WO2018126481A1 - 一种反射薄膜及其制备方法 - Google Patents

一种反射薄膜及其制备方法 Download PDF

Info

Publication number
WO2018126481A1
WO2018126481A1 PCT/CN2017/070659 CN2017070659W WO2018126481A1 WO 2018126481 A1 WO2018126481 A1 WO 2018126481A1 CN 2017070659 W CN2017070659 W CN 2017070659W WO 2018126481 A1 WO2018126481 A1 WO 2018126481A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
cholesteric liquid
transparent substrate
handed
Prior art date
Application number
PCT/CN2017/070659
Other languages
English (en)
French (fr)
Inventor
李勇
罗丹
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to PCT/CN2017/070659 priority Critical patent/WO2018126481A1/zh
Publication of WO2018126481A1 publication Critical patent/WO2018126481A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals

Definitions

  • the invention belongs to the field of photonic crystal reflective films, and in particular relates to a reflective film and a preparation method thereof.
  • Liquid crystal is a special form of matter in which the state of matter is between solid crystals and traditional liquids.
  • liquid crystals have been widely used in displays and various types of optical photonic devices.
  • the cholesteric liquid crystal self-assembles in an anti-parallel liquid crystal cell to form a one-dimensional photonic crystal structure, which is sensitive to the external environment, such as temperature, electromagnetic field, light field, stress, and the like. Therefore, cholesteric liquid crystals are widely used in dynamic gratings, electronically controlled optical switches, broadband polarizers, liquid crystal lasers, and bistable reflective liquid crystal displays.
  • the line width of the reflection forbidden band: ⁇ n*p (n e -n 0 )*p (n e is a very light refractive index, and n 0 is a constant light refractive index).
  • a plurality of optical devices as described above can be prepared by the above characteristics.
  • polymer cholesteric liquid crystals have been extensively studied. Many of the studies in polymers tend to reduce the drive voltage and response time.
  • the present invention combines the self-assembly property of the cholesteric liquid crystal with the characteristics of the polymer film formation, and finally obtains the microcavity film by dissolving the filler.
  • the need for a narrow linewidth reflective film also requires a wide linewidth reflective film.
  • the present invention proposes a method of replacing the filler and controlling the temperature to realize a narrow line width and a wide line width reflective film.
  • One of the objects of the present invention is to provide a reflective film.
  • the reflective film of the invention can achieve a reduction of the forbidden band width, improve the color saturation of the film, and provide a better color reproduction capability for the display.
  • a reflective film comprising: a polymer nano-micro-cavity structure and a micro-cavity filling medium;
  • the polymer nano-microcavity structure is formed by a polymer forming a right-handed or left-handed structure, and in the reflective film, it may be a one-hand type microcavity or a left-right rotation type microcavity.
  • the invention realizes a photonic crystal type reflective film, which forms a photonic crystal by polymer and liquid crystal self-assembly, and forms a stable photonic crystal microcavity structure after polymerization.
  • This film can be filled with different media to suit the application environment.
  • Such films are used in thin film lasers, reflective displays, and other optical devices.
  • the filling medium is any material that can be filled, and the reflection band gap width depends on the refractive index difference between the polymer and the filling medium.
  • the reflective film provided by the present invention has a forbidden line width and position that is tunable and can be tuned by varying the filler type and temperature.
  • One of the objects of the present invention is to provide a method for preparing a reflective film which is classified into the following two preparation methods according to the difference in one-handedness and two-handedness.
  • a method for preparing a single-handed reflective film includes the following steps:
  • polyvinyl cinnamate (PVCin) or a polyimide (PI) aligning agent as the first alignment layer;
  • a filler is injected into the liquid crystal cell, and materials having different refractive indexes can be filled according to application requirements.
  • an ultraviolet absorber is added to the polymer to effect a pitch gradient change to achieve a wider band gap.
  • the cholesteric liquid crystal is a left-handed and/or right-handed cholesteric liquid crystal.
  • the polymer is one or a combination of two or more of RM257, RM82, RM010, RM021 or RM006.
  • the filler comprises a non-polar substance, preferably a majority of non-polar substances, for example 50-90% by weight of a non-polar substance, preferably 60-80% by weight of a non-polar substance.
