WO2018124357A1 - 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템 - Google Patents

편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템 Download PDF

Info

Publication number
WO2018124357A1
WO2018124357A1 PCT/KR2017/000122 KR2017000122W WO2018124357A1 WO 2018124357 A1 WO2018124357 A1 WO 2018124357A1 KR 2017000122 W KR2017000122 W KR 2017000122W WO 2018124357 A1 WO2018124357 A1 WO 2018124357A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
optical transmission
symbol
coding
polarized
Prior art date
Application number
PCT/KR2017/000122
Other languages
English (en)
French (fr)
Inventor
이준구
갈립 레자아메드
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2018124357A1 publication Critical patent/WO2018124357A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a receiver model for an optical transmission system, in particular intensity modulation / direct detection using Alamouti space-time code modified in the form of polarization-time coding.
  • a polarization multiplex (PDM) gain is used to prevent polarization mode dispersion (PMD) impairments. It relates to a light transmission method and system used.
  • Polarization Mode Dispersion offers the variety of enhancements to channel capacity through the use of polarization multiplexing (PDM).
  • PDM polarization multiplexing
  • Simple polarization multiplexing (PDM) technology multiplexes two optical data strings on two orthogonal polarization modes and demultiplexes them orthogonally at the receiving end.
  • this technique does not meet the main requirements of the receiver to accurately compensate for fast polarization rotation, which may cause polarization crosstalk in optical fiber transmission systems.
  • Optical coherent detection techniques can simultaneously compensate for demultiplexing of polarization multiplexing (PDM) and polarization mode dispersion (PMD) penalties with the use of digital electrical processing.
  • PDM polarization multiplexing
  • PMD polarization mode dispersion
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to reduce the requirements of polarization controllers (PCs) and channel estimators using a modified Alamouti code.
  • PCs polarization controllers
  • channel estimators using a modified Alamouti code.
  • the optical transmission method using the specimen polarization coding for polarization multiplex optical transmission for achieving the above object, a pair of symbols orthogonally coded from the input signal (S Generating 1 , S 2 ); Simultaneously transmitting each of the symbols S 1 and S 2 in a horizontal polarization and a vertical polarization in a first symbol period; And the symbols with horizontal polarization and vertical polarization in the second symbol period. , S 1 ) simultaneously transmitting each.
  • the optical transmission method decodes a code according to Alamouti-type polarization-time coding (APTC) using horizontal and vertical polarization currents of each symbol section without estimating channel state information (CSI) at a receiving side. It is characterized by estimating a received symbol.
  • APTC Alamouti-type polarization-time coding
  • the input signal is a non-return-to-zero ON-OFF keying (NRZ-OOK) signal.
  • NRZ-OOK non-return-to-zero ON-OFF keying
  • the optical transmission method includes the steps of: demultiplexing the symbols into two orthogonal polarization signals received through a optical transmission path; Photoelectrically converting each of the orthogonal polarized signals demultiplexed using photodetectors; Low pass filtering the photoelectrically converted signals; And estimating a symbol of each of the two symbol intervals corresponding to the sum of the horizontal and vertical polarization currents of the photodetectors in each of the two symbol intervals from the low pass filtered signals.
  • the optical transmission method may include: photoelectric conversion of the polarization multiplexing symbols received through the optical transmission path using one photodetector; Low pass filtering the photoelectrically converted signal; And estimating a symbol of each of the two symbol periods corresponding to the sum of the horizontal and vertical polarization currents output by the one photodetector in each of the two symbol periods from the low pass filtered signal.
  • each symbol is estimated by using a one-bit delay and add and a one-bit delay and subtract filter. .
  • an encoder for generating a pair of orthogonally coded symbols (S 1 , S 2 ) from an input signal; A laser diode for generating a laser beam; A polarization beam splitter for generating a beam separated from the laser beam into horizontal and vertical polarizations; Two modulators for modulating each symbol using the beams of horizontal and vertical polarizations; And combining the horizontally polarized and vertically polarized symbols S 1 and S 2 modulated by the modulators in a first symbol period, and transmitting the horizontally polarized light modulated by the modulators in a second symbol period. And symbols of vertical polarization ( , S 1 ) transmitting a polarizing beam coupler.
  • the optical transmission system decodes a code according to Alamouti-type polarization-time coding (APTC) using horizontal and vertical polarization currents of each symbol section without estimating channel state information (CSI) at a receiving side. It is characterized by estimating a received symbol.
  • APTC Alamouti-type polarization-time coding
  • Each of the modulators is a Mach-Zehnder modulator.
  • the input signal is a non-return-to-zero ON-OFF keying (NRZ-OOK) signal.
  • NRZ-OOK non-return-to-zero ON-OFF keying
  • the optical transmission system includes: a polarization beam splitter for demultiplexing the symbols into two orthogonal polarization signals received through polarization multiplexing; Two photodetectors each photoelectrically converting the demultiplexed quadrature polarized signals; Two low frequency filters for low pass filtering the photoelectrically converted signals, respectively; And a decoder estimating a symbol of each of the two symbol periods corresponding to the sum of the horizontal and vertical polarization currents of the photodetectors in each of the two symbol periods from the low pass filtered signals.
  • the optical transmission system includes: one photodetector for photoelectric conversion on the polarization multiplexing symbols received via the optical transmission path; A low frequency filter for low pass filtering the photoelectrically converted signal; And a decoder for estimating a symbol of each of the two symbol intervals corresponding to the sum of horizontal and vertical polarization currents output by the one photodetector in each of the two symbol intervals from the low pass filtered signal.
  • the decoder estimates each symbol using a 1-bit delay and one-bit delay-and-add and a 1-bit delay and subtract filter.
  • IM / DD using Alamouti-type specimen polarization coding is extremely difficult because of polarization crosstalk and polarization mode dispersion (PMD).
  • PMD polarization mode dispersion
  • Polarization diversity gains can be used in the environment.
  • the present invention can mitigate polarization crosstalk without the need for a dynamic polarization controller (PC) at the receiver side.
  • PC dynamic polarization controller
  • the decoding complexity in the present invention is considerably lower than other specimen polarization techniques. This is because the optical channel estimator can be eliminated by using the optical channel model as a 2x2 MIMO model in the polarization mode dispersion (PMD) channel.
  • the APTC-IM / DD method of the present invention can achieve the gain of 3-dB power reduction in a short / long distance ( ⁇ 800 km) 40 Gbps fiber transmission system with a DGD of 6 ps or less, and the polarization of the IM / DD system. Mode dispersion (PMD) tolerance can be significantly improved.
  • Fig. 1 is a diagram illustrating a physical model of polarization multiplexing (PDM) for long optical fibers, with various continuous birefringent segments with random rotations of birefringence axes, where light travels from left to right.
  • PDM polarization multiplexing
  • FIG. 2A is a block diagram illustrating an Alamouti type specimen polarization coding (APTC) method for polarization mode dispersion (PMD) compensation in an IM / DD optical transmission system of the present invention.
  • APTC Alamouti type specimen polarization coding
  • PMD polarization mode dispersion
  • 2B is a block diagram illustrating an IM / DD optical transmission system according to another embodiment of the present invention.
  • 2C is a flowchart illustrating an operation of the APTC IM / DD optical transmission system of the present invention.
  • 3A is a diagram for describing a general IM / DD system (IM / DD).
  • FIG. 3B is a diagram for explaining an IM / DD system (PC-IM / DD) having a polarization beam splitter (PBS) behind an optimally adjusted polarization controller (PC).
  • PC-IM / DD IM / DD system
  • PBS polarization beam splitter
  • PC optimally adjusted polarization controller
  • FIG. 4 is a graph comparing BER results for OSNR in a 40 Gbps optical fiber transmission system having a differential group delay (DGD) of 8.5 ps.
  • DDD differential group delay
  • FIG. 5 is a graph showing the result of first-order PMD tolerance for differential group delay (DGD) after transmission on PMD-damaged SMF paths of various lengths in the range 0-7200 km.
  • DTD differential group delay
  • Alamouti coding is briefly described. Alamouti coding is published by S. M. Alamouti in the journal IEEE J. Select. Areas Commun. 16 (8), 1451-1458 (1998), a paper entitled "A simple transmitter diversity scheme for wireless communications.” Alamouti coding does not need to know about channel conditions at the transmitter and is designed for application in the wireless domain to take advantage of spatial diversity capacity gain with the use of space-time coding.
  • the original Alamouti coding can be applied directly to an optical coherent system that represents the main results of mitigating polarization mode dispersion (PMD).
  • PMD mitigating polarization mode dispersion
  • the general Alamouti coding principle uses intensity modulation / direct detection (IM / DD) optical transmission systems because it transmits and detects negative and conjugates of signals. It cannot be implemented directly. Despite this, the IM / DD system only handles non-negative real value signals in the time domain.
  • Modified Alamouti coding technology is described by Simon and Vilnrotter in "Alamouti-type space-time coding for free-space optical communication with direct detection" (IEEE Trans. Wireless Commun. 4 (1), 35-39 (2005) ), which can utilize channel capacity from space-time diversity in a free space IM / DD optical system. Free space channel fading is very similar to that observed in wireless channels.
  • Alamouti-type polarization-time coding (APTC) -IM / DD technology allows Alamouti-type coding to be embodied in a polarization multiplexing (PDM) -enabled IM / DD transmission system. It is proposed based on theoretical modeling to show the method. Here, by using the optical channel model as a 2x2 MIMO system, polarization multiplexing (PDM) and polarization crosstalk can be commonly reduced.
  • PDM polarization multiplexing
  • Polarization diversity in optical fibers is used to obtain APTC throughput enhancement.
  • a polarization diversity channel model will be described first and a method of applying the model to an APTC-IM / DD system will be described.
  • Fiber optic channel models with polarization diversity include for couplings in fibers with random polarization state (SOP) rotation and weak birefringence.
  • the optical fiber channel represents the random direction of the polarization state (SOP) and represents the differential group delay (DGD) between two orthogonal polarization modes. This property is referred to as the polarization mode dispersion (PMD) channel model.
  • PMD polarization mode dispersion
  • SMF short single mode fibers
  • SMF short single mode fibers
  • SOP polarization state
  • DTD differential group delay
  • fiber lengths range from tens to hundreds of kilometers in typical communication systems, such as access networks, terrestrial networks, submarine cable systems, and the like.
  • Fig. 1 is a diagram illustrating a physical model of polarization multiplexing (PDM) for long optical fibers, with various continuous birefringent segments with random rotations of birefringence axes, where light travels from left to right.
  • PDM polarization multiplexing
  • Polarization mode dispersion (PMD) of long-range fibers is often seen as a series of multiple birefringent segments.
  • the birefringent axes and sizes of these segments vary randomly, which causes random coupling between the fast and slow axes in the fiber as shown in FIG. 1.
  • the differential group delay (DGD) of long distance fibers does not increase linearly along the fiber length.
