WO2018126564A1 - 用于车灯的透镜、汽车前照灯及汽车 - Google Patents
用于车灯的透镜、汽车前照灯及汽车 Download PDFInfo
- Publication number
- WO2018126564A1 WO2018126564A1 PCT/CN2017/081815 CN2017081815W WO2018126564A1 WO 2018126564 A1 WO2018126564 A1 WO 2018126564A1 CN 2017081815 W CN2017081815 W CN 2017081815W WO 2018126564 A1 WO2018126564 A1 WO 2018126564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- mirror
- annular
- mirror surface
- light
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/275—Lens surfaces, e.g. coatings or surface structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/265—Composite lenses; Lenses with a patch-like shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/10—Protection of lighting devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/04—Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/08—Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1876—Diffractive Fresnel lenses; Zone plates; Kinoforms
- G02B5/189—Structurally combined with optical elements not having diffractive power
- G02B5/1895—Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
Definitions
- the present invention relates to the field of automotive lamp technology, and more particularly to a lens for a lamp, a car headlight using the lens, and a car including the headlamp.
- Projection lighting systems commonly used in automotive lights generally include a light source, a mirror, a visor, and a lens.
- the mirror is an ellipsoidal shape, and the illuminating center of the light source is disposed at the near focus of the ellipsoidal mirror.
- the light emitted by the light source is reflected by the ellipsoidal mirror and converges near the far focus of the ellipsoidal mirror.
- the visor is disposed on the ellipsoidal reflector. At the far focus of the mirror, the shape is consistent with the shape of the cut-off line required for the low beam, and finally a parallel-like low-beam illumination pattern with a cut-off line is formed by the lens.
- the headlight of a car is characterized in that the light emitted by the light source is emitted from the inner mirror of the lens to the outer mirror surface, and the incident light is focused near the focus of the lens and then is directed toward the inner mirror surface, and the emitted light is close to the horizontal direction. Therefore, the lens for a vehicle lamp only considers the horizontal parallel rays or the focus of the light near the horizontal direction, and the sunlight directed toward the lens generally obliquely downward from the upper side toward the lens, and the angle constantly changes.
- the conventional lens adopts a plano-convex lens, and the inner mirror surface is a plane, which is disposed toward the light source, and the outer mirror surface is aspherical.
- the light of the light source is focused near the focus of the plano-convex lens, and then the inner mirror of the plano-convex lens faces the outer mirror surface.
- the emitted light is close to the horizontal direction.
- the conventional plano-convex lens is made of transparent plastic or glass, such as PC (Polycarbonate, polycarbonate), PMMA (Polymethyl Methacrylate, polymethyl methacrylate) and the like. According to its diameter and focal length, its maximum thickness ranges from 20 mm to 50 mm.
- This lens is advantageous in that it corrects the aberration problem of spherical convex lens imaging by aspherical convex lens design, which makes the lens imaging clearer. distortion.
- this lens also brings about the problem that daylight sunlight illuminates the lens, is reflected by the lens, is focused at the front of the lens, and is condensed by the lens to converge at the back of the mirror to burn the parts inside the lamp. And as the incident angle of the sunlight is different, the focus position changes dynamically within a certain range. As shown in Fig. 2, Fig. 3 and Fig. 4, respectively, the parallel rays of the angles of 30, 45 and 60 in the horizontal direction are directed to the focusing mirror of the outer mirror of the plano-convex lens.
- FIG. 2 shows that the parallel light rays at an angle of 30° to the horizontal direction pass through the plano-convex lens and form an inner focus on the side of the mirror surface inside the plano-convex lens;
- FIG. 3 shows that the parallel light rays at an angle of 45° to the horizontal direction pass through the plano-convex lens and are flattened.
- One side of the inner mirror surface of the convex lens forms an inner focus, and the light reflected by the inner mirror surface forms an external focus on one side of the outer mirror surface of the plano-convex lens;
- FIG. 4 shows that most of the parallel light rays at an angle of 60° to the horizontal direction pass through the plano-convex lens.
- the patent of the publication No. CN 101298906A discloses a lenticular lens-based automotive headlamp, which utilizes a lenticular design in which the inner mirror surface is spherical and the outer mirror surface is a free-form surface, which reduces the reflected focus focal length and reduces the reflection of sunlight through the lens.
- the focus is on the risk of burning the lights or other parts on the car.
- the sunlight L3 is incident at a certain angle of parallel light, and after being reflected by the lenticular lens 4, the reflected light L1 is focused on the vicinity of A, and after being reflected by the plano-convex lens 6, the reflected light L2 is focused near B, and can be seen.
- the position of the focus point reflected by the lenticular lens is smaller than the position of the focus point reflected by the plano-convex lens.
- this design still has the following disadvantages:
- the lenticular lens can only reduce the focal length after sunlight reflection, reduce the risk of sunlight being reflected by the lens and then focus on burning the lamp or other components on the car, and can not completely eliminate the problem of focusing after reflection.
- the lenticular lens cannot solve the problem that the sunlight is transmitted through the lens and the inner side of the inner mirror surface is formed to focus on the inner part of the lens.
- the lenticular lens Due to its optical path principle, the lenticular lens is still thicker in size and has more materials, resulting in high cost and large quality defects, which is not conducive to the anti-vibration performance during driving, and the optical path of the light in the lens is relatively high. Large, resulting in more light absorbed by the lens when the light propagates inside the lens, reducing the light efficiency of the projection illumination system.
