1,CBG2,TB}的几种反馈状态为{ACK,ACK,ACK},{ACK,NACK,NACK},{NACK,ACK,NACK},{NACK,NACK,NACK}和{ACK,ACK,NACK},注意最后一种状态,即所有的部分CB对应的反馈信息都是ACK,只有TB对应的是NACK,这个代表CB CRC虚警的出现,此时接入网设备一般来说不可以假设任何一个CB被正确接收,当然如何假设取决于接入网设备的内部实现算法,这个特殊的状态就是为了告诉接入网设备出现了CB CRC的虚警;而对于其他反馈状态,接入网设备可以假设ACK的CBG是真正被正确接收了。
可选的,针对第一传输块的反馈信息的反馈,第一反馈信息中可以不包括对应于第一传输块的反馈信息,即第一反馈信息不包括对应于所述第一传输块用于指示接收状态的反馈信息。具体的,对于另一个实施例,UE可以不反馈基于TB的ACK/NACK,而是制定一个规则。该规则具体包括:只要UE侧发现TB CRC没有通过,此时无论该TB划分的多个CBG的接收状态如何,UE都对所有的CBG反馈NACK。也就是说,对于上述例子,UE还是只针对CBG1和CBG2分别反馈1个比特,共2个比特,而不需要反馈对应TB CRC的反馈信息,而是只要TB CRC未通过,无论CBG1和CBG2的接收状态如何,UE此时反馈{NACK,NACK}。或者,可选的,如果终端设备确定所有CBG中包括的所有CB分别对应的接收状态都是正确接收,即CB或CBG的解码状态分别均被校验通过,比如通过CB或CBG CRC或者通过校验矩阵等方式(具体方式不做限定),但是此时的整体TB的解码状态没有被校验通过,比如TB CRC未被校验通过或TB校验矩阵未校验通过(具体方式不做限定),则终端设备将所有CBG所对应的解码状态都置为NACK并上报。例如,一个TB被划分为2个CBG,如果终端设备通过CB或CBG CRC确定每个CBG都校验通过,即此时明明可以反馈2个ACK,但如何TB CRC未通过,则终端设备需要上报两个NACK,而不需要有其他针对TB上报的信息。可以看出,此时一定是至少一个CBG出现了虚警,即事实上没有解码正确但却被校验通过了,那么终端设备和基站都是无法确定是哪个CB或哪个CBG发生了虚警,因此终端设备此时针对每个CBG均上报NACK,即全NACK,是有道理的。对于基站侧,收到了全NACK的上报,基站不需要区分如下2种状态:CBG都校验正确但TB未校验正确,和所有CBG均解码失败;此时对于基站来说,优选的操作都是对于所有CBG都做HARQ重传。
可选的,第一反馈信息包括针对每个CBG的CBG反馈信息以及针对TB的TB反馈信息,还可以通过信道选择来实现。具体的,如果全部CBG均解码正确或均解码失败或 所有CBG均校验通过但TB CRC校验未通过,则终端设备在第一反馈信道资源上发送针对TB的反馈信息,比如ACK或NACK,而不在第二反馈信道资源上发送针对CBG的反馈信息;如果一部分CBG解码正确但另一部分CBG解码失败,则终端设备在第二反馈信道资源上发送针对每个CBG的反馈信息,而不在第一反馈信道资源和第二反馈信道资源上发送针对TB的反馈信息。进一步,可选的,第一反馈信道资源和第二反馈信道资源的确定规则不同,比如前者通过隐示规则确定,后者根据显示规则确定。其中,隐示规则包括通过调度TB或CBG的下行控制信道的资源来隐示对应的第一反馈信道资源,显示规则包括通过高层和/或物理层信令显示的指示第二反馈信道资源。对应的,基站侧需要对上述第一反馈信道资源和第二反馈信道资源做盲检测,因为基站不清楚终端设备侧对于TB和CBG的具体解码状态。同理,上述方案可以扩展到第二反馈信息的发送方法中。
对于第二反馈信息,由于其针对部分CB重传的情况。可选的,终端设备还需要在第二反馈信息中反馈对应于第一传输块的反馈信息,即第二反馈信息还包括对应于所述第一传输块用于指示接收状态的反馈信息。且该实施例可以与上述第一反馈信息的2个实施例结合,即第一反馈信息包括第一传输块的反馈信息,或第一反馈信息不包括第一传输块的反馈信息。无论与哪种实施例结合,可选的,第二反馈信息的码本大小可以等于或小于第一反馈信息的码本大小。这里提到的码本大小相当于针对第一传输块或第一传输块相关的重传编码块的反馈信息的编码前的ACK/NACK的比特数。
举例说明,假设TB包括6个CB,分为3个CBG,分别为{CB1和2}、{CB3和4}和{CB5和6},假设终端设备在第一反馈信息的反馈时没有发生虚警,比如终端设备反馈的状态为{NACK,NACK,ACK,NACK},接入网设备会假设CBG 3被正确接收了,而CBG1和2未被正确接收;之后,接入网设备向终端设备发送CBG1和2的部分CB重传,而接入网设备在进行该部分重传的编码时,不会在CB1至CB4的基础上再添加TB的CRC终端设备会针对CBG1、CBG2和第一TB分别进行反馈信息的反馈,比如上述例子中,接收到部分重传的CBG1和2后,终端设备除了会反馈CBG1和2的反馈信息之外,还可以结合之前的CBG3,来做TB CRC的校验,并反馈整个第一TB对应的ACK/NACK。
值得注意的是,第二反馈信息必须包括第一TB对应的反馈信息,而不能像第一反馈信息那样采用预定规则的方式。具体的,如果第二反馈信息不包括第一TB对应的反馈信息,而采用上述第一反馈信息的上述预定规则的方案,即解码完重传编码块后如果判定了TB CRC没有通过,不可以对于全部重传编码块都反馈NACK而不反馈第一TB对应的反馈信息,因此如果这样做的话,接入网设备无法区别开是所有重传编码块都NACK(此情况下,接入网设备后续只需要重传这些重传编码块),还是所有重传编码块都ACK但TB CRC没有通过。此情况下,接入网设备后续需要重传第一TB中的所有编码块,因为发生了虚警问题。
对于第二反馈信息的另一个实施例中,第二反馈信息的码本大小等于第一反馈信息的码本大小,上述所有CBG均被校验通过但TB校验失败的上报全NACK的方法同样适用于此实施例。例如,一个TB被划分为2个CBG,针对初传的第一反馈反馈包括针对CBG1的ACK和针对CBG2的NACK;接着,基站进行部分CBG2的重传,如果终端设备 对CBG2的解码校验通过,但发现CBG1和CBG2组成的TB未被解码校验通过,那么终端设备针对该部分CBG的重传的HARQ反馈时,码本大小依然为2个比特,具体如上述实施例一样,也是反馈2个NACK,即全NACK。
