WO2018126892A1 - 一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法 - Google Patents

一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法 Download PDF

Info

Publication number
WO2018126892A1
WO2018126892A1 PCT/CN2017/117491 CN2017117491W WO2018126892A1 WO 2018126892 A1 WO2018126892 A1 WO 2018126892A1 CN 2017117491 W CN2017117491 W CN 2017117491W WO 2018126892 A1 WO2018126892 A1 WO 2018126892A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
transparent electrode
metal nanowire
preparing
nanowire
Prior art date
Application number
PCT/CN2017/117491
Other languages
English (en)
French (fr)
Inventor
刘洪亮
江雷
张锡奇
Original Assignee
北京赛特超润界面科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京赛特超润界面科技有限公司 filed Critical 北京赛特超润界面科技有限公司
Publication of WO2018126892A1 publication Critical patent/WO2018126892A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the invention belongs to the field of preparation and application of electronic devices.
  • the invention relates to a method for preparing a high performance flexible transparent electrode by using a metal nanowire network and an ionic liquid gel.
  • Flexible transparent electrodes play an important role in the development of the electronics and optoelectronics industry, and are optoelectronic functional materials that are indispensable for the preparation of numerous electronic and optoelectronic components.
  • flexible transparent electrodes are mainly prepared by electroless vapor deposition, sol-gel method, vacuum evaporation deposition, etc. on a transparent organic polymer substrate (JA Lewis et al. Science, 323, 1590- 1593 (2009); RBKaner et al. Science, 335, 1326-1330 (2012); DBJanes et al. Nature Nanotech, 2, 378-384 (2007); Y. Cui et al. Nature Nanotech, 8, 421-425 (2013) )).
  • ITO ITO faces shortcomings such as depletion of resources and expensive preparation processes, and indium is toxic and pollutes the environment.
  • metal nanowires such as silver nanowires and copper nanowires have shown great application prospects in the preparation of flexible transparent electrodes due to their excellent electrical conductivity, and have received extensive attention from research institutions and industry, and are expected to become ITO.
  • An ideal substitute J.-Y. Lee et al. Nano Lett. 8, 689-692 (2008); J. Lee, et al. Adv. Funct. Mater. 23, 4171-4176 (2013); JHYoo et al .ACS Appl.Mater.Inter.7, 15928-15934 (2015)).
  • the object of the present invention is to provide a method for preparing a metal nanowire@ionic liquid gel composite flexible transparent electrode.
  • the electrode prepared by the method has high transparency, low square resistance, and more importantly, excellent long-term stability.
  • a method for preparing a metal nanowire@ionic liquid gel composite flexible transparent electrode comprising the following steps:
  • the solvent is one or more of water, ethanol and acetone.
  • the metal nanowires are silver nanowires or copper nanowires.
  • the ionic liquid prepolymer comprises an ionic liquid that polymerizes a cross-linking coordination function.
  • the ionic liquid of the polymerization cross-linking coordination function is a double bond-containing ionic liquid or a functional polyionic liquid or an ionic liquid containing a monosubstituted imidazole cation or an ionic liquid containing a dinitrile amine salt anion;
  • the ionic liquid containing a double bond is one or more of an imidazole ionic liquid, a pyridine ionic liquid, a quaternary ammonium ionic liquid, a quaternary phosphonium ionic liquid, a pyrrolidine ionic liquid, or a piperidine ionic liquid.
  • Functional polyionic liquids are poly(1-vinyl-3-carboxyethylimidazolium nitrate), poly(1-vinyl-3-hydroxyethylimidazolium tetrafluoroborate), poly(1-vinyl- 3-aminopropylimidazole nitrate), poly(1-vinyl-3-carboxyethylimidazolidinitrileamine salt).
  • the imidazole ionic liquid is 1-vinyl-3-butylimidazolidinamide salt;
  • the pyridine ionic liquid is N-vinylpyridine tetrafluoroborate;
  • the quaternary ammonium salt ionic liquid is Tributylvinylammonium (trifluoromethanesulfonyl)imide salt;
  • quaternary phosphonium salt ionic liquid is tributylvinylphosphonium bromide;
  • pyrrolidine ionic liquid is N-vinyl-N-methylpyrrolidine Bromide salt;
  • piperidine ionic liquid is N-vinyl-N-methyl piperidine bromide.
  • the monosubstituted imidazole-containing cation is N-methylimidazolium hydrogensulfate or N-methylimidazolium bis(trifluoromethanesulfonyl)imide salt; the dinitrileamine salt anion is 1-ethylene Alkyl-3-butylimidazolidinamine salt.
  • the ionic liquid prepolymer further comprises an initiator and a crosslinking agent
  • the initiator is benzoin ethyl ether, diphenyl ethyl ketone, benzophenone, potassium persulfate, benzoyl peroxide, One or more of di-tert-butyl peroxide and azobisisobutyronitrile;
  • the crosslinking agent is one or more of ethylene glycol dimethacrylate, glutaraldehyde, aqueous calcium chloride solution, and diisocyanate.
