WO2018126700A1 - 一种封装有量子点层的液晶面板和液晶显示装置 - Google Patents

一种封装有量子点层的液晶面板和液晶显示装置 Download PDF

Info

Publication number
WO2018126700A1
WO2018126700A1 PCT/CN2017/098263 CN2017098263W WO2018126700A1 WO 2018126700 A1 WO2018126700 A1 WO 2018126700A1 CN 2017098263 W CN2017098263 W CN 2017098263W WO 2018126700 A1 WO2018126700 A1 WO 2018126700A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sub
pixel unit
blue
crystal panel
Prior art date
Application number
PCT/CN2017/098263
Other languages
English (en)
French (fr)
Inventor
李富琳
刘卫东
宋志成
刘振国
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2018126700A1 publication Critical patent/WO2018126700A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a liquid crystal panel and a liquid crystal display device in which a quantum dot layer is packaged.
  • a liquid crystal panel includes a liquid crystal layer encapsulated between two parallel glass substrates, and a color filter disposed above the liquid crystal layer.
  • the white light source is used as the backlight
  • the backlight light is controlled to be turned on and off in the liquid crystal layer through the inverted state of the voltage-controlled liquid crystal molecules in the liquid crystal layer, and the backlight light passing through the liquid crystal layer enters the color filter.
  • the film only the light in the specific wavelength range of the color filter can be transmitted, and the screen display is realized, and the light in other wavelength ranges is absorbed or reflected by the color filter, so the traditional color filter is transparent to the backlight. Low rate and utilization.
  • a quantum dot layer is used instead of the conventional color filter.
  • a red quantum dot material is encapsulated in a red sub-pixel unit of the quantum dot layer, and the green sub-pixel unit is included.
  • the color light, the red sub-pixel and the green sub-pixel are generated by blue light excitation, and the white backlight is not filtered in the related art, thereby improving the backlight utilization efficiency.
  • a liquid crystal panel provided with a quantum dot layer in the related art includes a liquid crystal layer 120 encapsulated between a lower substrate 111 and a middle substrate 112, and a quantum dot layer 130 encapsulated between the middle substrate 112 and the upper substrate 113.
  • the liquid crystal layer 120 and the quantum dot layer 130 are respectively disposed on both sides of the middle substrate.
  • the red sub-pixel unit 121 and the green sub-pixel unit 122 in the quantum dot layer 120 respectively encapsulate red and green quantum dot materials
  • the blue sub-pixel unit 123 encapsulates a transparent medium and is used for transmitting blue light.
  • the present application provides a quantum dot layer packaged
  • the liquid crystal panel and the liquid crystal display device transmit the blue parallel light incident to the blue sub-pixel unit in a non-parallel direction to solve the display color cast problem at multiple viewing angles in the related art.
  • the present application provides a liquid crystal panel encapsulating a quantum dot layer, wherein the liquid crystal panel is configured with a plurality of pixel units, the pixel unit is composed of sub-pixel units of a plurality of colors, and is transmitted by the liquid crystal layer to each a backlight transmission amount of the sub-pixels, the plurality of color sub-pixel units including a red sub-pixel unit encapsulating a quantum dot material, a green sub-pixel unit, and a blue sub-pixel unit capable of transmitting a blue backlight, wherein the package The substrate surface of the package unit of the pixel unit is configured to have a non-planar shape at a position of the substrate at the position of the blue sub-pixel unit.
  • the present application further provides a liquid crystal display device including a liquid crystal panel encapsulating a quantum dot layer and a backlight module disposed under the liquid crystal panel, the backlight module providing a blue backlight to illuminate the a liquid crystal panel configured with a plurality of pixel units, the pixel unit being composed of sub-pixel units of a plurality of colors, and a liquid crystal layer of the liquid crystal panel controls transmission amount of backlight transmitted to each of the sub-pixels,
  • the sub-pixel unit of the plurality of colors includes a red sub-pixel unit encapsulating a quantum dot material, a green sub-pixel unit, and a blue sub-pixel unit capable of transmitting a blue backlight, wherein the package substrate encapsulating the pixel unit
  • the substrate surface at the position of the blue sub-pixel unit is configured to have a non-planar shape.
  • FIG. 1 is a schematic structural view of a liquid crystal panel in the related art
  • FIG. 2a is a schematic overall structural view of a liquid crystal panel provided in some embodiments of the present application.
  • Figure 2b is a partial enlarged view of M
  • 2c is a schematic structural view of a second modification of some embodiments of the present application.
  • 2d is a schematic structural view of a third modification of some embodiments of the present application.
  • 2e is a schematic structural view of a fourth modification of some embodiments of the present application.
  • 2f is a schematic structural view of a fifth modification of some embodiments of the present application.
  • 2g is another schematic structural diagram of a fifth modification of some embodiments of the present application.
  • 2h is a schematic structural view of a dichroic layer in some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a liquid crystal display device provided in some embodiments of the present application.
  • a quantum dot layer replacing a conventional color filter is disposed in a liquid crystal panel.
  • blue light can be used as a backlight to excite quantum dots through blue light.
  • the red and green light converted from the layer, together with the transmitted blue light, realizes the color display of the pixel unit, and the three primary colors for color display can be obtained without filtering out the light in a specific wavelength range of the backlight.
  • the blue light before the liquid crystal layer is collimated by the optical film.
  • an optical film 140 for collimating incident blue light is disposed on the light incident side of the lower substrate 111, and the collimated blue light may be vertically incident on the lower substrate 111 to improve the efficiency of the blue light transmitting the lower substrate 111.
  • the blue light is always transmitted through the liquid crystal layer and the blue sub-pixel unit in a direction that is single and perpendicular to the surface of the substrate, to constitute blue-based color light for color display of the pixel unit.
  • most of the blue primary light transmitted by the blue sub-pixel unit is parallel light in a single exit direction, and the red and green primary light emitted from the red and green sub-pixel units are generated by the quantum dot material excited by blue light and are different. Scattered light in the outgoing direction.
  • the blue primary light along a single parallel exit direction has a large difference in the exit angle from the red and green light that is excited and divergent in different exit directions, that is, the blue primary light shows the viewing angle ratio of the scattered light.
  • the red and green primary light display angles are much smaller, so that the chromaticities of the respective primary colors in the pixel unit at different viewing angles are inconsistent, causing the liquid crystal panel to display color cast under multiple viewing angles.
  • the light transmitted through the blue sub-pixel has a smaller viewing angle. The angle of view of the light transmitted by the red-green sub-pixel.
