WO2018126944A1 - 信道状态信息测量的配置方法及相关设备 - Google Patents

信道状态信息测量的配置方法及相关设备 Download PDF

Info

Publication number
WO2018126944A1
WO2018126944A1 PCT/CN2017/118538 CN2017118538W WO2018126944A1 WO 2018126944 A1 WO2018126944 A1 WO 2018126944A1 CN 2017118538 W CN2017118538 W CN 2017118538W WO 2018126944 A1 WO2018126944 A1 WO 2018126944A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network device
reference signal
csi reference
parameter
Prior art date
Application number
PCT/CN2017/118538
Other languages
English (en)
French (fr)
Inventor
王婷
梁津垚
窦圣跃
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17890314.2A priority Critical patent/EP3550734A4/en
Priority to BR112019013860A priority patent/BR112019013860A2/pt
Publication of WO2018126944A1 publication Critical patent/WO2018126944A1/zh
Priority to US16/503,246 priority patent/US11005592B2/en
Priority to US17/235,512 priority patent/US11671197B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method for configuring channel state information measurement and related devices.
  • LTE Release 8 (English: Release 8, abbreviated as: R8)/R9
  • a common reference signal (English: Common Reference Signal, CRS)
  • the user equipment (English: User Equipment, UE) can perform channel measurement through the CRS, thereby determining that the UE performs cell reselection and handover to the target cell.
  • CSI Reference Signal CSI Reference Signal
  • CSI-RS is used for channel measurement
  • the precoding matrix index that the UE needs to feed back to the base station (English: evolved Node B, eNB) can be calculated by measuring the CSI-RS (English: Precoding Matrix Indicator, PMI) ), channel quality information indication (CQI) and rank indication (English: Rank Indication, RI).
  • an eNB may have multiple antennas for transmission to the UE, thereby allowing the eNB to use Multi-input Multi-output (MIMO) technology.
  • MIMO refers to the use of multiple antennas at both the transmitter and the receiver to improve communication performance.
  • MIMO technology utilizes spatially-dimensional resources to enable signals to obtain array gain, multiplexing, and space in space without increasing system bandwidth. The diversity gain and the interference cancellation gain multiply the capacity and spectral efficiency of the communication system, and have been favored since its introduction.
  • the UE When performing the CSI-RS measurement, the UE receives the reference signal according to the reference signal pattern configured by the base station, and obtains the channel matrix according to the reference signal, thereby acquiring the channel state information and reporting it to the base station, for example, calculating the optimal according to the channel matrix.
  • the PMI, and the CQI is calculated under the PMI, and finally the selected PMI and CQI are reported to the base station.
  • the CSI measurement in the prior art has only one frame structure. When different cells in the CoMP system adopt different frame structures, the UE cannot perform CSI measurement of the neighboring cell, resulting in performance degradation. However, in 5G, the frame structure of the serving cell where the UE is located may be different from the frame structure information of the neighboring cell or the coordinated cell or other cells. Therefore, even if the UE knows the frame structure of its own serving cell, the UE will not be able to perform CSI measurement for the neighboring cell.
  • the embodiment of the present invention provides a method for configuring channel state information measurement and a related device, which can solve the problem that when the base station adopts different frame structures in different frequency bands, the UE can learn the frame structure of the frequency band in which the different CSI-RS is located, thereby implementing the UE. Neighbor CSI measurement.
  • an embodiment of the present invention provides a method for configuring channel state information measurement, where the method includes: generating, by a first network device, parameter information of a resource where a CSI reference signal is located, where the parameter information is used by the second network device to determine the One or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located; the first network device sends the parameter information to the second network device.
  • the first network device may notify the parameter information of one or more cells of the second network device in advance, and then add the cell identity information when the CSI-RS is configured, and the second network device may determine according to the cell identity information.
  • the parameter information corresponding to the current CSI-RS, so that the resource location where the CSI-RS is located can be determined, and then the CSI-RS is received for CSI measurement.
  • the parameter information is used by the second network device to determine a pilot pattern of the CSI reference signal, or the parameter information is used by the second network device to determine a time domain of the CSI reference signal. / or frequency domain resources.
  • the first network device sends the parameter information to the second network device, where the first network device uses Radio Resource Control (RRC) signaling or media access.
  • RRC Radio Resource Control
  • Control (English: Medium Access Control, MAC) signaling or Downlink Control Information (DCI) signaling to send the parameter information to the second network device; or the first network device passes RRC signaling or The MAC signaling or the DCI signaling sends the parameter information indication information to the second network device, where the parameter information indication information is used by the second network device to determine the parameter information from the group of parameter information.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • DCI Downlink Control Information
  • the parameter information includes frequency domain indication information, and the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable. By adding the frequency domain indication information, parameter information corresponding to different frequency bands can be indicated.
  • the method further includes: the first network device sending the frequency domain indication information corresponding to the parameter information to the second network device, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable. .
  • the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable.
  • the parameter information includes one or more of the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information.
  • the parameter information includes CSI reference signal identification information, where the CSI reference signal identification information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information of the resource where the CSI reference signal is located, and One or more of the number of symbol information is one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to the current serving cell of the second network device.
  • the CSI reference signal identifier information is used to indicate that one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of the resource where the CSI reference signal is located is the second network.
  • the parameter information includes cell identifier information, where the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the embodiment of the present invention provides a method for configuring channel state information measurement, where the method includes: receiving, by a second network device, parameter information of a resource where a CSI reference signal sent by the first network device is located;
  • the parameter information determines one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the first network device may inform the second network device of the parameter information of one or more cells in advance, and then add the cell identity information when the CSI-RS is configured, and the second network device may determine according to the cell identity information.
  • the method further includes: determining, by the second network device, the pilot pattern of the CSI reference signal according to the parameter information; or determining, by the second network device, the CSI reference signal according to the parameter information. Time domain and / or frequency domain resources.
  • the second network device receives the parameter information of the resource where the CSI reference signal sent by the first network device is located, where the second network device receives the first network device by using RRC signaling or MAC signaling. Or the resource information of the CSI reference signal sent by the DCI signaling; or the second network device receives the parameter information indication information sent by the first network device by using RRC signaling or MAC signaling or DCI signaling, and according to the parameter information
  • the indication information determines parameter information of the resource where the CSI reference signal is located from the plurality of sets of parameter information.
  • the parameter information includes frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable; and after the second network device receives the parameter information sent by the first network device, The method includes: determining, by the second network device, a frequency domain to which the parameter information is applicable according to the frequency domain indication information. By adding the frequency domain indication information, parameter information corresponding to different frequency bands can be indicated.
  • the method further includes: receiving, by the second network device, frequency domain indication information corresponding to the parameter information sent by the first network device configuration; the second network device determining, according to the frequency domain indication information, The frequency domain to which the parameter information applies. By adding the frequency domain indication information, parameter information corresponding to different frequency bands can be indicated.
  • the parameter information includes one or more of the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information.
  • the parameter information includes CSI reference signal identification information
  • the second network device determines, according to the parameter information, subcarrier spacing information, cyclic prefix length information, and frame structure time length information of the resource where the CSI reference signal is located.
  • the symbol number information including: the second network device, according to the CSI reference signal identifier information, subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbols of the serving cell
  • One or more of the number information is determined as one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located; or Determining, by the network device, one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information acquired during initial access according to the CSI reference signal identification information as the CSI reference signal Subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbols of the resource
  • the symbol number information including: the second network
  • the parameter information includes cell identification information
  • the second network device determines, according to the parameter information, subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbols of the resource where the CSI reference signal is located.
  • One or more of the number information including: one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to the cell identifier information And determining, by the plurality of ones, one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • a network device is provided, where the network device is a first network device, and the first network device can include: a processor, a transmitter, and a memory, where the memory is used to store programs and data; The processor invokes a program in the memory for performing a configuration method of channel state information measurement as described in any implementation of the first aspect.
  • a network device is provided, where the network device is a second network device, where the second network device can include: a processor, a receiver, and a memory, where the memory is used to store programs and data;
  • the processor invokes a program in the memory for performing a configuration method of channel state information measurement as described in any implementation of the second aspect.
  • a network device comprising a functional unit for performing a configuration method of channel state information measurement as described in the first aspect.
  • a user equipment comprising a functional unit for performing a configuration method of channel state information measurement as described in the second aspect.
  • the seventh aspect provides a communication system, including: a first network device and a second network device, where: the first network device may be the first network device described in the third aspect or the fifth aspect, where The second network device may be the second network device described in the fourth aspect or the sixth aspect.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions used by the first network device, where the program is configured to execute the first network device configured by the first aspect. .
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions used by the second network device, where the program includes a program designed to perform the second aspect of the second network device. .
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for configuring channel state information measurement reporting according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • Figure 1 shows a hypercell composed of a High Convergence Point (TRP).
  • TRP High Convergence Point
  • FIG. 1 shows a hypercell composed of a High Convergence Point (TRP).
  • TRP High Convergence Point
  • one user equipment can communicate with multiple transmission points to form a UE-cell-center-like communication system.
  • TRP set TRP Set
  • the manner of dividing the TRP group is not limited to the manner of dividing the location, and may be other partitioning manners, for example, the TRPs with strong correlation are divided into one group, which is not limited in the embodiment of the present invention.
  • the transmission point may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B).
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Long Term Evolution
  • the eNB or the eNodeB), or a network device such as a base station or a micro base station in a future 5G network, is not limited in this embodiment of the present invention.
  • the user equipment can support the CoMP transmission mode, that is, the user equipment can communicate with two or more transmission points in the figure.
  • a user equipment may be referred to as an access terminal, user equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the user equipment may be mobile or fixed, and the user equipment may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, or an individual.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and user devices in future 5G networks.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such a device has a wireless communication function because it is equipped with a wireless communication unit, and thus can also be used as the above-mentioned user equipment.
  • the user equipment When the user equipment moves at a high speed, its environment often changes. In a high-density TRP scenario, the user equipment can switch from one TRP to another, or from one TRP group to another.
  • the reference signal resources corresponding to the user equipment for channel measurement also need to be changed accordingly.
  • the first network device includes but is not limited to: a transmission point
  • the second network device includes but is not limited to: a user equipment.
  • the embodiments of the present invention are used to solve different frequency bands under NR, and adopt different parameters (numerology) and/or frame structure.
  • different numerology and/or frame structure determine different subcarrier spacing, CP length, frame structure time length, number of symbols, and the like. This in turn leads to different CSI-RS pilot patterns.
  • the user equipment if the user equipment is informed of the numerology and/or frame structure of the current CSI-RS frequency band, the user equipment can obtain the CSI-RS pilot pattern corresponding to the current frequency band, or the time/frequency domain resource where the CSI-RS is located. In turn, the CSI-RS signal can be received on the corresponding resource to perform CSI measurement.
  • the embodiment of the present invention provides a method for configuring channel state information measurement.
  • the first network device is configured to notify the second network device of the parameter information of the current CSI-RS resource, so that the second network device learns the frame structure of the current CSI-RS resource, thereby implementing the CSI measurement by the second network device.
  • the CSI-RS measurement of the second network device in different frequency bands is satisfied.
  • FIG. 2 is a schematic flowchart of a method for configuring channel state information measurement reporting according to an embodiment of the present invention, where the method includes but is not limited to the following steps.
  • the first network device sends parameter information of a resource where the CSI reference signal is located to the second network device.
  • the parameter information is used by the second network device to determine one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the parameter information is used by the second network device to determine one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • cyclic prefix length information cyclic prefix length information
  • frame structure time length information a resource where the CSI reference signal is located.
  • symbol number information of a resource where the CSI reference signal is located.
  • the parameter information is specifically numerology information and/or frame structure information, and may represent a pilot pattern in which the CSI-RS resource is located or a time domain and/or a frequency domain resource occupied by the CSI-RS.
  • the parameter information is used by the second network device to determine a pilot pattern of the CSI reference signal, or the parameter information is used by the second network device to determine a time domain occupied by the CSI reference signal. And / or frequency domain resources.
  • the parameter information of the resource where the current CSI reference signal is located may be that the first network device directly informs the second network device by using signaling.
  • the first network device configures the CSI reference signal for the second network device by using Radio Resource Control (RRC) signaling or Medium Access Control (MAC) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the parameter information of the resource where the CSI reference signal is located is sent to the second network device by using the parameter information of the resource or the downlink control information (DCI) signaling.
  • the parameter information is one or more of the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information.