在关于上述反馈信息的码本大小的另一个实施例中,所述第一反馈信息ACK/NACK码本大小大于或等于所述第二反馈信息的ACK/NACK码本大小。具体的,以TB包括的CB1和2为CBG1,CB3和4为CBG2,CB5和6的CBG3,CB7和8的CBG4为例,且先不考虑同时反馈基于TB的ACK/NACK为例,那么ACK/NACK码本大小为4,比如分别对于4个CBG的{ACK,ACK,ACK,NACK}等。那么针对CBG4的部分CB重传的反馈时,依然要反馈4个比特,此时可以为{ACK,DTX,DTX,DTX}或{DTX,DTX,DTX,ACK},其中的DTX可以理解为占位比特而没有对应的CBG。当然,第二反馈信息也可以不用预留所有CBG的ACK/NACK码本中的比特位置,此时第二反馈信息的码本大小可以小于第一反馈信息的码本大小。
可选的,当所述第一反馈信息的码本大小与所述第二反馈信息的码本大小相等时,所述第二反馈信息中还包括第二TB和/或第二TB中的部分CB所对应的反馈信息。
在关于上述反馈信息的码本大小的另一个实施例中,当采用相同的ACK/NACK码本大小时,对于部分CB重传时,还可以进行其他TB的传输,假设该其他TB为TB2或第二TB,假设该TB2包括2个CBG,那么在反馈TB1的CBG4的同时,可以把TB2的2个CBG对应的2比特一并反馈,即反馈的3个比特为{ACK,DTX,ACK,NACK},反馈位置依次分别对应TB1的CBG4,占位比特,TB2的CBG1和TB2的CBG2。可以看到,TB2的2个CBG对应的反馈比特是占到ACK/NACK码本的尾部的,这样可以不依赖于TB1的CBG的ACK/NACK位置,避免了基站与UE对于ACK/NACK码本中各比特的理解不一致的问题。其他放置TB2对应的ACK/NACK的方法也不排除,只要能够保证不同TB对应的反馈位置不互相依赖即可,比如{ACK,DTX,NACK,ACK}分别对应于TB1的CBG4,占位比特,TB2的CBG2和TB2的CBG1。
可选的,当所述第一反馈信息中的特定反馈信息为ACK,所述特定反馈信息对应于所述至少两个编码块集合中的特定编码块集合,且所述重传编码块对应的编码块集合中不包括所述特定编码块集合,则终端设备在进行第二反馈信息的反馈时,终端设备对所述第二反馈信息的码本中对应所述特定编码块集合的比特位置进行NACK填充。具体的,对于初传的ACK/NACK的反馈时反馈过ACK的CBG,在部分CB重传时对应该之前ACK的CBG进行NACK填充,主要是考虑到部分CB重传再加上第二TB的反馈信息的联合反馈时,造成第二TB中的TB或CB错误反馈的问题。比如如果接入网设备调度了第二TB,但终端设备丢失了调度该第二TB的控制信息,那么如果上述特定编码块集合的位置还是如之前反馈的ACK一样填充ACK的话,会被接入网设备误解为第二TB对应的ACK,这样接入网设备和终端设备对于反馈信息的解读就不一致了,且会造成第二TB的物理层丢包事件。
可选的,所述第一反馈信息中分别对应的至少两个编码块集合的反馈信息在不同的时刻反馈;和/或,所述第二反馈信息中对应所述重传编码块的反馈信息在不同的时刻反馈。
以第一反馈信息为例进行描述,第二反馈信息的方案类似处理。具体的,如图8所示,假设以3个时域符号为粒度的时间划分方式,第一TB中被时分的划分为4个CBG,由于CB的资源映射规则是先频率后时域,则不同元素可以按照时间上缓存的先后依次进行解码处理,即不同等到所有的CB都缓存下来后再一起处理。那么,在先映射和发送的元素对应的CB,终端设备可以提前解码,在后映射和发送的元素对应的CB,终端设备可以在后解码,这样终端设备可以对于在先解码出的CB在先生成反馈信息并发送,同理,终端设备可以对于在后解码出的CB在后生成反馈信息并发送,比如可以在不同的时刻或发送时间间隔TTI来发送,相应的,接入网设备侧就可以在不同的时刻或TTI先后的接收终端设备发送的这些反馈信息,以加快接入网设备侧的后续流水线处理流程。
对应于上述方法,本发明提供一种终端设备和一种无线接入网设备的实施例,该终端设备和无线接入网设备可以分别执行上述方法实施例中的各个步骤。
参考图9,本发明提供的一种无线接入网设备的实施例,包括:
处理单元901,用于将第一传输块所包含的至少两个编码块按照划分方式划分成至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
发送单元902,用于向终端设备发送第一传输块;
接收单元903,用于接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
可选的,所述发送单元,还用于向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;所述接收单元,还用于接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述发送单元,还用于向所述终端设备发送重传指示信息,所述重传指示信息用于确定所述重传编码块。
关于本实施例中的第一传输块、编码块集合、划分方式、重传编码块的具体描述参考上述方法实施例。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述发送单元,还用于向终端设备发送用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述发送单元,还用于向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述发送单元,还用于向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
关于本实施例中的第一反馈信息、重传指示信息、第一调度信息、第二调度信息的定义以及具体实现方式,可以参考上述方法实施例的相关描述。
参考图10,该无线接入网设备的硬件元素包括:
处理器1001,用于将第一传输块所包含的至少两个编码块按照划分方式划分成至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
发送器1002,用于向终端设备发送第一传输块;
接收器1003,用于接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
可选的,所述发送器,还用于向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;所述接收器,还用于接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述发送器,还用于向所述终端设备发送重传指示信息,所述重传指示信息用于确定所述重传编码块。
