WO2018125512A1 - High triplet energy phosphine oxide compounds for oled application - Google Patents
High triplet energy phosphine oxide compounds for oled application Download PDFInfo
- Publication number
- WO2018125512A1 WO2018125512A1 PCT/US2017/064124 US2017064124W WO2018125512A1 WO 2018125512 A1 WO2018125512 A1 WO 2018125512A1 US 2017064124 W US2017064124 W US 2017064124W WO 2018125512 A1 WO2018125512 A1 WO 2018125512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- organic electroluminescent
- heteroaryl
- electroluminescent compound
- formula
- Prior art date
Links
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 title abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 34
- 125000001072 heteroaryl group Chemical group 0.000 claims description 33
- 125000003118 aryl group Chemical group 0.000 claims description 29
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 15
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 14
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 239000012044 organic layer Substances 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000004076 pyridyl group Chemical group 0.000 claims description 6
- ASUOLLHGALPRFK-UHFFFAOYSA-N phenylphosphonoylbenzene Chemical group C=1C=CC=CC=1P(=O)C1=CC=CC=C1 ASUOLLHGALPRFK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical group PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 claims description 3
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 18
- -1 benzofluorenyl Chemical group 0.000 description 15
- 239000000463 material Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000004305 biphenyl Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 6
- 229940125782 compound 2 Drugs 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- GNDDWEKIZIAXHQ-UHFFFAOYSA-N 1-bromo-2-[(3-bromophenyl)-phenylphosphoryl]benzene Chemical compound BrC1=C(C=CC=C1)P(C1=CC=CC=C1)(C1=CC(=CC=C1)Br)=O GNDDWEKIZIAXHQ-UHFFFAOYSA-N 0.000 description 3
- OKIPTENXTFJRCG-UHFFFAOYSA-N 9-[3-[(3-bromophenyl)-phenylphosphoryl]phenyl]carbazole Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)C=1C=C(C=CC=1)P(C1=CC=CC=C1)(C1=CC(=CC=C1)Br)=O OKIPTENXTFJRCG-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 125000003373 pyrazinyl group Chemical group 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- 101100394073 Caenorhabditis elegans hil-1 gene Proteins 0.000 description 2
- 101100506090 Caenorhabditis elegans hil-2 gene Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 101100232347 Mus musculus Il11ra1 gene Proteins 0.000 description 2
- 150000001204 N-oxides Chemical class 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 101100451713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HTL1 gene Proteins 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 201000001366 familial temporal lobe epilepsy 2 Diseases 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005182 potential energy surface Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- FRDZGSBXKJXGNR-HTQZYQBOSA-N (1r,2r)-2-n,2-n-dimethylcyclohexane-1,2-diamine Chemical compound CN(C)[C@@H]1CCCC[C@H]1N FRDZGSBXKJXGNR-HTQZYQBOSA-N 0.000 description 1
- FIDRAVVQGKNYQK-UHFFFAOYSA-N 1,2,3,4-tetrahydrotriazine Chemical compound C1NNNC=C1 FIDRAVVQGKNYQK-UHFFFAOYSA-N 0.000 description 1
- SWJPEBQEEAHIGZ-UHFFFAOYSA-N 1,4-dibromobenzene Chemical compound BrC1=CC=C(Br)C=C1 SWJPEBQEEAHIGZ-UHFFFAOYSA-N 0.000 description 1
- MNCMBBIFTVWHIP-UHFFFAOYSA-N 1-anthracen-9-yl-2,2,2-trifluoroethanone Chemical group C1=CC=C2C(C(=O)C(F)(F)F)=C(C=CC=C3)C3=CC2=C1 MNCMBBIFTVWHIP-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- RICKKZXCGCSLIU-UHFFFAOYSA-N 2-[2-[carboxymethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]ethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]acetic acid Chemical compound CC1=NC=C(CO)C(CN(CCN(CC(O)=O)CC=2C(=C(C)N=CC=2CO)O)CC(O)=O)=C1O RICKKZXCGCSLIU-UHFFFAOYSA-N 0.000 description 1
- SWUBEMMFTUPINB-UHFFFAOYSA-N 9-[3-carbazol-9-yl-5-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]carbazole Chemical compound C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=C(C=C(C=2)N2C3=CC=CC=C3C3=CC=CC=C32)N2C3=CC=CC=C3C3=CC=CC=C32)=N1 SWUBEMMFTUPINB-UHFFFAOYSA-N 0.000 description 1
- VTWSECNSRVMAMS-UHFFFAOYSA-N CC1(C=CC=CC1)c1nc(-c2ccccc2)nc(-c2cc(P(c3ccccc3)(c3cccc(-[n]4c(ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c5)c5c5ccccc45)c3)=O)ccc2)n1 Chemical compound CC1(C=CC=CC1)c1nc(-c2ccccc2)nc(-c2cc(P(c3ccccc3)(c3cccc(-[n]4c(ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c5)c5c5ccccc45)c3)=O)ccc2)n1 VTWSECNSRVMAMS-UHFFFAOYSA-N 0.000 description 1
- CRHYLRWJDKGQNX-UHFFFAOYSA-N CC1C=CC=CC1c1nc(-c2cc(P(c3ccccc3)(c3cccc(-[n]4c(ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c5)c5c5ccccc45)c3)=O)ccc2)nc(C2(C)C=CC=CC2)c1 Chemical compound CC1C=CC=CC1c1nc(-c2cc(P(c3ccccc3)(c3cccc(-[n]4c(ccc(-c(cc5)cc(c6ccccc66)c5[n]6-c5ccccc5)c5)c5c5ccccc45)c3)=O)ccc2)nc(C2(C)C=CC=CC2)c1 CRHYLRWJDKGQNX-UHFFFAOYSA-N 0.000 description 1
- MFERQRGYDIXVEF-UHFFFAOYSA-N Cc1ccc(C)[n]1-c1cccc(P(c2cccc(-[n]3c(C)ccc3C)c2)(c2cccc(-[n]3c(C)ccc3C)c2)=O)c1 Chemical compound Cc1ccc(C)[n]1-c1cccc(P(c2cccc(-[n]3c(C)ccc3C)c2)(c2cccc(-[n]3c(C)ccc3C)c2)=O)c1 MFERQRGYDIXVEF-UHFFFAOYSA-N 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- HSLVNYCXKKRFOI-UHFFFAOYSA-N O=P(c1cccc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1)(c1cc(-[n]2c3ccccc3c3c2cccc3)ccc1)c1cccc(-[n]2c(cccc3)c3c3c2cccc3)c1 Chemical compound O=P(c1cccc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1)(c1cc(-[n]2c3ccccc3c3c2cccc3)ccc1)c1cccc(-[n]2c(cccc3)c3c3c2cccc3)c1 HSLVNYCXKKRFOI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000002078 anthracen-1-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C([*])=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000000748 anthracen-2-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C([H])=C([*])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 238000005284 basis set Methods 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- YYDZNOUMWKJXMG-UHFFFAOYSA-N chloro(phenyl)phosphane Chemical compound ClPC1=CC=CC=C1 YYDZNOUMWKJXMG-UHFFFAOYSA-N 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms
- C07F9/655345—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring
- C07F9/655354—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/53—Organo-phosphine oxides; Organo-phosphine thioxides
- C07F9/5325—Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
- C07F9/572—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
- C07F9/572—Five-membered rings
- C07F9/5728—Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
- C07F9/576—Six-membered rings
- C07F9/5765—Six-membered rings condensed with carbocyclic rings or carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/553—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
- C07F9/576—Six-membered rings
- C07F9/58—Pyridine rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/645—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
- C07F9/6509—Six-membered rings
- C07F9/6512—Six-membered rings having the nitrogen atoms in positions 1 and 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6515—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having three nitrogen atoms as the only ring hetero atoms
- C07F9/6521—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/655—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
- C07F9/65515—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
- C07F9/65517—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
Definitions
- the present invention relates to phosphine oxide compounds and organic electroluminescent devices comprising the compounds. More particularly, the invention relates to phosphine oxide compounds with specific chemical structures which have a high triplet energy level suitable for an organic light emitting device (OLED) application.