  • the invention improves the stability and transparency of the composite transparent electrode by a chemically crosslinked ionic liquid gel network structure.
  • the transparent metal nanowire network formed in the step 1) of the invention has the property of superionic liquid, and the ionic liquid prepolymer containing the coordination group forms a uniform thin layer on the surface of the metal nanowire by coordination.
  • the application of the metal nanowire@ionic liquid gel composite transparent electrode of the invention can be used for preparing flexible display screens, such as mobile phones, computer monitors, watches, and visualization glasses. It can also be used to prepare flexible organic light emitting diodes and solar cells.
  • an ionic liquid (a double bond-containing ionic liquid or a functional polyionic liquid or an ionic liquid containing a monosubstituted imidazole cation or an anion containing a dinitrile amine salt)
  • the weight ratio of the ionic liquid)/solvent (water, ethanol or acetone) is 1000/2000-1000/0.
  • Step 2 In the ionic liquid prepolymerization solution described in the present invention, an initiator/ionic liquid (a double bond-containing ionic liquid or a functional polyionic liquid or an ionic liquid containing a monosubstituted imidazole cation or a dinitrile amine salt)
  • the mass ratio of the anionic ionic liquid is 1/1000-20/1000.
  • Step 2 in the ionic liquid prepolymerization solution described in the present invention, a crosslinking agent/ionic liquid (a double bond-containing ionic liquid or a functional polyionic liquid or an ionic liquid containing a monosubstituted imidazole cation or a dinitrile amine)
  • the mass ratio of the salt anion ionic liquid is 1/1000 to 50/1000.
  • the photoinitiation wavelength in the present invention is from 250 nm to 420 nm.
  • the heating temperature in the present invention is 70 to 90 °C.
  • the metal nanowire@ionic liquid gel composite transparent electrode provided by the invention overcomes the disadvantages of high cost, complicated process, scarce raw materials and unstable metal nanowire in the prior transparent electrode technology.
  • the present invention can adjust the thickness of the transparent electrode and thereby regulate the resistance of the transparent electrode.
  • the metal nanowire@ionic liquid gel composite transparent electrode obtained by the invention will not be damaged or the conductivity is lowered after being placed for one year, and has no effect on the performance after strong acid, strong alkali, salt and one hour of ultraviolet light.
  • the resulting conductive layer is stable in nature.
  • the method of the invention is simple in operation, easy to control, simple in equipment required, and capable of mass production.
  • the transparent electrode is particularly suitable for preparing a screen of a visible electronic device, a wearable electronic device, a flexible organic light emitting diode, a flexible solar cell, an organic electric device.
  • FIG. 1 is a schematic view showing the structure of a metal nanowire@ionic liquid gel composite flexible transparent electrode of the present invention.
  • Silver nanowires having a diameter of about 50 nm and a length of about 10 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an aqueous solution containing 1-vinyl-3-butylimidazolidinamide salt, potassium persulfate or ethylene glycol dimethacrylate (1-vinyl group)
  • the weight ratio of -3-butylimidazolidinamide salt/potassium persulfate/ethylene glycol dimethacrylate/water is 1000/10/40/1000).
  • the silver nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is heated at 80 ° C for 1 h to form an ionic liquid gel protective film on the surface of the silver nanowire to prevent oxidation of the silver nanowire, and obtain excellent photoelectric properties and stability.
  • the silver nanowire @ionic liquid gel composite flexible transparent electrode (structure shown in Figure 1).
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 5 ⁇ /sq, and can be used for preparing a flexible organic light emitting diode and a flexible solar cell.
  • Silver nanowires having a diameter of about 50 nm and a length of about 10 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an aqueous solution containing N-vinylpyridine tetrafluoroborate, benzophenone, and ethylene glycol dimethacrylate (N-vinylpyridine tetrafluoro
  • N-vinylpyridine tetrafluoro The weight ratio of borate/benzophenone/ethylene glycol dimethacrylate/water is 1000/10/40/1000).
  • the silver nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is irradiated for 1 hour under 255 nm ultraviolet light to form an ionic liquid gel protective film on the surface of the silver nanowire to prevent oxidation of the silver nanowire, thereby obtaining photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible display.
  • Silver nanowires having a diameter of about 50 nm and a length of about 10 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an aqueous solution containing poly(1-vinyl-3-hydroxyethylimidazolium nitrate) (poly(1-vinyl-3-hydroxyethylimidazolium nitrate) ) / water weight ratio is 1000 / 2000). Hold for 1 h to obtain a silver nanowire film complexed with a polyionic liquid.
  • the silver nanowire film of the complex polyionic liquid in the step (2) is immersed in an aqueous solution of glutaraldehyde (the weight ratio of glutaraldehyde/water is 50/1000) for 1 hour to form an ionic liquid on the surface of the silver nanowire.
  • the gel protective film prevents oxidation of the silver nanowires, and obtains a silver nanowire@ionic liquid gel composite flexible transparent electrode excellent in photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 88% and a sheet resistance of 8 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.