  • the first network device may notify the second network device of the plurality of sets of parameter information in advance, and then notify the second network device of the parameter corresponding to the resource of the current frequency band of the CSI reference signal by means of signaling.
  • the first network device configures parameter information indication information for the second network device by using RRC signaling or MAC signaling, or sends parameter information indication information to the second network device by using DCI signaling, where the parameter information indicates The information is used by the second network device to determine, from the plurality of sets of parameter information, parameter information of a resource where the CSI reference signal is located.
  • the first network device may pre-define mapping information of different bit information and different parameter information, or the first network device sends mapping information of different bit information and different parameter information to the second network device, after the The first network device configures the bit information corresponding to the current frequency band for the second network device by using the RRC signaling or the MAC signaling, or sends the bit information corresponding to the current frequency band to the second network device by using the DCI signaling, to notify the current network device of the second network device
  • the parameter information corresponding to the CSI-RS where the parameter information includes one or more of subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the number of symbols.
  • the first network device uses different bit information to represent different parameters.
  • different subcarrier spacings may be represented by 2 bits or other numbers of bits. For example, 00 represents a subcarrier spacing of 15 kHz, 01 represents a subcarrier spacing of 30 kHz, 10 represents a subcarrier spacing of 60 kHz, and so on, and different bit values may also represent other different subcarrier spacings. As an example, see Table 1.
  • cyclic prefix (English: Cyclic Prefix, CP) length information can be represented by 1 bit or other number of bits. For example, 0 represents a normal CP and 1 represents an extended CP. By analogy, different bit values can also represent other CP lengths. As an example, see Table 2.
  • Different frame structure time lengths can be represented by 2 bits or other numbers of bits. For example, 00 represents a subframe of 1 ms, 01 represents a time slot of 0.5 ms, 10 represents a microslot mini slot of 0.25 ms, and so on, and different bit values may also represent other different time lengths. As an example, see Table 3.
  • the number of different symbols can be represented by 2 bits or other numbers of bits. For example, 00 represents 14 symbols, 01 represents 7 symbols, 10 represents 4 symbols, and 11 represents 2 symbols.
  • different bit values can also represent the number of other different symbols. As an example, see Table 4.
  • bits of information may be used to collectively indicate one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information. For example, it is represented by 3 bits or other digits. For example, 000 represents a subcarrier spacing of 15 kHz, CP length is a normal CP, and number of symbols is 14; 001 represents a subcarrier spacing of 30 kHz, and CP length is a normal CP. The number of symbols is seven; 010 represents a subcarrier spacing of 60 kHz, the CP length is a normal CP, and the number of symbols is four.
  • different bit values may also represent values of other different subcarrier spacing values and/or values of other different CP lengths and/or values of other different symbol numbers. See, for example, Table 5.
  • Subcarrier spacing is 15 kHz; CP length is normal CP; number of symbols is 14 001 Subcarrier spacing is 30 kHz; CP length is normal CP; number of symbols is 7 010 Subcarrier spacing is 60 kHz; CP length is normal CP; number of symbols is 4 011 Subcarrier spacing is 15 kHz; CP length is extended CP; number of symbols is 12 100 Subcarrier spacing is 30 kHz; CP length is extended CP; number of symbols is 6 101 Subcarrier spacing is 60 kHz; CP length is extended CP; number of symbols is 3 110 Subcarrier spacing is 30 kHz; CP length is normal CP; number of symbols is 4 111 Subcarrier spacing is 60 kHz; CP length is normal CP; number of symbols is 2
  • a plurality of different parameter information may be predefined between the first network device and the second network device, and then, in the CSI-RS configuration, the first network device sends the parameter information indication information to the second network device to indicate the current CSI.
  • the first network device sends the parameter information indication information to the second network device to indicate the current CSI.
  • Which group of parameter information corresponds to the resource where the RS is located.
  • bit values and the parameter information in Tables 1 to 5 are only exemplified, and other values and/or parameter information are also applicable, and the embodiment of the present invention is not limited herein.
  • the second network device determines, according to the parameter information, one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the parameter information is one or more of the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information
  • the second network device may directly acquire one or more of the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information from the first network device.
  • the first network device pre-sets different bit information and corresponding parameter information (one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information). Or transmitting to the second network device, where the second network device saves a mapping relationship between different bit information and different parameter information, and then the first network device sends the currently transmitted CSI-RS resource to the second network device.
  • the bit information corresponding to the parameter information of the resource is located, and the second network device queries the mapping relationship according to the bit information, so as to determine parameter information of the resource where the currently transmitted CSI-RS resource is located.
  • the first network device sends a bit bit 0010000 to the second network device, where the first bit and the second bit of the segment bit are used to indicate the subcarrier spacing, and the third bit is used to indicate the cyclic prefix length, the fourth bit The bit and the 5th bit are used to indicate the frame structure time length, and the 6th and 7th bits are used to indicate the number of symbols.
  • the second network device queries the foregoing Table 1 to Table 4 to determine that the parameter information corresponding to the current CSI-RS is: subcarrier spacing 15 kHz, cyclic prefix is normal CP, frame structure time length is 1 ms, and The number of symbols is 14.
  • the second network device may determine, according to the set of parameter information, a pilot pattern of the current CSI-RS resource or a time domain and/or a frequency domain resource occupied by the current CSI-RS, so as to perform corresponding CSI measurement.
  • the parameter information may further use one or more bits of information to collectively indicate one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information.
  • the first network device sends a bit 011 to the second network device.
  • the second network device queries the foregoing table 5 to determine that the parameter information corresponding to the current CSI-RS is : Subcarrier spacing is 15 kHz; CP length is extended CP; number of symbols is 12.
  • the second network device may determine, according to the set of parameter information, a pilot pattern of the current CSI-RS resource or a time domain and/or a frequency domain resource occupied by the current CSI-RS, so as to perform corresponding CSI measurement.
  • the RS configuration information carries numerology information (numerologyConfig) and/or frame structure information (frameStructureConfig).
  • the numerology information and/or the frame structure information may indicate parameter information corresponding to the current CSI-RS.
  • the numerologyConfig includes the identifier 0 to the identifier 31, and each identifier corresponds to a set of parameter information, and the second network device can determine the parameter information corresponding to the current CSI-RS according to the numerologyConfig.
  • the frameStructureConfig includes the identifier 0 to the identifier 31, and each identifier corresponds to a set of parameter information, and the second network device can determine the parameter information corresponding to the current CSI-RS according to the frameStructureConfig.
  • the CSI-RS configuration information carries parameter information indication information, such as subcarrier spacing information (SubcarrierSpacingConfig) and/or time length information (timeUintConfig) and/or CP length information (CPConfig) and/or symbol number information (symbolNumConfig). At least one of them.
  • the SubcarrierSpacingConfig may be 15 kHz, 30 kHz, 60 kHz, etc., and the second network device may determine the subcarrier spacing corresponding to the current CSI-RS according to the SubcarrierSpacingConfig.
  • the timeUintConfig can be 1 ms, 0.5 ms, 0.25 ms, etc., and the second network device can determine the frame structure time length corresponding to the current CSI-RS according to the SubcarrierSpacingConfig.
  • the timeUintConfig can be a subframe, a slot, a mini slot, etc., and the corresponding frame structure has a time length of 1 ms, 0.5 ms, 0.25 ms, etc., so that the second network device can determine the current CSI-RS according to the SubcarrierSpacingConfig. Frame structure time length.
  • the CPConfig may be an NZP, an EZP, or the like, and the second network device may determine the CP length information corresponding to the current CSI-RS according to the CPConfig.
  • symbolNumConfig can be 14, 12, 7, 6, 4, 3, 2, etc.
  • the second network device can determine the number of symbols corresponding to the current CSI-RS according to the symbolNumConfig.
  • the RRC signaling configuration can be seen in Table 6 below.
  • SubcarrierSpacingConfig subcarrier spacing information
  • timeUintConfig timeUintConfig
  • CPConfig CP length information
  • symbolNumConfig symbol number information
  • the parameter information may include frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable.
  • the second network device may determine, according to the frequency domain indication information, the subcarrier spacing information, the cyclic prefix length information, the frame structure time length information, and the symbol number information of the CSI-RS in the current frequency domain. One or more.
  • the parameter information may not include the frequency domain indication information. If the frequency domain indication information is not included in the parameter information, the frequency domain indication information needs to be separately configured when the parameter information is configured, that is, the corresponding frequency domain corresponding to the frequency domain is configured. Parameter information. For example, the first network device configures frequency Config List to indicate the division of the frequency band, and one or more parameter information may be configured for the divided frequency band. If there is no frequency domain indication information, the default frequency domain is a full bandwidth band or other predefined frequency bands, and is not limited herein.
  • the CSI-RS measurement configuration information is configured by the DCI, and the parameter information of the corresponding CSI-RS and the frequency domain indication information to which the parameter information is applied are indicated in the CSI-RS configuration information.
  • the frequency Config List includes one or more frequency Configs
  • the Numerology Config List includes one or more Numerology Configs (for example, the value may be any value in 0-31)
  • the Frame Structure Config List includes One or more Frame Structure Configs (for example, the value can be any value from 0-31).
  • the Subcarrier Spacing Config List contains one or more Subcarrier Spacing Configs (for example, the values can be 15 kHz, 30 kHz, 60 kHz, etc.).
  • the Time Uint Config List contains one or more Time Uint Configs (for example, the values can be 1ms, 0.5ms, 0.25ms, etc.).
  • the CPConfig List contains one or more CP Configs (for example, the values can be NZP, EZP, etc.).
  • the Symbol Num Config List contains one or more Symbol Num Configs (for example, the values can be 14, 12, 7, 6, 4, 3, 2, etc.).
  • each frequency Config corresponds to a Numerology Config value and/or a Frame Structure Config value.
  • each frequency Config corresponds to a Subcarrier Spacing Config, a Time Uint Config, a CP Config, and a Symbol Num Config value.
  • the CSI configuration ID is used to indicate a CSI configuration identifier, and includes one or more configuration information in a measurement set, an RS set, and a report set.
  • Frequency domain indication information (Frequency Config): used to indicate frequency domain information.
  • Numerology Config Used to indicate parameter configuration information.
  • Frame Structure Config Used to indicate frame structure configuration information.
  • Subcarrier Spacing Config Used to indicate subcarrier spacing configuration information.
  • Time Uint Config Used to indicate the frame structure time length configuration information.
  • CP Config Used to indicate CP length configuration information.
  • Symbol Num Config Used to indicate the number of symbols configuration information.
  • the frequency domain indication information (frequencyConfigList) is used to indicate the division of the frequency band, and one or more numerology information and/or frame structure information needs to be configured for each frequency band to be divided, or a configuration sub-profile is required for each frequency band.
  • One or more of carrier interval information, cyclic prefix length information, frame structure time length information, and symbol number information is used to indicate the division of the frequency band.
  • the first network device notifies the parameter information of the resource where the current CSI-RS reference signal is located in the second network device, so the second network device can determine the resource location where the CSI-RS is located, and then receive the CSI-RS for CSI measurement. .
  • the parameter information includes CSI reference signal identification information, where the CSI reference signal identification information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbols of the resource where the CSI reference signal is located.
  • the number information is one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to the current serving cell of the second network device,
  • the CSI reference signal identifier information is used to indicate that one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of the resource where the CSI reference signal is located is the And one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information acquired when the network device initially accesses.
  • the second network device may determine the parameter information used by itself by using the initial access. However, when the CSI-RS is configured, the second network device does not know which CSI-RS configurations of the serving cell and which are CSI-RS configurations of other cells.
  • the first network device may add CSI reference signal identification information for characterizing related information of the CSI-RS configuration. For example, whether to increase the identity of the CSI-RS configuration of the serving cell.
  • the second network device may determine whether the current CSI reference signal is a CSI-RS of the serving cell, and if yes, the second network device determines the CSI-RS of the serving cell as the parameter information of the resource where the current CSI-RS is located.
  • the second network device may determine whether the parameter information of the resource where the CSI-RS is located is initially determined by the second network device, or whether it is configured with a higher layer signaling (such as RRC signaling) or a physical layer. The information determined by the signaling configuration is consistent. If consistent, the second network device will receive the CSI-RS for CSI measurement according to the previously determined numerology information and/or frame structure information.
  • a higher layer signaling such as RRC signaling
  • the signaling configuration of the CSI reference signal identification information can be seen in Table 8 below.
  • the signal carries the field "IsservingCellConfig". If the field is configured as the Ture, the second network device can learn that the parameter information of the resource where the current CSI-RS is located is consistent with the parameter information corresponding to the current serving cell of the second network device.
  • the signaling configuration of the CSI reference signal identification information can be seen in Table 9 below.
  • the signal carries the field "IsInitialConfig". If the field is configured as the Ture, the second network device can learn that the parameter information of the resource where the current CSI-RS is located is consistent with the parameter information determined by the initial access of the second network device.
  • the first network device may be the same as the numerology information and/or the frame structure information determined by the initial access or the previously configured information, and if the same, the first network device may be omitted from the second network device.
  • the signaling overhead of the notification may be the same as the numerology information and/or the frame structure information determined by the initial access or the previously configured information, and if the same, the first network device may be omitted from the second network device.
  • the parameter information includes cell identifier information, where the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • the first network device notifies the second network device of the parameter information corresponding to the one or more cell identification information in advance, and after receiving the information, the second network device may determine the numerology signal of one cell or multiple cells and/or Frame structure information.
  • the first network device After the CSI-RS configuration is performed, the first network device only needs to send the cell identity information to the second network device, and the second network device can obtain the corresponding resource of the current CSI-RS according to the cell identifier.
  • the parameter information is used to determine a pilot pattern or a time/frequency domain resource of the current CSI-RS according to the parameter information, and further receive the CSI-RS to perform CSI measurement.
  • the first network device notifies the second network device of the numerology signal and/or the frame structure information of one cell or multiple cells by using high-level common signaling (for example, RRC signaling or MAC signaling).
  • high-level common signaling for example, RRC signaling or MAC signaling.