- OLED organic light emitting device
- OLEDs are devices in which stacks of organic layers including an electron transport layer (ETL), an emission layer (EML) and a hole transport layer (HTL) are interposed between two electrodes.
- EML contains at least one organic compound that emits light in response to an electric current between these two electrodes.
- Such organic compounds are called electroluminescent compounds.
- electroluminescent compounds include specific Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels, a sufficient energy gap between HOMO and LUMO, and a higher triplet energy level.
- One embodiment of the invention is an organic electroluminescent compound represented by the following Formula (1) or Formula (2): Formula (1)
- Ri, R 2 and R 3 are each selected from the following (a) or (b),
- Ri is an aryl group which may be substituted by a heteroaryl group
- R 2 and R 3 are independently selected from an aryl group which is substituted by a heteroaryl group and the substituent of R 2 and the substituent of R 3 are different heteroaryl groups
- Ri and R 2 are each an aryl group and R 3 is a group represented by the following formula (3), formula (4) or formula (5);
- R 4 ,R 6 and R 7 are each selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a diphenyl phosphine oxide group, a phenyl phosphine group or a carbazolyl group, R5, Rs and R9 are each selected from an alkyl group having 1 to 8 carbon atoms or a heteroaryl group, X is selected from an oxygen atom or a sulfur atom;
- Another embodiment of the invention is an organic electroluminescent device containing the organic electroluminescent compound.
- aryl refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom.
- An aryl group may be a monocyclic and/or fused ring system, each ring of which suitably contains from 4 to 6, preferably from 5 or 6, atoms.
- An aryl also comprises those where two or more aryl groups are combined through single bond(s).
- aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like.
- the naphthyl may be 1 -naphthyl or 2-naphthyl.
- the anthryl may be 1 -anthryl, 2-anthryl or 9-anthryl.
- the fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
- the heteroaryl may be a 5- or 6- membered monocyclic heteroaryl, or a polycyclic heteroaryl which is fused with one or more benzene ring(s), and may be partially saturated.
- the structures that one or more heteroaryl group(s) are bonded through a single bond are also comprised.
- the heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like.
- Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl; polycyclic heteroaryl groups such as benzofuranyl, fluoreno[4, 3-b]benzofuranyl, benzothiophenyl, fluoreno[4, 3-b]benzothiophenyl, isobenzofurany
- One embodiment of the present invention is the organic electroluminescent compounds having the structure represented by the following Formula (1).
- Ri, R 2 and R 3 are each selected from Group (a) or Group (b) described below.
- Ri is an aryl group which may be substituted by a heteroaryl group.
- R 2 and R 3 are independently selected from an aryl group which is substituted by a heteroaryl group and the substituent of R 2 and the substituent of R 3 are different heteroaryl groups.
- Suitable examples of Ri comprise a phenyl group and a substituted phenyl group.
- Substituents of the phenyl group comprise a pyridinyl group, a pyrimidinyl group, a pyrazinyl group and a carbazolyl group.
- Suitable examples of the R 2 and R 3 comprise a phenyl group which is substituted by a heteroaryl group.
- the heteroaryl group includes a pyridinyl group, a pyrimidinyl group, a pyrazinyl group and a carbazolyl group, a diphenyl pyrimidynyl group, a diphenyl triazolyl group, a phenyl carbazolyl group, a carbazolyl group which is substituted by a phenyl carbazolyl group and a diphenyl amino group.
- Suitable examples of the compound represented by Group (a) of Formula (1) are selected from the following structures:
- one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) Group (a) has a pyridinyl group as its heteroaryl group.
- Such compounds are disclosed as (A-l) to (A-5).
- one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) Group (a) has a carbazolyl group as its heteroaryl group.
- Such compounds are disclosed as (A-l) to (A-5) and (B-l) to (B-5).
- one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) has both a pyridinyl group and a carbazolyl group as its heteroaryl group. Such compounds are disclosed as (A-l) to (A-5).
- Ri and R 2 are each aryl group and R 3 is represented by the following formula (3), formula (4) or formula (5).
- R 4 , R 6 and R 7 are each selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a heteroaryl group or a group having an aryl group and a phosphine oxide group.
- R5, Rs and R9 are selected from an alkyl group having 1 to 8 carbon atoms or a heteroaryl group.
- R 8 and R9 can form a ring.
- X is selected from an oxygen atom or a sulfur atom.
- Suitable examples of the R 4 , R 6 and R 7 comprise a hydrogen atom, a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, a diphenyl phosphine oxide group, a phenyl phosphine group and a carbazolyl group.
- Suitable examples of the R5 comprise a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a diphenyl pyridinyl group, a carbazolyl group, a diphenyl phosphine oxide group and a diphenyl phosphine oxide group substituted carbazolyl group.
- Suitable examples of the compound represented by Group (b) of Formula (1) are selected from the following structures:
- Rio to R15 are an aryl group or an aryl group substituted by an aryl group, a heteroaryl group or amine group. At least one of Rio to R15 is an aryl group which substituted by a heteroaryl group.