- the technical problem to be solved by the present invention is to provide a lens for a lamp, a car headlight using the lens, and a car including the headlight, which can prevent sunlight from being reflected by the lens to form an external focus and Internal focusing is formed through the lens to overcome the aforementioned drawbacks of the prior art.
- a lens for a vehicle lamp comprising a first mirror surface and a second mirror surface opposite to the first mirror surface, the first mirror surface being a curved surface or a plane, and the second mirror surface comprising a plurality of concentric circular annular surfaces.
- all of the annular faces are curved or both are tapered.
- the equation of the curved surface is:
- x and y are the radius values of the first mirror surface and the annular surface, respectively;
- c x 1/R x
- c y 1/R y
- R x , R y are the radius of curvature of the first mirror surface and the annular surface, respectively;
- k x and k y are the conic coefficients of the first mirror surface and the annular surface, respectively, -1 ⁇ k x ⁇ 1, and -1 ⁇ k y ⁇ 1.
- the second mirror surface is recorded with a plurality of concentric circles, and the plurality of concentric circles divide the second mirror surface into a plurality of annular surfaces.
- the second mirror surface comprises a first half surface and a second half surface, wherein the first half surface and the second half surface are connected by a step surface, the first half surface is a curved surface, and the second half surface is recorded with a plurality of concentric arcs.
- a plurality of concentric arcs divide the second half into a plurality of annular faces, and the annular faces are curved.
- a bar pattern is recorded on the step surface.
- all of the annular faces are distributed in a stepwise manner, and the thickness of the lens gradually decreases or gradually increases from the center to the outer circumference.
- all of the annular faces are distributed on the same plane.
- a headlight for a vehicle comprising a light source, a mirror, a visor and a lens, the lens being a lens for a vehicle lamp as described above.
- a car comprising a car headlight as described above.
- the lens for a vehicle lamp of the present invention can be placed at an angle parallel to the horizontal direction by providing a plurality of annular faces on the second mirror surface of the lens without affecting the horizontal parallel rays passing through the lens to form a focus.
- the light is split into several facets, so that both the light reflected by the lens and the light passing through the lens are not effectively focused. Therefore, the automobile headlamp and the automobile including the same according to the present invention can eliminate the external focus formed by the reflection of the lens when the sunlight is irradiated on the headlight of the automobile and the inner focus formed through the lens to avoid the sun. Light exposure causes damage to parts inside and outside the lens of the interior of the vehicle headlight.
- Figure 1 is a schematic view of the focus simulation of horizontal parallel rays directed toward the outer mirror of the plano-convex lens.
- Fig. 2 is a schematic view showing the focus simulation of parallel rays incident at an angle of 30° to the horizontal direction toward the outer mirror surface of the plano-convex lens.
- Fig. 3 is a schematic view showing the focus simulation of parallel rays incident at an angle of 45 with respect to the horizontal direction toward the outer mirror of the plano-convex lens.
- Figure 4 is a schematic view showing the focus simulation of parallel rays incident at an angle of 60° to the horizontal direction toward the outer mirror of the plano-convex lens.
- FIG. 5 is a schematic view showing the contrast of sunlight of a lenticular lens and a plano-convex lens in the prior art.
- FIG. 6 is a schematic diagram showing the structure and optical performance of a first lens according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram showing the structure and optical performance of a second lens according to an embodiment of the present invention.
- FIG. 8 is a schematic structural view of a third lens according to an embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a fourth lens according to an embodiment of the present invention.
- Figure 10 is a schematic illustration of the focus simulation of parallel rays of light at an angle of 30 to the horizontal to the second mirror of the lens shown in Figure 6.
- Figure 11 is a schematic view showing the focus simulation of parallel rays of light at an angle of 45 with respect to the horizontal direction toward the second mirror of the lens shown in Figure 6.
- Figure 12 is a schematic illustration of the focus simulation of parallel rays of light at an angle of 60 to the horizontal to the second mirror of the lens shown in Figure 6.
- Figure 13 is a schematic view showing the structure of an automobile headlamp according to an embodiment of the present invention.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
- the above terms can be understood on a case-by-case basis. The specific meaning in the present invention.
- the lens 1 of the present embodiment includes a first mirror surface 11 and a second mirror surface 12 opposite to the first mirror surface 11.
- the first mirror surface 11 may be a curved surface, and the curved surface may be a spherical surface or an aspherical surface; the first mirror surface 11 may also be a flat surface.
- the second mirror surface 12 includes a plurality of concentric annular annular faces 13.
- a plurality of annular faces 13 may be disposed in the entire area of the second mirror surface 12, that is, all of the annular faces 13 are all rotating faces; and the plurality of annular faces 13 may also be disposed only in a part of the second mirror face 12, that is, all
- the annular surface 13 is an arcuate annular surface, and the other portion of the second mirror surface 12 is a curved surface, and the curved surface may be a spherical surface or an aspheric surface. All of the annular faces 13 may be curved surfaces, and the curved surfaces may be spherical or aspherical; all of the annular faces 13 may also be tapered.
- All of the annular faces 13 may be distributed on the same plane; or may be arranged in a stepwise manner, and the thickness of the lens 1 may gradually decrease or gradually increase from the center to the outer circumference, that is, the second mirror 12 may be convex or Concave inside.
- Fig. 6 shows a form of the lens 1 of the present embodiment
- Fig. 6a is a schematic cross-sectional view taken along line A-A of Fig. 6b and a schematic view of the optical performance of the lens 1.