关于本实施例中的第一传输块、编码块集合、划分方式、重传编码块的具体描述参考上述方法实施例。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述发送器,还用于向终端设备发送用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述发送器,还用于向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述发送器,还用于向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
关于本实施例中的第一反馈信息、重传指示信息、第一调度信息、第二调度信息的定义以及具体实现方式,可以参考上述方法实施例的相关描述。
参考图11,本发明提供的一种终端设备,包括:
接收单元1101,用于接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
处理单元1102,用于生成第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态;和
发送单元1103,用于向所述无线接入网设备发送第一反馈信息。
可选的,所述接收单元,还用于接收所述无线接入网设备发送重传编码块,其中,所述重传编码块包括所述至少两个第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
所述发送单元,还用于向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述接收单元,还用于接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;所述接收单元根据划分方式和所述重传指示信息接收所述重传编码块。
关于本实施例中的第一传输块、编码块集合、划分方式、重传编码块的具体描述参考上述方法实施例。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述接收单元,还用于接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
关于本实施例中的第一反馈信息、重传指示信息、第一调度信息、第二调度信息的定义以及具体实现方式,可以参考上述方法实施例的相关描述。
参考图12,该终端设备的硬件元素包括:
接收器1201,用于接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
处理器1202,用于生成第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态;和
发送器1203,用于向所述无线接入网设备发送第一反馈信息。
可选的,所述接收器,还用于接收所述无线接入网设备发送重传编码块,其中,所述重传编码块包括所述至少两个第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
所述发送器,还用于向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
可选的,所述接收器,还用于接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;所述接收器根据划分方式和所述重传指示信息接收所述重传编码块。
关于本实施例中的第一传输块、编码块集合、划分方式、重传编码块的具体描述参考上述方法实施例。
可选的,当所述无线接入网设备支持多种所述划分方式时,所述接收器,还用于接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者,所述接收器,还用于接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
可选的,所述接收器,还用于接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
可选的,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
可选的,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
可选的,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
关于本实施例中的第一反馈信息、重传指示信息、第一调度信息、第二调度信息的定义以及具体实现方式,可以参考上述方法实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。例如,上文的接收器和发送器可在物理上可以集成在一个模块上,例如为收发器或者天线。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (45)

  1. 一种数据传输方法,其特征在于,包括:
    无线接入网设备向终端设备发送第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;和
    所述无线接入网设备接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述无线接入网设备向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
    所述无线接入网设备接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    所述无线接入网设备向所述终端设备发送重传指示信息,所述重传指示信息用于确定所述重传编码块。
  4. 如权利要求1-3所述的任一方法,其特征在于,
    所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
    所述至少两个资源区域位于不同的时域;
    所述至少两个资源区域位于不同的频域;
    所述至少两个资源区域占用的时域和/或频域资源不完全相同;
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
  5. 如权利要求4所述的方法,其特征在于,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
  6. 如权利要求1-5所述的任一方法,其特征在于,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
  7. 如权利要求1-6所述的任一方法,其特征在于,当所述无线接入网设备支持多种所述划分方式时,所述方法还包括:
    所述无线接入网设备向终端设备发送用于调度所述第一传输块的第一调度信息,所述 第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者
    无线接入网设备向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述无线接入网设备向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
  9. 如权利要求8所述的方法,其特征在于,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
  10. 如权利要求2-9所述的任一方法,其特征在于,
    所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
  11. 如权利要求1-9所述的任一方法,其特征在于,
    所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,
    所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
  12. 一种数据传输方法,其特征在于,包括:
    终端设备接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;和
    所述终端设备向所述无线接入网设备发送第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    所述终端设备接收所述无线接入网设备发送的重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;和
    所述终端设备向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    所述终端设备接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;
    所述终端设备根据划分方式和所述重传指示信息接收所述重传编码块。
  15. 如权利要求12-14所述的任一方法,其特征在于,
    所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
    所述至少两个资源区域位于不同的时域;
    所述至少两个资源区域位于不同的频域;
    所述至少两个资源区域占用的时域和/或频域资源不完全相同;
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
  16. 如权利要求15所述的方法,其特征在于,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
  17. 如权利要求12-16所述的任一方法,其特征在于,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
  18. 如权利要求12-17所述的任一方法,其特征在于,当所述无线接入网设备支持多种所述划分方式时,所述方法还包括:
    所述终端设备接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者
    所述终端设备接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
  20. 如权利要求18所述的方法,其特征在于,
    所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
  21. 如权利要求12-20所述的任一方法,其特征在于,
    所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
  22. 如权利要求12-21所述的任一方法,其特征在于,
    所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,
    所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
  23. 一种无线接入网设备,其特征在于,包括:
    处理单元,用于将第一传输块所包含的至少两个编码块按照划分方式划分成至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
    发送单元,用于向终端设备发送第一传输块;
    接收单元,用于接收所述终端设备发送第一反馈信息,所述第一反馈信息包括对应于所 述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态。
  24. 如权利要求23所述的无线接入网设备,其特征在于,所述发送单元,还用于向所述终端设备发送重传编码块;其中,所述重传编码块包括所述第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
    所述接收单元,还用于接收所述终端设备发送的第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
  25. 如权利要求24所述的无线接入网设备,其特征在于,所述发送单元,还用于向所述终端设备发送重传指示信息,所述重传指示信息用于确定所述重传编码块。
  26. 如权利要求23-25所述的任一无线接入网设备,其特征在于,
    所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
    所述至少两个资源区域位于不同的时域;
    所述至少两个资源区域位于不同的频域;
    所述至少两个资源区域占用的时域和/或频域资源不完全相同;
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
  27. 如权利要求26所述的无线接入网设备,其特征在于,当所述至少两个资源区域位于不同的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
  28. 如权利要求23-27所述的任一无线接入网设备,其特征在于,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
  29. 如权利要求23-28所述的任一无线接入网设备,其特征在于,当所述无线接入网设备支持多种所述划分方式时,所述发送单元,还用于向终端设备发送用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者