  • the non-polar substance is one or a combination of two or more of toluene, liquid crystal, or silicone oil.
  • the above scheme combines the self-assembly property of the cholesteric liquid crystal with the characteristics of the polymer film formation, and finally dissolves the filler to finally obtain a microcavity film.
  • the need for a narrow linewidth reflective film also requires a wide linewidth reflective film.
  • the present invention proposes a method of replacing the filler and controlling the temperature to realize a narrow line width and a wide line width reflective film.
  • a method for preparing a two-dimensional reflective film comprises the following steps:
  • an ultraviolet absorber is added to the polymer to effect a pitch gradient change to achieve a wider band gap.
  • the first cholesteric liquid crystal is a left-handed cholesteric liquid crystal (right-handed cholesteric liquid crystal)
  • the second cholesteric liquid crystal is a right-handed cholesteric liquid crystal (left-handed cholesteric liquid crystal).
  • the first polymer and the second polymer are the same.
  • the first and second polymers are one or a combination of two or more of RM257, RM82, RM010, RM021 or RM006.
  • the ratio of the first polymer to the second polymer may be the same or may be reasonably selected by those skilled in the art.
  • the photoinitiator is Darocur 1173.
  • the above scheme combines the self-assembly property of the cholesteric liquid crystal with the characteristics of the polymer film formation, and finally dissolves the filler to finally obtain a microcavity film.
  • the need for a narrow linewidth reflective film also requires a wide linewidth reflective film.
  • the present invention proposes a method of replacing the filler and controlling the temperature to realize a narrow line width and a wide line width reflective film.
  • the film of the second embodiment has a higher reflectance than the film of one of the solutions.
  • the film prepared by the invention can be prepared by arraying in different colors, and a photosensitive hand-forming agent is used in preparing the cholesteric liquid crystal, and before the ultraviolet light exposure polymerization, the light-shielding plate having three gray scales is used for exposure, so that The cholesteric liquid crystal layer produces three different pitch cholesteric liquid crystal cells. Finally, polymerization is carried out to form a film having a color array.
  • the reflective film strip width and position provided by the present invention are tunable and tuned by varying the filler type and temperature.
  • This film will be widely used in a range of optical products such as reflective displays, electronic paper, smart windows and more.
  • FIG. 1 is a schematic structural view of a one-handed reflective film according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a high-reflection two-hand type film according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a matrix pattern preparing device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic view showing the chemical structure of a polymer monomer provided in an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a reflective film according to Embodiment 1 of the present invention.
  • a single-layer reflective film provided by an embodiment of the present invention mainly includes:
  • the polymer microcavity is prepared from cholesteric liquid crystal and polymer.
  • the cholesteric liquid crystal self-assembles in an anti-parallel liquid crystal cell to form a one-dimensional photonic crystal structure.
  • the polymer monomer is aligned with the liquid crystal molecules before polymerization, and after stabilization, the polymerization activity is carried out by photopolymerization or other means of polymer initiator.
  • a polymer structure having a microcavity structure is formed based on the cholesteric liquid crystal.
  • the polymer monomer is selected as: RM257 ⁇ RM82 ⁇ RM006 ⁇ RM021 ⁇ RM010 chemical structure is shown in FIG.
  • the photoinitiator Irgacure 2959 or Darocurl 173 is used.
  • a commonly used UV lamp is used as the curing light source, and the center wavelength is 365 nm (optionally 290 nm to 365 nm).
  • the mass ratio of the polymer mixture in this example was: 30:15:20:20:15.
  • the mixed polymer is mixed with the cholesteric liquid crystal.
  • the cholesteric liquid crystal is composed of a nematic phase E7 and a handing agent R5011, and the mass ratio is 96.9:3.1.
  • the ratio of polymer, cholesteric liquid crystal and photoinitiator was: 74:25:1. Heat to 70 ° C, stir for 10 minutes, and mix well. Finally, the mixture is injected into an anti-parallel oriented liquid crystal cell. After the polymerization, the unpolymerized monomer and the cholesteric liquid crystal are leached, and toluene is used here as a solvent. After the dissolution is complete, only the polymer microcavity remains.