  • the increase in differential group delay (DGD) in the fiber can be studied as a three-dimensional random walk, and the average differential group delay (DGD) can be approximated by the square-root of the propagation distance. Can be.
  • the polarization mode dispersion (PMD) of the long-distance fiber is a zone matrix including continuous multiple birefringent segments having a polarization state (SOP) in a random direction as shown in [Equation 1].
  • SOP polarization state
  • N is the number of fiber segments (natural number), and ⁇ is the optical frequency (rad / sec).
  • ⁇ n is the differential group delay (DGD) of the birefringent segment
  • ⁇ n is the angle between the principal axes of the nth and n-1th segments randomly uniformly distributed between [0, ⁇ ] and frequency independent.
  • PMD polarization mode dispersion
  • DPD differential phase delay
  • DTD differential group delay
  • the output signal S out ( ⁇ ) in the fiber can be expressed as [Equation 2] in the frequency domain.
  • 2A is a block diagram illustrating an Alamouti type specimen polarization coding (APTC) method for polarization mode dispersion (PMD) compensation in the IM / DD optical transmission system 500 of the present invention.
  • 2B is a block diagram illustrating an IM / DD optical transmission system according to another embodiment of the present invention.
  • the signal waveforms are symbols transmitted in time slots t 1 and t 2 , respectively.
  • 2C is a flow chart illustrating the operation of the APTC IM / DD optical transmission system 500 of the present invention.
  • an IM / DD optical transmission system 500 performing direct square-law detection includes a transmitter 300 and a polarization mode dispersion (PMD).
  • PMD polarization mode dispersion
  • the transmitter 300 includes a non-return-to-zero ON-OFF keying (NRZ-OOK) transmitter 110, an APTC encoder 120, a laser diode (LD) 130, a polarizing beam splitter (PBS, polarization beam splitter (140), Mach-Zehnder modulator (MZM) (150, 160), polarization beam combiner (PBC) 170, erbium-doped fiber amplifier (EDFA) amplifier 180).
  • NRZ-OOK non-return-to-zero ON-OFF keying
  • the optical fiber transmission system 190 is a single mode fiber (SMF), in which the EDFA 192 controlled by the dispersion compensation module (DCM) 191 for every 8 km is n (eg, 10) It is assumed that there are 80 km fibers provided once.
  • SMF single mode fiber
  • DCM dispersion compensation module
  • the receiver 400 includes an optical band pass filter (OBPF) 200, a polarization beam splitter (PBS) 210, and first and second photo detectors. (PD, photodetector) 220 and 230, first and second low pass filters (LPFs) 240 and 250, an APTC decoder 260, and a determiner 270.
  • OBPF optical band pass filter
  • PBS polarization beam splitter
  • LPFs low pass filters
  • the polarization beam splitter 210, the second photo detector 230, and the second low frequency filter 250 may be omitted in the receiver structure of FIG. 2A.
  • the chromatic dispersion damage of the optical fiber transmission system is assumed to be compensated by the dispersion compensators.
  • the polarization mode dispersion (PMD) and the polarization crosstalk are alleviated through coding only, and the polarization controller PC is not used.
  • the NRZ-OOK transmitter 110 generates an NRZ-OOK signal from an input data sequence and transmits it to the APTC encoder 120 (S210).
  • the APTC encoder 120 transmits two symbols s 1 and s 2 . Combines two consecutive time slots (t 1 , t 2 ) as code blocks for encoding, where each code in each time slot is a pair of bits to be transmitted via two orthogonal polarizations It includes (S220).
  • Superscript T is a matrix transpose operation.
  • the channel data rate here is 1 bit / timeslot.
  • These two orthogonal codes are modulated by LD 130, polarized beam splitter (PBS) 140, and Mach-Zehnder modulators (MZM) 150, 160, and combined by polarized beam combiner (PBC) 170, respectively.
  • PBS polarized beam splitter
  • MZM Mach-Zehnder modulators
  • PBC polarized beam combiner
  • EDFA erbium doped fiber amplifier
  • the symbol S 2 transmitted with vertical polarization (y-polarization) during the previous symbol period is complemented (complementally) with horizontal polarization (x-polarization) and transmitted with the next symbol period ( )
  • the symbol S 1 transmitted with the horizontal polarization (x-polarization) during the previous symbol period is transmitted with the vertical polarization (y-polarization) in the next symbol period (S 1 ).
  • the laser beam generated by the LD 130 is a polarized beam splitter (PBS) 140.
  • PBS polarized beam splitter
  • the Mach-Zehnder modulator (MZM) 150, 160 modulates each of the symbols S 1 , S 2 using a beam of horizontal polarization and vertical polarization in symbol slot t 1 , and a polarization beam combiner (PBC) 170. Combined by each of the symbols (S 1 , S 2 ) can be transmitted to the optical fiber transmission system 190 at the same time.
  • MZM Mach-Zehnder modulator
  • PBC polarization beam combiner
  • the Mach-Zehnder modulators (MZM) 150, 160 have their respective symbols ( , S 1 ) is modulated using a beam of horizontal polarization and vertical polarization in symbol slot t 2 and combined by polarization beam combiner (PBC) 170 to determine the respective symbols ( , S 1 ) may be simultaneously transmitted to the optical fiber transmission system 190.
  • PBC polarization beam combiner
  • reception codes r (t) in the time domain may be represented by Equation 3 below.
  • * is a convolution operation
  • n (t) [n x (t) n y (t)] T is an amplified spontaneous emission (ASE) noise vector in x- / y-polarized light. ASE is used for channel characterization.
  • the OBPF 200 removes ASE noise outside the channel of the received signal.
  • the noise-filtered polarization multiplexing (PDM) signals are demultiplexed into two orthogonal polarization signals by the polarization beam splitter (PBS) 210 (S250).
  • PBS polarization beam splitter
  • SOP orthogonal polarization state
  • optical carriers sent through an optical fiber in an orthogonal polarization state (SOP) do not maintain the input SOP due to the random direction of birefringence, and each output e x (t of polarizing beam splitter (PBS) 210 is maintained.
  • Equation 4 Received signals at the two output ports of the polarizing beam splitter (PBS) 210 can be expressed as Equation 4 and Equation 5.
  • r x and r y are received signal vectors in x- and y-polarized light, respectively, and n x and n y represent corresponding AES noise.
  • time t 2 t 1 + T, i.e.
  • x (y) indicates that x can be substituted for y by parameter, and so on.
  • the demultiplexed received signals e x (t), e y (t) are respectively detected by two photo detectors (PD) 220, 230 for photoelectric conversion (S260), each photoelectric
  • the converted signal is subjected to low pass filtering in the low frequency filters (LPFs) 240 and 250 (S270).
  • LPFs low frequency filters
  • the responsivity of the photodetectors PD 220, 230 is expressed as 1 / ⁇
  • the photocurrent of the photo detectors PD 220, 230 Can be expressed as [Equation 7] and [Equation 8] in t 1 , t 2 , respectively.
  • Equation 7 and Equation 8 the last three parts represent detected electrical noise, and ⁇ . ⁇ Represents polarized crosstalk.
  • CSI channel state information
  • the receiver may estimate the received symbol by decoding the code according to the APTC using the horizontal and vertical polarization currents of each symbol section without estimating the channel state information.
  • phase information is lost in the detection process due to the square-law nature of the photodetector.
  • PDM transmission is difficult because of the random coupling between two orthogonal polarizations due to the random direction of the polarization state (SOP) even without differential group delay (DGD).
  • SOP random direction of the polarization state
  • DDD differential group delay
  • Equation (1) At negligible polarization dependent loss (PDL) levels, the frequency dependent zone matrix is unified as shown in Equation (1).
  • H ( ⁇ ) T H ( ⁇ ) I, where H ( ⁇ ) T is Hermitian transpose.
  • the slope of the channel response function is small enough, i.e.
  • H ([omega]) is changed on the passband to be, the time domain waveform can be approximated as shown in [Equation 9].
  • Equation 10 can be obtained.
  • the APTC method of the present invention uses two polarizations at the receiver 400 side. Therefore, assuming a finite impulse response in time ⁇ , Can be approximated by
  • Photoelectrically-converted signals are subjected to low pass filtering of the low frequency filters (LPFs) 240 and 250 to decode the photocurrents coupled as described above in the APTC decoder 260 by the APTC decoder 260 (S280).
  • the APTC decoder 260 adds one-bit delay and add, and one-bit delay and subtraction to the combined and combined photocurrents as shown in Equation 13 and Equation 14.
  • One-bit delay-and-subtract filter method is used.
  • Equalized symbols using the Equation can be expressed by Equation 13 and Equation 14.
  • the polarization beam splitter 210, the second photo detector 230, and the second low frequency filter 250 may be omitted in the receiver structure of FIG. 2A.
  • the received signal e (t) is detected by the photo detector (PD) 220 for photoelectric conversion.
  • the photoelectrically converted signal i x (t) + i y (t) is subjected to low pass filtering in the low frequency filter (LPF) 240.
  • the APTC decoder 260 uses the same principle as above. Accordingly, a symbol of each of the two symbol periods corresponding to the sum of the horizontal and vertical polarization currents in each of the two symbol periods may be estimated from the low pass filtered signal. At this time, the APTC decoder 260 adds a 1-bit delay to the photoelectrically converted signal i x (t) + i y (t) of the photo detector (PD) 220 (sum of horizontal and vertical polarization currents). Each symbol period may be estimated using a one-bit delay-and-add, and a one-bit delay-and-subtract filter scheme.
  • the determination unit 270 determines digital values by one bit with respect to the symbols estimated by the APTC decoder 260 (S290). Noise samples n 1 , n 2 are uncorrelated and independent.
  • the combined signals of [Equation 13] and [Equation 14] are similar to each other and are more simplified than the conventional case because of the characteristics of the polarization mode dispersion (PMD) channel.
  • NRZ-OOK modulation with a 1550 nm wavelength in NRZ-OOK transmitter 110 to verify the performance of the APTC-IM / DD method of the present invention in a PDM-enabled IM / DD transmission situation with polarization mode dispersion (PMD) damage.
  • the signal is generated.
  • NRZ-OOK modulation signal word length of 2 15 - may be 1, using a PRBS (pseudorandom binary sequence, a pseudo-random binary thermal) generator can be produced with 10 Gbps, 40 Gbps or the like.
  • the NRZ-OOK modulated signal is encoded in the APTC encoder 120, and the Mach-Zehnder modulator (MZM) 150, 160, polarization beam combiner (PBC) 170, and erbium-added fiber amplifier (EDFA) 180 are used.
  • MZM Mach-Zehnder modulator
  • PBC polarization beam combiner
  • EDFA erbium-added fiber amplifier
  • the optical transmission system 190 ranging from 0-7200 km, is randomly coupled and transmitted over a transmission path (eg, SMF-28 links) with polarization mode dispersion (PMD) damage of various lengths.