- the first mirror surface 11 of the lens 1 is a curved surface
- a plurality of concentric circles 14 are recorded on the entire area of the second mirror surface 12.
- a plurality of concentric circles 14 are concentric with the second mirror surface 12, and a plurality of concentric circles 14 will be
- the second mirror surface 12 is divided into a plurality of annular faces 13, and all of the annular faces 13 are distributed on the same plane. Focusing is achieved by horizontally parallel rays passing through the lens 1.
- Fig. 7 shows a second form of the lens 1 of the present embodiment
- Fig. 7a is a schematic cross-sectional view taken along line B-B of Fig. 7b and a schematic view of the optical performance of the lens 1.
- the first mirror surface 11 of the lens 1 is a curved surface
- a plurality of concentric circles 14 are recorded on the entire area of the second mirror surface 12.
- a plurality of concentric circles 14 are concentric with the second mirror surface 12, and a plurality of concentric circles 14 will be
- the second mirror surface 12 is divided into a plurality of annular faces 13. All of the annular faces 13 are distributed in a stepwise manner, and the thickness of the lens 1 is gradually reduced from the center to the outer circumference. Focusing is achieved by horizontally parallel rays passing through the lens 1.
- Fig. 8 shows a third form of the lens 1 of the present embodiment
- Fig. 8b is a front view of the lens 1
- Fig. 8a is a cross-sectional view taken along line C-C of Fig. 8b
- Fig. 8c is a side view of the lens 1.
- the first mirror surface 11 of the lens 1 is a curved surface
- the second mirror surface 12 includes a first half surface 121 and a second half surface 122.
- the first half surface 121 and the second half surface 122 are connected by a step surface 123.
- the face 123 is parallel to the axis of the lens 1, and the centers of the first half face 121 and the second half face 122 are both located on the axis of the lens 1.
- the first half surface 121 is a curved surface
- the second half surface 122 is recorded with a plurality of concentric arcs 14'
- the plurality of concentric arcs 14' divide the second half surface 122 into a plurality of annular surfaces 13', and the annular surface 13 'Arced. Focusing is achieved by horizontally parallel rays passing through the lens 1.
- Fig. 9 shows a fourth form of the lens 1 of the present embodiment
- Fig. 9b is a front view of the lens 1
- Fig. 9a is a cross-sectional view along DD of Fig. 9b
- Fig. 9c is a side view of the lens 1
- Fig. 9d is a side view A top view of the lens 1.
- the lens 1 shown in Fig. 9 is substantially the same as the lens 1 shown in Fig. 8, and the same portions will not be described again, except that the lens 1 in Fig. 9 is between the first half face 121 and the second half face 122.
- the step surface 123 is recorded with a bar pattern 15 which destroys the optical properties of the step surface 123 so that the light incident on the step surface 123 cannot be effectively focused. Focusing is achieved by horizontally parallel rays passing through the lens 1.
- the lens of the present invention is not limited to the four forms shown in Figs. 6 to 9 in the present embodiment.
- the first mirror surface 11, the annular surface 13 of the second mirror surface 12, the annular surface 13', and the first half surface 121 are both The surface of the surface is:
- x and y are the radius values of the first mirror 11 and the annular face 13 (or the annular face 13' or the first half face 121, respectively);
- c x 1/R x
- c y 1/R y
- R x and R y are the radii of curvature of the first mirror 11 and the annular surface 13 (or the annular surface 13 ′ or the first half surface 121 respectively);
- k x and k y are the first mirror 11 and the annular surface, respectively
- the first mirror surface 11 is a spherical surface
- the annular surface 13 (or the annular surface 13' or the first half surface 121) is a spherical surface.
- the above-mentioned lens 1 of the present embodiment is provided with a plurality of annular faces 13 on the second mirror surface 12, without affecting the horizontal parallel rays passing through the lens 1 to form a focus (as shown in FIG. 6). It can be shown that light rays incident at an angle parallel to the horizontal direction can be divided into a plurality of facets, so that the light reflected by the lens 1 and the light passing through the lens 1 cannot be effectively focused.
- the same effect can be obtained when the parallel rays that are at an angle to the horizontal direction are incident from the first mirror surface 11 of the lens 1.
- the lens 1 of the other form of the present embodiment can eliminate the effect of the light incident at an angle parallel to the horizontal direction being reflected by the lens 1 and focused by the lens 1.
- the lens 1 of the present embodiment can achieve a smaller design thickness than the conventional plano-convex lens and the conventional lenticular lens due to its optical principle, and the minimum thickness of the lens 1 of the present embodiment can be 1 mm.
- the material can be reduced and the cost can be reduced.
- the optical path of the light in the lens 1 can be reduced, the light energy loss when the light propagates in the lens 1 can be reduced, and the light effect can be improved.
- the lens 1 of the present embodiment may be made of transparent glass, formed by glass baking, or may be made of transparent plastic and injection molded by plastic.
- the present embodiment further provides an automobile headlight.
- the automobile headlamp of the present embodiment includes a light source 16, a mirror 17, a visor 18, and a lens 1.
- the illuminating center of the light source 16 is disposed at the near focus of the mirror 17.
- the light emitted by the light source 16 is reflected by the mirror 17 and condensed near the far focus of the mirror 17, and the visor 18 is disposed at the far focus of the mirror 17, shielding the light.
- the shape of the plate 18 is consistent with the shape of the cut-off line required for the low beam.