  • the microcavity film can exist independently of the basic. Reflective films of different forbidden band positions and widths are achieved by filling different media. Here, a nematic liquid crystal (DYX8013-00) and toluene were used as a filling medium. Reflective films were implemented separately.
  • the forbidden band position and width are at 450 nm and 40 nm, respectively.
  • the forbidden band position and width were 480 nm and 25 nm, respectively.
  • the reflectance is 45%.
  • the reflection principle of the cholesteric liquid crystal is as follows: due to the anisotropy of the liquid crystal molecules, the refractive indices of the different polarized lights are different after incident.
  • the cholesteric liquid crystal molecules are arranged in a periodic spiral.
  • the refractive index of the liquid crystal molecules is periodically distributed, which is equivalent to a one-dimensional photonic crystal, that is, a grating structure.
  • This structure can provide a distributed feedback photonic band gap, which means that some of the light of a particular frequency wavelength cannot pass through the photonic crystal structure, or that part of the light will be reflected.
  • n ave is the average refractive index of the liquid crystal
  • ⁇ n is the refractive index difference of the liquid crystal
  • p is the period length of the helical structure.
  • a double-layer reflective film provided by an embodiment of the present invention mainly includes:
  • the polymer and the cholesteric phase liquid crystal As in the first embodiment, the polymer and the cholesteric phase liquid crystal.
  • the polymer monomer was selected to be: RM257 ⁇ RM82 ⁇ RM006 ⁇ RM021 ⁇ RM010.
  • the photoinitiator Irgacure 2959 or Darocurl 173 is used.
  • a commonly used UV lamp is used as the curing light source, and the center wavelength is 365 nm (optionally 290 nm to 365 nm).
  • the mass ratio of the polymer mixture in this example was: 30:15:20:20:15.
  • the mixed polymer is mixed with the cholesteric liquid crystal.
  • the cholesteric liquid crystal selected here from the first reflective layer is composed of a nematic phase E7 and a handing agent R5011, and has a mass ratio of 96.9:3.1.
  • the forbidden band position and width are at 450 nm and 38 nm, respectively.
  • the reflectivity is as high as 90%.
  • FIG. 3 is a schematic view showing the preparation of a matrix reflective film according to Embodiment 3 of the present invention.
  • a method for preparing a single-layer reflective film according to an embodiment of the present invention mainly includes:
  • the polymer microcavity is prepared from cholesteric liquid crystal and polymer.
  • the cholesteric liquid crystal self-assembles in an anti-parallel liquid crystal cell to form a one-dimensional photonic crystal structure.
  • the polymer monomer is aligned with the liquid crystal molecules before polymerization, and after stabilization, the polymerization activity is carried out by photopolymerization or other means of polymer initiator.
  • a polymer structure having a microcavity structure is formed based on the cholesteric liquid crystal. The structure is shown in the same way as in Figure 1.
  • the polymer monomer was selected to be: RM257 ⁇ RM82 ⁇ RM006 ⁇ RM021 ⁇ RM010.
  • the photoinitiator Irgacure 2100 was chosen.
  • a commonly used UV lamp is used as the curing light source, and the center wavelength is 365 nm.
  • a 290 nm UV lamp is selected as the pitch selection source.
  • the mass ratio of the polymer mixture in this example was: 30:15:20:20:15.
  • the mixed polymer is mixed with the cholesteric liquid crystal.
  • the cholesteric liquid crystal is composed of a nematic phase E7 and a handing agent ZLI-811, and the mass ratio is 76:24.
  • ZLI-811 is a photosensitive chiral agent, and the HTP value gradually decreases at 290 nm.
  • the ratio of polymer, cholesteric liquid crystal and photoinitiator was: 74:25:1. Heat to 70 ° C, stir for 10 minutes, and mix well. Finally, the mixture is injected into an anti-parallel oriented liquid crystal cell. The pitch is selected by a 290 nm light source, and the matrix pattern is realized by three gray scale exposures, and then the polymer is polymerized by a 365 nm light source, and the unpolymerized monomer and the cholesteric liquid crystal are leached after polymerization, where toluene is selected. As a solvent.
  • the microcavity film can exist independently of the basic. Reflective films of different forbidden band positions and widths are achieved by filling different media. Here, a nematic liquid crystal (DYX8013-00) is used as a filling medium. A reflective film is realized.
  • DYX8013-00 nematic liquid crystal
  • the forbidden band position and width were 450 nm and 40 nm, respectively; 541 nm and 46 nm; 630 nm and 60 nm.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean that the present invention must rely on the above detailed process equipment and The process can only be implemented. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)