  • PMD polarization mode dispersion
  • an 80-km single mode fiber (SMF) section can be modeled with random coupling of ten 8-km SMF sections.
  • the EDFA 192 under the control of the distributed compensation module (DCM) 191 is provided n (eg, 10) times and amplified and transmitted every 8 km of fibers.
  • n eg, 10 times and amplified and transmitted every 8 km of fibers.
  • chromatic dispersion damage will be compensated and ignored.
  • the generated optical channel (eg, simulation) follows the higher-order polarization mode dispersion (PMD).
  • IM / DD IM / DD
  • PC-IM IM / DD
  • PBS polarizing beam splitter
  • PC-IM Alamouti type Specimen Coding
  • APTC Alamouti type Specimen Coding
  • 3A is a diagram for describing a general IM / DD system (IM / DD).
  • FIG. 3B is a diagram for explaining an IM / DD system (PC-IM / DD) having a polarization beam splitter (PBS) behind an optimally adjusted polarization controller (PC).
  • PC-IM / DD IM / DD system
  • PBS polarization beam splitter
  • PC optimally adjusted polarization controller
  • the general IM / DD system (IM / DD) of FIG. 3A and the PC-IM / DD system of FIG. 3B do not use two orthogonal polarization beams, and as in the present invention, the APTC encoder 120 and the polarization beam splitter ( PBS) 140 and no APTC decoder 260.
  • the PC-IM / DD system has a polarizing beam splitter (PBS) behind the polarization controller (PC) which is optimally adjusted between the optical bandpass filter (OBPF) and the photodetector PD on the receiver side.
  • PBS polarizing beam splitter
  • PC polarization controller
  • one polarization (horizontal polarization) is detected to yield a Bit Error Rate (BER).
  • BER Bit Error Rate
  • the polarization controller PC can track the exact polarization state (SOP) of the received signal so that the signal components received at the other polarization axis (vertical axis) may increase the ASE noise power to some extent but are negligible. Because.
  • FIG. 4 is a graph comparing BER results for an optical signal-to-noise ratio (OSNR) in a 40 Gbps optical fiber transmission system having a differential group delay (DGD) of 8.5 ps.
  • OSNR optical signal-to-noise ratio
  • DDD differential group delay
  • FIG. 4 after a signal is transmitted at a rate of 40 Gbps on a PMD corrupted SMF path with a polarization mode dispersion (PMD) coefficient of 0.2 ps / sqrt (km), corresponding to an average differential group delay (DGD) of 8.5 ps, BER results for OSNR are shown.
  • PMD polarization mode dispersion
  • DTD average differential group delay
  • the APTC-IM / DD system of the present invention has a significant performance improvement of 2.8 dB and 1.92 dB, compared to the general IM / DD system, PC-IM / DD system and APTC-IM / DD system. .
  • the PC-free APTC method as in the present invention, not only shows a strong recovery against PMD damage, but also reduces polarization crosstalk to an acceptable level.
  • FIG. 5 is a graph showing the result of first-order PMD tolerance for differential group delay (DGD) after transmission on PMD-damaged SMF paths of various lengths in the range 0-7200 km. That is, the result of the OSNR required to obtain 10 -3 pre-FEC BER for the differential group delays (DGD).
  • DDD differential group delay
  • the results are shown for a typical IM / DD system, a PC-IM / DD system, and an APTC-IM / DD system, respectively.
  • Polarization mode dispersion (PMD) channels in the simulation follow a higher-order PMD model. It is known that in higher-order PMD channels, mean differential group delay (DGD) and frequency dependence increase with increasing transmission distance at fixed PMD coefficients. In the simulation, the PMD coefficient of each SMF path was assumed to be 0.2 ps / sqrt (km).
  • APTC Alamouti type Specimen Coding
  • the APTC-IM / DD system of the present invention has more tolerances compared to the general IM / DD system and the PC-IM / DD system. This is because Hx (y) x (y) ( ⁇ ) standard deviation is about 0.29 rad ⁇ ⁇ in the low DGD region with a transmission distance of 800 km. This shows the effectiveness of the approximation in [Equation 9].
  • the transmission path (eg, SMF-28 links) may be regarded as a low DGD region.
  • the graph for 10 Gbps shows that it is consistent with the trend seen in the low DGD region for 40 Gbps, except that there is an improvement in OSNR requirement of nearly 6 dB at the same BER performance of 10 ⁇ 3 . This is because the data rate is reduced to 1/4.
  • polarization multiplexing in an IM / DD system using modified Alamouti type specimen polarization coding (APTC) in the form of specimen polarization coding ( A technique that utilizes PDM) gain is disclosed. Accordingly, damage to polarization mode dispersion (PMD) can be prevented.
  • polarization multiplexing (PDM) transmission is implemented by combining two orthogonal coded symbols using a polarizing beam combiner (PBC) 170 and transmitting simultaneously in a given symbol interval in two orthogonal polarization modes. Can be.
  • Symbols transmitted with vertically polarized light (y-polarized) during the previous symbol period are transmitted complementarily (complementally) with horizontally polarized light (x-polarized) in the next symbol period and are horizontally polarized (x-polarized) during the previous symbol period.
  • the symbol transmitted in) is transmitted in a vertical polarization (y-polarized light) in the next symbol period.
  • the fiber channel model is mapped to 2 ⁇ 2 Multiple Input Multiple Output (MIMO), one-bit delay-and-add at the APTC decoder 260, and one bit Signals simply transmitted can be decoded by one-bit delay-and-subtract filters.
  • MIMO Multiple Input Multiple Output
  • the technique of the present invention achieves a gain of 3 dB in the low DGD region without the need for a polarization controller (PC), coherent receiver, high-speed analog-to-digital converter (ADC), digital signal processor (DSP), fiber channel estimator, etc. You can get it.
  • PC polarization controller
  • ADC analog-to-digital converter
  • DSP digital signal processor
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, a software module, or a combination of the two executed by a semiconductor processor.
  • the software module may reside in storage media (ie, memory, storage, etc.) such as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disks, removable disks, CD-ROMs.
  • An exemplary storage medium is coupled to the processor, which can read information from and write information to the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an application specific integrated circuit (ASIC).
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명은 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템에 관한 것으로서, 본 발명의 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법은, 입력 신호로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하는 단계; 제1심볼 구간에 수평 편광 및 수직 편광으로 심볼들(S1,S2) 각각을 동시에 전송하는 단계; 및 제2심볼 구간에 수평 편광 및 수직 편광으로 심볼들 각각을 동시에 전송하는 단계를 포함한다.

Description

편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템
본 발명은 광 전송 시스템을 위한 수신기 모델에 관한 것으로, 특히, 편광 - 시간 코딩의 형태로 수정된 알라모우티(Alamouti) 공간-시간 코드를 이용하여, 세기 변조(intensity modulation)/직접 검출(direct detection) (IM/DD) 광 전송 시스템에서 편광 다중화(PDM, polarization diversity multiplex) 이득을 이용하여 편광 모드 분산(PMD, polarization mode dispersion) 손상(impairments)를 방지하는, 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템에 관한 것이다.
광섬유 채널 용량에 대한 요구가 40 Gbps 이상으로 증가함에 따라 오늘날의 고속 섬유 기반 광통신 시스템의 성능은 편광 모드 분산(PMD)으로 인해 용량 제한을 극복할 것으로 예상된다. 반면 편광 모드 분산(PMD)은 편광 다중화(PDM)의 사용으로 채널 용량을 강화할 수 있는 다양성을 준다. 단순 편광 다중화(PDM) 기술은 두개의 직교하는 편광 모드 상에 두개의 광 데이터 열을 다중화하고, 수신단에서 그들을 직교하도록 역다중화한다. 그러나, 이러한 기술은 빠른 편광 회전(rotation)을 정확하게 보상하기 위한 수신기의 주요 요구사항을 만족시키지 못하고, 이로 인해 광 섬유 전송 시스템에서 편광 크로스톡(crosstalk)을 유발할 수 있다.
따라서, 대부분의 직접 검출 방식은, 역 다중화의 광 채널의 편광 상태(SOP, state of polarization)를 동적으로 조정하기 위하여, 대용량이고 고비용의 LiNbO3(niobate) 편광 변환기와 그에 부수된 편광 빔 스플리터(PBS, polarization beam splitter)에 기반한 자동 편광 제어기(PC, polarization controller)를 적용한다. 이러한 기술은 B. Koch 등에 의한 "Versatile endless optical polarization controller/tracker/demultiplexer" (Opt. Express 22(7), 8259-8276 (2014)), Y. Shen 등에 의한 "Design of polarization de-multiplexer and PMD compensator for 112 Gb/s direct-detect PDM RZ-DQPSK systems" (J. Lightwave Technol. 28(22), 3282-3293 (2010)) 등의 문헌에 기술되어 있다.
긴 편광 모드 분산(PMD) 손상 섬유에서 편광 상태(SOP)의 끊김없는 추적(tracking)이 거의 불가능하기 때문에, 이러한 상업적 해결 시도가 현실화되지 못하였다. 광 가간섭(coherent) 검출 기술은 디지털 전기적 처리의 사용으로 편광 다중화(PDM)의 역다중화와 편광 모드 분산(PMD) 패널티(penalty)에 보상을 동시에 수행할 수 있다. 이러한 기술은 Jeffrey T. Rahn 등에 의한 "Real-time PMD tolerance measurements of a PIC-based 500 Gb/s coherent optical modem", (J. Lightwave Technol. 30(17), 2907-2912 (2012)) 등의 문헌에 기술되어 있다. 그러나, 광 가간섭(coherent) 통신 시스템은 10 Gbps 이상의 데이터 레이트에서 고용량 채널을 다루기 위하여 매우 복잡하고 비용이 많이 들며, 정확한 채널 추정을 요구한다.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 수정된 알라모우티(Alamouti) 코드를 이용하여 편광 제어기(PC)들과 채널 추정기들의 요구 조건들을 경감시킬 수 있는, 편광 다중 광전송을 위한 시편광 코딩 코딩을 이용한 광 전송 방법 및 시스템을 제공하는 데 있다.
먼저, 본 발명의 특징을 요약하면, 상기의 목적을 달성하기 위한 본 발명의일면에 따른 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법은, 입력 신호로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하는 단계; 제1심볼 구간에 수평 편광 및 수직 편광으로 심볼들(S1,S2) 각각을 동시에 전송하는 단계; 및 제2심볼 구간에 수평 편광 및 수직 편광으로 심볼들(
Figure PCTKR2017000122-appb-I000001
, S1) 각각을 동시에 전송하는 단계를 포함한다.
상기 광 전송 방법은, 수신측에서 채널상태정보(CSI, channel state information)를 추정 없이 각 심볼구간의 수평 및 수직 편광 전류들을 이용하여 APTC(Alamouti-type polarization-time coding)에 따른 코드를 디코딩해 수신 심볼을 추정하기 위한 것을 특징으로 한다.