  • each pixel unit which is caused by blue light transmitted in a single direction in a blue sub-pixel unit and red and green light which is excited to be diffused light exhibits a color cast phenomenon at a plurality of viewing angles.
  • the present application proposes a liquid crystal panel and a liquid crystal display device encapsulated with a quantum dot layer, so that blue light is transmitted from the blue sub-pixel unit at different exit angles to increase the display viewing angle of the blue light, and reduce the blue light emitted by the pixel unit.
  • the chromaticity difference between the primary color and the red and green primary colors at different viewing angles solves the problem of displaying the color cast under multiple viewing angles in the related art.
  • a liquid crystal panel 200 is provided in some embodiments of the present application.
  • the overall structure of the liquid crystal panel 200 is shown in FIG. 2a.
  • the partial structure of the liquid crystal panel 200 with the quantum dot layer encapsulated is more clearly expressed, along the direction A in FIG. 2a.
  • the liquid crystal panel 200 includes a lower substrate 211, a middle substrate 212, an upper substrate 213, a liquid crystal layer 220, and a quantum dot layer 230.
  • the liquid crystal layer 220 is encapsulated between the lower substrate 211 and the middle substrate 212, and the amount of transmission of the backlight light is controlled by the inverted state of the liquid crystal molecules in the liquid crystal layer 220.
  • the quantum dot layer 230 is disposed above the liquid crystal layer 220 and encapsulated in the middle substrate 212. Between the upper substrate 213, the quantum dot layer 230 and the liquid crystal layer are respectively disposed on two sides of the middle substrate 212, and the quantum dot layer 230 includes a plurality of pixel sheets.
  • a sub-pixel unit of a plurality of colors in each of the pixel units 231 includes: a red sub-pixel unit 231a encapsulating a red quantum dot material, a green sub-pixel unit 231b encapsulating a green quantum dot material, and a transparent medium packaged Or the blue sub-pixel unit 231c of the air layer, each sub-pixel unit is separated by two or two by the quantum dot layer support 232 to reduce light interference between adjacent sub-pixel units and prevent light leakage.
  • the quantum dot material encapsulated in the red sub-pixel unit 231a and the green sub-pixel unit 231b respectively emits red light and green light under blue light excitation, and is combined with blue light transmitted from the blue sub-pixel unit 231c for the pixel unit 231.
  • the three primary colors of the color display, the plurality of pixel units 231 are commonly used for the screen display of the liquid crystal panel 200.
  • the liquid crystal panel 200 further includes an optical film disposed under the lower substrate 211 and collimating the incident blue light.
  • a sheet 240 such as a prism film, transmits the collimated blue light through the lower substrate 211 in a vertical direction to excite the quantum dot layer 230.
  • the surface of the middle substrate 212 or the upper substrate 213 at the position of the blue sub-pixel unit 213c is configured in a non-planar shape such that the blue backlight transmitted by the blue sub-pixel unit 213c passes through the non-planar shape.
  • the non-planar shape and the transmitted parallel blue light direction are non-perpendicular. It is to be further noted that, in order to change the emission direction of the parallel blue light transmitted from the blue sub-pixel unit 231c, the non-planar shape having the function of changing the light emission direction should be disposed on the substrate corresponding to the blue sub-pixel unit 231c.
  • the middle substrate 212 or the upper substrate 213 is a package substrate encapsulating the pixel unit 231, and the substrate surface of the package substrate at the position of the blue sub-pixel unit 231c should be configured as a non-planar shape, that is, a blue sub-pixel.
  • the surface of the middle substrate 212 or the upper substrate 213 at the position of the unit 213c is configured in a non-planar shape such that the blue light transmitted by the blue sub-pixel unit 231c can pass through the configured non-planar shape and be transmitted in a non-parallel direction.
  • the middle substrate is connected to the blue sub-pixel unit, and the non-flat surface is formed on the surface of the middle substrate 212 near the side of the quantum dot layer 230.
  • the surface shape, further, the concave curved surface is disposed on the surface of the middle substrate 212 on the side close to the quantum dot layer 230 at the position of the blue sub-pixel unit 231c.
  • the emission direction of the emission together with the red and green light emitted by the excitation and also emitted in different emission directions, constitutes the three primary colors for the color display of the pixel unit 230, and reduces the difference in display angle between the primary colors, thereby solving the problem of the liquid crystal panel.
  • the diffused blue light is divergent outward.
  • the light is emitted, and the light having a larger diffusion angle on both sides of the blue light is incident on the quantum dot layer support 232 on both sides of the blue sub-pixel unit 231c, and the quantum dot layer support 232 absorbs the incident blue light, reducing the blue sub- The amount of light transmitted by the pixel unit 231c reduces the light-emitting efficiency of the blue light.
  • the present application provides another embodiment of the non-planar-shaped intermediate substrate 212, the specific structure of which is shown in FIG. 2c.
  • the middle substrate is in contact with the blue sub-pixel unit, and a non-planar shape having a convex arc surface is disposed on the surface of the middle substrate 212 near the quantum dot layer 230 side, in the blue sub-pixel unit 231c.
  • the outer convex curved surface is disposed on a surface of the middle substrate 212 at a position close to the side of the quantum dot layer 230.
  • the focus of the lens formed by the convex curved surface is in the blue sub-pixel, and when the collimated parallel blue light is incident on the blue sub-pixel unit 231c via the intermediate substrate 212 having the convex curved surface, the blue light first converges in the blue In the sub-pixel unit 231c, diffusion occurs again, and the diffused blue light is emitted outward from the blue sub-pixel unit 231c in different emission directions.
  • the blue light in the embodiment passes through the middle substrate 212 having the convex arc surface, it is concentrated in the blue sub-pixel unit 231c, and then diffused to change the blue light in the blue.
  • the starting position of the diffusion in the color sub-pixel unit reduces the blue light that falls into the quantum dot layer holder 232 on both sides due to direct diffusion in the blue sub-pixel unit 231c, thereby improving the light-emitting efficiency of the light in the blue sub-pixel unit 231c.
  • the non-planar shape in the above embodiment may also be disposed on the upper substrate 213 of the package blue sub-pixel unit 213c.
  • the upper substrate 213 includes a lower surface 213a and an upper surface 213b, and the non-planar shape of the concave curved surface or the convex curved surface mentioned in the first and second modifications It can be disposed on the lower surface 213a and can also be disposed on the upper surface.