- the light emitted by the light source 16 is focused on the lens 1 and then directed toward the lens 1.
- the lens 1 forms a parallel-like low-beam illumination with a cut-off line. shape.
- the first mirror surface 11 of the lens 1 shown in Fig. 13 is planar, and as the inner side surface facing the light source 16, the second mirror surface 12 of the lens 1 is set to the second mirror surface 12 shown in Fig. 6, and serves as a distance from the light source. Outer side.
- the lens 1 can also adopt any type of lens 1 as described above, and the first mirror surface 11 of the lens 1 can be used as the outer side surface and the second mirror surface 12 can be used as the inner side surface, so that the illumination can be achieved in the headlights.
- the upper sun light is reflected by the lens 1 and passes through the lens 1 and cannot be effectively focused, thereby preventing the sunlight from damaging the components inside and outside the lens 1 inside the automobile headlight.
- the lens 1 of the present embodiment has a small thickness and a small mass, it is advantageous for improving the anti-vibration performance during driving of the automobile, and at the same time, the optical path of the light emitted from the light source 16 in the lens 1 can be reduced, and the light is reduced. The loss of light energy when propagating in the lens 1 improves the light efficiency of the automotive headlamp illumination system.
- the present embodiment also provides an automobile, and the automobile of the embodiment includes the automobile headlight as described above.
- the lens for the vehicle lamp of the present embodiment is provided with a plurality of annular faces 13 on the second mirror surface 12 of the lens 1 so as not to affect the horizontal parallel rays passing through the lens 1 to form a focus. It is possible to divide the light incident at an angle parallel to the horizontal direction into a plurality of facet incidences such that the light reflected by the lens 1 and the light passing through the lens 1 are not effectively focused. Therefore, the automobile headlight using the lens and the automobile including the headlight of the embodiment can eliminate the external focus formed by the reflection of the lens 1 when the sunlight is irradiated on the headlight of the automobile and the inner focus formed through the lens 1, Avoid sunlight shining on steam Parts inside the headlights on the inside and outside of the lens 1 cause damage.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
用于车灯的透镜、汽车前照灯及汽车。用于车灯的透镜(1)包括第一镜面(11)和与第一镜面(11)相对的第二镜面(12),第一镜面(11)为曲面或平面,第二镜面(12)包括多个同心圆式的环状面。通过在透镜(1)的第二镜面(12)上设置多个环状面(13),在不影响水平平行光线穿过透镜形成聚焦的前提下,能够将与水平方向成角度平行入射的光线分成若干个小面入射,使得经透镜反射的光线和穿过透镜的光线都不能有效聚焦。采用该透镜的汽车前照灯能够消除太阳光照射在汽车前照灯时经透镜反射形成的外聚焦和穿过透镜形成的内聚焦,避免太阳光照射对汽车前照灯内部位于透镜内侧和外侧的零件造成损伤。
Description
本发明涉及汽车灯具技术领域,尤其涉及一种用于车灯的透镜、一种采用该透镜的汽车前照灯及一种包括该前照灯的汽车。