Abstract

一种反射薄膜及其制备方法。该反射薄膜包括:聚合物纳米微腔结构以及微腔内填充介质;其中,该聚合物纳米微腔结构由聚合物形成右旋或左旋结构。该反射薄膜的禁带线宽和位置具有调谐性,可通过改变填充物种类和温度来调谐,可广泛应用于一系列光学器件产品,例如:反射显示器、电子纸、智能窗等。

Description

一种反射薄膜及其制备方法 技术领域
本发明属于光子晶体反射薄膜领域,尤其涉及一种反射薄膜及其制备方法。
背景技术
液晶是一种物质状态介于固态晶体和传统液体的特殊物质形态。如今,液晶已经被广泛应用于显示和各类光学光子器件当中。胆甾相液晶在反平行液晶盒中自组装形成一维光子晶体结构,其对外界环境比较敏感,例如:温度、电磁场、光场、应力等。因此胆甾相液晶被广泛应用于动态光栅、电控光开关、宽带偏振片、液晶激光器以及双稳态反射式液晶显示器。
胆甾相液晶反射与其手型相同的圆偏振光,反射中心波长为:λ0=nav*p,其中nav是液晶分子平均折射率,p是螺距。反射禁带的线宽:Δn*p=(ne-n0)*p(ne非常光折射率,n0是常光折射率)。利用上述特性可以制备出很多如上述的光学器件。但是由于某些场合的需要,聚合物胆甾相液晶被广泛研究。在聚合物的研究中许多偏向于降低驱动电压以及响应时间。
利用聚合物形成薄膜,这些研究早以实现,但是在薄膜中制备有序的微腔结构具有很好的研究价值以及使用价值。本发明利用胆甾相液晶的自组装性与聚合物成膜的特性相结合,通过溶解填充物,最终获得微腔薄膜。在现实的需求中,即需要窄线宽反射薄膜也需要宽线宽反射薄膜。本发明提出置换填充物以及控制温度的方法实现窄线宽与宽线宽反射薄膜。
发明内容
本发明的目的之一在于提供一种反射薄膜。本发明的反射薄膜可以达到减小禁带宽度,提高在薄膜色彩饱和度,为显示器提供更好的色彩还原能力。
为达上述目的,本发明采用如下技术方案:
一种反射薄膜,包括:聚合物纳米微腔结构以及微腔内填充介质;
其中,所述聚合物纳米微腔结构由聚合物形成右旋或左旋结构,在反射薄膜中既可以是单手型微腔也可以是左右旋混合型微腔。
本发明实现一种光子晶体型的反射薄膜,通过聚合物和液晶自组装形成光子晶体,聚合后形成稳定的光子晶体微腔结构。此薄膜可填充不同介质来适应不用的应用环境。此类薄膜可用于薄膜激光器、反射式显示器以及其他光学器件。
所述填充介质为一切可填充的物质,反射禁带线宽取决于聚合物和填充介质之间的折射率差。
本发明提供的反射薄膜的禁带线宽和位置具有调谐性,可通过改变填充物种类和温度来调谐。
本发明的目的之一还在提供的反射薄膜的制备方法,根据单手性和双手性的不同,分为如下两种制备方法。
一种单手性反射薄膜的制备方法,包括以下步骤:
将光取向剂聚乙烯肉桂酸酯(PVCin)或者聚酰亚胺(PI)取向剂作为第一取向层;
将第一取向层设置在第一透明基板内侧;
将聚酰亚胺取向剂作为第二取向层;
将第二取向层设置在第二透明基板内侧;
将胆甾相液晶以及聚合物注入所述第一透明基板与第二透明基板形成的液 晶盒中;
从所述第一透明基板侧进行偏振紫外光曝光,与所述第一透明基板相邻的聚合物以及光取向剂经过所述偏振紫外光触发,所述聚合物基端围绕所述第一胆甾相液晶进行聚合;所述光取向剂对液晶分子进行取向并与聚合物交联;
将未反应的所述聚合物以及所述胆甾相液晶浸泡溶解;
最后向所述液晶盒内注入填充物,可根据应用要求填充不同折射率的物质。
作为优选,在聚合物中添加紫外吸收剂,从而实现螺距梯度变化,进而达到更宽的禁带。
优选地,所述胆甾相液晶为左旋和/或右旋胆甾相液晶。
大多数活性介晶都可以用作聚合物。优选地,所述聚合物为RM257、RM82、RM010、RM021或RM006中的1种或2种以上的组合。
优选地,所述填充物包含非极性物质,优选为绝大部分非极性物质,例如为50-90重量%的非极性物质,优选为60-80重量%的非极性物质。
优选地,所述非极性物质为甲苯、液晶或硅油中的1种或2种以上的组合。
上述方案利用胆甾相液晶的自组装性与聚合物成膜的特性相结合,通过溶解填充物,最终获得微腔薄膜。在现实的需求中,即需要窄线宽反射薄膜也需要宽线宽反射薄膜。本发明提出置换填充物以及控制温度的方法实现窄线宽与宽线宽反射薄膜。
一种双手性反射薄膜的制备方法,包括以下步骤:
将光取向剂(PVCin)作为第一取向层;
将第一取向层设置在第一透明基板内侧;