  • the first network device notifies the second network device cell identifier information Cell_ID and the parameter information of the carrier corresponding to the cell by using the public signaling of the upper layer, and the specific parameter information may be numerology information and/or frame structure information, It may be one or more of specific subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information.
  • the first network device adds the cell identity information and/or the carrier configuration identifier to the CSI-RS configuration information sent by the second network device, and the second network device determines the current according to the cell identity information and/or the carrier configuration identifier.
  • the cell identifier information is used to indicate the cell, and one or more numerology information and/or frame structure information needs to be configured for each of the divided cell identifiers, or the subcarrier spacing information and the cyclic prefix are configured for each cell.
  • the signaling configuration corresponding to the cell identification information can be seen in Table 10 below.
  • the first network device notifies the second network device of the numerology information and/or the frame structure information of one cell or multiple cells by using physical layer signaling.
  • the DCI indicates that the public DCI is scrambled by the cell public temporary identifier, for example, the information of the cell 1 is scrambled by the cell ID1, and the information of the cell 2 is scrambled by the cell ID2.
  • the DCI that is scrambled by the cell identity information is received by notifying the cell identifier information that the second network device needs to receive.
  • the second network device can learn numerology information and/or frame structure information of one cell or multiple cells.
  • the first network device adds the cell identity information to the CSI-RS configuration information sent by the second network device, and the second network device determines the parameter information of the frequency band in which the CSI-RS is located according to the cell identity information.
  • the first network device notifies the second network device of the numerology signal and/or the frame structure information corresponding to the one or more cells by using the high layer signaling, and then sends the cell identity information to notify the second network device by using the DCI signaling.
  • Nunumology information and/or frame structure information are examples of the numerology signal and/or the frame structure information corresponding to the one or more cells by using the high layer signaling.
  • the first network device may inform the second network device of the parameter information of one or more cells in advance, and then add the cell identity information when the CSI-RS is configured, and the second network device may determine according to the cell identity information.
  • the embodiment of the present invention further provides a first network device, which is used to implement the method described in the embodiment of FIG. 2.
  • the first first network device 100 can include a network interface 102, a processor 104, a transmitter 106, a receiver 108, a coupler 110, an antenna 112, and a memory 114.
  • the transmitter 106 is configured to transmit signals to other communication devices
  • the receiver 108 is configured to receive signals transmitted by other communication devices.
  • Coupler 110 is coupled to transmitter 106 and receiver 108 for splitting the transmit and receive signals.
  • the antenna 112 is coupled to the front end of the coupler 110 and can be used to transmit electromagnetic signals to an external space or to receive electromagnetic signals in an external environment.
  • Memory 114 is coupled to processor 104 for storing various software programs and/or sets of instructions.
  • memory 104 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the processor 104 is configured to generate parameter information of a resource where the CSI reference signal is located, where the parameter information is used by the second network device to determine subcarrier spacing information and cyclic prefix length information of a resource where the CSI reference signal is located.
  • the parameter information is used by the second network device to determine subcarrier spacing information and cyclic prefix length information of a resource where the CSI reference signal is located.
  • the transmitter 106 is configured to send the parameter information to a second network device.
  • the parameter information is used by the second network device to determine a pilot pattern of the CSI reference signal, or the parameter information is used by the second network device to determine that the CSI reference signal is occupied. Time domain and / or frequency domain resources.
  • the transmitter 106 is configured to send the parameter information to the second network device, including:
  • parameter information indication information to the second network device by using RRC signaling or MAC signaling or DCI signaling, where the parameter information indication information is used by the second network device to determine the multiple group parameter information.
  • Parameter information is used by the second network device to determine the multiple group parameter information.
  • the parameter information includes frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable.
  • the transmitter 106 is further configured to: send the frequency domain indication information corresponding to the parameter information to the second network device, where the frequency domain indication information is used to indicate a frequency applicable to the parameter information. area.
  • the parameter information includes CSI reference signal identifier information, where the CSI reference signal identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, and frame structure time length information of a resource where the CSI reference signal is located.
  • one or more of the number of symbol information is one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to a current serving cell of the second network device, or Or a plurality of, or the CSI reference signal identifier information is used to indicate one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located, One or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information acquired by the second network device when initially accessed.
  • the parameter information includes cell identifier information, where the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and number of symbols of the resource where the CSI reference signal is located.
  • the information is one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to the cell identification information.
  • the first first network device 100 may be the TRP in FIG. 1 and may be used to allocate reference signal resources to the user equipment.
  • the embodiment of the present invention further provides a second network device, which is used to implement the method described in the embodiment of FIG. 2.
  • the second network device 200 can include a network interface 202, a processor 204, a transmitter 206, a receiver 208, a coupler 210, an antenna 212, and a memory 214.
  • the transmitter 206 is configured to transmit signals to other communication devices (eg, base stations)
  • the receiver 208 is configured to receive signals transmitted by other communication devices (eg, base stations).
  • Coupler 210 is coupled to transmitter 206 and receiver 208 for splitting the transmit and receive signals.
  • the antenna 212 is coupled to the front end of the coupler 210 and can be used to transmit electromagnetic signals to an external space or to receive electromagnetic signals in an external environment.
  • Memory 214 is coupled to processor 204 for storing various software programs and/or sets of instructions.
  • memory 204 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the second network device 200 may further include some input and output devices, such as audio input and output circuits 218, sensors 216, display 220, etc., which may be used to interact with the user, receive user input, or output feedback to the user.
  • input and output devices such as audio input and output circuits 218, sensors 216, display 220, etc., which may be used to interact with the user, receive user input, or output feedback to the user.
  • the receiver 208 is configured to receive parameter information of a resource where a channel state information CSI reference signal is sent by the first network device, where the processor 204 is configured to determine, according to the parameter information, a resource where the CSI reference signal is located.
  • the processor 204 is further configured to determine a pilot pattern of the CSI reference signal according to the parameter information; or the processor 204 is further configured to determine the CSI reference according to the parameter information.
  • the receiver 208 is configured to receive the parameter information of the resource where the channel state information CSI reference signal is sent by the first network device, including:
  • a resource of a CSI reference signal that is sent by using a radio resource control RRC signaling or a media access control MAC signaling or a downlink control information DCI signaling;
  • parameter information indication information that is sent by using the RRC signaling or the MAC signaling or the DCI signaling, and determining, according to the parameter information indication information, the resource of the CSI reference signal from the multiple sets of parameter information.
  • Parameter information
  • the parameter information includes frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable, and the receiver 208 receives channel state information CSI sent by the first network device.
  • the processor 204 is further configured to:
  • the receiver 208 is further configured to receive frequency domain indication information corresponding to the parameter information that is sent by the first network device configuration.
  • the processor 204 is further configured to determine, according to the frequency domain indication information, a frequency domain to which the parameter information is applicable.
  • the parameter information includes CSI reference signal identification information
  • the processor 204 is configured to determine subcarrier spacing information, cyclic prefix length information, and frame structure of the resource where the CSI reference signal is located according to the parameter information.
  • One or more of the obtained subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information are determined as subcarrier spacing information, cyclic prefix length information, and frame of the resource where the CSI reference signal is located.
  • the parameter information includes cell identifier information
  • the processor 204 is configured to determine subcarrier spacing information, cyclic prefix length information, and frame structure duration of the resource where the CSI reference signal is located according to the parameter information.
  • information and symbol number information including:
  • an embodiment of the present invention further provides another first network device.
  • the first network device is used to implement the method described in the embodiment of FIG. 2.
  • the first network device 300 may include: a generating unit 301 and a sending unit 302. among them:
  • the generating unit 301 is configured to generate parameter information of a resource where the channel state information CSI reference signal is located, where the parameter information is used by the second network device to determine subcarrier spacing information and a cyclic prefix length of a resource where the CSI reference signal is located.
  • the sending unit 302 is configured to send the parameter information to the second network device.
  • the parameter information is used by the second network device to determine a pilot pattern of the CSI reference signal, or the parameter information is used by the second network device to determine that the CSI reference signal is occupied. Time domain and / or frequency domain resources.
  • the sending unit 302 is configured to send the parameter information to the second network device, including:
  • parameter information indication information to the second network device by using RRC signaling or MAC signaling or DCI signaling, where the parameter information indication information is used by the second network device to determine the multiple group parameter information.
  • Parameter information is used by the second network device to determine the multiple group parameter information.
  • the parameter information includes frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable.
  • the sending unit 302 is further configured to:
  • the parameter information includes CSI reference signal identifier information, where the CSI reference signal identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, and frame structure time length information of a resource where the CSI reference signal is located.
  • one or more of the number of symbol information is one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to a current serving cell of the second network device, or Or a plurality of, or the CSI reference signal identifier information is used to indicate one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located, One or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information acquired by the second network device when initially accessed.
  • the parameter information includes cell identifier information, where the cell identifier information is used to indicate subcarrier spacing information, cyclic prefix length information, frame structure time length information, and number of symbols of the resource where the CSI reference signal is located.
  • the information is one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information corresponding to the cell identification information.
  • each functional module in the first network device 300 may refer to the embodiment of FIG. 2 and the foregoing content, and details are not described herein again.
  • the first network device 300 may be the TRP in FIG. 2, and may be used to allocate reference signal resources to the user equipment.
  • the first network device 300 may also be another network entity, for example, a management node corresponding to multiple sets of transmission points, which is not limited herein.
  • an embodiment of the present invention further provides a second network device.
  • the second network device 400 may include a receiving unit 401 and a processing unit 402. among them:
  • the receiving unit 401 is configured to receive parameter information of a resource where a channel state information CSI reference signal sent by the first network device is located;
  • the processing unit 402 is configured to determine, according to the parameter information, one or more of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located.
  • processing unit 402 is further configured to:
  • the receiving unit 401 is configured to receive parameter information of a resource where a channel state information CSI reference signal is sent by the first network device, including:
  • a resource of a CSI reference signal that is sent by using a radio resource control RRC signaling or a media access control MAC signaling or a downlink control information DCI signaling;
  • parameter information indication information that is sent by using the RRC signaling or the MAC signaling or the DCI signaling, and determining, according to the parameter information indication information, the resource of the CSI reference signal from the multiple sets of parameter information.
  • Parameter information
  • the parameter information includes frequency domain indication information, where the frequency domain indication information is used to indicate a frequency domain to which the parameter information is applicable, and the receiving unit 401 receives channel state information CSI sent by the first network device.
  • the processing unit 402 is further configured to determine, according to the frequency domain indication information, a frequency domain to which the parameter information is applicable.
  • the receiving unit 401 is further configured to:
  • the processing unit 402 is further configured to determine, according to the frequency domain indication information, a frequency domain to which the parameter information is applicable.
  • the parameter information includes CSI reference signal identification information
  • the parameter information of the processing unit 402 determines subcarrier spacing information, cyclic prefix length information, and frame structure time length information of the resource where the CSI reference signal is located.
  • One or more of the obtained subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information are determined as subcarrier spacing information, cyclic prefix length information, and frame of the resource where the CSI reference signal is located.
  • the parameter information includes cell identifier information
  • the processing unit 402 determines, according to the parameter information, subcarrier spacing information, cyclic prefix length information, frame structure time length information of the resource where the CSI reference signal is located, and One or more of the number of symbols, including:
  • each functional module in the second network device 400 may refer to the embodiment of FIG. 2 and the foregoing content, and details are not described herein again.
  • the second network device 400 may be the user equipment in FIG. 2.
  • an embodiment of the present invention further provides a communication system, which may include a first network device and a second network device.
  • the first network device may be configured to generate and send, to the second network device, parameter information of a resource where the CSI reference signal is located, where the parameter information is used by the second network device to determine a subcarrier of the resource where the CSI reference signal is located.
  • the user equipment may be configured to receive the parameter information, and determine, according to the parameter information, one of subcarrier spacing information, cyclic prefix length information, frame structure time length information, and symbol number information of a resource where the CSI reference signal is located. Or a variety.
  • the first network device may be the first network device 100 described in the embodiment of FIG. 3, and the second network device may be the second network device 200 described in the embodiment of FIG. In some embodiments, the first network device may also be the first network device 300 described in the embodiment of FIG. 5, and the second network device may also be the second network device 400 described in the embodiment of FIG. 6. It should be noted that the first network device may also be the first network device described in the foregoing content, and the second network device may be the second network device described in the foregoing content.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道状态信息测量的配置方法及相关设备,该方法包括:第一网络设备生成信道状态信息CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;所述第一网络设备向第二网络设备发送所述参数信息。采用本申请,可以解决基站在不同的频段采用不同的帧结构时,UE可以获知不同CSI-RS所在频段的帧结构,进而实现UE进行邻区CSI测量。