  • the non-planar shape is disposed on the surface of the upper substrate 213 at the position of the blue sub-pixel unit 231c.
  • the blue light transmitted by the blue sub-pixel unit 231c passes through a non-planar shape, the blue light directly diffuses or first converges and then diffuses, and the diffused blue light is emitted from the blue sub-pixel unit 231c in different emission directions.
  • a non-planar shape having a Fresnel lens structure is disposed on a surface of the middle substrate 212 at a position close to the quantum dot layer 230 at a position of the blue sub-pixel unit.
  • the Fresnel lens structure is composed of a plurality of concentric circles from small to large and can converge parallel incident light, so that the light converges to a point on one side of the light-emitting surface and then diffuses.
  • the structure and work of the Fresnel lens structure The principles and functions belong to the prior art in the art, and are not specifically described herein.
  • the focal length of the Fresnel lens is in the blue sub-pixel unit.
  • the blue light When the collimated parallel blue light is incident on the blue sub-pixel unit 231c via the substrate 212, the blue light first converges and then diffuses, thereby reducing the direct diffusion.
  • the blue light in the quantum dot layer holder 232 on both sides increases the light utilization efficiency, and the diffused blue light is emitted from the blue sub-pixel unit 231c in different emission directions.
  • the Fresnel lens structure in the present modification may also be disposed on the upper substrate 213 of the package blue sub-pixel unit 213c to first converge the parallel rays transmitted by the blue sub-pixel unit 231c. Then spread again to change the direction of the blue light.
  • the parallel blue light passes through the non-planar shape of the Fresnel lens structure, it first converges to a point on the light-emitting side and then diffuses, in order to prevent the diffused blue light from entering the quantum dot layer support, increasing the blue light.
  • the position of the light side convergence intersection can be determined by adjusting the size of the non-planar Fresnel lens structure to adjust the blue light start position of the emission diffusion in the blue sub-pixel unit. Blue light that prevents a large diffusion angle is absorbed by the quantum dot layer support.
  • the determination of the location of the convergence point by adjusting the size of the Fresnel lens structure belongs to the prior art, and is not specifically described in this embodiment.
  • a non-planar shape having a convex triangle is disposed on a surface of the middle substrate 212 at a position close to the quantum dot layer 230 at a position of the blue sub-pixel unit, wherein
  • the non-planar shape configured may also be a concave triangle, the specific structure thereof Refer to Figure 2g.
  • the position of the disposed convex triangular or concave triangular shape is on the surface of the middle substrate 212 on the side close to the quantum dot layer 230 at the position of the blue sub-pixel unit 231c.
  • the blue light When the collimated parallel blue light is incident on the blue sub-pixel unit 231c through the non-planar shape, the blue light is diffused, and the diffused blue light is emitted from the blue sub-pixel unit 231c in different emission directions, and is excited by the excitation.
  • the red and green lights emitted outward in different exit directions are also displayed together.
  • a non-planar shape having a convex triangular shape or a concave triangular shape may also be disposed on the upper substrate 213 of the package blue sub-pixel unit 213c, and the function and arrangement thereof are performed on the middle substrate.
  • the role on 212 is the same and will not be described here.
  • the middle substrate 212 and the upper substrate 213 of the embodiment can be made of a glass material that can transmit red light, green light, and blue light, and effectively block moisture and oxygen in the external environment.
  • the substrate 212 and the upper substrate 213 integrally encapsulate the quantum dot layer 230 to prevent the quantum dot material from being self-deactivated by oxygen or moisture in the external environment, thereby improving the operational reliability of the quantum dot material and the light transmittance of the liquid crystal panel 200.
  • a dichroic layer 260 is encapsulated between the quantum dot layer 230 and the intermediate substrate 212, and the dichroic layer 260 transmits blue light and Reflects red and green light. Since the red and green light is excited by the blue light in the quantum dot material in the pixel unit, the excitation light is super-directional in all directions when excited, so the red light and the green light can be emitted from the pixel unit at different exit angles, and at the same time, part The excitation light is scattered back in the direction toward the middle substrate 212, and the backscattered light cannot be emitted normally, which causes an additional loss of the excitation light.
  • the disposed dichroic layer 260 can reflect the backscattered red or green light, so that the partial light can be transmitted from the light exit surface of the quantum dot layer 220, reducing light loss and ensuring red and green light output. effectiveness.
  • the liquid crystal panel provided in the above embodiment includes a non-planar shape disposed on the middle substrate or the upper substrate and changing a blue light emission direction transmitted by the blue sub-pixel unit, and the blue light transmitted by the blue sub-pixel unit is configured non-plane
  • the blue light is emitted from the blue sub-pixel unit at different exit angles, and the red and green light emitted by the excitation and emitted at different exit angles together constitute a color display for the pixel unit.
  • the primary color makes the chromaticity of each primary color in the pixel unit uniform at different viewing angles, and solves the problem that the liquid crystal panel displays color cast under multiple viewing angles.
  • the liquid crystal display device 300 includes the quantum dot layer-packed liquid crystal panel 200 provided by any one of the above embodiments, and further includes: a backlight module 301 under the liquid crystal panel 200, the backlight module 301 provides a blue backlight to illuminate the liquid crystal panel 200.
  • the liquid crystal panel 200 is configured with a plurality of pixel units, and the pixel unit is composed of multiple colors.
  • the sub-pixel unit is composed of a liquid crystal layer of the liquid crystal panel 200 that controls the amount of backlight transmission transmitted to each of the sub-pixels.
  • the sub-pixel unit of the plurality of colors includes a red sub-pixel unit encapsulating a quantum dot material, a green sub-pixel unit, and a blue sub-pixel unit capable of transmitting a blue backlight, wherein the package substrate encapsulating the pixel unit
  • the substrate surface at the position of the blue sub-pixel unit is configured to have a non-planar shape.
  • the plurality of pixel units are packaged between a middle substrate of the liquid crystal panel and an upper substrate above the middle substrate.
  • a surface of the middle substrate or the upper substrate at the position of the blue sub-pixel unit is configured to have a non-planar shape such that a blue backlight transmitted by the blue sub-pixel unit passes through the Non-planar shape.
  • non-planar shape is a concave curved surface or a convex curved surface.
  • the non-planar shape is a Fresnel lens structure.
  • non-planar shape is a convex triangular surface or a concave triangular surface.
  • the red sub-pixel unit is packaged with a quantum dot material that emits red light under excitation of a blue backlight
  • the green sub-pixel unit is encapsulated with a quantum dot material that emits green light under excitation of a blue backlight.