将PI取向剂作为第一取向层;
将第二取向层设置在第二透明基板内侧;
将第一胆甾相液晶以及第一聚合物注入所述第一透明基板与第二透明基板形成的液晶盒中;
从所述第一透明基板侧进行偏振紫外光曝光,与所述第一透明基板相邻的第一聚合物以及光取向剂经过所述偏振紫外光触发,所述聚合物基端围绕所述第一胆甾相液晶进行聚合;所述光取向剂对液晶分子进行取向并与聚合物交联;
将未反应的所述第一聚合物以及所述第一胆甾相液晶浸泡溶解、烘干;
将第二胆甾相液晶、光引发剂以及第二聚合物注入所述液晶盒中;
继续从所述第一透明基板侧进行紫外光曝光,通过进行紫外光曝光使与所述第二透明基板侧相邻的所述第二聚合物聚合,所述第二聚合物聚合后与所述第一聚合物聚合后无缝对接;
将未反应的所述第二胆甾相液晶以及所述第二聚合物进行溶解去除;
最后向所述液晶盒内注入填充物,根据应用要求填充不同折射率的物质。
作为优选,在聚合物中添加紫外吸收剂,从而实现螺距梯度变化,进而达到更宽的禁带。
优选地,所述第一胆甾相液晶为左旋胆甾相液晶(右旋胆甾相液晶),所述第二胆甾相液晶为右旋胆甾相液晶(左旋胆甾相液晶)。
优选地,第一聚合物和第二聚合物相同。
优选地,所述第一和第二聚合物为RM257、RM82、RM010、RM021或RM006中的1种或2种以上的组合。第一聚合物和第二聚合物的配比可以相同,也可以由本领域技术人员合理进行选择。
优选地,所述光引发剂为Darocur 1173。
本发明的制备方法中材料的量的选择可由本领域技术人员根据实际情况进行合理选择。
上述方案利用胆甾相液晶的自组装性与聚合物成膜的特性相结合,通过溶解填充物,最终获得微腔薄膜。在现实的需求中,即需要窄线宽反射薄膜也需要宽线宽反射薄膜。本发明提出置换填充物以及控制温度的方法实现窄线宽与宽线宽反射薄膜。方案之二的薄膜相对方案之一的薄膜具有更高的反射率。
另外本发明制备的薄膜可用不同颜色阵列化制备,在配制胆甾相液晶时使用光敏手型剂,在进行所述紫外光曝光聚合前,利用具有三种灰阶的遮光板进行曝光,使得所述胆甾相液晶层产生三种不同的螺距的胆甾相液晶单元。最后再进行聚合,从而形成具有色彩阵列的薄膜。
本发明提供的反射薄膜禁带线宽和位置具有调谐性,通过改变填充物种类和温度来调谐。此薄膜将广泛应用于一系列光学器件产品,例如:反射显示器、电子纸、智能窗等。
附图说明
图1为本发明实施例一提供的一种单手型反射薄膜的结构示意图;
图2为本发明实施例二提供的一种高反射双手型薄膜的结构示意图;
图3为本发明实施例三提供的一种矩阵化图案制备装置的结构示意图;
图4为本发明实施例中提供的一种聚合物单体化学结构示意图。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
实施例一
图1为本发明实施例一提供的一种反射薄膜的结构示意图。如图1所示,本发明实施例提供的一种单层反射薄膜,主要包括:
聚合物微腔和填充介质。
其中聚合物微腔由胆甾相液晶以及聚合物制备而成。胆甾相液晶在反平行的液晶盒中自组装形成一维光子晶体结构,聚合物单体在聚合前随着液晶分子排列,稳定后,利用光聚合或者其他方式的聚合物引发剂实施聚合活动,最后基于胆甾相液晶形成具有微腔结构的聚合物结构。
在此实例中,选用聚合物单体为:RM257\RM82\RM006\RM021\RM010化学结构式如图4所示。选用光引发剂Irgacure 2959或Darocurl173等。选用常用的紫外灯作为固化光源,中心波长为365nm(也可选用290nm~365nm)。在此实例中聚合物混合物各质量比例为:30∶15∶20∶20∶15。将混合好的聚合物与胆甾相液晶混合。其中胆甾相液晶由向列相E7与手型剂R5011组成,质量比为:96.9∶3.1。聚合物、胆甾相液晶和光引发剂比例为:74∶25∶1。加热到70℃,搅拌10分钟,使之混合均匀。最后将混合物注入反平行取向的液晶盒。聚合后将未聚合的单体以及胆甾相液晶浸出,此处选用甲苯作为溶剂。待溶解完全后,只剩下聚合物微腔。此微腔薄膜可以脱离基本而独立存在。通过填充不同的介质来实现不同禁带位置和宽度的反射薄膜。在此选用向列相液晶(DYX8013-00)和甲苯作为填充介质。分别实现了反射薄膜。
对于填充DYX8013-00的薄膜,禁带位置和宽度分别在450nm和40nm。对于填充甲苯的薄膜,禁带位置和宽度分别在480nm和25nm。反射率为45%。