    所述发送单元,还用于向终端设备发送高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
  30. 如权利要求29所述的无线接入网设备,其特征在于,所述发送单元,还用于向终端设备发送用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
  31. 如权利要求30所述的无线接入网设备,其特征在于,所述第一调度信息和所述第 二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包括相同字段。
  32. 如权利要求23-31所述的任一无线接入网设备,其特征在于,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
  33. 如权利要求23-32所述的任一无线接入网设备,其特征在于,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,
    所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
  34. 一种终端设备,其特征在于,包括:
    接收单元,用于接收无线接入网设备发送的第一传输块,所述第一传输块中包括至少两个编码块,所述至少两个编码块按照划分方式被划分为至少两个不同的编码块集合,每个所述编码块集合包含所述至少两个编码块中的至少一个编码块;
    处理单元,用于生成第一反馈信息,所述第一反馈信息包括对应于所述第一传输块的至少两个反馈信息,所述至少两个反馈信息分别用于指示至少两个编码块集合的接收状态;和
    发送单元,用于向所述无线接入网设备发送第一反馈信息。
  35. 如权利要求34所述的终端设备,其特征在于,所述接收单元,还用于接收所述无线接入网设备发送重传编码块,其中,所述重传编码块包括所述至少两个第一反馈信息中否认信息所对应的编码块集合所包含的部分或全部编码块;
    所述发送单元,还用于向所述无线接入网设备发送第二反馈信息,所述第二反馈信息包括对应于所述重传编码块的用于指示接收状态的反馈信息。
  36. 如权利要求35所述的终端设备,其特征在于,所述接收单元,还用于接收所述无线接入网设备发送的重传指示信息,所述重传指示信息用于确定所述重传编码块;所述接收单元根据划分方式和所述重传指示信息接收所述重传编码块。
  37. 如权利要求34-36所述的任一终端设备,其特征在于,
    所述至少两个编码块占用第一时频资源,所述第一时频资源包括至少两个资源区域,所述至少两个资源区域与所述至少两个编码块集合对应,每个所述编码块集合所包含的编码块占用所属编码块集合所对应的资源区域;其中,所述划分方式为以下多个划分方式中的一个:
    所述至少两个资源区域位于不同的时域;
    所述至少两个资源区域位于不同的频域;
    所述至少两个资源区域占用的时域和/或频域资源不完全相同;
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域对应特定编码块集合,所述第二类区域内不对应所述特定编码块集合,所述特定编码块集合属于所述至少两个编码块集合;或
    所述至少两个资源区域包括至少一个第一类区域和至少一个第二类区域,所述第一类区域支持第一类业务的传输,所述第二类区域不支持所述第一类业务传输。
  38. 如权利要求37所述的终端设备,其特征在于,当所述至少两个资源区域位于不同 的时域,时间在先的所述资源区域所占用的时域资源多于时间在后的所述资源区域所占用的时域资源。
  39. 如权利要求34-38所述的任一终端设备,其特征在于,所述至少两个编码块集合中包括第一类编码块集合和第二类编码块集合,所述第一类编码块集合和所述第二类编码块集合包括至少一个相同的编码块。
  40. 如权利要求34-39所述的任一终端设备,其特征在于,当所述无线接入网设备支持多种所述划分方式时,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述第一传输块的第一调度信息,所述第一调度信息包括划分指示,所述划分指示用于指示所述多个划分方式中的一个;或者
    所述接收单元,还用于接收所述无线接入网设备发送的高层信令,所述高层信令包括划分指示,所述划分指示用于指示所述多个划分方式中的一个。
  41. 如权利要求40所述的终端设备,其特征在于,所述接收单元,还用于接收所述无线接入网设备发送的用于调度所述重传编码块的第二调度信息,所述第二调度信息包括所述重传指示信息。
  42. 如权利要求41所述的终端设备,其特征在于,所述第一调度信息和所述第二调度信息通过相同的下行控制信息格式的控制信道承载,所述划分指示所使用的所述下行控制信息格式中的第一字段和所述重传指示信息所使用的所述下行控制信息格式中的第二字段包含相同字段。
  43. 如权利要求34-42所述的任一终端设备,其特征在于,所述重传指示信息还用于指示所述重传编码块中的全部或部分编码块是否可以进行HARQ合并。
  44. 如权利要求34-43所述的任一终端设备,其特征在于,所述第一反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息;和/或,
    所述第二反馈信息还包括用于指示所述第一传输块的接收状态的反馈信息。
  45. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-22任意一项所述的方法。
PCT/CN2018/071782 2017-01-07 2018-01-08 一种数据传输的方法和装置 WO2018127179A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22185984.6A EP4145739A1 (en) 2017-01-07 2018-01-08 Data transmission method and apparatus
CA3049605A CA3049605C (en) 2017-01-07 2018-01-08 Data transmission method and apparatus
EP18735823.9A EP3567773B1 (en) 2017-01-07 2018-01-08 Data transmission method and apparatus