Description

信道状态信息测量的配置方法及相关设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种信道状态信息测量的配置方法及相关设备。
背景技术
在长期演进(英文:Long Term Evolution,LTE)版本8(英文:Release8,简称:R8)/R9中,为了对信道的质量进行测量,设计了公共参考信号(英文:Common Reference Signal,CRS),用户设备(英文:User Equipment,UE)可以通过CRS进行信道的测量,从而决定UE进行小区重选和切换到目标小区。在LTE R10中为了进一步提高小区平均的频谱利用率和小区边缘频谱利用率以及各个UE的吞吐率,定义了信道状态信息(英文:Channel State Indication,CSI)参考信号(英文:CSI Reference Signal,CSI-RS),CSI-RS用于信道的测量,通过对CSI-RS的测量可以计算出UE需要向基站(英文:evolved Node B,eNB)反馈的预编码矩阵索引(英文:Precoding Matrix Indicator,PMI)、信道质量信息指示(英文:Channel Quality Indicator,CQI)以及秩指示(英文:Rank Indication,RI)。
在3GPP无线接入系统中,eNB可以具有多个天线用于到UE的传输,从而允许eNB使用多输入多输出(英文:Multi-input Multi-output,MIMO)技术。MIMO是指在发送器和接收器二者处使用多个天线来提高通信性能,MIMO技术利用空间维度的资源,可以在不增加系统带宽的前提下,使信号在空间获得阵列增益、复用和分集增益以及干扰抵消增益,成倍地提升通信系统的容量和频谱效率,因而自其面世以来,一直得到人们的青睐。在第五代(英文:5th-Generation,5G)移动通信技术中,能够显著提高系统容量的MIMO技术仍然将作为一项关键技术,来满足新的无线接入技术(英文:New Radio Access Technology,New RAT)对高速率的传输需求。现有技术协同多点传输(英文:Coordinated Multipoint Transmission,CoMP)被认为是一种解决小区间干扰问题并提升边缘用户吞吐量的有效方法。CoMP技术中多个相邻小区可以联合处理或协调边缘用户来避免干扰并提升边缘用户吞吐量。此外,在5G中,不同的频段可以采用不同的帧结构。
UE在进行CSI-RS测量时会根据基站配置的参考信号图样(英文:pattern)接收参考信号,根据参考信号得到信道矩阵,进而获取信道状态信息并且上报给基站,比如根据该信道矩阵计算最优的PMI,以及在该PMI下计算CQI,最后将选择的PMI和CQI上报给基站。现有技术中的CSI测量只有一种帧结构,当CoMP系统中的不同小区采用不同的帧结构时,导致UE无法进行相邻小区的CSI测量,导致性能下降。但是在5G中,UE所在的服务小区的帧结构可能会与邻小区或者协作小区或者其他小区的帧结构信息不同。因此即使UE知道自己服务小区的帧结构,但是针对邻区的CSI测量,UE将无法进行。
发明内容
本发明实施例提供了一种信道状态信息测量的配置方法及相关设备,可以解决基站在不同的频段采用不同的帧结构时,UE可以获知不同CSI-RS所在频段的帧结构,进而实现 UE进行邻区CSI测量。
第一方面,本发明实施例提供了一种信道状态信息测量的配置方法,该方法包括:第一网络设备生成CSI参考信号所在资源的参数信息,该参数信息用于该第二网络设备确定该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;该第一网络设备向第二网络设备发送该参数信息。
本发明实施例中,第一网络设备可以预先告知第二网络设备一个或多个小区的参数信息,然后在配置CSI-RS时添加小区标识信息,第二网络设备根据该小区标识信息即可确定当前CSI-RS所对应的参数信息,从而可以确定CSI-RS所在的资源位置,进而接收CSI-RS进行CSI测量。
在一种可能的设计中,该参数信息用于该第二网络设备确定该CSI参考信号的导频图样,或者该参数信息用于该第二网络设备确定该CSI参考信号所占的时域和/或频域资源。
在一种可能的设计中,该第一网络设备向该第二网络设备发送该参数信息,包括:该第一网络设备通过无线资源控制(英文:Radio Resource Control,RRC)信令或者媒体接入控制(英文:Medium Access Control,MAC)信令或者下行控制信息(英文:Downlink Control Information,DCI)信令向该第二网络设备发送该参数信息;或者,该第一网络设备通过RRC信令或者MAC信令或者DCI信令向该第二网络设备发送参数信息指示信息,该参数信息指示信息用于该第二网络设备从多组参数信息中确定该参数信息。
在一种可能的设计中,该参数信息包括频域指示信息,该频域指示信息用于指示该参数信息适用的频域。通过增加频域指示信息,可以指示不同频段对应的参数信息。
在一种可能的设计中,该方法还包括:该第一网络设备向该第二网络设备发送该参数信息对应的频域指示信息,该频域指示信息用于指示该参数信息适用的频域。通过增加频域指示信息,可以指示不同频段对应的参数信息。
在一种可能的设计中,该参数信息包括该子载波间隔信息、该循环前缀长度信息、该帧结构时间长度信息和该符号个数信息中的一种或多种。
在一种可能的设计中,该参数信息包括CSI参考信号标识信息,该CSI参考信号标识信息用于指示该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为该第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者该CSI参考信号标识信息用于指示该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为该第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
在一种可能的设计中,该参数信息包括小区标识信息,该小区标识信息用于指示该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为该小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。通过增加小区标识信息,可以指示不同小区对应的参数信息。
第二方面,本发明实施例提供了一种信道状态信息测量的配置方法,该方法包括:第 二网络设备接收第一网络设备发送的CSI参考信号所在资源的参数信息;该第二网络设备根据该参数信息确定该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
通过本发明实施例,第一网络设备可以预先告知第二网络设备一个或多个小区的参数信息,然后在配置CSI-RS时添加小区标识信息,第二网络设备根据该小区标识信息即可确定当前CSI-RS所对应的参数信息,从而可以确定CSI-RS所在的资源位置,进而接收CSI-RS进行CSI测量。
在一种可能的设计中,该方法还包括:该第二网络设备根据该参数信息确定该CSI参考信号的导频图样;或者,该第二网络设备根据该参数信息确定该CSI参考信号所占的时域和/或频域资源。
在一种可能的设计中,该第二网络设备接收第一网络设备发送的CSI参考信号所在资源的参数信息,包括:该第二网络设备接收该第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的CSI参考信号所在资源的;或者,该第二网络设备接收该第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的参数信息指示信息,并根据该参数信息指示信息从多组参数信息中确定该CSI参考信号所在资源的参数信息。
在一种可能的设计中,该参数信息包括频域指示信息,该频域指示信息用于指示该参数信息适用的频域;该第二网络设备接收第一网络设备发送的参数信息之后,还包括:该第二网络设备根据该频域指示信息确定该参数信息适用的频域。通过增加频域指示信息,可以指示不同频段对应的参数信息。
在一种可能的设计中,该方法还包括:该第二网络设备接收该第一网络设备配置发送的该参数信息对应的频域指示信息;该第二网络设备根据该频域指示信息确定该参数信息适用的频域。通过增加频域指示信息,可以指示不同频段对应的参数信息。
在一种可能的设计中,该参数信息包括该子载波间隔信息、该循环前缀长度信息、该帧结构时间长度信息和该符号个数信息中的一种或多种。
在一种可能的设计中,该参数信息包括CSI参考信号标识信息,该第二网络设备根据该参数信息确定该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:该第二网络设备根据该CSI参考信号标识信息将该服务小区的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;或者,该第二网络设备根据该CSI参考信号标识信息将初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
在一种可能的设计中,该参数信息包括小区标识信息,该第二网络设备根据该参数信息确定该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:该第二网络设备将该小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为该CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度 信息和符号个数信息中的一种或多种。通过增加小区标识信息,可以指示不同小区对应的参数信息。
第三方面,提供了一种网络设备,所述网络设备为第一网络设备,所述第一网络设备可包括:处理器、发射器和存储器,所述存储器用于存储程序和数据;所述处理器调用所述存储器中的程序用于执行第一方面的任意实现方式描述的信道状态信息测量的配置方法。
第四方面,提供了一种网络设备,所述网络设备为第二网络设备,所述第二网络设备可包括:处理器、接收器和存储器,所述存储器用于存储程序和数据;所述处理器调用所述存储器中的程序用于执行第二方面的任意实现方式描述的信道状态信息测量的配置方法。
第五方面,提供了一种网络设备,所述网络设备可包括用于执行第一方面描述的信道状态信息测量的配置方法的功能单元。
第六方面,提供了一种用户设备,所述用户设备可包括用于执行第二方面描述的信道状态信息测量的配置方法的功能单元。
第七方面,提供了一种通信系统,包括:第一网络设备和第二网络设备,其中:所述第一网络设备可以是第三方面或第五方面描述的第一网络设备,所述第二网络设备可以是第四方面或第六方面描述的第二网络设备。
第八方面,本发明实施例提供一种计算机存储介质,用于储存为上述第一网络设备所用的计算机软件指令,其包含用于执行上述第一方面为所述第一网络设备所设计的程序。
第九方面,本发明实施例提供一种计算机存储介质,用于储存为上述第二网络设备所用的计算机软件指令,其包含用于执行上述第二方面为所述第二网络设备所设计的程序。
本发明实施例的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是本发明实施例提供的一种应用场景的示意图;
图2是本发明实施例提供的一种信道状态信息测量上报的配置方法的流程示意图;
图3是本发明实施例提供的一种网络设备的结构示意图;
图4是本发明实施例提供的另一种网络设备的结构示意图;
图5是本发明实施例提供的另一种网络设备的结构示意图;
图6是本发明实施例提供的另一种网络设备的结构示意图。
具体实施方式
本发明实施方式部分使用的术语仅用于对本发明实施例的具体实施例进行解释,而非旨在限定本发明实施例。
图1是本发明实施例提供的一种应用场景的示意图。图1示出了高密集传输点(Transceiver Point,TRP)构成的超级小区(hypercell)。如图1所示,在高密集TRP传输场景中,一个用户设备可以与多个传输点通信,形成以用户设备为中心的通信系统(UE-cell-center-like)。通常,可以将位置上相邻的多个传输点划分成一个组,形成附图中虚线圆圈所示的一组传输点,可称为一个TRP组(TRP Set),或者一个协作传输集合。需要说明的,TRP组的划分方式不限于依据位置的划分方式,还可以是其他划分方式,例如 将相关性强的TRP划分为一组,本发明实施例不做限制。
具体实现中,传输点可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站、微型基站等网络设备,本发明实施例对此并不限定。
具体实现中,用户设备可支持CoMP传输方式,即用户设备可以与附图中的两个或多个传输点通信。用户设备可以称为接入终端、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。具体实现中,用户设备可以是移动的或固定的,用户设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的用户设备等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也可以作为上述用户设备。
当用户设备在高速移动时,其所处环境经常发生变化,在高密集TRP场景下,用户设备可以从一个TRP切换到另一个TRP,也可以从一个TRP组切换至另一个TRP组。用户设备对应的用于信道测量的参考信号资源也需要相应变化。
现有技术中,针对CSI测量只有一种固定的帧结构,当不同小区采用不同的帧结构时,导致用户设备无法进行CSI测量,导致性能下降。
本发明实施例中,第一网络设备包括但不限于:传输点,第二网络设备包括但不限于:用户设备。
本发明实施例用于解决NR下不同的频段会采用不同的参数(numerology)和/或帧结构。其中,不同的numerology和/或帧结构决定了不同的子载波间隔,CP长度,帧结构时间长度,符号个数等等。进而导致不同的CSI-RS导频图样(pattern)。在这种情况下如果告知用户设备当前CSI-RS所在频段的numerology和/或帧结构,用户设备就可以获知当前频段对应的CSI-RS导频图样,或者CSI-RS所在的时/频域资源,进而可以在相应资源上接收CSI-RS信号,进而进行CSI测量。
为了解决NR下不同的频段会采用不同的帧结构,本发明实施例提供了一种信道状态信息测量的配置方法。本发明实施例中第一网络设备告知第二网络设备当前CSI-RS所在资源的参数信息,以使第二网络设备获知当前CSI-RS所在资源的帧结构,从而实现第二网络设备进行CSI测量,满足了第二网络设备在不同频段下的CSI-RS测量。
下面结合附图详细说明本发明实施例提供的信道状态信息测量的配置方法。
请参见图2,是本发明实施例提供的一种信道状态信息测量上报的配置方法的流程示意图,该方法包括但不限于以下步骤。
S201:第一网络设备向第二网络设备发送CSI参考信号所在资源的参数信息。
本发明实施例中,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,参数信息具体为numerology信息和/或帧结构信息,可以表征出CSI-RS资源所在的导频图样或者CSI-RS所占的时域和/或频域资源。