本实施例提供的一种胆甾相液晶显示装置的工作原理如下所示:
首先,胆甾相液晶的反射原理如下:由于液晶分子具有的各向异性,所以不同的偏振光入射后折射率存在差异。胆甾相液晶分子呈周期性螺旋状排列, 对于偏振光而言,液晶分子折射率呈周期性分布,相当于一种一维光子晶体,即光栅结构。该结构能提供分布式反馈光子禁带,这意味着部分特定频率波长的光不能够通过该光子晶体结构,或者说这部分光将被反射。其中,反射中心波长(λ)与带宽(Δλ)可以分别由λ=nave*p以及Δλ=Δn*p表示。这里nave是液晶的平均折射率,Δn是液晶折射率差,p是螺旋结构周期长度。
实施例二
图2为本发明实施例二提供的一种反射薄膜的结构示意图。如图2所示,本发明实施例提供的一种双层反射薄膜,主要包括:
与实施例一一样,聚合物与胆甾相液晶。
在此实例中,选用聚合物单体为:RM257\RM82\RM006\RM021\RM010。选用光引发剂Irgacure 2959或Darocurl173等。选用常用的紫外灯作为固化光源,中心波长为365nm(也可选用290nm~365nm)。在此实例中聚合物混合物各质量比例为:30∶15∶20∶20∶15。将混合好的聚合物与胆甾相液晶混合。第一反射层此处选用的胆甾相液晶由向列相E7与手型剂R5011组成,质量比为:96.9∶3.1。为右旋一维光子晶体。聚合物、胆甾相液晶和光引发剂比例为:74∶25∶1。加热到70℃,搅拌10分钟,使之混合均匀。最后将混合物注入反平行取向的液晶盒。此处的反平行盒上下基板内表面分别由光取向剂PVCin和PI分别取向。聚合时,紫外光从PVCin面入射,聚合后将未聚合的单体以及胆甾相液晶浸出,此处选用甲苯作为溶剂。待溶解完全后,只剩下聚合物微腔。此时聚合物和PVCin链接在一起,由于PVCin在紫外光下也与聚合物发生了交联反应。之后将同一禁带位置的左旋的聚合物胆甾相液晶混合物注入此液晶盒,待稳定,继续使紫外光通过PVCin面进行聚合,使左旋和右旋聚合物交联在一起形成一体化的薄膜。最后浸泡出未聚合的单体以及胆甾相液晶。此微腔薄膜 可以脱离基本而独立存在。通过填充不同的介质来实现不同禁带位置和宽度的反射薄膜。在此选用向列相液晶(DYX8013-00)作为填充介质。实现了反射薄膜。
对于填充DYX8013-00的薄膜,禁带位置和宽度分别在450nm和38nm。反射率高达90%。
实施例三
图3为本发明实施例三提供的一种矩阵化反射薄膜的制备示意图。如图3所示,本发明实施例提供的一种单层反射薄膜制备方法,主要包括:
矩阵图案写入和聚合。
其中聚合物微腔由胆甾相液晶以及聚合物制备而成。胆甾相液晶在反平行的液晶盒中自组装形成一维光子晶体结构,聚合物单体在聚合前随着液晶分子排列,稳定后,利用光聚合或者其他方式的聚合物引发剂实施聚合活动,最后基于胆甾相液晶形成具有微腔结构的聚合物结构。结构示意与图一相同。
在此实例中,选用聚合物单体为:RM257\RM82\RM006\RM021\RM010。选用光引发剂Irgacure 2100。选用常用的紫外灯作为固化光源,中心波长为365nm。另外选用290nm的紫外灯作为螺距选择光源。在此实例中聚合物混合物各质量比例为:30∶15∶20∶20∶15。将混合好的聚合物与胆甾相液晶混合。其中胆甾相液晶由向列相E7与手型剂ZLI-811组成,质量比为:76∶24。ZLI-811为光敏手性剂,在290nm照射下HTP值逐渐减小。聚合物、胆甾相液晶和光引发剂比例为:74∶25∶1。加热到70℃,搅拌10分钟,使之混合均匀。最后将混合物注入反平行取向的液晶盒。先选用290nm光源对螺距进行选择,利用三个灰阶曝光实现矩阵化图案,之后再用365nm光源对聚合物进行聚合,聚合后将未聚合的单体以及胆甾相液晶浸出,此处选用甲苯作为溶剂。待溶解完全后, 只剩下聚合物微腔。此微腔薄膜可以脱离基本而独立存在。通过填充不同的介质来实现不同禁带位置和宽度的反射薄膜。在此选用向列相液晶(DYX8013-00)作为填充介质。实现了反射薄膜。
对于填充DYX8013-00的薄膜,禁带位置和宽度分别在450nm和40nm;541nm和46nm;630nm和60nm。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种反射薄膜,其特征在于,包括:聚合物纳米微腔结构以及微腔内填充介质;