  • Silver nanowires having a diameter of about 50 nm and a length of about 10 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an aqueous solution containing poly(1-vinyl-3-hydroxyethyl imidazolium tetrafluoroborate) (poly(1-vinyl-3-hydroxyethyl)
  • the weight ratio of imidazole tetrafluoroborate) to water is 1000/500). Hold for 1 h to obtain a silver nanowire film complexed with a polyionic liquid.
  • the silver nanowire film of the complex polyionic liquid in the step (2) is immersed in an aqueous solution of calcium chloride (the weight ratio of calcium chloride/water is 50/1000) for 1 hour to form an ionic liquid on the surface of the silver nanowire.
  • the gel protective film prevents oxidation of the silver nanowires, and obtains a silver nanowire@ionic liquid gel composite flexible transparent electrode excellent in photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible organic light emitting diode.
  • Silver nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the copper nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is heated at 80 ° C for 1 h to form an ionic liquid gel protective film on the surface of the copper nanowire to prevent oxidation of the copper nanowire, and obtain excellent photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible organic light emitting diode and a flexible solar cell.
  • Copper nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent copper nanowire film formed in the step (1) is immersed in an acetone solution containing tributylvinylphosphonium bromide, benzophenone, ethylene glycol dimethacrylate (tributylvinylphosphonium bromide) /
  • the weight ratio of benzophenone / ethylene glycol dimethacrylate / acetone is 1000/10/40 / 1000).
  • the copper nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is irradiated for 1 hour under 255 nm ultraviolet light to form an ionic liquid gel protective film on the surface of the copper nanowire to prevent oxidation of the copper nanowire, and obtain photoelectric property and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 88% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.
  • Silver nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the copper nanowire film of the complex polyionic liquid in the step (2) is immersed in an aqueous solution of calcium chloride (the weight ratio of calcium chloride/water is 50/1000) for 1 hour to form an ionic liquid on the surface of the copper nanowire.
  • the gel protective film prevents oxidation of copper nanowires, and obtains a copper nanowire@ionic liquid gel composite flexible transparent electrode excellent in photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible organic light emitting diode.
  • Silver nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent copper nanowire film formed in the step (1) is immersed in an acetone solution containing poly(1-vinyl-3-carboxyethylimidazolidinitrileamine salt) (poly(1-vinyl-3-carboxyethyl)
  • the weight ratio of imidazolidinamide salt/acetone is 1000/500.
  • the copper nanowire film of the complex polyionic liquid in the step (2) is immersed in the acetone solution of the diisocyanate (the weight ratio of the diisocyanate/acetone is 1/1000), and the ionic liquid condensation is formed on the surface of the copper nanowire for 1 hour.
  • the rubber protective film prevents the oxidation of the copper nanowires, and obtains a copper nanowire@ionic liquid gel composite flexible transparent electrode excellent in photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible organic light emitting diode.
  • Copper nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent copper nanowire film formed in the step (1) is immersed in an acetone solution containing N-vinyl-N-methylpyrrolidine bromide, benzoyl peroxide or ethylene glycol dimethacrylate (N- The weight ratio of vinyl-N-methylpyrrolidine bromide/benzoyl peroxide/ethylene glycol dimethacrylate/acetone is 1000/20/40/1000). After 1 h, a copper nanowire film of the complexed ionic liquid prepolymer was obtained.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 86% and a sheet resistance of 6 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.
  • Silver nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an acetone solution containing N-vinyl-N-methylpiperidine bromide, di-tert-butyl peroxide, ethylene glycol dimethacrylate (N
  • the weight ratio of vinyl-N-methylpiperidine bromide/di-tert-butyl peroxide/ethylene glycol dimethacrylate/acetone is 1000/1/40/1000.
  • the silver nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is heated at 80 ° C for 1 h to form an ionic liquid gel protective film on the surface of the silver nanowire to prevent oxidation of the silver nanowire, and obtain excellent photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 89% and a sheet resistance of 8 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.
  • Copper nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, through a nylon porous membrane with a pore size of 0.22 ⁇ m, a copper nanowire network film was obtained by vacuum self-assembly, and the copper nanowire network was transferred onto a polyethylene terephthalate substrate, and the copper nanowire network was used for the next step.
  • a copper nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent copper nanowire film formed in the step (1) is immersed in an ethanol solution containing N-methylimidazolium hydrogensulfate, benzoin ethyl ether and ethylene glycol dimethacrylate (N-methylimidazolium hydrogensulfate/benzoin)
  • the weight ratio of diethyl ether/ethylene glycol dimethacrylate/ethanol is 1000/10/40/1000).
  • the copper nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is heated at 80 ° C for 1 h to form an ionic liquid gel protective film on the surface of the copper nanowire to prevent oxidation of the copper nanowire, and obtain excellent photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 87% and a sheet resistance of 8 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.