상기 입력 신호는 NRZ-OOK(non-return-to-zero ON-OFF keying) 신호이다.
상기 광 전송 방법은, 광 전송로를 통해 수신되는 편광 다중화 상기 심볼들을 두개의 직교 편광 신호들로 역다중화하는 단계; 광검출기들을 이용하여 역다중화된 상기 직교 편광 신호들을 각각 광전 변환하는 단계; 광전 변환된 신호들을 저주파 통과 필터링하는 단계; 및 저주파 통과 필터링된 신호들로부터 두개의 심볼 구간 각각에서의 상기 광검출기들의 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 단계를 더 포함한다.
또는, 상기 광 전송 방법은, 광 전송로를 통해 수신되는 편광 다중화 상기 심볼들에 대하여 하나의 광검출기를 이용하여 광전 변환하는 단계; 광전 변환된 신호를 저주파 통과 필터링하는 단계; 및 저주파 통과 필터링된 신호로부터 두개의 심볼 구간 각각에서 상기 하나의 광검출기에 의해 출력되는 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 단계를 더 포함한다.
상기 추정된 심볼은
Figure PCTKR2017000122-appb-I000002
을 사용하는 균등화된(equalized) 심볼이다.
상기 심볼을 추정하는 단계에서, 1비트 딜레이와 합산(one-bit delay-and-add) 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터를 이용하여 상기 각각의 심볼을 추정한다.
그리고, 본 발명의 다른 일면에 따른 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템은, 입력 신호로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하는 인코더; 레이저 빔을 발생하는 레이저 다이오드; 상기 레이저 빔으로부터 수평 편광 및 수직 편광으로 분리된 빔을 생성하는 편광빔 스플리터; 상기 수평 편광 및 수직 편광의 빔을 이용해 각각의 심볼을 변조하는 2개의 변조기들; 및 제1심볼 구간에 상기 변조기들에 의해 변조된 상기 수평 편광 및 수직 편광의 심볼들(S1,S2)을 결합하여 전송하고, 제2심볼 구간에 상기 변조기들에 의해 변조된 상기 수평 편광 및 수직 편광의 심볼들(
Figure PCTKR2017000122-appb-I000003
, S1) 전송하는 편광빔 결합기를 포함한다.
상기 광 전송 시스템은, 수신측에서 채널상태정보(CSI, channel state information)를 추정 없이 각 심볼구간의 수평 및 수직 편광 전류들을 이용하여 APTC(Alamouti-type polarization-time coding)에 따른 코드를 디코딩해 수신 심볼을 추정하기 위한 것을 특징으로 한다.
상기 변조기들은 각각 마하젠더 변조기(Mach-Zehnder modulator)이다.
상기 입력 신호는 NRZ-OOK(non-return-to-zero ON-OFF keying) 신호이다.
상기 광 전송 시스템은, 광 전송로를 통해 수신되는 편광 다중화 상기 심볼들을 두개의 직교 편광 신호들로 역다중화하는 편광빔 스플리터; 역다중화된 상기 직교 편광 신호들을 각각 광전 변환하는 2개의 광검출기들; 광전 변환된 신호들을 각각 저주파 통과 필터링하는 2개의 저주파필터들; 및 저주파 통과 필터링된 신호들로부터 두개의 심볼 구간 각각에서의 상기 광검출기들의 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 디코더를 더 포함할 수 있다.
또는, 상기 광 전송 시스템은, 광 전송로를 통해 수신되는 편광 다중화 상기 심볼들에 대하여 광전 변환하는 하나의 광검출기; 광전 변환된 신호를 저주파 통과 필터링하는 저주파필터; 및 저주파 통과 필터링된 신호로부터 두개의 심볼 구간 각각에서 상기 하나의 광검출기에 의해 출력되는 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 디코더를 더 포함할 수도 있다.
상기 추정된 심볼은
Figure PCTKR2017000122-appb-I000004
을 사용하는 균등화된(equalized) 심볼이다.
상기 디코더는, 1비트 딜레이와 합산(one-bit delay-and-add) 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터를 이용하여 상기 각각의 심볼을 추정한다.
본 발명에 따른 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템에 따르면, 편광 크로스톡과 편광 모드 분산(PMD) 때문에 상당히 어려운 알라모우티 타입 시편광 코딩(APTC)을 이용하여 IM/DD 환경에서 편광 다이버시티 이득을 이용할 수 있다. 편광 모드 분산(PMD) 채널의 단일화된 성질 때문에, 본 발명은 수신기측에 동적 편광 제어기(PC) 없이도 편광 크로스톡을 경감할 수 있다.
또한, 본 발명에서의 디코딩 복잡도는 다른 시편광 기술 보다 상당히 낮다. 편광 모드 분산(PMD) 채널에서 광채널 모델을 2×2 MIMO 모델로서 사용함으로써, 광채널 추정기를 제거할 수 있기 때문이다. 본 발명의 APTC-IM/DD 방법은 6 ps 이하의 DGD를 갖는, 단거리/장거리(<800 km) 40 Gbps 광섬유 전송 시스템에서 3-dB 파워 감축의 이득을 얻을 수 있으며, IM/DD 시스템의 편광 모드 분산(PMD) 공차(tolerance)를 상당히 개선할 수 있다.
도 1은 복굴절(birefringence) 축들의 랜덤 회전을 갖는 연속적인 다양한 복굴절 세그먼트들로서, 긴 광섬유에 대한 편광 다중화(PDM)의 물리적 모델을 설명하기 위한 도면으로서, 빛은 왼쪽에서 오른쪽으로 전달 진행한다.
도 2a는 본 발명의 IM/DD 광 전송 시스템에서 편광 모드 분산(PMD) 보상을 위한 알라모우티 타입 시편광 코딩(APTC) 방법을 설명하기 위한 블록도이다.
도 2b는 본 발명의 본 발명의 다른 실시예에 따른 IM/DD 광 전송 시스템을 설명하기 위한 블록도이다.
도 2c는 본 발명의 APTC IM/DD 광 전송 시스템의 동작 설명을 흐름도이다.
도 3a는 일반적인 IM/DD 시스템(IM/DD)을 설명하기 위한 도면이다.
도 3b는 최적으로 조정된 편광 제어기(PC) 뒤에 편광빔 스플리터(PBS)를 갖는 IM/DD 시스템(PC-IM/DD)을 설명하기 위한 도면이다.
도 4는 8.5 ps의 차동 그룹 지연(DGD)을 갖는 40 Gbps 광섬유 전송시스템에서 OSNR에 대한 BER 결과를 비교한 그래프이다.
도 5는 0~7200km 범위에서 다양한 길이의 PMD-손상 SMF 경로들 상에서의 전송 후, 차동 그룹 지연(DGD)에 대한 1차(first-order) PMD 공차의 결과를 나타내는 그래프이다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.
먼저 알라모우티(Alamouti) 코딩에 대하여 간단히 기술한다. 알라모우티(Alamouti) 코딩은 S. M. Alamouti에 의해 저널 IEEE J. Select. Areas Commun. 16(8), 1451-1458 (1998)에 발표했던 논문 "A simple transmitter diversity scheme for wireless communications"에 개시되어 있다. 알라모우티(Alamouti) 코딩은 송신기에서의 채널 조건에 대하여 알 필요 없으며, 공간-시간 코딩의 사용으로 공간 다이버시티 용량 이득을 이용하기 위한 무선 영역에서의 응용을 위해 고안되었다.
본래의 알라모우티(Alamouti) 코딩은 편광 모드 분산(PMD)을 경감시키는 주요 결과들을 나타내는 광 가간섭(coherent) 시스템에 직접 적용될 수 있다. 이러한 기술은 Ivan B. Djordjevic 등에 의한 " Alamouti-type polarization-time coding in coded-modulation schemes with coherent detection" (Opt. Express 16(18), 14163-14172 (2008)), E. Awwad 등에 의한 편광 의존 손실(PDL, polarization dependent loss)과 관련되고 복소 가간섭 검출(complex coherent detections)과 정확한 채널 추정의 비용과 관련 논문으로서, "Polarization-time coding for PDL mitigation in long-haul PolMux OFDM systems" (Opt. Express 21(19), 22773-22790 (2013)) 등의 문헌에 개시되어 있다.
일반적인 알라모우티(Alamouti) 코딩 원리는, 신호의 음수(negatives)와 켤레(conjugates)를 송신하고 검출하기 때문에, 세기 변조(intensity modulation)/직접 검출(direct detection) (IM/DD) 광 전송 시스템에 직접 구현될 수 없다. 이에도 불구하고 IM/DD 시스템은 시간 영역에서 음이 아닌 실수값 신호를 단지 다룬다. 수정된 알라모우티(Alamouti) 코딩 기술이 Simon and Vilnrotter에 의한 "Alamouti-type space-time coding for free-space optical communication with direct detection" (IEEE Trans. Wireless Commun. 4(1), 35-39 (2005))에서 논의되었고, 이는 자유 공간 IM/DD 광 시스템에서 공간-시간 다이버시티로부터의 채널 용량을 이용할 수 있다. 자유 공간 채널 페이딩(fading)은 무선 채널에서 관측되는 것과 매우 유사하다. 여기에 제시된 것처럼 동일한 기술이 시편광(polarization-time) 다이버시티 알라모우티(Alamouti) 코딩과 함께 적용될 수 있다. 그러나, 편광 제어기나 광 채널 추정기 없이 IM/DD 광 시스템에서 편광 다중화(PDM) 전송을 구현하는 것은, 두 직교 편광 모드 사이의 랜덤 크로스 커플링(random cross-coupling) 때문에, 차동 그룹 지연(DGD, differential group delay)이 없어도 지극히 어려운 일이다.
본 발명에 따른 알라모우티 타입 시편광 코딩(APTC, Alamouti-type polarization-time coding)-IM/DD 기술은, 알라모우티 타입 코딩이 편광 다중화(PDM)-가능 IM/DD 전송 시스템에서 구체화될 수 있는 방법을 보여주기 위한 이론적인 모델링을 기초로 제안되었다. 여기서는 광 채널 모델을 2×2 MIMO 시스템으로서 이용함으로써 편광 다중화(PDM)와 편광 크로스톡(crosstalk)을 공통적으로 경감할 수 있게 된다.
광 섬유에서 편광 다이버시티는 APTC 쓰루풋(throughput) 향상을 얻기 위해 사용된다. 이하 편광 다이버시티 채널 모델을 먼저 설명하고 APTC-IM/DD 시스템에 그 모델을 적용하는 방법을 설명한다.