汽车车灯中常用的投射式照明系统,一般都包括光源、反射镜、遮光板以及透镜。反射镜为椭球形,光源的发光中心设置在椭球形反射镜的近焦点处,光源发出的光线经过椭球形反射镜反射后汇聚于椭球形反射镜的远焦点附近,遮光板设置于椭球形反射镜的远焦点处,其形状与近光所要求的明暗截止线形状一致,最后通过透镜形成带有明暗截止线的类平行光近光照明光形。汽车前照灯的特点是光源发出的光线由透镜的内侧镜面向外侧镜面射出,入射光线在透镜焦点附近聚焦后射向内侧镜面,射出光线为接近水平方向。因此,车灯用透镜仅考虑水平平行光线或接近水平方向光线的聚焦,而太阳光射向透镜一般由上方斜向下射向透镜,并且角度不断变化。
如图1所示,传统的透镜采用平凸透镜,其内侧镜面为平面,朝向光源设置,外侧镜面为非球面,光源的光线在平凸透镜焦点附近聚焦后由平凸透镜的内侧镜面向外侧镜面射出,射出光线为接近水平方向。传统的平凸透镜材质为透明塑料或玻璃,如PC(Polycarbonate,聚碳酸酯)、PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)等。根据其直径大小及焦距,其最大厚度为20毫米至50毫米不等,这种透镜的有利之处在于通过非球面凸透镜设计,校正球面凸透镜成像所存在像差问题,使透镜成像更加清晰,不失真。但是这种透镜同时也带来了白天太阳光照射到透镜,经透镜反射后在透镜前部聚焦,以及经过透镜折射后汇聚,在反射镜后部聚焦,烧毁灯内零件的问题。并且随着太阳光入射角度不同,聚焦位置在一定范围内呈动态变化。如图2、图3和图4所示,分别为与水平方向成30°、45°和60°角的平行光线射向平凸透镜外侧镜面的聚焦模拟。其中,图2显示与水平方向成30°角的平行光线经过平凸透镜后在平凸透镜内侧镜面的一侧形成内聚焦;图3显示与水平方向成45°角的平行光线经过平凸透镜后在平凸透镜内侧镜面的一侧形成内聚焦,经内侧镜面反射后的光线则在平凸透镜外侧镜面的一侧形成外聚焦;图4显示与水平方向成60°角的平行光线经过平凸透镜时,大部分照射到内侧镜面时入射角大于全反射角,形成全反射,在平凸透镜外
侧镜面的一侧形成较强光能的外聚焦。
公开号CN 101298906A的专利公开了一种基于双凸透镜的汽车前照灯,利用内侧镜面为球面、外侧镜面为自由曲面的双凸透镜设计方案,减小了反射聚焦焦距,降低了太阳光经透镜反射后聚焦烧毁车灯或汽车上其他零部件的风险。如图5所示,太阳光L3以一定角度的平行光入射,经双凸透镜4反射后,反射光L1聚焦在A处附近,经平凸透镜6反射后,反射光L2聚焦在B附近,可以看出,经双凸透镜反射的聚焦点位置小于经平凸透镜反射的聚焦点位置。但是这种设计方案仍存在如下几个缺点:
(1)该双凸透镜仅能缩小太阳光反射后的焦距,降低太阳光经透镜反射后聚焦烧毁车灯或汽车上其他零部件的风险,并不能完全消除反射后聚焦的问题。
(2)该双凸透镜不能解决太阳光透过透镜后在内侧镜面的一侧形成内聚焦烧毁透镜内侧零部件的问题。
(2)该双凸透镜由于其光路原理,尺寸依然偏厚,用料较多,导致成本高,质量大等缺陷,不利于行车过程中的抗振性能,并且,光线在透镜中的光程较大,导致光线在透镜内部传播时被透镜吸收的光能较多,降低了投射式照明系统的光效。
发明内容
本发明要解决的技术问题是提供一种用于车灯的透镜、一种采用该透镜的汽车前照灯及一种包括该前照灯的汽车,能够避免太阳光经透镜反射形成外聚焦及穿过透镜形成内聚焦,以克服现有技术的上述缺陷。
为了解决上述技术问题,本发明采用如下技术方案:
一种用于车灯的透镜,透镜包括第一镜面和与第一镜面相对的第二镜面,第一镜面为曲面或平面,第二镜面包括多个同心圆式的环状面。
优选地,所有环状面均为曲面或均为锥面。
优选地,在第一镜面和所有环状面均为曲面时,曲面的方程为:
式中,x、y分别为第一镜面和环状面的半径值;
cx=1/Rx,cy=1/Ry,Rx、Ry分别为第一镜面和环状面的曲率半径;
kx、ky分别为第一镜面和环状面的圆锥系数,-1<kx<1,-1<ky<1。
优选地,第二镜面上刻录有多个同心圆,多个同心圆将第二镜面分割成多个环状面。
优选地,第二镜面包括第一半面和第二半面,第一半面与第二半面之间通过台阶面连接,第一半面为曲面,第二半面上刻录有多个同心圆弧,多个同心圆弧将第二半面分割成多个环状面,且环状面呈弧形。
优选地,在台阶面上刻录有条柱状花纹。
优选地,所有环状面呈阶梯式分布,且透镜的厚度从中心到外圆周逐渐减小或者逐渐增大。
优选地,所有环状面分布在同一平面上。
一种汽车前照灯,包括光源、反射镜、遮光板和透镜,透镜为如上所述的用于车灯的透镜。
一种汽车,包括如上所述的汽车前照灯。
与现有技术相比,本发明具有显著的进步:
本发明的用于车灯的透镜,通过在透镜的第二镜面上设置多个环状面,在不影响水平平行光线穿过透镜形成聚焦的前提下,能够将与水平方向成角度平行入射的光线分成若干个小面入射,使得经透镜反射的光线和穿过透镜的光线都不能有效聚焦。因此,本发明采用该透镜的汽车前照灯及包括该前照灯的汽车,能够消除太阳光照射在汽车前照灯时经透镜反射形成的外聚焦和穿过透镜形成的内聚焦,避免太阳光照射对汽车前照灯内部位于透镜内侧和外侧的零件造成损伤。
图1是水平平行光线射向平凸透镜外侧镜面的聚焦模拟示意图。
图2是与水平方向成30°角的平行光线射向平凸透镜外侧镜面的聚焦模拟示意图。
图3是与水平方向成45°角的平行光线射向平凸透镜外侧镜面的聚焦模拟示意图。
图4是与水平方向成60°角的平行光线射向平凸透镜外侧镜面的聚焦模拟示意图。
图5是现有技术中的双凸透镜与平凸透镜的太阳光聚焦对比示意图。
图6是本发明实施例提供的第一种透镜的结构及光学性能示意图。
图7是本发明实施例提供的第二种透镜的结构及光学性能示意图。
图8是本发明实施例提供的第三种透镜的结构示意图。
图9是本发明实施例提供的第四种透镜的结构示意图。
图10是与水平方向成30°角的平行光线射向图6中示出的透镜的第二镜面的聚焦模拟示意图。
图11是与水平方向成45°角的平行光线射向图6中示出的透镜的第二镜面的聚焦模拟示意图。
图12是与水平方向成60°角的平行光线射向图6中示出的透镜的第二镜面的聚焦模拟示意图。
图13是本发明实施例的汽车前照灯的结构示意图。
图中:
L1、反射光 L2、反射光 L3、太阳光
4、双凸透镜 6、平凸透镜 A,B、聚焦点
1、透镜 11、第一镜面 12、第二镜面
121、第一半面 122、第二半面 123、台阶面
13、环状面 13′、环状面 14、同心圆
14′、同心圆弧 15、条柱状花纹 16、光源
17、反射镜 18、遮光板
下面结合附图对本发明的具体实施方式作进一步详细说明。这些实施方式仅用于说明本发明,而并非对本发明的限制。
在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在