- L is an alkylene group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms.
- the phosphine oxide compounds of the present invention may have a molecular weight of 1200 Dalton or less. More preferably, the molecular weight of the compounds are 1000 Dalton or less, the most preferably 800 Dalton or less.
- the energy of the Ti state was computed as the difference in energy between the minima of So and Ti potential energy surfaces (PES). All the calculations were performed using G09 suit of programs (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.
- the HOMO values of the phosphine oxide compounds of the present invention are shallower (higher) than -7.0 eV, more preferably shallower than -6.5 eV, the most preferably shallower than -5.5eV.
- the LUMO values of the phosphine oxide compounds of the present invention are deeper (lower) than -0.75 eV, more preferably deeper than -1.0 eV, the most preferably deeper than -1.25 eV.
- the triplet energy values of the phosphine oxide compounds of the present invention are higher than 2.8 eV, more preferably higher than 2.9 eV, the most preferably higher than 2.95 eV.
- an electroluminescent device includes a first electrode, a second electrode, and one or more organic layers interposed between the first electrode and the second electrode.
- the organic layers include electron transport layers
- EMLs emission layers
- HTLs hole transport layers
- the LUMO level of this suite of molecules ranges between -1.2 eV and -1.5 eV, which is identified as a desired range for host materials.
- the pyridine-substituted phosphine oxides can be used in emission layer as a high triplet host materials.
- this suite of molecules has the correct electronics for an efficient host material.
- OLEDs were fabricated onto an ITO coated glass substrate that served as the anode, and topped with an aluminum cathode. All organic layers were thermally deposited by physical vapor deposition, in a vacuum chamber with a base pressure of less than 10 "7 torr.
- Each cell containing HIL1, HIL2, HTL1, HTL2, EBL, EML host, EML dopant, ETL1, ETL2, or EIL, was placed inside a vacuum chamber, until it reached 10 "6 torr.
- a controlled current was applied to the cell, containing the material, to raise the temperature of the cell. An adequate temperature was applied to keep the evaporation rate of the materials constant throughout the evaporation process.
- N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazol-3-yl)-[l,l'- biphenyl]-4,4'-diamine was evaporated at a constant lA/s rate, until the thickness of the layer reached 600 Angstrom.
- the dipyrazino[2,3-f:2',3'-h]quinoxaline- 2,3,6,7,10,11-hexacarbonitrile layer was evaporated at a constant 0.5A/s rate, until the thickness reached 50 Angstrom.
- N-([l,l'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9- phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine was evaporated at a constant lA/s rate, until the thickness reached 150 Angstrom.
- N,N-di([l,l'-biphenyl]-4-yl)-4'- (9H-carbazol-9-yl)-[l,l'-biphenyl]-4-amine was evaporated at a constant lA/s rate, until the thickness reached 50 Angstrom.
- the deposition rate for host materials was 0.85A/s, and the deposition for the dopant material was 0.15 A/s, resulting in a 15% doping of the host materials.
- 5-(4-([l,r-biphenyl]-3-yl)-6-phenyl-l,3,5-triazin-2-yl)-7,7-diphenyl-5,7- dihydroindeno[2,l-b]carbazole was evaporated at a constant lA/s rate, until the thickness reached 50 Angstrom.
- J-V-L current- voltage-brightness
- EL spectra of the OLED were collected by a calibrated CCD spectrograph and External Quantum Efficiency (EQE) was analyzed by spectroradiometer PR655 (PHOTO RESEARCH®, 7279 William Barry Blvd., Syracuse, NY 13212-3349, U.S.A.).
- OLED comprising the Compound 1 or Compound 2 had a higher luminous efficiency and EQL compared to the OLED comprising reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Phosphine oxide compounds which have a high Triplet Energy used in an emission layer of Organic Light Emitting Devices (OLEDs) and OLEDs comprising the compounds are disclosed.
Description
HIGH TRIPLET ENERGY PHOSPHINE OXIDE COMPOUNDS FOR
USE IN ELECTROLUMINESCENT DEVICES
Field of the invention
The present invention relates to phosphine oxide compounds and organic electroluminescent devices comprising the compounds. More particularly, the invention relates to phosphine oxide compounds with specific chemical structures which have a high triplet energy level suitable for an organic light emitting device (OLED) application.
Background of the invention
Organic light emitting devices (OLEDs) are devices in which stacks of organic layers including an electron transport layer (ETL), an emission layer (EML) and a hole transport layer (HTL) are interposed between two electrodes. EML contains at least one organic compound that emits light in response to an electric current between these two electrodes. Such organic compounds are called electroluminescent compounds. Several properties required for such electroluminescent compounds include specific Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels, a sufficient energy gap between HOMO and LUMO, and a higher triplet energy level.
Some prior arts disclose phosphine oxide compounds used for electroluminescent devices, see JP63056610A, JP9268283A, JP4876333B, JP2004095221A, JP2004203828A, WO2005073340A, US20090167166A, JP2008244013A, US20080238307A, US20080241518A, and JP2008244012A. However, there remains a need for new compounds which have specific HOMO/LUMO levels, a sufficient HOMO/LUMO energy gap and a higher triplet energy level that are useful for OLEDs that have improved device performance.
Summary of the invention
One embodiment of the invention is an organic electroluminescent compound represented by the following Formula (1) or Formula (2):
Formula (1)
wherein Ri, R2 and R3 are each selected from the following (a) or (b),
(a) Ri is an aryl group which may be substituted by a heteroaryl group, R2 and R3 are independently selected from an aryl group which is substituted by a heteroaryl group and the substituent of R2 and the substituent of R3 are different heteroaryl groups,
(b) Ri and R2 are each an aryl group and R3 is a group represented by the following formula (3), formula (4) or formula (5);
wherein R4 ,R6 and R7 are each selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a diphenyl phosphine oxide group, a phenyl phosphine group or a carbazolyl group, R5, Rs and R9 are each selected from an alkyl group having 1 to 8 carbon atoms or a heteroaryl group, X is selected from an oxygen atom or a sulfur atom;
Formula (2)
wherein Rio to R15 are an aryl group or an aryl group substituted by an aryl group, a heteroaryl group or an amine group, at least one of Rio to R15 are an aryl group which is substituted by a heteroaryl group, L is an alkylene group having 1 to 4 carbon atoms.
Another embodiment of the invention is an organic electroluminescent device containing the organic electroluminescent compound.