<편광 다이버시티를 갖는 광 섬유 모델>
편광 다이버시티를 갖는 광 섬유 채널 모델은 랜덤한 편광 상태(SOP) 회전과 약한 복굴절(birefringence)을 갖는 섬유에서의 커플링(couplings)에 대한 것을 포함한다. 여기서, 광 섬유 채널은 편광 상태(SOP)의 랜덤한 방향을 나타내며, 두 직교 편광 모드들 간의 차동 그룹 지연(DGD)을 나타낸다. 이러한 특성은 편광 모드 분산(PMD) 채널 모델로서 언급된다. 짧은 단일 모드 섬유(SMF, single mode fiber)에서, 편광 상태(SOP) 랜덤 커플링이 없으므로, 차동 그룹 지연(DGD)은 불균일하고 부가적이다. 그러나, 일반적인 통신 시스템, 예를 들어, 액세스 네트워크, 지상파 네트워크, 해저 케이블 시스템 등에서 섬유 길이들은 수십에서 수백 km에 달한다.
도 1은 복굴절(birefringence) 축들의 랜덤 회전을 갖는 연속적인 다양한 복굴절 세그먼트들로서, 긴 광섬유에 대한 편광 다중화(PDM)의 물리적 모델을 설명하기 위한 도면으로서, 빛은 왼쪽에서 오른쪽으로 전달 진행한다.
장거리 섬유의 편광 모드 분산(PMD)은 종종 다중 복굴절 세그먼트들의 연속으로 보여진다. 이 세그먼트들의 복굴절 축들과 크기들은 랜덤하게 변하고 이는 도 1과 같이 섬유에서 빠른 축과 느린 축 사이의 랜덤 커플링(coupling)을 일으킨다. 따라서, 장거리 섬유의 차동 그룹 지연(DGD)은 섬유 길이를 따라 선형으로 증가하지 않는다. 그 대신 섬유에서 차동 그룹 지연(DGD)의 증가는 3차원 랜덤 움직임(walk)으로서 연구될 수 있고, 평균 차동 그룹 지연(DGD)은 전달 거리(propagation distance)의 제곱근(square-root)으로 근사화될 수 있다. 편광 의존 손실(PDL)을 무시할 수 있는 경우에, 장거리 섬유의 편광 모드 분산(PMD)은 [수학식1]과 같이 랜덤한 방향의 편광 상태(SOP)를 갖는 연속 다중 복굴절 세그먼트들을 포함하는 존 매트릭스(Jones matrix)을 이용하여 채널 응답 함수 H(ω)가 모델화될 수 있다.
[수학식1]
Figure PCTKR2017000122-appb-I000005
[수학식1]에서, N은 섬유 세그먼트들의 수(자연수), ω는 광 주파수(rad/sec)이다. τn은 복굴절 세그먼트의 차동 그룹 지연(DGD), θn은 n번째와 n-1번째 세그먼트들의 주축(principle axes) 간의 각도로서 [0, π] 사이에 랜덤하게 균일 분포하고 주파수에는 독립적이다. 이러한 모델은 0번째와 첫번째 오더(order) 각각의 차동 위상 지연(DPD, differential phase dispersion)과 차동 그룹 지연(DGD)을 포함해 모든 오더의 편광 모드 분산(PMD) 손상에 대한 특징을 나타낸다.
섬유에서의 출력 신호 Sout(ω)는 주파수 도메인에서 [수학식2]와 같이 나타낼 수 있다. 여기서,
Figure PCTKR2017000122-appb-I000006
은 단위 벡터(unit vector),
Figure PCTKR2017000122-appb-I000007
Figure PCTKR2017000122-appb-I000008
에 의해 나타난 수평 또는 수직축 중 어느 하나에서 스칼라 입력 신호 S(ω)의 주파수 도메인에서의 편광 벡터이다.
[수학식2]
Figure PCTKR2017000122-appb-I000009
<APTC-IM/DD 시스템 모델>
도 2a는 본 발명의 IM/DD 광 전송 시스템(500)에서 편광 모드 분산(PMD) 보상을 위한 알라모우티 타입 시편광 코딩(APTC) 방법을 설명하기 위한 블록도이다. 도 2b는 본 발명의 본 발명의 다른 실시예에 따른 IM/DD 광 전송 시스템을 설명하기 위한 블록도이다. 도 2a, 도 2b에서, 신호 파형들은 타임 슬롯 t1, t2에서 각각 전송된 심볼들이다. 도 2c는 본 발명의 APTC IM/DD 광 전송 시스템(500)의 동작 설명을 흐름도이다.
도 2a를 참조하면, 본 발명의 일 실시예에 따른 제곱 검파(square-law) 직접 검출을 수행하는 IM/DD 광 전송 시스템(500)은, 전송기(transmitter)(300), 편광 모드 분산(PMD) 손상을 갖는 증폭된 단일 모드 섬유(SMF, single mode fiber)-28 광섬유 전송시스템(190), 및 수신기(receiver)(400)을 포함한다.
전송기(300)는 NRZ-OOK(non-return-to-zero ON-OFF keying) 송신기(110), APTC 인코더(120), LD(laser diode, 레이저 다이오드)(130), 편광빔 스플리터(PBS, polarization beam splitter)(140), 마하젠더 변조기(MZM, Mach-Zehnder modulator)(150, 160), 편광빔 결합기(PBC, polarization beam combiner)(170), 에르븀 첨가 섬유 증폭기(EDFA, erbium-doped fiber amplifier)(180)을 포함한다.
광섬유 전송시스템(190)은 단일 모드 섬유(SMF, single mode fiber)로서, 여기서, 8km 섬유마다 분산보상모듈(DCM, dispersion compensation module)(191)의 제어를 받는 EDFA(192)가 n(예, 10)번 구비되어 80km 섬유가 있는 것으로 가정한다.
도 2a와 같이, 수신기(400)는 광(optical) 대역통과필터(OBPF, optical band pass filter)(200), 편광빔 스플리터(PBS, polarization beam splitter)(210), 제1및 제2 광 검출기(PD, photodetector)(220, 230), 제1 및 제2 저주파필터(LPF, low pass filter)(240, 250), APTC 디코더(260), 결정부(270)를 포함한다.
도 2b와 같이, 도 2a의 수신기 구조에서 편광빔 스플리터(210), 제2 광 검출기(230), 제2 저주파필터(250)은 생략될 수도 있다.
광섬유 전송 시스템의 색 분산(chromatic dispersion) 손상은 분산 보상기들에 의해 보상되는 것으로 가정한다. 본 발명의 APTC-IM/DD 시스템(500)에서 편광 모드 분산(PMD)와 편광 크로스톡은 코딩만을 통하여 경감되며 편광 제어기(PC)는 사용되지 않는다.
<전송기(300) 기술>
NRZ-OOK 송신기(110)는 입력 데이터 열(sequence)로부터 NRZ-OOK 신호를 생성하여 APTC 인코더(120)로 전송하며(S210), APTC 인코더(120)는 두 심볼(s1, s2)을 인코딩하기 위한 코드 블록(code block)으로서의 연속하는 두 타임 슬롯(t1, t2)을 결합하고, 여이서 각 타임 슬롯에서 각각의 코드는 두개의 직교 편광을 통해 전송될 한쌍의 비트들(bits)을 포함한다(S220).
N개의 전송된 심볼들의 벡터를 s=[s1, s2,.., sN]로 하고, NRZ-OOK를 위해 si∈{0,1}이고, 여기서 i=1,2,..,N이다. APTC-IM/DD 기술에서 APTC 인코더(120)에 의해 코드 블록으로 직교 코드화된 한쌍의 심볼들(sx(t), sy(t))을 반복 전송한다. 코드 블록의 첫 심볼 슬롯 t1 동안, 수평(x)-/수직(y)-편광을 사용하여 전송된 코드는 st1=[s1 s2]T으로 표현될 수 있다(S230). 심볼 주기 T 이후 두번째 심볼 슬롯 t2 에서, 전송된 코드는 st2=t1+T=[
Figure PCTKR2017000122-appb-I000010
s1]T이고, 여기서
Figure PCTKR2017000122-appb-I000011
은 심볼 s2∈{0,1}의 보수(complement)를 나타낸다(S240). 윗 첨자T 는 행렬 트랜스포즈(transpose) 연산이다. 여기서 채널 데이터 레이트는 1비트/타임슬롯이다. 이러한 두개의 직교 코드들은 각각 LD(130), 편광빔 스플리터(PBS)(140) 및 마하젠더 변조기(MZM)(150, 160)에 의해 변조되고, 편광빔 결합기(PBC)(170)에 의해 결합되어, 에르븀 첨가 섬유 증폭기(EDFA)(180)를 통해 PMD-손상 광섬유 전송시스템(190)으로 전송된다. 즉, 이전 심볼 구간 동안 수직 편광(y-편광)으로 전송된 심볼(S2)은, 다음 심볼 구간에, 수평 편광(x-편광)으로 보완되어(상보적으로) 전송되고(
Figure PCTKR2017000122-appb-I000012
), 이전 심볼 구간 동안 수평 편광(x-편광)으로 전송된 심볼(S1)은, 다음 심볼 구간에, 수직 편광(y-편광)으로 전송된다(S1).
이를 위하여, APTC 인코더(120)가 입력 데이터 열로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하면, LD(130)에 의해 발생된 레이저 빔이 편광빔 스플리터(PBS)(140)에 의해 수평 편광(x-편광) 및 수직 편광(y-편광)으로 분리된 빔을 이용하여 전송될 수 있다.
마하젠더 변조기(MZM)(150, 160)는 각각의 심볼들(S1,S2)을 심볼 슬롯 t1 에서 수평 편광 및 수직 편광의 빔을 이용해 변조하고, 편광빔 결합기(PBC)(170)에 의해 결합되어 각각의 심볼들(S1,S2)을 동시에 광섬유 전송시스템(190)으로 전송할 수 있다. 또한, 마하젠더 변조기(MZM)(150, 160)는 각각의 심볼들(
Figure PCTKR2017000122-appb-I000013
,S1)을 심볼 슬롯 t2 에서 수평 편광 및 수직 편광의 빔을 이용해 변조하고, 편광빔 결합기(PBC)(170)에 의해 결합되어 각각의 심볼들(
Figure PCTKR2017000122-appb-I000014
,S1)을 동시에 광섬유 전송시스템(190)으로 전송할 수 있다.
한편, 시간 영역에서 수신 코드들 r(t)은 [수학식3]과 같이 나타낼 수 있다. 여기서, *는 콘볼루션(convolution) 연산이며, s(t)는 s(t1)=st1, s(t2)=st2을 포함하는 코드열의 전송된 신호 벡터이다. 또한,
Figure PCTKR2017000122-appb-I000015
는 [수학식1]에서 주어진 긴 광섬유들에 대한 시간 영역에서의 광채널 매트릭스를 나타낸다.