本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图6至图12所示,本发明的用于车灯的透镜的一种实施例。本实施例的透镜1包括第一镜面11和与第一镜面11相对的第二镜面12。其中,第一镜面11可以设为曲面,该曲面可以是球面,也可以是非球面;第一镜面11也可以设为平面。第二镜面12包括多个同心圆式的环状面13。多个环状面13可以设置在第二镜面12的全部区域,即所有的环状面13均为回转面;多个环状面13也可以仅设置在第二镜面12的一部分区域,即所有的环状面13均为弧形的环状面,第二镜面12的另一部分区域则设为曲面,该曲面可以是球面,也可以是非球面。所有的环状面13可以均设为曲面,该曲面可以是球面,也可以是非球面;所有的环状面13也可以均设为锥面。所有的环状面13可以分布在同一平面上;也可以呈阶梯式分布,并使得透镜1的厚度从中心到外圆周逐渐减小或者逐渐增大,即使得第二镜面12呈外凸状或者内凹状。
图6示出了本实施例透镜1的一种形式,图6a为图6b中沿A-A的剖视示意图及透镜1的光学性能示意图。在图6中,透镜1的第一镜面11为曲面,第二镜面12的全部区域上刻录有多个同心圆14,多个同心圆14与第二镜面12同心,多个同心圆14将第二镜面12分割成多个环状面13,所有的环状面13分布在同一平面上。水平平行光线穿过该透镜1后可实现聚焦。
图7示出了本实施例透镜1的第二种形式,图7a为图7b中沿B-B的剖视示意图及透镜1的光学性能示意图。在图7中,透镜1的第一镜面11为曲面,第二镜面12的全部区域上刻录有多个同心圆14,多个同心圆14与第二镜面12同心,多个同心圆14将第二镜面12分割成多个环状面13。所有的环状面13呈阶梯式分布,并使得透镜1的厚度从中心到外圆周逐渐减小。水平平行光线穿过该透镜1后可实现聚焦。
图8示出了本实施例透镜1的第三种形式,图8b为透镜1的主视图,图8a为图8b中沿C-C的剖视示意图,图8c为透镜1的侧视图。在图8中,透镜1的第一镜面11为曲面,第二镜面12包括第一半面121和第二半面122,第一半面121与第二半面122之间通过台阶面123连接,台阶面123与透镜1的轴线平行,第一半面121和第二半面122的圆心均位于透镜1的轴线上。第一半面121为曲面,第二半面122上刻录有多个同心圆弧14′,多个同心圆弧14′将第二半面122分割成多个环状面13′,且环状面13′呈弧形。水平平行光线穿过该透镜1后可实现聚焦。
图9示出了本实施例透镜1的第四种形式,图9b为透镜1的主视图,图9a为图9b中沿D-D的剖视示意图,图9c为透镜1的侧视图,图9d为透镜1的俯视图。图9示出的透镜1与图8中示出的透镜1基本相同,相同之处不再赘述,不同之处在于,图9中的透镜1在第一半面121与第二半面122之间的台阶面123上刻录有条柱状花纹15,该条柱状花纹15破坏了台阶面123的光学性能,使得入射到台阶面123上的光线不能有效聚焦。水平平行光线穿过该透镜1后可实现聚焦。
当然,本发明的透镜并不局限于本实施例中图6至图9示出的四种形式。
在以上所述的图6至图9示出的四种形式的透镜1中,第一镜面11、第二镜面12中的环状面13、环状面13′以及第一半面121均为曲面,该曲面的方程为:
式中,x、y分别为第一镜面11和环状面13(或环状面13′或第一半面121)的半径值;cx=1/Rx,cy=1/Ry,Rx、Ry分别为第一镜面11和环状面13(或环状面13′或第一半面121)的曲率半径;kx、ky分别为第一镜面11和环状面13(或环状面13′或第一半面121)的圆锥系数,-1<kx<1,-1<ky<1。
当kx=0、ky=0时,第一镜面11和环状面13(或环状面13′或第一半面121)均为球面;当kx=0、ky≠0时,第一镜面11为球面,环状面13(或环状面13′或第一半面121)为非球面;当kx≠0、ky=0时,第一镜面11为非球面,环状面13(或环状面13′或第一半面121)为球面。
图10、图11和图12分别示出了与水平方向成30°、45°和60°角的平行光线射向图6中示出的透镜1的第二镜面12的聚焦模拟。由模拟结果可明显看出,本实施例的上述透镜1通过在第二镜面12上设置多个环状面13,在不影响水平平行光线穿过透镜1形成聚焦的前提下(如图6所示),能够将与水平方向成角度平行入射的光线分成若干个小面入射,使得经透镜1反射的光线和穿过透镜1的光线都不能有效聚焦。当然,根据光学原理,与水平方向成角度的平行光线从透镜1的第一镜面11入射时也能够达到同样的效果。与图6中示出的透镜1的光学性能相似,本实施例其它形式的透镜1均能起到消除与水平方向成角度平行入射的光线经透镜1反射聚焦和穿过透镜1聚焦的作用。
此外,本实施例的透镜1由于其光学原理,相较传统的平凸透镜和现有的双凸透镜,可以达到更小的设计厚度,本实施例的透镜1的最小厚度可以做到1mm。由此可以减少用料、降低成本,同时,在实际应用中能够减小光线在透镜1中的光程,降低光线在透镜1中传播时的光能损失,提高光效。
本实施例的透镜1可以采用透明玻璃制成,通过玻璃烧制碾压成型;也可以采用透明塑料制成,通过塑料注塑成型。
基于上述透镜,本实施例还提供了一种汽车前照灯,如图13所示,本实施例的汽车前照灯包括光源16、反射镜17、遮光板18和透镜1。光源16的发光中心设置在反射镜17的近焦点处,光源16发出的光线经过反射镜17反射后汇聚于反射镜17的远焦点附近,遮光板18设置于反射镜17的远焦点处,遮光板18的形状与近光所要求的明暗截止线形状一致,光源16发出的光线在透镜1焦点附近聚焦后射向透镜1,最后通过透镜1形成带有明暗截止线的类平行光近光照明光形。
图13中示出的透镜1的第一镜面11设为平面,并作为朝向光源16的内侧面,透镜1的第二镜面12设为图6所示的第二镜面12,并作为远离光源的外侧面。当然,透镜1也可以采用如上所述的任意一种透镜1,并且,也可以将透镜1的第一镜面11作为外侧面、第二镜面12作为内侧面,均可以达到使照射在前照灯上的太阳光线经透镜1反射后和穿过透镜1后都不能有效聚焦的目的,从而避免了太阳光照射对汽车前照灯内部位于透镜1内侧和外侧的零件造成损伤。当采用如图8和图9所示的透镜1时,第一半面121设于下方,第二半面122设于上方,则能够在不影响前照灯照明功能的前提下,更好地消除太阳光聚焦。此外,由于本实施例的透镜1具有较小的厚度,质量小,有利于提高汽车行车过程中的抗振性能,同时,能够减小光源16发出的光线在透镜1中的光程,降低光线在透镜1中传播时的光能损失,提高汽车前照灯照明系统的光效。
基于上述汽车前照灯,本实施例还提供了一种汽车,本实施例的汽车包括如上所述的汽车前照灯。