  • Silver nanowires having a diameter of about 70 nm and a length of about 20 ⁇ m were uniformly dispersed with deionized water at a weight ratio of 0.42/1000. Then, a silver nanowire network film was obtained by vacuum self-assembly through a nylon porous membrane with a pore size of 0.22 ⁇ m, and the silver nanowire network was transferred to a polyethylene terephthalate substrate, and the silver nanowire network was used for the next step.
  • a silver nanowire@ionic liquid gel composite transparent electrode was prepared.
  • the transparent silver nanowire film formed in the step (1) is immersed in an acetone solution containing N-methylimidazolium bis(trifluoromethanesulfonyl)imide salt, diphenylethyl ketone or ethylene glycol dimethacrylate.
  • N-methylimidazolium bis(trifluoromethanesulfonyl)imide salt diphenylethyl ketone or ethylene glycol dimethacrylate.
  • the weight ratio of N-methylimidazolium bis(trifluoromethanesulfonyl)imide salt/diphenylethanone/ethylene glycol dimethacrylate/ethanol is 1000/10/40/1000.
  • the silver nanowire film of the complex ionic liquid prepolymerization liquid in the step (2) is heated at 80 ° C for 1 h to form an ionic liquid gel protective film on the surface of the silver nanowire to prevent oxidation of the silver nanowire, and obtain excellent photoelectric properties and stability.
  • the composite ionic liquid gel transparent electrode prepared above has a light transmittance of more than 90% and a sheet resistance of 7 ⁇ /sq, and can be used for preparing a flexible display screen and a flexible solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法,该制备方法包括以下步骤:1)将金属纳米线分散于溶剂中,均匀搅拌后通过真空自组装制备透明金属纳米线网络,然后转移到聚对苯二甲酸乙二醇酯基底上;2)将步骤1)制备的聚对苯二甲酸乙二醇酯基底上的透明金属纳米线网络与离子液体预聚液通过配位作用络合;3)在光照或加热或室温条件下将络合的离子液体预聚液在金属纳米线表面交联聚合,得到金属纳米线和离子液体凝胶复合的柔性透明电极。该方法操作简便、易于控制、所需设备简单、能够大规模生产。

Description

[根据细则37.2由ISA制定的发明名称] 一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法 技术领域
本发明属于电子器件制备与应用领域,具体地,本发明涉及一种利用金属纳米线网络与离子液体凝胶复合制备高性能柔性透明电极的方法。
背景技术
柔性透明电极在电子与光电子产业的发展中占有举足轻重的地位,是制备众多电子与光电子元器件不可缺少的光电功能材料。目前,柔性透明电极主要是在透明有机聚合物基底上通过化学气相沉积、溶胶-凝胶法、真空蒸发沉积等制备导电氧化铟锡(ITO)薄膜(J.A.Lewis et al.Science,323,1590-1593(2009);R.B.Kaner et al.Science,335,1326-1330(2012);D.B.Janes et al.Nature Nanotech,2,378-384(2007);Y.Cui et al.Nature Nanotech,8,421-425(2013))。但是,ITO面临资源枯竭,制备工艺昂贵等缺点,而且铟有毒性,对环境造成污染。近年来,金属纳米线如银纳米线、铜纳米线等凭借其优异的导电性能,在柔性透明电极制备方面展现了极大的应用前景,得到了研究机构和工业界的广泛关注,有望成为ITO的理想替代品(J.-Y.Lee et al.Nano Lett.8,689-692(2008);J.Lee,et al.Adv.Funct.Mater.23,4171-4176(2013);J.H.Yoo et al.ACS Appl.Mater.Inter.7,15928-15934(2015))。然而,基于金属纳米线的柔性透明电极极易被氧化,长期稳定性差。因此急需发展一种新型柔性透明电极,既能解决ITO资源匮乏、工艺成本高的难题,又能满足长期使用的要求。
发明内容
本发明的目的在于提供一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法。该方法制备的电极的透明度高、方阻低,更重要的是具有优异的长期稳定性。
为达到上述目的,本发明采用了如下的技术方案:
一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,所述制备方法包括以下步骤:
1)将金属纳米线分散于溶剂中,均匀搅拌后通过真空自组装制备透明金属纳米线网络,然后转移到聚对苯二甲酸乙二醇酯基底上;
2)将步骤1)制备的聚对苯二甲酸乙二醇酯基底上的透明金属纳米线网络与离 子液体预聚液通过配位作用络合;
3)在光照或加热或室温条件下将络合的离子液体预聚液在金属纳米线表面交联聚合,得到金属纳米线@离子液体凝胶复合柔性透明电极。
优选地,在步骤1)中,所述的溶剂是水、乙醇、丙酮中的一种或几种。