[수학식3]
Figure PCTKR2017000122-appb-I000016
여기서, hxx, hyy는 본래 전송된 편광에서 수신된 신호들의 복소 채널 이득들을 나타내고, hxy, hyx는 상기 본래 전송된 편광에 대하여 다른 편광에서 수신된 신호들의 복소 채널 이득들을 나타낸다. n(t) = [nx(t) ny(t)]T는 x-/y- 편광에서 ASE(amplified spontaneous emission) 노이즈 벡터이다. ASE는 채널 특성화를 위하여 이용된다.
<수신기(400) 기술>
수신기(400)에서 광 대역통과필터(OBPF)(200)는 수신 신호의 채널외의 ASE 노이즈를 제거한다. 이와 같이 노이즈가 필터링된 편광 다중화(PDM) 신호들은 편광빔 스플리터(PBS)(210)에 의해 두개의 직교 편광 신호들로 역다중화된다(S250). 단일-전송기 및 단일-수신기 시스템과 달리, 이러한 구성은 수신된 신호들의 두 복사본(cpoy)을 제공하고, 각각이 검출되고 처리된다. 그러나, 광섬유를 통해 지나가는, 직교하는 편광 상태(SOP)로 보내진 광 캐리어들은, 복굴절의 랜덤 방향 때문에 입력된 SOP를 유지하지 못하고, 편광빔 스플리터(PBS)(210)의 각 출력(ex(t), ey(t))에서의 데이터 스트림들의 편광들 간의 랜덤 크로스톡 커플링을 일으킨다. 만일 변조된 심볼 벡터 s가 한 심볼 주기 내에서 변경이 없다면 상수(constant)로 볼 수 있다. 따라서, 시간 t1에서, 즉,
Figure PCTKR2017000122-appb-I000017
에서 편광빔 스플리터(PBS)(210)의 두 출력 포트에서의 수신 신호들은 [수학식4], [수학식5]와 같이 표현될 수 있다.
[수학식4]
Figure PCTKR2017000122-appb-I000018
[수학식5]
Figure PCTKR2017000122-appb-I000019
여기서, rx, ry는 각각 x-, y- 편광에서의 수신 신호 벡터이고, nx, ny는 해당 AES 노이즈를 나타낸다. 마찬가지로, 시간 t2 = t1 + T, 즉,
Figure PCTKR2017000122-appb-I000020
에서 편광빔 스플리터(PBS)(210)의 두 출력 포트에서의 수신 신호들은 [수학식6]과 같이 표현될 수 있다. 여기서, 두개의 식을 하나로 표현한 것이며, 즉, x(y)는 x를 y로 파라미터 대체할 수 있는 것을 나타내고, 나머지 파라미터도 마찬가지이다.
[수학식6]
Figure PCTKR2017000122-appb-I000021
이제, 역 다중화된 수신 신호들(ex(t), ey(t))은 광전 변환을 위한 두개의 광 검출기(PD)(220, 230)에 의해 각각 검출되고(S260), 각각의 광전 변환된 신호는 저주파필터(LPF)(240, 250)에서 저주파 통과 필터링을 거친다(S270). 광 검출기(PD)(220, 230)의 반응도(responsivity)가 1/η로 표시되면, 광 검출기(PD)(220, 230)의 광전류
Figure PCTKR2017000122-appb-I000022
는 t1, t2 에서 각각 [수학식7], [수학식8]과 같이 나타낼 수 있다.
[수학식7]
Figure PCTKR2017000122-appb-I000023
[수학식8]
Figure PCTKR2017000122-appb-I000024
여기서, [수학식7], [수학식8]에서 마지막 3개 부분은 검출된 전기적 노이즈를 나타내고, {.}는 편광 크로스톡을 나타낸다. 일반적으로 알라모우티(Alamouti) 코드를 디코딩하기 위하여, 2입력1출력(2×1) 채널 수신기에서 신호의 위상과 크기 정보를 포함하는 채널상태정보(CSI, channel state information)를 필요로 한다. 그러나, 본 발명에서, 2입력1출력(2×1) 채널의 사용에도 CSI 추정 없이 APTC-IM/DD 코드를 디코딩하는 것이 가능함을 보여준다. 즉, 수신측에서 채널상태정보를 추정 없이도 각 심볼구간의 수평 및 수직 편광 전류들을 이용하여 APTC에 따른 코드를 디코딩해 수신 심볼을 추정할 수 있다. 나아가, 일반적인 IM/DD 전송 시스템에서는, 위상 정보가 광검출기의 제곱 검파(square-law) 성질상 검출 과정에서 손실된다. IM/DD 전송 시스템에서 PDM 전송은, 차동 그룹 지연(DGD)이 없어도 편광 상태(SOP)의 랜덤한 방향으로 인해 두개의 직교 편광들 간의 랜덤한 커플링 때문에 어려운 일이다. 따라서, 역다중화 패널티(penalty)를 줄이기 위하여 편광 크로스톡을 없애거나 감축하는 것이 바람직하다.
무시할만한 편광 의존 손실(PDL) 수준에서, [수학식1]과 같이 주파수 의존 존 매트릭스(Jones matrix)는 일원화되어 있다. 따라서, H(ω)TH(ω)=I와 같이 쓸수 있고, H(ω)T는 Hermitian 트랜스포즈(transpose)이다. 채널 응답 함수의 기울기가 충분히 작은, 즉,
Figure PCTKR2017000122-appb-I000025
가 되도록 통과 대역폭 상에서 H(ω)가 변할때, 시간 영역 파형은 [수학식9]와 같이 근사화될 수 있다.
[수학식9]
Figure PCTKR2017000122-appb-I000026
또한,
Figure PCTKR2017000122-appb-I000027
이므로, [수학식10]을 얻을 수 있다.
[수학식10]
Figure PCTKR2017000122-appb-I000028
편광 크로스톡과 PMD 둘다 경감하기 위하여, 본 발명의 APTC 방법은 수신기(400) 측에서 두개의 편광들을 이용한다.
Figure PCTKR2017000122-appb-I000029
이므로, 시간 δ 내의 유한 임펄스 응답(finite impulse response)을 가정할 때,
Figure PCTKR2017000122-appb-I000030
으로 근사화할 수 있다.
이제 [수학식10]의 근사화에 따른 다음의 간단화된 [수학식11], [수학식12], 및 [수학식7], [수학식8]에서 보여준 것처럼, 시간 t=t1, t=t2 에서 결합 광전류들은, 시간 t=t1, t=t2 에서 x-, y- 편광들에서의 광전류를 더하는 것에 의해 획득될 수 있다.
[수학식11]
Figure PCTKR2017000122-appb-I000031
[수학식12]
Figure PCTKR2017000122-appb-I000032
여기서, 간단화를 위하여 δ=1이라 하고,
Figure PCTKR2017000122-appb-I000033
을 사용하기로 한다. α = β = 1, γ = 0이다. 이는 두개의 직교 편광 성분들의 파워 합(power sum)이 채널 매트릭스 H를 측정하는 요구 사항을 없애준다.
광전 변환된 신호들이 저주파필터(LPF)(240, 250)의 저주파 통과 필터링를 거쳐 APTC 디코더(260)에서 위와 같이 결합된 광전류들은, APTC 디코더(260)에 의해 디코딩된다(S280). APTC 디코더(260)는 [수학식13], [수학식14]와 같이 합산되어 결합된 광전류들에 대하여 1비트 딜레이와 합산(one-bit delay-and-add), 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터 방식을 이용한다. 이때, 편광 의존 손실(PDL)이 없을 때,
Figure PCTKR2017000122-appb-I000034
을 사용하는 균등화된(equalized) 심볼들은 [수학식13], [수학식14]와 같이 표현될 수 있다.
[수학식13]
Figure PCTKR2017000122-appb-I000035
[수학식14]
Figure PCTKR2017000122-appb-I000036
여기서,
Figure PCTKR2017000122-appb-I000037
,
Figure PCTKR2017000122-appb-I000038
는 심볼들 s1, s2에 대하여 APTC 디코더(260)에 의해 추정된 심볼들을 각각 나타낸다.
도 2b와 같이, 도 2a의 수신기 구조에서 편광빔 스플리터(210), 제2 광 검출기(230), 제2 저주파필터(250)은 생략될 수도 있다. 이때에는 수신기(400)에서 광 대역통과필터(OBPF)(200)에서 ASE 노이즈가 제거되면, 수신 신호(e(t))은 광전 변환을 위한 광 검출기(PD)(220)에 의해 검출되고, 광전 변환된 신호(ix(t)+iy(t))는 저주파필터(LPF)(240)에서 저주파 통과 필터링을 거친다. 광전 변환된 신호(ix(t)+iy(t))는 위와 같이 합산되어 결합된 광전류들(수평 및 수직 편광 전류들의 합산값)을 포함하므로, APTC 디코더(260)는 위와 같은 원리에 따라 저주파 통과 필터링된 신호로부터 두개의 심볼 구간 각각에서의 수평 및 수직 편광 전류들의 합산값에 대응되는 두개의 심볼 구간 각각의 심볼을 추정할 수 있다. 이때 APTC 디코더(260)는 광 검출기(PD)(220)의 광전 변환된 신호(ix(t)+iy(t))(수평 및 수직 편광 전류들의 합산값)에 대하여 1비트 딜레이와 합산(one-bit delay-and-add), 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터 방식을 이용하여 심볼 구간 각각의 심볼을 추정할 수 있다.
결정부(270)는 APTC 디코더(260)에 의해 추정된 심볼들에 대하여 1비트씩 디지털값을 결정한다(S290). 노이즈 샘플들 n1, n2는 비상관(uncorrelated) 및 독립적(independent)이다. [수학식13], [수학식14]의 결합된 신호들은 서로 유사하고 편광 모드 분산(PMD) 채널의 특성 때문에 기존의 경우보다 좀 더 간단화되어 표현된다.
편광 모드 분산(PMD) 손상이 있는 PDM-가능 IM/DD 전송 상황에서 본 발명의 APTC-IM/DD 방법의 성능을 검증하기 위하여, NRZ-OOK 송신기(110)에서 1550nm 파장을 갖는 NRZ-OOK 변조 신호가 생성된다. 예를 들어, NRZ-OOK 변조 신호는 워드 길이 215 - 1일 수 있고, PRBS(pseudorandom binary sequence, 의사랜덤 이진수 열) 생성기를 이용하여 10 Gbps, 40 Gbps 등으로 생성될 수 있다. 차례로, NRZ-OOK 변조 신호는 APTC 인코더(120)에서 부호화되며, 마하젠더 변조기(MZM)(150, 160), 편광빔 결합기(PBC)(170), 에르븀 첨가 섬유 증폭기(EDFA)(180)을 거쳐, 0~7200km에 달하는 광섬유 전송시스템(190)의, 랜덤하게 커플링되며 다양한 길이를 갖는, 편광 모드 분산(PMD) 손상을 갖는 전송로(예, SMF-28 links) 상으로 전송된다. 대부분 응용이 단거리 광 경로에서 구현될 것이지만, 광 섬유 길이가 전범위의 차동 그룹 지연(DGD)의에 대한 성능을 탐색하기 위하여 확장되었다. 동시에, 80-km 단일 모드 섬유(SMF) 구간은 10개의 8-km SMF 구간들의 랜덤 커플링으로 모델화될 수 있다. 분산보상모듈(DCM)(191)의 제어를 받는 EDFA(192)가 n(예, 10)번 구비되어 8km 섬유마다 증폭하여 전송한다. 여기서 색 분산(chromatic dispersion) 손상은 보상되어 무시될 것이다. 이와 같이 생성된 광 채널(예, 시뮬레이션)은 고차(higher-order) 편광 모드 분산(PMD)을 따르게 된다.