Detailed description of the invention
As used throughout this specification, the term "aryl" refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom. An aryl group may be a monocyclic and/or fused ring system, each ring of which suitably contains from 4 to 6, preferably from 5 or 6, atoms. An aryl also comprises those where two or more aryl groups are combined through single bond(s). Examples of aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like. The naphthyl may be 1 -naphthyl or 2-naphthyl. The anthryl may be 1 -anthryl, 2-anthryl or 9-anthryl. The fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
As used throughout this specification, the term "heteroaryl" refers to an aryl group, in which at least one carbon atom, CH group or CH2 group within the ring is replaced with a heteroatom (for example, B, N, O, S, P(=0), Si and P). The heteroaryl may be a 5- or 6- membered monocyclic heteroaryl, or a polycyclic heteroaryl which is fused with one or more benzene ring(s), and may be partially saturated. The structures that one or more heteroaryl group(s) are bonded through a single bond are also comprised. The heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like. Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl; polycyclic heteroaryl groups such as benzofuranyl, fluoreno[4, 3-b]benzofuranyl, benzothiophenyl, fluoreno[4, 3-b]benzothiophenyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl,
cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl and benzodioxolyl; and corresponding N-oxides (for example, pyridyl N-oxide, quinolyl N-oxide) and quaternary salts thereof.
One embodiment of the present invention is the organic electroluminescent compounds having the structure represented by the following Formula (1).
O
P.
Rf I R3
Formula (1)
In Formula (1), Ri, R2 and R3 are each selected from Group (a) or Group (b) described below.
Group (a)
In Formula (1), Ri is an aryl group which may be substituted by a heteroaryl group. R2 and R3 are independently selected from an aryl group which is substituted by a heteroaryl group and the substituent of R2 and the substituent of R3 are different heteroaryl groups.
Suitable examples of Ri comprise a phenyl group and a substituted phenyl group. Substituents of the phenyl group comprise a pyridinyl group, a pyrimidinyl group, a pyrazinyl group and a carbazolyl group. Suitable examples of the R2 and R3 comprise a phenyl group which is substituted by a heteroaryl group. The heteroaryl group includes a pyridinyl group, a pyrimidinyl group, a pyrazinyl group and a carbazolyl group, a diphenyl pyrimidynyl group, a diphenyl triazolyl group, a phenyl carbazolyl group, a carbazolyl group which is substituted by a phenyl carbazolyl group and a diphenyl amino group.
Suitable examples of the compound represented by Group (a) of Formula (1) are selected from the following structures:
Preferably, one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) Group (a) has a pyridinyl group as its heteroaryl group. Such compounds are disclosed as (A-l) to (A-5).
Preferably, one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) Group (a) has a carbazolyl group as its heteroaryl group. Such compounds are disclosed as (A-l) to (A-5) and (B-l) to (B-5).
More preferably, one embodiment of the invention for the organic electroluminescent compounds disclosed in Formula (1) Group (a) has both a pyridinyl group and a carbazolyl group as its heteroaryl group. Such compounds are disclosed as (A-l) to (A-5).
Group (b)
In Formula (1), Ri and R2 are each aryl group and R3 is represented by the following formula (3), formula (4) or formula (5).
In the formulas (3) to (5), R4, R6 and R7 are each selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a heteroaryl group or a group having an aryl group and a phosphine oxide group. R5, Rs and R9 are selected from an alkyl group having 1 to 8 carbon atoms or a heteroaryl group. R8 and R9 can form a ring. X is selected from an oxygen atom or a sulfur atom.
Suitable examples of the R4, R6 and R7 comprise a hydrogen atom, a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, a diphenyl phosphine oxide group, a phenyl phosphine group and a carbazolyl group. Suitable examples of the R5 comprise a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a diphenyl pyridinyl group, a carbazolyl group, a diphenyl phosphine oxide group and a diphenyl phosphine oxide group substituted carbazolyl group.
Suitable examples of the compound represented by Group (b) of Formula (1) are selected from the following structures:
10
Formula (2)
In Formula (2), Rio to R15 are an aryl group or an aryl group substituted by an aryl group, a heteroaryl group or amine group. At least one of Rio to R15 is an aryl group which substituted by a heteroaryl group. L is an alkylene group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms.
Examples of Formula (2) compounds include:
The phosphine oxide compounds of the present invention may have a molecular weight of 1200 Dalton or less. More preferably, the molecular weight of the compounds are 1000 Dalton or less, the most preferably 800 Dalton or less.
Modeling Methodology:
The ground-state (So) and first excited triplet-state (Ti) configurations of the molecules were computed using Density Functional Theory (DFT). For this purpose, B3LYP is used as the functional ((a) Becke, A.D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785. (c) Miehlich, B.; Savin, A.; Stall, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.) and 6-3 lg* is used as basis set ((a) Ditchfield, R.; Hehre, W.J.; Pople, J.A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W.J.; Ditchfield, R.; Pople, J.A. J. Chem. Phys. 1972, 56, 2257. (c) Gordon, M.S. Chem. Phys. Lett. 1980, 76, 163.). The energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were obtained from the So configuration. The energy of the Ti state was computed as the difference in energy between the minima of So and Ti potential energy surfaces (PES). All the calculations were performed using G09 suit of programs (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V.
N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.). The energies of HOMO, LUMO and Ti are reported in eVs.
The HOMO values of the phosphine oxide compounds of the present invention are shallower (higher) than -7.0 eV, more preferably shallower than -6.5 eV, the most preferably shallower than -5.5eV.
The LUMO values of the phosphine oxide compounds of the present invention are deeper (lower) than -0.75 eV, more preferably deeper than -1.0 eV, the most preferably deeper than -1.25 eV.
The triplet energy values of the phosphine oxide compounds of the present invention are higher than 2.8 eV, more preferably higher than 2.9 eV, the most preferably higher than 2.95 eV.
The organic compounds of the present invention can be used in organic layers of an organic electroluminescent device. Normally, an electroluminescent device includes a first electrode, a second electrode, and one or more organic layers interposed between the first electrode and the second electrode. The organic layers include electron transport layers
(ETLs), emission layers (EMLs) and hole transport layers (HTLs). The organic compounds of the present invention can be used especially for EMLs.
Examples
The following examples illustrate embodiments of the present invention. All parts and percentages are by weight unless otherwise indicated.