  • the blue sub-pixel unit is encapsulated with a transparent medium or an air layer.
  • liquid crystal layer is encapsulated between the middle substrate and a lower substrate located under the middle substrate.
  • an optical film that acts as a collimation for the blue backlight is disposed under the lower substrate.
  • a dichroic layer is encapsulated between the quantum dot layer and the middle substrate of the liquid crystal panel, and the dichroic layer is used to transmit blue light and reflect red light and green light.
  • the present application provides a liquid crystal panel and a liquid crystal display device in which a quantum dot layer is packaged, wherein in the liquid crystal panel provided, the package substrate of the packaged pixel unit is on the surface of the substrate at the position of the blue sub-pixel unit.
  • Configured as a non-planar shape when used by blue sub-pixel units When the transmitted blue light passes through the substrate configured in a non-planar shape, the blue light is emitted from the blue sub-pixel unit at different exit angles and in divergent light, and is red and green emitted from the excited and emitted at different exit angles.
  • the panel displays the problem of color cast under multiple viewing angles, improving the performance of the screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种封装有量子点层(230)的液晶面板(200)和液晶显示装置(300),该液晶面板(200)配置有若干个像素单元(231),像素单元(231)由多种颜色的子像素单元组成,由液晶层(220)控制透射至各个子像素的背光透射量,多种颜色的子像素单元包括封装有量子点材料的红色子像素单元(231a)、绿色子像素单元(231b)以及可透射蓝色背光的蓝色子像素单元(231c),其中,封装像素单元(231)的封装基板在蓝色子像素单元(231c)位置处的基板表面被配置为非平面形状。当蓝色子像素单元(231c)内的蓝光经配置非平面形状的基板时,蓝光按非平行方向透射,与受蓝光激发所得并呈发散光的红、绿光共同实现像素单元(231)的色彩显示,解决各像素单元(231)在多视角下显示偏色问题。

Description

一种封装有量子点层的液晶面板和液晶显示装置 技术领域
本申请涉及液晶显示技术领域,尤其涉及一种封装有量子点层的液晶面板和液晶显示装置。
背景技术
相关技术中液晶面板中包括封装在两片平行玻璃基板之间的液晶层,以及置于液晶层上方的彩色滤光片。采用液晶面板显示画面时,以白色光源为背光,通过液晶层中受电压控制的液晶分子的翻转状态,控制背光光线在液晶层中的通断,当穿过液晶层的背光光线进入彩色滤光片时,只有在该彩色滤光片特定波长范围内的光线能够透过,并实现画面显示,其他波长范围内的光线被彩色滤光片吸收或反射,因此传统彩色滤光片对背光的透过率和利用率低。
为提高背光利用效率,以量子点层来代替传统彩色滤光片,示例性的,当选用蓝色背光时,在量子点层的红色子像素单元中封装红色量子点材料,绿色子像素单元中封装绿色量子点材料,以及蓝色子像素单元中为可使蓝光透射的透明区域,这样,液晶面板中每个像素对应的三基色子像素是在背光源的光线通过后得到的红绿蓝三色光,红色子像素和绿色子像素是受蓝光激发产生,而非相关技术中对白色背光过滤,因此,提高背光利用效率。
参照图1所示,相关技术中的设置有量子点层的液晶面板包括封装在下基板111和中基板112之间的液晶层120,以及封装在中基板112与上基板113之间量子点层130,液晶层120和量子点层130分别设置在中基板的两侧。其中,量子点层120中的红色子像素单元121和绿色子像素单元122分别封装红色和绿色量子点材料,蓝色子像素单元123封装透明介质并用于透射蓝光。
发明内容
为克服相关技术中存在的问题,本申请提供一种封装有量子点层的 液晶面板和液晶显示装置,使入射至蓝色子像素单元的蓝色平行光,以非平行方向透射出,以解决相关技术中多视角下显示偏色问题。
第一方面,本申请提供一种封装有量子点层的液晶面板,所述液晶面板配置有若干个像素单元,所述像素单元由多种颜色的子像素单元组成,由液晶层控制透射至各所述子像素的背光透射量,所述多种颜色的子像素单元包括封装有量子点材料的红色子像素单元、绿色子像素单元以及可透射蓝色背光的蓝色子像素单元,其中,封装所述像素单元的封装基板在所述蓝色子像素单元位置处的基板表面被配置为非平面形状。
第二方面,本申请还提供一种液晶显示装置,包括封装有量子点层的液晶面板和置于所述液晶面板下方的背光模组,所述背光模组提供蓝色背光源以照亮所述液晶面板,所述液晶面板配置有若干个像素单元,所述像素单元由多种颜色的子像素单元组成,由所述液晶面板的液晶层控制透射至各所述子像素的背光透射量,其中,所述多种颜色的子像素单元包括封装有量子点材料的红色子像素单元、绿色子像素单元以及可透射蓝色背光的蓝色子像素单元,其中,封装所述像素单元的封装基板在所述蓝色子像素单元位置处的基板表面被配置为非平面形状。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的液晶面板的结构示意图;
图2a为本申请的一些实施例中提供的液晶面板的整体结构示意图;
图2b为M处局部放大示意图;
图2c为本申请的一些实施例中变形例二的结构示意图;
图2d为本申请的一些实施例中变形例三的结构示意图;
图2e为本申请的一些实施例中变形例四的结构示意图;
图2f为本申请的一些实施例中变形例五的结构示意图;
图2g为本申请的一些实施例中变形例五的另一结构示意图
图2h为本申请的一些实施例中二向色层的结构示意图;