优选地,在所述步骤1)中,所述金属纳米线为银纳米线或铜纳米线。
优选地,所述离子液体预聚液包含聚合交联配位功能的离子液体。
进一步优选地,所述聚合交联配位功能的离子液体为含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体;
其中,含双键的离子液体为咪唑类离子液体、吡啶类离子液体、季铵盐类离子液体、季磷盐类离子液体、吡咯烷类离子液体、哌啶类离子液体中的一种或多种;
功能性聚离子液体为聚(1-乙烯基-3-羧乙基咪唑硝酸盐)、聚(1-乙烯基-3-羟乙基咪唑四氟硼酸盐)、聚(1-乙烯基-3-胺丙基咪唑硝酸盐)、聚(1-乙烯基-3-羧乙基咪唑二腈胺盐)。
更进一步优选地,所述咪唑类离子液体为1-乙烯基-3-丁基咪唑二腈胺盐;吡啶类离子液体为N-乙烯基吡啶四氟硼酸盐;季铵盐类离子液体为三丁基乙烯基铵(三氟甲烷磺酰)亚胺盐;季磷盐类离子液体为三丁基乙烯基溴化膦;吡咯烷类离子液体为N-乙烯基-N-甲基吡咯烷溴盐;哌啶类离子液体为N-乙烯基-N-甲基哌啶溴盐。
优选地,所述含单取代咪唑类阳离子为N-甲基咪唑硫酸氢盐或N-甲基咪唑双(三氟甲烷磺酰)亚胺盐;所述含二腈胺盐阴离子为1-乙烯基-3-丁基咪唑二腈胺盐。
本发明中,所述离子液体预聚液中还包含引发剂和交联剂,所述引发剂是安息香乙醚、二苯基乙酮、二苯甲酮、过硫酸钾、过氧化苯甲酰、过氧化二叔丁基、偶氮二异丁腈中的一种或多种;
所述交联剂是二甲基丙烯酸乙二醇酯、戊二醛、氯化钙水溶液、二异氰酸酯中的一种或多种。
本发明通过化学交联的离子液体凝胶网络结构提高复合透明电极的稳定性及透明度。
本发明步骤1)形成的透明金属纳米线网络具有超亲离子液体的性质,含有配位基团离子液体预聚液通过配位作用在金属纳米线表面形成均一的薄层。
本发明的金属纳米线@离子液体凝胶复合透明电极的应用,制备的复合柔性透明电极可用于制备柔性显示屏,比如手机、电脑显示器、手表、可视化眼镜等。也 可用于制备柔性有机发光二极管、太阳能电池。
本发明中的所述的步骤2)离子液体预聚液中,离子液体(含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体)/溶剂(水、乙醇或丙酮)的重量比例是1000/2000-1000/0。
本发明中所述的步骤2)离子液体预聚液中,引发剂/离子液体(含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体)的质量比例是1/1000-20/1000。
本发明中所述的步骤2)离子液体预聚液中,交联剂/离子液体(含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体)的质量比例是1/1000-50/1000。
本发明中的所述的光引发波长为250nm-420nm。
本发明中的所述的加热温度是70-90℃。
本发明提供的金属纳米线@离子液体凝胶复合透明电极,克服了现有透明电极技术中成本高,工艺复杂,原料稀缺,金属纳米线不稳定等缺点。通过控制金属纳米线悬浮液的浓度,本发明可以调节透明电极的厚度,进而调控透明电极的电阻。本发明得到的金属纳米线@离子液体凝胶复合透明电极经过长达一年的放置不会损坏或者导电性下降,且经过强酸、强碱、盐以及一小时的紫外光照对其性能无影响,生成的导电层性质稳定。
本发明的方法操作简便、易于控制、所需设备简单、能够大规模生产,该透明电极尤其适用于制备可视电子设备的屏幕、可穿戴电子设备、柔性有机发光二极管、柔性太阳能电池、有机电致发光面板、薄膜晶体管、有机EL面板。
附图说明
图1是本发明的金属纳米线@离子液体凝胶复合柔性透明电极的结构示意图。
具体实施方式
以下实施例仅是对本发明的技术方案作进一步的说明,而不是对本发明的技术方案进行限制。
实施例1
(1)透明银纳米线网络的制备方法
直径约为50nm、长度约为10μm的银纳米线与去离子水以重量比0.42/1000均 匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含1-乙烯基-3-丁基咪唑二腈胺盐、过硫酸钾、二甲基丙烯酸乙二醇酯的水溶液中(1-乙烯基-3-丁基咪唑二腈胺盐/过硫酸钾/二甲基丙烯酸乙二醇酯/水的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的银纳米线薄膜在80℃加热1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的银纳米线@离子液体凝胶复合柔性透明电极(结构如图1所示)。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为5Ω/sq,可用于制备柔性有机发光二极管和柔性太阳能电池。
实施例2
(1)透明银纳米线网络的制备方法
直径约为50nm、长度约为10μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含N-乙烯基吡啶四氟硼酸盐、二苯甲酮、二甲基丙烯酸乙二醇酯的水溶液中(N-乙烯基吡啶四氟硼酸盐/二苯甲酮/二甲基丙烯酸乙二醇酯/水的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的银纳米线薄膜在255nm紫外光下照射1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的银纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为6Ω/sq,可用于制备柔性显示屏。
实施例3
(1)透明银纳米线网络的制备方法
直径约为50nm、长度约为10μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含聚(1-乙烯基-3-羟乙基咪唑硝酸盐)的水溶液中(聚(1-乙烯基-3-羟乙基咪唑硝酸盐)/水的重量比是1000/2000)。保持1h,得到络合聚离子液体的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合聚离子液体的银纳米线薄膜浸泡在戊二醛的水溶液中(戊二醛/水的重量比是50/1000),保持1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的银纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于88%,方块电阻为8Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
实施例4
(1)透明银纳米线网络的制备方法