Pre aration of (2-bromophenyl)(3-bromophenyl)(phenyl)phosphine oxide
Molecular Weight 235 91 Molecular Weight: 420.08 Molecular Weight: 436.08 ft-Butyllithium (15.9 mL of 1.6 M in tetrahydrofuran (THF) solution, 0.0254 mol) was added dropwise to a solution of 1,4-dibromobenzene (6.00 g, 0.0254 mol) in anhydrous THF (100 mL) at -78 °C. The reaction mixture was kept at this temperature for 1 h, and then chlorophenylphosphine (1.73 mL, 0.0127 mol) was added at - 78 °C. The resulting mixture was stirred for a further 2 h at room temperature before quenching with 5 mL of methanol. Water was added, and the mixture was extracted with CH2CI2, washed with water and Brine. After the solvent had been completely removed, 30% hydrogen peroxide (30 mL) and CH2CI2 (60 mL) were added to the obtained residue and the mixture stirred overnight at room temperature. The organic layer was separated and washed with water and then brine. The extract was evaporated to dryness, and the residue was purified with reverse phase column separation. After purification, 2.01g of (2-bromophenyl)(3-bromophenyl)(phenyl)phosphine oxide (purity was higher than 99.5 %) and 0.7 g of by-product were obtained after the purification. (48.82 % for overall yield)
Preparation of (3-(9H-carbazol-9-yl)phenyl)(3-bromophenyl)(phenyl)phosphine oxide
Molecular Weight: 522.38
In a glovebox, Cul (5 mol %), (2-bromophenyl)(3-bromophenyl)(phenyl)phosphine oxide (1 eq), and K3P04 (2.1 eq) was added to a 40 mL vial. Carbazole (1 eq.), trans-N,N-
dimethyl- 1,2-cyclohexanediamine (10 mol %), and toluene (15 mL) were then successively added in a glove box. The reaction mixture was heated at 100 C for 24 h. After the reaction, the mixture solution was cooled to ambient temperature, diluted with methyl chloride (100 mL), and washed with water (100 mL) and brine (100 mL). The organic phase was concentrated and the resulting residue was purified by column chromatography to provide 0.80 g of the desired product. Purity of the product was higher than 99.5%, and overall yield was 48.3%.
Example 1
Chemical Formula: C35H25N2OP Chemical Formula: C30H21 BrNOP Molecular Weight: 520.57
Molecular Weight: 522.38
In a 250 mL flask, (3-(9H-carbazol-9-yl)phenyl)(3-bromophenyl)(phenyl)phosphine oxide (2.83 g, 5.42 mmol), 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)pyridine (1.33 g, 6.50 mmol), K3P04 (2.50 g, 10.8 mmol) , and [1,1 '- Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.44 g, 5.4 mmol) were dissolved in 150 mL of mixture of dioxane and water(120:30) in N2 atmosphere. The solution was heated at 90 °C overnight. After the reaction, aliquot of sample was characterized by LC/MS. The solvent was evaporated with a rotavap and the solid was redispersed in CH2CI2. The mixture was washed with water. The further purification was applied using a reverse column separation and sublimation. After the purification, 0.70 g of pure compound was obtained (yield was 24.82 %, purity was 99.98%).
lH NMR (400 MHz, Chloroform- ) δ 8.66 - 8.60 (m, 2H), 8.15 - 8.04 (m, 3H), 7.90 - 7.68 (m, 8H), 7.62 - 7.53 (m, 2H), 7.53 - 7.45 (m, 2H), 7.45 - 7.41 (m, 2H), 7.32 - 7.21 (m, 6H).
13C NMR (101 MHz, Chloroform- ) δ 150.39, 146.96, 140.29, 138.86 (d, = 11.9 Hz), 138.15 (d, = 14.8 Hz), 135.33, 134.31, 133.89, 132.86, 132.56 - 132.40 (m), 132.36, 132.12, 132.06, 131.96, 131.07, 130.77 (t, = 1.5 Hz), 130.68, 130.56 (d, = 1.3 Hz), 130.47, 130.43 (d, = 1.8 Hz), 130.17, 130.06, 129.51, 129.38, 128.90, 128.78, 126.08, 123.55, 121.63, 120.42, 109.34.
Example 2
Chemical Formula: C35H25N2OP
Chemical Formula: C30H2i BrNOP Molecular Weight: 520.57
Molecular Weight: 522.38
In a 250 mL flask, (3-(9H-carbazol-9-yl)phenyl)(3-bromophenyl)(phenyl)phosphine oxide (2.40 g, 4.59 mmol), 3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)pyridine (1.13 g, 5.51 mmol), K3P04 (2.12 g, 9.19 mmol) , and [1,1 '- Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.38 g, 4.59 mmol) were dissolved in 150 mL of mixture of dioxane and water(120:30) in N2 atmosphere. The solution was heated at 90 °C overnight. After the reaction, aliquot of sample was characterized by LC/MS. The solvent was evaporated with a rotavap and the solid was redispersed in CH2CI2. The mixture was washed with water. The further purification was applied using a reverse column separation and sublimation. After the purification, 1.30 g of pure compound was obtained (Yield was 60.20 %, purity was 99.77%).
lH NMR (400 MHz, Methanol-^) δ 8.75 (dd, / = 2.4, 0.9 Hz, 1H), 8.51 (dd, / = 4.9, 1.6 Hz, 1H), 8.08 - 8.01 (m, 3H), 8.00 (m, 1H), 7.95 - 7.90 (m, 1H), 7.88 - 7.62 (m, 9H), 7.61 - 7.53 (m, 2H), 7.47 (ddd, = 8.0, 4.9, 0.9 Hz, 1H), 7.28 - 7.23 (m, 4H), 7.20 (m, 2H).
13C NMR (101 MHz, Methanol-^) δ 148.13, 147.03, 140.14, 138.82 - 137.97 (m), 135.78, 135.23, 134.24, 133.21, 132.76 (d, J = 2.7 Hz), 132.63, 131.76, 131.66, 131.59, 131.54, 131.43, 131.26 (d, J = 2.7 Hz), 131.00, 130.82, 130.67 (d, J = 3.4 Hz), 130.34, 130.24, 130.05, 129.94 (d, J = 1.4 Hz), 129.71 (d, J = 2.8 Hz), 129.60, 128.89, 128.77, 125.81, 124.15, 123.50, 120.18, 119.94
Triplet energy measurement
Table 1 . PL results of compound 1 and 2
Computational Finding:
Compound 1 Compound 2
Molecular Weight: 520.57 Molecular Weight: 520.57
HOMO: -5.41 HOMO: -5.37
LUMO: -1.44 LUMO: -1.27
T1 : 3.08 T1 : 3.02
Figure 1 . Calculation values of compound 1 and 2.