BR112019014075A BR112019014075A2 (pt) 2017-01-07 2018-01-08 método e aparelho de transmissão de dados
JP2019537125A JP6908711B2 (ja) 2017-01-07 2018-01-08 データ伝送方法および機器
US16/505,149 US10897331B2 (en) 2017-01-07 2019-07-08 Data transmission method and apparatus
ZA2019/04926A ZA201904926B (en) 2017-01-07 2019-07-26 Data transmission method and apparatus
US17/132,185 US11581987B2 (en) 2017-01-07 2020-12-23 Data transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710014619 2017-01-07
CN201710014619.1 2017-01-07
CN201710170033.4 2017-03-21
CN201710170033.4A CN108289011B (zh) 2017-01-07 2017-03-21 一种数据传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/505,149 Continuation US10897331B2 (en) 2017-01-07 2019-07-08 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018127179A1 true WO2018127179A1 (zh) 2018-07-12

Family

ID=62789572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071782 WO2018127179A1 (zh) 2017-01-07 2018-01-08 一种数据传输的方法和装置

Country Status (8)

Country Link
US (2) US10897331B2 (zh)
EP (2) EP3567773B1 (zh)
JP (1) JP6908711B2 (zh)
CN (1) CN108289011B (zh)
BR (1) BR112019014075A2 (zh)
CA (1) CA3049605C (zh)
WO (1) WO2018127179A1 (zh)
ZA (1) ZA201904926B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513179A (ja) * 2017-04-03 2020-04-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 可変処理時間をもつノードのためのharqハンドリング
WO2020252134A1 (en) * 2019-06-11 2020-12-17 Qualcomm Incorporated Data packet grouping for traffic awareness in new radio
JP2022506298A (ja) * 2018-11-02 2022-01-17 中▲興▼通▲訊▼股▲ふぇん▼有限公司 ダウンリンク制御情報を伝送するための方法および装置
CN115001633A (zh) * 2019-04-30 2022-09-02 华为技术有限公司 一种通信方法和装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910622B (zh) * 2015-11-06 2021-11-30 中兴通讯股份有限公司 信道状态测量导频的配置方法及装置、解析方法及装置
EP3588828B1 (en) * 2017-02-24 2022-03-02 LG Electronics Inc. Method for processing data block and method for harq ack/nack feedback
CN113411892B (zh) 2017-03-08 2023-09-29 Lg 电子株式会社 在无线通信系统中发送和接收无线电信号的方法和装置
CN110447193B (zh) * 2017-03-17 2022-03-15 Lg 电子株式会社 在无线通信系统中由终端接收数据的方法和设备
CN108631950B (zh) * 2017-03-23 2023-11-07 华为技术有限公司 发送反馈信息的方法和设备
KR102056198B1 (ko) * 2017-03-23 2019-12-16 엘지전자 주식회사 무선 통신 시스템에서 단말의 확인 응답 정보 전송 방법 및 이를 지원하는 장치
CN108809534B (zh) * 2017-05-05 2022-07-01 北京三星通信技术研究有限公司 调度方法、harq-ack反馈方法和相应设备
CN114826490A (zh) 2017-05-05 2022-07-29 北京三星通信技术研究有限公司 调度方法、harq-ack反馈方法和相应设备
CN108988984B (zh) * 2017-05-31 2021-07-09 株式会社Kt 用于新无线电的重传传输块的方法及使用该方法的装置
KR102374139B1 (ko) * 2017-08-04 2022-03-15 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터 채널 및 제어 채널의 송수신 방법, 장치, 및 시스템
US11849479B2 (en) * 2018-07-26 2023-12-19 Sharp Kabushiki Kaisha Base stations and methods
WO2020042036A1 (zh) * 2018-08-29 2020-03-05 Oppo广东移动通信有限公司 无线通信方法和通信设备
CN111262647B (zh) * 2018-11-30 2021-08-03 华为技术有限公司 数据传输的方法和装置
CN114157400B (zh) * 2019-02-15 2024-04-16 华为技术有限公司 一种码本的处理方法及装置