直径约为50nm、长度约为10μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含聚(1-乙烯基-3-羟乙基咪唑四氟硼酸盐)的水溶液中(聚(1-乙烯基-3-羟乙基咪唑四氟硼酸盐)/水的重量比是 1000/500)。保持1h,得到络合聚离子液体的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合聚离子液体的银纳米线薄膜浸泡在氯化钙的水溶液中(氯化钙/水的重量比是50/1000),保持1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的银纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为6Ω/sq,可用于制备柔性有机发光二极管。
实施例5
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含三丁基乙烯基铵(三氟甲烷磺酰)亚胺盐、偶氮二异丁腈、二甲基丙烯酸乙二醇酯的乙醇溶液中(三丁基乙烯基铵(三氟甲烷磺酰)亚胺盐/偶氮二异丁腈/二甲基丙烯酸乙二醇酯/乙醇的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的铜纳米线薄膜在80℃加热1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为6Ω/sq,可用于制备柔性有机发光二极管和柔性太阳能电池。
实施例6
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的铜纳米线与去离子水以重量比0.42/1000均 匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含三丁基乙烯基溴化膦、二苯甲酮、二甲基丙烯酸乙二醇酯的丙酮溶液中(三丁基乙烯基溴化膦/二苯甲酮/二甲基丙烯酸乙二醇酯/丙酮的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的铜纳米线薄膜在255nm紫外光下照射1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于88%,方块电阻为6Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
实施例7
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含聚(1-乙烯基-3-胺丙基咪唑硝酸盐)的水溶液中(聚(1-乙烯基-3-胺丙基咪唑硝酸盐)/水的重量比是1000/500)。保持1h,得到络合聚离子液体的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合聚离子液体的铜纳米线薄膜浸泡在氯化钙的水溶液中(氯化钙/水的重量比是50/1000),保持1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为6Ω/sq,可用于制备柔性显示屏、柔性有机发光二极管。
实施例8
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含聚(1-乙烯基-3-羧乙基咪唑二腈胺盐)的丙酮溶液中(聚(1-乙烯基-3-羧乙基咪唑二腈胺盐)/丙酮的重量比是1000/500)。保持1h,得到络合聚离子液体的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合聚离子液体的铜纳米线薄膜浸泡在二异氰酸酯的丙酮溶液中(二异氰酸酯/丙酮的重量比是1/1000),保持1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为6Ω/sq,可用于制备柔性有机发光二极管。
实施例9
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的铜纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含N-乙烯基-N-甲基吡咯烷溴盐、过氧化苯甲酰、二甲基丙烯酸乙二醇酯的丙酮溶液中(N-乙烯基-N-甲基吡咯烷溴盐 /过氧化苯甲酰/二甲基丙烯酸乙二醇酯/丙酮的重量比例是1000/20/40/1000)。保持1h,得到络合离子液体预聚液的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的铜纳米线薄膜在80 oC加热1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于86%,方块电阻为6Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
实施例10
(1)透明银纳米线网络的制备方法
直径约为70nm、长度约为20μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含N-乙烯基-N-甲基哌啶溴盐、过氧化二叔丁基、二甲基丙烯酸乙二醇酯的丙酮溶液中(N-乙烯基-N-甲基哌啶溴盐/过氧化二叔丁基/二甲基丙烯酸乙二醇酯/丙酮的重量比例是1000/1/40/1000)。保持1h,得到络合离子液体预聚液的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的银纳米线薄膜在80℃加热1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于89%,方块电阻为8Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
实施例11
(1)透明铜纳米线网络的制备方法
直径约为70nm、长度约为20μm的铜纳米线与去离子水以重量比0.42/1000均 匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到铜纳米线网络薄膜,将此铜纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此铜纳米线网络用于下一步制备铜纳米线@离子液体凝胶复合透明电极。
(2)铜纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明铜纳米线薄膜浸泡在含N-甲基咪唑硫酸氢盐、安息香乙醚、二甲基丙烯酸乙二醇酯的乙醇溶液中(N-甲基咪唑硫酸氢盐/安息香乙醚/二甲基丙烯酸乙二醇酯/乙醇的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的铜纳米线薄膜。
(3)铜纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的铜纳米线薄膜在80℃加热1h,在铜纳米线表面形成离子液体凝胶保护膜,防止铜纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于87%,方块电阻为8Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
实施例12
(1)透明银纳米线网络的制备方法