The electronic properties of all the molecules, whose structures are designed by attaching different substituents with the core structure, are computed using methodology mentioned above.
The LUMO level of this suite of molecules ranges between -1.2 eV and -1.5 eV, which is identified as a desired range for host materials. Thus, the pyridine-substituted phosphine oxides can be used in emission layer as a high triplet host materials. Thus, this suite of molecules has the correct electronics for an efficient host material.
Other compounds were calculated same as above, and listed Table 2 below.
Table 2
Molecules HOMO (eV) LUMO (eV) Tl (eV) MW (Dalton)
c-i -5.14 -1.20 3.18 557.66 ! j 1) 1 -5.74 -1.07 3.18 643.65 I
b-2 -5.86 -1.91 2.89 797.82 I
D-3 -6.08 -2.08 3.12 798.80 !
B-i -5.31 -1.85 2.99 673.74 ! j B-2 -5.35 -2.02 3.11 674.73 1
A-4 -5.47 -1.99 2.98 674.73 I
B-3 -4.94 -1.84 2.92 915.03 !
B-4 -4.98 -2.02 2.92 916.01 !
B-5 -5.38 -2.08 3.11 839.92 1
b-4 -5.93 -2.02 3.11 598.63 I
A-3 ' -5.30 -1.33 2.97 520.56 !
Λ-1 -5.37 -1.27 3.02 520.56 !
Λ-2 -5.41 -1.44 3.08 520.56 !
b-5 -5.77 -1.08 3.17 581.58 1
A-5 ' -5.45 -1.50 3.09 685.75 !
b-7 -6.38 -1.36 3.17 568.54 !
b-6 -5.95 -1.25 3.12 492.51 ! j E-9 -4.98 -1.45 3.15 812.87 I
E-4 -4.89 -1.42 3.08 852.93 I
E-3 -5.35 -1.44 3.08 810.86 !
E-5 -4.98 -1.58 3.02 813.86 !
I E-7 -4.84 -1.61 3.02 853.92 I
E- l -5.30 -1.63 3.02 811.84 I
K-6 -5.03 -1.34 3.02 827.89 !
E-8 -4.88 -1.36 3.02 867.95 !
! E-2 -5.35 -1.38 3.02 825.87 1
I)- 10 -5.81 -1.21 2.89 516.57 I
b-8 -5.32 -1.35 3.09 533.56 !
b-9 -6.21 -1.23 3.12 368.36 !
PLED Fabrication and Testing
All organic materials were purified by sublimation before deposition. OLEDs were fabricated onto an ITO coated glass substrate that served as the anode, and topped with an aluminum cathode. All organic layers were thermally deposited by physical vapor deposition, in a vacuum chamber with a base pressure of less than 10"7 torr.
Each cell, containing HIL1, HIL2, HTL1, HTL2, EBL, EML host, EML dopant, ETL1, ETL2, or EIL, was placed inside a vacuum chamber, until it reached 10"6 torr. To evaporate each material, a controlled current was applied to the cell, containing the material, to raise the temperature of the cell. An adequate temperature was applied to keep the evaporation rate of the materials constant throughout the evaporation process.
For the HIL1 layer, N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazol-3-yl)-[l,l'- biphenyl]-4,4'-diamine was evaporated at a constant lA/s rate, until the thickness of the layer reached 600 Angstrom. For the HIL2 layer, the dipyrazino[2,3-f:2',3'-h]quinoxaline- 2,3,6,7,10,11-hexacarbonitrile layer was evaporated at a constant 0.5A/s rate, until the thickness reached 50 Angstrom. For the HTL1 layer, N-([l,l'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9- phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine was evaporated at a constant lA/s rate, until the thickness reached 150 Angstrom. For the HTL2 layer, N,N-di([l,l'-biphenyl]-4-yl)-4'- (9H-carbazol-9-yl)-[l,l'-biphenyl]-4-amine was evaporated at a constant lA/s rate, until the thickness reached 50 Angstrom. For the EBL layer, l,3-di(9H-carbazol-9-yl)benzene was evaporated at a constant lA/s rate, until the thickness reached 50 Angstrom. For the EML layer, 9,9'-(6-phenyl-l,3,5-triazine-2,4-diyl)bis(9H-carbazole) (reference), Compound 1 or Compound 2 (these are host materials) and 5-(5-(4,6-diphenyl-l,3,5-triazin-2-yl)pyridin-2-yl)- 7-phenyl-5,7-dihydroindolo[2,3-b]carbazole (dopant) were co-evaporated, until the thickness reached 400 Angstrom. The deposition rate for host materials was 0.85A/s, and the deposition for the dopant material was 0.15 A/s, resulting in a 15% doping of the host materials. For the ETL1 layer, 5-(4-([l,r-biphenyl]-3-yl)-6-phenyl-l,3,5-triazin-2-yl)-7,7-diphenyl-5,7- dihydroindeno[2,l-b]carbazole was evaporated at a constant lA/s rate, until the thickness reached 50 Angstrom. For the ETL2 layer, 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6- (naphthalen-2-yl)-l,3,5-triazine was co-evaporated with lithium quinolate (Liq), until the thickness reached 300 Angstrom. The evaporation rate for the ETL compounds and Liq was 0.5 A/s. Finally, 20 Angstrom of a thin electron injection layer (Liq) was evaporated at a 0.5 A/s rate. See Table 3.
The current- voltage-brightness (J-V-L) characterizations for the OLED were performed with a source measurement unit (KEITHLY 238, (Keithley Instruments, Inc., 28775 Aurora Road 1 Cleveland, OH 44139, U.S.A) and a luminescence meter (MINOLTA CS-100A, (KONICA MINOLTA, INC. , JP TOWER, 2-7-2 Marunouchi, Chiyoda-ku, Tokyo
100-7015, Japan). EL spectra of the OLED were collected by a calibrated CCD spectrograph and External Quantum Efficiency (EQE) was analyzed by spectroradiometer PR655 (PHOTO RESEARCH®, 7279 William Barry Blvd., Syracuse, NY 13212-3349, U.S.A.).
Table 3: Device Materials
Table 4
reference Dopant Compound 1 Compound 2
As shown in Table 4, OLED comprising the Compound 1 or Compound 2 had a higher luminous efficiency and EQL compared to the OLED comprising reference.