图3为本申请的一些实施例中提供的一种液晶显示装置的结构示意图。
具体实施方式
正如本申请中背景技术所述,为提高背光透过率和利用率,在液晶面板内设置代替传统彩色滤光片的量子点层,示例性的,可以蓝光作为背光源,通过蓝光激发量子点层转化而得的红光和绿光,与透射蓝光共同实现像素单元的色彩显示,无需滤掉背光中特定波长范围内的光线即可得到用于色彩显示的三基色。其中,为提高蓝光的透射效率,通过光学膜片对入射到液晶层前的蓝光进行准直处理。例如:相关技术中,在下基板111的入光侧设置对入射蓝光进行准直处理的光学膜片140,准直后的蓝光可垂直入射至下基板111,提高蓝光透射下基板111的效率。
发明人在实施相关技术时发现:当被准直处理后的平行蓝光沿垂直方向透射至下基板111后,大部分蓝光继续沿垂直方向透射过中基板112和上基板113,大部分准直后的蓝光始终沿单一并垂直于基板表面的方向,依次由液晶层和蓝色子像素单元透射出,以构成用于像素单元色彩显示的蓝基色光。这样,蓝色子像素单元透射出的大部分蓝基色光呈单一出射方向的平行光,而红色和绿色子像素单元中发出的红、绿基色光是由量子点材料受蓝光激发产生并呈不同出射方向的散射光。也就是说,沿单一平行出射方向的蓝基色光,与受激发所得并沿不同出射方向呈发散光的红光和绿光在出射角度上存在较大差异,即蓝基色光显示视角比散射的红、绿基色光显示视角小很多,使得由像素单元中各基色在不同视角上的色度不一致,造成液晶面板在多视角下显示偏色。在不进行准直的相关技术中,通过蓝色子像素透出的光线所具有的视角也小于 红绿子像素透射出的光线的视角。
针对上述相关技术中,因蓝色子像素单元中沿单一方向所透射的蓝光与受激发所得呈扩散光的红、绿光所导致的各像素单元在多视角下显示偏色的问题。本申请提出一种封装有量子点层的液晶面板和液晶显示装置,以使得蓝光按不同的出射角度从蓝色子像素单元透射出以提高蓝光的显示视角,减小由像素单元所发出的蓝基色与红、绿基色在不同视角上的色度差异,解决相关技术中多视角下显示偏色问题。
具体地,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明或者隐含的包括一个或者更多个该技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请的一些实施例中所提供了一种液晶面板200,其整体结构请参照图2a所示,为更清楚的表达封装有量子点层的液晶面板200的局部结构,沿图2a中A向剖视后并在M处局部放大,请参照图2b所示,该液晶面板200包括:下基板211、中基板212、上基板213、液晶层220和量子点层230。
其中,液晶层220封装在下基板211和中基板212之间,由液晶层220内液晶分子的翻转状态控制背光光线的透射量,量子点层230设置在液晶层220的上方并封装在中基板212和上基板213之间,量子点层230和液晶层分别设置在中基板212的两侧,量子点层230中包括多个像素单 元231,每个像素单元231中的多种颜色的子像素单元包括:封装有红色量子点材料的红色子像素单元231a、封装有绿色量子点材料的绿色子像素单元231b、以及封装有透明介质或空气层的蓝色子像素单元231c,各个子像素单元之间通过量子点层支架232两两分隔,以减少临近子像素单元之间的光线干扰,防止漏光。封装在红色子像素单元231a和绿色子像素单元231b内的量子点材料在蓝光激发下分别发出红光和绿光,与从蓝色子像素单元231c中透射出的蓝光共同构成用于像素单元231色彩显示的三基色,多个像素单元231共同用于液晶面板200的画面显示。
如图2b所示,为提高蓝光由下基板211的透射效率,并提高红绿量子点的激发效率,该液晶面板200中还包括:设置在下基板211下方并对入射蓝光进行准直的光学膜片240,如棱镜膜,准直后的蓝光沿垂直方向透射过下基板211,以激发量子点层230。
在本申请中,蓝色子像素单元213c位置处的中基板212或上基板213的表面上被配置成非平面形状,使得由蓝色子像素单元213c所透射的蓝色背光经过所述非平面形状。具体地,非平面形状与透射的平行蓝光方向为非垂直。需要进一步说明的是,为改变从蓝色子像素单元231c中所透射出的平行蓝光的出射方向,具有改变光线出射方向作用的非平面形状应配置在与蓝色子像素单元231c相对应的基板上,也就是说,中基板212或上基板213作为封装像素单元231的封装基板,应将该封装基板在蓝色子像素单元231c位置处的基板表面配置为非平面形状,即将蓝色子像素单元213c位置处的中基板212或上基板213的表面上配置为非平面形状,使得由蓝色子像素单元231c所透射的蓝光能够经过配置的非平面形状,并按非平行方向透射出。
本实施例中以变形例的形式提出多种配置不同非平面形状的基板,下面将结合附图对各变形例中的非平面形状作出详细说明。需要说明的是,对于本领域的普通技术人员来说,可根据本申请的技术方案和技术构思作出其他非平面形状基板的改变或变形,而所有这些改变或变形都应属于本申请的保护范围。
请参照图2b所示,作为一种实现方式,中基板与蓝色子像素单元相接,沿靠近量子点层230一侧的中基板212表面上开设呈内凹弧面的非平 面形状,进一步地,在蓝色子像素单元231c位置处的中基板212的靠近量子点层230一侧的表面上配置该内凹弧面。通过光学膜片240准直后的平行蓝光,经呈内凹弧面的中基板212入射到蓝色子像素单元231c时,蓝光发生扩散,扩散后的蓝光从蓝色子像素单元231c中按不同的出射方向发射,与由激发所得并同样按不同出射方向发射的红、绿光共同构成用于像素单元230色彩显示的三基色,降低各基色之间显示视角的差值,解决液晶面板在多视角下的偏色问题。
而在该变形例中,请参照图2b中的光线路径,当蓝光经呈内凹弧面的中基板212后并在蓝色子像素单元231c内发生扩散,扩散后的蓝光呈发散状向外发射,而蓝光两侧扩散角度较大的光线会射入到蓝色子像素单元231c两侧的量子点层支架232中,量子点层支架232对射入的蓝光进行吸收,减少由蓝色子像素单元231c透射出的光线数量,降低蓝光出光效率。因此,为减少蓝色子像素单元231c中光线损失,提高蓝光的出光效率,本申请提供另一种非平面形状的中基板212的实施方式,其具体结构如图2c所示的。请参照图2c所示,中基板与蓝色子像素单元相接,沿靠近量子点层230一侧的中基板212表面上配置呈外凸弧面的非平面形状,在蓝色子像素单元231c位置处的中基板212的靠近量子点层230一侧的表面上配置该外凸弧面。该外凸弧面形成的透镜的焦点在蓝色子像素内,当准直后的平行蓝光经呈外凸弧面的中基板212入射到蓝色子像素单元231c时,蓝光先汇聚在蓝色子像素单元231c内,再发生扩散,扩散后的蓝光从蓝色子像素单元231c中按不同的出射方向向外发射。
请参照图2c中的光线路径,在该实施方式中中的蓝光经呈外凸弧面的中基板212后,先在蓝色子像素单元231c内发生汇聚后,再进行扩散,改变蓝光在蓝色子像素单元内发生扩散的起始位置,减少蓝色子像素单元231c内因直接发生扩散而落入到两侧量子点层支架232的蓝光,提高蓝色子像素单元231c内光线的出光效率。
上述实施方式中的中的非平面形状也可配置在封装蓝色子像素单元213c的上基板213上。作为另一种实施例,请参照图2d所示,上基板213包括下表面213a和上表面213b,在变形例一和二中所提到呈内凹弧面或外凸弧面的非平面形状可配置在下表面213a上,同样可以设置在上表面 213b上,即,在蓝色子像素单元231c位置处的上基板213的表面上配置该非平面形状。当由蓝色子像素单元231c透射出的平行蓝光经非平面形状时,蓝光直接发生扩散或先汇聚再扩散,扩散后的蓝光从蓝色子像素单元231c中按不同的出射方向发射。