综上所述,本实施例的用于车灯的透镜,通过在透镜1的第二镜面12上设置多个环状面13,在不影响水平平行光线穿过透镜1形成聚焦的前提下,能够将与水平方向成角度平行入射的光线分成若干个小面入射,使得经透镜1反射的光线和穿过透镜1的光线都不能有效聚焦。因此本实施例采用该透镜的汽车前照灯及包括该前照灯的汽车,能够消除太阳光照射在汽车前照灯时经透镜1反射形成的外聚焦和穿过透镜1形成的内聚焦,避免太阳光照射对汽
车前照灯内部位于透镜1内侧和外侧的零件造成损伤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。
Claims (10)
- 一种用于车灯的透镜,其特征在于,所述透镜(1)包括第一镜面(11)和与所述第一镜面(11)相对的第二镜面(12),所述第一镜面(11)为曲面或平面,所述第二镜面(12)包括多个同心圆式的环状面(13)。
- 根据权利要求1所述的用于车灯的透镜,其特征在于,所有所述环状面(13)均为曲面或均为锥面。
- 根据权利要求1所述的用于车灯的透镜,其特征在于,所述第二镜面(12)上刻录有多个同心圆(14),所述多个同心圆(14)将所述第二镜面(12)分割成多个所述环状面(13)。
- 根据权利要求1所述的用于车灯的透镜,其特征在于,所述第二镜面(12)包括第一半面(121)和第二半面(122),所述第一半面(121)与所述第二半面(122)之间通过台阶面(123)连接,所述第一半面(121)为曲面,所述第二半面(122)上刻录有多个同心圆弧(14′),所述多个同心圆弧(14′)将所述第二半面(122)分割成多个所述环状面(13′),且所述环状面(13′)呈弧形。
- 根据权利要求5所述的用于车灯的透镜,其特征在于,在所述台阶面(123)上刻录有条柱状花纹(15)。
- 根据权利要求1所述的用于车灯的透镜,其特征在于,所有所述环状面(13)呈阶梯式分布,且所述透镜(1)的厚度从中心到外圆周逐渐减小或者逐渐增大。
- 根据权利要求1所述的用于车灯的透镜,其特征在于,所有所述环状面(13)分布在同一平面上。
- 一种汽车前照灯,包括光源(16)、反射镜(17)、遮光板(18)和透镜(1),其特征在于,所述透镜(1)为权利要求1至8中任意一项所述的用于车灯的透镜(1)。
- 一种汽车,其特征在于,包括如权利要求9所述的汽车前照灯。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/476,116 US11585507B2 (en) | 2017-01-06 | 2017-04-25 | Lens for automobile lamp, automobile headlamp, and automobile |
EP17889920.9A EP3567303A4 (en) | 2017-01-06 | 2017-04-25 | LENS FOR AUTOMOTIVE LAMP, AUTOMOTIVE AND AUTOMOTIVE HEADLAMP |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017200141672 | 2017-01-06 | ||
CN201710009639X | 2017-01-06 | ||
CN201710009639.XA CN106764806A (zh) | 2017-01-06 | 2017-01-06 | 用于车灯的透镜、汽车前照灯及汽车 |
CN201720014167.2U CN207621933U (zh) | 2017-01-06 | 2017-01-06 | 用于车灯的透镜、汽车前照灯及汽车 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018126564A1 true WO2018126564A1 (zh) | 2018-07-12 |
Family
ID=62788997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/081815 WO2018126564A1 (zh) | 2017-01-06 | 2017-04-25 | 用于车灯的透镜、汽车前照灯及汽车 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11585507B2 (zh) |
EP (1) | EP3567303A4 (zh) |
WO (1) | WO2018126564A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019100639A1 (zh) | 2017-11-21 | 2019-05-31 | 华域视觉科技(上海)有限公司 | 车灯照明系统、车灯总成及汽车 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6474839B1 (en) * | 2000-10-05 | 2002-11-05 | Power Signal Technology Inc. | LED based trough designed mechanically steerable beam traffic signal |
CN101298906A (zh) | 2007-11-30 | 2008-11-05 | 上海小糸车灯有限公司 | 基于双凸透镜的汽车前照灯 |
CN201666536U (zh) * | 2010-03-23 | 2010-12-08 | 比亚迪股份有限公司 | 车用近光灯透镜 |
CN102434846A (zh) * | 2010-09-29 | 2012-05-02 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN102434849A (zh) * | 2010-09-29 | 2012-05-02 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN103133988A (zh) * | 2011-11-29 | 2013-06-05 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN204062784U (zh) * | 2014-09-03 | 2014-12-31 | 广州广日电气设备有限公司 | 汽车led远近光灯 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7588358B1 (en) * | 2005-05-31 | 2009-09-15 | Innovative Lighting, Inc | Single LED and lens assembly |