直径约为70nm、长度约为20μm的银纳米线与去离子水以重量比0.42/1000均匀分散。然后通过孔径为0.22μm的尼龙多孔膜,真空自组装得到银纳米线网络薄膜,将此银纳米线网络转移到聚对苯二甲酸乙二醇酯基底上,此银纳米线网络用于下一步制备银纳米线@离子液体凝胶复合透明电极。
(2)银纳米线与离子液体预聚液的配位作用
将步骤(1)形成的透明银纳米线薄膜浸泡在含N-甲基咪唑双(三氟甲烷磺酰)亚胺盐、二苯基乙酮、二甲基丙烯酸乙二醇酯的丙酮溶液中(N-甲基咪唑双(三氟甲烷磺酰)亚胺盐/二苯基乙酮/二甲基丙烯酸乙二醇酯/乙醇的重量比例是1000/10/40/1000)。保持1h,得到络合离子液体预聚液的银纳米线薄膜。
(3)银纳米线@离子液体凝胶复合透明电极的制备
将步骤(2)中络合离子液体预聚液的银纳米线薄膜在80℃加热1h,在银纳米线表面形成离子液体凝胶保护膜,防止银纳米线氧化,得到光电性能和稳定性优异的铜纳米线@离子液体凝胶复合柔性透明电极。
(4)复合离子液体凝胶透明电极的应用
上述制备的复合离子液体凝胶透明电极的透光率大于90%,方块电阻为7Ω/sq,可用于制备柔性显示屏、柔性太阳能电池。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,所述制备方法包括以下步骤:
    1)将金属纳米线分散于溶剂中,均匀搅拌后通过真空自组装制备透明金属纳米线网络,然后转移到聚对苯二甲酸乙二醇酯基底上;
    2)将步骤1)制备的聚对苯二甲酸乙二醇酯基底上的透明金属纳米线网络与离子液体预聚液通过配位作用络合;
    3)在光照或加热或室温条件下将络合的离子液体预聚液在金属纳米线表面交联聚合,得到金属纳米线@离子液体凝胶复合柔性透明电极。
  2. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,在步骤1)中,所述的溶剂是水、乙醇、丙酮中的一种或几种。
  3. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,在所述步骤1)中,所述金属纳米线为银纳米线或铜纳米线。
  4. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述离子液体预聚液包含聚合交联配位功能的离子液体。
  5. 根据权利要求4所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述聚合交联配位功能的离子液体为含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体;
    其中,含双键的离子液体为咪唑类离子液体、吡啶类离子液体、季铵盐类离子液体、季磷盐类离子液体、吡咯烷类离子液体、哌啶类离子液体中的一种或多种;
    功能性聚离子液体为聚(1-乙烯基-3-羟乙基咪唑硝酸盐)、聚(1-乙烯基-3-羟乙基咪唑四氟硼酸盐)、聚(1-乙烯基-3-胺丙基咪唑硝酸盐)、聚(1-乙烯基-3-羧乙基咪唑二腈胺盐)。
  6. 根据权利要求5所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述咪唑类离子液体为1-乙烯基-3-丁基咪唑二腈胺盐;吡啶类离子液体为N-乙烯基吡啶四氟硼酸盐;季铵盐类离子液体为三丁基乙烯基铵(三氟甲烷磺酰)亚胺盐;季磷盐类离子液体为三丁基乙烯基溴化膦;吡咯烷类离子液体为N-乙烯基-N-甲基吡咯烷溴盐;哌啶类离子液体为N-乙烯基-N-甲基哌啶溴盐。
  7. 根据权利要求5所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的 制备方法,其特征在于,所述单取代咪唑类阳离子为N-甲基咪唑硫酸氢盐或N-甲基咪唑双(三氟甲烷磺酰)亚胺盐;所述二腈胺盐阴离子为1-乙烯基-3-丁基咪唑二腈胺盐或1-乙基-3-乙基咪唑二腈胺盐。
  8. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述离子液体预聚液中还包含引发剂和交联剂,所述引发剂是安息香乙醚、二苯基乙酮、二苯甲酮、过硫酸钾、过氧化苯甲酰、过氧化二叔丁基、偶氮二异丁腈中的一种或多种;
    所述交联剂是聚乙二醇二甲基丙烯酸酯、戊二醛、氯化钙水溶液、二异氰酸酯中的一种或多种。
  9. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述的步骤2)离子液体预聚液中,离子液体/溶剂的重量比例是1000/2000-1000/0;
    所述离子液体为含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体;
    所述溶剂为水、乙醇或丙酮。
  10. 根据权利要求1所述的一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法,其特征在于,所述的步骤2)离子液体预聚液中,引发剂/离子液体的质量比例是1/1000-20/1000;交联剂/离子液体的质量比例是1/1000-50/1000;
    所述离子液体为含双键的离子液体或功能性聚离子液体或含单取代咪唑类阳离子的离子液体或含二腈胺盐阴离子的离子液体。
PCT/CN2017/117491 2017-01-04 2017-12-20 一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法 WO2018126892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710004641.8A CN108269644A (zh) 2017-01-04 2017-01-04 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法
CN201710004641.8 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018126892A1 true WO2018126892A1 (zh) 2018-07-12

Family

ID=62771670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117491 WO2018126892A1 (zh) 2017-01-04 2017-12-20 一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法

Country Status (2)

Country Link
CN (1) CN108269644A (zh)
WO (1) WO2018126892A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501998A (zh) * 2021-07-28 2021-10-15 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113794402A (zh) * 2021-08-23 2021-12-14 西安交通大学 一种基于微流控的柔性离子凝胶电池及其高通量制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198063A (zh) * 2018-11-16 2020-05-26 北京纳米能源与系统研究所 一种压力传感器