在本变形例中需要解释说明的是,配置不同非平面形状的基板对光线出射方向所起到的作用已在上述变形例中作出解释说明,本变形例中对非平面形状在上基板213的配置位置进行了补充说明。
请参照图2e所示,作为另一种实现方式,在蓝色子像素单元位置处的中基板212的沿靠近量子点层230一侧的表面上配置呈菲涅尔透镜结构的非平面形状。菲涅尔透镜结构由多个由小到大的同心圆构成并可对平行入射光进行汇聚,使得光线在出光面的一侧先汇聚成一点后再扩散,菲涅尔透镜结构的结构、工作原理和作用属于本领域的现有技术,具体不在赘述。菲涅尔透镜的焦距在蓝色子像素单元内,当准直后的平行蓝光经基板212入射到蓝色子像素单元231c时,蓝光先发生汇聚后再扩散,可减少因直接扩散而落入到两侧量子点层支架232中的蓝光,提高光线利用率,扩散后的蓝光从蓝色子像素单元231c中按不同的出射方向发射。
需要解释说明的是,本变形例中的菲涅尔透镜结构也可配置在封装蓝色子像素单元213c的上基板213上,对由蓝色子像素单元231c中透射出的平行光线进行先汇聚后再扩散,以改变蓝光的出射方向。
还需说明的是,由于平行蓝光经菲涅尔透镜结构的非平面形状时,先在出光侧汇聚成一点后再扩散,为防止扩散后的蓝光射入到量子点层支架中,增大蓝光从蓝色子像素单元231c中的出射角度,可通过调整非平面形状的菲涅尔透镜结构尺寸来确定出光侧汇聚交点的位置,以调整蓝色子像素单元内发射扩散的蓝光起始位置,防止扩散角度较大的蓝光被量子点层支架吸收。其中,通过调整菲涅尔透镜结构尺寸来确定汇聚交点位置属于现有技术,本实施例中对此不在具体赘述。
作为另一种实施方式,请参照图2f所示,在蓝色子像素单元位置处的中基板212的沿靠近量子点层230一侧的表面上配置呈外凸三角形的非平面形状,其中,所配置的非平面形状也可为内凹三角形,其具体结构 参照图2g所示。所配置的外凸三角形或内凹三角形的位置是在蓝色子像素单元231c位置处的中基板212的沿靠近量子点层230一侧的表面上。当准直后的平行蓝光经非平面形状入射到蓝色子像素单元231c时,蓝光发生扩散,扩散后的蓝光从蓝色子像素单元231c中按不同的出射方向向外发射,与由激发所得并同样按不同出射方向向外发射的红光和绿光共同完成画面显示。
在本变形例中需要解释说明的是,呈外凸三角形或内凹三角形的非平面形状也可配置在封装蓝色子像素单元213c的上基板213上,所起到的作用与配置在中基板212上的作用相同,在此不再赘述。
在本实施例中需要进一步说明的是,本实施例的中基板212和上基板213可选用可透射红光、绿光和蓝光的玻璃材质,并有效阻隔外界环境中的水分和氧气,通过中基板212和上基板213对量子点层230进行整体封装,防止量子点材料受外界环境中的氧气或水分而引发自身失效,提高量子点材料工作可靠性以及液晶面板200的透光性。
为降低光线损失并提高光线利用率,可选地,请参照图2h所示,在量子点层230和中基板212之间封装有二向色层260,该二向色层260可透射蓝光且反射红光和绿光。由于红光和绿光是由像素单元内的量子点材料受蓝光激发所得,激发时激发光线超向各个方向,所以红光和绿光可按不同的出射角度由像素单元向外发射,同时部分激发光线沿朝向中基板212的方向向后散射,向后散射的光线无法正常出射会造成激发光线的额外损失。所设置的二向色层260可对向后散射的红光或绿光进行反射,使得该部分光线能够从量子点层220的出光面透射出,降低光线损失,保证红光和绿光的出光效率。
上述实施方式中所提供的液晶面板包括配置在中基板或上基板上并改变由蓝色子像素单元透射出的蓝光出射方向的非平面形状,当由蓝色子像素单元透射的蓝光经过配置非平面形状的基板时,蓝光按不同的出射角度由蓝色子像素单元向外发射,与由激发所得并按不同出射角度向外发射的红光和绿光共同构成用于像素单元色彩显示的三基色,使得像素单元中各基色在不同视角下的所含色度均匀一致,解决液晶面板在多视角下显示偏色的问题。
本申请的一些实施例提供了一种液晶显示装置,请参照图3所示,该液晶显示装置300包括上述任意一种实施方式所提供的封装有量子点层的液晶面板200,还包括:设置在液晶面板200下方的背光模组301,该背光模组301提供蓝色背光源以照亮所述液晶面板200,所述液晶面板200配置有若干个像素单元,所述像素单元由多种颜色的子像素单元组成,由所述液晶面板200的液晶层控制透射至各所述子像素的背光透射量。
其中,所述多种颜色的子像素单元包括封装有量子点材料的红色子像素单元、绿色子像素单元以及可透射蓝色背光的蓝色子像素单元,其中,封装所述像素单元的封装基板在所述蓝色子像素单元位置处的基板表面被配置为非平面形状。
进一步地,所述若干个像素单元封装在所述液晶面板的中基板和位于所述中基板上方的上基板之间。
进一步地,所述蓝色子像素单元位置处的所述中基板或所述上基板的表面上被配置成非平面形状,使得由所述蓝色子像素单元所透射的蓝色背光经过所述非平面形状。
进一步地,所述非平面形状为内凹弧面或外凸弧面。
进一步地,所述非平面形状为菲涅尔透镜结构。
进一步地,所述非平面形状为外凸三角形面或内凹三角形面。
进一步地,所述红色子像素单元中封装有在蓝色背光激发下发出红光的量子点材料,所述绿色子像素单元中封装有在蓝色背光激发下发出绿光的量子点材料,所述蓝色子像素单元中封装有透明介质或空气层。
进一步地,所述液晶层封装在所述中基板和位于所述中基板下方的下基板之间。
进一步地,所述下基板下方设置对蓝色背光起准直作用的光学膜片。
进一步地,所述量子点层和所述液晶面板的中基板之间封装有二向色层,所述二向色层用于透射蓝光,并且反射红光和绿光。
综上所述,本申请提供一种封装量子点层的液晶面板和液晶显示装置,其中,在所提供的液晶面板中,封装像素单元的封装基板在蓝色子像素单元位置处的基板表面被配置为非平面形状,当由蓝色子像素单元 透射的蓝光经过配置成非平面形状的基板时,蓝光按不同的出射角度并呈发散光由蓝色子像素单元向外发射,与受激发所得并按不同出射角度向外发射的红光和绿光共同构成用于色彩显示的三基色,减小像素单元中各基色在不同可视角度上的色度差异,提高像素单元中各基色在不同视角下的色度一致性和均匀性,解决液晶面板多视角下显示偏色的问题,提升画面表现能力。
尽管已经相对于一个或多个实现方式示出并描述了本申请,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本申请包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括
以上仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种封装有量子点层的液晶面板,所述液晶面板配置有若干个像素单元,所述像素单元由多种颜色的子像素单元组成,由所述液晶面板的液晶层控制透射至各所述子像素的背光透射量,其特征在于,
    所述多种颜色的子像素单元包括封装有量子点材料的红色子像素单元、绿色子像素单元以及可透射蓝色背光的蓝色子像素单元,其中,封装所述像素单元的封装基板在所述蓝色子像素单元位置处的基板表面被配置为非平面形状。