    其中,所述聚合物纳米微腔结构由聚合物形成右旋或左旋结构。
  2. 一种如权利要求1所述的反射薄膜的制备方法,其中所述反射薄膜为单手性反射薄膜,包括以下步骤:
    将光取向剂聚乙烯肉桂酸酯或者聚酰亚胺取向剂作为第一取向层;
    将第一取向层设置在第一透明基板内侧;
    将聚酰亚胺取向剂作为第二取向层;
    将第二取向层设置在第二透明基板内侧;
    将胆甾相液晶以及聚合物注入所述第一透明基板与第二透明基板形成的液晶盒中;
    从所述第一透明基板侧进行偏振紫外光曝光,与所述第一透明基板相邻的聚合物以及光取向剂经过所述偏振紫外光触发,所述聚合物基端围绕所述第一胆甾相液晶进行聚合;所述光取向剂对液晶分子进行取向并与聚合物交联;
    将未反应的所述聚合物以及所述胆甾相液晶浸泡溶解;
    最后向所述液晶盒内注入填充物。
  3. 根据权利要求2所述的制备方法,其特征在于,在聚合物中添加紫外吸收剂;
    优选地,所述聚合物为RM257、RM82、RM010、RM021或RM006中的1种或2种以上的组合;
    优选地,所述填充物包含非极性物质,优选为50-90重量%的非极性物质,优选为60-80重量%的非极性物质;
    优选地,所述非极性物质为甲苯、液晶或硅油中的1种或2种以上的组合。
  4. 根据权利要求2或3所述的制备方法,其特征在于,所述胆甾相液晶为左旋和/或右旋胆甾相液晶。
  5. 一种权利要求1所述的反射薄膜的制备方法,其中所述反射薄膜为双手性反射薄膜,包括以下步骤:
    将光取向剂聚乙烯肉桂酸酯作为第一取向层;
    将第一取向层设置在第一透明基板内侧;
    将聚酰亚胺取向剂作为第一取向层;
    将第二取向层设置在第二透明基板内侧;
    将第一胆甾相液晶以及第一聚合物注入所述第一透明基板与第二透明基板形成的液晶盒中;
    从所述第一透明基板侧进行偏振紫外光曝光,与所述第一透明基板相邻的第一聚合物以及光取向剂经过所述偏振紫外光触发,所述聚合物基端围绕所述第一胆甾相液晶进行聚合;所述光取向剂对液晶分子进行取向并与聚合物交联;
    将未反应的所述第一聚合物以及所述第一胆甾相液晶浸泡溶解、烘干;
    将第二胆甾相液晶、光引发剂以及第二聚合物注入所述液晶盒中;
    继续从所述第一透明基板侧进行紫外光曝光,通过进行紫外光曝光使与所述第二透明基板侧相邻的所述第二聚合物聚合,所述第二聚合物聚合后与所述第一聚合物聚合后无缝对接;
    将未反应的所述第二胆甾相液晶以及所述第二聚合物进行溶解去除;
    最后向所述液晶盒内注入填充物。
  6. 根据权利要求5所述的制备方法,其特征在于,在聚合物中添加紫外吸 收剂。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述第一胆甾相液晶为左旋胆甾相液晶或右旋胆甾相液晶,所述第二胆甾相液晶为右旋胆甾相液晶或左旋胆甾相液晶;所述第一胆甾相液晶不同于所述第二胆甾相液晶。
  8. 根据权利要求5-7任一项所述的制备方法,其特征在于,第一聚合物和第二聚合物相同。
  9. 根据权利要求5-8任一项所述的制备方法,其特征在于,所述第一和第二聚合物为RM257、RM82、RM010、RM021或RM006中的1种或2种以上的组合。
  10. 根据权利要求5-9任一项所述的制备方法,其特征在于,所述光引发剂为Darocur1173。
PCT/CN2017/070659 2017-01-09 2017-01-09 一种反射薄膜及其制备方法 WO2018126481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070659 WO2018126481A1 (zh) 2017-01-09 2017-01-09 一种反射薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070659 WO2018126481A1 (zh) 2017-01-09 2017-01-09 一种反射薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2018126481A1 true WO2018126481A1 (zh) 2018-07-12