具体的,所述参数信息用于所述第二网络设备确定所述CSI参考信号的导频图样,或者所述参数信息用于所述第二网络设备确定所述CSI参考信号所占的时域和/或频域资源。
作为一种可选的实现方式,当前的CSI参考信号所在资源的参数信息可以是第一网络设备直接通过信令的方式告知第二网络设备的。例如,所述第一网络设备通过无线资源控制(英文:Radio Resource Control,RRC)信令或者媒体接入控制(英文:Medium Access Control,MAC)信令为第二网络设备配置所述CSI参考信号所在资源的参数信息或者通过下行控制信息(英文:Downlink Control Information,DCI)信令向所述第二网络设备发送所述CSI参考信号所在资源的参数信息。这种情况下,所述参数信息为所述子载波间隔信息、所述循环前缀长度信息、所述帧结构时间长度信息和所述符号个数信息中的一种或多种。
作为另一种可选的实现方式,第一网络设备可以预先告知第二网络设备多组参数信息,之后,再通过信令的方式告知第二网络设备当前频段的CSI参考信号所在资源对应的参数信息。具体的,所述第一网络设备通过RRC信令或者MAC信令为第二网络设备配置参数信息指示信息或者通过DCI信令向所述第二网络设备发送参数信息指示信息,所述参数信息指示信息用于所述第二网络设备从多组参数信息中确定所述CSI参考信号所在资源的参数信息。这种情况下,第一网络设备可以预先定义不同比特信息与不同的参数信息的映射信息或者第一网络设备向第二网络设备发送不同比特信息与不同的参数信息的映射信息,之后,所述第一网络设备通过RRC信令或者MAC信令为第二网络设备配置当前频段对应的比特信息或者通过DCI信令向第二网络设备发送当前频段对应的比特信息,来告知第二网络设备当前的CSI-RS所对应的参数信息,这里,参数信息包括子载波间隔信息、所述循环前缀长度信息、所述帧结构时间长度信息和所述符号个数信息中的一种或多种。例如,第一网络设备将不同的参数用不同的比特信息表示,以下举例说明,不同的子载波间隔可以用2个bit表示或者其他个数的bit表示。例如,00代表子载波间隔为15kHz,01代表子载波间隔为30kHz,10代表子载波间隔为60kHz,依次类推,不同的bit值也可以代表其他不同的子载波间隔的情况。作为一种举例,可以参见表1所示。
表1
比特信息 子载波间隔
00 15kHz
01 30kHz
10 60kHz
11 Reserved
不同的循环前缀(英文:Cyclic Prefix,CP)长度信息可以用1个bit表示或者其他个数的bit表示。例如,0代表正常CP,1代表扩展CP。依次类推,不同的bit值也可以代表其他CP长度的情况。作为一种举例,可以参见表2所示。
表2
比特信息 CP长度
0 正常CP
1 扩展CP
不同的帧结构时间长度可以用2个bit表示或者其他个数的bit表示。例如,00代表子帧1ms,01代表时隙slot为0.5ms,10代表微时隙mini slot为0.25ms,依次类推,不同的bit值也可以代表其他不同的时间长度的情况。作为一种举例,可以参见表3所示。
表3
比特信息 帧结构时间长度
00 1ms
01 0.5ms
10 0.25ms
不同的符号个数可以用2个bit表示或者其他个数的bit表示。例如,00代表14个符号,01代表7个符号,10代表4个符号,11代表2个符号。依次类推,不同的bit值也可以代表其他不同的符号个数的情况。作为一种举例,可以参见表4所示。
表4
比特信息 符号个数
00 14
01 7
10 4
11 2
或者,还可以用几个比特信息来集中指示子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。例如,用3个bit或者其他个数的比特表示,举例如下:000代表子载波间隔为15kHz,CP长度为正常CP,符号个数14个;001代表子载波间隔30kHz,CP长度为正常CP,符号个数7个;010代表子载波间隔60kHz,CP长度为正常CP,符号个数4个。依次类推,不同的bit值也可以代表其他不同的子载波间隔的值和/或其他不同的CP长度的值和/或其他不同的符号个数的值的情况。例如,可参见表5所示。
表5
比特信息 参数信息
000 子载波间隔15kHz;CP长度为正常CP;符号个数14个
001 子载波间隔30kHz;CP长度为正常CP;符号个数7个
010 子载波间隔60kHz;CP长度为正常CP;符号个数4个
011 子载波间隔15kHz;CP长度为扩展CP;符号个数12个
100 子载波间隔30kHz;CP长度为扩展CP;符号个数6个
101 子载波间隔60kHz;CP长度为扩展CP;符号个数3个
110 子载波间隔30kHz;CP长度为正常CP;符号个数4个
111 子载波间隔60kHz;CP长度为正常CP;符号个数2个
此外,第一网络设备和第二网络设备之间也可以预定义多种不同的参数信息,然后在CSI-RS配置时,第一网络设备向第二网络设备发送参数信息指示信息来指示当前CSI-RS所在资源具体对应的是哪组参数信息。
其中表1至表5中的bit值以及参数信息,仅是举例说明,其他数值和/或者参数信息也适用,本发明实施例在此不做限定。
S202:所述第二网络设备根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
作为一种可选的实现方式,所述参数信息为所述子载波间隔信息、所述循环前缀长度信息、所述帧结构时间长度信息和所述符号个数信息中的一种或多种,则第二网络设备可以直接从所述第一网络设备获取到所述子载波间隔信息、所述循环前缀长度信息、所述帧结构时间长度信息和所述符号个数信息中的一种或多种。
作为另一种可选的实现方式,第一网络设备预先将不同的比特信息以及对应的参数信息(子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种)发送给第二网络设备,第二网络设备保存不同的比特信息与不同的参数信息之间的映射关系,之后,第一网络设备向第二网络设备发送当前传输的CSI-RS资源所在资源的参数信息对应的比特信息,第二网络设备根据该比特信息来查询映射关系,从而确定当前传输的CSI-RS资源所在资源的参数信息。例如,第一网络设备向第二网络设备发送一段比特位0010000,其中,该段比特位中第1位和第2位用于指示子载波间隔,第3位用于指示循环前缀长度,第4位和第5位用于指示帧结构时间长度,第6位和第7位用于指示符号个数。第二网络设备接收到该段比特位之后,查询上述表1至表4,确定出当前CSI-RS对应的参数信息分别为:子载波间隔15kHz、循环前缀为正常CP、帧结构时间长度1ms和符号个数14个。第二网络设备根据该组参数信息可以确定当前CSI-RS所在资源的导频图样或者当前CSI-RS所占的时域和/或频域资源,从而进行相应的CSI测量。
作为另一种可选的实现方式,所述参数信息还可以用几个比特信息来集中指示子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。例如,针对表5,第一网络设备向第二网络设备发送一段比特位011,第二网络设备接收到该段比特位之后,查询上述表5,确定出当前CSI-RS对应的参数信息分别为:子载波间隔15kHz;CP长度为扩展CP;符号个数12个。第二网络设备根据该组参数信息可以确定当前CSI-RS所在资源的导频图样或者当前CSI-RS所占的时域和/或频域资源,从而进行相应的CSI测量。
以高层信令中的RRC信令为例,以现有的36.331中的信令指示为例,(当然也适用于其他的协议信令的情况,在此不做限制)举例如下:在CSI-RS配置信息中携带numerology信息(numerologyConfig)和/或帧结构信息(frameStructureConfig)。该numerology信息和/或该帧结构信息可以指示当前CSI-RS对应的参数信息。例如,numerologyConfig包括标识0至标识31,每个标识对应一组参数信息,第二网络设备根据该numerologyConfig即可确定当前CSI-RS对应的参数信息。或者,frameStructureConfig包括标识0至标识31,每个标识对应一组参数信息,第二网络设备根据该frameStructureConfig即可确定当前CSI-RS对应的参数信息。或者,在CSI-RS配置信息中携带参数信息指示信息,比如子载波间隔信息(SubcarrierSpacingConfig)和/或时间长度信息(timeUintConfig)和/或CP长度信息(CPConfig)和/或符号个数信息(symbolNumConfig)中的至少一项。例如,SubcarrierSpacingConfig可以为15kHz、30kHz、60kHz等等,第二网络设备根据该 SubcarrierSpacingConfig即可确定当前CSI-RS对应的子载波间隔。同样的,timeUintConfig可以为1ms、0.5ms、0.25ms等等,第二网络设备根据该SubcarrierSpacingConfig即可确定当前CSI-RS对应的帧结构时间长度。或者,timeUintConfig可以为subframe、slot、mini slot等等,对应的帧结构时间长度分别为1ms、0.5ms、0.25ms等等,因此,第二网络设备根据该SubcarrierSpacingConfig即可确定当前CSI-RS对应的帧结构时间长度。同样的,CPConfig可以为NZP、EZP等等,第二网络设备根据该CPConfig即可确定当前CSI-RS对应的CP长度信息。同样的,symbolNumConfig可以为14、12、7、6、4、3、2等等,第二网络设备根据该symbolNumConfig即可确定当前CSI-RS对应的符号个数。作为一种举例,RRC信令配置可参见如下表6所示。
表6
Figure PCTCN2017118538-appb-000001
需要说明的是,上述子载波间隔信息(SubcarrierSpacingConfig)和/或时间长度信息(timeUintConfig)和/或CP长度信息(CPConfig)和符号个数信息(symbolNumConfig)的取值和命名只是作为一种举例,在实际应用中,这几个参数的命名和取值不作具体限定。
作为一种可选的实现方式,参数信息可以包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。第二网络设备接收到该参数信息后,即可以根据该频域指示信息确定当前频域上的CSI-RS的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
作为另一种可选的实现方式,参数信息可以不包括频域指示信息,如果参数信息中没有频域指示信息,则配置参数信息时需要单独配置频域指示信息,即配置不同频域对应的参数信息。例如,第一网络设备配置频域指示信息(frequency Config List)用于指示频段的划分情况,而且针对划分的频段可以配置一个或者多个参数信息。如果没有频域指示信息,则默认频域为全带宽频段或者其他预定义的频段,具体的,在此不做限定。
具体如下所示:以物理层信令中的下行控制信息DCI为例,以现有的36.212中的信令指示为例,(当然也适用于其他的协议信令的情况,在此不做限制),举例如下:通过DCI配置CSI-RS测量配置信息,在该CSI-RS配置信息中指示对应CSI-RS的参数信息以及该参数信息所适用的频域指示信息。具体如下:frequency Config List中包含了一个或多个frequency Config,Numerology Config List中包含了一个或多个Numerology Config(例如取值可以为0-31中的任意值),Frame Structure Config List中包含了一个或多个Frame Structure Config(例如取值可以为0-31中的任意值)。Subcarrier Spacing Config List中包含了一个或多个Subcarrier Spacing Config(例如取值可以为15kHz、30kHz、60kHz等)。Time Uint Config List中包含了一个或多个Time Uint Config(例如取值可以为1ms、0.5ms、0.25ms等)。CPConfig List中包含了一个或多个CP Config(例如取值可以为NZP、EZP等)。Symbol Num Config List中包含了一个或多个Symbol Num Config(例如取值可以为14、12、7、6、4、3、2等)。
这里,每个frequency Config对应一个Numerology Config取值和/或一个Frame Structure Config取值。或者,每个frequency Config对应一个Subcarrier Spacing Config、一个Time Uint Config、一个CP Config和一个Symbol Num Config取值。其中,CSI configuration ID:用于指示CSI配置标识,包括测量集,RS集,上报集中的一个或者多个配置信息。频域指示信息(Frequency Config):用于指示频域信息。Numerology Config:用于指示参数配置信息。帧结构配置信息(Frame Structure Config):用于指示帧结构配置信息。Subcarrier Spacing Config:用于指示子载波间隔配置信息。Time Uint Config:用于指示帧结构时间长度配置信息。CP Config:用于指示CP长度配置信息。Symbol Num Config:用于指示符号个数配置信息。通过配置CSI测量配置信息对应的频域指示信息以及numerology信息和/或帧结构信息,第二网络设备可以确定某一频域范围内CSI-RS所在的资源位置,进而接收CSI-RS进行CSI测量。作为一种举例,具体的信令配置可以参见如下表7所示。
表7
Figure PCTCN2017118538-appb-000002
其中,频域指示信息(frequencyConfigList)用于指示频段的划分情况,而且针对划分的每一个频段都需要配置一个或者多个numerology信息和/或帧结构信息,或者说针对每一个频段都需要配置子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的是,频域指示信息的划分方式、命名方式和取值范围本发明实施例不作具体限定。
通过本发明实施例,第一网络设备告知第二网络设备当前CSI-RS参考信号所在资源的参数信息,因此第二网络设备可以确定CSI-RS所在的资源位置,进而接收CSI-RS进行CSI测量。
进一步的,所述参数信息包括CSI参考信号标识信息,所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。具体的,针对于服务小区的CSI-RS,第二网络设备可以通过初始接入确定自己所用的参数信息。但是配置CSI-RS的时候,第二网络设备不知道哪些是服务小区的CSI-RS配置,哪些是其他小区的CSI-RS配置。第一网络设备在发送CSI-RS配置信息时,可以增加CSI参考信号标识信息,用于表征CSI-RS配置的相关信息。比如增加是否为服务小区的CSI-RS配置的标识。通过该标识,第二网络设备可以确定当前的CSI参考信号是否为服务小区的CSI-RS,若是,则第二网络设备将服务小区的CSI-RS确定为当前CSI-RS所在资源的参数信息。或者,增加是否为接入的参数信息的配置的标识。通过该指示信息,第二网络设备可以确定该CSI-RS所在资源的参数信息是否与第二网络设备初始接入确定的信息或者是否与之前通过高层信令(比如RRC信令)配置或者物理层信令配置确定的信息一致。如果一致的话,第二网络设备将按照之前确定的numerology信息和/或帧结构信息接收CSI-RS进行CSI测量。