  2. 根据权利要求1所述的液晶面板,其特征在于,所述若干个像素单元封装在所述液晶面板的中基板和位于所述中基板上方的上基板之
    间。
  3. 根据权利要求2所述的液晶面板,其特征在于,所述蓝色子像素单元位置处的所述中基板或所述上基板的表面上被配置成非平面形状,使得由所述蓝色子像素单元所透射的蓝色背光经过所述非平面形状。
  4. 根据权利要求2所述的液晶面板,其特征在于,所述非平面形状为内凹弧面或外凸弧面。
  5. 根据权利要求2所述的液晶面板,其特征在于,所述非平面形状为菲涅尔透镜结构。
  6. 根据权利要求2所述的液晶面板,其特征在于,所述非平面形状为外凸三角形面或内凹三角形面。
  7. 根据权利要求1所述的液晶面板,其特征在于,所述红色子像素单元中封装有在蓝色背光激发下发出红光的量子点材料,所述绿色子像素单元中封装有在蓝色背光激发下发出绿光的量子点材料,所述蓝色子像素单元中封装有透明介质或空气层。
  8. 根据权利要求1所述的液晶面板,其特征在于,所述液晶层封装在所述中基板和位于所述中基板下方的下基板之间。
  9. 根据权利要求1所述的液晶面板,其特征在于,所述下基板下方设置对蓝色背光起准直作用的光学膜片。
  10. 根据权利要求1所述的液晶面板,其特征在于,所述量子点层和所述液晶面板的中基板之间封装有二向色层,所述二向色层用于透射蓝 光,并且反射红光和绿光。
  11. 一种液晶显示装置,其特征在于,包括封装有量子点层的液晶面板和置于所述液晶面板下方的背光模组,所述背光模组提供蓝色背光源以照亮所述液晶面板,所述液晶面板配置有若干个像素单元,所述像素单元由多种颜色的子像素单元组成,由所述液晶面板的液晶层控制透射至各所述子像素的背光透射量,其中,
    所述多种颜色的子像素单元包括封装有量子点材料的红色子像素单元、绿色子像素单元以及可透射蓝色背光的蓝色子像素单元,其中,封装所述像素单元的封装基板在所述蓝色子像素单元位置处的基板表面被配置为非平面形状。
  12. 根据权利要求11所述的液晶显示装置,其特征在于,所述若干个像素单元封装在所述液晶面板的中基板和位于所述中基板上方的上基板之间。
  13. 根据权利要求12所述的液晶显示装置,其特征在于,所述蓝色子像素单元位置处的所述中基板或所述上基板的表面上被配置成非平面形状,使得由所述蓝色子像素单元所透射的蓝色背光经过所述非平面形状。
  14. 根据权利要求12所述的液晶显示装置,其特征在于,所述非平面形状为内凹弧面或外凸弧面。
  15. 根据权利要求12所述的液晶显示装置,其特征在于,所述非平面形状为菲涅尔透镜结构。
  16. 根据权利要求12所述的液晶显示装置,其特征在于,所述非平面形状为外凸三角形面或内凹三角形面。
  17. 根据权利要求11所述的液晶显示装置,其特征在于,所述红色子像素单元中封装有在蓝色背光激发下发出红光的量子点材料,所述绿色子像素单元中封装有在蓝色背光激发下发出绿光的量子点材料,所述蓝色子像素单元中封装有透明介质或空气层。
  18. 根据权利要求11所述的液晶显示装置,其特征在于,所述液晶层封装在所述中基板和位于所述中基板下方的下基板之间。
  19. 根据权利要求11所述的液晶显示装置,其特征在于,所述下基 板下方设置对蓝色背光起准直作用的光学膜片。
  20. 根据权利要求11所述的液晶显示装置,其特征在于,所述量子点层和所述液晶面板的中基板之间封装有二向色层,所述二向色层用于透射蓝光,并且反射红光和绿光。
PCT/CN2017/098263 2017-01-03 2017-08-21 一种封装有量子点层的液晶面板和液晶显示装置 WO2018126700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710001193.6A CN106773306B (zh) 2017-01-03 2017-01-03 一种封装有量子点层的显示面板和液晶显示装置
CN201710001193.6 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126700A1 true WO2018126700A1 (zh) 2018-07-12

Family

ID=58952050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098263 WO2018126700A1 (zh) 2017-01-03 2017-08-21 一种封装有量子点层的液晶面板和液晶显示装置

Country Status (2)

Country Link
CN (1) CN106773306B (zh)
WO (1) WO2018126700A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773306B (zh) * 2017-01-03 2018-11-23 青岛海信电器股份有限公司 一种封装有量子点层的显示面板和液晶显示装置
CN107153297B (zh) * 2017-07-21 2019-04-23 深圳市华星光电技术有限公司 显示面板及显示设备
CN107219673B (zh) * 2017-08-01 2019-05-03 深圳市华星光电技术有限公司 显示面板及显示装置
US10782552B2 (en) 2017-08-01 2020-09-22 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel and display device
KR102476136B1 (ko) * 2017-09-05 2022-12-09 삼성전자주식회사 Led를 이용한 디스플레이 장치
CN107817630A (zh) * 2017-12-07 2018-03-20 青岛海信电器股份有限公司 一种液晶显示装置
TWI667500B (zh) * 2018-04-03 2019-08-01 友達光電股份有限公司 彩色濾光片、顯示面板及其製造方法
CN108919403A (zh) 2018-07-24 2018-11-30 京东方科技集团股份有限公司 彩色滤光片及其制作方法、显示面板
CN108983509B (zh) * 2018-07-25 2021-03-23 Tcl华星光电技术有限公司 液晶显示模组以及液晶显示装置
KR102619610B1 (ko) * 2018-09-28 2023-12-28 엘지디스플레이 주식회사 자체발광 표시장치
CN110045539A (zh) * 2019-04-23 2019-07-23 京东方科技集团股份有限公司 显示面板、显示面板的制造方法和显示装置
CN112150937A (zh) * 2019-06-28 2020-12-29 成都辰显光电有限公司 色彩转化组件及显示面板
CN112234078B (zh) 2019-06-30 2022-11-01 成都辰显光电有限公司 色彩转换组件及显示装置
CN110471210B (zh) 2019-08-22 2022-06-10 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN111341816B (zh) * 2020-03-11 2022-11-25 武汉华星光电半导体显示技术有限公司 一种显示面板、显示面板制程方法及显示装置