US11405077B2 (en) * 2019-03-29 2022-08-02 Qualcomm Incorporated Encoding and resource mapping for multiplexing feedback codebooks
US11356212B2 (en) * 2019-04-05 2022-06-07 Kt Corporation Method and apparatus for transmitting and receiving sidelink HARQ feedback information
CN115426082A (zh) * 2019-05-09 2022-12-02 北京小米移动软件有限公司 混合自动重传请求反馈的传输方法、装置及存储介质
CN115499114A (zh) * 2019-06-14 2022-12-20 Oppo广东移动通信有限公司 无线通信方法、收端设备和发端设备
CN112311515B (zh) * 2019-08-01 2022-03-29 北京华为数字技术有限公司 一种反馈信息传输方法及装置
CN110557228B (zh) * 2019-08-16 2022-01-18 中国信息通信研究院 一种对上行数据harq反馈方法、终端设备和网络设备
US11411672B2 (en) * 2019-09-03 2022-08-09 Electronics And Telecommunication Research Institute Method and apparatus for data transmission in wireless communication system
CN112929138B (zh) * 2019-12-06 2023-04-25 维沃移动通信有限公司 码本发送方法、接收方法、终端及网络设备
US11722254B2 (en) * 2020-01-17 2023-08-08 Qualcomm Incorporated Methods and apparatuses for latency reduction for URLLC
CN113766642A (zh) * 2020-06-02 2021-12-07 华为技术有限公司 一种通信方法及装置
CN114070479A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种重传数据的方法及装置
CN111953388B (zh) * 2020-10-19 2021-02-09 深圳市力博得科技有限公司 防止近场传输错误识别的控制方法、系统、设备及介质
WO2022165660A1 (zh) * 2021-02-03 2022-08-11 华为技术有限公司 数据的传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN104283651A (zh) * 2013-07-01 2015-01-14 普天信息技术研究院有限公司 一种混合重传的方法
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置
WO2016126653A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109521A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 無線通信システム、移動局装置、基地局装置、及び無線通信システムにおける無線通信方法
US20140133471A1 (en) * 2012-03-20 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices relating to mimo communications
CN110266430B (zh) * 2014-04-30 2021-07-30 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及系统
RU2699233C2 (ru) * 2014-09-12 2019-09-04 Телефонактиеболагет Лм Эрикссон (Пабл) Узел радиосвязи, беспроводное устройство и осуществляемые ими способы
US9992004B2 (en) * 2015-02-03 2018-06-05 Qualcomm Incorporated Code block cluster level HARQ
US9749097B2 (en) * 2015-06-04 2017-08-29 Litepoint Corporation Method for wireless communications testing using downlink and uplink transmissions between an access point and mobile terminals
US10666397B2 (en) * 2016-04-01 2020-05-26 Mediatek Inc. Method and apparatus for control signaling
KR102078374B1 (ko) * 2016-04-22 2020-02-17 엘지전자 주식회사 무선통신 시스템에서 harq ack/nack 신호를 전송/수신하는 방법 및 이를 위한 장치
US10298362B2 (en) * 2016-11-24 2019-05-21 Samsung Electronics Co., Ltd Method and apparatus for partial retransmission in wireless cellular communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN104283651A (zh) * 2013-07-01 2015-01-14 普天信息技术研究院有限公司 一种混合重传的方法
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置
WO2016126653A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567773A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513179A (ja) * 2017-04-03 2020-04-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 可変処理時間をもつノードのためのharqハンドリング