JP4766698B2 (ja) * | 2007-03-29 | 2011-09-07 | 株式会社小糸製作所 | 車輌用前照灯の灯具ユニット |
TW201213878A (en) * | 2010-09-27 | 2012-04-01 | Foxsemicon Integrated Tech Inc | Lens and light source module |
JP6297932B2 (ja) * | 2014-06-11 | 2018-03-20 | マクセル株式会社 | 光学装置 |
JP6579733B2 (ja) * | 2014-07-01 | 2019-09-25 | 株式会社小糸製作所 | 車両用灯具 |
-
2017
- 2017-04-25 WO PCT/CN2017/081815 patent/WO2018126564A1/zh unknown
- 2017-04-25 US US16/476,116 patent/US11585507B2/en active Active
- 2017-04-25 EP EP17889920.9A patent/EP3567303A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6474839B1 (en) * | 2000-10-05 | 2002-11-05 | Power Signal Technology Inc. | LED based trough designed mechanically steerable beam traffic signal |
CN101298906A (zh) | 2007-11-30 | 2008-11-05 | 上海小糸车灯有限公司 | 基于双凸透镜的汽车前照灯 |
CN201666536U (zh) * | 2010-03-23 | 2010-12-08 | 比亚迪股份有限公司 | 车用近光灯透镜 |
CN102434846A (zh) * | 2010-09-29 | 2012-05-02 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN102434849A (zh) * | 2010-09-29 | 2012-05-02 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN103133988A (zh) * | 2011-11-29 | 2013-06-05 | 富士迈半导体精密工业(上海)有限公司 | 透镜及光源模组 |
CN204062784U (zh) * | 2014-09-03 | 2014-12-31 | 广州广日电气设备有限公司 | 汽车led远近光灯 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3567303A4 |
Also Published As
Publication number | Publication date |
---|---|
US11585507B2 (en) | 2023-02-21 |
EP3567303A1 (en) | 2019-11-13 |
US20190353319A1 (en) | 2019-11-21 |
EP3567303A4 (en) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6821008B2 (en) | Projector headlamp | |
JP4682246B2 (ja) | 車両の前照灯用の前照灯レンズ | |
JP4792486B2 (ja) | フレネルレンズライト用、特にスポットライトあるいはフラッドライト用光学系 | |
KR102048876B1 (ko) | 가동부들이 없고 로우빔 출력 및 하이빔 출력 양측 모두를 특징으로 하는 헤드램프 | |
CN102713420B (zh) | 车辆用头灯 | |
FR2839139B1 (fr) | Module d'eclairage elliptique sans cache realisant un faisceau d'eclairage a coupure et projecteur comportant un tel module | |
JP2004207235A (ja) | 車両前照灯用の照明モジュール | |
CN109716175B (zh) | 衍射透镜和使用其的车载用灯具 | |
CN106764806A (zh) | 用于车灯的透镜、汽车前照灯及汽车 | |
JP2022522258A (ja) | ロービーム光学モジュール、ロービーム照明モジュール、車両用灯具及び車両 | |
CN106895335B (zh) | 由透明材料制成的发光模块 | |
JPH02270202A (ja) | 自動車用ヘッドランプ | |
JPH05120902A (ja) | 乗物用ランプ | |
WO2021196489A1 (zh) | 一种车载的小型投影灯系统 | |
WO2018126564A1 (zh) | 用于车灯的透镜、汽车前照灯及汽车 | |
JP2024009084A (ja) | 照明装置 | |
JP2009134963A (ja) | 灯具用レンズ及び車両用前照灯 | |
JP4758753B2 (ja) | 車両前照灯 | |
TWI429953B (zh) | Anti-glare lenses and table lamps with anti-glare lenses | |
US9759400B2 (en) | Vehicle low-beam headlamp with concave reflector and sub-reflector having two concave reflecting surfaces | |
KR101021929B1 (ko) | 차량용 램프 어셈블리 | |
CN115289429A (zh) | 一种基于全反射的车灯透镜及车灯装置 | |
JP2004087179A (ja) | 灯具及び投影レンズ | |
WO2019227938A1 (zh) | 光源模组 | |
JP2006080018A (ja) | 車両用灯具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889920 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017889920 Country of ref document: EP Effective date: 20190806 |