CN112331739B (zh) * 2019-08-05 2022-05-20 华中科技大学 一种低功函导电透明复合电极、其制备和应用
WO2022174401A1 (zh) * 2021-02-19 2022-08-25 苏州大学 基于离子液体制备透明柔性电极的方法及柔性太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762014A (zh) * 2013-12-24 2014-04-30 苏州大学 一种基于丝素蛋白的柔性透明电极薄膜及其制备方法和应用
CN104992778A (zh) * 2015-04-17 2015-10-21 北京天恒盛通科技发展有限公司 制备可弯曲透明导电电极的方法
CN105140408A (zh) * 2015-08-02 2015-12-09 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052760B2 (ja) * 2005-04-27 2012-10-17 株式会社フジクラ 導電材料の製造方法
CN104198562A (zh) * 2014-08-29 2014-12-10 中国科学院烟台海岸带研究所 一种传导层材料及其利用传导层材料制备固体接触式离子选择性电极的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762014A (zh) * 2013-12-24 2014-04-30 苏州大学 一种基于丝素蛋白的柔性透明电极薄膜及其制备方法和应用
CN104992778A (zh) * 2015-04-17 2015-10-21 北京天恒盛通科技发展有限公司 制备可弯曲透明导电电极的方法
CN105140408A (zh) * 2015-08-02 2015-12-09 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501998A (zh) * 2021-07-28 2021-10-15 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113501998B (zh) * 2021-07-28 2022-07-08 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113794402A (zh) * 2021-08-23 2021-12-14 西安交通大学 一种基于微流控的柔性离子凝胶电池及其高通量制造方法
CN113794402B (zh) * 2021-08-23 2023-10-24 西安交通大学 一种基于微流控的柔性离子凝胶电池的高通量制造方法

Also Published As

Publication number Publication date
CN108269644A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018126892A1 (zh) 一种金属纳米线和离子液体凝胶复合的柔性透明电极的制备方法
CN105140408B (zh) 柔性透明复合离子液体凝胶导电电极的制备方法
Li et al. Recent Progress on Self‐Healable Conducting Polymers
Song et al. Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics
WO2018171317A1 (zh) 一种pedot:pss@离子液体凝胶复合自支撑柔性透明电极的制备方法
Destouesse et al. Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules
CN104992781B (zh) 一种石墨烯基三元复合材料的制备方法
CN108010637B (zh) 一种柔性透明电极的制备方法
TW200951996A (en) Transparent thin film electrode
CN107342117B (zh) 各向异性导电膜及其制作方法
JP5649648B2 (ja) 熱硬化型光電変換素子用シール剤を用いた光電変換素子
CN101983454B (zh) 染料敏化型太阳能电池用糊剂、染料敏化型太阳能电池用透明性绝缘膜、染料敏化型太阳能电池、以及染料敏化型太阳能电池的制造方法
KR101034640B1 (ko) 염료감응 태양전지용 나노입자 금속산화물-고분자의 복합체를 포함하는 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지
CN105336873A (zh) 一种柔性光电子器件用基板及其制备方法
Yang et al. Full solution-processed fabrication of conductive hybrid paper electrodes for organic optoelectronics
CN103760695B (zh) 一种采用纳米银导电层的调光玻璃及其制造方法
Liu et al. Photopatternable and highly conductive PEDOT: PSS electrodes for flexible perovskite light-emitting diodes
CN105551834B (zh) 一种柔性染料敏化太阳电池的低温低压制备方法
US10831071B2 (en) Copper-reduced graphene oxide core-shell transparent conductor for controlling light transmission and method of making the same
CN213844777U (zh) 一种纳米银线复合透明导电膜
CN110824804B (zh) 一种柔性电致变色薄膜及其制备方法
JP2009135099A (ja) フレキシブル透明導電フィルムとフレキシブル機能性素子及びその製造方法
CN205334442U (zh) 一种复合型纳米银线柔性透明导电电极结构
JP2006155907A (ja) 色素増感型太陽電池の対極およびこれを用いた色素増感型太陽電池
JP3975277B2 (ja) 色素増感太陽電池用ゲル電解質層前駆体および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890495

Country of ref document: EP

Kind code of ref document: A1