CN111369903A (zh) * 2020-04-08 2020-07-03 深圳市华星光电半导体显示技术有限公司 Micro LED显示装置
CN111540281A (zh) * 2020-05-19 2020-08-14 Tcl华星光电技术有限公司 柔性彩色滤光膜及其制作方法、全彩微发光二极管器件
CN114333614A (zh) * 2020-09-28 2022-04-12 京东方科技集团股份有限公司 显示面板及显示装置
CN112635514A (zh) * 2021-01-20 2021-04-09 上海大学 一种柔性Micro LED显示屏及其封装方法
CN113589571B (zh) * 2021-07-27 2024-08-20 昆山国显光电有限公司 显示面板及显示装置
CN114265230A (zh) * 2021-12-29 2022-04-01 绵阳惠科光电科技有限公司 显示面板及其制作方法和显示装置
CN115332296A (zh) * 2022-02-22 2022-11-11 深圳市华星光电半导体显示技术有限公司 一种量子点显示面板及显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353629A (zh) * 2013-07-17 2013-10-16 杭州纳晶科技有限公司 彩色滤光片和显示屏
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
US20150185381A1 (en) * 2013-12-26 2015-07-02 Ye Xin Technology Consulting Co., Ltd. Display device with color conversion layer for full-color display
CN105204103A (zh) * 2015-10-09 2015-12-30 深圳市华星光电技术有限公司 量子点彩色滤光片及液晶显示装置
CN105353556A (zh) * 2015-12-09 2016-02-24 深圳市华星光电技术有限公司 显示装置
CN106773306A (zh) * 2017-01-03 2017-05-31 青岛海信电器股份有限公司 一种封装有量子点层的显示面板和液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093643B (zh) * 2015-08-04 2019-03-12 深圳市华星光电技术有限公司 彩色发光元件及液晶显示装置
CN105700066B (zh) * 2016-04-29 2018-11-23 京东方科技集团股份有限公司 导光板、背光源及显示装置
CN106094331B (zh) * 2016-06-03 2019-03-12 京东方科技集团股份有限公司 一种显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353629A (zh) * 2013-07-17 2013-10-16 杭州纳晶科技有限公司 彩色滤光片和显示屏
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
US20150185381A1 (en) * 2013-12-26 2015-07-02 Ye Xin Technology Consulting Co., Ltd. Display device with color conversion layer for full-color display
CN105204103A (zh) * 2015-10-09 2015-12-30 深圳市华星光电技术有限公司 量子点彩色滤光片及液晶显示装置
CN105353556A (zh) * 2015-12-09 2016-02-24 深圳市华星光电技术有限公司 显示装置
CN106773306A (zh) * 2017-01-03 2017-05-31 青岛海信电器股份有限公司 一种封装有量子点层的显示面板和液晶显示装置

Also Published As

Publication number Publication date
CN106773306A (zh) 2017-05-31
CN106773306B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2018126700A1 (zh) 一种封装有量子点层的液晶面板和液晶显示装置
JP6096937B2 (ja) 発光装置及び関連する投影システム
US7210793B2 (en) Light source unit and projector
CN104603689A (zh) 光源装置
TW200415534A (en) Device for generating bundled light-current
US10379284B2 (en) Light source device and projector
WO2018214618A1 (zh) 背光模组及液晶显示装置
US9977316B2 (en) Projection apparatus and illumination system thereof
US11422450B2 (en) Light source apparatus and display device
TWM523875U (zh) 背光模組
JP2011118187A (ja) 光偏向素子、光源装置及び表示装置
JP2011249336A (ja) バックライトユニット及びこれを含む表示装置
JP2020030224A (ja) 波長変換素子、光源装置およびプロジェクター
WO2018214611A1 (zh) 背光模组及液晶显示装置
CN101995743A (zh) 一种亮度和颜色均匀的投影光学引擎
TWI567456B (zh) Surface light source device and liquid crystal display device
JP2008122949A (ja) 光源装置、プロジェクタ
CN104100876A (zh) 发光装置以及背光模块
US20110249199A1 (en) Video projector and light modulation element
JP2017147176A (ja) 波長変換素子、照明装置およびプロジェクター
JP2012238462A (ja) 光混合ユニット、面光源装置および液晶表示装置
TW201116855A (en) Color mixing lens and liquid crystal display device having the same
CN210803926U (zh) 直下式背光模组及显示装置
JP2014164833A (ja) 面光源装置および液晶表示装置
WO2018154873A1 (ja) 波長変換部材及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889874

Country of ref document: EP

Kind code of ref document: A1