作为一种举例,CSI参考信号标识信息的信令配置可参见如下表8所示。在信令中携带了字段“IsservingCellConfig”,若该字段被配置为Ture,则第二网络设备可以获知当前CSI-RS所在资源的参数信息与第二网络设备当前服务小区对应的参数信息一致。
表8
Figure PCTCN2017118538-appb-000003
或者,作为一种举例,CSI参考信号标识信息的信令配置可参见如下表9所示。在信令中携带了字段“IsInitialConfig”,若该字段被配置为Ture,则第二网络设备可以获知当前CSI-RS所在资源的参数信息与第二网络设备初始接入确定的参数信息一致。
表9
Figure PCTCN2017118538-appb-000004
通过实施本发明实施例,第一网络设备通过指示是否与初始接入或者之前配置的信息确定的numerology信息和/或帧结构信息相同,如果相同则可以省掉第一网络设备向第二网络设备再通知的信令开销。
进一步的,所述参数信息包括小区标识信息,所述小区标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。具体的,第一网络设备预先通知第二网络设备一个或多个小区标识信息各自对应的参数信息,第二网络设备接收到该信息后,可以确定一个小区或者多个小区的numerology信号和/或帧结构信息。之后,在进行CSI-RS配置时,第一网络设备只需要向第二网络设备发送小区标识信息即可,第二网络设备根据该小区标识即可即可获知当前的CSI-RS所在资源对应的参数信息,根据该参数信息确定当前CSI-RS的导频图样或者时/频域资源,进而接收该CSI-RS,进行CSI测量。
例如,第一网络设备通过高层的公共信令(例如RRC信令或者MAC信令),通知第二网络设备一个小区或者多个小区的numerology信号和/或帧结构信息。具体举例如下:第一网络设备通过高层的公共信令通知第二网络设备小区标识信息Cell_ID,以及该小区对应的载波的参数信息,具体的参数信息可以是numerology信息和/或帧结构信息,也可以是具体的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。之后,第一网络设备在向第二网络设备发送的CSI-RS配置信息中增加小区标识信息和/或载波配置标识,第二网络设备根据该小区标识信息和/或载波配置标识即可确定当前CSI-RS所在频段的参数信息。
其中,小区标识信息用于指示小区,而且针对划分的每一个小区标识都需要配置一个或者多个numerology信息和/或帧结构信息,或者说针对每一个小区都需要配置子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的是,小区标识信息的命名方式和取值范围本发明实施例不作具体限定。
作为一种举例,小区标识信息对应的信令配置可参见如下表10所示。
表10
Figure PCTCN2017118538-appb-000005
或者,第一网络设备通过物理层信令通知第二网络设备一个小区或者多个小区的numerology信息和/或帧结构信息。具体的比如通过DCI指示:公共DCI通过小区公共临时标识加扰,比如小区1的信息用小区ID1加扰,小区2的信息用小区ID2加扰。通过告知第二网络设备需要接收的小区标识信息,进而接收该小区标识信息加扰的DCI。通过该信息第二网络设备可以获知一个小区或者多个小区的numerology信息和/或帧结构信息。第一网络设备在向第二网络设备发送的CSI-RS配置信息中增加小区标识信息,第二网络设备根据该小区标识信息确定该CSI-RS所在频段的参数信息。
或者,第一网络设备通过高层信令向第二网络设备通知一个或多个小区各自对应的numerology信号和/或帧结构信息,然后再通过DCI信令携带小区标识信息告知第二网络设备当前使用的numerology信息和/或帧结构信息。
通过本发明实施例,第一网络设备可以预先告知第二网络设备一个或多个小区的参数信息,然后在配置CSI-RS时添加小区标识信息,第二网络设备根据该小区标识信息即可确定当前CSI-RS所对应的参数信息,从而可以确定CSI-RS所在的资源位置,进而接收CSI-RS进行CSI测量。
基于同一发明构思,本发明实施例还提供了一种第一网络设备,用于实现图2实施例所描述的方法。如图3所示,第一第一网络设备100可包括:网络接口102、处理器104、发射器106、接收器108、耦合器110、天线112以及存储器114。其中:发射器106用于 向其他通信设备发送信号,接收器108用于接收其他通信设备发送的信号。耦合器110连接发射器106和接收器108,可用于对发送信号和接收信号进行分路。天线112连接在耦合器110前端,可用于向外部空间发射电磁信号或接收外部环境中的电磁信号。存储器114与处理器104耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器104可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。
具体的,所述处理器104用于生成CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;
所述发射器106用于向第二网络设备发送所述参数信息。
本发明实施例中,所述参数信息用于所述第二网络设备确定所述CSI参考信号的导频图样,或者所述参数信息用于所述第二网络设备确定所述CSI参考信号所占的时域和/或频域资源。
本发明实施例中,所述发射器106用于向第二网络设备发送所述参数信息,包括:
通过RRC信令或者MAC信令或者DCI信令向所述第二网络设备发送所述参数信息;
或者,通过RRC信令或者MAC信令或者DCI信令向所述第二网络设备发送参数信息指示信息,所述参数信息指示信息用于所述第二网络设备从多组参数信息中确定所述参数信息。
本发明实施例中,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
本发明实施例中,所述发射器106还用于:向所述第二网络设备发送所述参数信息对应的频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
本发明实施例中,所述参数信息包括CSI参考信号标识信息,所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述参数信息包括小区标识信息,所述小区标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的,图3实施例中未提及的内容可参考图2实施例以及前述内容,这里不再赘述。
实际应用中,第一第一网络设备100可以是图1中的TRP,可用于为用户设备分配参考信号资源。
基于同一发明构思,本发明实施例还提供了一种第二网络设备,用于实现图2实施例所描述的方法。如图4所示,第二网络设备200可包括:网络接口202、处理器204、发射器206、接收器208、耦合器210、天线212以及存储器214。其中:发射器206用于向其他通信设备(例如基站)发送信号,接收器208用于接收其他通信设备(例如基站)发送的信号。耦合器210连接发射器206和接收器208,可用于对发送信号和接收信号进行分路。天线212连接在耦合器210前端,可用于向外部空间发射电磁信号或接收外部环境中的电磁信号。存储器214与处理器204耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器204可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。
可选的,第二网络设备200还可包括一些输入输出设备,例如音频输入输出电路218、传感器216、显示器220等等,可用于和用户进行交互,接收用户输入或者向用户输出反馈。
具体的,所述接收器208用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息;所述处理器204用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述处理器204还用于根据所述参数信息确定所述CSI参考信号的导频图样;或者,所述处理器204还用于根据所述参数信息确定所述CSI参考信号所占的时域和/或频域资源。
本发明实施例中,所述接收器208用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息,包括:
接收所述第一网络设备通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令发送的CSI参考信号所在资源的;
或者,接收所述第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的参数信息指示信息,并根据所述参数信息指示信息从多组参数信息中确定所述CSI参考信号所在资源的参数信息。
本发明实施例中,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域;所述接收器208接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息之后,所述处理器204还用于:
根据所述频域指示信息确定所述参数信息适用的频域。
本发明实施例中,所述接收器208还用于接收所述第一网络设备配置发送的所述参数信息对应的频域指示信息;
所述处理器204还用于根据所述频域指示信息确定所述参数信息适用的频域。
本发明实施例中,所述参数信息包括CSI参考信号标识信息,所述处理器204用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
根据所述CSI参考信号标识信息将所述服务小区的子载波间隔信息、循环前缀长度信 息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;或者,所述第二网络设备根据所述CSI参考信号标识信息将初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述参数信息包括小区标识信息,所述处理器204用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
将所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的,图4实施例中未提及的内容可参考图2实施例以及前述内容,这里不再赘述。
基于同一发明构思,本发明实施例还提供了另一种第一网络设备。所述第一网络设备用于实现图2实施例描述的方法。如图5所示,第一网络设备300可包括:生成单元301和发送单元302。其中:
所述生成单元301,用于生成信道状态信息CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;
所述发送单元302,用于向第二网络设备发送所述参数信息。
本发明实施例中,所述参数信息用于所述第二网络设备确定所述CSI参考信号的导频图样,或者所述参数信息用于所述第二网络设备确定所述CSI参考信号所占的时域和/或频域资源。
本发明实施例中,所述发送单元302,用于向第二网络设备发送所述参数信息,包括:
通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令向所述第二网络设备发送所述参数信息;
或者,通过RRC信令或者MAC信令或者DCI信令向所述第二网络设备发送参数信息指示信息,所述参数信息指示信息用于所述第二网络设备从多组参数信息中确定所述参数信息。
本发明实施例中,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
本发明实施例中,所述发送单元302还用于:
向所述第二网络设备发送所述参数信息对应的频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
本发明实施例中,所述参数信息包括CSI参考信号标识信息,所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构 时间长度信息和符号个数信息中的一种或多种为所述第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述参数信息包括小区标识信息,所述小区标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的,第一网络设备300中各个功能模块的具体实现可参考图2实施例以及前述内容,这里不再赘述。
实际应用中,第一网络设备300可以是图2中的TRP,可用于为用户设备分配参考信号资源。实际应用中,第一网络设备300还可以是其他网络实体,例如多组传输点对应的管理节点,这里不做限制。
基于同一发明构思,本发明实施例还提供了一种第二网络设备。如图6所示,第二网络设备400可包括:接收单元401和处理单元402。其中:
所述接收单元401,可用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息;
处理单元402,用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述处理单元402还用于:
根据所述参数信息确定所述CSI参考信号的导频图样;或者,根据所述参数信息确定所述CSI参考信号所占的时域和/或频域资源。
本发明实施例中,所述接收单元401,可用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息,包括:
接收所述第一网络设备通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令发送的CSI参考信号所在资源的;
或者,接收所述第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的参数信息指示信息,并根据所述参数信息指示信息从多组参数信息中确定所述CSI参考信号所在资源的参数信息。
本发明实施例中,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域;所述接收单元401接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息之后,所述处理单元402还用于根据所述频域指示信息确定所述参数信息适用的频域。
本发明实施例中,所述接收单元401还用于:
接收所述第一网络设备配置发送的所述参数信息对应的频域指示信息;
所述处理单元402还用于根据所述频域指示信息确定所述参数信息适用的频域。
本发明实施例中,所述参数信息包括CSI参考信号标识信息,所述处理单元402所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