Claims
1. An organic electroluminescent compound represented by the following Formula (1) or (2): o p.
Ri R^
R Formula (1)
wherein Ri, R2 and R3 are each selected from the following (a) or (b),
(a) Ri is an aryl group which may be substituted by a heteroaryl group, R2 and R3 are independently selected from an aryl group which is substituted by a heteroaryl group and the substituent of R2 and the substituent of R3 are different heteroaryl groups,
(b) Ri and R2 are each an aryl group and R3 is a group represented by the following formula (3), formula (4) or formula (5);
wherein R4 ,R6 and R7 are each selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a diphenyl phosphine oxide group, a phenyl phosphine group or a carbazolyl group, R5, Rs and R9 are each selected from an alkyl group having 1 to 8 carbon atoms or a heteroaryl group, X is selected from an oxygen atom or a sulfur atom;
0 0
Formula (2)
wherein Rio to R15 are an aryl group or an aryl group substituted by an aryl group, a heteroaryl group or an amine group, at least one of Rio to R15 are an aryl group which is substituted by a heteroaryl group, L is an alkylene group having 1 to 4 carbon atoms.
2. The organic electroluminescent compound of claim 1, wherein Ri is a phenyl group which may be substituted by a pyrrolyl group or a carbazolyl group, R2 and R3 are independently selected from a phenyl group which is substituted by a group comprising a heteroaryl group and the substituent of R2 and the substituent of R3 are different groups.
3. The organic electroluminescent compound of claim 2, wherein one of the heteroaryl groups is a pyridinyl group.
4. The organic electroluminescent compound of claim 2, wherein one of the heteroaryl groups is a carbazolyl group.
5. The organic electroluminescent compound of claim 1, wherein the molecular weight of the organic electroluminescent compound is lower than 800 Dalton.
6. The organic electroluminescent compound of claim 1, wherein the organic
mpound is selected from the following compounds:
7. The organic electroluminescent compound of claim 1, characterized by having a Triplet Energy greater than 2.8 eV.
8. The organic electroluminescent compound of claim 1, characterized by having a Highest Occupied Molecular Orbital (HOMO) energy level higher than -7.0 eVand a Lowest Unoccupied Molecular Orbital (LUMO) energy level lower than -0.75 eV.
9. An organic electroluminescent device containing the organic electroluminescent compound of any of claims 1 to 8.
10. The organic electroluminescent device comprising a first electrode, a second electrode and one or more organic layers interposed between the first electrode and the second electrode, wherein the organic layer comprises one or more organic electroluminescent compounds of any of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662439171P | 2016-12-27 | 2016-12-27 | |
US62/439,171 | 2016-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018125512A1 true WO2018125512A1 (en) | 2018-07-05 |
Family
ID=60703201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/064124 WO2018125512A1 (en) | 2016-12-27 | 2017-12-01 | High triplet energy phosphine oxide compounds for oled application |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018125512A1 (en) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356610A (en) | 1986-08-28 | 1988-03-11 | Asahi Chem Ind Co Ltd | Plastic fluorescent fiber |
JPH09268283A (en) | 1996-01-29 | 1997-10-14 | Toyo Ink Mfg Co Ltd | Luminescent material for organic electroluminescence element and organic electroluminescent element using the same |
JP2004095221A (en) | 2002-08-29 | 2004-03-25 | Toray Ind Inc | Light-emitting device |
JP2004203828A (en) | 2002-12-26 | 2004-07-22 | Toray Ind Inc | Phosphine oxide compound, material for light-emitting element obtained by using the same, and light-emitting element |
WO2005073340A1 (en) | 2004-01-23 | 2005-08-11 | Battelle Memorial Institute | Organic materials with tunable electric and electroluminescent properties |
WO2006130353A2 (en) * | 2005-05-31 | 2006-12-07 | Eastman Kodak Company | Light-emitting device containing bis-phosphineoxide compound |
US20080241518A1 (en) | 2007-03-26 | 2008-10-02 | Tasuku Satou | Organic electroluminescence element |
US20080238307A1 (en) | 2007-03-26 | 2008-10-02 | Manabu Tobise | Organic electroluminescence element |
JP2008244013A (en) | 2007-03-26 | 2008-10-09 | Fujifilm Corp | Organic electroluminescent element |
US20090167166A1 (en) | 2006-05-31 | 2009-07-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
CN101504972A (en) * | 2009-03-24 | 2009-08-12 | 北京大学 | Electroluminescent device made from rare-earth terbium complex |
US20110309345A1 (en) * | 2010-06-17 | 2011-12-22 | E-Ray Optoelectronics Technology Co., Ltd. | Compound for organic electroluminescent device and organic electroluminescent device having the same |
JP4876333B2 (en) | 2000-06-08 | 2012-02-15 | 東レ株式会社 | Light emitting element |
EP2436751A1 (en) * | 2009-05-27 | 2012-04-04 | Industry-Academic Cooperation Foundation, Dankook University | Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same |
JP2013100239A (en) * | 2011-11-08 | 2013-05-23 | Konica Minolta Holdings Inc | Material for organic electroluminescent element, organic electroluminescent element, display device, and illumination device |
WO2016065679A1 (en) * | 2014-10-30 | 2016-05-06 | 中国科学院长春应用化学研究所 | Yellow organic electroluminescent device and preparation method thereof |
KR20160065298A (en) * | 2014-11-28 | 2016-06-09 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
KR20160069021A (en) * | 2014-12-05 | 2016-06-16 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
-
2017
- 2017-12-01 WO PCT/US2017/064124 patent/WO2018125512A1/en active Application Filing
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356610A (en) | 1986-08-28 | 1988-03-11 | Asahi Chem Ind Co Ltd | Plastic fluorescent fiber |
JPH09268283A (en) | 1996-01-29 | 1997-10-14 | Toyo Ink Mfg Co Ltd | Luminescent material for organic electroluminescence element and organic electroluminescent element using the same |
JP4876333B2 (en) | 2000-06-08 | 2012-02-15 | 東レ株式会社 | Light emitting element |
JP2004095221A (en) | 2002-08-29 | 2004-03-25 | Toray Ind Inc | Light-emitting device |