Family

ID=62789022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070659 WO2018126481A1 (zh) 2017-01-09 2017-01-09 一种反射薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2018126481A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671966A (zh) * 2022-03-15 2022-06-28 北京科技大学 一种基于ZIFs双向扩散法制备宽波反射薄膜的方法
CN115220267A (zh) * 2022-08-01 2022-10-21 南京大学 一种液晶注液多孔光滑表面构建方法及其微流控应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566755A (zh) * 2009-05-27 2009-10-28 北京科技大学 一种利用聚合物稳定液晶材料制备光增亮膜的方法
CN101706625A (zh) * 2009-11-13 2010-05-12 北京科技大学 用聚合物稳定胆甾相液晶材料制备宽波反射薄膜的方法
CN104267457A (zh) * 2014-10-30 2015-01-07 京东方科技集团股份有限公司 反射式偏振片及其制备方法、液晶显示装置
CN105242473A (zh) * 2015-10-30 2016-01-13 南方科技大学 一种胆甾相液晶显示装置及该装置中反射层的制备方法
US20160223730A1 (en) * 2015-02-04 2016-08-04 Samsung Display Co., Ltd. Cholesteric liquid crystal reflective polarizing plate and liquid crystal display including the same
CN106646951A (zh) * 2017-01-09 2017-05-10 南方科技大学 一种反射薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566755A (zh) * 2009-05-27 2009-10-28 北京科技大学 一种利用聚合物稳定液晶材料制备光增亮膜的方法
CN101706625A (zh) * 2009-11-13 2010-05-12 北京科技大学 用聚合物稳定胆甾相液晶材料制备宽波反射薄膜的方法
CN104267457A (zh) * 2014-10-30 2015-01-07 京东方科技集团股份有限公司 反射式偏振片及其制备方法、液晶显示装置
US20160223730A1 (en) * 2015-02-04 2016-08-04 Samsung Display Co., Ltd. Cholesteric liquid crystal reflective polarizing plate and liquid crystal display including the same
CN105242473A (zh) * 2015-10-30 2016-01-13 南方科技大学 一种胆甾相液晶显示装置及该装置中反射层的制备方法
CN106646951A (zh) * 2017-01-09 2017-05-10 南方科技大学 一种反射薄膜及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671966A (zh) * 2022-03-15 2022-06-28 北京科技大学 一种基于ZIFs双向扩散法制备宽波反射薄膜的方法
CN114671966B (zh) * 2022-03-15 2023-02-07 北京科技大学 一种基于ZIFs双向扩散法制备宽波反射薄膜的方法
CN115220267A (zh) * 2022-08-01 2022-10-21 南京大学 一种液晶注液多孔光滑表面构建方法及其微流控应用
CN115220267B (zh) * 2022-08-01 2023-07-25 南京大学 一种液晶注液多孔光滑表面构建方法及其微流控应用

Similar Documents

Publication Publication Date Title
US8305523B2 (en) Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
EP2933677B1 (en) Liquid crystal element
Xu et al. Electrically switchable, hyper‐reflective blue phase liquid crystals films
CN106646951A (zh) 一种反射薄膜及其制备方法
JPH03140921A (ja) 液晶表示装置
Kim et al. Light responsive liquid crystal soft matters: structures, properties, and applications
Chen et al. Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection
Matsumori et al. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter
WO2018126481A1 (zh) 一种反射薄膜及其制备方法
CN110724218B (zh) 洗出/再填充技术制备单层胆甾相液晶薄膜的方法及应用
Guo et al. Photo-and thermal switching of blue phase films reflecting both right-and left-circularly polarized light
Kwon et al. Optical characteristics of stretchable chiral liquid crystal elastomer under multiaxial stretching
Zhang et al. Thermochromic multicolored photonic coatings with light polarization-and structural color-dependent Changes
JP2004505299A (ja) 複合非線形光学膜と、その製造方法およびその応用
JP7440523B2 (ja) 液晶組成物、光学フィルム、有機elディスプレイ用円偏光板、光学異方性層の製造方法
Park et al. Electrically Controllable Omnidirectional Laser Emission from a Helical‐Polymer Network Composite Film
Yu et al. Polymer-dispersed liquid crystal films on flexible substrates with excellent bending resistance and spacing stability
Lim et al. Manipulation of structural colors in liquid-crystal helical structures deformed by surface controls
Atorf et al. Switchable plasmonic holograms utilizing the electro-optic effect of a liquid-crystal circular polarizer
US10955600B1 (en) Swinging nematic liquid crystals and method for making
West et al. Stressed liquid crystals and their application
Jing Selective Reflection of Cholesteric Liquid Crystals
KR101074185B1 (ko) 광경화성 콜레스테릭 액정과 광경화성 네마틱 액정을포함하는 반사형 편광필름 및 그 제조방법
KR101655283B1 (ko) 무배향막 광학 필름 및 그의 제조 방법
WO2021132549A1 (ja) テラヘルツ波制御素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890372

Country of ref document: EP

Kind code of ref document: A1