根据所述CSI参考信号标识信息将所述服务小区的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;或者,所述第二网络设备根据所述CSI参考信号标识信息将初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
本发明实施例中,所述参数信息包括小区标识信息,所述处理单元402根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
将所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
需要说明的,第二网络设备400中各个功能模块的具体实现可参考图2实施例以及前述内容,这里不再赘述。
实际应用中,第二网络设备400可以是图2中的用户设备。
另外,本发明实施例还提供了一种通信系统,该通信系统可包括第一网络设备和第二网络设备。其中,所述第一网络设备可用于生成并向第二网络设备发送CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。所述用户设备可用于接收所述参数信息,根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
在一些实施例中,所述第一网络设备可以是图3实施例描述的第一网络设备100,所述第二网络设备可以是图4实施例描述的第二网络设备200。在一些实施例中,所述第一网络设备也可以是图5实施例描述的第一网络设备300,所述第二网络设备也可以是图6实施例描述的第二网络设备400。需要说明的,所述第一网络设备还可以是上述全部内容描述的所述第一网络设备,所述第二网络设备可以是上述全部内容描述的所述第二网络设备。
本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信道状态信息测量的配置方法,其特征在于,包括:
    第一网络设备生成信道状态信息CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;
    所述第一网络设备向第二网络设备发送所述参数信息。
  2. 根据权利要求1所述的方法,其特征在于,所述参数信息用于所述第二网络设备确定所述CSI参考信号的导频图样,或者所述参数信息用于所述第二网络设备确定所述CSI参考信号所占的时域和/或频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备向所述第二网络设备发送所述参数信息,包括:
    所述第一网络设备通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令向所述第二网络设备发送所述参数信息;
    或者,所述第一网络设备通过RRC信令或者MAC信令或者DCI信令向所述第二网络设备发送参数信息指示信息,所述参数信息指示信息用于所述第二网络设备从多组参数信息中确定所述参数信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送所述参数信息对应的频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述参数信息包括CSI参考信号标识信息,所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述参数信息包括小区标识信息,所述小区标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前 缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  8. 一种信道状态信息测量的配置方法,其特征在于,包括:
    第二网络设备接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息;
    所述第二网络设备根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备根据所述参数信息确定所述CSI参考信号的导频图样;或者,所述第二网络设备根据所述参数信息确定所述CSI参考信号所占的时域和/或频域资源。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二网络设备接收第一网络设备发送的CSI参考信号所在资源的参数信息,包括:
    所述第二网络设备接收所述第一网络设备通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令发送的CSI参考信号所在资源的;
    或者,所述第二网络设备接收所述第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的参数信息指示信息,并根据所述参数信息指示信息从多组参数信息中确定所述CSI参考信号所在资源的参数信息。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域;所述第二网络设备接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息之后,还包括:
    所述第二网络设备根据所述频域指示信息确定所述参数信息适用的频域。
  12. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收所述第一网络设备配置发送的所述参数信息对应的频域指示信息;
    所述第二网络设备根据所述频域指示信息确定所述参数信息适用的频域。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述参数信息包括CSI参考信号标识信息,所述第二网络设备根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
    所述第二网络设备根据所述CSI参考信号标识信息将所述服务小区的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI 参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;或者,所述第二网络设备根据所述CSI参考信号标识信息将初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  14. 根据权利要求8至12任一项所述的方法,其特征在于,所述参数信息包括小区标识信息,所述第二网络设备根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
    所述第二网络设备将所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  15. 一种网络设备,其特征在于,所述网络设备为第一网络设备,所述第一网络设备包括:处理器、发射器,其中:
    所述处理器用于生成信道状态信息CSI参考信号所在资源的参数信息,所述参数信息用于所述第二网络设备确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;
    所述发射器用于向第二网络设备发送所述参数信息。
  16. 根据权利要求15所述的网络设备,其特征在于,所述参数信息用于所述第二网络设备确定所述CSI参考信号的导频图样,或者所述参数信息用于所述第二网络设备确定所述CSI参考信号所占的时域和/或频域资源。
  17. 根据权利要求15或16所述的网络设备,其特征在于,所述发射器用于向第二网络设备发送所述参数信息,包括:
    所述发射器用于通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令向所述第二网络设备发送所述参数信息;
    或者,所述发射器用于通过RRC信令或者MAC信令或者DCI信令向所述第二网络设备发送参数信息指示信息,所述参数信息指示信息用于所述第二网络设备从多组参数信息中确定所述参数信息。
  18. 根据权利要求15至17任一项所述的网络设备,其特征在于,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域。
  19. 根据权利要求15至17任一项所述的网络设备,其特征在于,所述发射器还用于:向所述第二网络设备发送所述参数信息对应的频域指示信息,所述频域指示信息用于指示 所述参数信息适用的频域。
  20. 根据权利要求15至19任一项所述的网络设备,其特征在于,所述参数信息包括CSI参考信号标识信息,所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备当前的服务小区对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,或者所述CSI参考信号标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述第二网络设备初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  21. 根据权利要求15至19任一项所述的网络设备,其特征在于,所述参数信息包括小区标识信息,所述小区标识信息用于指示所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种为所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  22. 一种网络设备,其特征在于,所述网络设备为第二网络设备,所述第二网络设备包括:处理器、接收器,其中:
    所述接收器用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息;
    所述处理器用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  23. 根据权利要求22所述的网络设备,其特征在于,所述处理器还用于根据所述参数信息确定所述CSI参考信号的导频图样;或者,所述处理器还用于根据所述参数信息确定所述CSI参考信号所占的时域和/或频域资源。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述接收器用于接收第一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息,包括:
    所述接收器用于接收所述第一网络设备通过无线资源控制RRC信令或者媒体接入控制MAC信令或者下行控制信息DCI信令发送的CSI参考信号所在资源的;
    或者,所述接收器用于接收所述第一网络设备通过RRC信令或者MAC信令或者DCI信令发送的参数信息指示信息,并根据所述参数信息指示信息从多组参数信息中确定所述CSI参考信号所在资源的参数信息。
  25. 根据权利要求22至24任一项所述的网络设备,其特征在于,所述参数信息包括频域指示信息,所述频域指示信息用于指示所述参数信息适用的频域;所述接收器接收第 一网络设备发送的信道状态信息CSI参考信号所在资源的参数信息之后,所述处理器还用于:
    根据所述频域指示信息确定所述参数信息适用的频域。
  26. 根据权利要求22至24任一项所述的网络设备,其特征在于,
    所述接收器还用于接收所述第一网络设备配置发送的所述参数信息对应的频域指示信息;
    所述处理器还用于根据所述频域指示信息确定所述参数信息适用的频域。
  27. 根据权利要求22至26任一项所述的网络设备,其特征在于,所述参数信息包括CSI参考信号标识信息,所述处理器用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
    根据所述CSI参考信号标识信息将所述服务小区的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种;或者,所述第二网络设备根据所述CSI参考信号标识信息将初始接入时获取的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
  28. 根据权利要求22至26任一项所述的网络设备,其特征在于,所述参数信息包括小区标识信息,所述处理器用于根据所述参数信息确定所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种,包括:
    将所述小区标识信息对应的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种确定为所述CSI参考信号所在资源的子载波间隔信息、循环前缀长度信息、帧结构时间长度信息和符号个数信息中的一种或多种。
PCT/CN2017/118538 2017-01-06 2017-12-26 信道状态信息测量的配置方法及相关设备 WO2018126944A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17890314.2A EP3550734A4 (en) 2017-01-06 2017-12-26 CONFIGURATION METHOD FOR MEASURING CHANNEL STATE INFORMATION, AND ASSOCIATED DEVICE
BR112019013860A BR112019013860A2 (pt) 2017-01-06 2017-12-26 método de configuração para medição de informações de estado de canal e dispositivo relativo
US16/503,246 US11005592B2 (en) 2017-01-06 2019-07-03 Configuration method for channel state information measurement and related device
US17/235,512 US11671197B2 (en) 2017-01-06 2021-04-20 Configuration method for channel state information measurement and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011028.9 2017-01-06
CN201710011028.9A CN108616300B (zh) 2017-01-06 2017-01-06 一种信道状态信息测量的配置方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/503,246 Continuation US11005592B2 (en) 2017-01-06 2019-07-03 Configuration method for channel state information measurement and related device