JP2022506298A (ja) * 2018-11-02 2022-01-17 中▲興▼通▲訊▼股▲ふぇん▼有限公司 ダウンリンク制御情報を伝送するための方法および装置
JP7246474B2 (ja) 2018-11-02 2023-03-27 中興通訊股▲ふん▼有限公司 ダウンリンク制御情報を伝送するための方法および装置
CN115001633A (zh) * 2019-04-30 2022-09-02 华为技术有限公司 一种通信方法和装置
CN115001633B (zh) * 2019-04-30 2024-04-12 华为技术有限公司 一种通信方法和装置
WO2020252134A1 (en) * 2019-06-11 2020-12-17 Qualcomm Incorporated Data packet grouping for traffic awareness in new radio
CN113924741A (zh) * 2019-06-11 2022-01-11 高通股份有限公司 用于新无线电中的业务感知的数据分组编组
US11317413B2 (en) 2019-06-11 2022-04-26 Qualcomm Incorporated Data packet grouping for traffic awareness in new radio

Also Published As

Publication number Publication date
US20210119739A1 (en) 2021-04-22
JP6908711B2 (ja) 2021-07-28
US10897331B2 (en) 2021-01-19
CA3049605A1 (en) 2018-07-12
CA3049605C (en) 2022-10-25
CN108289011B (zh) 2023-11-21
EP3567773A1 (en) 2019-11-13
ZA201904926B (en) 2020-05-27
CN108289011A (zh) 2018-07-17
JP2020504558A (ja) 2020-02-06
EP4145739A1 (en) 2023-03-08
BR112019014075A2 (pt) 2020-02-04
US11581987B2 (en) 2023-02-14
EP3567773B1 (en) 2022-08-24
US20190334664A1 (en) 2019-10-31
EP3567773A4 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2018127179A1 (zh) 一种数据传输的方法和装置
US20220286227A1 (en) Data Transmission Method and Apparatus
US20190215104A1 (en) System and Method for Reliable Transmission over Network Resources
CN111464271B (zh) 用于改进的harq反馈指示的装置、设备及无线通信装置
EP3136639B1 (en) Apparatus and method for defining physical channel transmit/receive timings and resource allocation in tdd communication system supporting carrier aggregation
RU2742284C1 (ru) Пользовательский терминал и способ радиосвязи
US10178651B2 (en) Method and system for uplink HARQ and CSI multiplexing for carrier aggregation
US11451338B2 (en) User terminal and radio communication method
CN112398579A (zh) 下行链路反馈信息发送以及接收的方法
US20220039088A1 (en) Transmitting method and receiving method for control information, user equipment and base station
CN113796032B (zh) 用于半静态harq-ack码本确定的方法及设备
CN115918011A (zh) 生成混合自动重复请求harq码本的方法和装置
US20230361924A1 (en) Method and apparatus for harq-ack feedback transmission
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116964969A (zh) 用于基于仅nack的harq-ack反馈复用的方法及设备
FI20195875A1 (en) Common link adaptation for a downlink control channel and data channel for wireless networks
KR20210017949A (ko) 무선 통신 시스템에서 상향링크 제어 채널 및 신호 자원 결정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3049605

Country of ref document: CA

Ref document number: 2019537125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014075

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018735823

Country of ref document: EP

Effective date: 20190807

ENP Entry into the national phase

Ref document number: 112019014075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190708