JP2004203828A (en) | 2002-12-26 | 2004-07-22 | Toray Ind Inc | Phosphine oxide compound, material for light-emitting element obtained by using the same, and light-emitting element |
WO2005073340A1 (en) | 2004-01-23 | 2005-08-11 | Battelle Memorial Institute | Organic materials with tunable electric and electroluminescent properties |
WO2006130353A2 (en) * | 2005-05-31 | 2006-12-07 | Eastman Kodak Company | Light-emitting device containing bis-phosphineoxide compound |
US20090167166A1 (en) | 2006-05-31 | 2009-07-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
JP2008244012A (en) | 2007-03-26 | 2008-10-09 | Fujifilm Corp | Organic electroluminescent element |
JP2008244013A (en) | 2007-03-26 | 2008-10-09 | Fujifilm Corp | Organic electroluminescent element |
US20080238307A1 (en) | 2007-03-26 | 2008-10-02 | Manabu Tobise | Organic electroluminescence element |
US20080241518A1 (en) | 2007-03-26 | 2008-10-02 | Tasuku Satou | Organic electroluminescence element |
CN101504972A (en) * | 2009-03-24 | 2009-08-12 | 北京大学 | Electroluminescent device made from rare-earth terbium complex |
EP2436751A1 (en) * | 2009-05-27 | 2012-04-04 | Industry-Academic Cooperation Foundation, Dankook University | Carbazole-based phosphine oxide compound, and organic electroluminescent device including the same |
US20110309345A1 (en) * | 2010-06-17 | 2011-12-22 | E-Ray Optoelectronics Technology Co., Ltd. | Compound for organic electroluminescent device and organic electroluminescent device having the same |
JP2013100239A (en) * | 2011-11-08 | 2013-05-23 | Konica Minolta Holdings Inc | Material for organic electroluminescent element, organic electroluminescent element, display device, and illumination device |
WO2016065679A1 (en) * | 2014-10-30 | 2016-05-06 | 中国科学院长春应用化学研究所 | Yellow organic electroluminescent device and preparation method thereof |
KR20160065298A (en) * | 2014-11-28 | 2016-06-09 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
KR20160069021A (en) * | 2014-12-05 | 2016-06-16 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
Non-Patent Citations (14)
Title |
---|
BAN X ET AL: "Tuning the energy gap and charge balance property of bipolar host by molecular modification: Efficient blue electrophosphorescence devices based on solution-process", ORGANIC ELECTRONICS, vol. 24, September 2015 (2015-09-01), pages 65 - 72, XP029189720, ISSN: 1566-1199, DOI: 10.1016/J.ORGEL.2015.05.026 * |
BECKE, A.D., J. CHEM. PHYS., vol. 98, 1993, pages 5648 |
DITCHFIELD, R.; HEHRE, W.J.; POPLE, J.A., J. CHEM. PHYS., vol. 54, 1971, pages 724 |
GORDON, M.S., CHEM. PHYS. LETT., vol. 76, 1980, pages 163 |
HEHRE, W.J.; DITCHFIELD, R.; POPLE, J.A., J. CHEM. PHYS., vol. 56, 1972, pages 2257 |
JEONG S H ET AL: "Comparison of Bipolar Hosts and Mixed-Hosts as Host Structures for Deep-Blue Phosphorescent Organic Light Emitting Diodes", CHEMISTRY - AN ASIAN JOURNAL, vol. 6, no. 11, 4 November 2011 (2011-11-04), pages 2895 - 2898, XP055441769, ISSN: 1861-4728, DOI: 10.1002/asia.201100596 * |
JEONG S H ET AL: "Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 38, 12 August 2011 (2011-08-12), pages 14604, XP055191185, ISSN: 0959-9428, DOI: 10.1039/c1jm12421h * |
JEONG S H ET AL: "High power efficiency in blue phosphorescent organic light-emitting diodes using 2,4-substituted dibenzofuran with a carbazole and a diphenylphosphine oxide", ORGANIC ELECTRONICS, vol. 13, no. 11, November 2012 (2012-11-01), pages 2589 - 2593, XP055130202, ISSN: 1566-1199, DOI: 10.1016/j.orgel.2012.08.005 * |
KAJI H ET AL: "Investigation of aggregated structures in organic light-emitting diodes: approach from solid-state NMR", PROCEEDINGS OF THE SPIE, vol. 8476, 13 September 2012 (2012-09-13), pages 84760F-1 - 84760F-5, XP060029338, DOI: 10.1117/12.956449 * |
KIM D ET AL: "Electronic Structure of Carbazole-Based Phosphine Oxides as Ambipolar Host Materials for Deep Blue Electrophosphorescence: A Density Functional Theory Study", CHEMISTRY OF MATERIALS, vol. 24, no. 13, 10 July 2012 (2012-07-10), pages 2604 - 2610, XP055441717, ISSN: 0897-4756, DOI: 10.1021/cm301416n * |
LEE, C.; YANG, W.; PARR, R.G., PHYS. REV. B, vol. 37, 1988, pages 785 |
MIEHLICH, B.; SAVIN, A.; STOLL, H.; PREUSS, H., CHEM. PHYS. LETT., vol. 157, 1989, pages 200 |
VECCHI P A ET AL: "A Dibenzofuran-Based Host Material for Blue Electrophosphorescence", ORGANIC LETTERS, vol. 8, no. 19, 14 September 2006 (2006-09-14), pages 4211 - 4214, XP055442216, ISSN: 1523-7060, DOI: 10.1021/ol0614121 * |
XU H ET AL: "Novel Light-Emitting Ternary Eu 3+ Complexes Based on Multifunctional Bidentate Aryl Phosphine Oxide Derivatives: Tuning Photophysical and Electrochemical Properties toward Bright Electroluminescence", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 3, 28 January 2010 (2010-01-28), pages 1674 - 1683, XP055441772, ISSN: 1932-7447, DOI: 10.1021/jp909548t * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9793485B2 (en) | Benzocyclobutenes derived compositions, and electronic devices containing the same | |
US20130248830A1 (en) | Charge transport layers and films containing the same | |
US20160248020A1 (en) | Compositions containing fluorene substituted triazine derived compounds, and electronic devices containing the same | |
EP3763720B1 (en) | Compound and organic light emitting device comprising same | |
JP2019048812A (en) | Phenoxaphosphine compound | |
KR102185567B1 (en) | Quinoline-benzoxazole derived compounds for electronic films and devices | |
EP3079179A1 (en) | Semiconducting material comprising a phosphine oxide matrix and metal salt | |
JP2019038810A (en) | Phenophosphazine compound | |
US10103334B2 (en) | Compositions with triarylamine derivatives and OLED device containing the same | |
WO2018125512A1 (en) | High triplet energy phosphine oxide compounds for oled application | |
US9966537B2 (en) | Compositions with 2,3-disubstituted indoles as charge transport materials, and display devices fabricated therefrom | |
WO2017004014A1 (en) | Cyclic urea compounds for electronic devices | |
WO2017160905A1 (en) | Phenanthroquinazoline-core compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17817586 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17817586 Country of ref document: EP Kind code of ref document: A1 |