비교를 위하여, 다음과 같은 3가지 시스템, 즉, 일반적인 IM/DD 시스템(IM/DD), 최적으로 조정된 편광 제어기(PC) 뒤에 편광빔 스플리터(PBS)를 갖는 IM/DD 시스템(PC-IM/DD), 및 본 발명의 알라모우티 타입 시편광 코딩(APTC) 기반 IM/DD 시스템(APTC-IM/DD)을 시뮬레이션하였다.
도 3a는 일반적인 IM/DD 시스템(IM/DD)을 설명하기 위한 도면이다.
도 3b는 최적으로 조정된 편광 제어기(PC) 뒤에 편광빔 스플리터(PBS)를 갖는 IM/DD 시스템(PC-IM/DD)을 설명하기 위한 도면이다.
도 3a의 일반적인 IM/DD 시스템(IM/DD)과 도 3b의 PC-IM/DD 시스템은, 두개의 직교 편광 빔을 사용하지 않으며, 본 발명과 같이, APTC 인코더(120), 편광빔 스플리터(PBS)(140), APTC 디코더(260)를 구비하지 않는다.
PC-IM/DD 시스템은 수신기측의 광 대역통과필터(OBPF)와 광검출기(PD) 사이에 최적으로 조정된 편광 제어기(PC) 뒤에 편광빔 스플리터(PBS)를 갖는다.
도 3b의 PC-IM/DD 시스템에서, 하나의 편광(수평 편광)이 검출되어 BER(Bit Error Rate)를 산출한다. 이는, 다른 편광축(수직축)에서 수신된 신호 성분들이 어느정도 ASE 노이즈 파워를 증가시킬 수도 있지만 무시할만한 정도가 되도록, 편광 제어기(PC)가 수신신호의 정확한 편광 상태(SOP)를 추적할 수 있다고 가정하기 때문이다.
도 4는 8.5 ps의 차동 그룹 지연(DGD)을 갖는 40 Gbps 광섬유 전송시스템에서 OSNR(optical signal-to-noise ratio, 광신호 대 잡음비율)에 대한 BER 결과를 비교한 그래프이다.
도 4에서, 8.5 ps의 평균 차동 그룹 지연(DGD)에 해당하는, 편광 모드 분산(PMD) 계수 0.2 ps/sqrt(km)를 갖는 PMD 손상 SMF 경로 상에서 40 Gbps의 전송률에서 신호가 전송된 후의, OSNR에 대한 BER 결과를 나타내었다. 도면과 같이, 일반적인 IM/DD 시스템, PC-IM/DD 시스템, 및 APTC-IM/DD 시스템 각각에 대하여, pre-FEC(pre-forward error correction) BER 10-3에서, OSNR 값이 14.6 dB, 13.72 dB, 및 11.8 dB로 나타났다. 본 발명의 APTC-IM/DD 시스템이, 일반적인 IM/DD 시스템, PC-IM/DD 시스템 및 APTC-IM/DD 시스템과 비교하여, 2.8 dB와 1.92 dB 만큼의 현저한 성능 향상이 있음을 볼 수 있다. 따라서, 본 발명과 같이 PC가 없는 APTC 방법은, PMD 손상에 대항한 강한 회복을 보여줄 뿐만 아니라, 용인될 수준으로 편광 크로스톡을 줄일 수 있음을 알 수 있다.
도 5는 0~7200km 범위에서 다양한 길이의 PMD-손상 SMF 경로들 상에서의 전송 후, 차동 그룹 지연(DGD)에 대한 1차(first-order) PMD 공차(dispersion tolerance)의 결과를 나타내는 그래프이다. 즉, 차동 그룹 지연(DGD)들에 대하여 10-3 pre-FEC BER을 얻기 위하여 요구된 OSNR의 결과를 나타내었다. 40 Gbps와 10Gps에서, 일반적인 IM/DD 시스템, PC-IM/DD 시스템, 및 APTC-IM/DD 시스템 각각에 대한 결과가 도시되어 있다. 시뮬레이션 상의 편광 모드 분산(PMD) 채널들은 고차(higher-order) PMD 모델을 따른다. 고차(higher-order) PMD 채널에서는, 고정된 PMD 계수에서 전송 거리의 증가와 함께, 평균 차동 그룹 지연(DGD)과 주파수 의존성이 증가한다는 것이 알려져 있다. 시뮬레이션에서 각 SMF 경로의 PMD 계수가 0.2 ps/sqrt(km)로 가정되었다.
전송률 40 Gbps에서, 본 발명의 APTC-IM/DD 방법은 DGD = 0인 B2B(back-to-back)의 경우에 일반적인 IM/DD 시스템보다 3.0dB 정도 이득을 본다. 이는 본 발명의 알라모우티 타입 시편광 코딩(APTC)에 의한 코드를 디코딩하기 위하여 수신기(400) 측에서 두 편광들이 사용되기 때문이다.
PC-IM/DD 시스템의 경우에, 노이즈 제거 효과로 인해 IM/DD 시스템에 비하여 0.6dB 정도 이득이 있다. DGD가 낮은 0 ps ≤ DGD ≤ 6 ps 영역에서, 본 발명의 APTC-IM/DD 시스템은 일반적인 IM/DD 시스템과 PC-IM/DD 시스템에 비교하여 더 많은 공차를 갖는다. 이는 전송거리 800km의 낮은 DGD 영역에서 Hx(y)x(y)(ω) 표준편차 대략 0.29 rad << π 정도이기 때문이다. 이는 [수학식9]에서의 근사화에 대한 유효성을 보여준다. 시뮬레이션 결과들은 본 발명의 APTC-IM/DD 방법이 PC 없이도 편광 역다중화 수행이 가능함을 보여준다. 그러나, 높은 DGD 영역(8 ps ≤ DGD ≤ 17 ps)에서, APTC-IM/DD 시스템은 DGD에 따른 더 많은 그 의존성을 보여주고, 이는 이 영역에서 상기 근사화가 유효성을 잃기 시작하기 때문이다. 그 주요 원인은 DGD 증가와 함께 커지는 채널 간 크로스톡이다. 일반적으로 DGD 존재에 따라, 심볼 구간의 중간에서 편광 다중화 신호들의 편광 상태(SOP)가 다중화되지 않은 신호들과 반대로 빠르게 변한다. 제로(zero) 역다중화 패널티를 위해, 다중화된 신호의 상승/하강 에지(rising and falling edges)가 시간에 맞게 정렬되어야 한다. 높은 DGD 영역에서, 편광 다중화된 신호들은 시간에 따라 심하게 분산되며 이는 높은 OSNR 패널티를 초래하게 된다.
다음에, 데이터 전송률을 10 Gbps로 줄여 0~7200km 거리까지 전송하는 경우를 본다. 이때에는 전송로(예, SMF-28 links)의 경우에 낮은 DGD 영역으로 파악할 수 있다. 도 5에서, 10 Gbps에 대한 그래프를 보면, 10-3의 동일한 BER 성능에서 거의 6dB의 OSNR 요구의 개선이 있는 것을 제외하면 40 Gbps에 대한 낮은 DGD 영역에서 보이는 경향과 일치하는 것을 알 수 있다. 이는 데이터 전송률이 1/4로 축소되었기 때문이다.
상술한 바와 같이, 본 발명의 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템에서는, 시편광 코딩 형태의 수정된 알라모우티 타입 시편광 코딩(APTC)을 이용하여 IM/DD 시스템에서 편광 다중화(PDM) 이득을 활용하는 기술을 개시하였다. 이에 따라 편광 모드 분산(PMD) 손상을 방지할 수 있게 된다. 본 발명에서, 편광 다중화(PDM) 전송은 편광빔 결합기(PBC)(170)를 이용하여 두개의 직교하는 코드화된 심볼을 결합하고, 두개의 직교하는 편광 모드들로 주어진 심볼 구간에 동시에 전송함으로써 구현될 수 있다. 이전 심볼 구간 동안 수직 편광(y-편광)으로 전송된 심볼은, 다음 심볼 구간에, 수평 편광(x-편광)으로 보완되어(상보적으로) 전송되고, 이전 심볼 구간 동안 수평 편광(x-편광)으로 전송된 심볼은, 다음 심볼 구간에, 수직 편광(y-편광)으로 전송된다.
수신기(400) 측에서 광 채널 모델은 2×2 MIMO(Multiple Input Multiple Output)로 매핑되며, APTC 디코더(260)에서의 1비트 딜레이와 합산(one-bit delay-and-add), 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터에 의해 간단히 전송된 신호를 디코딩할 수 있다. 본 발명의 기술은 편광 제어기(PC), 가간섭(coherent) 수신기, 고속 ADC(analog-to-digital converter), DSP(digital signal processor), 광채널 추정기 등이 없이도, 낮은 DGD 영역에서 3dB의 이득을 얻을 수 있다.