Publications (1)

Publication Number Publication Date
WO2018126944A1 true WO2018126944A1 (zh) 2018-07-12

Family

ID=62789115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118538 WO2018126944A1 (zh) 2017-01-06 2017-12-26 信道状态信息测量的配置方法及相关设备

Country Status (5)

Country Link
US (2) US11005592B2 (zh)
EP (1) EP3550734A4 (zh)
CN (1) CN108616300B (zh)
BR (1) BR112019013860A2 (zh)
WO (1) WO2018126944A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284316B2 (en) * 2018-02-07 2022-03-22 Qualcomm Incorporated Mobile device centric clustering in wireless systems
US11057091B2 (en) * 2018-02-16 2021-07-06 Qualcomm Incorporated Reference signals for tracking
CN111757538B (zh) * 2019-03-29 2022-05-13 华为技术有限公司 一种确定随机接入资源的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101422A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 信息的发送、处理方法及装置
CN105356978A (zh) * 2014-08-21 2016-02-24 电信科学技术研究院 一种传输csi-rs的方法和设备
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
CN105790905A (zh) * 2014-12-16 2016-07-20 北京信威通信技术股份有限公司 下行信道状态信息参考信号的发送方法、装置及系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885739B2 (en) * 2009-03-24 2014-11-11 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
AU2010298845B8 (en) * 2009-09-27 2014-02-27 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
CN102792725B (zh) * 2010-06-18 2015-04-22 上海贝尔股份有限公司 用于下行信道质量监测的方法以及装置
US9485075B2 (en) * 2011-04-29 2016-11-01 Futurewei Technologies Inc. Method and system for transmission and reception of signals and related method of signaling
CN102780532B (zh) * 2011-05-09 2016-06-08 华为技术有限公司 信道测量的方法及装置
CN103312434A (zh) * 2012-03-09 2013-09-18 中兴通讯股份有限公司 信道状态信息的处理方法、基站和终端
US9131434B2 (en) * 2012-10-19 2015-09-08 Blackberry Limited Using a cell as a pathloss or timing reference
JP5809660B2 (ja) * 2013-01-09 2015-11-11 株式会社Nttドコモ 無線通信システムおよび通信制御方法
WO2015046949A1 (ko) * 2013-09-26 2015-04-02 엘지전자 주식회사 무선 통신 시스템에서 피드백 정보 보고 방법 및 장치
CN110351869B (zh) 2013-12-31 2023-06-06 华为技术有限公司 用于测量信道状态信息的方法及装置
CN106465173B (zh) * 2014-05-27 2020-01-07 Lg电子株式会社 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
CN106209277B (zh) * 2014-11-07 2021-02-09 北京三星通信技术研究有限公司 一种信道状态信息测量的方法和用户设备
US9743392B2 (en) * 2015-01-30 2017-08-22 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
US10164747B2 (en) * 2015-05-29 2018-12-25 Samsung Electronics Co., Ltd. Method and apparatus for operating MIMO measurement reference signals and feedback
CN106487474B (zh) 2015-08-24 2019-08-23 电信科学技术研究院 一种下行数据解调方法及装置
US9991942B2 (en) * 2015-12-30 2018-06-05 Samsung Electronics Co., Ltd. Method and apparatus for channel state information reference signal (CSI-RS)
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
KR102271448B1 (ko) * 2016-07-01 2021-07-01 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
JP2019145866A (ja) * 2016-07-05 2019-08-29 シャープ株式会社 基地局装置、端末装置および通信方法
US10484064B2 (en) * 2016-09-01 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink CSI acquisition
US10362610B2 (en) * 2016-09-19 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for mapping initial access signals in wireless systems
CN107888268B (zh) * 2016-09-30 2023-03-31 华为技术有限公司 Csi测量方法及装置
CN106376050B (zh) 2016-09-30 2022-03-18 宇龙计算机通信科技(深圳)有限公司 子载波间隔的设置/确定方法、装置、基站和终端
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101422A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 信息的发送、处理方法及装置
CN105356978A (zh) * 2014-08-21 2016-02-24 电信科学技术研究院 一种传输csi-rs的方法和设备
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
CN105790905A (zh) * 2014-12-16 2016-07-20 北京信威通信技术股份有限公司 下行信道状态信息参考信号的发送方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550734A4 *

Also Published As

Publication number Publication date
US20210242962A1 (en) 2021-08-05
EP3550734A4 (en) 2019-12-18
CN108616300B (zh) 2024-03-08
US11005592B2 (en) 2021-05-11
EP3550734A1 (en) 2019-10-09
US20190327021A1 (en) 2019-10-24
US11671197B2 (en) 2023-06-06
BR112019013860A2 (pt) 2020-04-14
CN108616300A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
CN111201733B (zh) 参考信号的指示方法、用户设备及接入点
CA3019444C (en) Data transmission method, network-side device, and terminal device
WO2018082404A1 (zh) 资源指示方法、相关设备及系统
KR20200003161A (ko) 참조 신호 시퀀스를 결정하는 방법 및 장치, 컴퓨터 프로그램 제품 그리고 컴퓨터 판독 가능 저장 매체
CN114270757B (zh) 指示控制信息的方法和装置
US11671197B2 (en) Configuration method for channel state information measurement and related device
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
EP3627881A1 (en) Method for transmitting and receiving reference signal, network device and terminal device
KR20190105075A (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
WO2018127138A1 (zh) 一种参考信号配置的方法、基站、用户设备和系统
US20190305902A1 (en) Reference signal transmission method and apparatus
US20180309491A1 (en) Csi receiving method and access network device
CN114158059B (zh) 一种信息处理方法、装置、终端设备及网络侧设备
US11784765B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2023202659A1 (zh) 信息传输方法、装置及通信设备
US11985661B2 (en) Systems and methods for PDSCH based CSI measurement
CN118158722A (zh) 一种信道状态信息测量的配置方法及相关设备
US20240106605A1 (en) Configuration of sounding reference signals based on user equipment reporting
WO2020057284A1 (zh) 一种信道状态信息的确定方法及装置
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013860

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017890314

Country of ref document: EP

Effective date: 20190705

ENP Entry into the national phase

Ref document number: 112019013860

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190704