본 명세서에 개시된 실시예들과 관련하여 설명된 방법 또는 알고리즘의 단계는 반도체 프로세서에 의해 실행되는 하드웨어, 소프트웨어 모듈, 또는 그 2 개의 결합으로 직접 구현될 수 있다. 소프트웨어 모듈은 RAM 메모리, 플래시 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 레지스터, 하드 디스크, 착탈형 디스크, CD-ROM과 같은 저장 매체(즉, 메모리, 스토리지 등)에 상주할 수도 있다. 예시적인 저장 매체는 프로세서에 커플링되며, 그 프로세서는 저장 매체로부터 정보를 판독할 수 있고 저장 매체에 정보를 기입할 수 있다. 다른 방법으로, 저장 매체는 프로세서와 일체형일 수도 있다. 프로세서 및 저장 매체는 주문형 집적회로(ASIC) 내에 상주할 수도 있다. ASIC는 사용자 단말기 내에 상주할 수도 있다. 다른 방법으로, 프로세서 및 저장 매체는 사용자 단말기 내에 개별 컴포넌트로서 상주할 수도 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 입력 신호로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하는 단계;
    제1심볼 구간에 수평 편광 및 수직 편광으로 심볼들(S1,S2) 각각을 동시에 전송하는 단계; 및
    제2심볼 구간에 수평 편광 및 수직 편광으로 심볼들(
    Figure PCTKR2017000122-appb-I000039
    , S1) 각각을 동시에 전송하는 단계
    를 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  2. 제1항에 있어서,
    수신측에서 채널상태정보(CSI, channel state information)를 추정 없이 각 심볼구간의 수평 및 수직 편광 전류들을 이용하여 APTC(Alamouti-type polarization-time coding)에 따른 코드를 디코딩해 수신 심볼을 추정하기 위한 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  3. 제1항에 있어서,
    상기 입력 신호는 NRZ-OOK(non-return-to-zero ON-OFF keying) 신호인 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  4. 제1항에 있어서,
    광 전송로를 통해 수신되는 편광 다중화 상기 심볼들을 두개의 직교 편광 신호들로 역다중화하는 단계;
    광검출기들을 이용하여 역다중화된 상기 직교 편광 신호들을 각각 광전 변환하는 단계;
    광전 변환된 신호들을 저주파 통과 필터링하는 단계; 및
    저주파 통과 필터링된 신호들로부터 두개의 심볼 구간 각각에서의 상기 광검출기들의 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 단계
    를 더 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  5. 제1항에 있어서,
    광 전송로를 통해 수신되는 편광 다중화 상기 심볼들에 대하여 하나의 광검출기를 이용하여 광전 변환하는 단계;
    광전 변환된 신호를 저주파 통과 필터링하는 단계; 및
    저주파 통과 필터링된 신호로부터 두개의 심볼 구간 각각에서 상기 하나의 광검출기에 의해 출력되는 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 단계
    를 더 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  6. 제4항에 있어서,
    상기 추정된 심볼은
    Figure PCTKR2017000122-appb-I000040
    을 사용하는 균등화된(equalized) 심볼인 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  7. 제4항에 있어서,
    상기 심볼을 추정하는 단계에서,
    상기 수평 및 수직 편광 전류들의 합산값에 대하여, 1비트 딜레이와 합산(one-bit delay-and-add) 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터를 이용하여 상기 각각의 심볼을 추정하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법.
  8. 입력 신호로부터 직교 코드화된 한쌍의 심볼들(S1,S2)을 생성하는 인코더;
    레이저 빔을 발생하는 레이저 다이오드;
    상기 레이저 빔으로부터 수평 편광 및 수직 편광으로 분리된 빔을 생성하는 편광빔 스플리터;
    상기 수평 편광 및 수직 편광의 빔을 이용해 각각의 심볼을 변조하는 2개의 변조기들; 및
    제1심볼 구간에 상기 변조기들에 의해 변조된 상기 수평 편광 및 수직 편광의 심볼들(S1,S2)을 결합하여 전송하고, 제2심볼 구간에 상기 변조기들에 의해 변조된 상기 수평 편광 및 수직 편광의 심볼들(
    Figure PCTKR2017000122-appb-I000041
    , S1) 전송하는 편광빔 결합기
    를 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  9. 제8항에 있어서,
    수신측에서 채널상태정보(CSI, channel state information)를 추정 없이 각 심볼구간의 수평 및 수직 편광 전류들을 이용하여 APTC(Alamouti-type polarization-time coding)에 따른 코드를 디코딩해 수신 심볼을 추정하기 위한 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  10. 제8항에 있어서,
    상기 변조기들은 각각 마하젠더 변조기(Mach-Zehnder modulator)인 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  11. 제8항에 있어서,
    상기 입력 신호는 NRZ-OOK(non-return-to-zero ON-OFF keying) 신호인 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  12. 제8항에 있어서,
    광 전송로를 통해 수신되는 편광 다중화 상기 심볼들을 두개의 직교 편광 신호들로 역다중화하는 편광빔 스플리터;
    역다중화된 상기 직교 편광 신호들을 각각 광전 변환하는 2개의 광검출기들;
    광전 변환된 신호들을 각각 저주파 통과 필터링하는 2개의 저주파필터들; 및
    저주파 통과 필터링된 신호들로부터 두개의 심볼 구간 각각에서의 상기 광검출기들의 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 디코더
    를 더 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  13. 제8항에 있어서,
    광 전송로를 통해 수신되는 편광 다중화 상기 심볼들에 대하여 광전 변환하는 하나의 광검출기;
    광전 변환된 신호를 저주파 통과 필터링하는 저주파필터; 및
    저주파 통과 필터링된 신호로부터 두개의 심볼 구간 각각에서 상기 하나의 광검출기에 의해 출력되는 수평 및 수직 편광 전류들의 합산값에 대응되는 상기 두개의 심볼 구간 각각의 심볼을 추정하는 디코더
    를 더 포함하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  14. 제12항에 있어서,
    상기 추정된 심볼은
    Figure PCTKR2017000122-appb-I000042
    을 사용하는 균등화된(equalized) 심볼인 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
  15. 제12항에 있어서,
    상기 디코더는, 상기 수평 및 수직 편광 전류들의 합산값에 대하여, 1비트 딜레이와 합산(one-bit delay-and-add) 및 1비트 딜레이와 감산(one-bit delay-and-subtract) 필터를 이용하여 상기 각각의 심볼을 추정하는 것을 특징으로 하는 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 시스템.
PCT/KR2017/000122 2016-12-29 2017-01-05 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템 WO2018124357A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160182949A KR101931957B1 (ko) 2016-12-29 2016-12-29 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템
KR10-2016-0182949 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018124357A1 true WO2018124357A1 (ko) 2018-07-05

Family

ID=62709590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000122 WO2018124357A1 (ko) 2016-12-29 2017-01-05 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR101931957B1 (ko)
WO (1) WO2018124357A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020189348A1 (ko) * 2019-03-18 2020-09-24

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325070B1 (ko) * 2020-07-17 2021-11-10 연세대학교 산학협력단 변조 대역을 확장할 수 있는 주파수 천이 변조를 이용한 광 송신 장치 및 방법
KR102470554B1 (ko) * 2021-09-30 2022-11-23 연세대학교 산학협력단 단일 광변조기를 이용한 다중 세기 편광 변조 광 송신 장치 및 방법
KR102638666B1 (ko) * 2022-11-30 2024-02-19 연세대학교 산학협력단 대역폭 효율을 향상시킬 수 있는 광 통신 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220239A1 (en) * 2005-09-02 2009-09-03 Monash University Methods and apparatus for optical transmission of digital signals
US20100021163A1 (en) * 2008-07-24 2010-01-28 The University Of Melbourne Method and system for polarization supported optical transmission
US20130272704A1 (en) * 2012-04-12 2013-10-17 Futurewei Technologies, Inc. Linear Dispersion Polarization-Time Codes and Equalization in Polarization Multiplexed Coherent Optical System
US20140314410A1 (en) * 2011-06-23 2014-10-23 Institut Mines-Telecom System for transmission over a multi-mode and/or multi-core optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965992B1 (fr) * 2010-10-08 2014-04-04 Inst Telecom Telecom Paristech Methode et systeme de transmission wdm a codage chromato-temporel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220239A1 (en) * 2005-09-02 2009-09-03 Monash University Methods and apparatus for optical transmission of digital signals
US20100021163A1 (en) * 2008-07-24 2010-01-28 The University Of Melbourne Method and system for polarization supported optical transmission
US20140314410A1 (en) * 2011-06-23 2014-10-23 Institut Mines-Telecom System for transmission over a multi-mode and/or multi-core optical fiber
US20130272704A1 (en) * 2012-04-12 2013-10-17 Futurewei Technologies, Inc. Linear Dispersion Polarization-Time Codes and Equalization in Polarization Multiplexed Coherent Optical System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DJORDJEVIC, IVAN B. ET AL.: "Almouti-type Polarization-time Coding in Coded-modulation Schemes with Coherent Detection", OPTICS EXPRESS, vol. 16, no. 18, 26 August 2008 (2008-08-26), XP055128184, Retrieved from the Internet <URL:https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-18-14163> *
REZA, AHMED GALIB ET AL.: "Intensity Modulation and Direct Detection Alamouti Polarization-time Coding for Optical Fiber Transmission Systems with Polarization Mode Dispersion", OPTICAL ENGINEERING, vol. 55, no. 7, 18 July 2016 (2016-07-18), XP060073144 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020189348A1 (ko) * 2019-03-18 2020-09-24
WO2020189348A1 (ja) * 2019-03-18 2020-09-24 日本電気株式会社 ネスト型光変調器を用いた光変調方法および装置
JP7164013B2 (ja) 2019-03-18 2022-11-01 日本電気株式会社 ネスト型光変調器を用いた光変調方法および装置
US11546065B2 (en) 2019-03-18 2023-01-03 Nec Corporation Optical modulation method and device using nested optical modulator

Also Published As

Publication number Publication date
KR20180078014A (ko) 2018-07-09
KR101931957B1 (ko) 2019-03-20

Similar Documents

Publication Publication Date Title
US8805200B2 (en) Optical transmission system
JP5141498B2 (ja) 光送受信システム,光送信器,光受信器および光送受信方法
US7873286B2 (en) Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation
US7343100B2 (en) Optical communications based on optical polarization multiplexing and demultiplexing
WO2018124357A1 (ko) 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템
US8433205B2 (en) Crosstalk-free high-dimensional constellations for dual-polarized nonlinear fiber-optic communications
Miyamoto et al. Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond
Duthel et al. Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK
CN110535532B (zh) 一种偏振无关的脉冲幅度调制信号相干接收方法及系统
KR20180091907A (ko) 짧은 도달거리에서 사용할 수 있는 광 공간 분할 다중화
Estarán et al. Quaternary polarization-multiplexed subsystem for high-capacity IM/DD optical data links
Luís et al. OSNR penalty of self-homodyne coherent detection in spatial-division-multiplexing systems
Asif et al. Logarithmic step-size based digital backward propagation in N-channel 112Gbit/s/ch DP-QPSK transmission
Huang et al. MIMO processing with linear beat interference cancellation for space division multiplexing self-homodyne coherent transmission
Yang et al. Fiber‐wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W‐band without RF down conversion
Luis et al. 128 Tb/s SDM Optical Interconnect for a Spine-Leaf Datacenter Network with Spatial Channel Connectivity
WO2016046315A1 (en) System for transmitting and receiving multi-polarized signals
Chen et al. A highly flexible polarization demultiplexing scheme for short-reach transmission
Aboagye et al. Performance analysis of 112 Gb/s× 4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels
Boffi et al. Stable 100-Gb/s POLMUX-DQPSK transmission with automatic polarization stabilization
Pfau et al. Ultra-fast adaptive digital polarization control in a realtime coherent polarization-multiplexed QPSK receiver
Daikoku et al. 8/spl times/160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PMD compensator
Xie Nonlinear polarization effects and mitigation in polarization multiplexed transmission
Wu et al. Four-dimensional direct detection with Jones space optical full-field recovery
Kovachev et al. Trends in increasing the channel capacity of FSO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886600

Country of ref document: EP

Kind code of ref document: A1